dccp: consistently use dccp_write_space()
[platform/kernel/linux-rpi.git] / net / ipv4 / inet_connection_sock.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Support for INET connection oriented protocols.
7  *
8  * Authors:     See the TCP sources
9  *
10  *              This program is free software; you can redistribute it and/or
11  *              modify it under the terms of the GNU General Public License
12  *              as published by the Free Software Foundation; either version
13  *              2 of the License, or(at your option) any later version.
14  */
15
16 #include <linux/module.h>
17 #include <linux/jhash.h>
18
19 #include <net/inet_connection_sock.h>
20 #include <net/inet_hashtables.h>
21 #include <net/inet_timewait_sock.h>
22 #include <net/ip.h>
23 #include <net/route.h>
24 #include <net/tcp_states.h>
25 #include <net/xfrm.h>
26 #include <net/tcp.h>
27 #include <net/sock_reuseport.h>
28 #include <net/addrconf.h>
29
30 #ifdef INET_CSK_DEBUG
31 const char inet_csk_timer_bug_msg[] = "inet_csk BUG: unknown timer value\n";
32 EXPORT_SYMBOL(inet_csk_timer_bug_msg);
33 #endif
34
35 #if IS_ENABLED(CONFIG_IPV6)
36 /* match_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses if IPv6
37  *                          only, and any IPv4 addresses if not IPv6 only
38  * match_wildcard == false: addresses must be exactly the same, i.e.
39  *                          IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
40  *                          and 0.0.0.0 equals to 0.0.0.0 only
41  */
42 static int ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
43                                 const struct in6_addr *sk2_rcv_saddr6,
44                                 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
45                                 bool sk1_ipv6only, bool sk2_ipv6only,
46                                 bool match_wildcard)
47 {
48         int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
49         int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
50
51         /* if both are mapped, treat as IPv4 */
52         if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
53                 if (!sk2_ipv6only) {
54                         if (sk1_rcv_saddr == sk2_rcv_saddr)
55                                 return 1;
56                         if (!sk1_rcv_saddr || !sk2_rcv_saddr)
57                                 return match_wildcard;
58                 }
59                 return 0;
60         }
61
62         if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
63                 return 1;
64
65         if (addr_type2 == IPV6_ADDR_ANY && match_wildcard &&
66             !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
67                 return 1;
68
69         if (addr_type == IPV6_ADDR_ANY && match_wildcard &&
70             !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
71                 return 1;
72
73         if (sk2_rcv_saddr6 &&
74             ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
75                 return 1;
76
77         return 0;
78 }
79 #endif
80
81 /* match_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
82  * match_wildcard == false: addresses must be exactly the same, i.e.
83  *                          0.0.0.0 only equals to 0.0.0.0
84  */
85 static int ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
86                                 bool sk2_ipv6only, bool match_wildcard)
87 {
88         if (!sk2_ipv6only) {
89                 if (sk1_rcv_saddr == sk2_rcv_saddr)
90                         return 1;
91                 if (!sk1_rcv_saddr || !sk2_rcv_saddr)
92                         return match_wildcard;
93         }
94         return 0;
95 }
96
97 int inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
98                          bool match_wildcard)
99 {
100 #if IS_ENABLED(CONFIG_IPV6)
101         if (sk->sk_family == AF_INET6)
102                 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
103                                             inet6_rcv_saddr(sk2),
104                                             sk->sk_rcv_saddr,
105                                             sk2->sk_rcv_saddr,
106                                             ipv6_only_sock(sk),
107                                             ipv6_only_sock(sk2),
108                                             match_wildcard);
109 #endif
110         return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
111                                     ipv6_only_sock(sk2), match_wildcard);
112 }
113 EXPORT_SYMBOL(inet_rcv_saddr_equal);
114
115 void inet_get_local_port_range(struct net *net, int *low, int *high)
116 {
117         unsigned int seq;
118
119         do {
120                 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
121
122                 *low = net->ipv4.ip_local_ports.range[0];
123                 *high = net->ipv4.ip_local_ports.range[1];
124         } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
125 }
126 EXPORT_SYMBOL(inet_get_local_port_range);
127
128 static int inet_csk_bind_conflict(const struct sock *sk,
129                                   const struct inet_bind_bucket *tb,
130                                   bool relax, bool reuseport_ok)
131 {
132         struct sock *sk2;
133         bool reuse = sk->sk_reuse;
134         bool reuseport = !!sk->sk_reuseport && reuseport_ok;
135         kuid_t uid = sock_i_uid((struct sock *)sk);
136
137         /*
138          * Unlike other sk lookup places we do not check
139          * for sk_net here, since _all_ the socks listed
140          * in tb->owners list belong to the same net - the
141          * one this bucket belongs to.
