2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * Alan Cox : Tidied tcp_data to avoid a potential
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #define pr_fmt(fmt) "TCP: " fmt
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
275 #include <net/xfrm.h>
277 #include <net/netdma.h>
278 #include <net/sock.h>
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
283 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
285 struct percpu_counter tcp_orphan_count;
286 EXPORT_SYMBOL_GPL(tcp_orphan_count);
288 int sysctl_tcp_wmem[3] __read_mostly;
289 int sysctl_tcp_rmem[3] __read_mostly;
291 EXPORT_SYMBOL(sysctl_tcp_rmem);
292 EXPORT_SYMBOL(sysctl_tcp_wmem);
294 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
295 EXPORT_SYMBOL(tcp_memory_allocated);
298 * Current number of TCP sockets.
300 struct percpu_counter tcp_sockets_allocated;
301 EXPORT_SYMBOL(tcp_sockets_allocated);
306 struct tcp_splice_state {
307 struct pipe_inode_info *pipe;
313 * Pressure flag: try to collapse.
314 * Technical note: it is used by multiple contexts non atomically.
315 * All the __sk_mem_schedule() is of this nature: accounting
316 * is strict, actions are advisory and have some latency.
318 int tcp_memory_pressure __read_mostly;
319 EXPORT_SYMBOL(tcp_memory_pressure);
321 void tcp_enter_memory_pressure(struct sock *sk)
323 if (!tcp_memory_pressure) {
324 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
325 tcp_memory_pressure = 1;
328 EXPORT_SYMBOL(tcp_enter_memory_pressure);
330 /* Convert seconds to retransmits based on initial and max timeout */
331 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
336 int period = timeout;
339 while (seconds > period && res < 255) {
342 if (timeout > rto_max)
350 /* Convert retransmits to seconds based on initial and max timeout */
351 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
359 if (timeout > rto_max)
367 /* Address-family independent initialization for a tcp_sock.
369 * NOTE: A lot of things set to zero explicitly by call to
370 * sk_alloc() so need not be done here.
372 void tcp_init_sock(struct sock *sk)
374 struct inet_connection_sock *icsk = inet_csk(sk);
375 struct tcp_sock *tp = tcp_sk(sk);
377 skb_queue_head_init(&tp->out_of_order_queue);
378 tcp_init_xmit_timers(sk);
379 tcp_prequeue_init(tp);
380 INIT_LIST_HEAD(&tp->tsq_node);
382 icsk->icsk_rto = TCP_TIMEOUT_INIT;
383 tp->mdev = TCP_TIMEOUT_INIT;
385 /* So many TCP implementations out there (incorrectly) count the
386 * initial SYN frame in their delayed-ACK and congestion control
387 * algorithms that we must have the following bandaid to talk
388 * efficiently to them. -DaveM
390 tp->snd_cwnd = TCP_INIT_CWND;
392 /* See draft-stevens-tcpca-spec-01 for discussion of the
393 * initialization of these values.
395 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
396 tp->snd_cwnd_clamp = ~0;
397 tp->mss_cache = TCP_MSS_DEFAULT;
399 tp->reordering = sysctl_tcp_reordering;
400 tcp_enable_early_retrans(tp);
401 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
405 sk->sk_state = TCP_CLOSE;
407 sk->sk_write_space = sk_stream_write_space;
408 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
410 icsk->icsk_sync_mss = tcp_sync_mss;
412 /* Presumed zeroed, in order of appearance:
413 * cookie_in_always, cookie_out_never,
414 * s_data_constant, s_data_in, s_data_out
416 sk->sk_sndbuf = sysctl_tcp_wmem[1];
417 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
420 sock_update_memcg(sk);
421 sk_sockets_allocated_inc(sk);
424 EXPORT_SYMBOL(tcp_init_sock);
427 * Wait for a TCP event.
429 * Note that we don't need to lock the socket, as the upper poll layers
430 * take care of normal races (between the test and the event) and we don't
431 * go look at any of the socket buffers directly.
433 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
436 struct sock *sk = sock->sk;
437 const struct tcp_sock *tp = tcp_sk(sk);
439 sock_poll_wait(file, sk_sleep(sk), wait);
440 if (sk->sk_state == TCP_LISTEN)
441 return inet_csk_listen_poll(sk);
443 /* Socket is not locked. We are protected from async events
444 * by poll logic and correct handling of state changes
445 * made by other threads is impossible in any case.
451 * POLLHUP is certainly not done right. But poll() doesn't
452 * have a notion of HUP in just one direction, and for a
453 * socket the read side is more interesting.
455 * Some poll() documentation says that POLLHUP is incompatible
456 * with the POLLOUT/POLLWR flags, so somebody should check this
457 * all. But careful, it tends to be safer to return too many
458 * bits than too few, and you can easily break real applications
459 * if you don't tell them that something has hung up!
463 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
464 * our fs/select.c). It means that after we received EOF,
465 * poll always returns immediately, making impossible poll() on write()
466 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
467 * if and only if shutdown has been made in both directions.
468 * Actually, it is interesting to look how Solaris and DUX
469 * solve this dilemma. I would prefer, if POLLHUP were maskable,
470 * then we could set it on SND_SHUTDOWN. BTW examples given
471 * in Stevens' books assume exactly this behaviour, it explains
472 * why POLLHUP is incompatible with POLLOUT. --ANK
474 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
475 * blocking on fresh not-connected or disconnected socket. --ANK
477 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
479 if (sk->sk_shutdown & RCV_SHUTDOWN)
480 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
482 /* Connected or passive Fast Open socket? */
483 if (sk->sk_state != TCP_SYN_SENT &&
484 (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) {
485 int target = sock_rcvlowat(sk, 0, INT_MAX);
487 if (tp->urg_seq == tp->copied_seq &&
488 !sock_flag(sk, SOCK_URGINLINE) &&
492 /* Potential race condition. If read of tp below will
493 * escape above sk->sk_state, we can be illegally awaken
494 * in SYN_* states. */
495 if (tp->rcv_nxt - tp->copied_seq >= target)
496 mask |= POLLIN | POLLRDNORM;
498 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
499 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
500 mask |= POLLOUT | POLLWRNORM;
501 } else { /* send SIGIO later */
502 set_bit(SOCK_ASYNC_NOSPACE,
503 &sk->sk_socket->flags);
504 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
506 /* Race breaker. If space is freed after
507 * wspace test but before the flags are set,
508 * IO signal will be lost.
510 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
511 mask |= POLLOUT | POLLWRNORM;
514 mask |= POLLOUT | POLLWRNORM;
516 if (tp->urg_data & TCP_URG_VALID)
519 /* This barrier is coupled with smp_wmb() in tcp_reset() */
526 EXPORT_SYMBOL(tcp_poll);
528 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
530 struct tcp_sock *tp = tcp_sk(sk);
536 if (sk->sk_state == TCP_LISTEN)
539 slow = lock_sock_fast(sk);
540 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
542 else if (sock_flag(sk, SOCK_URGINLINE) ||
544 before(tp->urg_seq, tp->copied_seq) ||
545 !before(tp->urg_seq, tp->rcv_nxt)) {
547 answ = tp->rcv_nxt - tp->copied_seq;
549 /* Subtract 1, if FIN was received */
550 if (answ && sock_flag(sk, SOCK_DONE))
553 answ = tp->urg_seq - tp->copied_seq;
554 unlock_sock_fast(sk, slow);
557 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
560 if (sk->sk_state == TCP_LISTEN)
563 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
566 answ = tp->write_seq - tp->snd_una;
569 if (sk->sk_state == TCP_LISTEN)
572 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
575 answ = tp->write_seq - tp->snd_nxt;
581 return put_user(answ, (int __user *)arg);
583 EXPORT_SYMBOL(tcp_ioctl);
585 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
587 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
588 tp->pushed_seq = tp->write_seq;
591 static inline bool forced_push(const struct tcp_sock *tp)
593 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
596 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
598 struct tcp_sock *tp = tcp_sk(sk);
599 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
602 tcb->seq = tcb->end_seq = tp->write_seq;
603 tcb->tcp_flags = TCPHDR_ACK;
605 skb_header_release(skb);
606 tcp_add_write_queue_tail(sk, skb);
607 sk->sk_wmem_queued += skb->truesize;
608 sk_mem_charge(sk, skb->truesize);
609 if (tp->nonagle & TCP_NAGLE_PUSH)
610 tp->nonagle &= ~TCP_NAGLE_PUSH;
613 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
616 tp->snd_up = tp->write_seq;
619 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
622 if (tcp_send_head(sk)) {
623 struct tcp_sock *tp = tcp_sk(sk);
625 if (!(flags & MSG_MORE) || forced_push(tp))
626 tcp_mark_push(tp, tcp_write_queue_tail(sk));
628 tcp_mark_urg(tp, flags);
629 __tcp_push_pending_frames(sk, mss_now,
630 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
634 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
635 unsigned int offset, size_t len)
637 struct tcp_splice_state *tss = rd_desc->arg.data;
640 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
643 rd_desc->count -= ret;
647 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
649 /* Store TCP splice context information in read_descriptor_t. */
650 read_descriptor_t rd_desc = {
655 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
659 * tcp_splice_read - splice data from TCP socket to a pipe
660 * @sock: socket to splice from
661 * @ppos: position (not valid)
662 * @pipe: pipe to splice to
663 * @len: number of bytes to splice
664 * @flags: splice modifier flags
667 * Will read pages from given socket and fill them into a pipe.
