1 // SPDX-License-Identifier: GPL-2.0-only
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * The Internet Protocol (IP) output module.
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Donald Becker, <becker@super.org>
12 * Alan Cox, <Alan.Cox@linux.org>
14 * Stefan Becker, <stefanb@yello.ping.de>
15 * Jorge Cwik, <jorge@laser.satlink.net>
16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17 * Hirokazu Takahashi, <taka@valinux.co.jp>
19 * See ip_input.c for original log
22 * Alan Cox : Missing nonblock feature in ip_build_xmit.
23 * Mike Kilburn : htons() missing in ip_build_xmit.
24 * Bradford Johnson: Fix faulty handling of some frames when
26 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
27 * (in case if packet not accepted by
28 * output firewall rules)
29 * Mike McLagan : Routing by source
30 * Alexey Kuznetsov: use new route cache
31 * Andi Kleen: Fix broken PMTU recovery and remove
32 * some redundant tests.
33 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
34 * Andi Kleen : Replace ip_reply with ip_send_reply.
35 * Andi Kleen : Split fast and slow ip_build_xmit path
36 * for decreased register pressure on x86
37 * and more readibility.
38 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
39 * silently drop skb instead of failing with -EPERM.
40 * Detlev Wengorz : Copy protocol for fragments.
41 * Hirokazu Takahashi: HW checksumming for outgoing UDP
43 * Hirokazu Takahashi: sendfile() on UDP works now.
46 #include <linux/uaccess.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
71 #include <linux/skbuff.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <net/inet_ecn.h>
78 #include <net/lwtunnel.h>
79 #include <linux/bpf-cgroup.h>
80 #include <linux/igmp.h>
81 #include <linux/netfilter_ipv4.h>
82 #include <linux/netfilter_bridge.h>
83 #include <linux/netlink.h>
84 #include <linux/tcp.h>
87 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
89 int (*output)(struct net *, struct sock *, struct sk_buff *));
91 /* Generate a checksum for an outgoing IP datagram. */
92 void ip_send_check(struct iphdr *iph)
95 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
97 EXPORT_SYMBOL(ip_send_check);
99 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
101 struct iphdr *iph = ip_hdr(skb);
103 iph->tot_len = htons(skb->len);
106 /* if egress device is enslaved to an L3 master device pass the
107 * skb to its handler for processing
109 skb = l3mdev_ip_out(sk, skb);
113 skb->protocol = htons(ETH_P_IP);
115 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
116 net, sk, skb, NULL, skb_dst(skb)->dev,
120 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
124 err = __ip_local_out(net, sk, skb);
125 if (likely(err == 1))
126 err = dst_output(net, sk, skb);
130 EXPORT_SYMBOL_GPL(ip_local_out);
132 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
134 int ttl = inet->uc_ttl;
137 ttl = ip4_dst_hoplimit(dst);
142 * Add an ip header to a skbuff and send it out.
145 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
146 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
148 struct inet_sock *inet = inet_sk(sk);
149 struct rtable *rt = skb_rtable(skb);
150 struct net *net = sock_net(sk);
153 /* Build the IP header. */
154 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
155 skb_reset_network_header(skb);
159 iph->tos = inet->tos;
160 iph->ttl = ip_select_ttl(inet, &rt->dst);
161 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
163 iph->protocol = sk->sk_protocol;
164 if (ip_dont_fragment(sk, &rt->dst)) {
165 iph->frag_off = htons(IP_DF);
169 __ip_select_ident(net, iph, 1);
172 if (opt && opt->opt.optlen) {
173 iph->ihl += opt->opt.optlen>>2;
174 ip_options_build(skb, &opt->opt, daddr, rt, 0);
177 skb->priority = sk->sk_priority;
179 skb->mark = sk->sk_mark;
182 return ip_local_out(net, skb->sk, skb);
184 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
186 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
188 struct dst_entry *dst = skb_dst(skb);
189 struct rtable *rt = (struct rtable *)dst;
190 struct net_device *dev = dst->dev;
191 unsigned int hh_len = LL_RESERVED_SPACE(dev);
192 struct neighbour *neigh;
193 bool is_v6gw = false;
195 if (rt->rt_type == RTN_MULTICAST) {
196 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
197 } else if (rt->rt_type == RTN_BROADCAST)
198 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
200 /* Be paranoid, rather than too clever. */
201 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
202 struct sk_buff *skb2;
204 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
210 skb_set_owner_w(skb2, skb->sk);
215 if (lwtunnel_xmit_redirect(dst->lwtstate)) {
216 int res = lwtunnel_xmit(skb);
218 if (res < 0 || res == LWTUNNEL_XMIT_DONE)
223 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
224 if (!IS_ERR(neigh)) {
227 sock_confirm_neigh(skb, neigh);
228 /* if crossing protocols, can not use the cached header */
229 res = neigh_output(neigh, skb, is_v6gw);
230 rcu_read_unlock_bh();
233 rcu_read_unlock_bh();
235 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
241 static int ip_finish_output_gso(struct net *net, struct sock *sk,
242 struct sk_buff *skb, unsigned int mtu)
244 struct sk_buff *segs, *nskb;
245 netdev_features_t features;
248 /* common case: seglen is <= mtu
250 if (skb_gso_validate_network_len(skb, mtu))
251 return ip_finish_output2(net, sk, skb);
253 /* Slowpath - GSO segment length exceeds the egress MTU.