142          */
143
144         sk_for_each_bound(sk2, &tb->owners) {
145                 if (sk != sk2 &&
146                     (!sk->sk_bound_dev_if ||
147                      !sk2->sk_bound_dev_if ||
148                      sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
149                         if ((!reuse || !sk2->sk_reuse ||
150                             sk2->sk_state == TCP_LISTEN) &&
151                             (!reuseport || !sk2->sk_reuseport ||
152                              rcu_access_pointer(sk->sk_reuseport_cb) ||
153                              (sk2->sk_state != TCP_TIME_WAIT &&
154                              !uid_eq(uid, sock_i_uid(sk2))))) {
155                                 if (inet_rcv_saddr_equal(sk, sk2, true))
156                                         break;
157                         }
158                         if (!relax && reuse && sk2->sk_reuse &&
159                             sk2->sk_state != TCP_LISTEN) {
160                                 if (inet_rcv_saddr_equal(sk, sk2, true))
161                                         break;
162                         }
163                 }
164         }
165         return sk2 != NULL;
166 }
167
168 /*
169  * Find an open port number for the socket.  Returns with the
170  * inet_bind_hashbucket lock held.
171  */
172 static struct inet_bind_hashbucket *
173 inet_csk_find_open_port(struct sock *sk, struct inet_bind_bucket **tb_ret, int *port_ret)
174 {
175         struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
176         int port = 0;
177         struct inet_bind_hashbucket *head;
178         struct net *net = sock_net(sk);
179         int i, low, high, attempt_half;
180         struct inet_bind_bucket *tb;
181         u32 remaining, offset;
182
183         attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
184 other_half_scan:
185         inet_get_local_port_range(net, &low, &high);
186         high++; /* [32768, 60999] -> [32768, 61000[ */
187         if (high - low < 4)
188                 attempt_half = 0;
189         if (attempt_half) {
190                 int half = low + (((high - low) >> 2) << 1);
191
192                 if (attempt_half == 1)
193                         high = half;
194                 else
195                         low = half;
196         }
197         remaining = high - low;
198         if (likely(remaining > 1))
199                 remaining &= ~1U;
200
201         offset = prandom_u32() % remaining;
202         /* __inet_hash_connect() favors ports having @low parity
203          * We do the opposite to not pollute connect() users.
204          */
205         offset |= 1U;
206
207 other_parity_scan:
208         port = low + offset;
209         for (i = 0; i < remaining; i += 2, port += 2) {
210                 if (unlikely(port >= high))
211                         port -= remaining;
212                 if (inet_is_local_reserved_port(net, port))
213                         continue;
214                 head = &hinfo->bhash[inet_bhashfn(net, port,
215                                                   hinfo->bhash_size)];
216                 spin_lock_bh(&head->lock);
217                 inet_bind_bucket_for_each(tb, &head->chain)
218                         if (net_eq(ib_net(tb), net) && tb->port == port) {
219                                 if (!inet_csk_bind_conflict(sk, tb, false, false))
220                                         goto success;
221                                 goto next_port;
222                         }
223                 tb = NULL;
224                 goto success;
225 next_port:
226                 spin_unlock_bh(&head->lock);
227                 cond_resched();
228         }
229
230         offset--;
231         if (!(offset & 1))
232                 goto other_parity_scan;
233
234         if (attempt_half == 1) {
235                 /* OK we now try the upper half of the range */
236                 attempt_half = 2;
237                 goto other_half_scan;
238         }
239         return NULL;
240 success:
241         *port_ret = port;
242         *tb_ret = tb;
243         return head;
244 }
245
246 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
247                                      struct sock *sk)
248 {
249         kuid_t uid = sock_i_uid(sk);
250
251         if (tb->fastreuseport <= 0)
252                 return 0;
253         if (!sk->sk_reuseport)
254                 return 0;
255         if (rcu_access_pointer(sk->sk_reuseport_cb))
256                 return 0;
257         if (!uid_eq(tb->fastuid, uid))
258                 return 0;
259         /* We only need to check the rcv_saddr if this tb was once marked
260          * without fastreuseport and then was reset, as we can only know that
261          * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
262          * owners list.
263          */
264         if (tb->fastreuseport == FASTREUSEPORT_ANY)
265                 return 1;
266 #if IS_ENABLED(CONFIG_IPV6)
267         if (tb->fast_sk_family == AF_INET6)
268                 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
269                                             &sk->sk_v6_rcv_saddr,
270                                             tb->fast_rcv_saddr,
271                                             sk->sk_rcv_saddr,
272                                             tb->fast_ipv6_only,
273                                             ipv6_only_sock(sk), true);
274 #endif
275         return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
276                                     ipv6_only_sock(sk), true);
277 }
278
279 /* Obtain a reference to a local port for the given sock,
280  * if snum is zero it means select any available local port.
