xfs: preserve DIFLAG2_NREXT64 when setting other inode attributes
[platform/kernel/linux-starfive.git] / net / ipv4 / inet_connection_sock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET         An implementation of the TCP/IP protocol suite for the LINUX
4  *              operating system.  INET is implemented using the  BSD Socket
5  *              interface as the means of communication with the user level.
6  *
7  *              Support for INET connection oriented protocols.
8  *
9  * Authors:     See the TCP sources
10  */
11
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses
28  *                              if IPv6 only, and any IPv4 addresses
29  *                              if not IPv6 only
30  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31  *                              IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32  *                              and 0.0.0.0 equals to 0.0.0.0 only
33  */
34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35                                  const struct in6_addr *sk2_rcv_saddr6,
36                                  __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37                                  bool sk1_ipv6only, bool sk2_ipv6only,
38                                  bool match_sk1_wildcard,
39                                  bool match_sk2_wildcard)
40 {
41         int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42         int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44         /* if both are mapped, treat as IPv4 */
45         if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46                 if (!sk2_ipv6only) {
47                         if (sk1_rcv_saddr == sk2_rcv_saddr)
48                                 return true;
49                         return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50                                 (match_sk2_wildcard && !sk2_rcv_saddr);
51                 }
52                 return false;
53         }
54
55         if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56                 return true;
57
58         if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59             !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60                 return true;
61
62         if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63             !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64                 return true;
65
66         if (sk2_rcv_saddr6 &&
67             ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68                 return true;
69
70         return false;
71 }
72 #endif
73
74 /* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
75  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76  *                              0.0.0.0 only equals to 0.0.0.0
77  */
78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79                                  bool sk2_ipv6only, bool match_sk1_wildcard,
80                                  bool match_sk2_wildcard)
81 {
82         if (!sk2_ipv6only) {
83                 if (sk1_rcv_saddr == sk2_rcv_saddr)
84                         return true;
85                 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86                         (match_sk2_wildcard && !sk2_rcv_saddr);
87         }
88         return false;
89 }
90
91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92                           bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95         if (sk->sk_family == AF_INET6)
96                 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97                                             inet6_rcv_saddr(sk2),
98                                             sk->sk_rcv_saddr,
99                                             sk2->sk_rcv_saddr,
100                                             ipv6_only_sock(sk),
101                                             ipv6_only_sock(sk2),
102                                             match_wildcard,
103                                             match_wildcard);
104 #endif
105         return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106                                     ipv6_only_sock(sk2), match_wildcard,
107                                     match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114         if (sk->sk_family == AF_INET6)
115                 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117         return !sk->sk_rcv_saddr;
118 }
119
120 static bool use_bhash2_on_bind(const struct sock *sk)
121 {
122 #if IS_ENABLED(CONFIG_IPV6)
123         int addr_type;
124
125         if (sk->sk_family == AF_INET6) {
126                 addr_type = ipv6_addr_type(&sk->sk_v6_rcv_saddr);
127                 return addr_type != IPV6_ADDR_ANY &&
128                         addr_type != IPV6_ADDR_MAPPED;
129         }
130 #endif
131         return sk->sk_rcv_saddr != htonl(INADDR_ANY);
132 }
133
134 static u32 get_bhash2_nulladdr_hash(const struct sock *sk, struct net *net,
135                                     int port)
136 {
137 #if IS_ENABLED(CONFIG_IPV6)
138         struct in6_addr nulladdr = {};
139
140         if (sk->sk_family == AF_INET6)
141                 return ipv6_portaddr_hash(net, &nulladdr, port);
142 #endif
143         return ipv4_portaddr_hash(net, 0, port);
144 }
145
146 void inet_get_local_port_range(struct net *net, int *low, int *high)
147 {
148         unsigned int seq;
149
150         do {
151                 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
152
153                 *low = net->ipv4.ip_local_ports.range[0];
154                 *high = net->ipv4.ip_local_ports.range[1];
155         } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
156 }
157 EXPORT_SYMBOL(inet_get_local_port_range);
158
159 static bool bind_conflict_exist(const struct sock *sk, struct sock *sk2,
160                                 kuid_t sk_uid, bool relax,
161                                 bool reuseport_cb_ok, bool reuseport_ok)
162 {
163         int bound_dev_if2;
164
165         if (sk == sk2)
166                 return false;
167
168         bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
169
170         if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
171             sk->sk_bound_dev_if == bound_dev_if2) {
172                 if (sk->sk_reuse && sk2->sk_reuse &&
173                     sk2->sk_state != TCP_LISTEN) {
174                         if (!relax || (!reuseport_ok && sk->sk_reuseport &&
175                                        sk2->sk_reuseport && reuseport_cb_ok &&
176                                        (sk2->sk_state == TCP_TIME_WAIT ||
177                                         uid_eq(sk_uid, sock_i_uid(sk2)))))
178                                 return true;
179                 } else if (!reuseport_ok || !sk->sk_reuseport ||
180                            !sk2->sk_reuseport || !reuseport_cb_ok ||
181                            (sk2->sk_state != TCP_TIME_WAIT &&
182                             !uid_eq(sk_uid, sock_i_uid(sk2)))) {
183                         return true;
184                 }
185         }
186         return false;
187 }
188
189 static bool check_bhash2_conflict(const struct sock *sk,
190                                   struct inet_bind2_bucket *tb2, kuid_t sk_uid,
191                                   bool relax, bool reuseport_cb_ok,
192                                   bool reuseport_ok)
193 {
194         struct sock *sk2;
195
196         sk_for_each_bound_bhash2(sk2, &tb2->owners) {
