1 // SPDX-License-Identifier: GPL-2.0-only
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * The Internet Protocol (IP) output module.
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Donald Becker, <becker@super.org>
12 * Alan Cox, <Alan.Cox@linux.org>
14 * Stefan Becker, <stefanb@yello.ping.de>
15 * Jorge Cwik, <jorge@laser.satlink.net>
16 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17 * Hirokazu Takahashi, <taka@valinux.co.jp>
19 * See ip_input.c for original log
22 * Alan Cox : Missing nonblock feature in ip_build_xmit.
23 * Mike Kilburn : htons() missing in ip_build_xmit.
24 * Bradford Johnson: Fix faulty handling of some frames when
26 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
27 * (in case if packet not accepted by
28 * output firewall rules)
29 * Mike McLagan : Routing by source
30 * Alexey Kuznetsov: use new route cache
31 * Andi Kleen: Fix broken PMTU recovery and remove
32 * some redundant tests.
33 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
34 * Andi Kleen : Replace ip_reply with ip_send_reply.
35 * Andi Kleen : Split fast and slow ip_build_xmit path
36 * for decreased register pressure on x86
37 * and more readability.
38 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
39 * silently drop skb instead of failing with -EPERM.
40 * Detlev Wengorz : Copy protocol for fragments.
41 * Hirokazu Takahashi: HW checksumming for outgoing UDP
43 * Hirokazu Takahashi: sendfile() on UDP works now.
46 #include <linux/uaccess.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
71 #include <linux/skbuff.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <net/inet_ecn.h>
78 #include <net/lwtunnel.h>
79 #include <linux/bpf-cgroup.h>
80 #include <linux/igmp.h>
81 #include <linux/netfilter_ipv4.h>
82 #include <linux/netfilter_bridge.h>
83 #include <linux/netlink.h>
84 #include <linux/tcp.h>
87 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
89 int (*output)(struct net *, struct sock *, struct sk_buff *));
91 /* Generate a checksum for an outgoing IP datagram. */
92 void ip_send_check(struct iphdr *iph)
95 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
97 EXPORT_SYMBOL(ip_send_check);
99 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
101 struct iphdr *iph = ip_hdr(skb);
103 iph->tot_len = htons(skb->len);
106 /* if egress device is enslaved to an L3 master device pass the
107 * skb to its handler for processing
109 skb = l3mdev_ip_out(sk, skb);
113 skb->protocol = htons(ETH_P_IP);
115 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
116 net, sk, skb, NULL, skb_dst(skb)->dev,
120 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
124 err = __ip_local_out(net, sk, skb);
125 if (likely(err == 1))
126 err = dst_output(net, sk, skb);
130 EXPORT_SYMBOL_GPL(ip_local_out);
132 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
134 int ttl = inet->uc_ttl;
137 ttl = ip4_dst_hoplimit(dst);
142 * Add an ip header to a skbuff and send it out.
145 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
146 __be32 saddr, __be32 daddr, struct ip_options_rcu *opt,
149 struct inet_sock *inet = inet_sk(sk);
150 struct rtable *rt = skb_rtable(skb);
151 struct net *net = sock_net(sk);
154 /* Build the IP header. */
155 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
156 skb_reset_network_header(skb);
161 iph->ttl = ip_select_ttl(inet, &rt->dst);
162 iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
164 iph->protocol = sk->sk_protocol;
165 /* Do not bother generating IPID for small packets (eg SYNACK) */
166 if (skb->len <= IPV4_MIN_MTU || ip_dont_fragment(sk, &rt->dst)) {
167 iph->frag_off = htons(IP_DF);
171 /* TCP packets here are SYNACK with fat IPv4/TCP options.
172 * Avoid using the hashed IP ident generator.
174 if (sk->sk_protocol == IPPROTO_TCP)
175 iph->id = (__force __be16)prandom_u32();
177 __ip_select_ident(net, iph, 1);
180 if (opt && opt->opt.optlen) {
181 iph->ihl += opt->opt.optlen>>2;
182 ip_options_build(skb, &opt->opt, daddr, rt);
185 skb->priority = sk->sk_priority;
187 skb->mark = sk->sk_mark;
190 return ip_local_out(net, skb->sk, skb);
192 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
194 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
196 struct dst_entry *dst = skb_dst(skb);
197 struct rtable *rt = (struct rtable *)dst;
198 struct net_device *dev = dst->dev;
199 unsigned int hh_len = LL_RESERVED_SPACE(dev);
200 struct neighbour *neigh;
201 bool is_v6gw = false;
203 if (rt->rt_type == RTN_MULTICAST) {
204 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
205 } else if (rt->rt_type == RTN_BROADCAST)
206 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
208 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
209 skb = skb_expand_head(skb, hh_len);
214 if (lwtunnel_xmit_redirect(dst->lwtstate)) {
215 int res = lwtunnel_xmit(skb);
217 if (res < 0 || res == LWTUNNEL_XMIT_DONE)
222 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
223 if (!IS_ERR(neigh)) {
226 sock_confirm_neigh(skb, neigh);
227 /* if crossing protocols, can not use the cached header */
228 res = neigh_output(neigh, skb, is_v6gw);
229 rcu_read_unlock_bh();
232 rcu_read_unlock_bh();
234 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
236 kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_CREATEFAIL);
240 static int ip_finish_output_gso(struct net *net, struct sock *sk,
241 struct sk_buff *skb, unsigned int mtu)
243 struct sk_buff *segs, *nskb;
244 netdev_features_t features;
247 /* common case: seglen is <= mtu
249 if (skb_gso_validate_network_len(skb, mtu))
250 return ip_finish_output2(net, sk, skb);
252 /* Slowpath - GSO segment length exceeds the egress MTU.
