2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * Alan Cox : Tidied tcp_data to avoid a potential
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #define pr_fmt(fmt) "TCP: " fmt
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
275 #include <net/xfrm.h>
277 #include <net/netdma.h>
278 #include <net/sock.h>
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
283 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
285 struct percpu_counter tcp_orphan_count;
286 EXPORT_SYMBOL_GPL(tcp_orphan_count);
288 int sysctl_tcp_wmem[3] __read_mostly;
289 int sysctl_tcp_rmem[3] __read_mostly;
291 EXPORT_SYMBOL(sysctl_tcp_rmem);
292 EXPORT_SYMBOL(sysctl_tcp_wmem);
294 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
295 EXPORT_SYMBOL(tcp_memory_allocated);
298 * Current number of TCP sockets.
300 struct percpu_counter tcp_sockets_allocated;
301 EXPORT_SYMBOL(tcp_sockets_allocated);
306 struct tcp_splice_state {
307 struct pipe_inode_info *pipe;
313 * Pressure flag: try to collapse.
314 * Technical note: it is used by multiple contexts non atomically.
315 * All the __sk_mem_schedule() is of this nature: accounting
316 * is strict, actions are advisory and have some latency.
318 int tcp_memory_pressure __read_mostly;
319 EXPORT_SYMBOL(tcp_memory_pressure);
321 void tcp_enter_memory_pressure(struct sock *sk)
323 if (!tcp_memory_pressure) {
324 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
325 tcp_memory_pressure = 1;
328 EXPORT_SYMBOL(tcp_enter_memory_pressure);
330 /* Convert seconds to retransmits based on initial and max timeout */
331 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
336 int period = timeout;
339 while (seconds > period && res < 255) {
342 if (timeout > rto_max)
350 /* Convert retransmits to seconds based on initial and max timeout */
351 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
359 if (timeout > rto_max)
367 /* Address-family independent initialization for a tcp_sock.
369 * NOTE: A lot of things set to zero explicitly by call to
370 * sk_alloc() so need not be done here.
372 void tcp_init_sock(struct sock *sk)
374 struct inet_connection_sock *icsk = inet_csk(sk);
375 struct tcp_sock *tp = tcp_sk(sk);
377 skb_queue_head_init(&tp->out_of_order_queue);
378 tcp_init_xmit_timers(sk);
379 tcp_prequeue_init(tp);
380 INIT_LIST_HEAD(&tp->tsq_node);
382 icsk->icsk_rto = TCP_TIMEOUT_INIT;
383 tp->mdev = TCP_TIMEOUT_INIT;
385 /* So many TCP implementations out there (incorrectly) count the
386 * initial SYN frame in their delayed-ACK and congestion control
387 * algorithms that we must have the following bandaid to talk
388 * efficiently to them. -DaveM
390 tp->snd_cwnd = TCP_INIT_CWND;
392 /* See draft-stevens-tcpca-spec-01 for discussion of the
393 * initialization of these values.
395 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
396 tp->snd_cwnd_clamp = ~0;
397 tp->mss_cache = TCP_MSS_DEFAULT;
399 tp->reordering = sysctl_tcp_reordering;
400 tcp_enable_early_retrans(tp);
401 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
403 sk->sk_state = TCP_CLOSE;
405 sk->sk_write_space = sk_stream_write_space;
406 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
408 icsk->icsk_sync_mss = tcp_sync_mss;
410 /* TCP Cookie Transactions */
411 if (sysctl_tcp_cookie_size > 0) {
412 /* Default, cookies without s_data_payload. */
414 kzalloc(sizeof(*tp->cookie_values),
416 if (tp->cookie_values != NULL)
417 kref_init(&tp->cookie_values->kref);
419 /* Presumed zeroed, in order of appearance:
420 * cookie_in_always, cookie_out_never,
421 * s_data_constant, s_data_in, s_data_out
423 sk->sk_sndbuf = sysctl_tcp_wmem[1];
424 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
427 sock_update_memcg(sk);
428 sk_sockets_allocated_inc(sk);
431 EXPORT_SYMBOL(tcp_init_sock);
434 * Wait for a TCP event.
436 * Note that we don't need to lock the socket, as the upper poll layers
437 * take care of normal races (between the test and the event) and we don't
438 * go look at any of the socket buffers directly.
440 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
443 struct sock *sk = sock->sk;
444 const struct tcp_sock *tp = tcp_sk(sk);
446 sock_poll_wait(file, sk_sleep(sk), wait);
447 if (sk->sk_state == TCP_LISTEN)
448 return inet_csk_listen_poll(sk);
450 /* Socket is not locked. We are protected from async events
451 * by poll logic and correct handling of state changes
452 * made by other threads is impossible in any case.
458 * POLLHUP is certainly not done right. But poll() doesn't
459 * have a notion of HUP in just one direction, and for a
460 * socket the read side is more interesting.
462 * Some poll() documentation says that POLLHUP is incompatible
463 * with the POLLOUT/POLLWR flags, so somebody should check this
464 * all. But careful, it tends to be safer to return too many
465 * bits than too few, and you can easily break real applications
466 * if you don't tell them that something has hung up!
470 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
471 * our fs/select.c). It means that after we received EOF,
472 * poll always returns immediately, making impossible poll() on write()
473 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
474 * if and only if shutdown has been made in both directions.
475 * Actually, it is interesting to look how Solaris and DUX
476 * solve this dilemma. I would prefer, if POLLHUP were maskable,
477 * then we could set it on SND_SHUTDOWN. BTW examples given
478 * in Stevens' books assume exactly this behaviour, it explains
479 * why POLLHUP is incompatible with POLLOUT. --ANK
481 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
482 * blocking on fresh not-connected or disconnected socket. --ANK
484 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
486 if (sk->sk_shutdown & RCV_SHUTDOWN)
487 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
490 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
491 int target = sock_rcvlowat(sk, 0, INT_MAX);
493 if (tp->urg_seq == tp->copied_seq &&
494 !sock_flag(sk, SOCK_URGINLINE) &&
498 /* Potential race condition. If read of tp below will
499 * escape above sk->sk_state, we can be illegally awaken
500 * in SYN_* states. */
501 if (tp->rcv_nxt - tp->copied_seq >= target)
502 mask |= POLLIN | POLLRDNORM;
504 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
505 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
506 mask |= POLLOUT | POLLWRNORM;
507 } else { /* send SIGIO later */
508 set_bit(SOCK_ASYNC_NOSPACE,
509 &sk->sk_socket->flags);
510 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
512 /* Race breaker. If space is freed after
513 * wspace test but before the flags are set,
514 * IO signal will be lost.
516 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
517 mask |= POLLOUT | POLLWRNORM;
520 mask |= POLLOUT | POLLWRNORM;
522 if (tp->urg_data & TCP_URG_VALID)
525 /* This barrier is coupled with smp_wmb() in tcp_reset() */
532 EXPORT_SYMBOL(tcp_poll);
534 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
536 struct tcp_sock *tp = tcp_sk(sk);
541 if (sk->sk_state == TCP_LISTEN)
545 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
547 else if (sock_flag(sk, SOCK_URGINLINE) ||
549 before(tp->urg_seq, tp->copied_seq) ||
550 !before(tp->urg_seq, tp->rcv_nxt)) {
553 answ = tp->rcv_nxt - tp->copied_seq;
555 /* Subtract 1, if FIN is in queue. */
556 skb = skb_peek_tail(&sk->sk_receive_queue);
558 answ -= tcp_hdr(skb)->fin;
560 answ = tp->urg_seq - tp->copied_seq;
564 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
567 if (sk->sk_state == TCP_LISTEN)
570 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
573 answ = tp->write_seq - tp->snd_una;
576 if (sk->sk_state == TCP_LISTEN)
579 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
582 answ = tp->write_seq - tp->snd_nxt;
588 return put_user(answ, (int __user *)arg);
590 EXPORT_SYMBOL(tcp_ioctl);
592 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
594 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
595 tp->pushed_seq = tp->write_seq;
598 static inline bool forced_push(const struct tcp_sock *tp)
600 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
603 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
605 struct tcp_sock *tp = tcp_sk(sk);
606 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
609 tcb->seq = tcb->end_seq = tp->write_seq;
610 tcb->tcp_flags = TCPHDR_ACK;
612 skb_header_release(skb);
613 tcp_add_write_queue_tail(sk, skb);
614 sk->sk_wmem_queued += skb->truesize;
615 sk_mem_charge(sk, skb->truesize);
616 if (tp->nonagle & TCP_NAGLE_PUSH)
617 tp->nonagle &= ~TCP_NAGLE_PUSH;
620 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
623 tp->snd_up = tp->write_seq;
626 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
629 if (tcp_send_head(sk)) {
630 struct tcp_sock *tp = tcp_sk(sk);
632 if (!(flags & MSG_MORE) || forced_push(tp))
633 tcp_mark_push(tp, tcp_write_queue_tail(sk));
635 tcp_mark_urg(tp, flags);
636 __tcp_push_pending_frames(sk, mss_now,
637 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
641 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
642 unsigned int offset, size_t len)
644 struct tcp_splice_state *tss = rd_desc->arg.data;
647 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
650 rd_desc->count -= ret;
654 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
656 /* Store TCP splice context information in read_descriptor_t. */
657 read_descriptor_t rd_desc = {
662 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
666 * tcp_splice_read - splice data from TCP socket to a pipe
667 * @sock: socket to splice from
668 * @ppos: position (not valid)
669 * @pipe: pipe to splice to
670 * @len: number of bytes to splice
671 * @flags: splice modifier flags
674 * Will read pages from given socket and fill them into a pipe.
