ipv4: remove rt_cache_rebuild_count
[platform/adaptation/renesas_rcar/renesas_kernel.git] / net / ipv4 / ipmr.c
1 /*
2  *      IP multicast routing support for mrouted 3.6/3.8
3  *
4  *              (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5  *        Linux Consultancy and Custom Driver Development
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  *
12  *      Fixes:
13  *      Michael Chastain        :       Incorrect size of copying.
14  *      Alan Cox                :       Added the cache manager code
15  *      Alan Cox                :       Fixed the clone/copy bug and device race.
16  *      Mike McLagan            :       Routing by source
17  *      Malcolm Beattie         :       Buffer handling fixes.
18  *      Alexey Kuznetsov        :       Double buffer free and other fixes.
19  *      SVR Anand               :       Fixed several multicast bugs and problems.
20  *      Alexey Kuznetsov        :       Status, optimisations and more.
21  *      Brad Parker             :       Better behaviour on mrouted upcall
22  *                                      overflow.
23  *      Carlos Picoto           :       PIMv1 Support
24  *      Pavlin Ivanov Radoslavov:       PIMv2 Registers must checksum only PIM header
25  *                                      Relax this requirement to work with older peers.
26  *
27  */
28
29 #include <asm/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/timer.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <linux/compat.h>
63 #include <linux/export.h>
64 #include <net/ipip.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68
69 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
70 #define CONFIG_IP_PIMSM 1
71 #endif
72
73 struct mr_table {
74         struct list_head        list;
75 #ifdef CONFIG_NET_NS
76         struct net              *net;
77 #endif
78         u32                     id;
79         struct sock __rcu       *mroute_sk;
80         struct timer_list       ipmr_expire_timer;
81         struct list_head        mfc_unres_queue;
82         struct list_head        mfc_cache_array[MFC_LINES];
83         struct vif_device       vif_table[MAXVIFS];
84         int                     maxvif;
85         atomic_t                cache_resolve_queue_len;
86         int                     mroute_do_assert;
87         int                     mroute_do_pim;
88 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
89         int                     mroute_reg_vif_num;
90 #endif
91 };
92
93 struct ipmr_rule {
94         struct fib_rule         common;
95 };
96
97 struct ipmr_result {
98         struct mr_table         *mrt;
99 };
100
101 /* Big lock, protecting vif table, mrt cache and mroute socket state.
102  * Note that the changes are semaphored via rtnl_lock.
103  */
104
105 static DEFINE_RWLOCK(mrt_lock);
106
107 /*
108  *      Multicast router control variables
109  */
110
111 #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
112
113 /* Special spinlock for queue of unresolved entries */
114 static DEFINE_SPINLOCK(mfc_unres_lock);
115
116 /* We return to original Alan's scheme. Hash table of resolved
117  * entries is changed only in process context and protected
118  * with weak lock mrt_lock. Queue of unresolved entries is protected
119  * with strong spinlock mfc_unres_lock.
120  *
121  * In this case data path is free of exclusive locks at all.
122  */
123
124 static struct kmem_cache *mrt_cachep __read_mostly;
125
126 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
127 static int ip_mr_forward(struct net *net, struct mr_table *mrt,
128                          struct sk_buff *skb, struct mfc_cache *cache,
129                          int local);
130 static int ipmr_cache_report(struct mr_table *mrt,
131                              struct sk_buff *pkt, vifi_t vifi, int assert);
132 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
133                               struct mfc_cache *c, struct rtmsg *rtm);
134 static void ipmr_expire_process(unsigned long arg);
135
136 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
137 #define ipmr_for_each_table(mrt, net) \
138         list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
139
140 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
141 {
142         struct mr_table *mrt;
143
144         ipmr_for_each_table(mrt, net) {
145                 if (mrt->id == id)
146                         return mrt;
147         }
148         return NULL;
149 }
150
151 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
152                            struct mr_table **mrt)
153 {
154         struct ipmr_result res;
155         struct fib_lookup_arg arg = { .result = &res, };
156         int err;
157
158         err = fib_rules_lookup(net->ipv4.mr_rules_ops,
159                                flowi4_to_flowi(flp4), 0, &arg);
160         if (err < 0)
161                 return err;
162         *mrt = res.mrt;
163         return 0;
164 }
165
166 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
167                             int flags, struct fib_lookup_arg *arg)
168 {
169         struct ipmr_result *res = arg->result;
170         struct mr_table *mrt;
171
172         switch (rule->action) {
173         case FR_ACT_TO_TBL:
174                 break;
175         case FR_ACT_UNREACHABLE:
176                 return -ENETUNREACH;
177         case FR_ACT_PROHIBIT:
178                 return -EACCES;
179         case FR_ACT_BLACKHOLE:
180         default:
181                 return -EINVAL;
182         }
183
184         mrt = ipmr_get_table(rule->fr_net, rule->table);
185         if (mrt == NULL)
186                 return -EAGAIN;
187         res->mrt = mrt;
188         return 0;
189 }
190
191 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
192 {
193         return 1;
194 }
195
196 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
197         FRA_GENERIC_POLICY,
198 };
199
200 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
201                                struct fib_rule_hdr *frh, struct nlattr **tb)
202 {
203         return 0;
204 }
205
206 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
207                              struct nlattr **tb)
208 {
209         return 1;
210 }
211
212 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
213                           struct fib_rule_hdr *frh)
214 {
215         frh->dst_len = 0;
216         frh->src_len = 0;
217         frh->tos     = 0;
218         return 0;
219 }
220
221 static const struct fib_rules_ops __net_initdata ipmr_rules_ops_template = {
222         .family         = RTNL_FAMILY_IPMR,
223         .rule_size      = sizeof(struct ipmr_rule),
224         .addr_size      = sizeof(u32),
225         .action         = ipmr_rule_action,
226         .match          = ipmr_rule_match,
227         .configure      = ipmr_rule_configure,
228         .compare        = ipmr_rule_compare,
229         .default_pref   = fib_default_rule_pref,
230         .fill           = ipmr_rule_fill,
231         .nlgroup        = RTNLGRP_IPV4_RULE,
232         .policy         = ipmr_rule_policy,
233         .owner          = THIS_MODULE,
234 };
235
236 static int __net_init ipmr_rules_init(struct net *net)
237 {
238         struct fib_rules_ops *ops;
239         struct mr_table *mrt;
240         int err;
241
242         ops = fib_rules_register(&ipmr_rules_ops_template, net);
243         if (IS_ERR(ops))
244                 return PTR_ERR(ops);
245
246         INIT_LIST_HEAD(&net->ipv4.mr_tables);
247
248         mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
249         if (mrt == NULL) {
250                 err = -ENOMEM;
251                 goto err1;
252         }
253
254         err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
255         if (err < 0)
256                 goto err2;
257
258         net->ipv4.mr_rules_ops = ops;
259         return 0;
260
261 err2:
262         kfree(mrt);
263 err1:
264         fib_rules_unregister(ops);
265         return err;
266 }
267
268 static void __net_exit ipmr_rules_exit(struct net *net)
269 {
270         struct mr_table *mrt, *next;
271
272         list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
273                 list_del(&mrt->list);
274                 kfree(mrt);
275         }
276         fib_rules_unregister(net->ipv4.mr_rules_ops);
277 }
278 #else
279 #define ipmr_for_each_table(mrt, net) \
280         for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
281
282 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
283 {
284         return net->ipv4.mrt;
285 }
286
287 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
288                            struct mr_table **mrt)
289 {
290         *mrt = net->ipv4.mrt;
291         return 0;
292 }
293
294 static int __net_init ipmr_rules_init(struct net *net)
295 {
296         net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
297         return net->ipv4.mrt ? 0 : -ENOMEM;
298 }
299
300 static void __net_exit ipmr_rules_exit(struct net *net)
301 {
302         kfree(net->ipv4.mrt);
303 }
304 #endif
305
306 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
307 {
308         struct mr_table *mrt;
309         unsigned int i;
310
311         mrt = ipmr_get_table(net, id);
312         if (mrt != NULL)
313                 return mrt;
314
315         mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
316         if (mrt == NULL)
317                 return NULL;
318         write_pnet(&mrt->net, net);
319         mrt->id = id;
320
321         /* Forwarding cache */
322         for (i = 0; i < MFC_LINES; i++)
323                 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
324
325         INIT_LIST_HEAD(&mrt->mfc_unres_queue);
326
327         setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
328                     (unsigned long)mrt);
329
330 #ifdef CONFIG_IP_PIMSM
331         mrt->mroute_reg_vif_num = -1;
332 #endif
333 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
334         list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
335 #endif
336         return mrt;
337 }
338
339 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
340
341 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
342 {
343         struct net *net = dev_net(dev);
344
345         dev_close(dev);
346
347         dev = __dev_get_by_name(net, "tunl0");
348         if (dev) {
349                 const struct net_device_ops *ops = dev->netdev_ops;
350                 struct ifreq ifr;
351                 struct ip_tunnel_parm p;
352
353                 memset(&p, 0, sizeof(p));
354                 p.iph.daddr = v->vifc_rmt_addr.s_addr;
355                 p.iph.saddr = v->vifc_lcl_addr.s_addr;
356                 p.iph.version = 4;
357                 p.iph.ihl = 5;
358                 p.iph.protocol = IPPROTO_IPIP;
359                 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
360                 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
361
362                 if (ops->ndo_do_ioctl) {
363                         mm_segment_t oldfs = get_fs();
364
365                         set_fs(KERNEL_DS);
366                         ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
367                         set_fs(oldfs);
368                 }
369         }
370 }
371
372 static
373 struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
374 {
375         struct net_device  *dev;
376
377         dev = __dev_get_by_name(net, "tunl0");
378
379         if (dev) {
380                 const struct net_device_ops *ops = dev->netdev_ops;
381                 int err;
382                 struct ifreq ifr;
383                 struct ip_tunnel_parm p;
384                 struct in_device  *in_dev;
385
386                 memset(&p, 0, sizeof(p));
387                 p.iph.daddr = v->vifc_rmt_addr.s_addr;
388                 p.iph.saddr = v->vifc_lcl_addr.s_addr;
389                 p.iph.version = 4;
390                 p.iph.ihl = 5;
391                 p.iph.protocol = IPPROTO_IPIP;
392                 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
393                 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
394
395                 if (ops->ndo_do_ioctl) {