254 * This can happen in several cases:
255 * - Forwarding of a TCP GRO skb, when DF flag is not set.
256 * - Forwarding of an skb that arrived on a virtualization interface
257 * (virtio-net/vhost/tap) with TSO/GSO size set by other network
259 * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
260 * interface with a smaller MTU.
261 * - Arriving GRO skb (or GSO skb in a virtualized environment) that is
262 * bridged to a NETIF_F_TSO tunnel stacked over an interface with an
265 features = netif_skb_features(skb);
266 BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_GSO_CB_OFFSET);
267 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
268 if (IS_ERR_OR_NULL(segs)) {
275 skb_list_walk_safe(segs, segs, nskb) {
278 skb_mark_not_on_list(segs);
279 err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
288 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
292 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
293 /* Policy lookup after SNAT yielded a new policy */
294 if (skb_dst(skb)->xfrm) {
295 IPCB(skb)->flags |= IPSKB_REROUTED;
296 return dst_output(net, sk, skb);
299 mtu = ip_skb_dst_mtu(sk, skb);
301 return ip_finish_output_gso(net, sk, skb, mtu);
303 if (skb->len > mtu || IPCB(skb)->frag_max_size)
304 return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
306 return ip_finish_output2(net, sk, skb);
309 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
313 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
315 case NET_XMIT_SUCCESS:
316 return __ip_finish_output(net, sk, skb);
318 return __ip_finish_output(net, sk, skb) ? : ret;
320 kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS);
325 static int ip_mc_finish_output(struct net *net, struct sock *sk,
328 struct rtable *new_rt;
332 ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
337 case NET_XMIT_SUCCESS:
340 kfree_skb_reason(skb, SKB_DROP_REASON_BPF_CGROUP_EGRESS);
344 /* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting
345 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten,
346 * see ipv4_pktinfo_prepare().
348 new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb));
352 skb_dst_set(skb, &new_rt->dst);
355 err = dev_loopback_xmit(net, sk, skb);
356 return (do_cn && err) ? ret : err;
359 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
361 struct rtable *rt = skb_rtable(skb);
362 struct net_device *dev = rt->dst.dev;
365 * If the indicated interface is up and running, send the packet.
367 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
370 skb->protocol = htons(ETH_P_IP);
373 * Multicasts are looped back for other local users
376 if (rt->rt_flags&RTCF_MULTICAST) {
378 #ifdef CONFIG_IP_MROUTE
379 /* Small optimization: do not loopback not local frames,
380 which returned after forwarding; they will be dropped
381 by ip_mr_input in any case.
382 Note, that local frames are looped back to be delivered
385 This check is duplicated in ip_mr_input at the moment.
388 ((rt->rt_flags & RTCF_LOCAL) ||
389 !(IPCB(skb)->flags & IPSKB_FORWARDED))
392 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
394 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
395 net, sk, newskb, NULL, newskb->dev,
396 ip_mc_finish_output);
399 /* Multicasts with ttl 0 must not go beyond the host */
401 if (ip_hdr(skb)->ttl == 0) {
407 if (rt->rt_flags&RTCF_BROADCAST) {
408 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
410 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
411 net, sk, newskb, NULL, newskb->dev,
412 ip_mc_finish_output);
415 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
416 net, sk, skb, NULL, skb->dev,
418 !(IPCB(skb)->flags & IPSKB_REROUTED));
421 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
423 struct net_device *dev = skb_dst(skb)->dev, *indev = skb->dev;
425 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
428 skb->protocol = htons(ETH_P_IP);
430 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
431 net, sk, skb, indev, dev,
433 !(IPCB(skb)->flags & IPSKB_REROUTED));
435 EXPORT_SYMBOL(ip_output);
438 * copy saddr and daddr, possibly using 64bit load/stores
440 * iph->saddr = fl4->saddr;
441 * iph->daddr = fl4->daddr;
443 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
445 BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
446 offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
448 iph->saddr = fl4->saddr;
449 iph->daddr = fl4->daddr;
452 /* Note: skb->sk can be different from sk, in case of tunnels */
453 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
456 struct inet_sock *inet = inet_sk(sk);
457 struct net *net = sock_net(sk);
458 struct ip_options_rcu *inet_opt;
464 /* Skip all of this if the packet is already routed,
465 * f.e. by something like SCTP.
