2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
70 #include <linux/skbuff.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
83 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
85 /* Generate a checksum for an outgoing IP datagram. */
86 __inline__ void ip_send_check(struct iphdr *iph)
89 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
92 int __ip_local_out(struct sk_buff *skb)
94 struct iphdr *iph = ip_hdr(skb);
96 iph->tot_len = htons(skb->len);
98 return nf_hook(PF_INET, NF_INET_LOCAL_OUT, skb, NULL, skb_dst(skb)->dev,
102 int ip_local_out(struct sk_buff *skb)
106 err = __ip_local_out(skb);
107 if (likely(err == 1))
108 err = dst_output(skb);
112 EXPORT_SYMBOL_GPL(ip_local_out);
114 /* dev_loopback_xmit for use with netfilter. */
115 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
117 skb_reset_mac_header(newskb);
118 __skb_pull(newskb, skb_network_offset(newskb));
119 newskb->pkt_type = PACKET_LOOPBACK;
120 newskb->ip_summed = CHECKSUM_UNNECESSARY;
121 WARN_ON(!skb_dst(newskb));
126 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
128 int ttl = inet->uc_ttl;
131 ttl = dst_metric(dst, RTAX_HOPLIMIT);
136 * Add an ip header to a skbuff and send it out.
139 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
140 __be32 saddr, __be32 daddr, struct ip_options *opt)
142 struct inet_sock *inet = inet_sk(sk);
143 struct rtable *rt = skb_rtable(skb);
146 /* Build the IP header. */
147 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
148 skb_reset_network_header(skb);
152 iph->tos = inet->tos;
153 if (ip_dont_fragment(sk, &rt->u.dst))
154 iph->frag_off = htons(IP_DF);
157 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
158 iph->daddr = rt->rt_dst;
159 iph->saddr = rt->rt_src;
160 iph->protocol = sk->sk_protocol;
161 ip_select_ident(iph, &rt->u.dst, sk);
163 if (opt && opt->optlen) {
164 iph->ihl += opt->optlen>>2;
165 ip_options_build(skb, opt, daddr, rt, 0);
168 skb->priority = sk->sk_priority;
169 skb->mark = sk->sk_mark;
172 return ip_local_out(skb);
175 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
177 static inline int ip_finish_output2(struct sk_buff *skb)
179 struct dst_entry *dst = skb_dst(skb);
180 struct rtable *rt = (struct rtable *)dst;
181 struct net_device *dev = dst->dev;
182 unsigned int hh_len = LL_RESERVED_SPACE(dev);
184 if (rt->rt_type == RTN_MULTICAST) {
185 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
186 } else if (rt->rt_type == RTN_BROADCAST)
187 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
189 /* Be paranoid, rather than too clever. */
190 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
191 struct sk_buff *skb2;
193 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
199 skb_set_owner_w(skb2, skb->sk);
205 return neigh_hh_output(dst->hh, skb);
206 else if (dst->neighbour)
207 return dst->neighbour->output(skb);
210 printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
215 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
217 struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
219 return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
220 skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
223 static int ip_finish_output(struct sk_buff *skb)
225 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
226 /* Policy lookup after SNAT yielded a new policy */
227 if (skb_dst(skb)->xfrm != NULL) {
228 IPCB(skb)->flags |= IPSKB_REROUTED;
229 return dst_output(skb);
232 if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
233 return ip_fragment(skb, ip_finish_output2);
235 return ip_finish_output2(skb);
238 int ip_mc_output(struct sk_buff *skb)
240 struct sock *sk = skb->sk;
241 struct rtable *rt = skb_rtable(skb);
242 struct net_device *dev = rt->u.dst.dev;
245 * If the indicated interface is up and running, send the packet.
247 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
250 skb->protocol = htons(ETH_P_IP);
253 * Multicasts are looped back for other local users
256 if (rt->rt_flags&RTCF_MULTICAST) {
257 if ((!sk || inet_sk(sk)->mc_loop)
258 #ifdef CONFIG_IP_MROUTE
259 /* Small optimization: do not loopback not local frames,
260 which returned after forwarding; they will be dropped
261 by ip_mr_input in any case.