281  * We try to allocate an odd port (and leave even ports for connect())
282  */
283 int inet_csk_get_port(struct sock *sk, unsigned short snum)
284 {
285         bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
286         struct inet_hashinfo *hinfo = sk->sk_prot->h.hashinfo;
287         int ret = 1, port = snum;
288         struct inet_bind_hashbucket *head;
289         struct net *net = sock_net(sk);
290         struct inet_bind_bucket *tb = NULL;
291         kuid_t uid = sock_i_uid(sk);
292
293         if (!port) {
294                 head = inet_csk_find_open_port(sk, &tb, &port);
295                 if (!head)
296                         return ret;
297                 if (!tb)
298                         goto tb_not_found;
299                 goto success;
300         }
301         head = &hinfo->bhash[inet_bhashfn(net, port,
302                                           hinfo->bhash_size)];
303         spin_lock_bh(&head->lock);
304         inet_bind_bucket_for_each(tb, &head->chain)
305                 if (net_eq(ib_net(tb), net) && tb->port == port)
306                         goto tb_found;
307 tb_not_found:
308         tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep,
309                                      net, head, port);
310         if (!tb)
311                 goto fail_unlock;
312 tb_found:
313         if (!hlist_empty(&tb->owners)) {
314                 if (sk->sk_reuse == SK_FORCE_REUSE)
315                         goto success;
316
317                 if ((tb->fastreuse > 0 && reuse) ||
318                     sk_reuseport_match(tb, sk))
319                         goto success;
320                 if (inet_csk_bind_conflict(sk, tb, true, true))
321                         goto fail_unlock;
322         }
323 success:
324         if (!hlist_empty(&tb->owners)) {
325                 tb->fastreuse = reuse;
326                 if (sk->sk_reuseport) {
327                         tb->fastreuseport = FASTREUSEPORT_ANY;
328                         tb->fastuid = uid;
329                         tb->fast_rcv_saddr = sk->sk_rcv_saddr;
330                         tb->fast_ipv6_only = ipv6_only_sock(sk);
331 #if IS_ENABLED(CONFIG_IPV6)
332                         tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
333 #endif
334                 } else {
335                         tb->fastreuseport = 0;
336                 }
337         } else {
338                 if (!reuse)
339                         tb->fastreuse = 0;
340                 if (sk->sk_reuseport) {
341                         /* We didn't match or we don't have fastreuseport set on
342                          * the tb, but we have sk_reuseport set on this socket
343                          * and we know that there are no bind conflicts with
344                          * this socket in this tb, so reset our tb's reuseport
345                          * settings so that any subsequent sockets that match
346                          * our current socket will be put on the fast path.
347                          *
348                          * If we reset we need to set FASTREUSEPORT_STRICT so we
349                          * do extra checking for all subsequent sk_reuseport
350                          * socks.
351                          */
352                         if (!sk_reuseport_match(tb, sk)) {
353                                 tb->fastreuseport = FASTREUSEPORT_STRICT;
354                                 tb->fastuid = uid;
355                                 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
356                                 tb->fast_ipv6_only = ipv6_only_sock(sk);
357 #if IS_ENABLED(CONFIG_IPV6)
358                                 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
359 #endif
360                         }
361                 } else {
362                         tb->fastreuseport = 0;
363                 }
364         }
365         if (!inet_csk(sk)->icsk_bind_hash)
366                 inet_bind_hash(sk, tb, port);
367         WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
368         ret = 0;
369
370 fail_unlock:
371         spin_unlock_bh(&head->lock);
372         return ret;
373 }
374 EXPORT_SYMBOL_GPL(inet_csk_get_port);
375
376 /*
377  * Wait for an incoming connection, avoid race conditions. This must be called
378  * with the socket locked.
379  */
380 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
381 {
382         struct inet_connection_sock *icsk = inet_csk(sk);
383         DEFINE_WAIT(wait);
384         int err;
385
386         /*
387          * True wake-one mechanism for incoming connections: only
388          * one process gets woken up, not the 'whole herd'.
389          * Since we do not 'race & poll' for established sockets
390          * anymore, the common case will execute the loop only once.
391          *
392          * Subtle issue: "add_wait_queue_exclusive()" will be added
393          * after any current non-exclusive waiters, and we know that
394          * it will always _stay_ after any new non-exclusive waiters
395          * because all non-exclusive waiters are added at the
396          * beginning of the wait-queue. As such, it's ok to "drop"
397          * our exclusiveness temporarily when we get woken up without
398          * having to remove and re-insert us on the wait queue.