468 inet_opt = rcu_dereference(inet->inet_opt);
470 rt = skb_rtable(skb);
474 /* Make sure we can route this packet. */
475 rt = (struct rtable *)__sk_dst_check(sk, 0);
479 /* Use correct destination address if we have options. */
480 daddr = inet->inet_daddr;
481 if (inet_opt && inet_opt->opt.srr)
482 daddr = inet_opt->opt.faddr;
484 /* If this fails, retransmit mechanism of transport layer will
485 * keep trying until route appears or the connection times
488 rt = ip_route_output_ports(net, fl4, sk,
489 daddr, inet->inet_saddr,
493 RT_CONN_FLAGS_TOS(sk, tos),
494 sk->sk_bound_dev_if);
497 sk_setup_caps(sk, &rt->dst);
499 skb_dst_set_noref(skb, &rt->dst);
502 if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
505 /* OK, we know where to send it, allocate and build IP header. */
506 skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
507 skb_reset_network_header(skb);
509 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
510 if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
511 iph->frag_off = htons(IP_DF);
514 iph->ttl = ip_select_ttl(inet, &rt->dst);
515 iph->protocol = sk->sk_protocol;
516 ip_copy_addrs(iph, fl4);
518 /* Transport layer set skb->h.foo itself. */
520 if (inet_opt && inet_opt->opt.optlen) {
521 iph->ihl += inet_opt->opt.optlen >> 2;
522 ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt);
525 ip_select_ident_segs(net, skb, sk,
526 skb_shinfo(skb)->gso_segs ?: 1);
528 /* TODO : should we use skb->sk here instead of sk ? */
529 skb->priority = sk->sk_priority;
530 skb->mark = sk->sk_mark;
532 res = ip_local_out(net, sk, skb);
538 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
539 kfree_skb_reason(skb, SKB_DROP_REASON_IP_OUTNOROUTES);
540 return -EHOSTUNREACH;
542 EXPORT_SYMBOL(__ip_queue_xmit);
544 int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl)
546 return __ip_queue_xmit(sk, skb, fl, inet_sk(sk)->tos);
548 EXPORT_SYMBOL(ip_queue_xmit);
550 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
552 to->pkt_type = from->pkt_type;
553 to->priority = from->priority;
554 to->protocol = from->protocol;
555 to->skb_iif = from->skb_iif;
557 skb_dst_copy(to, from);
559 to->mark = from->mark;
561 skb_copy_hash(to, from);
563 #ifdef CONFIG_NET_SCHED
564 to->tc_index = from->tc_index;
567 skb_ext_copy(to, from);
568 #if IS_ENABLED(CONFIG_IP_VS)
569 to->ipvs_property = from->ipvs_property;
571 skb_copy_secmark(to, from);
574 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
576 int (*output)(struct net *, struct sock *, struct sk_buff *))
578 struct iphdr *iph = ip_hdr(skb);
580 if ((iph->frag_off & htons(IP_DF)) == 0)
581 return ip_do_fragment(net, sk, skb, output);
583 if (unlikely(!skb->ignore_df ||
584 (IPCB(skb)->frag_max_size &&
585 IPCB(skb)->frag_max_size > mtu))) {
586 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
587 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
593 return ip_do_fragment(net, sk, skb, output);
596 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph,
597 unsigned int hlen, struct ip_fraglist_iter *iter)
599 unsigned int first_len = skb_pagelen(skb);
601 iter->frag = skb_shinfo(skb)->frag_list;
602 skb_frag_list_init(skb);
608 skb->data_len = first_len - skb_headlen(skb);
609 skb->len = first_len;
610 iph->tot_len = htons(first_len);
611 iph->frag_off = htons(IP_MF);
614 EXPORT_SYMBOL(ip_fraglist_init);
616 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter)
618 unsigned int hlen = iter->hlen;
619 struct iphdr *iph = iter->iph;
620 struct sk_buff *frag;
623 frag->ip_summed = CHECKSUM_NONE;
624 skb_reset_transport_header(frag);
625 __skb_push(frag, hlen);
626 skb_reset_network_header(frag);
627 memcpy(skb_network_header(frag), iph, hlen);
628 iter->iph = ip_hdr(frag);
630 iph->tot_len = htons(frag->len);
631 ip_copy_metadata(frag, skb);
632 iter->offset += skb->len - hlen;
633 iph->frag_off = htons(iter->offset >> 3);
635 iph->frag_off |= htons(IP_MF);
636 /* Ready, complete checksum */
639 EXPORT_SYMBOL(ip_fraglist_prepare);
641 void ip_frag_init(struct sk_buff *skb, unsigned int hlen,
642 unsigned int ll_rs, unsigned int mtu, bool DF,
643 struct ip_frag_state *state)
645 struct iphdr *iph = ip_hdr(skb);
649 state->ll_rs = ll_rs;
652 state->left = skb->len - hlen; /* Space per frame */
653 state->ptr = hlen; /* Where to start from */
655 state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
656 state->not_last_frag = iph->frag_off & htons(IP_MF);
658 EXPORT_SYMBOL(ip_frag_init);
660 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to,
663 /* Copy the flags to each fragment. */
664 IPCB(to)->flags = IPCB(from)->flags;
666 /* ANK: dirty, but effective trick. Upgrade options only if
667 * the segment to be fragmented was THE FIRST (otherwise,
668 * options are already fixed) and make it ONCE
669 * on the initial skb, so that all the following fragments
670 * will inherit fixed options.