262 Note, that local frames are looped back to be delivered
265 This check is duplicated in ip_mr_input at the moment.
267 && ((rt->rt_flags&RTCF_LOCAL) || !(IPCB(skb)->flags&IPSKB_FORWARDED))
270 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
272 NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb,
274 ip_dev_loopback_xmit);
277 /* Multicasts with ttl 0 must not go beyond the host */
279 if (ip_hdr(skb)->ttl == 0) {
285 if (rt->rt_flags&RTCF_BROADCAST) {
286 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
288 NF_HOOK(PF_INET, NF_INET_POST_ROUTING, newskb, NULL,
289 newskb->dev, ip_dev_loopback_xmit);
292 return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, skb->dev,
294 !(IPCB(skb)->flags & IPSKB_REROUTED));
297 int ip_output(struct sk_buff *skb)
299 struct net_device *dev = skb_dst(skb)->dev;
301 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
304 skb->protocol = htons(ETH_P_IP);
306 return NF_HOOK_COND(PF_INET, NF_INET_POST_ROUTING, skb, NULL, dev,
308 !(IPCB(skb)->flags & IPSKB_REROUTED));
311 int ip_queue_xmit(struct sk_buff *skb, int ipfragok)
313 struct sock *sk = skb->sk;
314 struct inet_sock *inet = inet_sk(sk);
315 struct ip_options *opt = inet->opt;
319 /* Skip all of this if the packet is already routed,
320 * f.e. by something like SCTP.
322 rt = skb_rtable(skb);
326 /* Make sure we can route this packet. */
327 rt = (struct rtable *)__sk_dst_check(sk, 0);
331 /* Use correct destination address if we have options. */
337 struct flowi fl = { .oif = sk->sk_bound_dev_if,
341 .saddr = inet->saddr,
342 .tos = RT_CONN_FLAGS(sk) } },
343 .proto = sk->sk_protocol,
344 .flags = inet_sk_flowi_flags(sk),
346 { .sport = inet->sport,
347 .dport = inet->dport } } };
349 /* If this fails, retransmit mechanism of transport layer will
350 * keep trying until route appears or the connection times
353 security_sk_classify_flow(sk, &fl);
354 if (ip_route_output_flow(sock_net(sk), &rt, &fl, sk, 0))
357 sk_setup_caps(sk, &rt->u.dst);
359 skb_dst_set(skb, dst_clone(&rt->u.dst));
362 if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
365 /* OK, we know where to send it, allocate and build IP header. */
366 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
367 skb_reset_network_header(skb);
369 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
370 if (ip_dont_fragment(sk, &rt->u.dst) && !ipfragok)
371 iph->frag_off = htons(IP_DF);
374 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
375 iph->protocol = sk->sk_protocol;
376 iph->saddr = rt->rt_src;
377 iph->daddr = rt->rt_dst;
378 /* Transport layer set skb->h.foo itself. */
380 if (opt && opt->optlen) {
381 iph->ihl += opt->optlen >> 2;
382 ip_options_build(skb, opt, inet->daddr, rt, 0);
385 ip_select_ident_more(iph, &rt->u.dst, sk,
386 (skb_shinfo(skb)->gso_segs ?: 1) - 1);
388 skb->priority = sk->sk_priority;
389 skb->mark = sk->sk_mark;
391 return ip_local_out(skb);
394 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
396 return -EHOSTUNREACH;
400 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
402 to->pkt_type = from->pkt_type;
403 to->priority = from->priority;
404 to->protocol = from->protocol;
406 skb_dst_set(to, dst_clone(skb_dst(from)));
408 to->mark = from->mark;
410 /* Copy the flags to each fragment. */
411 IPCB(to)->flags = IPCB(from)->flags;
413 #ifdef CONFIG_NET_SCHED
414 to->tc_index = from->tc_index;
417 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
418 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
419 to->nf_trace = from->nf_trace;
421 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
422 to->ipvs_property = from->ipvs_property;
424 skb_copy_secmark(to, from);
428 * This IP datagram is too large to be sent in one piece. Break it up into
429 * smaller pieces (each of size equal to IP header plus
430 * a block of the data of the original IP data part) that will yet fit in a
431 * single device frame, and queue such a frame for sending.