255 * This can happen in several cases:
256 * - Forwarding of a TCP GRO skb, when DF flag is not set.
257 * - Forwarding of an skb that arrived on a virtualization interface
258 * (virtio-net/vhost/tap) with TSO/GSO size set by other network
260 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
261 * interface with a smaller MTU.
262 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is
263 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an
266 features = netif_skb_features(skb);
267 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET);
268 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
269 if (IS_ERR_OR_NULL(segs)) {
276 skb_list_walk_safe(segs, segs, nskb) {
279 skb_mark_not_on_list(segs);
280 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
289 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
293 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
294 /* Policy lookup after SNAT yielded a new policy */
295 if (skb_dst(skb)->xfrm) {
296 IPCB(skb)->flags |= IPSKB_REROUTED;
297 return dst_output(net, sk, skb);
300 mtu = ip_skb_dst_mtu(sk, skb);
302 return ip_finish_output_gso(net, sk, skb, mtu);
304 if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
305 return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
307 return ip_finish_output2(net, sk, skb);
310 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
314 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
316 case NET_XMIT_SUCCESS:
317 return __ip_finish_output(net, sk, skb);
319 return __ip_finish_output(net, sk, skb) ? : ret;
326 static int ip_mc_finish_output(struct net *net, struct sock *sk,
329 struct rtable *new_rt;
333 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
338 case NET_XMIT_SUCCESS:
345 /* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting
346 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten,
347 * see ipv4_pktinfo_prepare().
349 new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb));
353 skb_dst_set(skb, &new_rt->dst);
356 err = dev_loopback_xmit(net, sk, skb);
357 return (do_cn && err) ? ret : err;
360 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
362 struct rtable *rt = skb_rtable(skb);
363 struct net_device *dev = rt->dst.dev;
366 * If the indicated interface is up and running, send the packet.
368 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
371 skb->protocol = htons(ETH_P_IP);
374 * Multicasts are looped back for other local users
377 if (rt->rt_flags&RTCF_MULTICAST) {
379 #ifdef CONFIG_IP_MROUTE
380 /* Small optimization: do not loopback not local frames,
381 which returned after forwarding; they will be dropped
382 by ip_mr_input in any case.
383 Note, that local frames are looped back to be delivered
386 This check is duplicated in ip_mr_input at the moment.
389 ((rt->rt_flags & RTCF_LOCAL) ||
390 !(IPCB(skb)->flags & IPSKB_FORWARDED))
393 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
395 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
396 net, sk, newskb, NULL, newskb->dev,
397 ip_mc_finish_output);
400 /* Multicasts with ttl 0 must not go beyond the host */
402 if (ip_hdr(skb)->ttl == 0) {
408 if (rt->rt_flags&RTCF_BROADCAST) {
409 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
411 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
412 net, sk, newskb, NULL, newskb->dev,
413 ip_mc_finish_output);
416 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
417 net, sk, skb, NULL, skb->dev,
419 !(IPCB(skb)->flags & IPSKB_REROUTED));
422 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
424 struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev;
426 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
429 skb->protocol = htons(ETH_P_IP);
431 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
432 net, sk, skb, indev, dev,
434 !(IPCB(skb)->flags & IPSKB_REROUTED));
438 * copy saddr and daddr, possibly using 64bit load/stores
440 * iph->saddr = fl4->saddr;
441 * iph->daddr = fl4->daddr;
443 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
445 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
446 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
447 memcpy(&iph->saddr, &fl4->saddr,
448 sizeof(fl4->saddr) + sizeof(fl4->daddr));
451 /* Note: skb->sk can be different from sk, in case of tunnels */
452 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
455 struct inet_sock *inet = inet_sk(sk);
456 struct net *net = sock_net(sk);
457 struct ip_options_rcu *inet_opt;
463 /* Skip all of this if the packet is already routed,
464 * f.e. by something like SCTP.
