tcp: Add TIME_WAIT sockets in bhash2.
[platform/kernel/linux-rpi.git] / net / ipv4 / inet_connection_sock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET         An implementation of the TCP/IP protocol suite for the LINUX
4  *              operating system.  INET is implemented using the  BSD Socket
5  *              interface as the means of communication with the user level.
6  *
7  *              Support for INET connection oriented protocols.
8  *
9  * Authors:     See the TCP sources
10  */
11
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses
28  *                              if IPv6 only, and any IPv4 addresses
29  *                              if not IPv6 only
30  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31  *                              IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32  *                              and 0.0.0.0 equals to 0.0.0.0 only
33  */
34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35                                  const struct in6_addr *sk2_rcv_saddr6,
36                                  __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37                                  bool sk1_ipv6only, bool sk2_ipv6only,
38                                  bool match_sk1_wildcard,
39                                  bool match_sk2_wildcard)
40 {
41         int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42         int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44         /* if both are mapped, treat as IPv4 */
45         if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46                 if (!sk2_ipv6only) {
47                         if (sk1_rcv_saddr == sk2_rcv_saddr)
48                                 return true;
49                         return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50                                 (match_sk2_wildcard && !sk2_rcv_saddr);
51                 }
52                 return false;
53         }
54
55         if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56                 return true;
57
58         if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59             !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60                 return true;
61
62         if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63             !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64                 return true;
65
66         if (sk2_rcv_saddr6 &&
67             ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68                 return true;
69
70         return false;
71 }
72 #endif
73
74 /* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
75  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76  *                              0.0.0.0 only equals to 0.0.0.0
77  */
78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79                                  bool sk2_ipv6only, bool match_sk1_wildcard,
80                                  bool match_sk2_wildcard)
81 {
82         if (!sk2_ipv6only) {
83                 if (sk1_rcv_saddr == sk2_rcv_saddr)
84                         return true;
85                 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86                         (match_sk2_wildcard && !sk2_rcv_saddr);
87         }
88         return false;
89 }
90
91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92                           bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95         if (sk->sk_family == AF_INET6)
96                 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97                                             inet6_rcv_saddr(sk2),
98                                             sk->sk_rcv_saddr,
99                                             sk2->sk_rcv_saddr,
100                                             ipv6_only_sock(sk),
101                                             ipv6_only_sock(sk2),
102                                             match_wildcard,
103                                             match_wildcard);
104 #endif
105         return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106                                     ipv6_only_sock(sk2), match_wildcard,
107                                     match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114         if (sk->sk_family == AF_INET6)
115                 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117         return !sk->sk_rcv_saddr;
118 }
119
120 void inet_get_local_port_range(struct net *net, int *low, int *high)
121 {
122         unsigned int seq;
123
124         do {
125                 seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
126
127                 *low = net->ipv4.ip_local_ports.range[0];
128                 *high = net->ipv4.ip_local_ports.range[1];
129         } while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
130 }
131 EXPORT_SYMBOL(inet_get_local_port_range);
132
133 static bool inet_use_bhash2_on_bind(const struct sock *sk)
134 {
135 #if IS_ENABLED(CONFIG_IPV6)
136         if (sk->sk_family == AF_INET6) {
137                 int addr_type = ipv6_addr_type(&sk->sk_v6_rcv_saddr);
138