197                 if (sk->sk_family == AF_INET && ipv6_only_sock(sk2))
198                         continue;
199
200                 if (bind_conflict_exist(sk, sk2, sk_uid, relax,
201                                         reuseport_cb_ok, reuseport_ok))
202                         return true;
203         }
204         return false;
205 }
206
207 /* This should be called only when the corresponding inet_bind_bucket spinlock
208  * is held
209  */
210 static int inet_csk_bind_conflict(const struct sock *sk, int port,
211                                   struct inet_bind_bucket *tb,
212                                   struct inet_bind2_bucket *tb2, /* may be null */
213                                   bool relax, bool reuseport_ok)
214 {
215         struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
216         kuid_t uid = sock_i_uid((struct sock *)sk);
217         struct sock_reuseport *reuseport_cb;
218         struct inet_bind2_hashbucket *head2;
219         bool reuseport_cb_ok;
220         struct sock *sk2;
221         struct net *net;
222         int l3mdev;
223         u32 hash;
224
225         rcu_read_lock();
226         reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
227         /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
228         reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
229         rcu_read_unlock();
230
231         /*
232          * Unlike other sk lookup places we do not check
233          * for sk_net here, since _all_ the socks listed
234          * in tb->owners and tb2->owners list belong
235          * to the same net
236          */
237
238         if (!use_bhash2_on_bind(sk)) {
239                 sk_for_each_bound(sk2, &tb->owners)
240                         if (bind_conflict_exist(sk, sk2, uid, relax,
241                                                 reuseport_cb_ok, reuseport_ok) &&
242                             inet_rcv_saddr_equal(sk, sk2, true))
243                                 return true;
244
245                 return false;
246         }
247
248         if (tb2 && check_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
249                                          reuseport_ok))
250                 return true;
251
252         net = sock_net(sk);
253
254         /* check there's no conflict with an existing IPV6_ADDR_ANY (if ipv6) or
255          * INADDR_ANY (if ipv4) socket.
256          */
257         hash = get_bhash2_nulladdr_hash(sk, net, port);
258         head2 = &hinfo->bhash2[hash & (hinfo->bhash_size - 1)];
259
260         l3mdev = inet_sk_bound_l3mdev(sk);
261         inet_bind_bucket_for_each(tb2, &head2->chain)
262                 if (check_bind2_bucket_match_nulladdr(tb2, net, port, l3mdev, sk))
263                         break;
264
265         if (tb2 && check_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
266                                          reuseport_ok))
267                 return true;
268
269         return false;
270 }
271
272 /*
273  * Find an open port number for the socket.  Returns with the
274  * inet_bind_hashbucket lock held.
275  */
276 static struct inet_bind_hashbucket *
277 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret,
278                         struct inet_bind2_bucket **tb2_ret,
279                         struct inet_bind2_hashbucket **head2_ret, int *port_ret)
280 {
281         struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
282         struct inet_bind2_hashbucket *head2;
283         struct inet_bind_hashbucket *head;
284         struct net *net = sock_net(sk);
285         int i, low, high, attempt_half;
286         struct inet_bind2_bucket *tb2;
287         struct inet_bind_bucket *tb;
288         u32 remaining, offset;
289         bool relax = false;
290         int port = 0;
291         int l3mdev;
292
293         l3mdev = inet_sk_bound_l3mdev(sk);
294 ports_exhausted:
295         attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
296 other_half_scan:
297         inet_get_local_port_range(net, &low, &high);
298         high++; /* [32768, 60999] -> [32768, 61000[ */
299         if (high - low < 4)
300                 attempt_half = 0;
301         if (attempt_half) {
302                 int half = low + (((high - low) >> 2) << 1);
303
304                 if (attempt_half == 1)
305                         high = half;
306                 else
307                         low = half;
308         }
309         remaining = high - low;
310         if (likely(remaining > 1))
311                 remaining &= ~1U;
312
313         offset = prandom_u32() % remaining;
314         /* __inet_hash_connect() favors ports having @low parity
315          * We do the opposite to not pollute connect() users.
316          */
317         offset |= 1U;
318
319 other_parity_scan:
320         port = low + offset;
321         for (i = 0; i < remaining; i += 2, port += 2) {
322                 if (unlikely(port >= high))
323                         port -= remaining;
324                 if (inet_is_local_reserved_port(net, port))
325                         continue;
326                 head = &hinfo->bhash[inet_bhashfn(net, port,
327                                                   hinfo->bhash_size)];
328                 spin_lock_bh(&head->lock);
329                 tb2 = inet_bind2_bucket_find(hinfo, net, port, l3mdev, sk,
330                                              &head2);
331                 inet_bind_bucket_for_each(tb, &head->chain)
332                         if (check_bind_bucket_match(tb, net, port, l3mdev)) {
333                                 if (!inet_csk_bind_conflict(sk, port, tb, tb2,
334                                                             relax, false))
335                                         goto success;
336                                 goto next_port;
337                         }
338                 tb = NULL;
339                 goto success;
340 next_port:
341                 spin_unlock_bh(&head->lock);
342                 cond_resched();
343         }
344
345         offset--;
346         if (!(offset & 1))
347                 goto other_parity_scan;
348
349         if (attempt_half == 1) {
350                 /* OK we now try the upper half of the range */
351                 attempt_half = 2;
352                 goto other_half_scan;
353         }
354
355         if (net->ipv4.sysctl_ip_autobind_reuse && !relax) {
356                 /* We still have a chance to connect to different destinations */
357                 relax = true;
358                 goto ports_exhausted;
359         }
360         return NULL;
361 success:
362         *port_ret = port;
363         *tb_ret = tb;
364         *tb2_ret = tb2;
365         *head2_ret = head2;
366         return head;
367 }
368
369 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
370                                      struct sock *sk)
371 {
372         kuid_t uid = sock_i_uid(sk);
373
374         if (tb->fastreuseport <= 0)
375                 return 0;
376         if (!sk->sk_reuseport)
377                 return 0;
378         if (rcu_access_pointer(sk->sk_reuseport_cb))
379                 return 0;
380         if (!uid_eq(tb->fastuid, uid))
381                 return 0;
382         /* We only need to check the rcv_saddr if this tb was once marked
383          * without fastreuseport and then was reset, as we can only know that
384          * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
385          * owners list.