467 inet_opt = rcu_dereference(inet->inet_opt);
469 rt = skb_rtable(skb);
473 /* Make sure we can route this packet. */
474 rt = (struct rtable *)__sk_dst_check(sk, 0);
478 /* Use correct destination address if we have options. */
479 daddr = inet->inet_daddr;
480 if (inet_opt && inet_opt->opt.srr)
481 daddr = inet_opt->opt.faddr;
483 /* If this fails, retransmit mechanism of transport layer will
484 * keep trying until route appears or the connection times
487 rt = ip_route_output_ports(net, fl4, sk,
488 daddr, inet->inet_saddr,
492 RT_CONN_FLAGS_TOS(sk, tos),
493 sk->sk_bound_dev_if);
496 sk_setup_caps(sk, &rt->dst);
498 skb_dst_set_noref(skb, &rt->dst);
501 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
504 /* OK, we know where to send it, allocate and build IP header. */
505 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
506 skb_reset_network_header(skb);
508 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
509 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
510 iph->frag_off = htons(IP_DF);
513 iph->ttl = ip_select_ttl(inet, &rt->dst);
514 iph->protocol = sk->sk_protocol;
515 ip_copy_addrs(iph, fl4);
517 /* Transport layer set skb->h.foo itself. */
519 if (inet_opt && inet_opt->opt.optlen) {
520 iph->ihl += inet_opt->opt.optlen >> 2;
521 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
524 ip_select_ident_segs(net, skb, sk,
525 skb_shinfo(skb)->gso_segs ?: 1);
527 /* TODO : should we use skb->sk here instead of sk ? */
528 skb->priority = sk->sk_priority;
529 skb->mark = sk->sk_mark;
531 res = ip_local_out(net, sk, skb);
537 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
539 return -EHOSTUNREACH;
541 EXPORT_SYMBOL(__ip_queue_xmit);
543 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
545 return __ip_queue_xmit(sk, skb, fl, inet_sk(sk)->tos);
547 EXPORT_SYMBOL(ip_queue_xmit);
549 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
551 to->pkt_type = from->pkt_type;
552 to->priority = from->priority;
553 to->protocol = from->protocol;
554 to->skb_iif = from->skb_iif;
556 skb_dst_copy(to, from);
558 to->mark = from->mark;
560 skb_copy_hash(to, from);
562 #ifdef CONFIG_NET_SCHED
563 to->tc_index = from->tc_index;
566 skb_ext_copy(to, from);
567 #if IS_ENABLED(CONFIG_IP_VS)
568 to->ipvs_property = from->ipvs_property;
570 skb_copy_secmark(to, from);
573 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
575 int (*output)(struct net *, struct sock *, struct sk_buff *))
577 struct iphdr *iph = ip_hdr(skb);
579 if ((iph->frag_off & htons(IP_DF)) == 0)
580 return ip_do_fragment(net, sk, skb, output);
582 if (unlikely(!skb->ignore_df ||
583 (IPCB(skb)->frag_max_size &&
584 IPCB(skb)->frag_max_size > mtu))) {
585 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
586 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
592 return ip_do_fragment(net, sk, skb, output);
595 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph,
596 unsigned int hlen, struct ip_fraglist_iter *iter)
598 unsigned int first_len = skb_pagelen(skb);
600 iter->frag = skb_shinfo(skb)->frag_list;
601 skb_frag_list_init(skb);
607 skb->data_len = first_len - skb_headlen(skb);
608 skb->len = first_len;
609 iph->tot_len = htons(first_len);
610 iph->frag_off = htons(IP_MF);
613 EXPORT_SYMBOL(ip_fraglist_init);
615 static void ip_fraglist_ipcb_prepare(struct sk_buff *skb,
616 struct ip_fraglist_iter *iter)
618 struct sk_buff *to = iter->frag;
620 /* Copy the flags to each fragment. */
621 IPCB(to)->flags = IPCB(skb)->flags;
623 if (iter->offset == 0)
624 ip_options_fragment(to);
627 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter)
629 unsigned int hlen = iter->hlen;
630 struct iphdr *iph = iter->iph;
631 struct sk_buff *frag;
634 frag->ip_summed = CHECKSUM_NONE;
635 skb_reset_transport_header(frag);
636 __skb_push(frag, hlen);
637 skb_reset_network_header(frag);
638 memcpy(skb_network_header(frag), iph, hlen);
639 iter->iph = ip_hdr(frag);
641 iph->tot_len = htons(frag->len);
642 ip_copy_metadata(frag, skb);
643 iter->offset += skb->len - hlen;
644 iph->frag_off = htons(iter->offset >> 3);
646 iph->frag_off |= htons(IP_MF);
647 /* Ready, complete checksum */
650 EXPORT_SYMBOL(ip_fraglist_prepare);
652 void ip_frag_init(struct sk_buff *skb, unsigned int hlen,
653 unsigned int ll_rs, unsigned int mtu, bool DF,
654 struct ip_frag_state *state)
656 struct iphdr *iph = ip_hdr(skb);
660 state->ll_rs = ll_rs;
663 state->left = skb->len - hlen; /* Space per frame */
664 state->ptr = hlen; /* Where to start from */
666 state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
667 state->not_last_frag = iph->frag_off & htons(IP_MF);
669 EXPORT_SYMBOL(ip_frag_init);
671 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to,
672 bool first_frag, struct ip_frag_state *state)
674 /* Copy the flags to each fragment. */
675 IPCB(to)->flags = IPCB(from)->flags;
677 /* ANK: dirty, but effective trick. Upgrade options only if
678 * the segment to be fragmented was THE FIRST (otherwise,
679 * options are already fixed) and make it ONCE
680 * on the initial skb, so that all the following fragments
681 * will inherit fixed options.