677 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
678 struct pipe_inode_info *pipe, size_t len,
681 struct sock *sk = sock->sk;
682 struct tcp_splice_state tss = {
691 sock_rps_record_flow(sk);
693 * We can't seek on a socket input
702 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
704 ret = __tcp_splice_read(sk, &tss);
710 if (sock_flag(sk, SOCK_DONE))
713 ret = sock_error(sk);
716 if (sk->sk_shutdown & RCV_SHUTDOWN)
718 if (sk->sk_state == TCP_CLOSE) {
720 * This occurs when user tries to read
721 * from never connected socket.
723 if (!sock_flag(sk, SOCK_DONE))
731 sk_wait_data(sk, &timeo);
732 if (signal_pending(current)) {
733 ret = sock_intr_errno(timeo);
746 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
747 (sk->sk_shutdown & RCV_SHUTDOWN) ||
748 signal_pending(current))
759 EXPORT_SYMBOL(tcp_splice_read);
761 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
765 /* The TCP header must be at least 32-bit aligned. */
766 size = ALIGN(size, 4);
768 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
770 if (sk_wmem_schedule(sk, skb->truesize)) {
771 skb_reserve(skb, sk->sk_prot->max_header);
773 * Make sure that we have exactly size bytes
774 * available to the caller, no more, no less.
776 skb->avail_size = size;
781 sk->sk_prot->enter_memory_pressure(sk);
782 sk_stream_moderate_sndbuf(sk);
787 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
790 struct tcp_sock *tp = tcp_sk(sk);
791 u32 xmit_size_goal, old_size_goal;
793 xmit_size_goal = mss_now;
795 if (large_allowed && sk_can_gso(sk)) {
796 xmit_size_goal = ((sk->sk_gso_max_size - 1) -
797 inet_csk(sk)->icsk_af_ops->net_header_len -
798 inet_csk(sk)->icsk_ext_hdr_len -
801 /* TSQ : try to have two TSO segments in flight */
802 xmit_size_goal = min_t(u32, xmit_size_goal,
803 sysctl_tcp_limit_output_bytes >> 1);
805 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
807 /* We try hard to avoid divides here */
808 old_size_goal = tp->xmit_size_goal_segs * mss_now;
810 if (likely(old_size_goal <= xmit_size_goal &&
811 old_size_goal + mss_now > xmit_size_goal)) {
812 xmit_size_goal = old_size_goal;
814 tp->xmit_size_goal_segs =
815 min_t(u16, xmit_size_goal / mss_now,
816 sk->sk_gso_max_segs);
817 xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
821 return max(xmit_size_goal, mss_now);
824 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
828 mss_now = tcp_current_mss(sk);
829 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
834 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
835 size_t psize, int flags)
837 struct tcp_sock *tp = tcp_sk(sk);
838 int mss_now, size_goal;
841 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
843 /* Wait for a connection to finish. */
844 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
845 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
848 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
850 mss_now = tcp_send_mss(sk, &size_goal, flags);
854 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
858 struct sk_buff *skb = tcp_write_queue_tail(sk);
859 struct page *page = pages[poffset / PAGE_SIZE];
861 int offset = poffset % PAGE_SIZE;
862 int size = min_t(size_t, psize, PAGE_SIZE - offset);
865 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
867 if (!sk_stream_memory_free(sk))
868 goto wait_for_sndbuf;
870 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
872 goto wait_for_memory;
881 i = skb_shinfo(skb)->nr_frags;
882 can_coalesce = skb_can_coalesce(skb, i, page, offset);
883 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
884 tcp_mark_push(tp, skb);
887 if (!sk_wmem_schedule(sk, copy))
888 goto wait_for_memory;
891 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
894 skb_fill_page_desc(skb, i, page, offset, copy);
898 skb->data_len += copy;
899 skb->truesize += copy;
900 sk->sk_wmem_queued += copy;
901 sk_mem_charge(sk, copy);
902 skb->ip_summed = CHECKSUM_PARTIAL;
903 tp->write_seq += copy;
904 TCP_SKB_CB(skb)->end_seq += copy;
905 skb_shinfo(skb)->gso_segs = 0;
908 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
912 if (!(psize -= copy))
915 if (skb->len < size_goal || (flags & MSG_OOB))
918 if (forced_push(tp)) {
919 tcp_mark_push(tp, skb);
920 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
921 } else if (skb == tcp_send_head(sk))
922 tcp_push_one(sk, mss_now);
926 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
928 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
930 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
933 mss_now = tcp_send_mss(sk, &size_goal, flags);
937 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
938 tcp_push(sk, flags, mss_now, tp->nonagle);
945 return sk_stream_error(sk, flags, err);
948 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
949 size_t size, int flags)
953 if (!(sk->sk_route_caps & NETIF_F_SG) ||
954 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
955 return sock_no_sendpage(sk->sk_socket, page, offset, size,
959 res = do_tcp_sendpages(sk, &page, offset, size, flags);
963 EXPORT_SYMBOL(tcp_sendpage);
965 static inline int select_size(const struct sock *sk, bool sg)
967 const struct tcp_sock *tp = tcp_sk(sk);
968 int tmp = tp->mss_cache;
971 if (sk_can_gso(sk)) {
972 /* Small frames wont use a full page:
973 * Payload will immediately follow tcp header.
975 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
977 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
979 if (tmp >= pgbreak &&
980 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
988 void tcp_free_fastopen_req(struct tcp_sock *tp)
990 if (tp->fastopen_req != NULL) {
991 kfree(tp->fastopen_req);
992 tp->fastopen_req = NULL;
996 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size)
998 struct tcp_sock *tp = tcp_sk(sk);
1001 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1003 if (tp->fastopen_req != NULL)
1004 return -EALREADY; /* Another Fast Open is in progress */
1006 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1008 if (unlikely(tp->fastopen_req == NULL))
1010 tp->fastopen_req->data = msg;
1012 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1013 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1014 msg->msg_namelen, flags);
1015 *size = tp->fastopen_req->copied;
1016 tcp_free_fastopen_req(tp);
1020 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1024 struct tcp_sock *tp = tcp_sk(sk);
1025 struct sk_buff *skb;
1026 int iovlen, flags, err, copied = 0;
1027 int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1033 flags = msg->msg_flags;
1034 if (flags & MSG_FASTOPEN) {
1035 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn);
1036 if (err == -EINPROGRESS && copied_syn > 0)
1040 offset = copied_syn;
1043 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1045 /* Wait for a connection to finish. */
1046 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1047 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1050 if (unlikely(tp->repair)) {
1051 if (tp->repair_queue == TCP_RECV_QUEUE) {
1052 copied = tcp_send_rcvq(sk, msg, size);
1057 if (tp->repair_queue == TCP_NO_QUEUE)
1060 /* 'common' sending to sendq */
1063 /* This should be in poll */
1064 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1066 mss_now = tcp_send_mss(sk, &size_goal, flags);
1068 /* Ok commence sending. */
1069 iovlen = msg->msg_iovlen;
1074 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1077 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1079 while (--iovlen >= 0) {
1080 size_t seglen = iov->iov_len;
1081 unsigned char __user *from = iov->iov_base;
1084 if (unlikely(offset > 0)) { /* Skip bytes copied in SYN */
1085 if (offset >= seglen) {
1094 while (seglen > 0) {
1096 int max = size_goal;
1098 skb = tcp_write_queue_tail(sk);
1099 if (tcp_send_head(sk)) {
1100 if (skb->ip_summed == CHECKSUM_NONE)
1102 copy = max - skb->len;
1107 /* Allocate new segment. If the interface is SG,
1108 * allocate skb fitting to single page.
1110 if (!sk_stream_memory_free(sk))
1111 goto wait_for_sndbuf;
1113 skb = sk_stream_alloc_skb(sk,
1114 select_size(sk, sg),
1117 goto wait_for_memory;
1120 * Check whether we can use HW checksum.
1122 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1123 skb->ip_summed = CHECKSUM_PARTIAL;
1125 skb_entail(sk, skb);
1130 /* Try to append data to the end of skb. */
1134 /* Where to copy to? */
1135 if (skb_availroom(skb) > 0) {
1136 /* We have some space in skb head. Superb! */
1137 copy = min_t(int, copy, skb_availroom(skb));
1138 err = skb_add_data_nocache(sk, skb, from, copy);
1143 int i = skb_shinfo(skb)->nr_frags;
1144 struct page *page = sk->sk_sndmsg_page;
1147 if (page && page_count(page) == 1)
1148 sk->sk_sndmsg_off = 0;
1150 off = sk->sk_sndmsg_off;
1152 if (skb_can_coalesce(skb, i, page, off) &&
1154 /* We can extend the last page
1157 } else if (i == MAX_SKB_FRAGS || !sg) {
1158 /* Need to add new fragment and cannot
1159 * do this because interface is non-SG,
1160 * or because all the page slots are
1162 tcp_mark_push(tp, skb);
1165 if (off == PAGE_SIZE) {
1167 sk->sk_sndmsg_page = page = NULL;
1173 if (copy > PAGE_SIZE - off)
1174 copy = PAGE_SIZE - off;
1176 if (!sk_wmem_schedule(sk, copy))
1177 goto wait_for_memory;
1180 /* Allocate new cache page. */
1181 if (!(page = sk_stream_alloc_page(sk)))
1182 goto wait_for_memory;
1185 /* Time to copy data. We are close to
1187 err = skb_copy_to_page_nocache(sk, from, skb,
1190 /* If this page was new, give it to the
1191 * socket so it does not get leaked.