396                         mm_segment_t oldfs = get_fs();
397
398                         set_fs(KERNEL_DS);
399                         err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
400                         set_fs(oldfs);
401                 } else {
402                         err = -EOPNOTSUPP;
403                 }
404                 dev = NULL;
405
406                 if (err == 0 &&
407                     (dev = __dev_get_by_name(net, p.name)) != NULL) {
408                         dev->flags |= IFF_MULTICAST;
409
410                         in_dev = __in_dev_get_rtnl(dev);
411                         if (in_dev == NULL)
412                                 goto failure;
413
414                         ipv4_devconf_setall(in_dev);
415                         IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
416
417                         if (dev_open(dev))
418                                 goto failure;
419                         dev_hold(dev);
420                 }
421         }
422         return dev;
423
424 failure:
425         /* allow the register to be completed before unregistering. */
426         rtnl_unlock();
427         rtnl_lock();
428
429         unregister_netdevice(dev);
430         return NULL;
431 }
432
433 #ifdef CONFIG_IP_PIMSM
434
435 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
436 {
437         struct net *net = dev_net(dev);
438         struct mr_table *mrt;
439         struct flowi4 fl4 = {
440                 .flowi4_oif     = dev->ifindex,
441                 .flowi4_iif     = skb->skb_iif,
442                 .flowi4_mark    = skb->mark,
443         };
444         int err;
445
446         err = ipmr_fib_lookup(net, &fl4, &mrt);
447         if (err < 0) {
448                 kfree_skb(skb);
449                 return err;
450         }
451
452         read_lock(&mrt_lock);
453         dev->stats.tx_bytes += skb->len;
454         dev->stats.tx_packets++;
455         ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
456         read_unlock(&mrt_lock);
457         kfree_skb(skb);
458         return NETDEV_TX_OK;
459 }
460
461 static const struct net_device_ops reg_vif_netdev_ops = {
462         .ndo_start_xmit = reg_vif_xmit,
463 };
464
465 static void reg_vif_setup(struct net_device *dev)
466 {
467         dev->type               = ARPHRD_PIMREG;
468         dev->mtu                = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
469         dev->flags              = IFF_NOARP;
470         dev->netdev_ops         = &reg_vif_netdev_ops,
471         dev->destructor         = free_netdev;
472         dev->features           |= NETIF_F_NETNS_LOCAL;
473 }
474
475 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
476 {
477         struct net_device *dev;
478         struct in_device *in_dev;
479         char name[IFNAMSIZ];
480
481         if (mrt->id == RT_TABLE_DEFAULT)
482                 sprintf(name, "pimreg");
483         else
484                 sprintf(name, "pimreg%u", mrt->id);
485
486         dev = alloc_netdev(0, name, reg_vif_setup);
487
488         if (dev == NULL)
489                 return NULL;
490
491         dev_net_set(dev, net);
492
493         if (register_netdevice(dev)) {
494                 free_netdev(dev);
495                 return NULL;
496         }
497         dev->iflink = 0;
498
499         rcu_read_lock();
500         in_dev = __in_dev_get_rcu(dev);
501         if (!in_dev) {
502                 rcu_read_unlock();
503                 goto failure;
504         }
505
506         ipv4_devconf_setall(in_dev);
507         IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
508         rcu_read_unlock();
509
510         if (dev_open(dev))
511                 goto failure;
512
513         dev_hold(dev);
514
515         return dev;
516
517 failure:
518         /* allow the register to be completed before unregistering. */
519         rtnl_unlock();
520         rtnl_lock();
521
522         unregister_netdevice(dev);
523         return NULL;
524 }
525 #endif
526
527 /**
528  *      vif_delete - Delete a VIF entry
529  *      @notify: Set to 1, if the caller is a notifier_call
530  */
531
532 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
533                       struct list_head *head)
534 {
535         struct vif_device *v;
536         struct net_device *dev;
537         struct in_device *in_dev;
538
539         if (vifi < 0 || vifi >= mrt->maxvif)
540                 return -EADDRNOTAVAIL;
541
542         v = &mrt->vif_table[vifi];
543
544         write_lock_bh(&mrt_lock);
545         dev = v->dev;
546         v->dev = NULL;
547
548         if (!dev) {
549                 write_unlock_bh(&mrt_lock);
550                 return -EADDRNOTAVAIL;
551         }
552
553 #ifdef CONFIG_IP_PIMSM
554         if (vifi == mrt->mroute_reg_vif_num)
555                 mrt->mroute_reg_vif_num = -1;
556 #endif
557
558         if (vifi + 1 == mrt->maxvif) {
559                 int tmp;
560
561                 for (tmp = vifi - 1; tmp >= 0; tmp--) {
562                         if (VIF_EXISTS(mrt, tmp))
563                                 break;
564                 }
565                 mrt->maxvif = tmp+1;
566         }
567
568         write_unlock_bh(&mrt_lock);
569
570         dev_set_allmulti(dev, -1);
571
572         in_dev = __in_dev_get_rtnl(dev);
573         if (in_dev) {
574                 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
575                 ip_rt_multicast_event(in_dev);
576         }
577
578         if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
579                 unregister_netdevice_queue(dev, head);
580
581         dev_put(dev);
582         return 0;
583 }
584
585 static void ipmr_cache_free_rcu(struct rcu_head *head)
586 {
587         struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
588
589         kmem_cache_free(mrt_cachep, c);
590 }
591
592 static inline void ipmr_cache_free(struct mfc_cache *c)
593 {
594         call_rcu(&c->rcu, ipmr_cache_free_rcu);
595 }
596
597 /* Destroy an unresolved cache entry, killing queued skbs
598  * and reporting error to netlink readers.
599  */
600
601 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
602 {
603         struct net *net = read_pnet(&mrt->net);
604         struct sk_buff *skb;
605         struct nlmsgerr *e;
606
607         atomic_dec(&mrt->cache_resolve_queue_len);
608
609         while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
610                 if (ip_hdr(skb)->version == 0) {
611                         struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
612                         nlh->nlmsg_type = NLMSG_ERROR;
613                         nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
614                         skb_trim(skb, nlh->nlmsg_len);
615                         e = NLMSG_DATA(nlh);
616                         e->error = -ETIMEDOUT;
617                         memset(&e->msg, 0, sizeof(e->msg));
618
619                         rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
620                 } else {
621                         kfree_skb(skb);
622                 }
623         }
624
625         ipmr_cache_free(c);
626 }
627
628
629 /* Timer process for the unresolved queue. */
630
631 static void ipmr_expire_process(unsigned long arg)
632 {
633         struct mr_table *mrt = (struct mr_table *)arg;
634         unsigned long now;
635         unsigned long expires;
636         struct mfc_cache *c, *next;
637
638         if (!spin_trylock(&mfc_unres_lock)) {
639                 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
640                 return;
641         }
642
643         if (list_empty(&mrt->mfc_unres_queue))
644                 goto out;
645
646         now = jiffies;
647         expires = 10*HZ;
648
649         list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
650                 if (time_after(c->mfc_un.unres.expires, now)) {
651                         unsigned long interval = c->mfc_un.unres.expires - now;
652                         if (interval < expires)
653                                 expires = interval;
654                         continue;
655                 }
656
657                 list_del(&c->list);
658                 ipmr_destroy_unres(mrt, c);
659         }
660
661         if (!list_empty(&mrt->mfc_unres_queue))
662                 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
663
664 out:
665         spin_unlock(&mfc_unres_lock);
666 }
667
668 /* Fill oifs list. It is called under write locked mrt_lock. */
669
670 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
671                                    unsigned char *ttls)
672 {
673         int vifi;
674
675         cache->mfc_un.res.minvif = MAXVIFS;
676         cache->mfc_un.res.maxvif = 0;
677         memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
678
679         for (vifi = 0; vifi < mrt->maxvif; vifi++) {
680                 if (VIF_EXISTS(mrt, vifi) &&
681                     ttls[vifi] && ttls[vifi] < 255) {
682                         cache->mfc_un.res.ttls[vifi] = ttls[vifi];
683                         if (cache->mfc_un.res.minvif > vifi)
684                                 cache->mfc_un.res.minvif = vifi;
685                         if (cache->mfc_un.res.maxvif <= vifi)
686                                 cache->mfc_un.res.maxvif = vifi + 1;
687                 }
688         }
689 }
690
691 static int vif_add(struct net *net, struct mr_table *mrt,
692                    struct vifctl *vifc, int mrtsock)
693 {
694         int vifi = vifc->vifc_vifi;
695         struct vif_device *v = &mrt->vif_table[vifi];
696         struct net_device *dev;
697         struct in_device *in_dev;
698         int err;
699
700         /* Is vif busy ? */
701         if (VIF_EXISTS(mrt, vifi))
702                 return -EADDRINUSE;
703
704         switch (vifc->vifc_flags) {
705 #ifdef CONFIG_IP_PIMSM
706         case VIFF_REGISTER:
707                 /*
708                  * Special Purpose VIF in PIM
709                  * All the packets will be sent to the daemon
710                  */
711                 if (mrt->mroute_reg_vif_num >= 0)
712                         return -EADDRINUSE;
713                 dev = ipmr_reg_vif(net, mrt);
714                 if (!dev)
715                         return -ENOBUFS;
716                 err = dev_set_allmulti(dev, 1);
717                 if (err) {
718                         unregister_netdevice(dev);
719                         dev_put(dev);
720                         return err;
721                 }
722                 break;
723 #endif
724         case VIFF_TUNNEL:
725                 dev = ipmr_new_tunnel(net, vifc);
726                 if (!dev)
727                         return -ENOBUFS;
728                 err = dev_set_allmulti(dev, 1);
729                 if (err) {
730                         ipmr_del_tunnel(dev, vifc);
731                         dev_put(dev);
732                         return err;
733                 }
734                 break;
735
736         case VIFF_USE_IFINDEX:
737         case 0:
738                 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
739                         dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
740                         if (dev && __in_dev_get_rtnl(dev) == NULL) {
741                                 dev_put(dev);
742                                 return -EADDRNOTAVAIL;
743                         }
744                 } else {
745                         dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
746                 }
747                 if (!dev)
748                         return -EADDRNOTAVAIL;
749                 err = dev_set_allmulti(dev, 1);
750                 if (err) {
751                         dev_put(dev);
752                         return err;
753                 }
754                 break;
755         default:
756                 return -EINVAL;
757         }
758
759         in_dev = __in_dev_get_rtnl(dev);
760         if (!in_dev) {
761                 dev_put(dev);
762                 return -EADDRNOTAVAIL;
763         }
764         IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