684 ip_options_fragment(from);
687 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state)
689 unsigned int len = state->left;
690 struct sk_buff *skb2;
694 /* IF: it doesn't fit, use 'mtu' - the data space left */
695 if (len > state->mtu)
697 /* IF: we are not sending up to and including the packet end
698 then align the next start on an eight byte boundary */
699 if (len < state->left) {
703 /* Allocate buffer */
704 skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC);
706 return ERR_PTR(-ENOMEM);
709 * Set up data on packet
712 ip_copy_metadata(skb2, skb);
713 skb_reserve(skb2, state->ll_rs);
714 skb_put(skb2, len + state->hlen);
715 skb_reset_network_header(skb2);
716 skb2->transport_header = skb2->network_header + state->hlen;
719 * Charge the memory for the fragment to any owner
724 skb_set_owner_w(skb2, skb->sk);
727 * Copy the packet header into the new buffer.
730 skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen);
733 * Copy a block of the IP datagram.
735 if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len))
740 * Fill in the new header fields.
743 iph->frag_off = htons((state->offset >> 3));
745 iph->frag_off |= htons(IP_DF);
748 * Added AC : If we are fragmenting a fragment that's not the
749 * last fragment then keep MF on each bit
751 if (state->left > 0 || state->not_last_frag)
752 iph->frag_off |= htons(IP_MF);
754 state->offset += len;
756 iph->tot_len = htons(len + state->hlen);
762 EXPORT_SYMBOL(ip_frag_next);
765 * This IP datagram is too large to be sent in one piece. Break it up into
766 * smaller pieces (each of size equal to IP header plus
767 * a block of the data of the original IP data part) that will yet fit in a
768 * single device frame, and queue such a frame for sending.
771 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
772 int (*output)(struct net *, struct sock *, struct sk_buff *))
775 struct sk_buff *skb2;
776 struct rtable *rt = skb_rtable(skb);
777 unsigned int mtu, hlen, ll_rs;
778 struct ip_fraglist_iter iter;
779 ktime_t tstamp = skb->tstamp;
780 struct ip_frag_state state;
783 /* for offloaded checksums cleanup checksum before fragmentation */
784 if (skb->ip_summed == CHECKSUM_PARTIAL &&
785 (err = skb_checksum_help(skb)))
789 * Point into the IP datagram header.
794 mtu = ip_skb_dst_mtu(sk, skb);
795 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
796 mtu = IPCB(skb)->frag_max_size;
799 * Setup starting values.
803 mtu = mtu - hlen; /* Size of data space */
804 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
805 ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
807 /* When frag_list is given, use it. First, check its validity:
808 * some transformers could create wrong frag_list or break existing
809 * one, it is not prohibited. In this case fall back to copying.
811 * LATER: this step can be merged to real generation of fragments,
812 * we can switch to copy when see the first bad fragment.
814 if (skb_has_frag_list(skb)) {
815 struct sk_buff *frag, *frag2;
816 unsigned int first_len = skb_pagelen(skb);
818 if (first_len - hlen > mtu ||
819 ((first_len - hlen) & 7) ||
820 ip_is_fragment(iph) ||
822 skb_headroom(skb) < ll_rs)
825 skb_walk_frags(skb, frag) {
826 /* Correct geometry. */
827 if (frag->len > mtu ||
828 ((frag->len & 7) && frag->next) ||
829 skb_headroom(frag) < hlen + ll_rs)
830 goto slow_path_clean;
832 /* Partially cloned skb? */
833 if (skb_shared(frag))
834 goto slow_path_clean;
839 frag->destructor = sock_wfree;
841 skb->truesize -= frag->truesize;
844 /* Everything is OK. Generate! */
845 ip_fraglist_init(skb, iph, hlen, &iter);
848 /* Prepare header of the next frame,
849 * before previous one went down. */
851 ip_fraglist_ipcb_prepare(skb, &iter);
852 ip_fraglist_prepare(skb, &iter);
855 skb->tstamp = tstamp;
856 err = output(net, sk, skb);
859 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
860 if (err || !iter.frag)
863 skb = ip_fraglist_next(&iter);
867 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
871 kfree_skb_list(iter.frag);
873 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
877 skb_walk_frags(skb, frag2) {
881 frag2->destructor = NULL;
882 skb->truesize += frag2->truesize;
888 * Fragment the datagram.