670 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
671 struct pipe_inode_info *pipe, size_t len,
674 struct sock *sk = sock->sk;
675 struct tcp_splice_state tss = {
684 sock_rps_record_flow(sk);
686 * We can't seek on a socket input
695 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
697 ret = __tcp_splice_read(sk, &tss);
703 if (sock_flag(sk, SOCK_DONE))
706 ret = sock_error(sk);
709 if (sk->sk_shutdown & RCV_SHUTDOWN)
711 if (sk->sk_state == TCP_CLOSE) {
713 * This occurs when user tries to read
714 * from never connected socket.
716 if (!sock_flag(sk, SOCK_DONE))
724 sk_wait_data(sk, &timeo);
725 if (signal_pending(current)) {
726 ret = sock_intr_errno(timeo);
739 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
740 (sk->sk_shutdown & RCV_SHUTDOWN) ||
741 signal_pending(current))
752 EXPORT_SYMBOL(tcp_splice_read);
754 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
758 /* The TCP header must be at least 32-bit aligned. */
759 size = ALIGN(size, 4);
761 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
763 if (sk_wmem_schedule(sk, skb->truesize)) {
764 skb_reserve(skb, sk->sk_prot->max_header);
766 * Make sure that we have exactly size bytes
767 * available to the caller, no more, no less.
769 skb->reserved_tailroom = skb->end - skb->tail - size;
774 sk->sk_prot->enter_memory_pressure(sk);
775 sk_stream_moderate_sndbuf(sk);
780 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
783 struct tcp_sock *tp = tcp_sk(sk);
784 u32 xmit_size_goal, old_size_goal;
786 xmit_size_goal = mss_now;
788 if (large_allowed && sk_can_gso(sk)) {
789 xmit_size_goal = ((sk->sk_gso_max_size - 1) -
790 inet_csk(sk)->icsk_af_ops->net_header_len -
791 inet_csk(sk)->icsk_ext_hdr_len -
794 /* TSQ : try to have two TSO segments in flight */
795 xmit_size_goal = min_t(u32, xmit_size_goal,
796 sysctl_tcp_limit_output_bytes >> 1);
798 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
800 /* We try hard to avoid divides here */
801 old_size_goal = tp->xmit_size_goal_segs * mss_now;
803 if (likely(old_size_goal <= xmit_size_goal &&
804 old_size_goal + mss_now > xmit_size_goal)) {
805 xmit_size_goal = old_size_goal;
807 tp->xmit_size_goal_segs =
808 min_t(u16, xmit_size_goal / mss_now,
809 sk->sk_gso_max_segs);
810 xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
814 return max(xmit_size_goal, mss_now);
817 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
821 mss_now = tcp_current_mss(sk);
822 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
827 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
828 size_t size, int flags)
830 struct tcp_sock *tp = tcp_sk(sk);
831 int mss_now, size_goal;
834 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
836 /* Wait for a connection to finish. One exception is TCP Fast Open
837 * (passive side) where data is allowed to be sent before a connection
838 * is fully established.
840 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
841 !tcp_passive_fastopen(sk)) {
842 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
846 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
848 mss_now = tcp_send_mss(sk, &size_goal, flags);
852 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
856 struct sk_buff *skb = tcp_write_queue_tail(sk);
860 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
862 if (!sk_stream_memory_free(sk))
863 goto wait_for_sndbuf;
865 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
867 goto wait_for_memory;
876 i = skb_shinfo(skb)->nr_frags;
877 can_coalesce = skb_can_coalesce(skb, i, page, offset);
878 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
879 tcp_mark_push(tp, skb);
882 if (!sk_wmem_schedule(sk, copy))
883 goto wait_for_memory;
886 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
889 skb_fill_page_desc(skb, i, page, offset, copy);
891 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
894 skb->data_len += copy;
895 skb->truesize += copy;
896 sk->sk_wmem_queued += copy;
897 sk_mem_charge(sk, copy);
898 skb->ip_summed = CHECKSUM_PARTIAL;
899 tp->write_seq += copy;
900 TCP_SKB_CB(skb)->end_seq += copy;
901 skb_shinfo(skb)->gso_segs = 0;
904 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
911 if (skb->len < size_goal || (flags & MSG_OOB))
914 if (forced_push(tp)) {
915 tcp_mark_push(tp, skb);
916 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
917 } else if (skb == tcp_send_head(sk))
918 tcp_push_one(sk, mss_now);
922 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
924 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
926 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
929 mss_now = tcp_send_mss(sk, &size_goal, flags);
933 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
934 tcp_push(sk, flags, mss_now, tp->nonagle);
941 return sk_stream_error(sk, flags, err);
944 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
945 size_t size, int flags)
949 if (!(sk->sk_route_caps & NETIF_F_SG) ||
950 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
951 return sock_no_sendpage(sk->sk_socket, page, offset, size,
955 res = do_tcp_sendpages(sk, page, offset, size, flags);
959 EXPORT_SYMBOL(tcp_sendpage);
961 static inline int select_size(const struct sock *sk, bool sg)
963 const struct tcp_sock *tp = tcp_sk(sk);
964 int tmp = tp->mss_cache;
967 if (sk_can_gso(sk)) {
968 /* Small frames wont use a full page:
969 * Payload will immediately follow tcp header.
971 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
973 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
975 if (tmp >= pgbreak &&
976 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
984 void tcp_free_fastopen_req(struct tcp_sock *tp)
986 if (tp->fastopen_req != NULL) {
987 kfree(tp->fastopen_req);
988 tp->fastopen_req = NULL;
992 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size)
994 struct tcp_sock *tp = tcp_sk(sk);
997 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
999 if (tp->fastopen_req != NULL)
1000 return -EALREADY; /* Another Fast Open is in progress */
1002 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1004 if (unlikely(tp->fastopen_req == NULL))
1006 tp->fastopen_req->data = msg;
1008 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1009 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1010 msg->msg_namelen, flags);
1011 *size = tp->fastopen_req->copied;
1012 tcp_free_fastopen_req(tp);
1016 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1020 struct tcp_sock *tp = tcp_sk(sk);
1021 struct sk_buff *skb;
1022 int iovlen, flags, err, copied = 0;
1023 int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1029 flags = msg->msg_flags;
1030 if (flags & MSG_FASTOPEN) {
1031 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn);
1032 if (err == -EINPROGRESS && copied_syn > 0)
1036 offset = copied_syn;
1039 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1041 /* Wait for a connection to finish. One exception is TCP Fast Open
1042 * (passive side) where data is allowed to be sent before a connection
1043 * is fully established.
1045 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1046 !tcp_passive_fastopen(sk)) {
1047 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1051 if (unlikely(tp->repair)) {
1052 if (tp->repair_queue == TCP_RECV_QUEUE) {
1053 copied = tcp_send_rcvq(sk, msg, size);
1058 if (tp->repair_queue == TCP_NO_QUEUE)
1061 /* 'common' sending to sendq */
1064 /* This should be in poll */
1065 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1067 mss_now = tcp_send_mss(sk, &size_goal, flags);
1069 /* Ok commence sending. */
1070 iovlen = msg->msg_iovlen;
1075 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1078 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1080 while (--iovlen >= 0) {
1081 size_t seglen = iov->iov_len;
1082 unsigned char __user *from = iov->iov_base;
1085 if (unlikely(offset > 0)) { /* Skip bytes copied in SYN */
1086 if (offset >= seglen) {
1095 while (seglen > 0) {
1097 int max = size_goal;
1099 skb = tcp_write_queue_tail(sk);
1100 if (tcp_send_head(sk)) {
1101 if (skb->ip_summed == CHECKSUM_NONE)
1103 copy = max - skb->len;
1108 /* Allocate new segment. If the interface is SG,
1109 * allocate skb fitting to single page.