139                 return addr_type != IPV6_ADDR_ANY &&
140                         addr_type != IPV6_ADDR_MAPPED;
141         }
142 #endif
143         return sk->sk_rcv_saddr != htonl(INADDR_ANY);
144 }
145
146 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
147                                kuid_t sk_uid, bool relax,
148                                bool reuseport_cb_ok, bool reuseport_ok)
149 {
150         int bound_dev_if2;
151
152         if (sk == sk2)
153                 return false;
154
155         bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
156
157         if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
158             sk->sk_bound_dev_if == bound_dev_if2) {
159                 if (sk->sk_reuse && sk2->sk_reuse &&
160                     sk2->sk_state != TCP_LISTEN) {
161                         if (!relax || (!reuseport_ok && sk->sk_reuseport &&
162                                        sk2->sk_reuseport && reuseport_cb_ok &&
163                                        (sk2->sk_state == TCP_TIME_WAIT ||
164                                         uid_eq(sk_uid, sock_i_uid(sk2)))))
165                                 return true;
166                 } else if (!reuseport_ok || !sk->sk_reuseport ||
167                            !sk2->sk_reuseport || !reuseport_cb_ok ||
168                            (sk2->sk_state != TCP_TIME_WAIT &&
169                             !uid_eq(sk_uid, sock_i_uid(sk2)))) {
170                         return true;
171                 }
172         }
173         return false;
174 }
175
176 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
177                                    kuid_t sk_uid, bool relax,
178                                    bool reuseport_cb_ok, bool reuseport_ok)
179 {
180         if (sk->sk_family == AF_INET && ipv6_only_sock(sk2))
181                 return false;
182
183         return inet_bind_conflict(sk, sk2, sk_uid, relax,
184                                   reuseport_cb_ok, reuseport_ok);
185 }
186
187 static bool inet_bhash2_conflict(const struct sock *sk,
188                                  const struct inet_bind2_bucket *tb2,
189                                  kuid_t sk_uid,
190                                  bool relax, bool reuseport_cb_ok,
191                                  bool reuseport_ok)
192 {
193         struct inet_timewait_sock *tw2;
194         struct sock *sk2;
195
196         sk_for_each_bound_bhash2(sk2, &tb2->owners) {
197                 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
198                                            reuseport_cb_ok, reuseport_ok))
199                         return true;
200         }
201
202         twsk_for_each_bound_bhash2(tw2, &tb2->deathrow) {
203                 sk2 = (struct sock *)tw2;
204
205                 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
206                                            reuseport_cb_ok, reuseport_ok))
207                         return true;
208         }
209
210         return false;
211 }
212
213 /* This should be called only when the tb and tb2 hashbuckets' locks are held */
214 static int inet_csk_bind_conflict(const struct sock *sk,
215                                   const struct inet_bind_bucket *tb,
216                                   const struct inet_bind2_bucket *tb2, /* may be null */
217                                   bool relax, bool reuseport_ok)
218 {
219         bool reuseport_cb_ok;
220         struct sock_reuseport *reuseport_cb;
221         kuid_t uid = sock_i_uid((struct sock *)sk);
222
223         rcu_read_lock();
224         reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
225         /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
226         reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
227         rcu_read_unlock();
228
229         /*
230          * Unlike other sk lookup places we do not check
231          * for sk_net here, since _all_ the socks listed
232          * in tb->owners and tb2->owners list belong
233          * to the same net - the one this bucket belongs to.
234          */
235
236         if (!inet_use_bhash2_on_bind(sk)) {
237                 struct sock *sk2;
238
239                 sk_for_each_bound(sk2, &tb->owners)
240                         if (inet_bind_conflict(sk, sk2, uid, relax,
241                                                reuseport_cb_ok, reuseport_ok) &&
242                             inet_rcv_saddr_equal(sk, sk2, true))
243                                 return true;
244
245                 return false;
246         }
247
248         /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
249          * ipv4) should have been checked already. We need to do these two
250          * checks separately because their spinlocks have to be acquired/released
251          * independently of each other, to prevent possible deadlocks
252          */
253         return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
254                                            reuseport_ok);
255 }
256
257 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
258  * INADDR_ANY (if ipv4) socket.