891 ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU,
895 * Keep copying data until we run out.
898 while (state.left > 0) {
899 bool first_frag = (state.offset == 0);
901 skb2 = ip_frag_next(skb, &state);
906 ip_frag_ipcb(skb, skb2, first_frag, &state);
909 * Put this fragment into the sending queue.
911 skb2->tstamp = tstamp;
912 err = output(net, sk, skb2);
916 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
919 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
924 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
927 EXPORT_SYMBOL(ip_do_fragment);
930 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
932 struct msghdr *msg = from;
934 if (skb->ip_summed == CHECKSUM_PARTIAL) {
935 if (!copy_from_iter_full(to, len, &msg->msg_iter))
939 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
941 skb->csum = csum_block_add(skb->csum, csum, odd);
945 EXPORT_SYMBOL(ip_generic_getfrag);
948 csum_page(struct page *page, int offset, int copy)
953 csum = csum_partial(kaddr + offset, copy, 0);
958 static int __ip_append_data(struct sock *sk,
960 struct sk_buff_head *queue,
961 struct inet_cork *cork,
962 struct page_frag *pfrag,
963 int getfrag(void *from, char *to, int offset,
964 int len, int odd, struct sk_buff *skb),
965 void *from, int length, int transhdrlen,
968 struct inet_sock *inet = inet_sk(sk);
969 struct ubuf_info *uarg = NULL;
972 struct ip_options *opt = cork->opt;
979 unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
980 int csummode = CHECKSUM_NONE;
981 struct rtable *rt = (struct rtable *)cork->dst;
982 unsigned int wmem_alloc_delta = 0;
983 bool paged, extra_uref = false;
986 skb = skb_peek_tail(queue);
988 exthdrlen = !skb ? rt->dst.header_len : 0;
989 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
990 paged = !!cork->gso_size;
992 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
993 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
994 tskey = sk->sk_tskey++;
996 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
998 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
999 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1000 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1002 if (cork->length + length > maxnonfragsize - fragheaderlen) {
1003 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1004 mtu - (opt ? opt->optlen : 0));
1009 * transhdrlen > 0 means that this is the first fragment and we wish
1010 * it won't be fragmented in the future.
1013 length + fragheaderlen <= mtu &&
1014 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
1015 (!(flags & MSG_MORE) || cork->gso_size) &&
1016 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
1017 csummode = CHECKSUM_PARTIAL;
1019 if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) {
1020 uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb));
1023 extra_uref = !skb_zcopy(skb); /* only ref on new uarg */
1024 if (rt->dst.dev->features & NETIF_F_SG &&
1025 csummode == CHECKSUM_PARTIAL) {
1029 skb_zcopy_set(skb, uarg, &extra_uref);
1033 cork->length += length;
1035 /* So, what's going on in the loop below?
1037 * We use calculated fragment length to generate chained skb,
1038 * each of segments is IP fragment ready for sending to network after
1039 * adding appropriate IP header.
1045 while (length > 0) {
1046 /* Check if the remaining data fits into current packet. */
1047 copy = mtu - skb->len;
1049 copy = maxfraglen - skb->len;
1052 unsigned int datalen;
1053 unsigned int fraglen;
1054 unsigned int fraggap;
1055 unsigned int alloclen;
1056 unsigned int pagedlen;
1057 struct sk_buff *skb_prev;
1061 fraggap = skb_prev->len - maxfraglen;
1066 * If remaining data exceeds the mtu,
1067 * we know we need more fragment(s).
1069 datalen = length + fraggap;
1070 if (datalen > mtu - fragheaderlen)
1071 datalen = maxfraglen - fragheaderlen;
1072 fraglen = datalen + fragheaderlen;
1075 if ((flags & MSG_MORE) &&
1076 !(rt->dst.dev->features&NETIF_F_SG))
1081 alloclen = min_t(int, fraglen, MAX_HEADER);
1082 pagedlen = fraglen - alloclen;
1085 alloclen += exthdrlen;
1087 /* The last fragment gets additional space at tail.