399          */
400         for (;;) {
401                 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
402                                           TASK_INTERRUPTIBLE);
403                 release_sock(sk);
404                 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
405                         timeo = schedule_timeout(timeo);
406                 sched_annotate_sleep();
407                 lock_sock(sk);
408                 err = 0;
409                 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
410                         break;
411                 err = -EINVAL;
412                 if (sk->sk_state != TCP_LISTEN)
413                         break;
414                 err = sock_intr_errno(timeo);
415                 if (signal_pending(current))
416                         break;
417                 err = -EAGAIN;
418                 if (!timeo)
419                         break;
420         }
421         finish_wait(sk_sleep(sk), &wait);
422         return err;
423 }
424
425 /*
426  * This will accept the next outstanding connection.
427  */
428 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
429 {
430         struct inet_connection_sock *icsk = inet_csk(sk);
431         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
432         struct request_sock *req;
433         struct sock *newsk;
434         int error;
435
436         lock_sock(sk);
437
438         /* We need to make sure that this socket is listening,
439          * and that it has something pending.
440          */
441         error = -EINVAL;
442         if (sk->sk_state != TCP_LISTEN)
443                 goto out_err;
444
445         /* Find already established connection */
446         if (reqsk_queue_empty(queue)) {
447                 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
448
449                 /* If this is a non blocking socket don't sleep */
450                 error = -EAGAIN;
451                 if (!timeo)
452                         goto out_err;
453
454                 error = inet_csk_wait_for_connect(sk, timeo);
455                 if (error)
456                         goto out_err;
457         }
458         req = reqsk_queue_remove(queue, sk);
459         newsk = req->sk;
460
461         if (sk->sk_protocol == IPPROTO_TCP &&
462             tcp_rsk(req)->tfo_listener) {
463                 spin_lock_bh(&queue->fastopenq.lock);
464                 if (tcp_rsk(req)->tfo_listener) {
465                         /* We are still waiting for the final ACK from 3WHS
466                          * so can't free req now. Instead, we set req->sk to
467                          * NULL to signify that the child socket is taken
468                          * so reqsk_fastopen_remove() will free the req
469                          * when 3WHS finishes (or is aborted).
470                          */
471                         req->sk = NULL;
472                         req = NULL;
473                 }
474                 spin_unlock_bh(&queue->fastopenq.lock);
475         }
476 out:
477         release_sock(sk);
478         if (req)
479                 reqsk_put(req);
480         return newsk;
481 out_err:
482         newsk = NULL;
483         req = NULL;
484         *err = error;
485         goto out;
486 }
487 EXPORT_SYMBOL(inet_csk_accept);
488
489 /*
490  * Using different timers for retransmit, delayed acks and probes
491  * We may wish use just one timer maintaining a list of expire jiffies
492  * to optimize.
493  */
494 void inet_csk_init_xmit_timers(struct sock *sk,
495                                void (*retransmit_handler)(unsigned long),
496                                void (*delack_handler)(unsigned long),
497                                void (*keepalive_handler)(unsigned long))
498 {
499         struct inet_connection_sock *icsk = inet_csk(sk);
500
501         setup_timer(&icsk->icsk_retransmit_timer, retransmit_handler,
502                         (unsigned long)sk);
503         setup_timer(&icsk->icsk_delack_timer, delack_handler,
504                         (unsigned long)sk);
505         setup_timer(&sk->sk_timer, keepalive_handler, (unsigned long)sk);
506         icsk->icsk_pending = icsk->icsk_ack.pending = 0;
507 }
508 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
509
510 void inet_csk_clear_xmit_timers(struct sock *sk)
511 {
512         struct inet_connection_sock *icsk = inet_csk(sk);
513
514         icsk->icsk_pending = icsk->icsk_ack.pending = icsk->icsk_ack.blocked = 0;
515
516         sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
517         sk_stop_timer(sk, &icsk->icsk_delack_timer);
518         sk_stop_timer(sk, &sk->sk_timer);
519 }
520 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
521
522 void inet_csk_delete_keepalive_timer(struct sock *sk)
523 {
524         sk_stop_timer(sk, &sk->sk_timer);
525 }
526 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
527
528 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
529 {
530         sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
531 }
532 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
533
534 struct dst_entry *inet_csk_route_req(const struct sock *sk,
535                                      struct flowi4 *fl4,
536                                      const struct request_sock *req)
537 {
538         const struct inet_request_sock *ireq = inet_rsk(req);
539         struct net *net = read_pnet(&ireq->ireq_net);
540         struct ip_options_rcu *opt = ireq->opt;
541         struct rtable *rt;
542
543         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
544                            RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
545                            sk->sk_protocol, inet_sk_flowi_flags(sk),
546                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