434 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
439 struct net_device *dev;
440 struct sk_buff *skb2;
441 unsigned int mtu, hlen, left, len, ll_rs, pad;
443 __be16 not_last_frag;
444 struct rtable *rt = skb_rtable(skb);
450 * Point into the IP datagram header.
455 if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
456 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
457 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
458 htonl(ip_skb_dst_mtu(skb)));
464 * Setup starting values.
468 mtu = dst_mtu(&rt->u.dst) - hlen; /* Size of data space */
469 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
471 /* When frag_list is given, use it. First, check its validity:
472 * some transformers could create wrong frag_list or break existing
473 * one, it is not prohibited. In this case fall back to copying.
475 * LATER: this step can be merged to real generation of fragments,
476 * we can switch to copy when see the first bad fragment.
478 if (skb_has_frags(skb)) {
479 struct sk_buff *frag;
480 int first_len = skb_pagelen(skb);
483 if (first_len - hlen > mtu ||
484 ((first_len - hlen) & 7) ||
485 (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
489 skb_walk_frags(skb, frag) {
490 /* Correct geometry. */
491 if (frag->len > mtu ||
492 ((frag->len & 7) && frag->next) ||
493 skb_headroom(frag) < hlen)
496 /* Partially cloned skb? */
497 if (skb_shared(frag))
503 frag->destructor = sock_wfree;
504 truesizes += frag->truesize;
508 /* Everything is OK. Generate! */
512 frag = skb_shinfo(skb)->frag_list;
513 skb_frag_list_init(skb);
514 skb->data_len = first_len - skb_headlen(skb);
515 skb->truesize -= truesizes;
516 skb->len = first_len;
517 iph->tot_len = htons(first_len);
518 iph->frag_off = htons(IP_MF);
522 /* Prepare header of the next frame,
523 * before previous one went down. */
525 frag->ip_summed = CHECKSUM_NONE;
526 skb_reset_transport_header(frag);
527 __skb_push(frag, hlen);
528 skb_reset_network_header(frag);
529 memcpy(skb_network_header(frag), iph, hlen);
531 iph->tot_len = htons(frag->len);
532 ip_copy_metadata(frag, skb);
534 ip_options_fragment(frag);
535 offset += skb->len - hlen;
536 iph->frag_off = htons(offset>>3);
537 if (frag->next != NULL)
538 iph->frag_off |= htons(IP_MF);
539 /* Ready, complete checksum */
546 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
556 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
565 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
570 left = skb->len - hlen; /* Space per frame */
571 ptr = raw + hlen; /* Where to start from */
573 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
574 * we need to make room for the encapsulating header
576 pad = nf_bridge_pad(skb);
577 ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, pad);
581 * Fragment the datagram.
584 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
585 not_last_frag = iph->frag_off & htons(IP_MF);
588 * Keep copying data until we run out.
593 /* IF: it doesn't fit, use 'mtu' - the data space left */
596 /* IF: we are not sending upto and including the packet end
597 then align the next start on an eight byte boundary */
605 if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
606 NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
612 * Set up data on packet
615 ip_copy_metadata(skb2, skb);
616 skb_reserve(skb2, ll_rs);
617 skb_put(skb2, len + hlen);
618 skb_reset_network_header(skb2);
619 skb2->transport_header = skb2->network_header + hlen;
622 * Charge the memory for the fragment to any owner
627 skb_set_owner_w(skb2, skb->sk);
630 * Copy the packet header into the new buffer.
633 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
636 * Copy a block of the IP datagram.
638 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
643 * Fill in the new header fields.
646 iph->frag_off = htons((offset >> 3));
648 /* ANK: dirty, but effective trick. Upgrade options only if
649 * the segment to be fragmented was THE FIRST (otherwise,
650 * options are already fixed) and make it ONCE
651 * on the initial skb, so that all the following fragments
652 * will inherit fixed options.
655 ip_options_fragment(skb);
658 * Added AC : If we are fragmenting a fragment that's not the
659 * last fragment then keep MF on each bit
661 if (left > 0 || not_last_frag)
662 iph->frag_off |= htons(IP_MF);
667 * Put this fragment into the sending queue.