1111 if (!sk_stream_memory_free(sk))
1112 goto wait_for_sndbuf;
1114 skb = sk_stream_alloc_skb(sk,
1115 select_size(sk, sg),
1118 goto wait_for_memory;
1121 * Check whether we can use HW checksum.
1123 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1124 skb->ip_summed = CHECKSUM_PARTIAL;
1126 skb_entail(sk, skb);
1131 /* Try to append data to the end of skb. */
1135 /* Where to copy to? */
1136 if (skb_availroom(skb) > 0) {
1137 /* We have some space in skb head. Superb! */
1138 copy = min_t(int, copy, skb_availroom(skb));
1139 err = skb_add_data_nocache(sk, skb, from, copy);
1144 int i = skb_shinfo(skb)->nr_frags;
1145 struct page_frag *pfrag = sk_page_frag(sk);
1147 if (!sk_page_frag_refill(sk, pfrag))
1148 goto wait_for_memory;
1150 if (!skb_can_coalesce(skb, i, pfrag->page,
1152 if (i == MAX_SKB_FRAGS || !sg) {
1153 tcp_mark_push(tp, skb);
1159 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1161 if (!sk_wmem_schedule(sk, copy))
1162 goto wait_for_memory;
1164 err = skb_copy_to_page_nocache(sk, from, skb,
1171 /* Update the skb. */
1173 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1175 skb_fill_page_desc(skb, i, pfrag->page,
1176 pfrag->offset, copy);
1177 get_page(pfrag->page);
1179 pfrag->offset += copy;
1183 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1185 tp->write_seq += copy;
1186 TCP_SKB_CB(skb)->end_seq += copy;
1187 skb_shinfo(skb)->gso_segs = 0;
1191 if ((seglen -= copy) == 0 && iovlen == 0)
1194 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1197 if (forced_push(tp)) {
1198 tcp_mark_push(tp, skb);
1199 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1200 } else if (skb == tcp_send_head(sk))
1201 tcp_push_one(sk, mss_now);
1205 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1208 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1210 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1213 mss_now = tcp_send_mss(sk, &size_goal, flags);
1219 tcp_push(sk, flags, mss_now, tp->nonagle);
1221 return copied + copied_syn;
1225 tcp_unlink_write_queue(skb, sk);
1226 /* It is the one place in all of TCP, except connection
1227 * reset, where we can be unlinking the send_head.
1229 tcp_check_send_head(sk, skb);
1230 sk_wmem_free_skb(sk, skb);
1234 if (copied + copied_syn)
1237 err = sk_stream_error(sk, flags, err);
1241 EXPORT_SYMBOL(tcp_sendmsg);
1244 * Handle reading urgent data. BSD has very simple semantics for
1245 * this, no blocking and very strange errors 8)
1248 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1250 struct tcp_sock *tp = tcp_sk(sk);
1252 /* No URG data to read. */
1253 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1254 tp->urg_data == TCP_URG_READ)
1255 return -EINVAL; /* Yes this is right ! */
1257 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1260 if (tp->urg_data & TCP_URG_VALID) {
1262 char c = tp->urg_data;
1264 if (!(flags & MSG_PEEK))
1265 tp->urg_data = TCP_URG_READ;
1267 /* Read urgent data. */
1268 msg->msg_flags |= MSG_OOB;
1271 if (!(flags & MSG_TRUNC))
1272 err = memcpy_toiovec(msg->msg_iov, &c, 1);
1275 msg->msg_flags |= MSG_TRUNC;
1277 return err ? -EFAULT : len;
1280 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1283 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1284 * the available implementations agree in this case:
1285 * this call should never block, independent of the
1286 * blocking state of the socket.
1287 * Mike <pall@rz.uni-karlsruhe.de>
1292 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1294 struct sk_buff *skb;
1295 int copied = 0, err = 0;
1297 /* XXX -- need to support SO_PEEK_OFF */
1299 skb_queue_walk(&sk->sk_write_queue, skb) {
1300 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1307 return err ?: copied;
1310 /* Clean up the receive buffer for full frames taken by the user,
1311 * then send an ACK if necessary. COPIED is the number of bytes
1312 * tcp_recvmsg has given to the user so far, it speeds up the
1313 * calculation of whether or not we must ACK for the sake of
1316 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1318 struct tcp_sock *tp = tcp_sk(sk);
1319 bool time_to_ack = false;
1321 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1323 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1324 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1325 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1327 if (inet_csk_ack_scheduled(sk)) {
1328 const struct inet_connection_sock *icsk = inet_csk(sk);
1329 /* Delayed ACKs frequently hit locked sockets during bulk
1331 if (icsk->icsk_ack.blocked ||
1332 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1333 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1335 * If this read emptied read buffer, we send ACK, if
1336 * connection is not bidirectional, user drained
1337 * receive buffer and there was a small segment
1341 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1342 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1343 !icsk->icsk_ack.pingpong)) &&
1344 !atomic_read(&sk->sk_rmem_alloc)))
1348 /* We send an ACK if we can now advertise a non-zero window
1349 * which has been raised "significantly".
1351 * Even if window raised up to infinity, do not send window open ACK
1352 * in states, where we will not receive more. It is useless.
1354 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1355 __u32 rcv_window_now = tcp_receive_window(tp);
1357 /* Optimize, __tcp_select_window() is not cheap. */
1358 if (2*rcv_window_now <= tp->window_clamp) {
1359 __u32 new_window = __tcp_select_window(sk);
1361 /* Send ACK now, if this read freed lots of space
1362 * in our buffer. Certainly, new_window is new window.
1363 * We can advertise it now, if it is not less than current one.
1364 * "Lots" means "at least twice" here.
1366 if (new_window && new_window >= 2 * rcv_window_now)
1374 static void tcp_prequeue_process(struct sock *sk)
1376 struct sk_buff *skb;
1377 struct tcp_sock *tp = tcp_sk(sk);
1379 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1381 /* RX process wants to run with disabled BHs, though it is not
1384 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1385 sk_backlog_rcv(sk, skb);
1388 /* Clear memory counter. */
1389 tp->ucopy.memory = 0;
1392 #ifdef CONFIG_NET_DMA
1393 static void tcp_service_net_dma(struct sock *sk, bool wait)
1395 dma_cookie_t done, used;
1396 dma_cookie_t last_issued;
1397 struct tcp_sock *tp = tcp_sk(sk);
1399 if (!tp->ucopy.dma_chan)
1402 last_issued = tp->ucopy.dma_cookie;
1403 dma_async_issue_pending(tp->ucopy.dma_chan);
1406 if (dma_async_is_tx_complete(tp->ucopy.dma_chan,
1408 &used) == DMA_SUCCESS) {
1409 /* Safe to free early-copied skbs now */
1410 __skb_queue_purge(&sk->sk_async_wait_queue);
1413 struct sk_buff *skb;
1414 while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1415 (dma_async_is_complete(skb->dma_cookie, done,
1416 used) == DMA_SUCCESS)) {
1417 __skb_dequeue(&sk->sk_async_wait_queue);
1425 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1427 struct sk_buff *skb;
1430 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1431 offset = seq - TCP_SKB_CB(skb)->seq;
1432 if (tcp_hdr(skb)->syn)
1434 if (offset < skb->len || tcp_hdr(skb)->fin) {
1438 /* This looks weird, but this can happen if TCP collapsing
1439 * splitted a fat GRO packet, while we released socket lock
1440 * in skb_splice_bits()
1442 sk_eat_skb(sk, skb, false);
1448 * This routine provides an alternative to tcp_recvmsg() for routines
1449 * that would like to handle copying from skbuffs directly in 'sendfile'
1452 * - It is assumed that the socket was locked by the caller.
1453 * - The routine does not block.
1454 * - At present, there is no support for reading OOB data
1455 * or for 'peeking' the socket using this routine
1456 * (although both would be easy to implement).
1458 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1459 sk_read_actor_t recv_actor)
1461 struct sk_buff *skb;
1462 struct tcp_sock *tp = tcp_sk(sk);
1463 u32 seq = tp->copied_seq;
1467 if (sk->sk_state == TCP_LISTEN)
1469 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1470 if (offset < skb->len) {
1474 len = skb->len - offset;
1475 /* Stop reading if we hit a patch of urgent data */
1477 u32 urg_offset = tp->urg_seq - seq;
1478 if (urg_offset < len)
1483 used = recv_actor(desc, skb, offset, len);
1488 } else if (used <= len) {
1493 /* If recv_actor drops the lock (e.g. TCP splice
1494 * receive) the skb pointer might be invalid when
1495 * getting here: tcp_collapse might have deleted it
1496 * while aggregating skbs from the socket queue.
1498 skb = tcp_recv_skb(sk, seq - 1, &offset);
1501 /* TCP coalescing might have appended data to the skb.