259  *
260  * Caller must hold bhash hashbucket lock with local bh disabled, to protect
261  * against concurrent binds on the port for addr any
262  */
263 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
264                                           bool relax, bool reuseport_ok)
265 {
266         kuid_t uid = sock_i_uid((struct sock *)sk);
267         const struct net *net = sock_net(sk);
268         struct sock_reuseport *reuseport_cb;
269         struct inet_bind_hashbucket *head2;
270         struct inet_bind2_bucket *tb2;
271         bool reuseport_cb_ok;
272
273         rcu_read_lock();
274         reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
275         /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
276         reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
277         rcu_read_unlock();
278
279         head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
280
281         spin_lock(&head2->lock);
282
283         inet_bind_bucket_for_each(tb2, &head2->chain)
284                 if (inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
285                         break;
286
287         if (tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
288                                         reuseport_ok)) {
289                 spin_unlock(&head2->lock);
290                 return true;
291         }
292
293         spin_unlock(&head2->lock);
294         return false;
295 }
296
297 /*
298  * Find an open port number for the socket.  Returns with the
299  * inet_bind_hashbucket locks held if successful.
300  */
301 static struct inet_bind_hashbucket *
302 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
303                         struct inet_bind2_bucket **tb2_ret,
304                         struct inet_bind_hashbucket **head2_ret, int *port_ret)
305 {
306         struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
307         int i, low, high, attempt_half, port, l3mdev;
308         struct inet_bind_hashbucket *head, *head2;
309         struct net *net = sock_net(sk);
310         struct inet_bind2_bucket *tb2;
311         struct inet_bind_bucket *tb;
312         u32 remaining, offset;
313         bool relax = false;
314
315         l3mdev = inet_sk_bound_l3mdev(sk);
316 ports_exhausted:
317         attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
318 other_half_scan:
319         inet_get_local_port_range(net, &low, &high);
320         high++; /* [32768, 60999] -> [32768, 61000[ */
321         if (high - low < 4)
322                 attempt_half = 0;
323         if (attempt_half) {
324                 int half = low + (((high - low) >> 2) << 1);
325
326                 if (attempt_half == 1)
327                         high = half;
328                 else
329                         low = half;
330         }
331         remaining = high - low;
332         if (likely(remaining > 1))
333                 remaining &= ~1U;
334
335         offset = get_random_u32_below(remaining);
336         /* __inet_hash_connect() favors ports having @low parity
337          * We do the opposite to not pollute connect() users.
338          */
339         offset |= 1U;
340
341 other_parity_scan:
342         port = low + offset;
343         for (i = 0; i < remaining; i += 2, port += 2) {
344                 if (unlikely(port >= high))
345                         port -= remaining;
346                 if (inet_is_local_reserved_port(net, port))
347                         continue;
348                 head = &hinfo->bhash[inet_bhashfn(net, port,
349                                                   hinfo->bhash_size)];
350                 spin_lock_bh(&head->lock);
351                 if (inet_use_bhash2_on_bind(sk)) {
352                         if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
353                                 goto next_port;
354                 }
355
356                 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
357                 spin_lock(&head2->lock);
358                 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
359                 inet_bind_bucket_for_each(tb, &head->chain)
360                         if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
361                                 if (!inet_csk_bind_conflict(sk, tb, tb2,
362                                                             relax, false))
363                                         goto success;
364                                 spin_unlock(&head2->lock);
365                                 goto next_port;
366                         }
367                 tb = NULL;
368                 goto success;
369 next_port:
370                 spin_unlock_bh(&head->lock);
371                 cond_resched();
372         }
373
374         offset--;
375         if (!(offset & 1))
376                 goto other_parity_scan;
377
378         if (attempt_half == 1) {
379                 /* OK we now try the upper half of the range */
380                 attempt_half = 2;
381                 goto other_half_scan;
382         }
383
384         if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
385                 /* We still have a chance to connect to different destinations */
386                 relax = true;
387                 goto ports_exhausted;
388         }
389         return NULL;
390 success:
391         *port_ret = port;
392         *tb_ret = tb;
393         *tb2_ret = tb2;
394         *head2_ret = head2;
395         return head;
396 }
397
398 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
399                                      struct sock *sk)
400 {
401         kuid_t uid = sock_i_uid(sk);
402
403         if (tb->fastreuseport <= 0)
404                 return 0;
405         if (!sk->sk_reuseport)
406                 return 0;
407         if (rcu_access_pointer(sk->sk_reuseport_cb))
408                 return 0;
409         if (!uid_eq(tb->fastuid, uid))
410                 return 0;
411         /* We only need to check the rcv_saddr if this tb was once marked
412          * without fastreuseport and then was reset, as we can only know that
413          * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
414          * owners list.