547                            ireq->ir_loc_addr, ireq->ir_rmt_port,
548                            htons(ireq->ir_num), sk->sk_uid);
549         security_req_classify_flow(req, flowi4_to_flowi(fl4));
550         rt = ip_route_output_flow(net, fl4, sk);
551         if (IS_ERR(rt))
552                 goto no_route;
553         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
554                 goto route_err;
555         return &rt->dst;
556
557 route_err:
558         ip_rt_put(rt);
559 no_route:
560         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
561         return NULL;
562 }
563 EXPORT_SYMBOL_GPL(inet_csk_route_req);
564
565 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
566                                             struct sock *newsk,
567                                             const struct request_sock *req)
568 {
569         const struct inet_request_sock *ireq = inet_rsk(req);
570         struct net *net = read_pnet(&ireq->ireq_net);
571         struct inet_sock *newinet = inet_sk(newsk);
572         struct ip_options_rcu *opt;
573         struct flowi4 *fl4;
574         struct rtable *rt;
575
576         fl4 = &newinet->cork.fl.u.ip4;
577
578         rcu_read_lock();
579         opt = rcu_dereference(newinet->inet_opt);
580         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
581                            RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
582                            sk->sk_protocol, inet_sk_flowi_flags(sk),
583                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
584                            ireq->ir_loc_addr, ireq->ir_rmt_port,
585                            htons(ireq->ir_num), sk->sk_uid);
586         security_req_classify_flow(req, flowi4_to_flowi(fl4));
587         rt = ip_route_output_flow(net, fl4, sk);
588         if (IS_ERR(rt))
589                 goto no_route;
590         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
591                 goto route_err;
592         rcu_read_unlock();
593         return &rt->dst;
594
595 route_err:
596         ip_rt_put(rt);
597 no_route:
598         rcu_read_unlock();
599         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
600         return NULL;
601 }
602 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
603
604 #if IS_ENABLED(CONFIG_IPV6)
605 #define AF_INET_FAMILY(fam) ((fam) == AF_INET)
606 #else
607 #define AF_INET_FAMILY(fam) true
608 #endif
609
610 /* Decide when to expire the request and when to resend SYN-ACK */
611 static inline void syn_ack_recalc(struct request_sock *req, const int thresh,
612                                   const int max_retries,
613                                   const u8 rskq_defer_accept,
614                                   int *expire, int *resend)
615 {
616         if (!rskq_defer_accept) {
617                 *expire = req->num_timeout >= thresh;
618                 *resend = 1;
619                 return;
620         }
621         *expire = req->num_timeout >= thresh &&
622                   (!inet_rsk(req)->acked || req->num_timeout >= max_retries);
623         /*
624          * Do not resend while waiting for data after ACK,
625          * start to resend on end of deferring period to give
626          * last chance for data or ACK to create established socket.
627          */
628         *resend = !inet_rsk(req)->acked ||
629                   req->num_timeout >= rskq_defer_accept - 1;
630 }
631
632 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
633 {
634         int err = req->rsk_ops->rtx_syn_ack(parent, req);
635
636         if (!err)
637                 req->num_retrans++;
638         return err;
639 }
640 EXPORT_SYMBOL(inet_rtx_syn_ack);
641
642 /* return true if req was found in the ehash table */
643 static bool reqsk_queue_unlink(struct request_sock_queue *queue,
644                                struct request_sock *req)
645 {
646         struct inet_hashinfo *hashinfo = req_to_sk(req)->sk_prot->h.hashinfo;
647         bool found = false;
648
649         if (sk_hashed(req_to_sk(req))) {
650                 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
651
652                 spin_lock(lock);
653                 found = __sk_nulls_del_node_init_rcu(req_to_sk(req));
654                 spin_unlock(lock);
655         }
656         if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
657                 reqsk_put(req);
658         return found;
659 }
660
661 void inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
662 {
663         if (reqsk_queue_unlink(&inet_csk(sk)->icsk_accept_queue, req)) {
664                 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
665                 reqsk_put(req);
666         }
667 }
668 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
669
670 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
671 {
672         inet_csk_reqsk_queue_drop(sk, req);
673         reqsk_put(req);
674 }
675 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
676
677 static void reqsk_timer_handler(unsigned long data)
678 {
679         struct request_sock *req = (struct request_sock *)data;
680         struct sock *sk_listener = req->rsk_listener;
681         struct net *net = sock_net(sk_listener);
682         struct inet_connection_sock *icsk = inet_csk(sk_listener);
683         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
684         int qlen, expire = 0, resend = 0;
685         int max_retries, thresh;
686         u8 defer_accept;
687
688         if (sk_state_load(sk_listener) != TCP_LISTEN)
689                 goto drop;
690
691         max_retries = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_synack_retries;
692         thresh = max_retries;
693         /* Normally all the openreqs are young and become mature
694          * (i.e. converted to established socket) for first timeout.