1088 * Note, with MSG_MORE we overallocate on fragments,
1089 * because we have no idea what fragment will be
1092 if (datalen == length + fraggap)
1093 alloclen += rt->dst.trailer_len;
1096 skb = sock_alloc_send_skb(sk,
1097 alloclen + hh_len + 15,
1098 (flags & MSG_DONTWAIT), &err);
1101 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
1103 skb = alloc_skb(alloclen + hh_len + 15,
1112 * Fill in the control structures
1114 skb->ip_summed = csummode;
1116 skb_reserve(skb, hh_len);
1119 * Find where to start putting bytes.
1121 data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1122 skb_set_network_header(skb, exthdrlen);
1123 skb->transport_header = (skb->network_header +
1125 data += fragheaderlen + exthdrlen;
1128 skb->csum = skb_copy_and_csum_bits(
1129 skb_prev, maxfraglen,
1130 data + transhdrlen, fraggap);
1131 skb_prev->csum = csum_sub(skb_prev->csum,
1134 pskb_trim_unique(skb_prev, maxfraglen);
1137 copy = datalen - transhdrlen - fraggap - pagedlen;
1138 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1145 length -= copy + transhdrlen;
1148 csummode = CHECKSUM_NONE;
1150 /* only the initial fragment is time stamped */
1151 skb_shinfo(skb)->tx_flags = cork->tx_flags;
1153 skb_shinfo(skb)->tskey = tskey;
1155 skb_zcopy_set(skb, uarg, &extra_uref);
1157 if ((flags & MSG_CONFIRM) && !skb_prev)
1158 skb_set_dst_pending_confirm(skb, 1);
1161 * Put the packet on the pending queue.
1163 if (!skb->destructor) {
1164 skb->destructor = sock_wfree;
1166 wmem_alloc_delta += skb->truesize;
1168 __skb_queue_tail(queue, skb);
1175 if (!(rt->dst.dev->features&NETIF_F_SG) &&
1176 skb_tailroom(skb) >= copy) {
1180 if (getfrag(from, skb_put(skb, copy),
1181 offset, copy, off, skb) < 0) {
1182 __skb_trim(skb, off);
1186 } else if (!uarg || !uarg->zerocopy) {
1187 int i = skb_shinfo(skb)->nr_frags;
1190 if (!sk_page_frag_refill(sk, pfrag))
1193 if (!skb_can_coalesce(skb, i, pfrag->page,
1196 if (i == MAX_SKB_FRAGS)
1199 __skb_fill_page_desc(skb, i, pfrag->page,
1201 skb_shinfo(skb)->nr_frags = ++i;
1202 get_page(pfrag->page);
1204 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1206 page_address(pfrag->page) + pfrag->offset,
1207 offset, copy, skb->len, skb) < 0)
1210 pfrag->offset += copy;
1211 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1213 skb->data_len += copy;
1214 skb->truesize += copy;
1215 wmem_alloc_delta += copy;
1217 err = skb_zerocopy_iter_dgram(skb, from, copy);
1225 if (wmem_alloc_delta)
1226 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1233 sock_zerocopy_put_abort(uarg, extra_uref);
1234 cork->length -= length;
1235 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1236 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1240 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1241 struct ipcm_cookie *ipc, struct rtable **rtp)
1243 struct ip_options_rcu *opt;
1251 * setup for corking.
1256 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1258 if (unlikely(!cork->opt))
1261 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1262 cork->flags |= IPCORK_OPT;
1263 cork->addr = ipc->addr;
1266 cork->fragsize = ip_sk_use_pmtu(sk) ?
1267 dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu);
1269 if (!inetdev_valid_mtu(cork->fragsize))
1270 return -ENETUNREACH;
1272 cork->gso_size = ipc->gso_size;
1274 cork->dst = &rt->dst;
1275 /* We stole this route, caller should not release it. */
1279 cork->ttl = ipc->ttl;
1280 cork->tos = ipc->tos;
1281 cork->mark = ipc->sockc.mark;
1282 cork->priority = ipc->priority;
1283 cork->transmit_time = ipc->sockc.transmit_time;
1285 sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags);
1291 * ip_append_data() and ip_append_page() can make one large IP datagram
1292 * from many pieces of data. Each pieces will be holded on the socket
1293 * until ip_push_pending_frames() is called. Each piece can be a page
1296 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1297 * this interface potentially.
1299 * LATER: length must be adjusted by pad at tail, when it is required.