1502 * Try to splice more frags
1504 if (offset + 1 != skb->len)
1507 if (tcp_hdr(skb)->fin) {
1508 sk_eat_skb(sk, skb, false);
1512 sk_eat_skb(sk, skb, false);
1515 tp->copied_seq = seq;
1517 tp->copied_seq = seq;
1519 tcp_rcv_space_adjust(sk);
1521 /* Clean up data we have read: This will do ACK frames. */
1523 tcp_recv_skb(sk, seq, &offset);
1524 tcp_cleanup_rbuf(sk, copied);
1528 EXPORT_SYMBOL(tcp_read_sock);
1531 * This routine copies from a sock struct into the user buffer.
1533 * Technical note: in 2.3 we work on _locked_ socket, so that
1534 * tricks with *seq access order and skb->users are not required.
1535 * Probably, code can be easily improved even more.
1538 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1539 size_t len, int nonblock, int flags, int *addr_len)
1541 struct tcp_sock *tp = tcp_sk(sk);
1547 int target; /* Read at least this many bytes */
1549 struct task_struct *user_recv = NULL;
1550 bool copied_early = false;
1551 struct sk_buff *skb;
1557 if (sk->sk_state == TCP_LISTEN)
1560 timeo = sock_rcvtimeo(sk, nonblock);
1562 /* Urgent data needs to be handled specially. */
1563 if (flags & MSG_OOB)
1566 if (unlikely(tp->repair)) {
1568 if (!(flags & MSG_PEEK))
1571 if (tp->repair_queue == TCP_SEND_QUEUE)
1575 if (tp->repair_queue == TCP_NO_QUEUE)
1578 /* 'common' recv queue MSG_PEEK-ing */
1581 seq = &tp->copied_seq;
1582 if (flags & MSG_PEEK) {
1583 peek_seq = tp->copied_seq;
1587 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1589 #ifdef CONFIG_NET_DMA
1590 tp->ucopy.dma_chan = NULL;
1592 skb = skb_peek_tail(&sk->sk_receive_queue);
1597 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1598 if ((available < target) &&
1599 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1600 !sysctl_tcp_low_latency &&
1601 net_dma_find_channel()) {
1602 preempt_enable_no_resched();
1603 tp->ucopy.pinned_list =
1604 dma_pin_iovec_pages(msg->msg_iov, len);
1606 preempt_enable_no_resched();
1614 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1615 if (tp->urg_data && tp->urg_seq == *seq) {
1618 if (signal_pending(current)) {
1619 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1624 /* Next get a buffer. */
1626 skb_queue_walk(&sk->sk_receive_queue, skb) {
1627 /* Now that we have two receive queues this
1630 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1631 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1632 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1636 offset = *seq - TCP_SKB_CB(skb)->seq;
1637 if (tcp_hdr(skb)->syn)
1639 if (offset < skb->len)
1641 if (tcp_hdr(skb)->fin)
1643 WARN(!(flags & MSG_PEEK),
1644 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1645 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1648 /* Well, if we have backlog, try to process it now yet. */
1650 if (copied >= target && !sk->sk_backlog.tail)
1655 sk->sk_state == TCP_CLOSE ||
1656 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1658 signal_pending(current))
1661 if (sock_flag(sk, SOCK_DONE))
1665 copied = sock_error(sk);
1669 if (sk->sk_shutdown & RCV_SHUTDOWN)
1672 if (sk->sk_state == TCP_CLOSE) {
1673 if (!sock_flag(sk, SOCK_DONE)) {
1674 /* This occurs when user tries to read
1675 * from never connected socket.
1688 if (signal_pending(current)) {
1689 copied = sock_intr_errno(timeo);
1694 tcp_cleanup_rbuf(sk, copied);
1696 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1697 /* Install new reader */
1698 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1699 user_recv = current;
1700 tp->ucopy.task = user_recv;
1701 tp->ucopy.iov = msg->msg_iov;
1704 tp->ucopy.len = len;
1706 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1707 !(flags & (MSG_PEEK | MSG_TRUNC)));
1709 /* Ugly... If prequeue is not empty, we have to
1710 * process it before releasing socket, otherwise
1711 * order will be broken at second iteration.
1712 * More elegant solution is required!!!
1714 * Look: we have the following (pseudo)queues:
1716 * 1. packets in flight
1721 * Each queue can be processed only if the next ones
1722 * are empty. At this point we have empty receive_queue.
1723 * But prequeue _can_ be not empty after 2nd iteration,
1724 * when we jumped to start of loop because backlog
1725 * processing added something to receive_queue.
1726 * We cannot release_sock(), because backlog contains
1727 * packets arrived _after_ prequeued ones.
1729 * Shortly, algorithm is clear --- to process all
1730 * the queues in order. We could make it more directly,
1731 * requeueing packets from backlog to prequeue, if
1732 * is not empty. It is more elegant, but eats cycles,
1735 if (!skb_queue_empty(&tp->ucopy.prequeue))
1738 /* __ Set realtime policy in scheduler __ */
1741 #ifdef CONFIG_NET_DMA
1742 if (tp->ucopy.dma_chan) {
1743 if (tp->rcv_wnd == 0 &&
1744 !skb_queue_empty(&sk->sk_async_wait_queue)) {
1745 tcp_service_net_dma(sk, true);
1746 tcp_cleanup_rbuf(sk, copied);
1748 dma_async_issue_pending(tp->ucopy.dma_chan);
1751 if (copied >= target) {
1752 /* Do not sleep, just process backlog. */
1756 sk_wait_data(sk, &timeo);
1758 #ifdef CONFIG_NET_DMA
1759 tcp_service_net_dma(sk, false); /* Don't block */
1760 tp->ucopy.wakeup = 0;
1766 /* __ Restore normal policy in scheduler __ */
1768 if ((chunk = len - tp->ucopy.len) != 0) {
1769 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1774 if (tp->rcv_nxt == tp->copied_seq &&
1775 !skb_queue_empty(&tp->ucopy.prequeue)) {
1777 tcp_prequeue_process(sk);
1779 if ((chunk = len - tp->ucopy.len) != 0) {
1780 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1786 if ((flags & MSG_PEEK) &&
1787 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1788 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1790 task_pid_nr(current));
1791 peek_seq = tp->copied_seq;
1796 /* Ok so how much can we use? */
1797 used = skb->len - offset;
1801 /* Do we have urgent data here? */
1803 u32 urg_offset = tp->urg_seq - *seq;
1804 if (urg_offset < used) {
1806 if (!sock_flag(sk, SOCK_URGINLINE)) {
1819 if (!(flags & MSG_TRUNC)) {
1820 #ifdef CONFIG_NET_DMA
1821 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1822 tp->ucopy.dma_chan = net_dma_find_channel();
1824 if (tp->ucopy.dma_chan) {
1825 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1826 tp->ucopy.dma_chan, skb, offset,
1828 tp->ucopy.pinned_list);
1830 if (tp->ucopy.dma_cookie < 0) {
1832 pr_alert("%s: dma_cookie < 0\n",
1835 /* Exception. Bailout! */
1841 dma_async_issue_pending(tp->ucopy.dma_chan);
1843 if ((offset + used) == skb->len)
1844 copied_early = true;
1849 err = skb_copy_datagram_iovec(skb, offset,
1850 msg->msg_iov, used);
1852 /* Exception. Bailout! */
1864 tcp_rcv_space_adjust(sk);
1867 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1869 tcp_fast_path_check(sk);
1871 if (used + offset < skb->len)
1874 if (tcp_hdr(skb)->fin)
1876 if (!(flags & MSG_PEEK)) {
1877 sk_eat_skb(sk, skb, copied_early);
1878 copied_early = false;
1883 /* Process the FIN. */
1885 if (!(flags & MSG_PEEK)) {
1886 sk_eat_skb(sk, skb, copied_early);
1887 copied_early = false;
1893 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1896 tp->ucopy.len = copied > 0 ? len : 0;
1898 tcp_prequeue_process(sk);
1900 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1901 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1907 tp->ucopy.task = NULL;
1911 #ifdef CONFIG_NET_DMA
1912 tcp_service_net_dma(sk, true); /* Wait for queue to drain */
1913 tp->ucopy.dma_chan = NULL;
1915 if (tp->ucopy.pinned_list) {
1916 dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1917 tp->ucopy.pinned_list = NULL;
1921 /* According to UNIX98, msg_name/msg_namelen are ignored
1922 * on connected socket. I was just happy when found this 8) --ANK
1925 /* Clean up data we have read: This will do ACK frames. */
1926 tcp_cleanup_rbuf(sk, copied);
1936 err = tcp_recv_urg(sk, msg, len, flags);
1940 err = tcp_peek_sndq(sk, msg, len);
1943 EXPORT_SYMBOL(tcp_recvmsg);
1945 void tcp_set_state(struct sock *sk, int state)
1947 int oldstate = sk->sk_state;
1950 case TCP_ESTABLISHED:
1951 if (oldstate != TCP_ESTABLISHED)
1952 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1956 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1957 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1959 sk->sk_prot->unhash(sk);
1960 if (inet_csk(sk)->icsk_bind_hash &&
1961 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1965 if (oldstate == TCP_ESTABLISHED)
1966 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1969 /* Change state AFTER socket is unhashed to avoid closed
1970 * socket sitting in hash tables.
