1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
4 #include <linux/rcupdate.h>
7 void tcp_fastopen_init_key_once(struct net *net)
9 u8 key[TCP_FASTOPEN_KEY_LENGTH];
10 struct tcp_fastopen_context *ctxt;
13 ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
20 /* tcp_fastopen_reset_cipher publishes the new context
21 * atomically, so we allow this race happening here.
23 * All call sites of tcp_fastopen_cookie_gen also check
24 * for a valid cookie, so this is an acceptable risk.
26 get_random_bytes(key, sizeof(key));
27 tcp_fastopen_reset_cipher(net, NULL, key, NULL);
30 static void tcp_fastopen_ctx_free(struct rcu_head *head)
32 struct tcp_fastopen_context *ctx =
33 container_of(head, struct tcp_fastopen_context, rcu);
38 void tcp_fastopen_destroy_cipher(struct sock *sk)
40 struct tcp_fastopen_context *ctx;
42 ctx = rcu_dereference_protected(
43 inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1);
45 call_rcu(&ctx->rcu, tcp_fastopen_ctx_free);
48 void tcp_fastopen_ctx_destroy(struct net *net)
50 struct tcp_fastopen_context *ctxt;
52 ctxt = xchg((__force struct tcp_fastopen_context **)&net->ipv4.tcp_fastopen_ctx, NULL);
55 call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free);
58 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
59 void *primary_key, void *backup_key)
61 struct tcp_fastopen_context *ctx, *octx;
62 struct fastopen_queue *q;
65 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
71 ctx->key[0].key[0] = get_unaligned_le64(primary_key);
72 ctx->key[0].key[1] = get_unaligned_le64(primary_key + 8);
74 ctx->key[1].key[0] = get_unaligned_le64(backup_key);
75 ctx->key[1].key[1] = get_unaligned_le64(backup_key + 8);
82 q = &inet_csk(sk)->icsk_accept_queue.fastopenq;
83 octx = xchg((__force struct tcp_fastopen_context **)&q->ctx, ctx);
85 octx = xchg((__force struct tcp_fastopen_context **)&net->ipv4.tcp_fastopen_ctx, ctx);
89 call_rcu(&octx->rcu, tcp_fastopen_ctx_free);
94 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
97 struct tcp_fastopen_context *ctx;
102 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
104 ctx = rcu_dereference(net->ipv4.tcp_fastopen_ctx);
106 n_keys = tcp_fastopen_context_len(ctx);
107 for (i = 0; i < n_keys; i++) {
108 put_unaligned_le64(ctx->key[i].key[0], key + (i * 2));
109 put_unaligned_le64(ctx->key[i].key[1], key + (i * 2) + 1);
117 static bool __tcp_fastopen_cookie_gen_cipher(struct request_sock *req,
119 const siphash_key_t *key,
120 struct tcp_fastopen_cookie *foc)
122 BUILD_BUG_ON(TCP_FASTOPEN_COOKIE_SIZE != sizeof(u64));
124 if (req->rsk_ops->family == AF_INET) {
125 const struct iphdr *iph = ip_hdr(syn);
127 foc->val[0] = cpu_to_le64(siphash(&iph->saddr,
131 foc->len = TCP_FASTOPEN_COOKIE_SIZE;
134 #if IS_ENABLED(CONFIG_IPV6)
135 if (req->rsk_ops->family == AF_INET6) {
136 const struct ipv6hdr *ip6h = ipv6_hdr(syn);
138 foc->val[0] = cpu_to_le64(siphash(&ip6h->saddr,
139 sizeof(ip6h->saddr) +
142 foc->len = TCP_FASTOPEN_COOKIE_SIZE;
149 /* Generate the fastopen cookie by applying SipHash to both the source and
150 * destination addresses.