669 iph->tot_len = htons(len + hlen);
677 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
680 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
685 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
689 EXPORT_SYMBOL(ip_fragment);
692 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
694 struct iovec *iov = from;
696 if (skb->ip_summed == CHECKSUM_PARTIAL) {
697 if (memcpy_fromiovecend(to, iov, offset, len) < 0)
701 if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
703 skb->csum = csum_block_add(skb->csum, csum, odd);
709 csum_page(struct page *page, int offset, int copy)
714 csum = csum_partial(kaddr + offset, copy, 0);
719 static inline int ip_ufo_append_data(struct sock *sk,
720 int getfrag(void *from, char *to, int offset, int len,
721 int odd, struct sk_buff *skb),
722 void *from, int length, int hh_len, int fragheaderlen,
723 int transhdrlen, int mtu, unsigned int flags)
728 /* There is support for UDP fragmentation offload by network
729 * device, so create one single skb packet containing complete
732 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
733 skb = sock_alloc_send_skb(sk,
734 hh_len + fragheaderlen + transhdrlen + 20,
735 (flags & MSG_DONTWAIT), &err);
740 /* reserve space for Hardware header */
741 skb_reserve(skb, hh_len);
743 /* create space for UDP/IP header */
744 skb_put(skb, fragheaderlen + transhdrlen);
746 /* initialize network header pointer */
747 skb_reset_network_header(skb);
749 /* initialize protocol header pointer */
750 skb->transport_header = skb->network_header + fragheaderlen;
752 skb->ip_summed = CHECKSUM_PARTIAL;
754 sk->sk_sndmsg_off = 0;
756 /* specify the length of each IP datagram fragment */
757 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
758 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
759 __skb_queue_tail(&sk->sk_write_queue, skb);
762 return skb_append_datato_frags(sk, skb, getfrag, from,
763 (length - transhdrlen));
767 * ip_append_data() and ip_append_page() can make one large IP datagram
768 * from many pieces of data. Each pieces will be holded on the socket
769 * until ip_push_pending_frames() is called. Each piece can be a page
772 * Not only UDP, other transport protocols - e.g. raw sockets - can use
773 * this interface potentially.
775 * LATER: length must be adjusted by pad at tail, when it is required.
777 int ip_append_data(struct sock *sk,
778 int getfrag(void *from, char *to, int offset, int len,
779 int odd, struct sk_buff *skb),
780 void *from, int length, int transhdrlen,
781 struct ipcm_cookie *ipc, struct rtable **rtp,
784 struct inet_sock *inet = inet_sk(sk);
787 struct ip_options *opt = NULL;
794 unsigned int maxfraglen, fragheaderlen;
795 int csummode = CHECKSUM_NONE;
801 if (skb_queue_empty(&sk->sk_write_queue)) {
807 if (inet->cork.opt == NULL) {
808 inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
809 if (unlikely(inet->cork.opt == NULL))
812 memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
813 inet->cork.flags |= IPCORK_OPT;
814 inet->cork.addr = ipc->addr;
820 * We steal reference to this route, caller should not release it
823 inet->cork.fragsize = mtu = inet->pmtudisc == IP_PMTUDISC_PROBE ?
825 dst_mtu(rt->u.dst.path);
826 inet->cork.dst = &rt->u.dst;
827 inet->cork.length = 0;
828 sk->sk_sndmsg_page = NULL;
829 sk->sk_sndmsg_off = 0;
830 if ((exthdrlen = rt->u.dst.header_len) != 0) {
832 transhdrlen += exthdrlen;
835 rt = (struct rtable *)inet->cork.dst;
836 if (inet->cork.flags & IPCORK_OPT)
837 opt = inet->cork.opt;
841 mtu = inet->cork.fragsize;
843 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
845 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
846 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
848 if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
849 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu-exthdrlen);
854 * transhdrlen > 0 means that this is the first fragment and we wish
855 * it won't be fragmented in the future.
858 length + fragheaderlen <= mtu &&
859 rt->u.dst.dev->features & NETIF_F_V4_CSUM &&
861 csummode = CHECKSUM_PARTIAL;
863 inet->cork.length += length;
864 if (((length> mtu) || !skb_queue_empty(&sk->sk_write_queue)) &&
865 (sk->sk_protocol == IPPROTO_UDP) &&
866 (rt->u.dst.dev->features & NETIF_F_UFO)) {
867 err = ip_ufo_append_data(sk, getfrag, from, length, hh_len,
868 fragheaderlen, transhdrlen, mtu,
875 /* So, what's going on in the loop below?