1972 sk->sk_state = state;
1975 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1978 EXPORT_SYMBOL_GPL(tcp_set_state);
1981 * State processing on a close. This implements the state shift for
1982 * sending our FIN frame. Note that we only send a FIN for some
1983 * states. A shutdown() may have already sent the FIN, or we may be
1987 static const unsigned char new_state[16] = {
1988 /* current state: new state: action: */
1989 /* (Invalid) */ TCP_CLOSE,
1990 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1991 /* TCP_SYN_SENT */ TCP_CLOSE,
1992 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1993 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
1994 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
1995 /* TCP_TIME_WAIT */ TCP_CLOSE,
1996 /* TCP_CLOSE */ TCP_CLOSE,
1997 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
1998 /* TCP_LAST_ACK */ TCP_LAST_ACK,
1999 /* TCP_LISTEN */ TCP_CLOSE,
2000 /* TCP_CLOSING */ TCP_CLOSING,
2003 static int tcp_close_state(struct sock *sk)
2005 int next = (int)new_state[sk->sk_state];
2006 int ns = next & TCP_STATE_MASK;
2008 tcp_set_state(sk, ns);
2010 return next & TCP_ACTION_FIN;
2014 * Shutdown the sending side of a connection. Much like close except
2015 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2018 void tcp_shutdown(struct sock *sk, int how)
2020 /* We need to grab some memory, and put together a FIN,
2021 * and then put it into the queue to be sent.
2022 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2024 if (!(how & SEND_SHUTDOWN))
2027 /* If we've already sent a FIN, or it's a closed state, skip this. */
2028 if ((1 << sk->sk_state) &
2029 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2030 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2031 /* Clear out any half completed packets. FIN if needed. */
2032 if (tcp_close_state(sk))
2036 EXPORT_SYMBOL(tcp_shutdown);
2038 bool tcp_check_oom(struct sock *sk, int shift)
2040 bool too_many_orphans, out_of_socket_memory;
2042 too_many_orphans = tcp_too_many_orphans(sk, shift);
2043 out_of_socket_memory = tcp_out_of_memory(sk);
2045 if (too_many_orphans)
2046 net_info_ratelimited("too many orphaned sockets\n");
2047 if (out_of_socket_memory)
2048 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2049 return too_many_orphans || out_of_socket_memory;
2052 void tcp_close(struct sock *sk, long timeout)
2054 struct sk_buff *skb;
2055 int data_was_unread = 0;
2059 sk->sk_shutdown = SHUTDOWN_MASK;
2061 if (sk->sk_state == TCP_LISTEN) {
2062 tcp_set_state(sk, TCP_CLOSE);
2065 inet_csk_listen_stop(sk);
2067 goto adjudge_to_death;
2070 /* We need to flush the recv. buffs. We do this only on the
2071 * descriptor close, not protocol-sourced closes, because the
2072 * reader process may not have drained the data yet!
2074 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2075 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2077 data_was_unread += len;
2083 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2084 if (sk->sk_state == TCP_CLOSE)
2085 goto adjudge_to_death;
2087 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2088 * data was lost. To witness the awful effects of the old behavior of
2089 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2090 * GET in an FTP client, suspend the process, wait for the client to
2091 * advertise a zero window, then kill -9 the FTP client, wheee...
2092 * Note: timeout is always zero in such a case.
2094 if (unlikely(tcp_sk(sk)->repair)) {
2095 sk->sk_prot->disconnect(sk, 0);
2096 } else if (data_was_unread) {
2097 /* Unread data was tossed, zap the connection. */
2098 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2099 tcp_set_state(sk, TCP_CLOSE);
2100 tcp_send_active_reset(sk, sk->sk_allocation);
2101 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2102 /* Check zero linger _after_ checking for unread data. */
2103 sk->sk_prot->disconnect(sk, 0);
2104 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2105 } else if (tcp_close_state(sk)) {
2106 /* We FIN if the application ate all the data before
2107 * zapping the connection.
2110 /* RED-PEN. Formally speaking, we have broken TCP state
2111 * machine. State transitions:
2113 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2114 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2115 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2117 * are legal only when FIN has been sent (i.e. in window),
2118 * rather than queued out of window. Purists blame.
2120 * F.e. "RFC state" is ESTABLISHED,
2121 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2123 * The visible declinations are that sometimes
2124 * we enter time-wait state, when it is not required really
2125 * (harmless), do not send active resets, when they are
2126 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2127 * they look as CLOSING or LAST_ACK for Linux)
2128 * Probably, I missed some more holelets.
2130 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2131 * in a single packet! (May consider it later but will
2132 * probably need API support or TCP_CORK SYN-ACK until
2133 * data is written and socket is closed.)
2138 sk_stream_wait_close(sk, timeout);
2141 state = sk->sk_state;
2145 /* It is the last release_sock in its life. It will remove backlog. */
2149 /* Now socket is owned by kernel and we acquire BH lock
2150 to finish close. No need to check for user refs.
2154 WARN_ON(sock_owned_by_user(sk));
2156 percpu_counter_inc(sk->sk_prot->orphan_count);
2158 /* Have we already been destroyed by a softirq or backlog? */
2159 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2162 /* This is a (useful) BSD violating of the RFC. There is a
2163 * problem with TCP as specified in that the other end could
2164 * keep a socket open forever with no application left this end.
2165 * We use a 3 minute timeout (about the same as BSD) then kill
2166 * our end. If they send after that then tough - BUT: long enough
2167 * that we won't make the old 4*rto = almost no time - whoops
2170 * Nope, it was not mistake. It is really desired behaviour
2171 * f.e. on http servers, when such sockets are useless, but
2172 * consume significant resources. Let's do it with special
2173 * linger2 option. --ANK
2176 if (sk->sk_state == TCP_FIN_WAIT2) {
2177 struct tcp_sock *tp = tcp_sk(sk);
2178 if (tp->linger2 < 0) {
2179 tcp_set_state(sk, TCP_CLOSE);
2180 tcp_send_active_reset(sk, GFP_ATOMIC);
2181 NET_INC_STATS_BH(sock_net(sk),
2182 LINUX_MIB_TCPABORTONLINGER);
2184 const int tmo = tcp_fin_time(sk);
2186 if (tmo > TCP_TIMEWAIT_LEN) {
2187 inet_csk_reset_keepalive_timer(sk,
2188 tmo - TCP_TIMEWAIT_LEN);
2190 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2195 if (sk->sk_state != TCP_CLOSE) {
2197 if (tcp_check_oom(sk, 0)) {
2198 tcp_set_state(sk, TCP_CLOSE);
2199 tcp_send_active_reset(sk, GFP_ATOMIC);
2200 NET_INC_STATS_BH(sock_net(sk),
2201 LINUX_MIB_TCPABORTONMEMORY);
2205 if (sk->sk_state == TCP_CLOSE) {
2206 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2207 /* We could get here with a non-NULL req if the socket is
2208 * aborted (e.g., closed with unread data) before 3WHS
2212 reqsk_fastopen_remove(sk, req, false);
2213 inet_csk_destroy_sock(sk);
2215 /* Otherwise, socket is reprieved until protocol close. */
2222 EXPORT_SYMBOL(tcp_close);
2224 /* These states need RST on ABORT according to RFC793 */
2226 static inline bool tcp_need_reset(int state)
2228 return (1 << state) &