152 static void tcp_fastopen_cookie_gen(struct sock *sk,
153 struct request_sock *req,
155 struct tcp_fastopen_cookie *foc)
157 struct tcp_fastopen_context *ctx;
160 ctx = tcp_fastopen_get_ctx(sk);
162 __tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[0], foc);
166 /* If an incoming SYN or SYNACK frame contains a payload and/or FIN,
167 * queue this additional data / FIN.
169 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb)
171 struct tcp_sock *tp = tcp_sk(sk);
173 if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt)
176 skb = skb_clone(skb, GFP_ATOMIC);
181 /* segs_in has been initialized to 1 in tcp_create_openreq_child().
182 * Hence, reset segs_in to 0 before calling tcp_segs_in()
183 * to avoid double counting. Also, tcp_segs_in() expects
184 * skb->len to include the tcp_hdrlen. Hence, it should
185 * be called before __skb_pull().
188 tcp_segs_in(tp, skb);
189 __skb_pull(skb, tcp_hdrlen(skb));
190 sk_forced_mem_schedule(sk, skb->truesize);
191 skb_set_owner_r(skb, sk);
193 TCP_SKB_CB(skb)->seq++;
194 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
196 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
197 __skb_queue_tail(&sk->sk_receive_queue, skb);
198 tp->syn_data_acked = 1;
200 /* u64_stats_update_begin(&tp->syncp) not needed here,
201 * as we certainly are not changing upper 32bit value (0)
203 tp->bytes_received = skb->len;
205 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
209 /* returns 0 - no key match, 1 for primary, 2 for backup */
210 static int tcp_fastopen_cookie_gen_check(struct sock *sk,
211 struct request_sock *req,
213 struct tcp_fastopen_cookie *orig,
214 struct tcp_fastopen_cookie *valid_foc)
216 struct tcp_fastopen_cookie search_foc = { .len = -1 };
217 struct tcp_fastopen_cookie *foc = valid_foc;
218 struct tcp_fastopen_context *ctx;
222 ctx = tcp_fastopen_get_ctx(sk);
225 for (i = 0; i < tcp_fastopen_context_len(ctx); i++) {
226 __tcp_fastopen_cookie_gen_cipher(req, syn, &ctx->key[i], foc);
227 if (tcp_fastopen_cookie_match(foc, orig)) {
238 static struct sock *tcp_fastopen_create_child(struct sock *sk,
240 struct request_sock *req)
243 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
247 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
252 spin_lock(&queue->fastopenq.lock);
253 queue->fastopenq.qlen++;
254 spin_unlock(&queue->fastopenq.lock);
256 /* Initialize the child socket. Have to fix some values to take
257 * into account the child is a Fast Open socket and is created
258 * only out of the bits carried in the SYN packet.
262 rcu_assign_pointer(tp->fastopen_rsk, req);
263 tcp_rsk(req)->tfo_listener = true;
265 /* RFC1323: The window in SYN & SYN/ACK segments is never
266 * scaled. So correct it appropriately.
268 tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
269 tp->max_window = tp->snd_wnd;
271 /* Activate the retrans timer so that SYNACK can be retransmitted.
272 * The request socket is not added to the ehash
273 * because it's been added to the accept queue directly.
275 inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
276 TCP_TIMEOUT_INIT, TCP_RTO_MAX);
278 refcount_set(&req->rsk_refcnt, 2);
280 /* Now finish processing the fastopen child socket. */
281 tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, skb);
283 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
285 tcp_fastopen_add_skb(child, skb);
287 tcp_rsk(req)->rcv_nxt = tp->rcv_nxt;
288 tp->rcv_wup = tp->rcv_nxt;
289 /* tcp_conn_request() is sending the SYNACK,
290 * and queues the child into listener accept queue.
295 static bool tcp_fastopen_queue_check(struct sock *sk)
297 struct fastopen_queue *fastopenq;
299 /* Make sure the listener has enabled fastopen, and we don't
300 * exceed the max # of pending TFO requests allowed before trying
301 * to validating the cookie in order to avoid burning CPU cycles
304 * XXX (TFO) - The implication of checking the max_qlen before
305 * processing a cookie request is that clients can't differentiate
306 * between qlen overflow causing Fast Open to be disabled
307 * temporarily vs a server not supporting Fast Open at all.