386          */
387         if (tb->fastreuseport == FASTREUSEPORT_ANY)
388                 return 1;
389 #if IS_ENABLED(CONFIG_IPV6)
390         if (tb->fast_sk_family == AF_INET6)
391                 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
392                                             inet6_rcv_saddr(sk),
393                                             tb->fast_rcv_saddr,
394                                             sk->sk_rcv_saddr,
395                                             tb->fast_ipv6_only,
396                                             ipv6_only_sock(sk), true, false);
397 #endif
398         return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
399                                     ipv6_only_sock(sk), true, false);
400 }
401
402 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
403                                struct sock *sk)
404 {
405         kuid_t uid = sock_i_uid(sk);
406         bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
407
408         if (hlist_empty(&tb->owners)) {
409                 tb->fastreuse = reuse;
410                 if (sk->sk_reuseport) {
411                         tb->fastreuseport = FASTREUSEPORT_ANY;
412                         tb->fastuid = uid;
413                         tb->fast_rcv_saddr = sk->sk_rcv_saddr;
414                         tb->fast_ipv6_only = ipv6_only_sock(sk);
415                         tb->fast_sk_family = sk->sk_family;
416 #if IS_ENABLED(CONFIG_IPV6)
417                         tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
418 #endif
419                 } else {
420                         tb->fastreuseport = 0;
421                 }
422         } else {
423                 if (!reuse)
424                         tb->fastreuse = 0;
425                 if (sk->sk_reuseport) {
426                         /* We didn't match or we don't have fastreuseport set on
427                          * the tb, but we have sk_reuseport set on this socket
428                          * and we know that there are no bind conflicts with
429                          * this socket in this tb, so reset our tb's reuseport
430                          * settings so that any subsequent sockets that match
431                          * our current socket will be put on the fast path.
432                          *
433                          * If we reset we need to set FASTREUSEPORT_STRICT so we
434                          * do extra checking for all subsequent sk_reuseport
435                          * socks.
436                          */
437                         if (!sk_reuseport_match(tb, sk)) {
438                                 tb->fastreuseport = FASTREUSEPORT_STRICT;
439                                 tb->fastuid = uid;
440                                 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
441                                 tb->fast_ipv6_only = ipv6_only_sock(sk);
442                                 tb->fast_sk_family = sk->sk_family;
443 #if IS_ENABLED(CONFIG_IPV6)
444                                 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
445 #endif
446                         }
447                 } else {
448                         tb->fastreuseport = 0;
449                 }
450         }
451 }
452
453 /* Obtain a reference to a local port for the given sock,
454  * if snum is zero it means select any available local port.
455  * We try to allocate an odd port (and leave even ports for connect())
456  */
457 int inet_csk_get_port(struct sock *sk, unsigned short snum)
458 {
459         bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
460         struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
461         bool bhash_created = false, bhash2_created = false;
462         struct inet_bind2_bucket *tb2 = NULL;
463         struct inet_bind2_hashbucket *head2;
464         struct inet_bind_bucket *tb = NULL;
465         struct inet_bind_hashbucket *head;
466         struct net *net = sock_net(sk);
467         int ret = 1, port = snum;
468         bool found_port = false;
469         int l3mdev;
470
471         l3mdev = inet_sk_bound_l3mdev(sk);
472
473         if (!port) {
474                 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
475                 if (!head)
476                         return ret;
477                 if (tb && tb2)
478                         goto success;
479                 found_port = true;
480         } else {
481                 head = &hinfo->bhash[inet_bhashfn(net, port,
482                                                   hinfo->bhash_size)];
483                 spin_lock_bh(&head->lock);
484                 inet_bind_bucket_for_each(tb, &head->chain)
485                         if (check_bind_bucket_match(tb, net, port, l3mdev))
486                                 break;
487
488                 tb2 = inet_bind2_bucket_find(hinfo, net, port, l3mdev, sk,
489                                              &head2);
490         }
491
492         if (!tb) {
493                 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
494                                              head, port, l3mdev);
495                 if (!tb)
496                         goto fail_unlock;
497                 bhash_created = true;
498         }
499
500         if (!tb2) {
501                 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
502                                                net, head2, port, l3mdev, sk);
503                 if (!tb2)
504                         goto fail_unlock;
505                 bhash2_created = true;
506         }
507
508         /* If we had to find an open port, we already checked for conflicts */
509         if (!found_port && !hlist_empty(&tb->owners)) {
510                 if (sk->sk_reuse == SK_FORCE_REUSE)
511                         goto success;
512
513                 if ((tb->fastreuse > 0 && reuse) ||
514                     sk_reuseport_match(tb, sk))
515                         goto success;
516                 if (inet_csk_bind_conflict(sk, port, tb, tb2, true, true))
517                         goto fail_unlock;
518         }
519 success:
520         inet_csk_update_fastreuse(tb, sk);
521
522         if (!inet_csk(sk)->icsk_bind_hash)
523                 inet_bind_hash(sk, tb, tb2, port);
524         WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
525         WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
526         ret = 0;
527
528 fail_unlock:
529         if (ret) {
530                 if (bhash_created)
531                         inet_bind_bucket_destroy(hinfo->bind_bucket_cachep, tb);
532                 if (bhash2_created)
533                         inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep,
534                                                   tb2);
535         }
536         spin_unlock_bh(&head->lock);
537         return ret;
538 }
539 EXPORT_SYMBOL_GPL(inet_csk_get_port);
540
541 /*
542  * Wait for an incoming connection, avoid race conditions. This must be called
543  * with the socket locked.