673 ip_options_fragment(from);
676 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state)
678 unsigned int len = state->left;
679 struct sk_buff *skb2;
682 /* IF: it doesn't fit, use 'mtu' - the data space left */
683 if (len > state->mtu)
685 /* IF: we are not sending up to and including the packet end
686 then align the next start on an eight byte boundary */
687 if (len < state->left) {
691 /* Allocate buffer */
692 skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC);
694 return ERR_PTR(-ENOMEM);
697 * Set up data on packet
700 ip_copy_metadata(skb2, skb);
701 skb_reserve(skb2, state->ll_rs);
702 skb_put(skb2, len + state->hlen);
703 skb_reset_network_header(skb2);
704 skb2->transport_header = skb2->network_header + state->hlen;
707 * Charge the memory for the fragment to any owner
712 skb_set_owner_w(skb2, skb->sk);
715 * Copy the packet header into the new buffer.
718 skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen);
721 * Copy a block of the IP datagram.
723 if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len))
728 * Fill in the new header fields.
731 iph->frag_off = htons((state->offset >> 3));
733 iph->frag_off |= htons(IP_DF);
736 * Added AC : If we are fragmenting a fragment that's not the
737 * last fragment then keep MF on each bit
739 if (state->left > 0 || state->not_last_frag)
740 iph->frag_off |= htons(IP_MF);
742 state->offset += len;
744 iph->tot_len = htons(len + state->hlen);
750 EXPORT_SYMBOL(ip_frag_next);
753 * This IP datagram is too large to be sent in one piece. Break it up into
754 * smaller pieces (each of size equal to IP header plus
755 * a block of the data of the original IP data part) that will yet fit in a
756 * single device frame, and queue such a frame for sending.
759 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
760 int (*output)(struct net *, struct sock *, struct sk_buff *))
763 struct sk_buff *skb2;
764 bool mono_delivery_time = skb->mono_delivery_time;
765 struct rtable *rt = skb_rtable(skb);
766 unsigned int mtu, hlen, ll_rs;
767 struct ip_fraglist_iter iter;
768 ktime_t tstamp = skb->tstamp;
769 struct ip_frag_state state;
772 /* for offloaded checksums cleanup checksum before fragmentation */
773 if (skb->ip_summed == CHECKSUM_PARTIAL &&
774 (err = skb_checksum_help(skb)))
778 * Point into the IP datagram header.
783 mtu = ip_skb_dst_mtu(sk, skb);
784 if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
785 mtu = IPCB(skb)->frag_max_size;
788 * Setup starting values.
792 mtu = mtu - hlen; /* Size of data space */
793 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
794 ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
796 /* When frag_list is given, use it. First, check its validity:
797 * some transformers could create wrong frag_list or break existing
798 * one, it is not prohibited. In this case fall back to copying.
800 * LATER: this step can be merged to real generation of fragments,
801 * we can switch to copy when see the first bad fragment.
803 if (skb_has_frag_list(skb)) {
804 struct sk_buff *frag, *frag2;
805 unsigned int first_len = skb_pagelen(skb);
807 if (first_len - hlen > mtu ||
808 ((first_len - hlen) & 7) ||
809 ip_is_fragment(iph) ||
811 skb_headroom(skb) < ll_rs)
814 skb_walk_frags(skb, frag) {
815 /* Correct geometry. */
816 if (frag->len > mtu ||
817 ((frag->len & 7) && frag->next) ||
818 skb_headroom(frag) < hlen + ll_rs)
819 goto slow_path_clean;
821 /* Partially cloned skb? */
822 if (skb_shared(frag))
823 goto slow_path_clean;
828 frag->destructor = sock_wfree;
830 skb->truesize -= frag->truesize;
833 /* Everything is OK. Generate! */
834 ip_fraglist_init(skb, iph, hlen, &iter);
837 /* Prepare header of the next frame,
838 * before previous one went down. */
840 bool first_frag = (iter.offset == 0);
842 IPCB(iter.frag)->flags = IPCB(skb)->flags;
843 ip_fraglist_prepare(skb, &iter);
844 if (first_frag && IPCB(skb)->opt.optlen) {
845 /* ipcb->opt is not populated for frags
846 * coming from __ip_make_skb(),
847 * ip_options_fragment() needs optlen
849 IPCB(iter.frag)->opt.optlen =
850 IPCB(skb)->opt.optlen;
851 ip_options_fragment(iter.frag);
852 ip_send_check(iter.iph);
856 skb_set_delivery_time(skb, tstamp, mono_delivery_time);
857 err = output(net, sk, skb);
860 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
861 if (err || !iter.frag)
864 skb = ip_fraglist_next(&iter);
868 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
872 kfree_skb_list(iter.frag);
874 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
878 skb_walk_frags(skb, frag2) {
882 frag2->destructor = NULL;
883 skb->truesize += frag2->truesize;
889 * Fragment the datagram.