309 fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq;
310 if (fastopenq->max_qlen == 0)
313 if (fastopenq->qlen >= fastopenq->max_qlen) {
314 struct request_sock *req1;
315 spin_lock(&fastopenq->lock);
316 req1 = fastopenq->rskq_rst_head;
317 if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) {
318 __NET_INC_STATS(sock_net(sk),
319 LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
320 spin_unlock(&fastopenq->lock);
323 fastopenq->rskq_rst_head = req1->dl_next;
325 spin_unlock(&fastopenq->lock);
331 static bool tcp_fastopen_no_cookie(const struct sock *sk,
332 const struct dst_entry *dst,
335 return (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & flag) ||
336 tcp_sk(sk)->fastopen_no_cookie ||
337 (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE));
340 /* Returns true if we should perform Fast Open on the SYN. The cookie (foc)
341 * may be updated and return the client in the SYN-ACK later. E.g., Fast Open
342 * cookie request (foc->len == 0).
344 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
345 struct request_sock *req,
346 struct tcp_fastopen_cookie *foc,
347 const struct dst_entry *dst)
349 bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1;
350 int tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen);
351 struct tcp_fastopen_cookie valid_foc = { .len = -1 };
355 if (foc->len == 0) /* Client requests a cookie */
356 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD);
358 if (!((tcp_fastopen & TFO_SERVER_ENABLE) &&
359 (syn_data || foc->len >= 0) &&
360 tcp_fastopen_queue_check(sk))) {
365 if (tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD))
369 /* Client requests a cookie. */
370 tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc);
371 } else if (foc->len > 0) {
372 ret = tcp_fastopen_cookie_gen_check(sk, req, skb, foc,
375 NET_INC_STATS(sock_net(sk),
376 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
378 /* Cookie is valid. Create a (full) child socket to
379 * accept the data in SYN before returning a SYN-ACK to
380 * ack the data. If we fail to create the socket, fall
381 * back and ack the ISN only but includes the same
384 * Note: Data-less SYN with valid cookie is allowed to
385 * send data in SYN_RECV state.
388 child = tcp_fastopen_create_child(sk, skb, req);
391 valid_foc.exp = foc->exp;
393 NET_INC_STATS(sock_net(sk),
394 LINUX_MIB_TCPFASTOPENPASSIVEALTKEY);
398 NET_INC_STATS(sock_net(sk),
399 LINUX_MIB_TCPFASTOPENPASSIVE);
402 NET_INC_STATS(sock_net(sk),
403 LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
406 valid_foc.exp = foc->exp;
411 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
412 struct tcp_fastopen_cookie *cookie)
414 const struct dst_entry *dst;
416 tcp_fastopen_cache_get(sk, mss, cookie);
418 /* Firewall blackhole issue check */
419 if (tcp_fastopen_active_should_disable(sk)) {
424 dst = __sk_dst_get(sk);
426 if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) {
432 tcp_sk(sk)->fastopen_client_fail = TFO_COOKIE_UNAVAILABLE;
436 /* This function checks if we want to defer sending SYN until the first
437 * write(). We defer under the following conditions:
438 * 1. fastopen_connect sockopt is set
439 * 2. we have a valid cookie
440 * Return value: return true if we want to defer until application writes data
441 * return false if we want to send out SYN immediately
443 bool tcp_fastopen_defer_connect(struct sock *sk, int *err)
445 struct tcp_fastopen_cookie cookie = { .len = 0 };
446 struct tcp_sock *tp = tcp_sk(sk);
449 if (tp->fastopen_connect && !tp->fastopen_req) {
450 if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) {
451 inet_sk(sk)->defer_connect = 1;
455 /* Alloc fastopen_req in order for FO option to be included
458 tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req),
460 if (tp->fastopen_req)
461 tp->fastopen_req->cookie = cookie;
467 EXPORT_SYMBOL(tcp_fastopen_defer_connect);
470 * The following code block is to deal with middle box issues with TFO:
471 * Middlebox firewall issues can potentially cause server's data being
472 * blackholed after a successful 3WHS using TFO.