1193 if (!sk->sk_sndmsg_page) {
1194 sk->sk_sndmsg_page = page;
1195 sk->sk_sndmsg_off = 0;
1200 /* Update the skb. */
1202 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1204 skb_fill_page_desc(skb, i, page, off, copy);
1205 if (sk->sk_sndmsg_page) {
1207 } else if (off + copy < PAGE_SIZE) {
1209 sk->sk_sndmsg_page = page;
1213 sk->sk_sndmsg_off = off + copy;
1217 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1219 tp->write_seq += copy;
1220 TCP_SKB_CB(skb)->end_seq += copy;
1221 skb_shinfo(skb)->gso_segs = 0;
1225 if ((seglen -= copy) == 0 && iovlen == 0)
1228 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1231 if (forced_push(tp)) {
1232 tcp_mark_push(tp, skb);
1233 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1234 } else if (skb == tcp_send_head(sk))
1235 tcp_push_one(sk, mss_now);
1239 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1241 if (copied && likely(!tp->repair))
1242 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1244 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1247 mss_now = tcp_send_mss(sk, &size_goal, flags);
1252 if (copied && likely(!tp->repair))
1253 tcp_push(sk, flags, mss_now, tp->nonagle);
1255 return copied + copied_syn;
1259 tcp_unlink_write_queue(skb, sk);
1260 /* It is the one place in all of TCP, except connection
1261 * reset, where we can be unlinking the send_head.
1263 tcp_check_send_head(sk, skb);
1264 sk_wmem_free_skb(sk, skb);
1268 if (copied + copied_syn)
1271 err = sk_stream_error(sk, flags, err);
1275 EXPORT_SYMBOL(tcp_sendmsg);
1278 * Handle reading urgent data. BSD has very simple semantics for
1279 * this, no blocking and very strange errors 8)
1282 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1284 struct tcp_sock *tp = tcp_sk(sk);
1286 /* No URG data to read. */
1287 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1288 tp->urg_data == TCP_URG_READ)
1289 return -EINVAL; /* Yes this is right ! */
1291 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1294 if (tp->urg_data & TCP_URG_VALID) {
1296 char c = tp->urg_data;
1298 if (!(flags & MSG_PEEK))
1299 tp->urg_data = TCP_URG_READ;
1301 /* Read urgent data. */
1302 msg->msg_flags |= MSG_OOB;
1305 if (!(flags & MSG_TRUNC))
1306 err = memcpy_toiovec(msg->msg_iov, &c, 1);
1309 msg->msg_flags |= MSG_TRUNC;
1311 return err ? -EFAULT : len;
1314 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1317 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1318 * the available implementations agree in this case:
1319 * this call should never block, independent of the
1320 * blocking state of the socket.
1321 * Mike <pall@rz.uni-karlsruhe.de>
1326 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1328 struct sk_buff *skb;
1329 int copied = 0, err = 0;
1331 /* XXX -- need to support SO_PEEK_OFF */
1333 skb_queue_walk(&sk->sk_write_queue, skb) {
1334 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1341 return err ?: copied;
1344 /* Clean up the receive buffer for full frames taken by the user,
1345 * then send an ACK if necessary. COPIED is the number of bytes
1346 * tcp_recvmsg has given to the user so far, it speeds up the
1347 * calculation of whether or not we must ACK for the sake of
1350 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1352 struct tcp_sock *tp = tcp_sk(sk);
1353 bool time_to_ack = false;
1355 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1357 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1358 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1359 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1361 if (inet_csk_ack_scheduled(sk)) {
1362 const struct inet_connection_sock *icsk = inet_csk(sk);
1363 /* Delayed ACKs frequently hit locked sockets during bulk
1365 if (icsk->icsk_ack.blocked ||
1366 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1367 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1369 * If this read emptied read buffer, we send ACK, if
1370 * connection is not bidirectional, user drained
1371 * receive buffer and there was a small segment
1375 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1376 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1377 !icsk->icsk_ack.pingpong)) &&
1378 !atomic_read(&sk->sk_rmem_alloc)))
1382 /* We send an ACK if we can now advertise a non-zero window
1383 * which has been raised "significantly".
1385 * Even if window raised up to infinity, do not send window open ACK
1386 * in states, where we will not receive more. It is useless.
1388 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1389 __u32 rcv_window_now = tcp_receive_window(tp);
1391 /* Optimize, __tcp_select_window() is not cheap. */
1392 if (2*rcv_window_now <= tp->window_clamp) {
1393 __u32 new_window = __tcp_select_window(sk);
1395 /* Send ACK now, if this read freed lots of space
1396 * in our buffer. Certainly, new_window is new window.
1397 * We can advertise it now, if it is not less than current one.
1398 * "Lots" means "at least twice" here.
1400 if (new_window && new_window >= 2 * rcv_window_now)
1408 static void tcp_prequeue_process(struct sock *sk)
1410 struct sk_buff *skb;
1411 struct tcp_sock *tp = tcp_sk(sk);
1413 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1415 /* RX process wants to run with disabled BHs, though it is not
1418 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1419 sk_backlog_rcv(sk, skb);
1422 /* Clear memory counter. */
1423 tp->ucopy.memory = 0;
1426 #ifdef CONFIG_NET_DMA
1427 static void tcp_service_net_dma(struct sock *sk, bool wait)
1429 dma_cookie_t done, used;
1430 dma_cookie_t last_issued;
1431 struct tcp_sock *tp = tcp_sk(sk);
1433 if (!tp->ucopy.dma_chan)
1436 last_issued = tp->ucopy.dma_cookie;
1437 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1440 if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1442 &used) == DMA_SUCCESS) {
1443 /* Safe to free early-copied skbs now */
1444 __skb_queue_purge(&sk->sk_async_wait_queue);
1447 struct sk_buff *skb;
1448 while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1449 (dma_async_is_complete(skb->dma_cookie, done,
1450 used) == DMA_SUCCESS)) {
1451 __skb_dequeue(&sk->sk_async_wait_queue);
1459 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1461 struct sk_buff *skb;
1464 skb_queue_walk(&sk->sk_receive_queue, skb) {
1465 offset = seq - TCP_SKB_CB(skb)->seq;
1466 if (tcp_hdr(skb)->syn)
1468 if (offset < skb->len || tcp_hdr(skb)->fin) {
1477 * This routine provides an alternative to tcp_recvmsg() for routines
1478 * that would like to handle copying from skbuffs directly in 'sendfile'
1481 * - It is assumed that the socket was locked by the caller.
1482 * - The routine does not block.
1483 * - At present, there is no support for reading OOB data
1484 * or for 'peeking' the socket using this routine
1485 * (although both would be easy to implement).
1487 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1488 sk_read_actor_t recv_actor)
1490 struct sk_buff *skb;
1491 struct tcp_sock *tp = tcp_sk(sk);
1492 u32 seq = tp->copied_seq;
1496 if (sk->sk_state == TCP_LISTEN)
1498 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1499 if (offset < skb->len) {
1503 len = skb->len - offset;
1504 /* Stop reading if we hit a patch of urgent data */
1506 u32 urg_offset = tp->urg_seq - seq;
1507 if (urg_offset < len)
1512 used = recv_actor(desc, skb, offset, len);
1517 } else if (used <= len) {
1523 * If recv_actor drops the lock (e.g. TCP splice
1524 * receive) the skb pointer might be invalid when
1525 * getting here: tcp_collapse might have deleted it
1526 * while aggregating skbs from the socket queue.
1528 skb = tcp_recv_skb(sk, seq-1, &offset);
1529 if (!skb || (offset+1 != skb->len))
1532 if (tcp_hdr(skb)->fin) {
1533 sk_eat_skb(sk, skb, false);
1537 sk_eat_skb(sk, skb, false);
1540 tp->copied_seq = seq;
1542 tp->copied_seq = seq;
1544 tcp_rcv_space_adjust(sk);
1546 /* Clean up data we have read: This will do ACK frames. */
1548 tcp_cleanup_rbuf(sk, copied);
1551 EXPORT_SYMBOL(tcp_read_sock);
1554 * This routine copies from a sock struct into the user buffer.
1556 * Technical note: in 2.3 we work on _locked_ socket, so that
1557 * tricks with *seq access order and skb->users are not required.
1558 * Probably, code can be easily improved even more.