892 ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU,
896 * Keep copying data until we run out.
899 while (state.left > 0) {
900 bool first_frag = (state.offset == 0);
902 skb2 = ip_frag_next(skb, &state);
907 ip_frag_ipcb(skb, skb2, first_frag);
910 * Put this fragment into the sending queue.
912 skb_set_delivery_time(skb2, tstamp, mono_delivery_time);
913 err = output(net, sk, skb2);
917 IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
920 IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
925 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
928 EXPORT_SYMBOL(ip_do_fragment);
931 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
933 struct msghdr *msg = from;
935 if (skb->ip_summed == CHECKSUM_PARTIAL) {
936 if (!copy_from_iter_full(to, len, &msg->msg_iter))
940 if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
942 skb->csum = csum_block_add(skb->csum, csum, odd);
946 EXPORT_SYMBOL(ip_generic_getfrag);
949 csum_page(struct page *page, int offset, int copy)
954 csum = csum_partial(kaddr + offset, copy, 0);
959 static int __ip_append_data(struct sock *sk,
961 struct sk_buff_head *queue,
962 struct inet_cork *cork,
963 struct page_frag *pfrag,
964 int getfrag(void *from, char *to, int offset,
965 int len, int odd, struct sk_buff *skb),
966 void *from, int length, int transhdrlen,
969 struct inet_sock *inet = inet_sk(sk);
970 struct ubuf_info *uarg = NULL;
972 struct ip_options *opt = cork->opt;
980 unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
981 int csummode = CHECKSUM_NONE;
982 struct rtable *rt = (struct rtable *)cork->dst;
983 unsigned int wmem_alloc_delta = 0;
984 bool paged, extra_uref = false;
987 skb = skb_peek_tail(queue);
989 exthdrlen = !skb ? rt->dst.header_len : 0;
990 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
991 paged = !!cork->gso_size;
993 if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
994 sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
995 tskey = atomic_inc_return(&sk->sk_tskey) - 1;
997 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
999 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1000 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1001 maxnonfragsize = ip_sk_ignore_df(sk) ? IP_MAX_MTU : mtu;
1003 if (cork->length + length > maxnonfragsize - fragheaderlen) {
1004 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1005 mtu - (opt ? opt->optlen : 0));
1010 * transhdrlen > 0 means that this is the first fragment and we wish
1011 * it won't be fragmented in the future.
1014 length + fragheaderlen <= mtu &&
1015 rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
1016 (!(flags & MSG_MORE) || cork->gso_size) &&
1017 (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
1018 csummode = CHECKSUM_PARTIAL;
1020 if ((flags & MSG_ZEROCOPY) && length) {
1021 struct msghdr *msg = from;
1023 if (getfrag == ip_generic_getfrag && msg->msg_ubuf) {
1024 if (skb_zcopy(skb) && msg->msg_ubuf != skb_zcopy(skb))
1027 /* Leave uarg NULL if can't zerocopy, callers should
1028 * be able to handle it.
1030 if ((rt->dst.dev->features & NETIF_F_SG) &&
1031 csummode == CHECKSUM_PARTIAL) {
1034 uarg = msg->msg_ubuf;
1036 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1037 uarg = msg_zerocopy_realloc(sk, length, skb_zcopy(skb));
1040 extra_uref = !skb_zcopy(skb); /* only ref on new uarg */
1041 if (rt->dst.dev->features & NETIF_F_SG &&
1042 csummode == CHECKSUM_PARTIAL) {
1047 skb_zcopy_set(skb, uarg, &extra_uref);
1052 cork->length += length;
1054 /* So, what's going on in the loop below?
1056 * We use calculated fragment length to generate chained skb,
1057 * each of segments is IP fragment ready for sending to network after
1058 * adding appropriate IP header.
1064 while (length > 0) {
1065 /* Check if the remaining data fits into current packet. */
1066 copy = mtu - skb->len;
1068 copy = maxfraglen - skb->len;
1071 unsigned int datalen;
1072 unsigned int fraglen;
1073 unsigned int fraggap;
1074 unsigned int alloclen, alloc_extra;
1075 unsigned int pagedlen;
1076 struct sk_buff *skb_prev;
1080 fraggap = skb_prev->len - maxfraglen;
1085 * If remaining data exceeds the mtu,
1086 * we know we need more fragment(s).
1088 datalen = length + fraggap;
1089 if (datalen > mtu - fragheaderlen)
1090 datalen = maxfraglen - fragheaderlen;
1091 fraglen = datalen + fragheaderlen;
1094 alloc_extra = hh_len + 15;
1095 alloc_extra += exthdrlen;
1097 /* The last fragment gets additional space at tail.