765         ip_rt_multicast_event(in_dev);
766
767         /* Fill in the VIF structures */
768
769         v->rate_limit = vifc->vifc_rate_limit;
770         v->local = vifc->vifc_lcl_addr.s_addr;
771         v->remote = vifc->vifc_rmt_addr.s_addr;
772         v->flags = vifc->vifc_flags;
773         if (!mrtsock)
774                 v->flags |= VIFF_STATIC;
775         v->threshold = vifc->vifc_threshold;
776         v->bytes_in = 0;
777         v->bytes_out = 0;
778         v->pkt_in = 0;
779         v->pkt_out = 0;
780         v->link = dev->ifindex;
781         if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
782                 v->link = dev->iflink;
783
784         /* And finish update writing critical data */
785         write_lock_bh(&mrt_lock);
786         v->dev = dev;
787 #ifdef CONFIG_IP_PIMSM
788         if (v->flags & VIFF_REGISTER)
789                 mrt->mroute_reg_vif_num = vifi;
790 #endif
791         if (vifi+1 > mrt->maxvif)
792                 mrt->maxvif = vifi+1;
793         write_unlock_bh(&mrt_lock);
794         return 0;
795 }
796
797 /* called with rcu_read_lock() */
798 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
799                                          __be32 origin,
800                                          __be32 mcastgrp)
801 {
802         int line = MFC_HASH(mcastgrp, origin);
803         struct mfc_cache *c;
804
805         list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
806                 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
807                         return c;
808         }
809         return NULL;
810 }
811
812 /*
813  *      Allocate a multicast cache entry
814  */
815 static struct mfc_cache *ipmr_cache_alloc(void)
816 {
817         struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
818
819         if (c)
820                 c->mfc_un.res.minvif = MAXVIFS;
821         return c;
822 }
823
824 static struct mfc_cache *ipmr_cache_alloc_unres(void)
825 {
826         struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
827
828         if (c) {
829                 skb_queue_head_init(&c->mfc_un.unres.unresolved);
830                 c->mfc_un.unres.expires = jiffies + 10*HZ;
831         }
832         return c;
833 }
834
835 /*
836  *      A cache entry has gone into a resolved state from queued
837  */
838
839 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
840                                struct mfc_cache *uc, struct mfc_cache *c)
841 {
842         struct sk_buff *skb;
843         struct nlmsgerr *e;
844
845         /* Play the pending entries through our router */
846
847         while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
848                 if (ip_hdr(skb)->version == 0) {
849                         struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
850
851                         if (__ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) {
852                                 nlh->nlmsg_len = skb_tail_pointer(skb) -
853                                                  (u8 *)nlh;
854                         } else {
855                                 nlh->nlmsg_type = NLMSG_ERROR;
856                                 nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
857                                 skb_trim(skb, nlh->nlmsg_len);
858                                 e = NLMSG_DATA(nlh);
859                                 e->error = -EMSGSIZE;
860                                 memset(&e->msg, 0, sizeof(e->msg));
861                         }
862
863                         rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
864                 } else {
865                         ip_mr_forward(net, mrt, skb, c, 0);
866                 }
867         }
868 }
869
870 /*
871  *      Bounce a cache query up to mrouted. We could use netlink for this but mrouted
872  *      expects the following bizarre scheme.
873  *
874  *      Called under mrt_lock.
875  */
876
877 static int ipmr_cache_report(struct mr_table *mrt,
878                              struct sk_buff *pkt, vifi_t vifi, int assert)
879 {
880         struct sk_buff *skb;
881         const int ihl = ip_hdrlen(pkt);
882         struct igmphdr *igmp;
883         struct igmpmsg *msg;
884         struct sock *mroute_sk;
885         int ret;
886
887 #ifdef CONFIG_IP_PIMSM
888         if (assert == IGMPMSG_WHOLEPKT)
889                 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
890         else
891 #endif
892                 skb = alloc_skb(128, GFP_ATOMIC);
893
894         if (!skb)
895                 return -ENOBUFS;
896
897 #ifdef CONFIG_IP_PIMSM
898         if (assert == IGMPMSG_WHOLEPKT) {
899                 /* Ugly, but we have no choice with this interface.
900                  * Duplicate old header, fix ihl, length etc.
901                  * And all this only to mangle msg->im_msgtype and
902                  * to set msg->im_mbz to "mbz" :-)
903                  */
904                 skb_push(skb, sizeof(struct iphdr));
905                 skb_reset_network_header(skb);
906                 skb_reset_transport_header(skb);
907                 msg = (struct igmpmsg *)skb_network_header(skb);
908                 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
909                 msg->im_msgtype = IGMPMSG_WHOLEPKT;
910                 msg->im_mbz = 0;
911                 msg->im_vif = mrt->mroute_reg_vif_num;
912                 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
913                 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
914                                              sizeof(struct iphdr));
915         } else
916 #endif
917         {
918
919         /* Copy the IP header */
920
921         skb->network_header = skb->tail;
922         skb_put(skb, ihl);
923         skb_copy_to_linear_data(skb, pkt->data, ihl);
924         ip_hdr(skb)->protocol = 0;      /* Flag to the kernel this is a route add */
925         msg = (struct igmpmsg *)skb_network_header(skb);
926         msg->im_vif = vifi;
927         skb_dst_set(skb, dst_clone(skb_dst(pkt)));
928
929         /* Add our header */
930
931         igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
932         igmp->type      =
933         msg->im_msgtype = assert;
934         igmp->code      = 0;
935         ip_hdr(skb)->tot_len = htons(skb->len);         /* Fix the length */
936         skb->transport_header = skb->network_header;
937         }
938
939         rcu_read_lock();
940         mroute_sk = rcu_dereference(mrt->mroute_sk);
941         if (mroute_sk == NULL) {
942                 rcu_read_unlock();
943                 kfree_skb(skb);
944                 return -EINVAL;
945         }
946
947         /* Deliver to mrouted */
948
949         ret = sock_queue_rcv_skb(mroute_sk, skb);
950         rcu_read_unlock();
951         if (ret < 0) {
952                 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
953                 kfree_skb(skb);
954         }
955
956         return ret;
957 }
958
959 /*
960  *      Queue a packet for resolution. It gets locked cache entry!
961  */
962
963 static int
964 ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
965 {
966         bool found = false;
967         int err;
968         struct mfc_cache *c;
969         const struct iphdr *iph = ip_hdr(skb);
970
971         spin_lock_bh(&mfc_unres_lock);
972         list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
973                 if (c->mfc_mcastgrp == iph->daddr &&
974                     c->mfc_origin == iph->saddr) {
975                         found = true;
976                         break;
977                 }
978         }
979
980         if (!found) {
981                 /* Create a new entry if allowable */
982
983                 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
984                     (c = ipmr_cache_alloc_unres()) == NULL) {
985                         spin_unlock_bh(&mfc_unres_lock);
986
987                         kfree_skb(skb);
988                         return -ENOBUFS;
989                 }
990
991                 /* Fill in the new cache entry */
992
993                 c->mfc_parent   = -1;
994                 c->mfc_origin   = iph->saddr;
995                 c->mfc_mcastgrp = iph->daddr;
996
997                 /* Reflect first query at mrouted. */
998
999                 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1000                 if (err < 0) {
1001                         /* If the report failed throw the cache entry
1002                            out - Brad Parker
1003                          */
1004                         spin_unlock_bh(&mfc_unres_lock);
1005
1006                         ipmr_cache_free(c);
1007                         kfree_skb(skb);
1008                         return err;
1009                 }
1010
1011                 atomic_inc(&mrt->cache_resolve_queue_len);
1012                 list_add(&c->list, &mrt->mfc_unres_queue);
1013
1014                 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1015                         mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1016         }
1017
1018         /* See if we can append the packet */
1019
1020         if (c->mfc_un.unres.unresolved.qlen > 3) {
1021                 kfree_skb(skb);
1022                 err = -ENOBUFS;
1023         } else {
1024                 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1025                 err = 0;
1026         }
1027
1028         spin_unlock_bh(&mfc_unres_lock);
1029         return err;
1030 }
1031
1032 /*
1033  *      MFC cache manipulation by user space mroute daemon
1034  */
1035
1036 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc)
1037 {
1038         int line;
1039         struct mfc_cache *c, *next;
1040
1041         line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1042
1043         list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1044                 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1045                     c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1046                         list_del_rcu(&c->list);
1047
1048                         ipmr_cache_free(c);
1049                         return 0;
1050                 }
1051         }
1052         return -ENOENT;
1053 }
1054
1055 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1056                         struct mfcctl *mfc, int mrtsock)
1057 {
1058         bool found = false;
1059         int line;
1060         struct mfc_cache *uc, *c;
1061
1062         if (mfc->mfcc_parent >= MAXVIFS)
1063                 return -ENFILE;
1064
1065         line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1066
1067         list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1068                 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1069                     c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
1070                         found = true;
1071                         break;
1072                 }
1073         }
1074
1075         if (found) {
1076                 write_lock_bh(&mrt_lock);
1077                 c->mfc_parent = mfc->mfcc_parent;
1078                 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1079                 if (!mrtsock)
1080                         c->mfc_flags |= MFC_STATIC;
1081                 write_unlock_bh(&mrt_lock);
1082                 return 0;
1083         }
1084
1085         if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1086                 return -EINVAL;
1087
1088         c = ipmr_cache_alloc();
1089         if (c == NULL)
1090                 return -ENOMEM;
1091
1092         c->mfc_origin = mfc->mfcc_origin.s_addr;
1093         c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1094         c->mfc_parent = mfc->mfcc_parent;
1095         ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1096         if (!mrtsock)
1097                 c->mfc_flags |= MFC_STATIC;
1098
1099         list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1100
1101         /*
1102          *      Check to see if we resolved a queued list. If so we
1103          *      need to send on the frames and tidy up.