2229 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2230 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2233 int tcp_disconnect(struct sock *sk, int flags)
2235 struct inet_sock *inet = inet_sk(sk);
2236 struct inet_connection_sock *icsk = inet_csk(sk);
2237 struct tcp_sock *tp = tcp_sk(sk);
2239 int old_state = sk->sk_state;
2241 if (old_state != TCP_CLOSE)
2242 tcp_set_state(sk, TCP_CLOSE);
2244 /* ABORT function of RFC793 */
2245 if (old_state == TCP_LISTEN) {
2246 inet_csk_listen_stop(sk);
2247 } else if (unlikely(tp->repair)) {
2248 sk->sk_err = ECONNABORTED;
2249 } else if (tcp_need_reset(old_state) ||
2250 (tp->snd_nxt != tp->write_seq &&
2251 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2252 /* The last check adjusts for discrepancy of Linux wrt. RFC
2255 tcp_send_active_reset(sk, gfp_any());
2256 sk->sk_err = ECONNRESET;
2257 } else if (old_state == TCP_SYN_SENT)
2258 sk->sk_err = ECONNRESET;
2260 tcp_clear_xmit_timers(sk);
2261 __skb_queue_purge(&sk->sk_receive_queue);
2262 tcp_write_queue_purge(sk);
2263 __skb_queue_purge(&tp->out_of_order_queue);
2264 #ifdef CONFIG_NET_DMA
2265 __skb_queue_purge(&sk->sk_async_wait_queue);
2268 inet->inet_dport = 0;
2270 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2271 inet_reset_saddr(sk);
2273 sk->sk_shutdown = 0;
2274 sock_reset_flag(sk, SOCK_DONE);
2276 if ((tp->write_seq += tp->max_window + 2) == 0)
2278 icsk->icsk_backoff = 0;
2280 icsk->icsk_probes_out = 0;
2281 tp->packets_out = 0;
2282 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2283 tp->snd_cwnd_cnt = 0;
2284 tp->window_clamp = 0;
2285 tcp_set_ca_state(sk, TCP_CA_Open);
2286 tcp_clear_retrans(tp);
2287 inet_csk_delack_init(sk);
2288 tcp_init_send_head(sk);
2289 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2292 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2294 sk->sk_error_report(sk);
2297 EXPORT_SYMBOL(tcp_disconnect);
2299 void tcp_sock_destruct(struct sock *sk)
2301 inet_sock_destruct(sk);
2303 kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2306 static inline bool tcp_can_repair_sock(const struct sock *sk)
2308 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2309 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2312 static int tcp_repair_options_est(struct tcp_sock *tp,
2313 struct tcp_repair_opt __user *optbuf, unsigned int len)
2315 struct tcp_repair_opt opt;
2317 while (len >= sizeof(opt)) {
2318 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2324 switch (opt.opt_code) {
2326 tp->rx_opt.mss_clamp = opt.opt_val;
2330 u16 snd_wscale = opt.opt_val & 0xFFFF;
2331 u16 rcv_wscale = opt.opt_val >> 16;
2333 if (snd_wscale > 14 || rcv_wscale > 14)
2336 tp->rx_opt.snd_wscale = snd_wscale;
2337 tp->rx_opt.rcv_wscale = rcv_wscale;
2338 tp->rx_opt.wscale_ok = 1;
2341 case TCPOPT_SACK_PERM:
2342 if (opt.opt_val != 0)
2345 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2346 if (sysctl_tcp_fack)
2347 tcp_enable_fack(tp);
2349 case TCPOPT_TIMESTAMP:
2350 if (opt.opt_val != 0)
2353 tp->rx_opt.tstamp_ok = 1;
2362 * Socket option code for TCP.
2364 static int do_tcp_setsockopt(struct sock *sk, int level,
2365 int optname, char __user *optval, unsigned int optlen)
2367 struct tcp_sock *tp = tcp_sk(sk);
2368 struct inet_connection_sock *icsk = inet_csk(sk);
2372 /* These are data/string values, all the others are ints */
2374 case TCP_CONGESTION: {
2375 char name[TCP_CA_NAME_MAX];
2380 val = strncpy_from_user(name, optval,
2381 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2387 err = tcp_set_congestion_control(sk, name);
2396 if (optlen < sizeof(int))
2399 if (get_user(val, (int __user *)optval))
2406 /* Values greater than interface MTU won't take effect. However
2407 * at the point when this call is done we typically don't yet
2408 * know which interface is going to be used */
2409 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2413 tp->rx_opt.user_mss = val;
2418 /* TCP_NODELAY is weaker than TCP_CORK, so that
2419 * this option on corked socket is remembered, but
2420 * it is not activated until cork is cleared.
2422 * However, when TCP_NODELAY is set we make
2423 * an explicit push, which overrides even TCP_CORK
2424 * for currently queued segments.
2426 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2427 tcp_push_pending_frames(sk);
2429 tp->nonagle &= ~TCP_NAGLE_OFF;
2433 case TCP_THIN_LINEAR_TIMEOUTS:
2434 if (val < 0 || val > 1)
2440 case TCP_THIN_DUPACK:
2441 if (val < 0 || val > 1)
2444 tp->thin_dupack = val;
2445 if (tp->thin_dupack)
2446 tcp_disable_early_retrans(tp);
2450 if (!tcp_can_repair_sock(sk))
2452 else if (val == 1) {
2454 sk->sk_reuse = SK_FORCE_REUSE;
2455 tp->repair_queue = TCP_NO_QUEUE;
2456 } else if (val == 0) {
2458 sk->sk_reuse = SK_NO_REUSE;
2459 tcp_send_window_probe(sk);
2465 case TCP_REPAIR_QUEUE:
2468 else if (val < TCP_QUEUES_NR)
2469 tp->repair_queue = val;
2475 if (sk->sk_state != TCP_CLOSE)
2477 else if (tp->repair_queue == TCP_SEND_QUEUE)
2478 tp->write_seq = val;
2479 else if (tp->repair_queue == TCP_RECV_QUEUE)
2485 case TCP_REPAIR_OPTIONS:
2488 else if (sk->sk_state == TCP_ESTABLISHED)
2489 err = tcp_repair_options_est(tp,
2490 (struct tcp_repair_opt __user *)optval,
2497 /* When set indicates to always queue non-full frames.
2498 * Later the user clears this option and we transmit
2499 * any pending partial frames in the queue. This is
2500 * meant to be used alongside sendfile() to get properly
2501 * filled frames when the user (for example) must write
2502 * out headers with a write() call first and then use
2503 * sendfile to send out the data parts.
2505 * TCP_CORK can be set together with TCP_NODELAY and it is
2506 * stronger than TCP_NODELAY.
2509 tp->nonagle |= TCP_NAGLE_CORK;
2511 tp->nonagle &= ~TCP_NAGLE_CORK;
2512 if (tp->nonagle&TCP_NAGLE_OFF)
2513 tp->nonagle |= TCP_NAGLE_PUSH;
2514 tcp_push_pending_frames(sk);
2519 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2522 tp->keepalive_time = val * HZ;
2523 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2524 !((1 << sk->sk_state) &
2525 (TCPF_CLOSE | TCPF_LISTEN))) {
2526 u32 elapsed = keepalive_time_elapsed(tp);
2527 if (tp->keepalive_time > elapsed)
2528 elapsed = tp->keepalive_time - elapsed;
2531 inet_csk_reset_keepalive_timer(sk, elapsed);
2536 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2539 tp->keepalive_intvl = val * HZ;
2542 if (val < 1 || val > MAX_TCP_KEEPCNT)
2545 tp->keepalive_probes = val;
2548 if (val < 1 || val > MAX_TCP_SYNCNT)
2551 icsk->icsk_syn_retries = val;
2557 else if (val > sysctl_tcp_fin_timeout / HZ)
2560 tp->linger2 = val * HZ;
2563 case TCP_DEFER_ACCEPT:
2564 /* Translate value in seconds to number of retransmits */
2565 icsk->icsk_accept_queue.rskq_defer_accept =
2566 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2570 case TCP_WINDOW_CLAMP:
2572 if (sk->sk_state != TCP_CLOSE) {
2576 tp->window_clamp = 0;
2578 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2579 SOCK_MIN_RCVBUF / 2 : val;
2584 icsk->icsk_ack.pingpong = 1;
2586 icsk->icsk_ack.pingpong = 0;
2587 if ((1 << sk->sk_state) &
2588 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2589 inet_csk_ack_scheduled(sk)) {
2590 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2591 tcp_cleanup_rbuf(sk, 1);
2593 icsk->icsk_ack.pingpong = 1;
2598 #ifdef CONFIG_TCP_MD5SIG
2600 /* Read the IP->Key mappings from userspace */
2601 err = tp->af_specific->md5_parse(sk, optval, optlen);
2604 case TCP_USER_TIMEOUT:
2605 /* Cap the max timeout in ms TCP will retry/retrans
2606 * before giving up and aborting (ETIMEDOUT) a connection.