1098 * Note, with MSG_MORE we overallocate on fragments,
1099 * because we have no idea what fragment will be
1102 if (datalen == length + fraggap)
1103 alloc_extra += rt->dst.trailer_len;
1105 if ((flags & MSG_MORE) &&
1106 !(rt->dst.dev->features&NETIF_F_SG))
1109 (fraglen + alloc_extra < SKB_MAX_ALLOC ||
1110 !(rt->dst.dev->features & NETIF_F_SG)))
1113 alloclen = min_t(int, fraglen, MAX_HEADER);
1114 pagedlen = fraglen - alloclen;
1116 alloclen = fragheaderlen + transhdrlen;
1117 pagedlen = datalen - transhdrlen;
1120 alloclen += alloc_extra;
1123 skb = sock_alloc_send_skb(sk, alloclen,
1124 (flags & MSG_DONTWAIT), &err);
1127 if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
1129 skb = alloc_skb(alloclen,
1138 * Fill in the control structures
1140 skb->ip_summed = csummode;
1142 skb_reserve(skb, hh_len);
1145 * Find where to start putting bytes.
1147 data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1148 skb_set_network_header(skb, exthdrlen);
1149 skb->transport_header = (skb->network_header +
1151 data += fragheaderlen + exthdrlen;
1154 skb->csum = skb_copy_and_csum_bits(
1155 skb_prev, maxfraglen,
1156 data + transhdrlen, fraggap);
1157 skb_prev->csum = csum_sub(skb_prev->csum,
1160 pskb_trim_unique(skb_prev, maxfraglen);
1163 copy = datalen - transhdrlen - fraggap - pagedlen;
1164 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1171 length -= copy + transhdrlen;
1174 csummode = CHECKSUM_NONE;
1176 /* only the initial fragment is time stamped */
1177 skb_shinfo(skb)->tx_flags = cork->tx_flags;
1179 skb_shinfo(skb)->tskey = tskey;
1181 skb_zcopy_set(skb, uarg, &extra_uref);
1183 if ((flags & MSG_CONFIRM) && !skb_prev)
1184 skb_set_dst_pending_confirm(skb, 1);
1187 * Put the packet on the pending queue.
1189 if (!skb->destructor) {
1190 skb->destructor = sock_wfree;
1192 wmem_alloc_delta += skb->truesize;
1194 __skb_queue_tail(queue, skb);
1201 if (!(rt->dst.dev->features&NETIF_F_SG) &&
1202 skb_tailroom(skb) >= copy) {
1206 if (getfrag(from, skb_put(skb, copy),
1207 offset, copy, off, skb) < 0) {
1208 __skb_trim(skb, off);
1213 int i = skb_shinfo(skb)->nr_frags;
1216 if (!sk_page_frag_refill(sk, pfrag))
1219 skb_zcopy_downgrade_managed(skb);
1220 if (!skb_can_coalesce(skb, i, pfrag->page,
1223 if (i == MAX_SKB_FRAGS)
1226 __skb_fill_page_desc(skb, i, pfrag->page,
1228 skb_shinfo(skb)->nr_frags = ++i;
1229 get_page(pfrag->page);
1231 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1233 page_address(pfrag->page) + pfrag->offset,
1234 offset, copy, skb->len, skb) < 0)
1237 pfrag->offset += copy;
1238 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1239 skb_len_add(skb, copy);
1240 wmem_alloc_delta += copy;
1242 err = skb_zerocopy_iter_dgram(skb, from, copy);
1250 if (wmem_alloc_delta)
1251 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1257 net_zcopy_put_abort(uarg, extra_uref);
1258 cork->length -= length;
1259 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1260 refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1264 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1265 struct ipcm_cookie *ipc, struct rtable **rtp)
1267 struct ip_options_rcu *opt;
1275 * setup for corking.
1280 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1282 if (unlikely(!cork->opt))
1285 memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1286 cork->flags |= IPCORK_OPT;
1287 cork->addr = ipc->addr;
1290 cork->fragsize = ip_sk_use_pmtu(sk) ?
1291 dst_mtu(&rt->dst) : READ_ONCE(rt->dst.dev->mtu);
1293 if (!inetdev_valid_mtu(cork->fragsize))
1294 return -ENETUNREACH;
1296 cork->gso_size = ipc->gso_size;
1298 cork->dst = &rt->dst;
1299 /* We stole this route, caller should not release it. */
1303 cork->ttl = ipc->ttl;
1304 cork->tos = ipc->tos;
1305 cork->mark = ipc->sockc.mark;
1306 cork->priority = ipc->priority;
1307 cork->transmit_time = ipc->sockc.transmit_time;
1309 sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags);
1315 * ip_append_data() and ip_append_page() can make one large IP datagram
1316 * from many pieces of data. Each pieces will be holded on the socket
1317 * until ip_push_pending_frames() is called. Each piece can be a page
1320 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1321 * this interface potentially.