544  */
545 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
546 {
547         struct inet_connection_sock *icsk = inet_csk(sk);
548         DEFINE_WAIT(wait);
549         int err;
550
551         /*
552          * True wake-one mechanism for incoming connections: only
553          * one process gets woken up, not the 'whole herd'.
554          * Since we do not 'race & poll' for established sockets
555          * anymore, the common case will execute the loop only once.
556          *
557          * Subtle issue: "add_wait_queue_exclusive()" will be added
558          * after any current non-exclusive waiters, and we know that
559          * it will always _stay_ after any new non-exclusive waiters
560          * because all non-exclusive waiters are added at the
561          * beginning of the wait-queue. As such, it's ok to "drop"
562          * our exclusiveness temporarily when we get woken up without
563          * having to remove and re-insert us on the wait queue.
564          */
565         for (;;) {
566                 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
567                                           TASK_INTERRUPTIBLE);
568                 release_sock(sk);
569                 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
570                         timeo = schedule_timeout(timeo);
571                 sched_annotate_sleep();
572                 lock_sock(sk);
573                 err = 0;
574                 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
575                         break;
576                 err = -EINVAL;
577                 if (sk->sk_state != TCP_LISTEN)
578                         break;
579                 err = sock_intr_errno(timeo);
580                 if (signal_pending(current))
581                         break;
582                 err = -EAGAIN;
583                 if (!timeo)
584                         break;
585         }
586         finish_wait(sk_sleep(sk), &wait);
587         return err;
588 }
589
590 /*
591  * This will accept the next outstanding connection.
592  */
593 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
594 {
595         struct inet_connection_sock *icsk = inet_csk(sk);
596         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
597         struct request_sock *req;
598         struct sock *newsk;
599         int error;
600
601         lock_sock(sk);
602
603         /* We need to make sure that this socket is listening,
604          * and that it has something pending.
605          */
606         error = -EINVAL;
607         if (sk->sk_state != TCP_LISTEN)
608                 goto out_err;
609
610         /* Find already established connection */
611         if (reqsk_queue_empty(queue)) {
612                 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
613
614                 /* If this is a non blocking socket don't sleep */
615                 error = -EAGAIN;
616                 if (!timeo)
617                         goto out_err;
618
619                 error = inet_csk_wait_for_connect(sk, timeo);
620                 if (error)
621                         goto out_err;
622         }
623         req = reqsk_queue_remove(queue, sk);
624         newsk = req->sk;
625
626         if (sk->sk_protocol == IPPROTO_TCP &&
627             tcp_rsk(req)->tfo_listener) {
628                 spin_lock_bh(&queue->fastopenq.lock);
629                 if (tcp_rsk(req)->tfo_listener) {
630                         /* We are still waiting for the final ACK from 3WHS
631                          * so can't free req now. Instead, we set req->sk to
632                          * NULL to signify that the child socket is taken
633                          * so reqsk_fastopen_remove() will free the req
634                          * when 3WHS finishes (or is aborted).
635                          */
636                         req->sk = NULL;
637                         req = NULL;
638                 }
639                 spin_unlock_bh(&queue->fastopenq.lock);
640         }
641
642 out:
643         release_sock(sk);
644         if (newsk && mem_cgroup_sockets_enabled) {
645                 int amt;
646
647                 /* atomically get the memory usage, set and charge the
648                  * newsk->sk_memcg.
649                  */
650                 lock_sock(newsk);
651
652                 /* The socket has not been accepted yet, no need to look at
653                  * newsk->sk_wmem_queued.
654                  */
655                 amt = sk_mem_pages(newsk->sk_forward_alloc +
656                                    atomic_read(&newsk->sk_rmem_alloc));
657                 mem_cgroup_sk_alloc(newsk);
658                 if (newsk->sk_memcg && amt)
659                         mem_cgroup_charge_skmem(newsk->sk_memcg, amt,
660                                                 GFP_KERNEL | __GFP_NOFAIL);
661
662                 release_sock(newsk);
663         }
664         if (req)
665                 reqsk_put(req);
666         return newsk;
667 out_err:
668         newsk = NULL;
669         req = NULL;
670         *err = error;
671         goto out;
672 }
673 EXPORT_SYMBOL(inet_csk_accept);
674
675 /*
676  * Using different timers for retransmit, delayed acks and probes
677  * We may wish use just one timer maintaining a list of expire jiffies
678  * to optimize.