2611 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2615 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2617 err = fastopen_init_queue(sk, val);
2625 tp->tsoffset = val - tcp_time_stamp;
2636 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2637 unsigned int optlen)
2639 const struct inet_connection_sock *icsk = inet_csk(sk);
2641 if (level != SOL_TCP)
2642 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2644 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2646 EXPORT_SYMBOL(tcp_setsockopt);
2648 #ifdef CONFIG_COMPAT
2649 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2650 char __user *optval, unsigned int optlen)
2652 if (level != SOL_TCP)
2653 return inet_csk_compat_setsockopt(sk, level, optname,
2655 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2657 EXPORT_SYMBOL(compat_tcp_setsockopt);
2660 /* Return information about state of tcp endpoint in API format. */
2661 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2663 const struct tcp_sock *tp = tcp_sk(sk);
2664 const struct inet_connection_sock *icsk = inet_csk(sk);
2665 u32 now = tcp_time_stamp;
2667 memset(info, 0, sizeof(*info));
2669 info->tcpi_state = sk->sk_state;
2670 info->tcpi_ca_state = icsk->icsk_ca_state;
2671 info->tcpi_retransmits = icsk->icsk_retransmits;
2672 info->tcpi_probes = icsk->icsk_probes_out;
2673 info->tcpi_backoff = icsk->icsk_backoff;
2675 if (tp->rx_opt.tstamp_ok)
2676 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2677 if (tcp_is_sack(tp))
2678 info->tcpi_options |= TCPI_OPT_SACK;
2679 if (tp->rx_opt.wscale_ok) {
2680 info->tcpi_options |= TCPI_OPT_WSCALE;
2681 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2682 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2685 if (tp->ecn_flags & TCP_ECN_OK)
2686 info->tcpi_options |= TCPI_OPT_ECN;
2687 if (tp->ecn_flags & TCP_ECN_SEEN)
2688 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2689 if (tp->syn_data_acked)
2690 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2692 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2693 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2694 info->tcpi_snd_mss = tp->mss_cache;
2695 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2697 if (sk->sk_state == TCP_LISTEN) {
2698 info->tcpi_unacked = sk->sk_ack_backlog;
2699 info->tcpi_sacked = sk->sk_max_ack_backlog;
2701 info->tcpi_unacked = tp->packets_out;
2702 info->tcpi_sacked = tp->sacked_out;
2704 info->tcpi_lost = tp->lost_out;
2705 info->tcpi_retrans = tp->retrans_out;
2706 info->tcpi_fackets = tp->fackets_out;
2708 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2709 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2710 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2712 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2713 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2714 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2715 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2716 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2717 info->tcpi_snd_cwnd = tp->snd_cwnd;
2718 info->tcpi_advmss = tp->advmss;
2719 info->tcpi_reordering = tp->reordering;
2721 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2722 info->tcpi_rcv_space = tp->rcvq_space.space;
2724 info->tcpi_total_retrans = tp->total_retrans;
2726 EXPORT_SYMBOL_GPL(tcp_get_info);
2728 static int do_tcp_getsockopt(struct sock *sk, int level,
2729 int optname, char __user *optval, int __user *optlen)
2731 struct inet_connection_sock *icsk = inet_csk(sk);
2732 struct tcp_sock *tp = tcp_sk(sk);
2735 if (get_user(len, optlen))
2738 len = min_t(unsigned int, len, sizeof(int));
2745 val = tp->mss_cache;
2746 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2747 val = tp->rx_opt.user_mss;
2749 val = tp->rx_opt.mss_clamp;
2752 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2755 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2758 val = keepalive_time_when(tp) / HZ;
2761 val = keepalive_intvl_when(tp) / HZ;
2764 val = keepalive_probes(tp);
2767 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2772 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2774 case TCP_DEFER_ACCEPT:
2775 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2776 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2778 case TCP_WINDOW_CLAMP:
2779 val = tp->window_clamp;
2782 struct tcp_info info;
2784 if (get_user(len, optlen))
2787 tcp_get_info(sk, &info);
2789 len = min_t(unsigned int, len, sizeof(info));
2790 if (put_user(len, optlen))
2792 if (copy_to_user(optval, &info, len))
2797 val = !icsk->icsk_ack.pingpong;
2800 case TCP_CONGESTION:
2801 if (get_user(len, optlen))
2803 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2804 if (put_user(len, optlen))
2806 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2810 case TCP_THIN_LINEAR_TIMEOUTS:
2813 case TCP_THIN_DUPACK:
2814 val = tp->thin_dupack;
2821 case TCP_REPAIR_QUEUE:
2823 val = tp->repair_queue;
2829 if (tp->repair_queue == TCP_SEND_QUEUE)
2830 val = tp->write_seq;
2831 else if (tp->repair_queue == TCP_RECV_QUEUE)
2837 case TCP_USER_TIMEOUT:
2838 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2841 val = tcp_time_stamp + tp->tsoffset;
2844 return -ENOPROTOOPT;
2847 if (put_user(len, optlen))
2849 if (copy_to_user(optval, &val, len))
2854 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2857 struct inet_connection_sock *icsk = inet_csk(sk);
2859 if (level != SOL_TCP)
2860 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2862 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2864 EXPORT_SYMBOL(tcp_getsockopt);
2866 #ifdef CONFIG_COMPAT
2867 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2868 char __user *optval, int __user *optlen)
2870 if (level != SOL_TCP)
2871 return inet_csk_compat_getsockopt(sk, level, optname,
2873 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2875 EXPORT_SYMBOL(compat_tcp_getsockopt);
2878 struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2879 netdev_features_t features)
2881 struct sk_buff *segs = ERR_PTR(-EINVAL);
2886 unsigned int oldlen;
2888 struct sk_buff *gso_skb = skb;
2891 if (!pskb_may_pull(skb, sizeof(*th)))
2895 thlen = th->doff * 4;
2896 if (thlen < sizeof(*th))
2899 if (!pskb_may_pull(skb, thlen))
2902 oldlen = (u16)~skb->len;
2903 __skb_pull(skb, thlen);
2905 mss = skb_shinfo(skb)->gso_size;
2906 if (unlikely(skb->len <= mss))
2909 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2910 /* Packet is from an untrusted source, reset gso_segs. */
2911 int type = skb_shinfo(skb)->gso_type;
2919 SKB_GSO_UDP_TUNNEL |
2921 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
2924 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2930 segs = skb_segment(skb, features);
2934 delta = htonl(oldlen + (thlen + mss));
2938 seq = ntohl(th->seq);
2940 newcheck = ~csum_fold((__force __wsum)((__force u32)th->check +
2941 (__force u32)delta));
2944 th->fin = th->psh = 0;
2945 th->check = newcheck;
2947 if (skb->ip_summed != CHECKSUM_PARTIAL)
2949 csum_fold(csum_partial(skb_transport_header(skb),
2956 th->seq = htonl(seq);
2958 } while (skb->next);
2960 /* Following permits TCP Small Queues to work well with GSO :
2961 * The callback to TCP stack will be called at the time last frag
2962 * is freed at TX completion, and not right now when gso_skb
2963 * is freed by GSO engine
2965 if (gso_skb->destructor == tcp_wfree) {
2966 swap(gso_skb->sk, skb->sk);
2967 swap(gso_skb->destructor, skb->destructor);
2968 swap(gso_skb->truesize, skb->truesize);
2971 delta = htonl(oldlen + (skb->tail - skb->transport_header) +
2973 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
2974 (__force u32)delta));
2975 if (skb->ip_summed != CHECKSUM_PARTIAL)
2976 th->check = csum_fold(csum_partial(skb_transport_header(skb),
2982 EXPORT_SYMBOL(tcp_tso_segment);
2984 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2986 struct sk_buff **pp = NULL;
2993 unsigned int mss = 1;
2999 off = skb_gro_offset(skb);
3000 hlen = off + sizeof(*th);
3001 th = skb_gro_header_fast(skb, off);
3002 if (skb_gro_header_hard(skb, hlen)) {
3003 th = skb_gro_header_slow(skb, hlen, off);
3008 thlen = th->doff * 4;
3009 if (thlen < sizeof(*th))
3013 if (skb_gro_header_hard(skb, hlen)) {
3014 th = skb_gro_header_slow(skb, hlen, off);
3019 skb_gro_pull(skb, thlen);
3021 len = skb_gro_len(skb);
3022 flags = tcp_flag_word(th);
3024 for (; (p = *head); head = &p->next) {
3025 if (!NAPI_GRO_CB(p)->same_flow)
3030 if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3031 NAPI_GRO_CB(p)->same_flow = 0;
3038 goto out_check_final;
3041 flush = NAPI_GRO_CB(p)->flush;
3042 flush |= (__force int)(flags & TCP_FLAG_CWR);
3043 flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3044 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3045 flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3046 for (i = sizeof(*th); i < thlen; i += 4)