877 * We use calculated fragment length to generate chained skb,
878 * each of segments is IP fragment ready for sending to network after
879 * adding appropriate IP header.
882 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
886 /* Check if the remaining data fits into current packet. */
887 copy = mtu - skb->len;
889 copy = maxfraglen - skb->len;
892 unsigned int datalen;
893 unsigned int fraglen;
894 unsigned int fraggap;
895 unsigned int alloclen;
896 struct sk_buff *skb_prev;
900 fraggap = skb_prev->len - maxfraglen;
905 * If remaining data exceeds the mtu,
906 * we know we need more fragment(s).
908 datalen = length + fraggap;
909 if (datalen > mtu - fragheaderlen)
910 datalen = maxfraglen - fragheaderlen;
911 fraglen = datalen + fragheaderlen;
913 if ((flags & MSG_MORE) &&
914 !(rt->u.dst.dev->features&NETIF_F_SG))
917 alloclen = datalen + fragheaderlen;
919 /* The last fragment gets additional space at tail.
920 * Note, with MSG_MORE we overallocate on fragments,
921 * because we have no idea what fragment will be
924 if (datalen == length + fraggap)
925 alloclen += rt->u.dst.trailer_len;
928 skb = sock_alloc_send_skb(sk,
929 alloclen + hh_len + 15,
930 (flags & MSG_DONTWAIT), &err);
933 if (atomic_read(&sk->sk_wmem_alloc) <=
935 skb = sock_wmalloc(sk,
936 alloclen + hh_len + 15, 1,
938 if (unlikely(skb == NULL))
941 /* only the initial fragment is
949 * Fill in the control structures
951 skb->ip_summed = csummode;
953 skb_reserve(skb, hh_len);
954 *skb_tx(skb) = ipc->shtx;
957 * Find where to start putting bytes.
959 data = skb_put(skb, fraglen);
960 skb_set_network_header(skb, exthdrlen);
961 skb->transport_header = (skb->network_header +
963 data += fragheaderlen;
966 skb->csum = skb_copy_and_csum_bits(
967 skb_prev, maxfraglen,
968 data + transhdrlen, fraggap, 0);
969 skb_prev->csum = csum_sub(skb_prev->csum,
972 pskb_trim_unique(skb_prev, maxfraglen);
975 copy = datalen - transhdrlen - fraggap;
976 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
983 length -= datalen - fraggap;
986 csummode = CHECKSUM_NONE;
989 * Put the packet on the pending queue.
991 __skb_queue_tail(&sk->sk_write_queue, skb);
998 if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
1002 if (getfrag(from, skb_put(skb, copy),
1003 offset, copy, off, skb) < 0) {
1004 __skb_trim(skb, off);
1009 int i = skb_shinfo(skb)->nr_frags;
1010 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
1011 struct page *page = sk->sk_sndmsg_page;
1012 int off = sk->sk_sndmsg_off;
1015 if (page && (left = PAGE_SIZE - off) > 0) {
1018 if (page != frag->page) {
1019 if (i == MAX_SKB_FRAGS) {
1024 skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
1025 frag = &skb_shinfo(skb)->frags[i];
1027 } else if (i < MAX_SKB_FRAGS) {
1028 if (copy > PAGE_SIZE)
1030 page = alloc_pages(sk->sk_allocation, 0);
1035 sk->sk_sndmsg_page = page;
1036 sk->sk_sndmsg_off = 0;
1038 skb_fill_page_desc(skb, i, page, 0, 0);
1039 frag = &skb_shinfo(skb)->frags[i];
1044 if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1048 sk->sk_sndmsg_off += copy;
1051 skb->data_len += copy;
1052 skb->truesize += copy;
1053 atomic_add(copy, &sk->sk_wmem_alloc);
1062 inet->cork.length -= length;
1063 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1067 ssize_t ip_append_page(struct sock *sk, struct page *page,
1068 int offset, size_t size, int flags)
1070 struct inet_sock *inet = inet_sk(sk);
1071 struct sk_buff *skb;
1073 struct ip_options *opt = NULL;
1078 unsigned int maxfraglen, fragheaderlen, fraggap;
1083 if (flags&MSG_PROBE)
1086 if (skb_queue_empty(&sk->sk_write_queue))
1089 rt = (struct rtable *)inet->cork.dst;
1090 if (inet->cork.flags & IPCORK_OPT)