1323 * LATER: length must be adjusted by pad at tail, when it is required.
1325 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1326 int getfrag(void *from, char *to, int offset, int len,
1327 int odd, struct sk_buff *skb),
1328 void *from, int length, int transhdrlen,
1329 struct ipcm_cookie *ipc, struct rtable **rtp,
1332 struct inet_sock *inet = inet_sk(sk);
1335 if (flags&MSG_PROBE)
1338 if (skb_queue_empty(&sk->sk_write_queue)) {
1339 err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1346 return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1347 sk_page_frag(sk), getfrag,
1348 from, length, transhdrlen, flags);
1351 ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1352 int offset, size_t size, int flags)
1354 struct inet_sock *inet = inet_sk(sk);
1355 struct sk_buff *skb;
1357 struct ip_options *opt = NULL;
1358 struct inet_cork *cork;
1363 unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1368 if (flags&MSG_PROBE)
1371 if (skb_queue_empty(&sk->sk_write_queue))
1374 cork = &inet->cork.base;
1375 rt = (struct rtable *)cork->dst;
1376 if (cork->flags & IPCORK_OPT)
1379 if (!(rt->dst.dev->features & NETIF_F_SG))
1382 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1383 mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
1385 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1386 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1387 maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1389 if (cork->length + size > maxnonfragsize - fragheaderlen) {
1390 ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1391 mtu - (opt ? opt->optlen : 0));
1395 skb = skb_peek_tail(&sk->sk_write_queue);
1399 cork->length += size;
1402 /* Check if the remaining data fits into current packet. */
1403 len = mtu - skb->len;
1405 len = maxfraglen - skb->len;
1408 struct sk_buff *skb_prev;
1412 fraggap = skb_prev->len - maxfraglen;
1414 alloclen = fragheaderlen + hh_len + fraggap + 15;
1415 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1416 if (unlikely(!skb)) {
1422 * Fill in the control structures
1424 skb->ip_summed = CHECKSUM_NONE;
1426 skb_reserve(skb, hh_len);
1429 * Find where to start putting bytes.
1431 skb_put(skb, fragheaderlen + fraggap);
1432 skb_reset_network_header(skb);
1433 skb->transport_header = (skb->network_header +
1436 skb->csum = skb_copy_and_csum_bits(skb_prev,
1438 skb_transport_header(skb),
1440 skb_prev->csum = csum_sub(skb_prev->csum,
1442 pskb_trim_unique(skb_prev, maxfraglen);
1446 * Put the packet on the pending queue.
1448 __skb_queue_tail(&sk->sk_write_queue, skb);
1455 if (skb_append_pagefrags(skb, page, offset, len)) {
1460 if (skb->ip_summed == CHECKSUM_NONE) {
1462 csum = csum_page(page, offset, len);
1463 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1466 skb_len_add(skb, len);
1467 refcount_add(len, &sk->sk_wmem_alloc);
1474 cork->length -= size;
1475 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1479 static void ip_cork_release(struct inet_cork *cork)
1481 cork->flags &= ~IPCORK_OPT;
1484 dst_release(cork->dst);
1489 * Combined all pending IP fragments on the socket as one IP datagram
1490 * and push them out.
1492 struct sk_buff *__ip_make_skb(struct sock *sk,
1494 struct sk_buff_head *queue,
1495 struct inet_cork *cork)
1497 struct sk_buff *skb, *tmp_skb;
1498 struct sk_buff **tail_skb;
1499 struct inet_sock *inet = inet_sk(sk);
1500 struct net *net = sock_net(sk);
1501 struct ip_options *opt = NULL;
1502 struct rtable *rt = (struct rtable *)cork->dst;
1507 skb = __skb_dequeue(queue);
1510 tail_skb = &(skb_shinfo(skb)->frag_list);
1512 /* move skb->data to ip header from ext header */
1513 if (skb->data < skb_network_header(skb))
1514 __skb_pull(skb, skb_network_offset(skb));
1515 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1516 __skb_pull(tmp_skb, skb_network_header_len(skb));
1517 *tail_skb = tmp_skb;
1518 tail_skb = &(tmp_skb->next);
1519 skb->len += tmp_skb->len;
1520 skb->data_len += tmp_skb->len;
1521 skb->truesize += tmp_skb->truesize;
1522 tmp_skb->destructor = NULL;
1526 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1527 * to fragment the frame generated here. No matter, what transforms
1528 * how transforms change size of the packet, it will come out.
1530 skb->ignore_df = ip_sk_ignore_df(sk);
1532 /* DF bit is set when we want to see DF on outgoing frames.