679  */
680 void inet_csk_init_xmit_timers(struct sock *sk,
681                                void (*retransmit_handler)(struct timer_list *t),
682                                void (*delack_handler)(struct timer_list *t),
683                                void (*keepalive_handler)(struct timer_list *t))
684 {
685         struct inet_connection_sock *icsk = inet_csk(sk);
686
687         timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
688         timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
689         timer_setup(&sk->sk_timer, keepalive_handler, 0);
690         icsk->icsk_pending = icsk->icsk_ack.pending = 0;
691 }
692 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
693
694 void inet_csk_clear_xmit_timers(struct sock *sk)
695 {
696         struct inet_connection_sock *icsk = inet_csk(sk);
697
698         icsk->icsk_pending = icsk->icsk_ack.pending = 0;
699
700         sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
701         sk_stop_timer(sk, &icsk->icsk_delack_timer);
702         sk_stop_timer(sk, &sk->sk_timer);
703 }
704 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
705
706 void inet_csk_delete_keepalive_timer(struct sock *sk)
707 {
708         sk_stop_timer(sk, &sk->sk_timer);
709 }
710 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
711
712 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
713 {
714         sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
715 }
716 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
717
718 struct dst_entry *inet_csk_route_req(const struct sock *sk,
719                                      struct flowi4 *fl4,
720                                      const struct request_sock *req)
721 {
722         const struct inet_request_sock *ireq = inet_rsk(req);
723         struct net *net = read_pnet(&ireq->ireq_net);
724         struct ip_options_rcu *opt;
725         struct rtable *rt;
726
727         rcu_read_lock();
728         opt = rcu_dereference(ireq->ireq_opt);
729
730         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
731                            RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
732                            sk->sk_protocol, inet_sk_flowi_flags(sk),
733                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
734                            ireq->ir_loc_addr, ireq->ir_rmt_port,
735                            htons(ireq->ir_num), sk->sk_uid);
736         security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
737         rt = ip_route_output_flow(net, fl4, sk);
738         if (IS_ERR(rt))
739                 goto no_route;
740         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
741                 goto route_err;
742         rcu_read_unlock();
743         return &rt->dst;
744
745 route_err:
746         ip_rt_put(rt);
747 no_route:
748         rcu_read_unlock();
749         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
750         return NULL;
751 }
752 EXPORT_SYMBOL_GPL(inet_csk_route_req);
753
754 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
755                                             struct sock *newsk,
756                                             const struct request_sock *req)
757 {
758         const struct inet_request_sock *ireq = inet_rsk(req);
759         struct net *net = read_pnet(&ireq->ireq_net);
760         struct inet_sock *newinet = inet_sk(newsk);
761         struct ip_options_rcu *opt;
762         struct flowi4 *fl4;
763         struct rtable *rt;
764
765         opt = rcu_dereference(ireq->ireq_opt);
766         fl4 = &newinet->cork.fl.u.ip4;
767
768         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
769                            RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
770                            sk->sk_protocol, inet_sk_flowi_flags(sk),
771                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
772                            ireq->ir_loc_addr, ireq->ir_rmt_port,
773                            htons(ireq->ir_num), sk->sk_uid);
774         security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
775         rt = ip_route_output_flow(net, fl4, sk);
776         if (IS_ERR(rt))
777                 goto no_route;
778         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
779                 goto route_err;
780         return &rt->dst;
781
782 route_err:
783         ip_rt_put(rt);
784 no_route:
785         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
786         return NULL;
787 }
788 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
789
790 /* Decide when to expire the request and when to resend SYN-ACK */
791 static void syn_ack_recalc(struct request_sock *req,
792                            const int max_syn_ack_retries,
793                            const u8 rskq_defer_accept,
794                            int *expire, int *resend)
795 {
796         if (!rskq_defer_accept) {
797                 *expire = req->num_timeout >= max_syn_ack_retries;
798                 *resend = 1;
799                 return;
800         }
801         *expire = req->num_timeout >= max_syn_ack_retries &&
802                   (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
803         /* Do not resend while waiting for data after ACK,
804          * start to resend on end of deferring period to give
805          * last chance for data or ACK to create established socket.
806          */
807         *resend = !inet_rsk(req)->acked ||
808                   req->num_timeout >= rskq_defer_accept - 1;
809 }
810
811 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
812 {
813         int err = req->rsk_ops->rtx_syn_ack(parent, req);
814
815         if (!err)
816                 req->num_retrans++;
817         return err;
818 }
819 EXPORT_SYMBOL(inet_rtx_syn_ack);
820
821 static struct request_sock *inet_reqsk_clone(struct request_sock *req,
822                                              struct sock *sk)
823 {
824         struct sock *req_sk, *nreq_sk;
825         struct request_sock *nreq;
826
827         nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
828         if (!nreq) {
829                 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
830
831                 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
832                 sock_put(sk);
833                 return NULL;
834         }
835
836         req_sk = req_to_sk(req);
837         nreq_sk = req_to_sk(nreq);
838
839         memcpy(nreq_sk, req_sk,
840                offsetof(struct sock, sk_dontcopy_begin));
841         memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
842                req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end));
843
844         sk_node_init(&nreq_sk->sk_node);
845         nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
846 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
847         nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
848 #endif
849         nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
850
851         nreq->rsk_listener = sk;
852
853         /* We need not acquire fastopenq->lock
854          * because the child socket is locked in inet_csk_listen_stop().
855          */
856         if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
857                 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
858
859         return nreq;
860 }
861
862 static void reqsk_queue_migrated(struct request_sock_queue *queue,
863                                  const struct request_sock *req)
864 {
865         if (req->num_timeout == 0)
866                 atomic_inc(&queue->young);
867         atomic_inc(&queue->qlen);
868 }
869
870 static void reqsk_migrate_reset(struct request_sock *req)
871 {
872         req->saved_syn = NULL;
873 #if IS_ENABLED(CONFIG_IPV6)
874         inet_rsk(req)->ipv6_opt = NULL;
875         inet_rsk(req)->pktopts = NULL;
876 #else
877         inet_rsk(req)->ireq_opt = NULL;
878 #endif
879 }
880
881 /* return true if req was found in the ehash table */
882 static bool reqsk_queue_unlink(struct request_sock *req)
883 {
884         struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
885         bool found = false;
886
887         if (sk_hashed(req_to_sk(req))) {
888                 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
889
890                 spin_lock(lock);
891                 found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
892                 spin_unlock(lock);
893         }
894         if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
895                 reqsk_put(req);
896         return found;
897 }
898
899 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
900 {
901         bool unlinked = reqsk_queue_unlink(req);
902
903         if (unlinked) {
904                 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
905                 reqsk_put(req);
906         }
907         return unlinked;
908 }
909 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
910
911 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
912 {
913         inet_csk_reqsk_queue_drop(sk, req);
914         reqsk_put(req);
915 }
916 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
917
918 static void reqsk_timer_handler(struct timer_list *t)
919 {
920         struct request_sock *req = from_timer(req, t, rsk_timer);
921         struct request_sock *nreq = NULL, *oreq = req;
922         struct sock *sk_listener = req->rsk_listener;
923         struct inet_connection_sock *icsk;
924         struct request_sock_queue *queue;
925         struct net *net;
926         int max_syn_ack_retries, qlen, expire = 0, resend = 0;
927
928         if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
929                 struct sock *nsk;
930
931                 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
932                 if (!nsk)
933                         goto drop;
934
935                 nreq = inet_reqsk_clone(req, nsk);
936                 if (!nreq)
937                         goto drop;
938
939                 /* The new timer for the cloned req can decrease the 2
940                  * by calling inet_csk_reqsk_queue_drop_and_put(), so
941                  * hold another count to prevent use-after-free and
942                  * call reqsk_put() just before return.