415          */
416         if (tb->fastreuseport == FASTREUSEPORT_ANY)
417                 return 1;
418 #if IS_ENABLED(CONFIG_IPV6)
419         if (tb->fast_sk_family == AF_INET6)
420                 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
421                                             inet6_rcv_saddr(sk),
422                                             tb->fast_rcv_saddr,
423                                             sk->sk_rcv_saddr,
424                                             tb->fast_ipv6_only,
425                                             ipv6_only_sock(sk), true, false);
426 #endif
427         return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
428                                     ipv6_only_sock(sk), true, false);
429 }
430
431 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
432                                struct sock *sk)
433 {
434         kuid_t uid = sock_i_uid(sk);
435         bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
436
437         if (hlist_empty(&tb->owners)) {
438                 tb->fastreuse = reuse;
439                 if (sk->sk_reuseport) {
440                         tb->fastreuseport = FASTREUSEPORT_ANY;
441                         tb->fastuid = uid;
442                         tb->fast_rcv_saddr = sk->sk_rcv_saddr;
443                         tb->fast_ipv6_only = ipv6_only_sock(sk);
444                         tb->fast_sk_family = sk->sk_family;
445 #if IS_ENABLED(CONFIG_IPV6)
446                         tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
447 #endif
448                 } else {
449                         tb->fastreuseport = 0;
450                 }
451         } else {
452                 if (!reuse)
453                         tb->fastreuse = 0;
454                 if (sk->sk_reuseport) {
455                         /* We didn't match or we don't have fastreuseport set on
456                          * the tb, but we have sk_reuseport set on this socket
457                          * and we know that there are no bind conflicts with
458                          * this socket in this tb, so reset our tb's reuseport
459                          * settings so that any subsequent sockets that match
460                          * our current socket will be put on the fast path.
461                          *
462                          * If we reset we need to set FASTREUSEPORT_STRICT so we
463                          * do extra checking for all subsequent sk_reuseport
464                          * socks.
465                          */
466                         if (!sk_reuseport_match(tb, sk)) {
467                                 tb->fastreuseport = FASTREUSEPORT_STRICT;
468                                 tb->fastuid = uid;
469                                 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
470                                 tb->fast_ipv6_only = ipv6_only_sock(sk);
471                                 tb->fast_sk_family = sk->sk_family;
472 #if IS_ENABLED(CONFIG_IPV6)
473                                 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
474 #endif
475                         }
476                 } else {
477                         tb->fastreuseport = 0;
478                 }
479         }
480 }
481
482 /* Obtain a reference to a local port for the given sock,
483  * if snum is zero it means select any available local port.