1104          */
1105         found = false;
1106         spin_lock_bh(&mfc_unres_lock);
1107         list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1108                 if (uc->mfc_origin == c->mfc_origin &&
1109                     uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1110                         list_del(&uc->list);
1111                         atomic_dec(&mrt->cache_resolve_queue_len);
1112                         found = true;
1113                         break;
1114                 }
1115         }
1116         if (list_empty(&mrt->mfc_unres_queue))
1117                 del_timer(&mrt->ipmr_expire_timer);
1118         spin_unlock_bh(&mfc_unres_lock);
1119
1120         if (found) {
1121                 ipmr_cache_resolve(net, mrt, uc, c);
1122                 ipmr_cache_free(uc);
1123         }
1124         return 0;
1125 }
1126
1127 /*
1128  *      Close the multicast socket, and clear the vif tables etc
1129  */
1130
1131 static void mroute_clean_tables(struct mr_table *mrt)
1132 {
1133         int i;
1134         LIST_HEAD(list);
1135         struct mfc_cache *c, *next;
1136
1137         /* Shut down all active vif entries */
1138
1139         for (i = 0; i < mrt->maxvif; i++) {
1140                 if (!(mrt->vif_table[i].flags & VIFF_STATIC))
1141                         vif_delete(mrt, i, 0, &list);
1142         }
1143         unregister_netdevice_many(&list);
1144
1145         /* Wipe the cache */
1146
1147         for (i = 0; i < MFC_LINES; i++) {
1148                 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1149                         if (c->mfc_flags & MFC_STATIC)
1150                                 continue;
1151                         list_del_rcu(&c->list);
1152                         ipmr_cache_free(c);
1153                 }
1154         }
1155
1156         if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1157                 spin_lock_bh(&mfc_unres_lock);
1158                 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1159                         list_del(&c->list);
1160                         ipmr_destroy_unres(mrt, c);
1161                 }
1162                 spin_unlock_bh(&mfc_unres_lock);
1163         }
1164 }
1165
1166 /* called from ip_ra_control(), before an RCU grace period,
1167  * we dont need to call synchronize_rcu() here
1168  */
1169 static void mrtsock_destruct(struct sock *sk)
1170 {
1171         struct net *net = sock_net(sk);
1172         struct mr_table *mrt;
1173
1174         rtnl_lock();
1175         ipmr_for_each_table(mrt, net) {
1176                 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1177                         IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1178                         RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1179                         mroute_clean_tables(mrt);
1180                 }
1181         }
1182         rtnl_unlock();
1183 }
1184
1185 /*
1186  *      Socket options and virtual interface manipulation. The whole
1187  *      virtual interface system is a complete heap, but unfortunately
1188  *      that's how BSD mrouted happens to think. Maybe one day with a proper
1189  *      MOSPF/PIM router set up we can clean this up.
1190  */
1191
1192 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
1193 {
1194         int ret;
1195         struct vifctl vif;
1196         struct mfcctl mfc;
1197         struct net *net = sock_net(sk);
1198         struct mr_table *mrt;
1199
1200         mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1201         if (mrt == NULL)
1202                 return -ENOENT;
1203
1204         if (optname != MRT_INIT) {
1205                 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1206                     !capable(CAP_NET_ADMIN))
1207                         return -EACCES;
1208         }
1209
1210         switch (optname) {
1211         case MRT_INIT:
1212                 if (sk->sk_type != SOCK_RAW ||
1213                     inet_sk(sk)->inet_num != IPPROTO_IGMP)
1214                         return -EOPNOTSUPP;
1215                 if (optlen != sizeof(int))
1216                         return -ENOPROTOOPT;
1217
1218                 rtnl_lock();
1219                 if (rtnl_dereference(mrt->mroute_sk)) {
1220                         rtnl_unlock();
1221                         return -EADDRINUSE;
1222                 }
1223
1224                 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1225                 if (ret == 0) {
1226                         rcu_assign_pointer(mrt->mroute_sk, sk);
1227                         IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1228                 }
1229                 rtnl_unlock();
1230                 return ret;
1231         case MRT_DONE:
1232                 if (sk != rcu_access_pointer(mrt->mroute_sk))
1233                         return -EACCES;
1234                 return ip_ra_control(sk, 0, NULL);
1235         case MRT_ADD_VIF:
1236         case MRT_DEL_VIF:
1237                 if (optlen != sizeof(vif))
1238                         return -EINVAL;
1239                 if (copy_from_user(&vif, optval, sizeof(vif)))
1240                         return -EFAULT;
1241                 if (vif.vifc_vifi >= MAXVIFS)
1242                         return -ENFILE;
1243                 rtnl_lock();
1244                 if (optname == MRT_ADD_VIF) {
1245                         ret = vif_add(net, mrt, &vif,
1246                                       sk == rtnl_dereference(mrt->mroute_sk));
1247                 } else {
1248                         ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1249                 }
1250                 rtnl_unlock();
1251                 return ret;
1252
1253                 /*
1254                  *      Manipulate the forwarding caches. These live
1255                  *      in a sort of kernel/user symbiosis.
1256                  */
1257         case MRT_ADD_MFC:
1258         case MRT_DEL_MFC:
1259                 if (optlen != sizeof(mfc))
1260                         return -EINVAL;
1261                 if (copy_from_user(&mfc, optval, sizeof(mfc)))
1262                         return -EFAULT;
1263                 rtnl_lock();
1264                 if (optname == MRT_DEL_MFC)
1265                         ret = ipmr_mfc_delete(mrt, &mfc);
1266                 else
1267                         ret = ipmr_mfc_add(net, mrt, &mfc,
1268                                            sk == rtnl_dereference(mrt->mroute_sk));
1269                 rtnl_unlock();
1270                 return ret;
1271                 /*
1272                  *      Control PIM assert.
1273                  */
1274         case MRT_ASSERT:
1275         {
1276                 int v;
1277                 if (get_user(v, (int __user *)optval))
1278                         return -EFAULT;
1279                 mrt->mroute_do_assert = (v) ? 1 : 0;
1280                 return 0;
1281         }
1282 #ifdef CONFIG_IP_PIMSM
1283         case MRT_PIM:
1284         {
1285                 int v;
1286
1287                 if (get_user(v, (int __user *)optval))
1288                         return -EFAULT;
1289                 v = (v) ? 1 : 0;
1290
1291                 rtnl_lock();
1292                 ret = 0;
1293                 if (v != mrt->mroute_do_pim) {
1294                         mrt->mroute_do_pim = v;
1295                         mrt->mroute_do_assert = v;
1296                 }
1297                 rtnl_unlock();
1298                 return ret;
1299         }
1300 #endif
1301 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
1302         case MRT_TABLE:
1303         {
1304                 u32 v;
1305
1306                 if (optlen != sizeof(u32))
1307                         return -EINVAL;
1308                 if (get_user(v, (u32 __user *)optval))
1309                         return -EFAULT;
1310
1311                 rtnl_lock();
1312                 ret = 0;
1313                 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1314                         ret = -EBUSY;
1315                 } else {
1316                         if (!ipmr_new_table(net, v))
1317                                 ret = -ENOMEM;
1318                         raw_sk(sk)->ipmr_table = v;
1319                 }
1320                 rtnl_unlock();
1321                 return ret;
1322         }
1323 #endif
1324         /*
1325          *      Spurious command, or MRT_VERSION which you cannot
1326          *      set.
1327          */
1328         default:
1329                 return -ENOPROTOOPT;
1330         }
1331 }
1332
1333 /*
1334  *      Getsock opt support for the multicast routing system.
1335  */
1336
1337 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1338 {
1339         int olr;
1340         int val;
1341         struct net *net = sock_net(sk);
1342         struct mr_table *mrt;
1343
1344         mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1345         if (mrt == NULL)
1346                 return -ENOENT;
1347
1348         if (optname != MRT_VERSION &&
1349 #ifdef CONFIG_IP_PIMSM
1350            optname != MRT_PIM &&
1351 #endif
1352            optname != MRT_ASSERT)
1353                 return -ENOPROTOOPT;
1354
1355         if (get_user(olr, optlen))
1356                 return -EFAULT;
1357
1358         olr = min_t(unsigned int, olr, sizeof(int));
1359         if (olr < 0)
1360                 return -EINVAL;
1361
1362         if (put_user(olr, optlen))
1363                 return -EFAULT;
1364         if (optname == MRT_VERSION)
1365                 val = 0x0305;
1366 #ifdef CONFIG_IP_PIMSM
1367         else if (optname == MRT_PIM)
1368                 val = mrt->mroute_do_pim;
1369 #endif
1370         else
1371                 val = mrt->mroute_do_assert;
1372         if (copy_to_user(optval, &val, olr))
1373                 return -EFAULT;
1374         return 0;
1375 }
1376
1377 /*
1378  *      The IP multicast ioctl support routines.