943                  */
944                 refcount_set(&nreq->rsk_refcnt, 2 + 1);
945                 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
946                 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
947
948                 req = nreq;
949                 sk_listener = nsk;
950         }
951
952         icsk = inet_csk(sk_listener);
953         net = sock_net(sk_listener);
954         max_syn_ack_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
955         /* Normally all the openreqs are young and become mature
956          * (i.e. converted to established socket) for first timeout.
957          * If synack was not acknowledged for 1 second, it means
958          * one of the following things: synack was lost, ack was lost,
959          * rtt is high or nobody planned to ack (i.e. synflood).
960          * When server is a bit loaded, queue is populated with old
961          * open requests, reducing effective size of queue.
962          * When server is well loaded, queue size reduces to zero
963          * after several minutes of work. It is not synflood,
964          * it is normal operation. The solution is pruning
965          * too old entries overriding normal timeout, when
966          * situation becomes dangerous.
967          *
968          * Essentially, we reserve half of room for young
969          * embrions; and abort old ones without pity, if old
970          * ones are about to clog our table.
971          */
972         queue = &icsk->icsk_accept_queue;
973         qlen = reqsk_queue_len(queue);
974         if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
975                 int young = reqsk_queue_len_young(queue) << 1;
976
977                 while (max_syn_ack_retries > 2) {
978                         if (qlen < young)
979                                 break;
980                         max_syn_ack_retries--;
981                         young <<= 1;
982                 }
983         }
984         syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
985                        &expire, &resend);
986         req->rsk_ops->syn_ack_timeout(req);
987         if (!expire &&
988             (!resend ||
989              !inet_rtx_syn_ack(sk_listener, req) ||
990              inet_rsk(req)->acked)) {
991                 if (req->num_timeout++ == 0)
992                         atomic_dec(&queue->young);
993                 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
994
995                 if (!nreq)
996                         return;
997
998                 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
999                         /* delete timer */
1000                         inet_csk_reqsk_queue_drop(sk_listener, nreq);
1001                         goto no_ownership;
1002                 }
1003
1004                 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1005                 reqsk_migrate_reset(oreq);
1006                 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1007                 reqsk_put(oreq);
1008
1009                 reqsk_put(nreq);
1010                 return;
1011         }
1012
1013         /* Even if we can clone the req, we may need not retransmit any more
1014          * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1015          * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1016          */
1017         if (nreq) {
1018                 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1019 no_ownership:
1020                 reqsk_migrate_reset(nreq);
1021                 reqsk_queue_removed(queue, nreq);
1022                 __reqsk_free(nreq);
1023         }
1024
1025 drop:
1026         inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq);
1027 }
1028
1029 static void reqsk_queue_hash_req(struct request_sock *req,
1030                                  unsigned long timeout)
1031 {
1032         timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1033         mod_timer(&req->rsk_timer, jiffies + timeout);
1034
1035         inet_ehash_insert(req_to_sk(req), NULL, NULL);
1036         /* before letting lookups find us, make sure all req fields
1037          * are committed to memory and refcnt initialized.
1038          */
1039         smp_wmb();
1040         refcount_set(&req->rsk_refcnt, 2 + 1);
1041 }
1042
1043 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1044                                    unsigned long timeout)
1045 {
1046         reqsk_queue_hash_req(req, timeout);
1047         inet_csk_reqsk_queue_added(sk);
1048 }
1049 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
1050
1051 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1052                            const gfp_t priority)
1053 {
1054         struct inet_connection_sock *icsk = inet_csk(newsk);
1055
1056         if (!icsk->icsk_ulp_ops)
1057                 return;
1058
1059         if (icsk->icsk_ulp_ops->clone)
1060                 icsk->icsk_ulp_ops->clone(req, newsk, priority);
1061 }
1062
1063 /**
1064  *      inet_csk_clone_lock - clone an inet socket, and lock its clone
1065  *      @sk: the socket to clone
1066  *      @req: request_sock
1067  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1068  *
1069  *      Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1070  */
1071 struct sock *inet_csk_clone_lock(const struct sock *sk,
1072                                  const struct request_sock *req,
1073                                  const gfp_t priority)
1074 {
1075         struct sock *newsk = sk_clone_lock(sk, priority);
1076
1077         if (newsk) {
1078                 struct inet_connection_sock *newicsk = inet_csk(newsk);
1079
1080                 inet_sk_set_state(newsk, TCP_SYN_RECV);
1081                 newicsk->icsk_bind_hash = NULL;
1082                 newicsk->icsk_bind2_hash = NULL;
1083
1084                 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
1085                 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
1086                 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
1087
1088                 /* listeners have SOCK_RCU_FREE, not the children */
1089                 sock_reset_flag(newsk, SOCK_RCU_FREE);
1090
1091                 inet_sk(newsk)->mc_list = NULL;
1092
1093                 newsk->sk_mark = inet_rsk(req)->ir_mark;
1094                 atomic64_set(&newsk->sk_cookie,
1095                              atomic64_read(&inet_rsk(req)->ir_cookie));
1096
1097                 newicsk->icsk_retransmits = 0;
1098                 newicsk->icsk_backoff     = 0;
1099                 newicsk->icsk_probes_out  = 0;
1100                 newicsk->icsk_probes_tstamp = 0;
1101
1102                 /* Deinitialize accept_queue to trap illegal accesses. */
1103                 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
1104
1105                 inet_clone_ulp(req, newsk, priority);
1106
1107                 security_inet_csk_clone(newsk, req);
1108         }
1109         return newsk;
1110 }
1111 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
1112
1113 /*
1114  * At this point, there should be no process reference to this
1115  * socket, and thus no user references at all.  Therefore we
1116  * can assume the socket waitqueue is inactive and nobody will
1117  * try to jump onto it.