1091 opt = inet->cork.opt;
1093 if (!(rt->u.dst.dev->features&NETIF_F_SG))
1096 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1097 mtu = inet->cork.fragsize;
1099 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1100 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1102 if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1103 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu);
1107 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1110 inet->cork.length += size;
1111 if ((sk->sk_protocol == IPPROTO_UDP) &&
1112 (rt->u.dst.dev->features & NETIF_F_UFO)) {
1113 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1114 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1121 if (skb_is_gso(skb))
1125 /* Check if the remaining data fits into current packet. */
1126 len = mtu - skb->len;
1128 len = maxfraglen - skb->len;
1131 struct sk_buff *skb_prev;
1135 fraggap = skb_prev->len - maxfraglen;
1137 alloclen = fragheaderlen + hh_len + fraggap + 15;
1138 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1139 if (unlikely(!skb)) {
1145 * Fill in the control structures
1147 skb->ip_summed = CHECKSUM_NONE;
1149 skb_reserve(skb, hh_len);
1152 * Find where to start putting bytes.
1154 skb_put(skb, fragheaderlen + fraggap);
1155 skb_reset_network_header(skb);
1156 skb->transport_header = (skb->network_header +
1159 skb->csum = skb_copy_and_csum_bits(skb_prev,
1161 skb_transport_header(skb),
1163 skb_prev->csum = csum_sub(skb_prev->csum,
1165 pskb_trim_unique(skb_prev, maxfraglen);
1169 * Put the packet on the pending queue.
1171 __skb_queue_tail(&sk->sk_write_queue, skb);
1175 i = skb_shinfo(skb)->nr_frags;
1178 if (skb_can_coalesce(skb, i, page, offset)) {
1179 skb_shinfo(skb)->frags[i-1].size += len;
1180 } else if (i < MAX_SKB_FRAGS) {
1182 skb_fill_page_desc(skb, i, page, offset, len);
1188 if (skb->ip_summed == CHECKSUM_NONE) {
1190 csum = csum_page(page, offset, len);
1191 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1195 skb->data_len += len;
1196 skb->truesize += len;
1197 atomic_add(len, &sk->sk_wmem_alloc);
1204 inet->cork.length -= size;
1205 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1209 static void ip_cork_release(struct inet_sock *inet)
1211 inet->cork.flags &= ~IPCORK_OPT;
1212 kfree(inet->cork.opt);
1213 inet->cork.opt = NULL;
1214 dst_release(inet->cork.dst);
1215 inet->cork.dst = NULL;
1219 * Combined all pending IP fragments on the socket as one IP datagram
1220 * and push them out.
1222 int ip_push_pending_frames(struct sock *sk)
1224 struct sk_buff *skb, *tmp_skb;
1225 struct sk_buff **tail_skb;
1226 struct inet_sock *inet = inet_sk(sk);
1227 struct net *net = sock_net(sk);
1228 struct ip_options *opt = NULL;
1229 struct rtable *rt = (struct rtable *)inet->cork.dst;
1235 if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1237 tail_skb = &(skb_shinfo(skb)->frag_list);
1239 /* move skb->data to ip header from ext header */
1240 if (skb->data < skb_network_header(skb))
1241 __skb_pull(skb, skb_network_offset(skb));
1242 while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1243 __skb_pull(tmp_skb, skb_network_header_len(skb));
1244 *tail_skb = tmp_skb;
1245 tail_skb = &(tmp_skb->next);
1246 skb->len += tmp_skb->len;
1247 skb->data_len += tmp_skb->len;
1248 skb->truesize += tmp_skb->truesize;
1249 tmp_skb->destructor = NULL;
1253 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1254 * to fragment the frame generated here. No matter, what transforms
1255 * how transforms change size of the packet, it will come out.
1257 if (inet->pmtudisc < IP_PMTUDISC_DO)
1260 /* DF bit is set when we want to see DF on outgoing frames.