1379  */
1380
1381 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1382 {
1383         struct sioc_sg_req sr;
1384         struct sioc_vif_req vr;
1385         struct vif_device *vif;
1386         struct mfc_cache *c;
1387         struct net *net = sock_net(sk);
1388         struct mr_table *mrt;
1389
1390         mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1391         if (mrt == NULL)
1392                 return -ENOENT;
1393
1394         switch (cmd) {
1395         case SIOCGETVIFCNT:
1396                 if (copy_from_user(&vr, arg, sizeof(vr)))
1397                         return -EFAULT;
1398                 if (vr.vifi >= mrt->maxvif)
1399                         return -EINVAL;
1400                 read_lock(&mrt_lock);
1401                 vif = &mrt->vif_table[vr.vifi];
1402                 if (VIF_EXISTS(mrt, vr.vifi)) {
1403                         vr.icount = vif->pkt_in;
1404                         vr.ocount = vif->pkt_out;
1405                         vr.ibytes = vif->bytes_in;
1406                         vr.obytes = vif->bytes_out;
1407                         read_unlock(&mrt_lock);
1408
1409                         if (copy_to_user(arg, &vr, sizeof(vr)))
1410                                 return -EFAULT;
1411                         return 0;
1412                 }
1413                 read_unlock(&mrt_lock);
1414                 return -EADDRNOTAVAIL;
1415         case SIOCGETSGCNT:
1416                 if (copy_from_user(&sr, arg, sizeof(sr)))
1417                         return -EFAULT;
1418
1419                 rcu_read_lock();
1420                 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1421                 if (c) {
1422                         sr.pktcnt = c->mfc_un.res.pkt;
1423                         sr.bytecnt = c->mfc_un.res.bytes;
1424                         sr.wrong_if = c->mfc_un.res.wrong_if;
1425                         rcu_read_unlock();
1426
1427                         if (copy_to_user(arg, &sr, sizeof(sr)))
1428                                 return -EFAULT;
1429                         return 0;
1430                 }
1431                 rcu_read_unlock();
1432                 return -EADDRNOTAVAIL;
1433         default:
1434                 return -ENOIOCTLCMD;
1435         }
1436 }
1437
1438 #ifdef CONFIG_COMPAT
1439 struct compat_sioc_sg_req {
1440         struct in_addr src;
1441         struct in_addr grp;
1442         compat_ulong_t pktcnt;
1443         compat_ulong_t bytecnt;
1444         compat_ulong_t wrong_if;
1445 };
1446
1447 struct compat_sioc_vif_req {
1448         vifi_t  vifi;           /* Which iface */
1449         compat_ulong_t icount;
1450         compat_ulong_t ocount;
1451         compat_ulong_t ibytes;
1452         compat_ulong_t obytes;
1453 };
1454
1455 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1456 {
1457         struct compat_sioc_sg_req sr;
1458         struct compat_sioc_vif_req vr;
1459         struct vif_device *vif;
1460         struct mfc_cache *c;
1461         struct net *net = sock_net(sk);
1462         struct mr_table *mrt;
1463
1464         mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1465         if (mrt == NULL)
1466                 return -ENOENT;
1467
1468         switch (cmd) {
1469         case SIOCGETVIFCNT:
1470                 if (copy_from_user(&vr, arg, sizeof(vr)))
1471                         return -EFAULT;
1472                 if (vr.vifi >= mrt->maxvif)
1473                         return -EINVAL;
1474                 read_lock(&mrt_lock);
1475                 vif = &mrt->vif_table[vr.vifi];
1476                 if (VIF_EXISTS(mrt, vr.vifi)) {
1477                         vr.icount = vif->pkt_in;
1478                         vr.ocount = vif->pkt_out;
1479                         vr.ibytes = vif->bytes_in;
1480                         vr.obytes = vif->bytes_out;
1481                         read_unlock(&mrt_lock);
1482
1483                         if (copy_to_user(arg, &vr, sizeof(vr)))
1484                                 return -EFAULT;
1485                         return 0;
1486                 }
1487                 read_unlock(&mrt_lock);
1488                 return -EADDRNOTAVAIL;
1489         case SIOCGETSGCNT:
1490                 if (copy_from_user(&sr, arg, sizeof(sr)))
1491                         return -EFAULT;
1492
1493                 rcu_read_lock();
1494                 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1495                 if (c) {
1496                         sr.pktcnt = c->mfc_un.res.pkt;
1497                         sr.bytecnt = c->mfc_un.res.bytes;
1498                         sr.wrong_if = c->mfc_un.res.wrong_if;
1499                         rcu_read_unlock();
1500
1501                         if (copy_to_user(arg, &sr, sizeof(sr)))
1502                                 return -EFAULT;
1503                         return 0;
1504                 }
1505                 rcu_read_unlock();
1506                 return -EADDRNOTAVAIL;
1507         default:
1508                 return -ENOIOCTLCMD;
1509         }
1510 }
1511 #endif
1512
1513
1514 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1515 {
1516         struct net_device *dev = ptr;
1517         struct net *net = dev_net(dev);
1518         struct mr_table *mrt;
1519         struct vif_device *v;
1520         int ct;
1521
1522         if (event != NETDEV_UNREGISTER)
1523                 return NOTIFY_DONE;
1524
1525         ipmr_for_each_table(mrt, net) {
1526                 v = &mrt->vif_table[0];
1527                 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1528                         if (v->dev == dev)
1529                                 vif_delete(mrt, ct, 1, NULL);
1530                 }
1531         }
1532         return NOTIFY_DONE;
1533 }
1534
1535
1536 static struct notifier_block ip_mr_notifier = {
1537         .notifier_call = ipmr_device_event,
1538 };
1539
1540 /*
1541  *      Encapsulate a packet by attaching a valid IPIP header to it.
1542  *      This avoids tunnel drivers and other mess and gives us the speed so
1543  *      important for multicast video.
1544  */
1545
1546 static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
1547 {
1548         struct iphdr *iph;
1549         const struct iphdr *old_iph = ip_hdr(skb);
1550
1551         skb_push(skb, sizeof(struct iphdr));
1552         skb->transport_header = skb->network_header;
1553         skb_reset_network_header(skb);
1554         iph = ip_hdr(skb);
1555
1556         iph->version    =       4;
1557         iph->tos        =       old_iph->tos;
1558         iph->ttl        =       old_iph->ttl;
1559         iph->frag_off   =       0;
1560         iph->daddr      =       daddr;
1561         iph->saddr      =       saddr;
1562         iph->protocol   =       IPPROTO_IPIP;
1563         iph->ihl        =       5;
1564         iph->tot_len    =       htons(skb->len);
1565         ip_select_ident(iph, skb_dst(skb), NULL);
1566         ip_send_check(iph);
1567
1568         memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1569         nf_reset(skb);
1570 }
1571
1572 static inline int ipmr_forward_finish(struct sk_buff *skb)
1573 {
1574         struct ip_options *opt = &(IPCB(skb)->opt);
1575
1576         IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
1577         IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
1578
1579         if (unlikely(opt->optlen))
1580                 ip_forward_options(skb);
1581
1582         return dst_output(skb);
1583 }
1584
1585 /*
1586  *      Processing handlers for ipmr_forward
1587  */
1588
1589 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1590                             struct sk_buff *skb, struct mfc_cache *c, int vifi)
1591 {
1592         const struct iphdr *iph = ip_hdr(skb);
1593         struct vif_device *vif = &mrt->vif_table[vifi];
1594         struct net_device *dev;
1595         struct rtable *rt;
1596         struct flowi4 fl4;
1597         int    encap = 0;
1598
1599         if (vif->dev == NULL)
1600                 goto out_free;
1601
1602 #ifdef CONFIG_IP_PIMSM
1603         if (vif->flags & VIFF_REGISTER) {
1604                 vif->pkt_out++;
1605                 vif->bytes_out += skb->len;
1606                 vif->dev->stats.tx_bytes += skb->len;
1607                 vif->dev->stats.tx_packets++;
1608                 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1609                 goto out_free;
1610         }
1611 #endif
1612
1613         if (vif->flags & VIFF_TUNNEL) {
1614                 rt = ip_route_output_ports(net, &fl4, NULL,
1615                                            vif->remote, vif->local,
1616                                            0, 0,
1617                                            IPPROTO_IPIP,
1618                                            RT_TOS(iph->tos), vif->link);
1619                 if (IS_ERR(rt))
1620                         goto out_free;
1621                 encap = sizeof(struct iphdr);
1622         } else {
1623                 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1624                                            0, 0,
1625                                            IPPROTO_IPIP,
1626                                            RT_TOS(iph->tos), vif->link);
1627                 if (IS_ERR(rt))
1628                         goto out_free;
1629         }
1630
1631         dev = rt->dst.dev;
1632
1633         if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1634                 /* Do not fragment multicasts. Alas, IPv4 does not
1635                  * allow to send ICMP, so that packets will disappear
1636                  * to blackhole.
1637                  */
1638
1639                 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
1640                 ip_rt_put(rt);
1641                 goto out_free;
1642         }
1643
1644         encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1645
1646         if (skb_cow(skb, encap)) {
1647                 ip_rt_put(rt);
1648                 goto out_free;
1649         }
1650
1651         vif->pkt_out++;
1652         vif->bytes_out += skb->len;
1653
1654         skb_dst_drop(skb);
1655         skb_dst_set(skb, &rt->dst);
1656         ip_decrease_ttl(ip_hdr(skb));
1657
1658         /* FIXME: forward and output firewalls used to be called here.