1118  */
1119 void inet_csk_destroy_sock(struct sock *sk)
1120 {
1121         WARN_ON(sk->sk_state != TCP_CLOSE);
1122         WARN_ON(!sock_flag(sk, SOCK_DEAD));
1123
1124         /* It cannot be in hash table! */
1125         WARN_ON(!sk_unhashed(sk));
1126
1127         /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1128         WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1129
1130         sk->sk_prot->destroy(sk);
1131
1132         sk_stream_kill_queues(sk);
1133
1134         xfrm_sk_free_policy(sk);
1135
1136         sk_refcnt_debug_release(sk);
1137
1138         this_cpu_dec(*sk->sk_prot->orphan_count);
1139
1140         sock_put(sk);
1141 }
1142 EXPORT_SYMBOL(inet_csk_destroy_sock);
1143
1144 /* This function allows to force a closure of a socket after the call to
1145  * tcp/dccp_create_openreq_child().
1146  */
1147 void inet_csk_prepare_forced_close(struct sock *sk)
1148         __releases(&sk->sk_lock.slock)
1149 {
1150         /* sk_clone_lock locked the socket and set refcnt to 2 */
1151         bh_unlock_sock(sk);
1152         sock_put(sk);
1153         inet_csk_prepare_for_destroy_sock(sk);
1154         inet_sk(sk)->inet_num = 0;
1155 }
1156 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1157
1158 int inet_csk_listen_start(struct sock *sk)
1159 {
1160         struct inet_connection_sock *icsk = inet_csk(sk);
1161         struct inet_sock *inet = inet_sk(sk);
1162         int err = -EADDRINUSE;
1163
1164         reqsk_queue_alloc(&icsk->icsk_accept_queue);
1165
1166         sk->sk_ack_backlog = 0;
1167         inet_csk_delack_init(sk);
1168
1169         if (sk->sk_txrehash == SOCK_TXREHASH_DEFAULT)
1170                 sk->sk_txrehash = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1171
1172         /* There is race window here: we announce ourselves listening,
1173          * but this transition is still not validated by get_port().
1174          * It is OK, because this socket enters to hash table only
1175          * after validation is complete.
1176          */
1177         inet_sk_state_store(sk, TCP_LISTEN);
1178         if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
1179                 inet->inet_sport = htons(inet->inet_num);
1180
1181                 sk_dst_reset(sk);
1182                 err = sk->sk_prot->hash(sk);
1183
1184                 if (likely(!err))
1185                         return 0;
1186         }
1187
1188         inet_sk_set_state(sk, TCP_CLOSE);
1189         return err;
1190 }
1191 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
1192
1193 static void inet_child_forget(struct sock *sk, struct request_sock *req,
1194                               struct sock *child)
1195 {
1196         sk->sk_prot->disconnect(child, O_NONBLOCK);
1197
1198         sock_orphan(child);
1199
1200         this_cpu_inc(*sk->sk_prot->orphan_count);
1201
1202         if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1203                 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1204                 BUG_ON(sk != req->rsk_listener);
1205
1206                 /* Paranoid, to prevent race condition if
1207                  * an inbound pkt destined for child is
1208                  * blocked by sock lock in tcp_v4_rcv().
1209                  * Also to satisfy an assertion in
1210                  * tcp_v4_destroy_sock().
1211                  */
1212                 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1213         }
1214         inet_csk_destroy_sock(child);
1215 }
1216
1217 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1218                                       struct request_sock *req,
1219                                       struct sock *child)
1220 {
1221         struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1222
1223         spin_lock(&queue->rskq_lock);
1224         if (unlikely(sk->sk_state != TCP_LISTEN)) {
1225                 inet_child_forget(sk, req, child);
1226                 child = NULL;
1227         } else {
1228                 req->sk = child;
1229                 req->dl_next = NULL;
1230                 if (queue->rskq_accept_head == NULL)
1231                         WRITE_ONCE(queue->rskq_accept_head, req);
1232                 else
1233                         queue->rskq_accept_tail->dl_next = req;
1234                 queue->rskq_accept_tail = req;
1235                 sk_acceptq_added(sk);
1236         }
1237         spin_unlock(&queue->rskq_lock);
1238         return child;
1239 }
1240 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1241
1242 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1243                                          struct request_sock *req, bool own_req)
1244 {
1245         if (own_req) {
1246                 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1247                 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1248
1249                 if (sk != req->rsk_listener) {
1250                         /* another listening sk has been selected,
1251                          * migrate the req to it.