1533 * If ignore_df is set too, we still allow to fragment this frame
1535 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1536 inet->pmtudisc == IP_PMTUDISC_PROBE ||
1537 (skb->len <= dst_mtu(&rt->dst) &&
1538 ip_dont_fragment(sk, &rt->dst)))
1541 if (cork->flags & IPCORK_OPT)
1546 else if (rt->rt_type == RTN_MULTICAST)
1549 ttl = ip_select_ttl(inet, &rt->dst);
1554 iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1557 iph->protocol = sk->sk_protocol;
1558 ip_copy_addrs(iph, fl4);
1559 ip_select_ident(net, skb, sk);
1562 iph->ihl += opt->optlen >> 2;
1563 ip_options_build(skb, opt, cork->addr, rt);
1566 skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1567 skb->mark = cork->mark;
1568 skb->tstamp = cork->transmit_time;
1570 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1574 skb_dst_set(skb, &rt->dst);
1576 if (iph->protocol == IPPROTO_ICMP)
1577 icmp_out_count(net, ((struct icmphdr *)
1578 skb_transport_header(skb))->type);
1580 ip_cork_release(cork);
1585 int ip_send_skb(struct net *net, struct sk_buff *skb)
1589 err = ip_local_out(net, skb->sk, skb);
1592 err = net_xmit_errno(err);
1594 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1600 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1602 struct sk_buff *skb;
1604 skb = ip_finish_skb(sk, fl4);
1608 /* Netfilter gets whole the not fragmented skb. */
1609 return ip_send_skb(sock_net(sk), skb);
1613 * Throw away all pending data on the socket.
1615 static void __ip_flush_pending_frames(struct sock *sk,
1616 struct sk_buff_head *queue,
1617 struct inet_cork *cork)
1619 struct sk_buff *skb;
1621 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1624 ip_cork_release(cork);
1627 void ip_flush_pending_frames(struct sock *sk)
1629 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1632 struct sk_buff *ip_make_skb(struct sock *sk,
1634 int getfrag(void *from, char *to, int offset,
1635 int len, int odd, struct sk_buff *skb),
1636 void *from, int length, int transhdrlen,
1637 struct ipcm_cookie *ipc, struct rtable **rtp,
1638 struct inet_cork *cork, unsigned int flags)
1640 struct sk_buff_head queue;
1643 if (flags & MSG_PROBE)
1646 __skb_queue_head_init(&queue);
1651 err = ip_setup_cork(sk, cork, ipc, rtp);
1653 return ERR_PTR(err);
1655 err = __ip_append_data(sk, fl4, &queue, cork,
1656 ¤t->task_frag, getfrag,
1657 from, length, transhdrlen, flags);
1659 __ip_flush_pending_frames(sk, &queue, cork);
1660 return ERR_PTR(err);
1663 return __ip_make_skb(sk, fl4, &queue, cork);
1667 * Fetch data from kernel space and fill in checksum if needed.
1669 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1670 int len, int odd, struct sk_buff *skb)
1674 csum = csum_partial_copy_nocheck(dptr+offset, to, len);
1675 skb->csum = csum_block_add(skb->csum, csum, odd);
1680 * Generic function to send a packet as reply to another packet.
1681 * Used to send some TCP resets/acks so far.
1683 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1684 const struct ip_options *sopt,
1685 __be32 daddr, __be32 saddr,
1686 const struct ip_reply_arg *arg,
1687 unsigned int len, u64 transmit_time)
1689 struct ip_options_data replyopts;
1690 struct ipcm_cookie ipc;
1692 struct rtable *rt = skb_rtable(skb);
1693 struct net *net = sock_net(sk);
1694 struct sk_buff *nskb;
1698 if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1703 ipc.sockc.transmit_time = transmit_time;
1705 if (replyopts.opt.opt.optlen) {
1706 ipc.opt = &replyopts.opt;
1708 if (replyopts.opt.opt.srr)
1709 daddr = replyopts.opt.opt.faddr;
1712 oif = arg->bound_dev_if;
1713 if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1716 flowi4_init_output(&fl4, oif,
1717 IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1719 RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1720 ip_reply_arg_flowi_flags(arg),
1722 tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1724 security_skb_classify_flow(skb, flowi4_to_flowi_common(&fl4));
1725 rt = ip_route_output_flow(net, &fl4, sk);
1729 inet_sk(sk)->tos = arg->tos & ~INET_ECN_MASK;
1731 sk->sk_protocol = ip_hdr(skb)->protocol;
1732 sk->sk_bound_dev_if = arg->bound_dev_if;
1733 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default);
1734 ipc.sockc.mark = fl4.flowi4_mark;
1735 err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1736 len, 0, &ipc, &rt, MSG_DONTWAIT);
1737 if (unlikely(err)) {
1738 ip_flush_pending_frames(sk);
1742 nskb = skb_peek(&sk->sk_write_queue);
1744 if (arg->csumoffset >= 0)
1745 *((__sum16 *)skb_transport_header(nskb) +
1746 arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1748 nskb->ip_summed = CHECKSUM_NONE;
1749 nskb->mono_delivery_time = !!transmit_time;
1750 ip_push_pending_frames(sk, &fl4);
1756 void __init ip_init(void)
1761 #if defined(CONFIG_IP_MULTICAST)