1659          * What do we do with netfilter? -- RR
1660          */
1661         if (vif->flags & VIFF_TUNNEL) {
1662                 ip_encap(skb, vif->local, vif->remote);
1663                 /* FIXME: extra output firewall step used to be here. --RR */
1664                 vif->dev->stats.tx_packets++;
1665                 vif->dev->stats.tx_bytes += skb->len;
1666         }
1667
1668         IPCB(skb)->flags |= IPSKB_FORWARDED;
1669
1670         /*
1671          * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1672          * not only before forwarding, but after forwarding on all output
1673          * interfaces. It is clear, if mrouter runs a multicasting
1674          * program, it should receive packets not depending to what interface
1675          * program is joined.
1676          * If we will not make it, the program will have to join on all
1677          * interfaces. On the other hand, multihoming host (or router, but
1678          * not mrouter) cannot join to more than one interface - it will
1679          * result in receiving multiple packets.
1680          */
1681         NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
1682                 ipmr_forward_finish);
1683         return;
1684
1685 out_free:
1686         kfree_skb(skb);
1687 }
1688
1689 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1690 {
1691         int ct;
1692
1693         for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1694                 if (mrt->vif_table[ct].dev == dev)
1695                         break;
1696         }
1697         return ct;
1698 }
1699
1700 /* "local" means that we should preserve one skb (for local delivery) */
1701
1702 static int ip_mr_forward(struct net *net, struct mr_table *mrt,
1703                          struct sk_buff *skb, struct mfc_cache *cache,
1704                          int local)
1705 {
1706         int psend = -1;
1707         int vif, ct;
1708
1709         vif = cache->mfc_parent;
1710         cache->mfc_un.res.pkt++;
1711         cache->mfc_un.res.bytes += skb->len;
1712
1713         /*
1714          * Wrong interface: drop packet and (maybe) send PIM assert.
1715          */
1716         if (mrt->vif_table[vif].dev != skb->dev) {
1717                 int true_vifi;
1718
1719                 if (rt_is_output_route(skb_rtable(skb))) {
1720                         /* It is our own packet, looped back.
1721                          * Very complicated situation...
1722                          *
1723                          * The best workaround until routing daemons will be
1724                          * fixed is not to redistribute packet, if it was
1725                          * send through wrong interface. It means, that
1726                          * multicast applications WILL NOT work for
1727                          * (S,G), which have default multicast route pointing
1728                          * to wrong oif. In any case, it is not a good
1729                          * idea to use multicasting applications on router.
1730                          */
1731                         goto dont_forward;
1732                 }
1733
1734                 cache->mfc_un.res.wrong_if++;
1735                 true_vifi = ipmr_find_vif(mrt, skb->dev);
1736
1737                 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1738                     /* pimsm uses asserts, when switching from RPT to SPT,
1739                      * so that we cannot check that packet arrived on an oif.
1740                      * It is bad, but otherwise we would need to move pretty
1741                      * large chunk of pimd to kernel. Ough... --ANK
1742                      */
1743                     (mrt->mroute_do_pim ||
1744                      cache->mfc_un.res.ttls[true_vifi] < 255) &&
1745                     time_after(jiffies,
1746                                cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1747                         cache->mfc_un.res.last_assert = jiffies;
1748                         ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1749                 }
1750                 goto dont_forward;
1751         }
1752
1753         mrt->vif_table[vif].pkt_in++;
1754         mrt->vif_table[vif].bytes_in += skb->len;
1755
1756         /*
1757          *      Forward the frame
1758          */
1759         for (ct = cache->mfc_un.res.maxvif - 1;
1760              ct >= cache->mfc_un.res.minvif; ct--) {
1761                 if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1762                         if (psend != -1) {
1763                                 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1764
1765                                 if (skb2)
1766                                         ipmr_queue_xmit(net, mrt, skb2, cache,
1767                                                         psend);
1768                         }
1769                         psend = ct;
1770                 }
1771         }
1772         if (psend != -1) {
1773                 if (local) {
1774                         struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1775
1776                         if (skb2)
1777                                 ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1778                 } else {
1779                         ipmr_queue_xmit(net, mrt, skb, cache, psend);
1780                         return 0;
1781                 }
1782         }
1783
1784 dont_forward:
1785         if (!local)
1786                 kfree_skb(skb);
1787         return 0;
1788 }
1789
1790 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1791 {
1792         struct rtable *rt = skb_rtable(skb);
1793         struct iphdr *iph = ip_hdr(skb);
1794         struct flowi4 fl4 = {
1795                 .daddr = iph->daddr,
1796                 .saddr = iph->saddr,
1797                 .flowi4_tos = RT_TOS(iph->tos),
1798                 .flowi4_oif = (rt_is_output_route(rt) ?
1799                                skb->dev->ifindex : 0),
1800                 .flowi4_iif = (rt_is_output_route(rt) ?
1801                                net->loopback_dev->ifindex :
1802                                skb->dev->ifindex),
1803                 .flowi4_mark = skb->mark,
1804         };
1805         struct mr_table *mrt;
1806         int err;
1807
1808         err = ipmr_fib_lookup(net, &fl4, &mrt);
1809         if (err)
1810                 return ERR_PTR(err);
1811         return mrt;
1812 }
1813
1814 /*
1815  *      Multicast packets for forwarding arrive here
1816  *      Called with rcu_read_lock();
1817  */
1818
1819 int ip_mr_input(struct sk_buff *skb)
1820 {
1821         struct mfc_cache *cache;
1822         struct net *net = dev_net(skb->dev);
1823         int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1824         struct mr_table *mrt;
1825
1826         /* Packet is looped back after forward, it should not be
1827          * forwarded second time, but still can be delivered locally.
1828          */
1829         if (IPCB(skb)->flags & IPSKB_FORWARDED)
1830                 goto dont_forward;
1831
1832         mrt = ipmr_rt_fib_lookup(net, skb);
1833         if (IS_ERR(mrt)) {
1834                 kfree_skb(skb);
1835                 return PTR_ERR(mrt);
1836         }
1837         if (!local) {
1838                 if (IPCB(skb)->opt.router_alert) {
1839                         if (ip_call_ra_chain(skb))
1840                                 return 0;
1841                 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1842                         /* IGMPv1 (and broken IGMPv2 implementations sort of
1843                          * Cisco IOS <= 11.2(8)) do not put router alert
1844                          * option to IGMP packets destined to routable
1845                          * groups. It is very bad, because it means
1846                          * that we can forward NO IGMP messages.
1847                          */
1848                         struct sock *mroute_sk;
1849
1850                         mroute_sk = rcu_dereference(mrt->mroute_sk);
1851                         if (mroute_sk) {
1852                                 nf_reset(skb);
1853                                 raw_rcv(mroute_sk, skb);
1854                                 return 0;
1855                         }
1856                     }
1857         }
1858
1859         /* already under rcu_read_lock() */
1860         cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1861
1862         /*
1863          *      No usable cache entry
1864          */
1865         if (cache == NULL) {
1866                 int vif;
1867
1868                 if (local) {
1869                         struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1870                         ip_local_deliver(skb);
1871                         if (skb2 == NULL)
1872                                 return -ENOBUFS;
1873                         skb = skb2;
1874                 }
1875
1876                 read_lock(&mrt_lock);
1877                 vif = ipmr_find_vif(mrt, skb->dev);
1878                 if (vif >= 0) {
1879                         int err2 = ipmr_cache_unresolved(mrt, vif, skb);
1880                         read_unlock(&mrt_lock);
1881
1882                         return err2;
1883                 }
1884                 read_unlock(&mrt_lock);
1885                 kfree_skb(skb);
1886                 return -ENODEV;
1887         }
1888
1889         read_lock(&mrt_lock);
1890         ip_mr_forward(net, mrt, skb, cache, local);
1891         read_unlock(&mrt_lock);
1892
1893         if (local)
1894                 return ip_local_deliver(skb);
1895
1896         return 0;
1897
1898 dont_forward:
1899         if (local)
1900                 return ip_local_deliver(skb);
1901         kfree_skb(skb);
1902         return 0;
1903 }
1904
1905 #ifdef CONFIG_IP_PIMSM
1906 /* called with rcu_read_lock() */
1907 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
1908                      unsigned int pimlen)
1909 {
1910         struct net_device *reg_dev = NULL;
1911         struct iphdr *encap;
1912
1913         encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
1914         /*
1915          * Check that:
1916          * a. packet is really sent to a multicast group
1917          * b. packet is not a NULL-REGISTER
1918          * c. packet is not truncated
1919          */
1920         if (!ipv4_is_multicast(encap->daddr) ||
1921             encap->tot_len == 0 ||
1922             ntohs(encap->tot_len) + pimlen > skb->len)
1923                 return 1;
1924
1925         read_lock(&mrt_lock);
1926         if (mrt->mroute_reg_vif_num >= 0)
1927                 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
1928         read_unlock(&mrt_lock);
1929
1930         if (reg_dev == NULL)
1931                 return 1;
1932
1933         skb->mac_header = skb->network_header;