1301 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1302 int getfrag(void *from, char *to, int offset, int len,
1303 int odd, struct sk_buff *skb),
1304 void *from, int length, int transhdrlen,
1305 struct ipcm_cookie *ipc, struct rtable **rtp,
1308 struct inet_sock *inet = inet_sk(sk);
1311 if (flags&MSG_PROBE)
1314 if (skb_queue_empty(&sk->sk_write_queue)) {
1315 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1322 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1323 sk_page_frag(sk), getfrag,
1324 from, length, transhdrlen, flags);
1327 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1328 int offset, size_t size, int flags)
1330 struct inet_sock *inet = inet_sk(sk);
1331 struct sk_buff *skb;
1333 struct ip_options *opt = NULL;
1334 struct inet_cork *cork;
1339 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1344 if (flags&MSG_PROBE)
1347 if (skb_queue_empty(&sk->sk_write_queue))
1350 cork = &inet->cork.base;
1351 rt = (struct rtable *)cork->dst;
1352 if (cork->flags & IPCORK_OPT)
1355 if (!(rt->dst.dev->features&NETIF_F_SG))
1358 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1359 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
1361 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1362 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1363 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1365 if (cork->length + size > maxnonfragsize - fragheaderlen) {
1366 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1367 mtu - (opt ? opt->optlen : 0));
1371 skb = skb_peek_tail(&sk->sk_write_queue);
1375 cork->length += size;
1378 /* Check if the remaining data fits into current packet. */
1379 len = mtu - skb->len;
1381 len = maxfraglen - skb->len;
1384 struct sk_buff *skb_prev;
1388 fraggap = skb_prev->len - maxfraglen;
1390 alloclen = fragheaderlen + hh_len + fraggap + 15;
1391 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1392 if (unlikely(!skb)) {
1398 * Fill in the control structures
1400 skb->ip_summed = CHECKSUM_NONE;
1402 skb_reserve(skb, hh_len);
1405 * Find where to start putting bytes.
1407 skb_put(skb, fragheaderlen + fraggap);
1408 skb_reset_network_header(skb);
1409 skb->transport_header = (skb->network_header +
1412 skb->csum = skb_copy_and_csum_bits(skb_prev,
1414 skb_transport_header(skb),
1416 skb_prev->csum = csum_sub(skb_prev->csum,
1418 pskb_trim_unique(skb_prev, maxfraglen);
1422 * Put the packet on the pending queue.
1424 __skb_queue_tail(&sk->sk_write_queue, skb);
1431 if (skb_append_pagefrags(skb, page, offset, len)) {
1436 if (skb->ip_summed == CHECKSUM_NONE) {
1438 csum = csum_page(page, offset, len);
1439 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1443 skb->data_len += len;
1444 skb->truesize += len;
1445 refcount_add(len, &sk->sk_wmem_alloc);
1452 cork->length -= size;
1453 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1457 static void ip_cork_release(struct inet_cork *cork)
1459 cork->flags &= ~IPCORK_OPT;
1462 dst_release(cork->dst);
1467 * Combined all pending IP fragments on the socket as one IP datagram
1468 * and push them out.
1470 struct sk_buff *__ip_make_skb(struct sock *sk,
1472 struct sk_buff_head *queue,
1473 struct inet_cork *cork)
1475 struct sk_buff *skb, *tmp_skb;
1476 struct sk_buff **tail_skb;
1477 struct inet_sock *inet = inet_sk(sk);
1478 struct net *net = sock_net(sk);
1479 struct ip_options *opt = NULL;
1480 struct rtable *rt = (struct rtable *)cork->dst;
1485 skb = __skb_dequeue(queue);
1488 tail_skb = &(skb_shinfo(skb)->frag_list);
1490 /* move skb->data to ip header from ext header */
1491 if (skb->data < skb_network_header(skb))
1492 __skb_pull(skb, skb_network_offset(skb));
1493 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1494 __skb_pull(tmp_skb, skb_network_header_len(skb));
1495 *tail_skb = tmp_skb;
1496 tail_skb = &(tmp_skb->next);
1497 skb->len += tmp_skb->len;
1498 skb->data_len += tmp_skb->len;
1499 skb->truesize += tmp_skb->truesize;
1500 tmp_skb->destructor = NULL;
1504 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1505 * to fragment the frame generated here. No matter, what transforms
1506 * how transforms change size of the packet, it will come out.
1508 skb->ignore_df = ip_sk_ignore_df(sk);
1510 /* DF bit is set when we want to see DF on outgoing frames.