1561 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1562 size_t len, int nonblock, int flags, int *addr_len)
1564 struct tcp_sock *tp = tcp_sk(sk);
1570 int target; /* Read at least this many bytes */
1572 struct task_struct *user_recv = NULL;
1573 bool copied_early = false;
1574 struct sk_buff *skb;
1580 if (sk->sk_state == TCP_LISTEN)
1583 timeo = sock_rcvtimeo(sk, nonblock);
1585 /* Urgent data needs to be handled specially. */
1586 if (flags & MSG_OOB)
1589 if (unlikely(tp->repair)) {
1591 if (!(flags & MSG_PEEK))
1594 if (tp->repair_queue == TCP_SEND_QUEUE)
1598 if (tp->repair_queue == TCP_NO_QUEUE)
1601 /* 'common' recv queue MSG_PEEK-ing */
1604 seq = &tp->copied_seq;
1605 if (flags & MSG_PEEK) {
1606 peek_seq = tp->copied_seq;
1610 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1612 #ifdef CONFIG_NET_DMA
1613 tp->ucopy.dma_chan = NULL;
1615 skb = skb_peek_tail(&sk->sk_receive_queue);
1620 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1621 if ((available < target) &&
1622 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1623 !sysctl_tcp_low_latency &&
1624 net_dma_find_channel()) {
1625 preempt_enable_no_resched();
1626 tp->ucopy.pinned_list =
1627 dma_pin_iovec_pages(msg->msg_iov, len);
1629 preempt_enable_no_resched();
1637 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1638 if (tp->urg_data && tp->urg_seq == *seq) {
1641 if (signal_pending(current)) {
1642 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1647 /* Next get a buffer. */
1649 skb_queue_walk(&sk->sk_receive_queue, skb) {
1650 /* Now that we have two receive queues this
1653 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1654 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1655 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1659 offset = *seq - TCP_SKB_CB(skb)->seq;
1660 if (tcp_hdr(skb)->syn)
1662 if (offset < skb->len)
1664 if (tcp_hdr(skb)->fin)
1666 WARN(!(flags & MSG_PEEK),
1667 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1668 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1671 /* Well, if we have backlog, try to process it now yet. */
1673 if (copied >= target && !sk->sk_backlog.tail)
1678 sk->sk_state == TCP_CLOSE ||
1679 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1681 signal_pending(current))
1684 if (sock_flag(sk, SOCK_DONE))
1688 copied = sock_error(sk);
1692 if (sk->sk_shutdown & RCV_SHUTDOWN)
1695 if (sk->sk_state == TCP_CLOSE) {
1696 if (!sock_flag(sk, SOCK_DONE)) {
1697 /* This occurs when user tries to read
1698 * from never connected socket.
1711 if (signal_pending(current)) {
1712 copied = sock_intr_errno(timeo);
1717 tcp_cleanup_rbuf(sk, copied);
1719 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1720 /* Install new reader */
1721 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1722 user_recv = current;
1723 tp->ucopy.task = user_recv;
1724 tp->ucopy.iov = msg->msg_iov;
1727 tp->ucopy.len = len;
1729 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1730 !(flags & (MSG_PEEK | MSG_TRUNC)));
1732 /* Ugly... If prequeue is not empty, we have to
1733 * process it before releasing socket, otherwise
1734 * order will be broken at second iteration.
1735 * More elegant solution is required!!!
1737 * Look: we have the following (pseudo)queues:
1739 * 1. packets in flight
1744 * Each queue can be processed only if the next ones
1745 * are empty. At this point we have empty receive_queue.
1746 * But prequeue _can_ be not empty after 2nd iteration,
1747 * when we jumped to start of loop because backlog
1748 * processing added something to receive_queue.
1749 * We cannot release_sock(), because backlog contains
1750 * packets arrived _after_ prequeued ones.
1752 * Shortly, algorithm is clear --- to process all
1753 * the queues in order. We could make it more directly,
1754 * requeueing packets from backlog to prequeue, if
1755 * is not empty. It is more elegant, but eats cycles,
1758 if (!skb_queue_empty(&tp->ucopy.prequeue))
1761 /* __ Set realtime policy in scheduler __ */
1764 #ifdef CONFIG_NET_DMA
1765 if (tp->ucopy.dma_chan) {
1766 if (tp->rcv_wnd == 0 &&
1767 !skb_queue_empty(&sk->sk_async_wait_queue)) {
1768 tcp_service_net_dma(sk, true);
1769 tcp_cleanup_rbuf(sk, copied);
1771 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1774 if (copied >= target) {
1775 /* Do not sleep, just process backlog. */
1779 sk_wait_data(sk, &timeo);
1781 #ifdef CONFIG_NET_DMA
1782 tcp_service_net_dma(sk, false); /* Don't block */
1783 tp->ucopy.wakeup = 0;
1789 /* __ Restore normal policy in scheduler __ */
1791 if ((chunk = len - tp->ucopy.len) != 0) {
1792 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1797 if (tp->rcv_nxt == tp->copied_seq &&
1798 !skb_queue_empty(&tp->ucopy.prequeue)) {
1800 tcp_prequeue_process(sk);
1802 if ((chunk = len - tp->ucopy.len) != 0) {
1803 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1809 if ((flags & MSG_PEEK) &&
1810 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1811 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1813 task_pid_nr(current));
1814 peek_seq = tp->copied_seq;
1819 /* Ok so how much can we use? */
1820 used = skb->len - offset;
1824 /* Do we have urgent data here? */
1826 u32 urg_offset = tp->urg_seq - *seq;
1827 if (urg_offset < used) {
1829 if (!sock_flag(sk, SOCK_URGINLINE)) {
1842 if (!(flags & MSG_TRUNC)) {
1843 #ifdef CONFIG_NET_DMA
1844 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1845 tp->ucopy.dma_chan = net_dma_find_channel();
1847 if (tp->ucopy.dma_chan) {
1848 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1849 tp->ucopy.dma_chan, skb, offset,
1851 tp->ucopy.pinned_list);
1853 if (tp->ucopy.dma_cookie < 0) {
1855 pr_alert("%s: dma_cookie < 0\n",
1858 /* Exception. Bailout! */
1864 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1866 if ((offset + used) == skb->len)
1867 copied_early = true;
1872 err = skb_copy_datagram_iovec(skb, offset,
1873 msg->msg_iov, used);
1875 /* Exception. Bailout! */
1887 tcp_rcv_space_adjust(sk);
1890 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1892 tcp_fast_path_check(sk);
1894 if (used + offset < skb->len)
1897 if (tcp_hdr(skb)->fin)
1899 if (!(flags & MSG_PEEK)) {
1900 sk_eat_skb(sk, skb, copied_early);
1901 copied_early = false;
1906 /* Process the FIN. */
1908 if (!(flags & MSG_PEEK)) {
1909 sk_eat_skb(sk, skb, copied_early);
1910 copied_early = false;
1916 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1919 tp->ucopy.len = copied > 0 ? len : 0;
1921 tcp_prequeue_process(sk);
1923 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1924 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1930 tp->ucopy.task = NULL;
1934 #ifdef CONFIG_NET_DMA
1935 tcp_service_net_dma(sk, true); /* Wait for queue to drain */
1936 tp->ucopy.dma_chan = NULL;
1938 if (tp->ucopy.pinned_list) {
1939 dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1940 tp->ucopy.pinned_list = NULL;
1944 /* According to UNIX98, msg_name/msg_namelen are ignored
1945 * on connected socket. I was just happy when found this 8) --ANK
1948 /* Clean up data we have read: This will do ACK frames. */
1949 tcp_cleanup_rbuf(sk, copied);
1959 err = tcp_recv_urg(sk, msg, len, flags);
1963 err = tcp_peek_sndq(sk, msg, len);
1966 EXPORT_SYMBOL(tcp_recvmsg);
1968 void tcp_set_state(struct sock *sk, int state)
1970 int oldstate = sk->sk_state;
1973 case TCP_ESTABLISHED:
1974 if (oldstate != TCP_ESTABLISHED)
1975 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1979 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1980 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1982 sk->sk_prot->unhash(sk);
1983 if (inet_csk(sk)->icsk_bind_hash &&
1984 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1988 if (oldstate == TCP_ESTABLISHED)
1989 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1992 /* Change state AFTER socket is unhashed to avoid closed
1993 * socket sitting in hash tables.
1995 sk->sk_state = state;
1998 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2001 EXPORT_SYMBOL_GPL(tcp_set_state);
2004 * State processing on a close. This implements the state shift for
2005 * sending our FIN frame. Note that we only send a FIN for some
2006 * states. A shutdown() may have already sent the FIN, or we may be
2010 static const unsigned char new_state[16] = {
2011 /* current state: new state: action: */
2012 /* (Invalid) */ TCP_CLOSE,
2013 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2014 /* TCP_SYN_SENT */ TCP_CLOSE,
2015 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2016 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
2017 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
2018 /* TCP_TIME_WAIT */ TCP_CLOSE,
2019 /* TCP_CLOSE */ TCP_CLOSE,
2020 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
2021 /* TCP_LAST_ACK */ TCP_LAST_ACK,
2022 /* TCP_LISTEN */ TCP_CLOSE,
2023 /* TCP_CLOSING */ TCP_CLOSING,
2026 static int tcp_close_state(struct sock *sk)
2028 int next = (int)new_state[sk->sk_state];
2029 int ns = next & TCP_STATE_MASK;
2031 tcp_set_state(sk, ns);
2033 return next & TCP_ACTION_FIN;
2037 * Shutdown the sending side of a connection. Much like close except
2038 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2041 void tcp_shutdown(struct sock *sk, int how)
2043 /* We need to grab some memory, and put together a FIN,
2044 * and then put it into the queue to be sent.
2045 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2047 if (!(how & SEND_SHUTDOWN))
2050 /* If we've already sent a FIN, or it's a closed state, skip this. */
2051 if ((1 << sk->sk_state) &
2052 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2053 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2054 /* Clear out any half completed packets. FIN if needed. */
2055 if (tcp_close_state(sk))
2059 EXPORT_SYMBOL(tcp_shutdown);
2061 bool tcp_check_oom(struct sock *sk, int shift)
2063 bool too_many_orphans, out_of_socket_memory;
2065 too_many_orphans = tcp_too_many_orphans(sk, shift);
2066 out_of_socket_memory = tcp_out_of_memory(sk);
2068 if (too_many_orphans)
2069 net_info_ratelimited("too many orphaned sockets\n");
2070 if (out_of_socket_memory)
2071 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2072 return too_many_orphans || out_of_socket_memory;
2075 void tcp_close(struct sock *sk, long timeout)
2077 struct sk_buff *skb;
2078 int data_was_unread = 0;
2082 sk->sk_shutdown = SHUTDOWN_MASK;
2084 if (sk->sk_state == TCP_LISTEN) {
2085 tcp_set_state(sk, TCP_CLOSE);
2088 inet_csk_listen_stop(sk);
2090 goto adjudge_to_death;
2093 /* We need to flush the recv. buffs. We do this only on the
2094 * descriptor close, not protocol-sourced closes, because the
2095 * reader process may not have drained the data yet!