1934         skb_pull(skb, (u8 *)encap - skb->data);
1935         skb_reset_network_header(skb);
1936         skb->protocol = htons(ETH_P_IP);
1937         skb->ip_summed = CHECKSUM_NONE;
1938         skb->pkt_type = PACKET_HOST;
1939
1940         skb_tunnel_rx(skb, reg_dev);
1941
1942         netif_rx(skb);
1943
1944         return NET_RX_SUCCESS;
1945 }
1946 #endif
1947
1948 #ifdef CONFIG_IP_PIMSM_V1
1949 /*
1950  * Handle IGMP messages of PIMv1
1951  */
1952
1953 int pim_rcv_v1(struct sk_buff *skb)
1954 {
1955         struct igmphdr *pim;
1956         struct net *net = dev_net(skb->dev);
1957         struct mr_table *mrt;
1958
1959         if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1960                 goto drop;
1961
1962         pim = igmp_hdr(skb);
1963
1964         mrt = ipmr_rt_fib_lookup(net, skb);
1965         if (IS_ERR(mrt))
1966                 goto drop;
1967         if (!mrt->mroute_do_pim ||
1968             pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
1969                 goto drop;
1970
1971         if (__pim_rcv(mrt, skb, sizeof(*pim))) {
1972 drop:
1973                 kfree_skb(skb);
1974         }
1975         return 0;
1976 }
1977 #endif
1978
1979 #ifdef CONFIG_IP_PIMSM_V2
1980 static int pim_rcv(struct sk_buff *skb)
1981 {
1982         struct pimreghdr *pim;
1983         struct net *net = dev_net(skb->dev);
1984         struct mr_table *mrt;
1985
1986         if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
1987                 goto drop;
1988
1989         pim = (struct pimreghdr *)skb_transport_header(skb);
1990         if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
1991             (pim->flags & PIM_NULL_REGISTER) ||
1992             (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
1993              csum_fold(skb_checksum(skb, 0, skb->len, 0))))
1994                 goto drop;
1995
1996         mrt = ipmr_rt_fib_lookup(net, skb);
1997         if (IS_ERR(mrt))
1998                 goto drop;
1999         if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2000 drop:
2001                 kfree_skb(skb);
2002         }
2003         return 0;
2004 }
2005 #endif
2006
2007 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2008                               struct mfc_cache *c, struct rtmsg *rtm)
2009 {
2010         int ct;
2011         struct rtnexthop *nhp;
2012         struct nlattr *mp_attr;
2013
2014         /* If cache is unresolved, don't try to parse IIF and OIF */
2015         if (c->mfc_parent >= MAXVIFS)
2016                 return -ENOENT;
2017
2018         if (VIF_EXISTS(mrt, c->mfc_parent) &&
2019             nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2020                 return -EMSGSIZE;
2021
2022         if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2023                 return -EMSGSIZE;
2024
2025         for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2026                 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2027                         if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2028                                 nla_nest_cancel(skb, mp_attr);
2029                                 return -EMSGSIZE;
2030                         }
2031
2032                         nhp->rtnh_flags = 0;
2033                         nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2034                         nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2035                         nhp->rtnh_len = sizeof(*nhp);
2036                 }
2037         }
2038
2039         nla_nest_end(skb, mp_attr);
2040
2041         rtm->rtm_type = RTN_MULTICAST;
2042         return 1;
2043 }
2044
2045 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2046                    __be32 saddr, __be32 daddr,
2047                    struct rtmsg *rtm, int nowait)
2048 {
2049         struct mfc_cache *cache;
2050         struct mr_table *mrt;
2051         int err;
2052
2053         mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2054         if (mrt == NULL)
2055                 return -ENOENT;
2056
2057         rcu_read_lock();
2058         cache = ipmr_cache_find(mrt, saddr, daddr);
2059
2060         if (cache == NULL) {
2061                 struct sk_buff *skb2;
2062                 struct iphdr *iph;
2063                 struct net_device *dev;
2064                 int vif = -1;
2065
2066                 if (nowait) {
2067                         rcu_read_unlock();
2068                         return -EAGAIN;
2069                 }
2070
2071                 dev = skb->dev;
2072                 read_lock(&mrt_lock);
2073                 if (dev)
2074                         vif = ipmr_find_vif(mrt, dev);
2075                 if (vif < 0) {
2076                         read_unlock(&mrt_lock);
2077                         rcu_read_unlock();
2078                         return -ENODEV;
2079                 }
2080                 skb2 = skb_clone(skb, GFP_ATOMIC);
2081                 if (!skb2) {
2082                         read_unlock(&mrt_lock);
2083                         rcu_read_unlock();
2084                         return -ENOMEM;
2085                 }
2086
2087                 skb_push(skb2, sizeof(struct iphdr));
2088                 skb_reset_network_header(skb2);
2089                 iph = ip_hdr(skb2);
2090                 iph->ihl = sizeof(struct iphdr) >> 2;
2091                 iph->saddr = saddr;
2092                 iph->daddr = daddr;
2093                 iph->version = 0;
2094                 err = ipmr_cache_unresolved(mrt, vif, skb2);
2095                 read_unlock(&mrt_lock);
2096                 rcu_read_unlock();
2097                 return err;
2098         }
2099
2100         read_lock(&mrt_lock);
2101         if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
2102                 cache->mfc_flags |= MFC_NOTIFY;
2103         err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2104         read_unlock(&mrt_lock);
2105         rcu_read_unlock();
2106         return err;
2107 }
2108
2109 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2110                             u32 pid, u32 seq, struct mfc_cache *c)
2111 {
2112         struct nlmsghdr *nlh;
2113         struct rtmsg *rtm;
2114
2115         nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI);
2116         if (nlh == NULL)
2117                 return -EMSGSIZE;
2118
2119         rtm = nlmsg_data(nlh);
2120         rtm->rtm_family   = RTNL_FAMILY_IPMR;
2121         rtm->rtm_dst_len  = 32;
2122         rtm->rtm_src_len  = 32;
2123         rtm->rtm_tos      = 0;
2124         rtm->rtm_table    = mrt->id;
2125         if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2126                 goto nla_put_failure;
2127         rtm->rtm_type     = RTN_MULTICAST;
2128         rtm->rtm_scope    = RT_SCOPE_UNIVERSE;
2129         rtm->rtm_protocol = RTPROT_UNSPEC;
2130         rtm->rtm_flags    = 0;
2131
2132         if (nla_put_be32(skb, RTA_SRC, c->mfc_origin) ||
2133             nla_put_be32(skb, RTA_DST, c->mfc_mcastgrp))
2134                 goto nla_put_failure;
2135         if (__ipmr_fill_mroute(mrt, skb, c, rtm) < 0)
2136                 goto nla_put_failure;
2137
2138         return nlmsg_end(skb, nlh);
2139
2140 nla_put_failure:
2141         nlmsg_cancel(skb, nlh);
2142         return -EMSGSIZE;
2143 }
2144
2145 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2146 {
2147         struct net *net = sock_net(skb->sk);
2148         struct mr_table *mrt;
2149         struct mfc_cache *mfc;
2150         unsigned int t = 0, s_t;
2151         unsigned int h = 0, s_h;
2152         unsigned int e = 0, s_e;
2153
2154         s_t = cb->args[0];
2155         s_h = cb->args[1];
2156         s_e = cb->args[2];
2157
2158         rcu_read_lock();
2159         ipmr_for_each_table(mrt, net) {
2160                 if (t < s_t)
2161                         goto next_table;
2162                 if (t > s_t)
2163                         s_h = 0;
2164                 for (h = s_h; h < MFC_LINES; h++) {
2165                         list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2166                                 if (e < s_e)
2167                                         goto next_entry;
2168                                 if (ipmr_fill_mroute(mrt, skb,
2169                                                      NETLINK_CB(cb->skb).pid,
2170                                                      cb->nlh->nlmsg_seq,
2171                                                      mfc) < 0)
2172                                         goto done;
2173 next_entry:
2174                                 e++;
2175                         }
2176                         e = s_e = 0;
2177                 }
2178                 s_h = 0;
2179 next_table:
2180                 t++;
2181         }
2182 done:
2183         rcu_read_unlock();
2184
2185         cb->args[2] = e;
2186         cb->args[1] = h;
2187         cb->args[0] = t;
2188
2189         return skb->len;
2190 }
2191
2192 #ifdef CONFIG_PROC_FS
2193 /*
2194  *      The /proc interfaces to multicast routing :
2195  *      /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2196  */
2197 struct ipmr_vif_iter {
2198         struct seq_net_private p;
2199         struct mr_table *mrt;
2200         int ct;
2201 };
2202
2203 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2204                                            struct ipmr_vif_iter *iter,
2205                                            loff_t pos)
2206 {
2207         struct mr_table *mrt = iter->mrt;
2208
2209         for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2210                 if (!VIF_EXISTS(mrt, iter->ct))
2211                         continue;
2212                 if (pos-- == 0)
2213                         return &mrt->vif_table[iter->ct];
2214         }
2215         return NULL;
2216 }
2217
2218 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2219         __acquires(mrt_lock)
2220 {
2221         struct ipmr_vif_iter *iter = seq->private;
2222         struct net *net = seq_file_net(seq);
2223         struct mr_table *mrt;
2224
2225         mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2226         if (mrt == NULL)
2227                 return ERR_PTR(-ENOENT);
2228
2229         iter->mrt = mrt;
2230
2231         read_lock(&mrt_lock);
2232         return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2233                 : SEQ_START_TOKEN;
2234 }
2235
2236 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2237 {
2238         struct ipmr_vif_iter *iter = seq->private;
2239         struct net *net = seq_file_net(seq);
2240         struct mr_table *mrt = iter->mrt;
2241
2242         ++*pos;
2243         if (v == SEQ_START_TOKEN)
2244                 return ipmr_vif_seq_idx(net, iter, 0);
2245
2246         while (++iter->ct < mrt->maxvif) {
2247                 if (!VIF_EXISTS(mrt, iter->ct))