1511 * If ignore_df is set too, we still allow to fragment this frame
1513 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1514 inet->pmtudisc == IP_PMTUDISC_PROBE ||
1515 (skb->len <= dst_mtu(&rt->dst) &&
1516 ip_dont_fragment(sk, &rt->dst)))
1519 if (cork->flags & IPCORK_OPT)
1524 else if (rt->rt_type == RTN_MULTICAST)
1527 ttl = ip_select_ttl(inet, &rt->dst);
1532 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1535 iph->protocol = sk->sk_protocol;
1536 ip_copy_addrs(iph, fl4);
1537 ip_select_ident(net, skb, sk);
1540 iph->ihl += opt->optlen>>2;
1541 ip_options_build(skb, opt, cork->addr, rt, 0);
1544 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1545 skb->mark = cork->mark;
1546 skb->tstamp = cork->transmit_time;
1548 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1552 skb_dst_set(skb, &rt->dst);
1554 if (iph->protocol == IPPROTO_ICMP)
1555 icmp_out_count(net, ((struct icmphdr *)
1556 skb_transport_header(skb))->type);
1558 ip_cork_release(cork);
1563 int ip_send_skb(struct net *net, struct sk_buff *skb)
1567 err = ip_local_out(net, skb->sk, skb);
1570 err = net_xmit_errno(err);
1572 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1578 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1580 struct sk_buff *skb;
1582 skb = ip_finish_skb(sk, fl4);
1586 /* Netfilter gets whole the not fragmented skb. */
1587 return ip_send_skb(sock_net(sk), skb);
1591 * Throw away all pending data on the socket.
1593 static void __ip_flush_pending_frames(struct sock *sk,
1594 struct sk_buff_head *queue,
1595 struct inet_cork *cork)
1597 struct sk_buff *skb;
1599 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1602 ip_cork_release(cork);
1605 void ip_flush_pending_frames(struct sock *sk)
1607 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1610 struct sk_buff *ip_make_skb(struct sock *sk,
1612 int getfrag(void *from, char *to, int offset,
1613 int len, int odd, struct sk_buff *skb),
1614 void *from, int length, int transhdrlen,
1615 struct ipcm_cookie *ipc, struct rtable **rtp,
1616 struct inet_cork *cork, unsigned int flags)
1618 struct sk_buff_head queue;
1621 if (flags & MSG_PROBE)
1624 __skb_queue_head_init(&queue);
1629 err = ip_setup_cork(sk, cork, ipc, rtp);
1631 return ERR_PTR(err);
1633 err = __ip_append_data(sk, fl4, &queue, cork,
1634 ¤t->task_frag, getfrag,
1635 from, length, transhdrlen, flags);
1637 __ip_flush_pending_frames(sk, &queue, cork);
1638 return ERR_PTR(err);
1641 return __ip_make_skb(sk, fl4, &queue, cork);
1645 * Fetch data from kernel space and fill in checksum if needed.
1647 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1648 int len, int odd, struct sk_buff *skb)
1652 csum = csum_partial_copy_nocheck(dptr+offset, to, len);
1653 skb->csum = csum_block_add(skb->csum, csum, odd);
1658 * Generic function to send a packet as reply to another packet.
1659 * Used to send some TCP resets/acks so far.
1661 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1662 const struct ip_options *sopt,
1663 __be32 daddr, __be32 saddr,
1664 const struct ip_reply_arg *arg,
1665 unsigned int len, u64 transmit_time)
1667 struct ip_options_data replyopts;
1668 struct ipcm_cookie ipc;
1670 struct rtable *rt = skb_rtable(skb);
1671 struct net *net = sock_net(sk);
1672 struct sk_buff *nskb;
1676 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1681 ipc.sockc.transmit_time = transmit_time;
1683 if (replyopts.opt.opt.optlen) {
1684 ipc.opt = &replyopts.opt;
1686 if (replyopts.opt.opt.srr)
1687 daddr = replyopts.opt.opt.faddr;
1690 oif = arg->bound_dev_if;
1691 if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1694 flowi4_init_output(&fl4, oif,
1695 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1697 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1698 ip_reply_arg_flowi_flags(arg),
1700 tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1702 security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1703 rt = ip_route_output_key(net, &fl4);
1707 inet_sk(sk)->tos = arg->tos & ~INET_ECN_MASK;
1709 sk->sk_protocol = ip_hdr(skb)->protocol;
1710 sk->sk_bound_dev_if = arg->bound_dev_if;
1711 sk->sk_sndbuf = sysctl_wmem_default;
1712 ipc.sockc.mark = fl4.flowi4_mark;
1713 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1714 len, 0, &ipc, &rt, MSG_DONTWAIT);
1715 if (unlikely(err)) {
1716 ip_flush_pending_frames(sk);
1720 nskb = skb_peek(&sk->sk_write_queue);
1722 if (arg->csumoffset >= 0)
1723 *((__sum16 *)skb_transport_header(nskb) +
1724 arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1726 nskb->ip_summed = CHECKSUM_NONE;
1727 ip_push_pending_frames(sk, &fl4);
1733 void __init ip_init(void)
1738 #if defined(CONFIG_IP_MULTICAST)