484  * We try to allocate an odd port (and leave even ports for connect())
485  */
486 int inet_csk_get_port(struct sock *sk, unsigned short snum)
487 {
488         struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
489         bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
490         bool found_port = false, check_bind_conflict = true;
491         bool bhash_created = false, bhash2_created = false;
492         int ret = -EADDRINUSE, port = snum, l3mdev;
493         struct inet_bind_hashbucket *head, *head2;
494         struct inet_bind2_bucket *tb2 = NULL;
495         struct inet_bind_bucket *tb = NULL;
496         bool head2_lock_acquired = false;
497         struct net *net = sock_net(sk);
498
499         l3mdev = inet_sk_bound_l3mdev(sk);
500
501         if (!port) {
502                 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
503                 if (!head)
504                         return ret;
505
506                 head2_lock_acquired = true;
507
508                 if (tb && tb2)
509                         goto success;
510                 found_port = true;
511         } else {
512                 head = &hinfo->bhash[inet_bhashfn(net, port,
513                                                   hinfo->bhash_size)];
514                 spin_lock_bh(&head->lock);
515                 inet_bind_bucket_for_each(tb, &head->chain)
516                         if (inet_bind_bucket_match(tb, net, port, l3mdev))
517                                 break;
518         }
519
520         if (!tb) {
521                 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
522                                              head, port, l3mdev);
523                 if (!tb)
524                         goto fail_unlock;
525                 bhash_created = true;
526         }
527
528         if (!found_port) {
529                 if (!hlist_empty(&tb->owners)) {
530                         if (sk->sk_reuse == SK_FORCE_REUSE ||
531                             (tb->fastreuse > 0 && reuse) ||
532                             sk_reuseport_match(tb, sk))
533                                 check_bind_conflict = false;
534                 }
535
536                 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
537                         if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
538                                 goto fail_unlock;
539                 }
540
541                 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
542                 spin_lock(&head2->lock);
543                 head2_lock_acquired = true;
544                 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
545         }
546
547         if (!tb2) {
548                 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
549                                                net, head2, port, l3mdev, sk);
550                 if (!tb2)
551                         goto fail_unlock;
552                 bhash2_created = true;
553         }
554
555         if (!found_port && check_bind_conflict) {
556                 if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
557                         goto fail_unlock;
558         }
559
560 success:
561         inet_csk_update_fastreuse(tb, sk);
562
563         if (!inet_csk(sk)->icsk_bind_hash)
564                 inet_bind_hash(sk, tb, tb2, port);
565         WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
566         WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
567         ret = 0;
568
569 fail_unlock:
570         if (ret) {
571                 if (bhash_created)
572                         inet_bind_bucket_destroy(hinfo->bind_bucket_cachep, tb);
573                 if (bhash2_created)
574                         inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep,
575                                                   tb2);
576         }
577         if (head2_lock_acquired)
578                 spin_unlock(&head2->lock);
579         spin_unlock_bh(&head->lock);
580         return ret;
581 }
582 EXPORT_SYMBOL_GPL(inet_csk_get_port);
583
584 /*
585  * Wait for an incoming connection, avoid race conditions. This must be called
586  * with the socket locked.
587  */
588 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
589 {
590         struct inet_connection_sock *icsk = inet_csk(sk);
591         DEFINE_WAIT(wait);
592         int err;
593
594         /*
595          * True wake-one mechanism for incoming connections: only
596          * one process gets woken up, not the 'whole herd'.
597          * Since we do not 'race & poll' for established sockets
598          * anymore, the common case will execute the loop only once.
599          *
600          * Subtle issue: "add_wait_queue_exclusive()" will be added
601          * after any current non-exclusive waiters, and we know that
602          * it will always _stay_ after any new non-exclusive waiters
603          * because all non-exclusive waiters are added at the
604          * beginning of the wait-queue. As such, it's ok to "drop"
605          * our exclusiveness temporarily when we get woken up without
606          * having to remove and re-insert us on the wait queue.
607          */
608         for (;;) {
609                 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
610                                           TASK_INTERRUPTIBLE);
611                 release_sock(sk);
612                 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
613                         timeo = schedule_timeout(timeo);
614                 sched_annotate_sleep();
615                 lock_sock(sk);
616                 err = 0;
617                 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
618                         break;
619                 err = -EINVAL;
620                 if (sk->sk_state != TCP_LISTEN)
621                         break;
622                 err = sock_intr_errno(timeo);
623                 if (signal_pending(current))
624                         break;
625                 err = -EAGAIN;
626                 if (!timeo)
627                         break;
628         }
629         finish_wait(sk_sleep(sk), &wait);
630         return err;
631 }
632
633 /*
634  * This will accept the next outstanding connection.