2097 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2098 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2100 data_was_unread += len;
2106 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2107 if (sk->sk_state == TCP_CLOSE)
2108 goto adjudge_to_death;
2110 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2111 * data was lost. To witness the awful effects of the old behavior of
2112 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2113 * GET in an FTP client, suspend the process, wait for the client to
2114 * advertise a zero window, then kill -9 the FTP client, wheee...
2115 * Note: timeout is always zero in such a case.
2117 if (unlikely(tcp_sk(sk)->repair)) {
2118 sk->sk_prot->disconnect(sk, 0);
2119 } else if (data_was_unread) {
2120 /* Unread data was tossed, zap the connection. */
2121 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2122 tcp_set_state(sk, TCP_CLOSE);
2123 tcp_send_active_reset(sk, sk->sk_allocation);
2124 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2125 /* Check zero linger _after_ checking for unread data. */
2126 sk->sk_prot->disconnect(sk, 0);
2127 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2128 } else if (tcp_close_state(sk)) {
2129 /* We FIN if the application ate all the data before
2130 * zapping the connection.
2133 /* RED-PEN. Formally speaking, we have broken TCP state
2134 * machine. State transitions:
2136 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2137 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2138 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2140 * are legal only when FIN has been sent (i.e. in window),
2141 * rather than queued out of window. Purists blame.
2143 * F.e. "RFC state" is ESTABLISHED,
2144 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2146 * The visible declinations are that sometimes
2147 * we enter time-wait state, when it is not required really
2148 * (harmless), do not send active resets, when they are
2149 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2150 * they look as CLOSING or LAST_ACK for Linux)
2151 * Probably, I missed some more holelets.
2157 sk_stream_wait_close(sk, timeout);
2160 state = sk->sk_state;
2164 /* It is the last release_sock in its life. It will remove backlog. */
2168 /* Now socket is owned by kernel and we acquire BH lock
2169 to finish close. No need to check for user refs.
2173 WARN_ON(sock_owned_by_user(sk));
2175 percpu_counter_inc(sk->sk_prot->orphan_count);
2177 /* Have we already been destroyed by a softirq or backlog? */
2178 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2181 /* This is a (useful) BSD violating of the RFC. There is a
2182 * problem with TCP as specified in that the other end could
2183 * keep a socket open forever with no application left this end.
2184 * We use a 3 minute timeout (about the same as BSD) then kill
2185 * our end. If they send after that then tough - BUT: long enough
2186 * that we won't make the old 4*rto = almost no time - whoops
2189 * Nope, it was not mistake. It is really desired behaviour
2190 * f.e. on http servers, when such sockets are useless, but
2191 * consume significant resources. Let's do it with special
2192 * linger2 option. --ANK
2195 if (sk->sk_state == TCP_FIN_WAIT2) {
2196 struct tcp_sock *tp = tcp_sk(sk);
2197 if (tp->linger2 < 0) {
2198 tcp_set_state(sk, TCP_CLOSE);
2199 tcp_send_active_reset(sk, GFP_ATOMIC);
2200 NET_INC_STATS_BH(sock_net(sk),
2201 LINUX_MIB_TCPABORTONLINGER);
2203 const int tmo = tcp_fin_time(sk);
2205 if (tmo > TCP_TIMEWAIT_LEN) {
2206 inet_csk_reset_keepalive_timer(sk,
2207 tmo - TCP_TIMEWAIT_LEN);
2209 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2214 if (sk->sk_state != TCP_CLOSE) {
2216 if (tcp_check_oom(sk, 0)) {
2217 tcp_set_state(sk, TCP_CLOSE);
2218 tcp_send_active_reset(sk, GFP_ATOMIC);
2219 NET_INC_STATS_BH(sock_net(sk),
2220 LINUX_MIB_TCPABORTONMEMORY);
2224 if (sk->sk_state == TCP_CLOSE)
2225 inet_csk_destroy_sock(sk);
2226 /* Otherwise, socket is reprieved until protocol close. */
2233 EXPORT_SYMBOL(tcp_close);
2235 /* These states need RST on ABORT according to RFC793 */
2237 static inline bool tcp_need_reset(int state)
2239 return (1 << state) &
2240 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2241 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2244 int tcp_disconnect(struct sock *sk, int flags)
2246 struct inet_sock *inet = inet_sk(sk);
2247 struct inet_connection_sock *icsk = inet_csk(sk);
2248 struct tcp_sock *tp = tcp_sk(sk);
2250 int old_state = sk->sk_state;
2252 if (old_state != TCP_CLOSE)
2253 tcp_set_state(sk, TCP_CLOSE);
2255 /* ABORT function of RFC793 */
2256 if (old_state == TCP_LISTEN) {
2257 inet_csk_listen_stop(sk);
2258 } else if (unlikely(tp->repair)) {
2259 sk->sk_err = ECONNABORTED;
2260 } else if (tcp_need_reset(old_state) ||
2261 (tp->snd_nxt != tp->write_seq &&
2262 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2263 /* The last check adjusts for discrepancy of Linux wrt. RFC
2266 tcp_send_active_reset(sk, gfp_any());
2267 sk->sk_err = ECONNRESET;
2268 } else if (old_state == TCP_SYN_SENT)
2269 sk->sk_err = ECONNRESET;
2271 tcp_clear_xmit_timers(sk);
2272 __skb_queue_purge(&sk->sk_receive_queue);
2273 tcp_write_queue_purge(sk);
2274 __skb_queue_purge(&tp->out_of_order_queue);
2275 #ifdef CONFIG_NET_DMA
2276 __skb_queue_purge(&sk->sk_async_wait_queue);
2279 inet->inet_dport = 0;
2281 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2282 inet_reset_saddr(sk);
2284 sk->sk_shutdown = 0;
2285 sock_reset_flag(sk, SOCK_DONE);
2287 if ((tp->write_seq += tp->max_window + 2) == 0)
2289 icsk->icsk_backoff = 0;
2291 icsk->icsk_probes_out = 0;
2292 tp->packets_out = 0;
2293 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2294 tp->snd_cwnd_cnt = 0;
2295 tp->bytes_acked = 0;
2296 tp->window_clamp = 0;
2297 tcp_set_ca_state(sk, TCP_CA_Open);
2298 tcp_clear_retrans(tp);
2299 inet_csk_delack_init(sk);
2300 tcp_init_send_head(sk);
2301 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2304 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2306 sk->sk_error_report(sk);
2309 EXPORT_SYMBOL(tcp_disconnect);
2311 static inline bool tcp_can_repair_sock(const struct sock *sk)
2313 return capable(CAP_NET_ADMIN) &&
2314 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2317 static int tcp_repair_options_est(struct tcp_sock *tp,
2318 struct tcp_repair_opt __user *optbuf, unsigned int len)
2320 struct tcp_repair_opt opt;
2322 while (len >= sizeof(opt)) {
2323 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2329 switch (opt.opt_code) {
2331 tp->rx_opt.mss_clamp = opt.opt_val;
2335 u16 snd_wscale = opt.opt_val & 0xFFFF;
2336 u16 rcv_wscale = opt.opt_val >> 16;
2338 if (snd_wscale > 14 || rcv_wscale > 14)
2341 tp->rx_opt.snd_wscale = snd_wscale;
2342 tp->rx_opt.rcv_wscale = rcv_wscale;
2343 tp->rx_opt.wscale_ok = 1;
2346 case TCPOPT_SACK_PERM:
2347 if (opt.opt_val != 0)
2350 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2351 if (sysctl_tcp_fack)
2352 tcp_enable_fack(tp);
2354 case TCPOPT_TIMESTAMP:
2355 if (opt.opt_val != 0)
2358 tp->rx_opt.tstamp_ok = 1;
2367 * Socket option code for TCP.
2369 static int do_tcp_setsockopt(struct sock *sk, int level,
2370 int optname, char __user *optval, unsigned int optlen)
2372 struct tcp_sock *tp = tcp_sk(sk);
2373 struct inet_connection_sock *icsk = inet_csk(sk);
2377 /* These are data/string values, all the others are ints */
2379 case TCP_CONGESTION: {
2380 char name[TCP_CA_NAME_MAX];
2385 val = strncpy_from_user(name, optval,
2386 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2392 err = tcp_set_congestion_control(sk, name);
2396 case TCP_COOKIE_TRANSACTIONS: {
2397 struct tcp_cookie_transactions ctd;
2398 struct tcp_cookie_values *cvp = NULL;
2400 if (sizeof(ctd) > optlen)
2402 if (copy_from_user(&ctd, optval, sizeof(ctd)))
2405 if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2406 ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2409 if (ctd.tcpct_cookie_desired == 0) {
2410 /* default to global value */
2411 } else if ((0x1 & ctd.tcpct_cookie_desired) ||
2412 ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2413 ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2417 if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2418 /* Supercedes all other values */
2420 if (tp->cookie_values != NULL) {
2421 kref_put(&tp->cookie_values->kref,
2422 tcp_cookie_values_release);
2423 tp->cookie_values = NULL;
2425 tp->rx_opt.cookie_in_always = 0; /* false */
2426 tp->rx_opt.cookie_out_never = 1; /* true */
2431 /* Allocate ancillary memory before locking.