2248                         continue;
2249                 return &mrt->vif_table[iter->ct];
2250         }
2251         return NULL;
2252 }
2253
2254 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2255         __releases(mrt_lock)
2256 {
2257         read_unlock(&mrt_lock);
2258 }
2259
2260 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2261 {
2262         struct ipmr_vif_iter *iter = seq->private;
2263         struct mr_table *mrt = iter->mrt;
2264
2265         if (v == SEQ_START_TOKEN) {
2266                 seq_puts(seq,
2267                          "Interface      BytesIn  PktsIn  BytesOut PktsOut Flags Local    Remote\n");
2268         } else {
2269                 const struct vif_device *vif = v;
2270                 const char *name =  vif->dev ? vif->dev->name : "none";
2271
2272                 seq_printf(seq,
2273                            "%2Zd %-10s %8ld %7ld  %8ld %7ld %05X %08X %08X\n",
2274                            vif - mrt->vif_table,
2275                            name, vif->bytes_in, vif->pkt_in,
2276                            vif->bytes_out, vif->pkt_out,
2277                            vif->flags, vif->local, vif->remote);
2278         }
2279         return 0;
2280 }
2281
2282 static const struct seq_operations ipmr_vif_seq_ops = {
2283         .start = ipmr_vif_seq_start,
2284         .next  = ipmr_vif_seq_next,
2285         .stop  = ipmr_vif_seq_stop,
2286         .show  = ipmr_vif_seq_show,
2287 };
2288
2289 static int ipmr_vif_open(struct inode *inode, struct file *file)
2290 {
2291         return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2292                             sizeof(struct ipmr_vif_iter));
2293 }
2294
2295 static const struct file_operations ipmr_vif_fops = {
2296         .owner   = THIS_MODULE,
2297         .open    = ipmr_vif_open,
2298         .read    = seq_read,
2299         .llseek  = seq_lseek,
2300         .release = seq_release_net,
2301 };
2302
2303 struct ipmr_mfc_iter {
2304         struct seq_net_private p;
2305         struct mr_table *mrt;
2306         struct list_head *cache;
2307         int ct;
2308 };
2309
2310
2311 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2312                                           struct ipmr_mfc_iter *it, loff_t pos)
2313 {
2314         struct mr_table *mrt = it->mrt;
2315         struct mfc_cache *mfc;
2316
2317         rcu_read_lock();
2318         for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2319                 it->cache = &mrt->mfc_cache_array[it->ct];
2320                 list_for_each_entry_rcu(mfc, it->cache, list)
2321                         if (pos-- == 0)
2322                                 return mfc;
2323         }
2324         rcu_read_unlock();
2325
2326         spin_lock_bh(&mfc_unres_lock);
2327         it->cache = &mrt->mfc_unres_queue;
2328         list_for_each_entry(mfc, it->cache, list)
2329                 if (pos-- == 0)
2330                         return mfc;
2331         spin_unlock_bh(&mfc_unres_lock);
2332
2333         it->cache = NULL;
2334         return NULL;
2335 }
2336
2337
2338 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2339 {
2340         struct ipmr_mfc_iter *it = seq->private;
2341         struct net *net = seq_file_net(seq);
2342         struct mr_table *mrt;
2343
2344         mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2345         if (mrt == NULL)
2346                 return ERR_PTR(-ENOENT);
2347
2348         it->mrt = mrt;
2349         it->cache = NULL;
2350         it->ct = 0;
2351         return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2352                 : SEQ_START_TOKEN;
2353 }
2354
2355 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2356 {
2357         struct mfc_cache *mfc = v;
2358         struct ipmr_mfc_iter *it = seq->private;
2359         struct net *net = seq_file_net(seq);
2360         struct mr_table *mrt = it->mrt;
2361
2362         ++*pos;
2363
2364         if (v == SEQ_START_TOKEN)
2365                 return ipmr_mfc_seq_idx(net, seq->private, 0);
2366
2367         if (mfc->list.next != it->cache)
2368                 return list_entry(mfc->list.next, struct mfc_cache, list);
2369
2370         if (it->cache == &mrt->mfc_unres_queue)
2371                 goto end_of_list;
2372
2373         BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2374
2375         while (++it->ct < MFC_LINES) {
2376                 it->cache = &mrt->mfc_cache_array[it->ct];
2377                 if (list_empty(it->cache))
2378                         continue;
2379                 return list_first_entry(it->cache, struct mfc_cache, list);
2380         }
2381
2382         /* exhausted cache_array, show unresolved */
2383         rcu_read_unlock();
2384         it->cache = &mrt->mfc_unres_queue;
2385         it->ct = 0;
2386
2387         spin_lock_bh(&mfc_unres_lock);
2388         if (!list_empty(it->cache))
2389                 return list_first_entry(it->cache, struct mfc_cache, list);
2390
2391 end_of_list:
2392         spin_unlock_bh(&mfc_unres_lock);
2393         it->cache = NULL;
2394
2395         return NULL;
2396 }
2397
2398 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2399 {
2400         struct ipmr_mfc_iter *it = seq->private;
2401         struct mr_table *mrt = it->mrt;
2402
2403         if (it->cache == &mrt->mfc_unres_queue)
2404                 spin_unlock_bh(&mfc_unres_lock);
2405         else if (it->cache == &mrt->mfc_cache_array[it->ct])
2406                 rcu_read_unlock();
2407 }
2408
2409 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2410 {
2411         int n;
2412
2413         if (v == SEQ_START_TOKEN) {
2414                 seq_puts(seq,
2415                  "Group    Origin   Iif     Pkts    Bytes    Wrong Oifs\n");
2416         } else {
2417                 const struct mfc_cache *mfc = v;
2418                 const struct ipmr_mfc_iter *it = seq->private;
2419                 const struct mr_table *mrt = it->mrt;
2420
2421                 seq_printf(seq, "%08X %08X %-3hd",
2422                            (__force u32) mfc->mfc_mcastgrp,
2423                            (__force u32) mfc->mfc_origin,
2424                            mfc->mfc_parent);
2425
2426                 if (it->cache != &mrt->mfc_unres_queue) {
2427                         seq_printf(seq, " %8lu %8lu %8lu",
2428                                    mfc->mfc_un.res.pkt,
2429                                    mfc->mfc_un.res.bytes,
2430                                    mfc->mfc_un.res.wrong_if);
2431                         for (n = mfc->mfc_un.res.minvif;
2432                              n < mfc->mfc_un.res.maxvif; n++) {
2433                                 if (VIF_EXISTS(mrt, n) &&
2434                                     mfc->mfc_un.res.ttls[n] < 255)
2435                                         seq_printf(seq,
2436                                            " %2d:%-3d",
2437                                            n, mfc->mfc_un.res.ttls[n]);
2438                         }
2439                 } else {
2440                         /* unresolved mfc_caches don't contain
2441                          * pkt, bytes and wrong_if values
2442                          */
2443                         seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2444                 }
2445                 seq_putc(seq, '\n');
2446         }
2447         return 0;
2448 }
2449
2450 static const struct seq_operations ipmr_mfc_seq_ops = {
2451         .start = ipmr_mfc_seq_start,
2452         .next  = ipmr_mfc_seq_next,
2453         .stop  = ipmr_mfc_seq_stop,
2454         .show  = ipmr_mfc_seq_show,
2455 };
2456
2457 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2458 {
2459         return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2460                             sizeof(struct ipmr_mfc_iter));
2461 }
2462
2463 static const struct file_operations ipmr_mfc_fops = {
2464         .owner   = THIS_MODULE,
2465         .open    = ipmr_mfc_open,
2466         .read    = seq_read,
2467         .llseek  = seq_lseek,
2468         .release = seq_release_net,
2469 };
2470 #endif
2471
2472 #ifdef CONFIG_IP_PIMSM_V2
2473 static const struct net_protocol pim_protocol = {
2474         .handler        =       pim_rcv,
2475         .netns_ok       =       1,
2476 };
2477 #endif
2478
2479
2480 /*
2481  *      Setup for IP multicast routing
2482  */
2483 static int __net_init ipmr_net_init(struct net *net)
2484 {
2485         int err;
2486
2487         err = ipmr_rules_init(net);
2488         if (err < 0)
2489                 goto fail;
2490
2491 #ifdef CONFIG_PROC_FS
2492         err = -ENOMEM;
2493         if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops))
2494                 goto proc_vif_fail;
2495         if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops))
2496                 goto proc_cache_fail;
2497 #endif
2498         return 0;
2499
2500 #ifdef CONFIG_PROC_FS
2501 proc_cache_fail:
2502         proc_net_remove(net, "ip_mr_vif");
2503 proc_vif_fail:
2504         ipmr_rules_exit(net);
2505 #endif
2506 fail:
2507         return err;
2508 }
2509
2510 static void __net_exit ipmr_net_exit(struct net *net)
2511 {
2512 #ifdef CONFIG_PROC_FS
2513         proc_net_remove(net, "ip_mr_cache");
2514         proc_net_remove(net, "ip_mr_vif");
2515 #endif
2516         ipmr_rules_exit(net);
2517 }
2518
2519 static struct pernet_operations ipmr_net_ops = {
2520         .init = ipmr_net_init,
2521         .exit = ipmr_net_exit,
2522 };
2523
2524 int __init ip_mr_init(void)
2525 {
2526         int err;
2527
2528         mrt_cachep = kmem_cache_create("ip_mrt_cache",
2529                                        sizeof(struct mfc_cache),
2530                                        0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2531                                        NULL);
2532         if (!mrt_cachep)
2533                 return -ENOMEM;
2534
2535         err = register_pernet_subsys(&ipmr_net_ops);
2536         if (err)
2537                 goto reg_pernet_fail;
2538
2539         err = register_netdevice_notifier(&ip_mr_notifier);
2540         if (err)
2541                 goto reg_notif_fail;
2542 #ifdef CONFIG_IP_PIMSM_V2
2543         if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2544                 pr_err("%s: can't add PIM protocol\n", __func__);
2545                 err = -EAGAIN;
2546                 goto add_proto_fail;
2547         }
2548 #endif
2549         rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2550                       NULL, ipmr_rtm_dumproute, NULL);
2551         return 0;
2552
2553 #ifdef CONFIG_IP_PIMSM_V2
2554 add_proto_fail:
2555         unregister_netdevice_notifier(&ip_mr_notifier);
2556 #endif
2557 reg_notif_fail:
2558         unregister_pernet_subsys(&ipmr_net_ops);
2559 reg_pernet_fail:
2560         kmem_cache_destroy(mrt_cachep);
2561         return err;
2562 }