695          * If synack was not acknowledged for 1 second, it means
696          * one of the following things: synack was lost, ack was lost,
697          * rtt is high or nobody planned to ack (i.e. synflood).
698          * When server is a bit loaded, queue is populated with old
699          * open requests, reducing effective size of queue.
700          * When server is well loaded, queue size reduces to zero
701          * after several minutes of work. It is not synflood,
702          * it is normal operation. The solution is pruning
703          * too old entries overriding normal timeout, when
704          * situation becomes dangerous.
705          *
706          * Essentially, we reserve half of room for young
707          * embrions; and abort old ones without pity, if old
708          * ones are about to clog our table.
709          */
710         qlen = reqsk_queue_len(queue);
711         if ((qlen << 1) > max(8U, sk_listener->sk_max_ack_backlog)) {
712                 int young = reqsk_queue_len_young(queue) << 1;
713
714                 while (thresh > 2) {
715                         if (qlen < young)
716                                 break;
717                         thresh--;
718                         young <<= 1;
719                 }
720         }
721         defer_accept = READ_ONCE(queue->rskq_defer_accept);
722         if (defer_accept)
723                 max_retries = defer_accept;
724         syn_ack_recalc(req, thresh, max_retries, defer_accept,
725                        &expire, &resend);
726         req->rsk_ops->syn_ack_timeout(req);
727         if (!expire &&
728             (!resend ||
729              !inet_rtx_syn_ack(sk_listener, req) ||
730              inet_rsk(req)->acked)) {
731                 unsigned long timeo;
732
733                 if (req->num_timeout++ == 0)
734                         atomic_dec(&queue->young);
735                 timeo = min(TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
736                 mod_timer(&req->rsk_timer, jiffies + timeo);
737                 return;
738         }
739 drop:
740         inet_csk_reqsk_queue_drop_and_put(sk_listener, req);
741 }
742
743 static void reqsk_queue_hash_req(struct request_sock *req,
744                                  unsigned long timeout)
745 {
746         req->num_retrans = 0;
747         req->num_timeout = 0;
748         req->sk = NULL;
749
750         setup_pinned_timer(&req->rsk_timer, reqsk_timer_handler,
751                             (unsigned long)req);
752         mod_timer(&req->rsk_timer, jiffies + timeout);
753
754         inet_ehash_insert(req_to_sk(req), NULL);
755         /* before letting lookups find us, make sure all req fields
756          * are committed to memory and refcnt initialized.
757          */
758         smp_wmb();
759         atomic_set(&req->rsk_refcnt, 2 + 1);
760 }
761
762 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
763                                    unsigned long timeout)
764 {
765         reqsk_queue_hash_req(req, timeout);
766         inet_csk_reqsk_queue_added(sk);
767 }
768 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
769
770 /**
771  *      inet_csk_clone_lock - clone an inet socket, and lock its clone
772  *      @sk: the socket to clone
773  *      @req: request_sock
774  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
775  *
776  *      Caller must unlock socket even in error path (bh_unlock_sock(newsk))
777  */
778 struct sock *inet_csk_clone_lock(const struct sock *sk,
779                                  const struct request_sock *req,
780                                  const gfp_t priority)
781 {
782         struct sock *newsk = sk_clone_lock(sk, priority);
783
784         if (newsk) {
785                 struct inet_connection_sock *newicsk = inet_csk(newsk);
786
787                 newsk->sk_state = TCP_SYN_RECV;
788                 newicsk->icsk_bind_hash = NULL;
789
790                 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
791                 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
792                 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
793
794                 /* listeners have SOCK_RCU_FREE, not the children */
795                 sock_reset_flag(newsk, SOCK_RCU_FREE);
796
797                 inet_sk(newsk)->mc_list = NULL;
798
799                 newsk->sk_mark = inet_rsk(req)->ir_mark;
800                 atomic64_set(&newsk->sk_cookie,
801                              atomic64_read(&inet_rsk(req)->ir_cookie));
802
803                 newicsk->icsk_retransmits = 0;
804                 newicsk->icsk_backoff     = 0;
805                 newicsk->icsk_probes_out  = 0;
806
807                 /* Deinitialize accept_queue to trap illegal accesses. */
808                 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
809
810                 security_inet_csk_clone(newsk, req);
811         }
812         return newsk;
813 }
814 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
815
816 /*
817  * At this point, there should be no process reference to this
818  * socket, and thus no user references at all.  Therefore we
819  * can assume the socket waitqueue is inactive and nobody will
820  * try to jump onto it.