1252                          */
1253                         struct request_sock *nreq;
1254
1255                         /* hold a refcnt for the nreq->rsk_listener
1256                          * which is assigned in inet_reqsk_clone()
1257                          */
1258                         sock_hold(sk);
1259                         nreq = inet_reqsk_clone(req, sk);
1260                         if (!nreq) {
1261                                 inet_child_forget(sk, req, child);
1262                                 goto child_put;
1263                         }
1264
1265                         refcount_set(&nreq->rsk_refcnt, 1);
1266                         if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1267                                 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1268                                 reqsk_migrate_reset(req);
1269                                 reqsk_put(req);
1270                                 return child;
1271                         }
1272
1273                         __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1274                         reqsk_migrate_reset(nreq);
1275                         __reqsk_free(nreq);
1276                 } else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1277                         return child;
1278                 }
1279         }
1280         /* Too bad, another child took ownership of the request, undo. */
1281 child_put:
1282         bh_unlock_sock(child);
1283         sock_put(child);
1284         return NULL;
1285 }
1286 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1287
1288 /*
1289  *      This routine closes sockets which have been at least partially
1290  *      opened, but not yet accepted.
1291  */
1292 void inet_csk_listen_stop(struct sock *sk)
1293 {
1294         struct inet_connection_sock *icsk = inet_csk(sk);
1295         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1296         struct request_sock *next, *req;
1297
1298         /* Following specs, it would be better either to send FIN
1299          * (and enter FIN-WAIT-1, it is normal close)
1300          * or to send active reset (abort).
1301          * Certainly, it is pretty dangerous while synflood, but it is
1302          * bad justification for our negligence 8)
1303          * To be honest, we are not able to make either
1304          * of the variants now.                 --ANK
1305          */
1306         while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1307                 struct sock *child = req->sk, *nsk;
1308                 struct request_sock *nreq;
1309
1310                 local_bh_disable();
1311                 bh_lock_sock(child);
1312                 WARN_ON(sock_owned_by_user(child));
1313                 sock_hold(child);
1314
1315                 nsk = reuseport_migrate_sock(sk, child, NULL);
1316                 if (nsk) {
1317                         nreq = inet_reqsk_clone(req, nsk);
1318                         if (nreq) {
1319                                 refcount_set(&nreq->rsk_refcnt, 1);
1320
1321                                 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1322                                         __NET_INC_STATS(sock_net(nsk),
1323                                                         LINUX_MIB_TCPMIGRATEREQSUCCESS);
1324                                         reqsk_migrate_reset(req);
1325                                 } else {
1326                                         __NET_INC_STATS(sock_net(nsk),
1327                                                         LINUX_MIB_TCPMIGRATEREQFAILURE);
1328                                         reqsk_migrate_reset(nreq);
1329                                         __reqsk_free(nreq);
1330                                 }
1331
1332                                 /* inet_csk_reqsk_queue_add() has already
1333                                  * called inet_child_forget() on failure case.
1334                                  */
1335                                 goto skip_child_forget;
1336                         }
1337                 }
1338
1339                 inet_child_forget(sk, req, child);
1340 skip_child_forget:
1341                 reqsk_put(req);
1342                 bh_unlock_sock(child);
1343                 local_bh_enable();
1344                 sock_put(child);
1345
1346                 cond_resched();
1347         }
1348         if (queue->fastopenq.rskq_rst_head) {
1349                 /* Free all the reqs queued in rskq_rst_head. */
1350                 spin_lock_bh(&queue->fastopenq.lock);
1351                 req = queue->fastopenq.rskq_rst_head;
1352                 queue->fastopenq.rskq_rst_head = NULL;
1353                 spin_unlock_bh(&queue->fastopenq.lock);
1354                 while (req != NULL) {
1355                         next = req->dl_next;
1356                         reqsk_put(req);
1357                         req = next;
1358                 }
1359         }
1360         WARN_ON_ONCE(sk->sk_ack_backlog);
1361 }
1362 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1363
1364 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1365 {
1366         struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1367         const struct inet_sock *inet = inet_sk(sk);
1368
1369         sin->sin_family         = AF_INET;
1370         sin->sin_addr.s_addr    = inet->inet_daddr;
1371         sin->sin_port           = inet->inet_dport;
1372 }
1373 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1374
1375 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1376 {
1377         const struct inet_sock *inet = inet_sk(sk);
1378         const struct ip_options_rcu *inet_opt;
1379         __be32 daddr = inet->inet_daddr;
1380         struct flowi4 *fl4;
1381         struct rtable *rt;
1382
1383         rcu_read_lock();
1384         inet_opt = rcu_dereference(inet->inet_opt);
1385         if (inet_opt && inet_opt->opt.srr)
1386                 daddr = inet_opt->opt.faddr;
1387         fl4 = &fl->u.ip4;
1388         rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1389                                    inet->inet_saddr, inet->inet_dport,
1390                                    inet->inet_sport, sk->sk_protocol,
1391                                    RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1392         if (IS_ERR(rt))
1393                 rt = NULL;
1394         if (rt)
1395                 sk_setup_caps(sk, &rt->dst);
1396         rcu_read_unlock();
1397
1398         return &rt->dst;
1399 }
1400
1401 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1402 {
1403         struct dst_entry *dst = __sk_dst_check(sk, 0);
1404         struct inet_sock *inet = inet_sk(sk);
1405
1406         if (!dst) {
1407                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1408                 if (!dst)
1409                         goto out;
1410         }
1411         dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1412
1413         dst = __sk_dst_check(sk, 0);
1414         if (!dst)
1415                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1416 out:
1417         return dst;
1418 }
1419 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);