2433 if (ctd.tcpct_used > 0 ||
2434 (tp->cookie_values == NULL &&
2435 (sysctl_tcp_cookie_size > 0 ||
2436 ctd.tcpct_cookie_desired > 0 ||
2437 ctd.tcpct_s_data_desired > 0))) {
2438 cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2443 kref_init(&cvp->kref);
2446 tp->rx_opt.cookie_in_always =
2447 (TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2448 tp->rx_opt.cookie_out_never = 0; /* false */
2450 if (tp->cookie_values != NULL) {
2452 /* Changed values are recorded by a changed
2453 * pointer, ensuring the cookie will differ,
2454 * without separately hashing each value later.
2456 kref_put(&tp->cookie_values->kref,
2457 tcp_cookie_values_release);
2459 cvp = tp->cookie_values;
2464 cvp->cookie_desired = ctd.tcpct_cookie_desired;
2466 if (ctd.tcpct_used > 0) {
2467 memcpy(cvp->s_data_payload, ctd.tcpct_value,
2469 cvp->s_data_desired = ctd.tcpct_used;
2470 cvp->s_data_constant = 1; /* true */
2472 /* No constant payload data. */
2473 cvp->s_data_desired = ctd.tcpct_s_data_desired;
2474 cvp->s_data_constant = 0; /* false */
2477 tp->cookie_values = cvp;
2487 if (optlen < sizeof(int))
2490 if (get_user(val, (int __user *)optval))
2497 /* Values greater than interface MTU won't take effect. However
2498 * at the point when this call is done we typically don't yet
2499 * know which interface is going to be used */
2500 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2504 tp->rx_opt.user_mss = val;
2509 /* TCP_NODELAY is weaker than TCP_CORK, so that
2510 * this option on corked socket is remembered, but
2511 * it is not activated until cork is cleared.
2513 * However, when TCP_NODELAY is set we make
2514 * an explicit push, which overrides even TCP_CORK
2515 * for currently queued segments.
2517 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2518 tcp_push_pending_frames(sk);
2520 tp->nonagle &= ~TCP_NAGLE_OFF;
2524 case TCP_THIN_LINEAR_TIMEOUTS:
2525 if (val < 0 || val > 1)
2531 case TCP_THIN_DUPACK:
2532 if (val < 0 || val > 1)
2535 tp->thin_dupack = val;
2536 if (tp->thin_dupack)
2537 tcp_disable_early_retrans(tp);
2541 if (!tcp_can_repair_sock(sk))
2543 else if (val == 1) {
2545 sk->sk_reuse = SK_FORCE_REUSE;
2546 tp->repair_queue = TCP_NO_QUEUE;
2547 } else if (val == 0) {
2549 sk->sk_reuse = SK_NO_REUSE;
2550 tcp_send_window_probe(sk);
2556 case TCP_REPAIR_QUEUE:
2559 else if (val < TCP_QUEUES_NR)
2560 tp->repair_queue = val;
2566 if (sk->sk_state != TCP_CLOSE)
2568 else if (tp->repair_queue == TCP_SEND_QUEUE)
2569 tp->write_seq = val;
2570 else if (tp->repair_queue == TCP_RECV_QUEUE)
2576 case TCP_REPAIR_OPTIONS:
2579 else if (sk->sk_state == TCP_ESTABLISHED)
2580 err = tcp_repair_options_est(tp,
2581 (struct tcp_repair_opt __user *)optval,
2588 /* When set indicates to always queue non-full frames.
2589 * Later the user clears this option and we transmit
2590 * any pending partial frames in the queue. This is
2591 * meant to be used alongside sendfile() to get properly
2592 * filled frames when the user (for example) must write
2593 * out headers with a write() call first and then use
2594 * sendfile to send out the data parts.
2596 * TCP_CORK can be set together with TCP_NODELAY and it is
2597 * stronger than TCP_NODELAY.
2600 tp->nonagle |= TCP_NAGLE_CORK;
2602 tp->nonagle &= ~TCP_NAGLE_CORK;
2603 if (tp->nonagle&TCP_NAGLE_OFF)
2604 tp->nonagle |= TCP_NAGLE_PUSH;
2605 tcp_push_pending_frames(sk);
2610 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2613 tp->keepalive_time = val * HZ;
2614 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2615 !((1 << sk->sk_state) &
2616 (TCPF_CLOSE | TCPF_LISTEN))) {
2617 u32 elapsed = keepalive_time_elapsed(tp);
2618 if (tp->keepalive_time > elapsed)
2619 elapsed = tp->keepalive_time - elapsed;
2622 inet_csk_reset_keepalive_timer(sk, elapsed);
2627 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2630 tp->keepalive_intvl = val * HZ;
2633 if (val < 1 || val > MAX_TCP_KEEPCNT)
2636 tp->keepalive_probes = val;
2639 if (val < 1 || val > MAX_TCP_SYNCNT)
2642 icsk->icsk_syn_retries = val;
2648 else if (val > sysctl_tcp_fin_timeout / HZ)
2651 tp->linger2 = val * HZ;
2654 case TCP_DEFER_ACCEPT:
2655 /* Translate value in seconds to number of retransmits */
2656 icsk->icsk_accept_queue.rskq_defer_accept =
2657 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2661 case TCP_WINDOW_CLAMP:
2663 if (sk->sk_state != TCP_CLOSE) {
2667 tp->window_clamp = 0;
2669 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2670 SOCK_MIN_RCVBUF / 2 : val;
2675 icsk->icsk_ack.pingpong = 1;
2677 icsk->icsk_ack.pingpong = 0;
2678 if ((1 << sk->sk_state) &
2679 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2680 inet_csk_ack_scheduled(sk)) {
2681 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2682 tcp_cleanup_rbuf(sk, 1);
2684 icsk->icsk_ack.pingpong = 1;
2689 #ifdef CONFIG_TCP_MD5SIG
2691 /* Read the IP->Key mappings from userspace */
2692 err = tp->af_specific->md5_parse(sk, optval, optlen);
2695 case TCP_USER_TIMEOUT:
2696 /* Cap the max timeout in ms TCP will retry/retrans
2697 * before giving up and aborting (ETIMEDOUT) a connection.
2702 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2713 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2714 unsigned int optlen)
2716 const struct inet_connection_sock *icsk = inet_csk(sk);
2718 if (level != SOL_TCP)
2719 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2721 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2723 EXPORT_SYMBOL(tcp_setsockopt);
2725 #ifdef CONFIG_COMPAT
2726 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2727 char __user *optval, unsigned int optlen)
2729 if (level != SOL_TCP)
2730 return inet_csk_compat_setsockopt(sk, level, optname,
2732 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2734 EXPORT_SYMBOL(compat_tcp_setsockopt);
2737 /* Return information about state of tcp endpoint in API format. */
2738 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2740 const struct tcp_sock *tp = tcp_sk(sk);
2741 const struct inet_connection_sock *icsk = inet_csk(sk);
2742 u32 now = tcp_time_stamp;
2744 memset(info, 0, sizeof(*info));
2746 info->tcpi_state = sk->sk_state;
2747 info->tcpi_ca_state = icsk->icsk_ca_state;
2748 info->tcpi_retransmits = icsk->icsk_retransmits;
2749 info->tcpi_probes = icsk->icsk_probes_out;
2750 info->tcpi_backoff = icsk->icsk_backoff;
2752 if (tp->rx_opt.tstamp_ok)
2753 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2754 if (tcp_is_sack(tp))
2755 info->tcpi_options |= TCPI_OPT_SACK;
2756 if (tp->rx_opt.wscale_ok) {
2757 info->tcpi_options |= TCPI_OPT_WSCALE;
2758 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2759 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2762 if (tp->ecn_flags & TCP_ECN_OK)
2763 info->tcpi_options |= TCPI_OPT_ECN;
2764 if (tp->ecn_flags & TCP_ECN_SEEN)
2765 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2767 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2768 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2769 info->tcpi_snd_mss = tp->mss_cache;
2770 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2772 if (sk->sk_state == TCP_LISTEN) {
2773 info->tcpi_unacked = sk->sk_ack_backlog;
2774 info->tcpi_sacked = sk->sk_max_ack_backlog;
2776 info->tcpi_unacked = tp->packets_out;
2777 info->tcpi_sacked = tp->sacked_out;
2779 info->tcpi_lost = tp->lost_out;
2780 info->tcpi_retrans = tp->retrans_out;
2781 info->tcpi_fackets = tp->fackets_out;
2783 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2784 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2785 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2787 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2788 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2789 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2790 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2791 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2792 info->tcpi_snd_cwnd = tp->snd_cwnd;
2793 info->tcpi_advmss = tp->advmss;
2794 info->tcpi_reordering = tp->reordering;
2796 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2797 info->tcpi_rcv_space = tp->rcvq_space.space;
2799 info->tcpi_total_retrans = tp->total_retrans;
2801 EXPORT_SYMBOL_GPL(tcp_get_info);
2803 static int do_tcp_getsockopt(struct sock *sk, int level,
2804 int optname, char __user *optval, int __user *optlen)
2806 struct inet_connection_sock *icsk = inet_csk(sk);
2807 struct tcp_sock *tp = tcp_sk(sk);
2810 if (get_user(len, optlen))
2813 len = min_t(unsigned int, len, sizeof(int));
2820 val = tp->mss_cache;
2821 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2822 val = tp->rx_opt.user_mss;
2824 val = tp->rx_opt.mss_clamp;
2827 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2830 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2833 val = keepalive_time_when(tp) / HZ;
2836 val = keepalive_intvl_when(tp) / HZ;
2839 val = keepalive_probes(tp);
2842 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2847 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2849 case TCP_DEFER_ACCEPT:
2850 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2851 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2853 case TCP_WINDOW_CLAMP:
2854 val = tp->window_clamp;
2857 struct tcp_info info;
2859 if (get_user(len, optlen))
2862 tcp_get_info(sk, &info);
2864 len = min_t(unsigned int, len, sizeof(info));
2865 if (put_user(len, optlen))
2867 if (copy_to_user(optval, &info, len))
2872 val = !icsk->icsk_ack.pingpong;
2875 case TCP_CONGESTION:
2876 if (get_user(len, optlen))
2878 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2879 if (put_user(len, optlen))
2881 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2885 case TCP_COOKIE_TRANSACTIONS: {
2886 struct tcp_cookie_transactions ctd;
2887 struct tcp_cookie_values *cvp = tp->cookie_values;
2889 if (get_user(len, optlen))
2891 if (len < sizeof(ctd))
2894 memset(&ctd, 0, sizeof(ctd));
2895 ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2896 TCP_COOKIE_IN_ALWAYS : 0)
2897 | (tp->rx_opt.cookie_out_never ?