1261 * If local_df is set too, we still allow to fragment this frame
1263 if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1264 (skb->len <= dst_mtu(&rt->u.dst) &&
1265 ip_dont_fragment(sk, &rt->u.dst)))
1268 if (inet->cork.flags & IPCORK_OPT)
1269 opt = inet->cork.opt;
1271 if (rt->rt_type == RTN_MULTICAST)
1274 ttl = ip_select_ttl(inet, &rt->u.dst);
1276 iph = (struct iphdr *)skb->data;
1280 iph->ihl += opt->optlen>>2;
1281 ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1283 iph->tos = inet->tos;
1285 ip_select_ident(iph, &rt->u.dst, sk);
1287 iph->protocol = sk->sk_protocol;
1288 iph->saddr = rt->rt_src;
1289 iph->daddr = rt->rt_dst;
1291 skb->priority = sk->sk_priority;
1292 skb->mark = sk->sk_mark;
1294 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1297 inet->cork.dst = NULL;
1298 skb_dst_set(skb, &rt->u.dst);
1300 if (iph->protocol == IPPROTO_ICMP)
1301 icmp_out_count(net, ((struct icmphdr *)
1302 skb_transport_header(skb))->type);
1304 /* Netfilter gets whole the not fragmented skb. */
1305 err = ip_local_out(skb);
1308 err = net_xmit_errno(err);
1314 ip_cork_release(inet);
1318 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1323 * Throw away all pending data on the socket.
1325 void ip_flush_pending_frames(struct sock *sk)
1327 struct sk_buff *skb;
1329 while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1332 ip_cork_release(inet_sk(sk));
1337 * Fetch data from kernel space and fill in checksum if needed.
1339 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1340 int len, int odd, struct sk_buff *skb)
1344 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1345 skb->csum = csum_block_add(skb->csum, csum, odd);
1350 * Generic function to send a packet as reply to another packet.
1351 * Used to send TCP resets so far. ICMP should use this function too.
1353 * Should run single threaded per socket because it uses the sock
1354 * structure to pass arguments.
1356 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1359 struct inet_sock *inet = inet_sk(sk);
1361 struct ip_options opt;
1364 struct ipcm_cookie ipc;
1366 struct rtable *rt = skb_rtable(skb);
1368 if (ip_options_echo(&replyopts.opt, skb))
1371 daddr = ipc.addr = rt->rt_src;
1375 if (replyopts.opt.optlen) {
1376 ipc.opt = &replyopts.opt;
1379 daddr = replyopts.opt.faddr;
1383 struct flowi fl = { .oif = arg->bound_dev_if,
1386 .saddr = rt->rt_spec_dst,
1387 .tos = RT_TOS(ip_hdr(skb)->tos) } },
1388 /* Not quite clean, but right. */
1390 { .sport = tcp_hdr(skb)->dest,
1391 .dport = tcp_hdr(skb)->source } },
1392 .proto = sk->sk_protocol,
1393 .flags = ip_reply_arg_flowi_flags(arg) };
1394 security_skb_classify_flow(skb, &fl);
1395 if (ip_route_output_key(sock_net(sk), &rt, &fl))
1399 /* And let IP do all the hard work.
1401 This chunk is not reenterable, hence spinlock.
1402 Note that it uses the fact, that this function is called
1403 with locally disabled BH and that sk cannot be already spinlocked.
1406 inet->tos = ip_hdr(skb)->tos;
1407 sk->sk_priority = skb->priority;
1408 sk->sk_protocol = ip_hdr(skb)->protocol;
1409 sk->sk_bound_dev_if = arg->bound_dev_if;
1410 ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1411 &ipc, &rt, MSG_DONTWAIT);
1412 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1413 if (arg->csumoffset >= 0)
1414 *((__sum16 *)skb_transport_header(skb) +
1415 arg->csumoffset) = csum_fold(csum_add(skb->csum,
1417 skb->ip_summed = CHECKSUM_NONE;
1418 ip_push_pending_frames(sk);
1426 void __init ip_init(void)
1431 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1432 igmp_mc_proc_init();
1436 EXPORT_SYMBOL(ip_generic_getfrag);
1437 EXPORT_SYMBOL(ip_queue_xmit);
1438 EXPORT_SYMBOL(ip_send_check);