3047 flush |= *(u32 *)((u8 *)th + i) ^
3048 *(u32 *)((u8 *)th2 + i);
3050 mss = skb_shinfo(p)->gso_size;
3052 flush |= (len - 1) >= mss;
3053 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3055 if (flush || skb_gro_receive(head, skb)) {
3057 goto out_check_final;
3062 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3066 flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3067 TCP_FLAG_RST | TCP_FLAG_SYN |
3070 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3074 NAPI_GRO_CB(skb)->flush |= flush;
3078 EXPORT_SYMBOL(tcp_gro_receive);
3080 int tcp_gro_complete(struct sk_buff *skb)
3082 struct tcphdr *th = tcp_hdr(skb);
3084 skb->csum_start = skb_transport_header(skb) - skb->head;
3085 skb->csum_offset = offsetof(struct tcphdr, check);
3086 skb->ip_summed = CHECKSUM_PARTIAL;
3088 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3091 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3095 EXPORT_SYMBOL(tcp_gro_complete);
3097 #ifdef CONFIG_TCP_MD5SIG
3098 static unsigned long tcp_md5sig_users;
3099 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
3100 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3102 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3106 for_each_possible_cpu(cpu) {
3107 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
3109 if (p->md5_desc.tfm)
3110 crypto_free_hash(p->md5_desc.tfm);
3115 void tcp_free_md5sig_pool(void)
3117 struct tcp_md5sig_pool __percpu *pool = NULL;
3119 spin_lock_bh(&tcp_md5sig_pool_lock);
3120 if (--tcp_md5sig_users == 0) {
3121 pool = tcp_md5sig_pool;
3122 tcp_md5sig_pool = NULL;
3124 spin_unlock_bh(&tcp_md5sig_pool_lock);
3126 __tcp_free_md5sig_pool(pool);
3128 EXPORT_SYMBOL(tcp_free_md5sig_pool);
3130 static struct tcp_md5sig_pool __percpu *
3131 __tcp_alloc_md5sig_pool(struct sock *sk)
3134 struct tcp_md5sig_pool __percpu *pool;
3136 pool = alloc_percpu(struct tcp_md5sig_pool);
3140 for_each_possible_cpu(cpu) {
3141 struct crypto_hash *hash;
3143 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3144 if (IS_ERR_OR_NULL(hash))
3147 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3151 __tcp_free_md5sig_pool(pool);
3155 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3157 struct tcp_md5sig_pool __percpu *pool;
3161 spin_lock_bh(&tcp_md5sig_pool_lock);
3162 pool = tcp_md5sig_pool;
3163 if (tcp_md5sig_users++ == 0) {
3165 spin_unlock_bh(&tcp_md5sig_pool_lock);
3168 spin_unlock_bh(&tcp_md5sig_pool_lock);
3172 spin_unlock_bh(&tcp_md5sig_pool_lock);
3175 /* we cannot hold spinlock here because this may sleep. */
3176 struct tcp_md5sig_pool __percpu *p;
3178 p = __tcp_alloc_md5sig_pool(sk);
3179 spin_lock_bh(&tcp_md5sig_pool_lock);
3182 spin_unlock_bh(&tcp_md5sig_pool_lock);
3185 pool = tcp_md5sig_pool;
3187 /* oops, it has already been assigned. */
3188 spin_unlock_bh(&tcp_md5sig_pool_lock);
3189 __tcp_free_md5sig_pool(p);
3191 tcp_md5sig_pool = pool = p;
3192 spin_unlock_bh(&tcp_md5sig_pool_lock);
3197 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3201 * tcp_get_md5sig_pool - get md5sig_pool for this user
3203 * We use percpu structure, so if we succeed, we exit with preemption
3204 * and BH disabled, to make sure another thread or softirq handling
3205 * wont try to get same context.
3207 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3209 struct tcp_md5sig_pool __percpu *p;
3213 spin_lock(&tcp_md5sig_pool_lock);
3214 p = tcp_md5sig_pool;
3217 spin_unlock(&tcp_md5sig_pool_lock);
3220 return this_cpu_ptr(p);
3225 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3227 void tcp_put_md5sig_pool(void)
3230 tcp_free_md5sig_pool();
3232 EXPORT_SYMBOL(tcp_put_md5sig_pool);
3234 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3235 const struct tcphdr *th)
3237 struct scatterlist sg;
3241 /* We are not allowed to change tcphdr, make a local copy */
3242 memcpy(&hdr, th, sizeof(hdr));
3245 /* options aren't included in the hash */
3246 sg_init_one(&sg, &hdr, sizeof(hdr));
3247 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3250 EXPORT_SYMBOL(tcp_md5_hash_header);
3252 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3253 const struct sk_buff *skb, unsigned int header_len)
3255 struct scatterlist sg;
3256 const struct tcphdr *tp = tcp_hdr(skb);
3257 struct hash_desc *desc = &hp->md5_desc;
3259 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3260 skb_headlen(skb) - header_len : 0;
3261 const struct skb_shared_info *shi = skb_shinfo(skb);
3262 struct sk_buff *frag_iter;
3264 sg_init_table(&sg, 1);
3266 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3267 if (crypto_hash_update(desc, &sg, head_data_len))
3270 for (i = 0; i < shi->nr_frags; ++i) {
3271 const struct skb_frag_struct *f = &shi->frags[i];
3272 struct page *page = skb_frag_page(f);
3273 sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3274 if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3278 skb_walk_frags(skb, frag_iter)
3279 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3284 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3286 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3288 struct scatterlist sg;
3290 sg_init_one(&sg, key->key, key->keylen);
3291 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3293 EXPORT_SYMBOL(tcp_md5_hash_key);
3297 void tcp_done(struct sock *sk)
3299 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3301 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3302 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3304 tcp_set_state(sk, TCP_CLOSE);
3305 tcp_clear_xmit_timers(sk);
3307 reqsk_fastopen_remove(sk, req, false);
3309 sk->sk_shutdown = SHUTDOWN_MASK;
3311 if (!sock_flag(sk, SOCK_DEAD))
3312 sk->sk_state_change(sk);
3314 inet_csk_destroy_sock(sk);
3316 EXPORT_SYMBOL_GPL(tcp_done);
3318 extern struct tcp_congestion_ops tcp_reno;
3320 static __initdata unsigned long thash_entries;
3321 static int __init set_thash_entries(char *str)
3328 ret = kstrtoul(str, 0, &thash_entries);
3334 __setup("thash_entries=", set_thash_entries);
3336 void tcp_init_mem(struct net *net)
3338 unsigned long limit = nr_free_buffer_pages() / 8;
3339 limit = max(limit, 128UL);
3340 net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3341 net->ipv4.sysctl_tcp_mem[1] = limit;
3342 net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3345 void __init tcp_init(void)
3347 struct sk_buff *skb = NULL;
3348 unsigned long limit;
3349 int max_rshare, max_wshare, cnt;
3352 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3354 percpu_counter_init(&tcp_sockets_allocated, 0);
3355 percpu_counter_init(&tcp_orphan_count, 0);
3356 tcp_hashinfo.bind_bucket_cachep =
3357 kmem_cache_create("tcp_bind_bucket",
3358 sizeof(struct inet_bind_bucket), 0,
3359 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3361 /* Size and allocate the main established and bind bucket
3364 * The methodology is similar to that of the buffer cache.
3366 tcp_hashinfo.ehash =
3367 alloc_large_system_hash("TCP established",
3368 sizeof(struct inet_ehash_bucket),
3370 17, /* one slot per 128 KB of memory */
3373 &tcp_hashinfo.ehash_mask,
3375 thash_entries ? 0 : 512 * 1024);
3376 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3377 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3378 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3380 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3381 panic("TCP: failed to alloc ehash_locks");
3382 tcp_hashinfo.bhash =
3383 alloc_large_system_hash("TCP bind",
3384 sizeof(struct inet_bind_hashbucket),
3385 tcp_hashinfo.ehash_mask + 1,
3386 17, /* one slot per 128 KB of memory */
3388 &tcp_hashinfo.bhash_size,
3392 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3393 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3394 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3395 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3399 cnt = tcp_hashinfo.ehash_mask + 1;
3401 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3402 sysctl_tcp_max_orphans = cnt / 2;
3403 sysctl_max_syn_backlog = max(128, cnt / 256);
3405 tcp_init_mem(&init_net);
3406 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3407 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3408 max_wshare = min(4UL*1024*1024, limit);
3409 max_rshare = min(6UL*1024*1024, limit);
3411 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3412 sysctl_tcp_wmem[1] = 16*1024;
3413 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3415 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3416 sysctl_tcp_rmem[1] = 87380;
3417 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3419 pr_info("Hash tables configured (established %u bind %u)\n",
3420 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3424 tcp_register_congestion_control(&tcp_reno);