635  */
636 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
637 {
638         struct inet_connection_sock *icsk = inet_csk(sk);
639         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
640         struct request_sock *req;
641         struct sock *newsk;
642         int error;
643
644         lock_sock(sk);
645
646         /* We need to make sure that this socket is listening,
647          * and that it has something pending.
648          */
649         error = -EINVAL;
650         if (sk->sk_state != TCP_LISTEN)
651                 goto out_err;
652
653         /* Find already established connection */
654         if (reqsk_queue_empty(queue)) {
655                 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
656
657                 /* If this is a non blocking socket don't sleep */
658                 error = -EAGAIN;
659                 if (!timeo)
660                         goto out_err;
661
662                 error = inet_csk_wait_for_connect(sk, timeo);
663                 if (error)
664                         goto out_err;
665         }
666         req = reqsk_queue_remove(queue, sk);
667         newsk = req->sk;
668
669         if (sk->sk_protocol == IPPROTO_TCP &&
670             tcp_rsk(req)->tfo_listener) {
671                 spin_lock_bh(&queue->fastopenq.lock);
672                 if (tcp_rsk(req)->tfo_listener) {
673                         /* We are still waiting for the final ACK from 3WHS
674                          * so can't free req now. Instead, we set req->sk to
675                          * NULL to signify that the child socket is taken
676                          * so reqsk_fastopen_remove() will free the req
677                          * when 3WHS finishes (or is aborted).
678                          */
679                         req->sk = NULL;
680                         req = NULL;
681                 }
682                 spin_unlock_bh(&queue->fastopenq.lock);
683         }
684
685 out:
686         release_sock(sk);
687         if (newsk && mem_cgroup_sockets_enabled) {
688                 int amt;
689
690                 /* atomically get the memory usage, set and charge the
691                  * newsk->sk_memcg.
692                  */
693                 lock_sock(newsk);
694
695                 /* The socket has not been accepted yet, no need to look at
696                  * newsk->sk_wmem_queued.
697                  */
698                 amt = sk_mem_pages(newsk->sk_forward_alloc +
699                                    atomic_read(&newsk->sk_rmem_alloc));
700                 mem_cgroup_sk_alloc(newsk);
701                 if (newsk->sk_memcg && amt)
702                         mem_cgroup_charge_skmem(newsk->sk_memcg, amt,
703                                                 GFP_KERNEL | __GFP_NOFAIL);
704
705                 release_sock(newsk);
706         }
707         if (req)
708                 reqsk_put(req);
709         return newsk;
710 out_err:
711         newsk = NULL;
712         req = NULL;
713         *err = error;
714         goto out;
715 }
716 EXPORT_SYMBOL(inet_csk_accept);
717
718 /*
719  * Using different timers for retransmit, delayed acks and probes
720  * We may wish use just one timer maintaining a list of expire jiffies
721  * to optimize.