821  */
822 void inet_csk_destroy_sock(struct sock *sk)
823 {
824         WARN_ON(sk->sk_state != TCP_CLOSE);
825         WARN_ON(!sock_flag(sk, SOCK_DEAD));
826
827         /* It cannot be in hash table! */
828         WARN_ON(!sk_unhashed(sk));
829
830         /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
831         WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
832
833         sk->sk_prot->destroy(sk);
834
835         sk_stream_kill_queues(sk);
836
837         xfrm_sk_free_policy(sk);
838
839         sk_refcnt_debug_release(sk);
840
841         percpu_counter_dec(sk->sk_prot->orphan_count);
842
843         sock_put(sk);
844 }
845 EXPORT_SYMBOL(inet_csk_destroy_sock);
846
847 /* This function allows to force a closure of a socket after the call to
848  * tcp/dccp_create_openreq_child().
849  */
850 void inet_csk_prepare_forced_close(struct sock *sk)
851         __releases(&sk->sk_lock.slock)
852 {
853         /* sk_clone_lock locked the socket and set refcnt to 2 */
854         bh_unlock_sock(sk);
855         sock_put(sk);
856
857         /* The below has to be done to allow calling inet_csk_destroy_sock */
858         sock_set_flag(sk, SOCK_DEAD);
859         percpu_counter_inc(sk->sk_prot->orphan_count);
860         inet_sk(sk)->inet_num = 0;
861 }
862 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
863
864 int inet_csk_listen_start(struct sock *sk, int backlog)
865 {
866         struct inet_connection_sock *icsk = inet_csk(sk);
867         struct inet_sock *inet = inet_sk(sk);
868         int err = -EADDRINUSE;
869
870         reqsk_queue_alloc(&icsk->icsk_accept_queue);
871
872         sk->sk_max_ack_backlog = backlog;
873         sk->sk_ack_backlog = 0;
874         inet_csk_delack_init(sk);
875
876         /* There is race window here: we announce ourselves listening,
877          * but this transition is still not validated by get_port().
878          * It is OK, because this socket enters to hash table only
879          * after validation is complete.
880          */
881         sk_state_store(sk, TCP_LISTEN);
882         if (!sk->sk_prot->get_port(sk, inet->inet_num)) {
883                 inet->inet_sport = htons(inet->inet_num);
884
885                 sk_dst_reset(sk);
886                 err = sk->sk_prot->hash(sk);
887
888                 if (likely(!err))
889                         return 0;
890         }
891
892         sk->sk_state = TCP_CLOSE;
893         return err;
894 }
895 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
896
897 static void inet_child_forget(struct sock *sk, struct request_sock *req,
898                               struct sock *child)
899 {
900         sk->sk_prot->disconnect(child, O_NONBLOCK);
901
902         sock_orphan(child);
903
904         percpu_counter_inc(sk->sk_prot->orphan_count);
905
906         if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
907                 BUG_ON(tcp_sk(child)->fastopen_rsk != req);
908                 BUG_ON(sk != req->rsk_listener);
909
910                 /* Paranoid, to prevent race condition if
911                  * an inbound pkt destined for child is
912                  * blocked by sock lock in tcp_v4_rcv().
913                  * Also to satisfy an assertion in
914                  * tcp_v4_destroy_sock().
915                  */
916                 tcp_sk(child)->fastopen_rsk = NULL;
917         }
918         inet_csk_destroy_sock(child);
919         reqsk_put(req);
920 }
921
922 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
923                                       struct request_sock *req,
924                                       struct sock *child)
925 {
926         struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
927
928         spin_lock(&queue->rskq_lock);
929         if (unlikely(sk->sk_state != TCP_LISTEN)) {
930                 inet_child_forget(sk, req, child);
931                 child = NULL;
932         } else {
933                 req->sk = child;
934                 req->dl_next = NULL;
935                 if (queue->rskq_accept_head == NULL)
936                         queue->rskq_accept_head = req;
937                 else
938                         queue->rskq_accept_tail->dl_next = req;
939                 queue->rskq_accept_tail = req;
940                 sk_acceptq_added(sk);
941         }
942         spin_unlock(&queue->rskq_lock);
943         return child;
944 }
945 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
946
947 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
948                                          struct request_sock *req, bool own_req)
949 {
950         if (own_req) {
951                 inet_csk_reqsk_queue_drop(sk, req);
952                 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
953                 if (inet_csk_reqsk_queue_add(sk, req, child))
954                         return child;
955         }
956         /* Too bad, another child took ownership of the request, undo. */
957         bh_unlock_sock(child);
958         sock_put(child);
959         return NULL;
960 }
961 EXPORT_SYMBOL(inet_csk_complete_hashdance);
962
963 /*
964  *      This routine closes sockets which have been at least partially
965  *      opened, but not yet accepted.