2898 TCP_COOKIE_OUT_NEVER : 0);
2901 ctd.tcpct_flags |= (cvp->s_data_in ?
2903 | (cvp->s_data_out ?
2904 TCP_S_DATA_OUT : 0);
2906 ctd.tcpct_cookie_desired = cvp->cookie_desired;
2907 ctd.tcpct_s_data_desired = cvp->s_data_desired;
2909 memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2910 cvp->cookie_pair_size);
2911 ctd.tcpct_used = cvp->cookie_pair_size;
2914 if (put_user(sizeof(ctd), optlen))
2916 if (copy_to_user(optval, &ctd, sizeof(ctd)))
2920 case TCP_THIN_LINEAR_TIMEOUTS:
2923 case TCP_THIN_DUPACK:
2924 val = tp->thin_dupack;
2931 case TCP_REPAIR_QUEUE:
2933 val = tp->repair_queue;
2939 if (tp->repair_queue == TCP_SEND_QUEUE)
2940 val = tp->write_seq;
2941 else if (tp->repair_queue == TCP_RECV_QUEUE)
2947 case TCP_USER_TIMEOUT:
2948 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2951 return -ENOPROTOOPT;
2954 if (put_user(len, optlen))
2956 if (copy_to_user(optval, &val, len))
2961 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2964 struct inet_connection_sock *icsk = inet_csk(sk);
2966 if (level != SOL_TCP)
2967 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2969 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2971 EXPORT_SYMBOL(tcp_getsockopt);
2973 #ifdef CONFIG_COMPAT
2974 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2975 char __user *optval, int __user *optlen)
2977 if (level != SOL_TCP)
2978 return inet_csk_compat_getsockopt(sk, level, optname,
2980 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2982 EXPORT_SYMBOL(compat_tcp_getsockopt);
2985 struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2986 netdev_features_t features)
2988 struct sk_buff *segs = ERR_PTR(-EINVAL);
2993 unsigned int oldlen;
2996 if (!pskb_may_pull(skb, sizeof(*th)))
3000 thlen = th->doff * 4;
3001 if (thlen < sizeof(*th))
3004 if (!pskb_may_pull(skb, thlen))
3007 oldlen = (u16)~skb->len;
3008 __skb_pull(skb, thlen);
3010 mss = skb_shinfo(skb)->gso_size;
3011 if (unlikely(skb->len <= mss))
3014 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
3015 /* Packet is from an untrusted source, reset gso_segs. */
3016 int type = skb_shinfo(skb)->gso_type;
3024 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
3027 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
3033 segs = skb_segment(skb, features);
3037 delta = htonl(oldlen + (thlen + mss));
3041 seq = ntohl(th->seq);
3044 th->fin = th->psh = 0;
3046 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3047 (__force u32)delta));
3048 if (skb->ip_summed != CHECKSUM_PARTIAL)
3050 csum_fold(csum_partial(skb_transport_header(skb),
3057 th->seq = htonl(seq);
3059 } while (skb->next);
3061 delta = htonl(oldlen + (skb->tail - skb->transport_header) +
3063 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3064 (__force u32)delta));
3065 if (skb->ip_summed != CHECKSUM_PARTIAL)
3066 th->check = csum_fold(csum_partial(skb_transport_header(skb),
3072 EXPORT_SYMBOL(tcp_tso_segment);
3074 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3076 struct sk_buff **pp = NULL;
3083 unsigned int mss = 1;
3089 off = skb_gro_offset(skb);
3090 hlen = off + sizeof(*th);
3091 th = skb_gro_header_fast(skb, off);
3092 if (skb_gro_header_hard(skb, hlen)) {
3093 th = skb_gro_header_slow(skb, hlen, off);
3098 thlen = th->doff * 4;
3099 if (thlen < sizeof(*th))
3103 if (skb_gro_header_hard(skb, hlen)) {
3104 th = skb_gro_header_slow(skb, hlen, off);
3109 skb_gro_pull(skb, thlen);
3111 len = skb_gro_len(skb);
3112 flags = tcp_flag_word(th);
3114 for (; (p = *head); head = &p->next) {
3115 if (!NAPI_GRO_CB(p)->same_flow)
3120 if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3121 NAPI_GRO_CB(p)->same_flow = 0;
3128 goto out_check_final;
3131 flush = NAPI_GRO_CB(p)->flush;
3132 flush |= (__force int)(flags & TCP_FLAG_CWR);
3133 flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3134 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3135 flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3136 for (i = sizeof(*th); i < thlen; i += 4)
3137 flush |= *(u32 *)((u8 *)th + i) ^
3138 *(u32 *)((u8 *)th2 + i);
3140 mss = skb_shinfo(p)->gso_size;
3142 flush |= (len - 1) >= mss;
3143 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3145 if (flush || skb_gro_receive(head, skb)) {
3147 goto out_check_final;
3152 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3156 flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3157 TCP_FLAG_RST | TCP_FLAG_SYN |
3160 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3164 NAPI_GRO_CB(skb)->flush |= flush;
3168 EXPORT_SYMBOL(tcp_gro_receive);
3170 int tcp_gro_complete(struct sk_buff *skb)
3172 struct tcphdr *th = tcp_hdr(skb);
3174 skb->csum_start = skb_transport_header(skb) - skb->head;
3175 skb->csum_offset = offsetof(struct tcphdr, check);
3176 skb->ip_summed = CHECKSUM_PARTIAL;
3178 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3181 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3185 EXPORT_SYMBOL(tcp_gro_complete);
3187 #ifdef CONFIG_TCP_MD5SIG
3188 static unsigned long tcp_md5sig_users;
3189 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
3190 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3192 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3196 for_each_possible_cpu(cpu) {
3197 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
3199 if (p->md5_desc.tfm)
3200 crypto_free_hash(p->md5_desc.tfm);
3205 void tcp_free_md5sig_pool(void)
3207 struct tcp_md5sig_pool __percpu *pool = NULL;
3209 spin_lock_bh(&tcp_md5sig_pool_lock);
3210 if (--tcp_md5sig_users == 0) {
3211 pool = tcp_md5sig_pool;
3212 tcp_md5sig_pool = NULL;
3214 spin_unlock_bh(&tcp_md5sig_pool_lock);
3216 __tcp_free_md5sig_pool(pool);
3218 EXPORT_SYMBOL(tcp_free_md5sig_pool);
3220 static struct tcp_md5sig_pool __percpu *
3221 __tcp_alloc_md5sig_pool(struct sock *sk)
3224 struct tcp_md5sig_pool __percpu *pool;
3226 pool = alloc_percpu(struct tcp_md5sig_pool);
3230 for_each_possible_cpu(cpu) {
3231 struct crypto_hash *hash;
3233 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3234 if (!hash || IS_ERR(hash))
3237 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3241 __tcp_free_md5sig_pool(pool);
3245 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3247 struct tcp_md5sig_pool __percpu *pool;
3251 spin_lock_bh(&tcp_md5sig_pool_lock);
3252 pool = tcp_md5sig_pool;
3253 if (tcp_md5sig_users++ == 0) {
3255 spin_unlock_bh(&tcp_md5sig_pool_lock);
3258 spin_unlock_bh(&tcp_md5sig_pool_lock);
3262 spin_unlock_bh(&tcp_md5sig_pool_lock);
3265 /* we cannot hold spinlock here because this may sleep. */
3266 struct tcp_md5sig_pool __percpu *p;
3268 p = __tcp_alloc_md5sig_pool(sk);
3269 spin_lock_bh(&tcp_md5sig_pool_lock);
3272 spin_unlock_bh(&tcp_md5sig_pool_lock);
3275 pool = tcp_md5sig_pool;
3277 /* oops, it has already been assigned. */
3278 spin_unlock_bh(&tcp_md5sig_pool_lock);
3279 __tcp_free_md5sig_pool(p);
3281 tcp_md5sig_pool = pool = p;
3282 spin_unlock_bh(&tcp_md5sig_pool_lock);
3287 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3291 * tcp_get_md5sig_pool - get md5sig_pool for this user
3293 * We use percpu structure, so if we succeed, we exit with preemption
3294 * and BH disabled, to make sure another thread or softirq handling
3295 * wont try to get same context.