722  */
723 void inet_csk_init_xmit_timers(struct sock *sk,
724                                void (*retransmit_handler)(struct timer_list *t),
725                                void (*delack_handler)(struct timer_list *t),
726                                void (*keepalive_handler)(struct timer_list *t))
727 {
728         struct inet_connection_sock *icsk = inet_csk(sk);
729
730         timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
731         timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
732         timer_setup(&sk->sk_timer, keepalive_handler, 0);
733         icsk->icsk_pending = icsk->icsk_ack.pending = 0;
734 }
735 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
736
737 void inet_csk_clear_xmit_timers(struct sock *sk)
738 {
739         struct inet_connection_sock *icsk = inet_csk(sk);
740
741         icsk->icsk_pending = icsk->icsk_ack.pending = 0;
742
743         sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
744         sk_stop_timer(sk, &icsk->icsk_delack_timer);
745         sk_stop_timer(sk, &sk->sk_timer);
746 }
747 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
748
749 void inet_csk_delete_keepalive_timer(struct sock *sk)
750 {
751         sk_stop_timer(sk, &sk->sk_timer);
752 }
753 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
754
755 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
756 {
757         sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
758 }
759 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
760
761 struct dst_entry *inet_csk_route_req(const struct sock *sk,
762                                      struct flowi4 *fl4,
763                                      const struct request_sock *req)
764 {
765         const struct inet_request_sock *ireq = inet_rsk(req);
766         struct net *net = read_pnet(&ireq->ireq_net);
767         struct ip_options_rcu *opt;
768         struct rtable *rt;
769
770         rcu_read_lock();
771         opt = rcu_dereference(ireq->ireq_opt);
772
773         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
774                            RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
775                            sk->sk_protocol, inet_sk_flowi_flags(sk),
776                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
777                            ireq->ir_loc_addr, ireq->ir_rmt_port,
778                            htons(ireq->ir_num), sk->sk_uid);
779         security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
780         rt = ip_route_output_flow(net, fl4, sk);
781         if (IS_ERR(rt))
782                 goto no_route;
783         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
784                 goto route_err;
785         rcu_read_unlock();
786         return &rt->dst;
787
788 route_err:
789         ip_rt_put(rt);
790 no_route:
791         rcu_read_unlock();
792         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
793         return NULL;
794 }
795 EXPORT_SYMBOL_GPL(inet_csk_route_req);
796
797 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
798                                             struct sock *newsk,
799                                             const struct request_sock *req)
800 {
801         const struct inet_request_sock *ireq = inet_rsk(req);
802         struct net *net = read_pnet(&ireq->ireq_net);
803         struct inet_sock *newinet = inet_sk(newsk);
804         struct ip_options_rcu *opt;
805         struct flowi4 *fl4;
806         struct rtable *rt;
807
808         opt = rcu_dereference(ireq->ireq_opt);
809         fl4 = &newinet->cork.fl.u.ip4;
810
811         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
812                            RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE,
813                            sk->sk_protocol, inet_sk_flowi_flags(sk),
814                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
815                            ireq->ir_loc_addr, ireq->ir_rmt_port,
816                            htons(ireq->ir_num), sk->sk_uid);
817         security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
818         rt = ip_route_output_flow(net, fl4, sk);
819         if (IS_ERR(rt))
820                 goto no_route;
821         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
822                 goto route_err;
823         return &rt->dst;
824
825 route_err:
826         ip_rt_put(rt);
827 no_route:
828         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
829         return NULL;
830 }
831 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
832
833 /* Decide when to expire the request and when to resend SYN-ACK */
834 static void syn_ack_recalc(struct request_sock *req,
835                            const int max_syn_ack_retries,
836                            const u8 rskq_defer_accept,
837                            int *expire, int *resend)
838 {
839         if (!rskq_defer_accept) {
840                 *expire = req->num_timeout >= max_syn_ack_retries;
841                 *resend = 1;
842                 return;
843         }
844         *expire = req->num_timeout >= max_syn_ack_retries &&
845                   (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
846         /* Do not resend while waiting for data after ACK,
847          * start to resend on end of deferring period to give
848          * last chance for data or ACK to create established socket.
849          */
850         *resend = !inet_rsk(req)->acked ||
851                   req->num_timeout >= rskq_defer_accept - 1;
852 }
853
854 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
855 {
856         int err = req->rsk_ops->rtx_syn_ack(parent, req);
857
858         if (!err)
859                 req->num_retrans++;
860         return err;
861 }
862 EXPORT_SYMBOL(inet_rtx_syn_ack);
863
864 static struct request_sock *inet_reqsk_clone(struct request_sock *req,
865                                              struct sock *sk)
866 {
867         struct sock *req_sk, *nreq_sk;
868         struct request_sock *nreq;
869
870         nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
871         if (!nreq) {
872                 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
873
874                 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
875                 sock_put(sk);
876                 return NULL;
877         }
878
879         req_sk = req_to_sk(req);
880         nreq_sk = req_to_sk(nreq);
881
882         memcpy(nreq_sk, req_sk,
883                offsetof(struct sock, sk_dontcopy_begin));
884         memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
885                req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end));
886
887         sk_node_init(&nreq_sk->sk_node);
888         nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
889 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
890         nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
891 #endif
892         nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
893
894         nreq->rsk_listener = sk;
895
896         /* We need not acquire fastopenq->lock
897          * because the child socket is locked in inet_csk_listen_stop().