473 * The proposed solution is to disable active TFO globally under the
474 * following circumstances:
475 * 1. client side TFO socket receives out of order FIN
476 * 2. client side TFO socket receives out of order RST
477 * 3. client side TFO socket has timed out three times consecutively during
479 * We disable active side TFO globally for 1hr at first. Then if it
480 * happens again, we disable it for 2h, then 4h, 8h, ...
481 * And we reset the timeout back to 1hr when we see a successful active
482 * TFO connection with data exchanges.
485 /* Disable active TFO and record current jiffies and
486 * tfo_active_disable_times
488 void tcp_fastopen_active_disable(struct sock *sk)
490 struct net *net = sock_net(sk);
492 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout))
495 /* Paired with READ_ONCE() in tcp_fastopen_active_should_disable() */
496 WRITE_ONCE(net->ipv4.tfo_active_disable_stamp, jiffies);
498 /* Paired with smp_rmb() in tcp_fastopen_active_should_disable().
499 * We want net->ipv4.tfo_active_disable_stamp to be updated first.
501 smp_mb__before_atomic();
502 atomic_inc(&net->ipv4.tfo_active_disable_times);
504 NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE);
507 /* Calculate timeout for tfo active disable
508 * Return true if we are still in the active TFO disable period
509 * Return false if timeout already expired and we should use active TFO
511 bool tcp_fastopen_active_should_disable(struct sock *sk)
513 unsigned int tfo_bh_timeout =
514 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout);
515 unsigned long timeout;
522 tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times);
526 /* Paired with smp_mb__before_atomic() in tcp_fastopen_active_disable() */
529 /* Limit timeout to max: 2^6 * initial timeout */
530 multiplier = 1 << min(tfo_da_times - 1, 6);
532 /* Paired with the WRITE_ONCE() in tcp_fastopen_active_disable(). */
533 timeout = READ_ONCE(sock_net(sk)->ipv4.tfo_active_disable_stamp) +
534 multiplier * tfo_bh_timeout * HZ;
535 if (time_before(jiffies, timeout))
538 /* Mark check bit so we can check for successful active TFO
539 * condition and reset tfo_active_disable_times
541 tcp_sk(sk)->syn_fastopen_ch = 1;
545 /* Disable active TFO if FIN is the only packet in the ofo queue
546 * and no data is received.
547 * Also check if we can reset tfo_active_disable_times if data is
548 * received successfully on a marked active TFO sockets opened on
549 * a non-loopback interface
551 void tcp_fastopen_active_disable_ofo_check(struct sock *sk)
553 struct tcp_sock *tp = tcp_sk(sk);
554 struct dst_entry *dst;
557 if (!tp->syn_fastopen)
560 if (!tp->data_segs_in) {
561 skb = skb_rb_first(&tp->out_of_order_queue);
562 if (skb && !skb_rb_next(skb)) {
563 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
564 tcp_fastopen_active_disable(sk);
568 } else if (tp->syn_fastopen_ch &&
569 atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) {
570 dst = sk_dst_get(sk);
571 if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK)))
572 atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0);
577 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired)
579 u32 timeouts = inet_csk(sk)->icsk_retransmits;
580 struct tcp_sock *tp = tcp_sk(sk);
582 /* Broken middle-boxes may black-hole Fast Open connection during or
583 * even after the handshake. Be extremely conservative and pause
584 * Fast Open globally after hitting the third consecutive timeout or
585 * exceeding the configured timeout limit.
587 if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) &&
588 (timeouts == 2 || (timeouts < 2 && expired))) {
589 tcp_fastopen_active_disable(sk);
590 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);