3297 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3299 struct tcp_md5sig_pool __percpu *p;
3303 spin_lock(&tcp_md5sig_pool_lock);
3304 p = tcp_md5sig_pool;
3307 spin_unlock(&tcp_md5sig_pool_lock);
3310 return this_cpu_ptr(p);
3315 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3317 void tcp_put_md5sig_pool(void)
3320 tcp_free_md5sig_pool();
3322 EXPORT_SYMBOL(tcp_put_md5sig_pool);
3324 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3325 const struct tcphdr *th)
3327 struct scatterlist sg;
3331 /* We are not allowed to change tcphdr, make a local copy */
3332 memcpy(&hdr, th, sizeof(hdr));
3335 /* options aren't included in the hash */
3336 sg_init_one(&sg, &hdr, sizeof(hdr));
3337 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3340 EXPORT_SYMBOL(tcp_md5_hash_header);
3342 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3343 const struct sk_buff *skb, unsigned int header_len)
3345 struct scatterlist sg;
3346 const struct tcphdr *tp = tcp_hdr(skb);
3347 struct hash_desc *desc = &hp->md5_desc;
3349 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3350 skb_headlen(skb) - header_len : 0;
3351 const struct skb_shared_info *shi = skb_shinfo(skb);
3352 struct sk_buff *frag_iter;
3354 sg_init_table(&sg, 1);
3356 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3357 if (crypto_hash_update(desc, &sg, head_data_len))
3360 for (i = 0; i < shi->nr_frags; ++i) {
3361 const struct skb_frag_struct *f = &shi->frags[i];
3362 struct page *page = skb_frag_page(f);
3363 sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3364 if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3368 skb_walk_frags(skb, frag_iter)
3369 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3374 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3376 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3378 struct scatterlist sg;
3380 sg_init_one(&sg, key->key, key->keylen);
3381 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3383 EXPORT_SYMBOL(tcp_md5_hash_key);
3387 /* Each Responder maintains up to two secret values concurrently for
3388 * efficient secret rollover. Each secret value has 4 states:
3390 * Generating. (tcp_secret_generating != tcp_secret_primary)
3391 * Generates new Responder-Cookies, but not yet used for primary
3392 * verification. This is a short-term state, typically lasting only
3393 * one round trip time (RTT).
3395 * Primary. (tcp_secret_generating == tcp_secret_primary)
3396 * Used both for generation and primary verification.
3398 * Retiring. (tcp_secret_retiring != tcp_secret_secondary)
3399 * Used for verification, until the first failure that can be
3400 * verified by the newer Generating secret. At that time, this
3401 * cookie's state is changed to Secondary, and the Generating
3402 * cookie's state is changed to Primary. This is a short-term state,
3403 * typically lasting only one round trip time (RTT).
3405 * Secondary. (tcp_secret_retiring == tcp_secret_secondary)
3406 * Used for secondary verification, after primary verification
3407 * failures. This state lasts no more than twice the Maximum Segment
3408 * Lifetime (2MSL). Then, the secret is discarded.
3410 struct tcp_cookie_secret {
3411 /* The secret is divided into two parts. The digest part is the
3412 * equivalent of previously hashing a secret and saving the state,
3413 * and serves as an initialization vector (IV). The message part
3414 * serves as the trailing secret.
3416 u32 secrets[COOKIE_WORKSPACE_WORDS];
3417 unsigned long expires;
3420 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3421 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3422 #define TCP_SECRET_LIFE (HZ * 600)
3424 static struct tcp_cookie_secret tcp_secret_one;
3425 static struct tcp_cookie_secret tcp_secret_two;
3427 /* Essentially a circular list, without dynamic allocation. */
3428 static struct tcp_cookie_secret *tcp_secret_generating;
3429 static struct tcp_cookie_secret *tcp_secret_primary;
3430 static struct tcp_cookie_secret *tcp_secret_retiring;
3431 static struct tcp_cookie_secret *tcp_secret_secondary;
3433 static DEFINE_SPINLOCK(tcp_secret_locker);
3435 /* Select a pseudo-random word in the cookie workspace.
3437 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3439 return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3442 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3443 * Called in softirq context.
3444 * Returns: 0 for success.
3446 int tcp_cookie_generator(u32 *bakery)
3448 unsigned long jiffy = jiffies;
3450 if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3451 spin_lock_bh(&tcp_secret_locker);
3452 if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3453 /* refreshed by another */
3455 &tcp_secret_generating->secrets[0],
3456 COOKIE_WORKSPACE_WORDS);
3458 /* still needs refreshing */
3459 get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3461 /* The first time, paranoia assumes that the
3462 * randomization function isn't as strong. But,
3463 * this secret initialization is delayed until
3464 * the last possible moment (packet arrival).
3465 * Although that time is observable, it is
3466 * unpredictably variable. Mash in the most
3467 * volatile clock bits available, and expire the
3468 * secret extra quickly.
3470 if (unlikely(tcp_secret_primary->expires ==
3471 tcp_secret_secondary->expires)) {
3474 getnstimeofday(&tv);
3475 bakery[COOKIE_DIGEST_WORDS+0] ^=
3478 tcp_secret_secondary->expires = jiffy
3480 + (0x0f & tcp_cookie_work(bakery, 0));
3482 tcp_secret_secondary->expires = jiffy
3484 + (0xff & tcp_cookie_work(bakery, 1));
3485 tcp_secret_primary->expires = jiffy
3487 + (0x1f & tcp_cookie_work(bakery, 2));
3489 memcpy(&tcp_secret_secondary->secrets[0],
3490 bakery, COOKIE_WORKSPACE_WORDS);
3492 rcu_assign_pointer(tcp_secret_generating,
3493 tcp_secret_secondary);
3494 rcu_assign_pointer(tcp_secret_retiring,
3495 tcp_secret_primary);
3497 * Neither call_rcu() nor synchronize_rcu() needed.
3498 * Retiring data is not freed. It is replaced after
3499 * further (locked) pointer updates, and a quiet time
3500 * (minimum 1MSL, maximum LIFE - 2MSL).
3503 spin_unlock_bh(&tcp_secret_locker);
3507 &rcu_dereference(tcp_secret_generating)->secrets[0],
3508 COOKIE_WORKSPACE_WORDS);
3509 rcu_read_unlock_bh();
3513 EXPORT_SYMBOL(tcp_cookie_generator);
3515 void tcp_done(struct sock *sk)
3517 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3518 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3520 tcp_set_state(sk, TCP_CLOSE);
3521 tcp_clear_xmit_timers(sk);
3523 sk->sk_shutdown = SHUTDOWN_MASK;
3525 if (!sock_flag(sk, SOCK_DEAD))
3526 sk->sk_state_change(sk);
3528 inet_csk_destroy_sock(sk);
3530 EXPORT_SYMBOL_GPL(tcp_done);
3532 extern struct tcp_congestion_ops tcp_reno;
3534 static __initdata unsigned long thash_entries;
3535 static int __init set_thash_entries(char *str)
3542 ret = kstrtoul(str, 0, &thash_entries);
3548 __setup("thash_entries=", set_thash_entries);
3550 void tcp_init_mem(struct net *net)
3552 unsigned long limit = nr_free_buffer_pages() / 8;
3553 limit = max(limit, 128UL);
3554 net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3555 net->ipv4.sysctl_tcp_mem[1] = limit;
3556 net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3559 void __init tcp_init(void)
3561 struct sk_buff *skb = NULL;
3562 unsigned long limit;
3563 int max_rshare, max_wshare, cnt;
3565 unsigned long jiffy = jiffies;
3567 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3569 percpu_counter_init(&tcp_sockets_allocated, 0);
3570 percpu_counter_init(&tcp_orphan_count, 0);
3571 tcp_hashinfo.bind_bucket_cachep =
3572 kmem_cache_create("tcp_bind_bucket",
3573 sizeof(struct inet_bind_bucket), 0,
3574 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3576 /* Size and allocate the main established and bind bucket
3579 * The methodology is similar to that of the buffer cache.
3581 tcp_hashinfo.ehash =
3582 alloc_large_system_hash("TCP established",
3583 sizeof(struct inet_ehash_bucket),
3585 (totalram_pages >= 128 * 1024) ?
3589 &tcp_hashinfo.ehash_mask,
3591 thash_entries ? 0 : 512 * 1024);
3592 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3593 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3594 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3596 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3597 panic("TCP: failed to alloc ehash_locks");
3598 tcp_hashinfo.bhash =
3599 alloc_large_system_hash("TCP bind",
3600 sizeof(struct inet_bind_hashbucket),
3601 tcp_hashinfo.ehash_mask + 1,
3602 (totalram_pages >= 128 * 1024) ?
3605 &tcp_hashinfo.bhash_size,
3609 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3610 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3611 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3612 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3616 cnt = tcp_hashinfo.ehash_mask + 1;
3618 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3619 sysctl_tcp_max_orphans = cnt / 2;
3620 sysctl_max_syn_backlog = max(128, cnt / 256);
3622 tcp_init_mem(&init_net);
3623 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3624 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3625 max_wshare = min(4UL*1024*1024, limit);
3626 max_rshare = min(6UL*1024*1024, limit);
3628 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3629 sysctl_tcp_wmem[1] = 16*1024;
3630 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3632 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3633 sysctl_tcp_rmem[1] = 87380;
3634 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3636 pr_info("Hash tables configured (established %u bind %u)\n",
3637 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3641 tcp_register_congestion_control(&tcp_reno);
3643 memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3644 memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3645 tcp_secret_one.expires = jiffy; /* past due */
3646 tcp_secret_two.expires = jiffy; /* past due */
3647 tcp_secret_generating = &tcp_secret_one;
3648 tcp_secret_primary = &tcp_secret_one;
3649 tcp_secret_retiring = &tcp_secret_two;
3650 tcp_secret_secondary = &tcp_secret_two;