966  */
967 void inet_csk_listen_stop(struct sock *sk)
968 {
969         struct inet_connection_sock *icsk = inet_csk(sk);
970         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
971         struct request_sock *next, *req;
972
973         /* Following specs, it would be better either to send FIN
974          * (and enter FIN-WAIT-1, it is normal close)
975          * or to send active reset (abort).
976          * Certainly, it is pretty dangerous while synflood, but it is
977          * bad justification for our negligence 8)
978          * To be honest, we are not able to make either
979          * of the variants now.                 --ANK
980          */
981         while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
982                 struct sock *child = req->sk;
983
984                 local_bh_disable();
985                 bh_lock_sock(child);
986                 WARN_ON(sock_owned_by_user(child));
987                 sock_hold(child);
988
989                 inet_child_forget(sk, req, child);
990                 bh_unlock_sock(child);
991                 local_bh_enable();
992                 sock_put(child);
993
994                 cond_resched();
995         }
996         if (queue->fastopenq.rskq_rst_head) {
997                 /* Free all the reqs queued in rskq_rst_head. */
998                 spin_lock_bh(&queue->fastopenq.lock);
999                 req = queue->fastopenq.rskq_rst_head;
1000                 queue->fastopenq.rskq_rst_head = NULL;
1001                 spin_unlock_bh(&queue->fastopenq.lock);
1002                 while (req != NULL) {
1003                         next = req->dl_next;
1004                         reqsk_put(req);
1005                         req = next;
1006                 }
1007         }
1008         WARN_ON_ONCE(sk->sk_ack_backlog);
1009 }
1010 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1011
1012 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1013 {
1014         struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1015         const struct inet_sock *inet = inet_sk(sk);
1016
1017         sin->sin_family         = AF_INET;
1018         sin->sin_addr.s_addr    = inet->inet_daddr;
1019         sin->sin_port           = inet->inet_dport;
1020 }
1021 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1022
1023 #ifdef CONFIG_COMPAT
1024 int inet_csk_compat_getsockopt(struct sock *sk, int level, int optname,
1025                                char __user *optval, int __user *optlen)
1026 {
1027         const struct inet_connection_sock *icsk = inet_csk(sk);
1028
1029         if (icsk->icsk_af_ops->compat_getsockopt)
1030                 return icsk->icsk_af_ops->compat_getsockopt(sk, level, optname,
1031                                                             optval, optlen);
1032         return icsk->icsk_af_ops->getsockopt(sk, level, optname,
1033                                              optval, optlen);
1034 }
1035 EXPORT_SYMBOL_GPL(inet_csk_compat_getsockopt);
1036
1037 int inet_csk_compat_setsockopt(struct sock *sk, int level, int optname,
1038                                char __user *optval, unsigned int optlen)
1039 {
1040         const struct inet_connection_sock *icsk = inet_csk(sk);
1041
1042         if (icsk->icsk_af_ops->compat_setsockopt)
1043                 return icsk->icsk_af_ops->compat_setsockopt(sk, level, optname,
1044                                                             optval, optlen);
1045         return icsk->icsk_af_ops->setsockopt(sk, level, optname,
1046                                              optval, optlen);
1047 }
1048 EXPORT_SYMBOL_GPL(inet_csk_compat_setsockopt);
1049 #endif
1050
1051 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1052 {
1053         const struct inet_sock *inet = inet_sk(sk);
1054         const struct ip_options_rcu *inet_opt;
1055         __be32 daddr = inet->inet_daddr;
1056         struct flowi4 *fl4;
1057         struct rtable *rt;
1058
1059         rcu_read_lock();
1060         inet_opt = rcu_dereference(inet->inet_opt);
1061         if (inet_opt && inet_opt->opt.srr)
1062                 daddr = inet_opt->opt.faddr;
1063         fl4 = &fl->u.ip4;
1064         rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1065                                    inet->inet_saddr, inet->inet_dport,
1066                                    inet->inet_sport, sk->sk_protocol,
1067                                    RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1068         if (IS_ERR(rt))
1069                 rt = NULL;
1070         if (rt)
1071                 sk_setup_caps(sk, &rt->dst);
1072         rcu_read_unlock();
1073
1074         return &rt->dst;
1075 }
1076
1077 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1078 {
1079         struct dst_entry *dst = __sk_dst_check(sk, 0);
1080         struct inet_sock *inet = inet_sk(sk);
1081
1082         if (!dst) {
1083                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1084                 if (!dst)
1085                         goto out;
1086         }
1087         dst->ops->update_pmtu(dst, sk, NULL, mtu);
1088
1089         dst = __sk_dst_check(sk, 0);
1090         if (!dst)
1091                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1092 out:
1093         return dst;
1094 }
1095 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);