898          */
899         if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
900                 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
901
902         return nreq;
903 }
904
905 static void reqsk_queue_migrated(struct request_sock_queue *queue,
906                                  const struct request_sock *req)
907 {
908         if (req->num_timeout == 0)
909                 atomic_inc(&queue->young);
910         atomic_inc(&queue->qlen);
911 }
912
913 static void reqsk_migrate_reset(struct request_sock *req)
914 {
915         req->saved_syn = NULL;
916 #if IS_ENABLED(CONFIG_IPV6)
917         inet_rsk(req)->ipv6_opt = NULL;
918         inet_rsk(req)->pktopts = NULL;
919 #else
920         inet_rsk(req)->ireq_opt = NULL;
921 #endif
922 }
923
924 /* return true if req was found in the ehash table */
925 static bool reqsk_queue_unlink(struct request_sock *req)
926 {
927         struct sock *sk = req_to_sk(req);
928         bool found = false;
929
930         if (sk_hashed(sk)) {
931                 struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
932                 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
933
934                 spin_lock(lock);
935                 found = __sk_nulls_del_node_init_rcu(sk);
936                 spin_unlock(lock);
937         }
938         if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
939                 reqsk_put(req);
940         return found;
941 }
942
943 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
944 {
945         bool unlinked = reqsk_queue_unlink(req);
946
947         if (unlinked) {
948                 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
949                 reqsk_put(req);
950         }
951         return unlinked;
952 }
953 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
954
955 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
956 {
957         inet_csk_reqsk_queue_drop(sk, req);
958         reqsk_put(req);
959 }
960 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
961
962 static void reqsk_timer_handler(struct timer_list *t)
963 {
964         struct request_sock *req = from_timer(req, t, rsk_timer);
965         struct request_sock *nreq = NULL, *oreq = req;
966         struct sock *sk_listener = req->rsk_listener;
967         struct inet_connection_sock *icsk;
968         struct request_sock_queue *queue;
969         struct net *net;
970         int max_syn_ack_retries, qlen, expire = 0, resend = 0;
971
972         if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
973                 struct sock *nsk;
974
975                 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
976                 if (!nsk)
977                         goto drop;
978
979                 nreq = inet_reqsk_clone(req, nsk);
980                 if (!nreq)
981                         goto drop;
982
983                 /* The new timer for the cloned req can decrease the 2
984                  * by calling inet_csk_reqsk_queue_drop_and_put(), so
985                  * hold another count to prevent use-after-free and
986                  * call reqsk_put() just before return.
987                  */
988                 refcount_set(&nreq->rsk_refcnt, 2 + 1);
989                 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
990                 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
991
992                 req = nreq;
993                 sk_listener = nsk;
994         }
995
996         icsk = inet_csk(sk_listener);
997         net = sock_net(sk_listener);
998         max_syn_ack_retries = icsk->icsk_syn_retries ? :
999                 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1000         /* Normally all the openreqs are young and become mature
1001          * (i.e. converted to established socket) for first timeout.
1002          * If synack was not acknowledged for 1 second, it means
1003          * one of the following things: synack was lost, ack was lost,
1004          * rtt is high or nobody planned to ack (i.e. synflood).
1005          * When server is a bit loaded, queue is populated with old
1006          * open requests, reducing effective size of queue.
1007          * When server is well loaded, queue size reduces to zero
1008          * after several minutes of work. It is not synflood,
1009          * it is normal operation. The solution is pruning
1010          * too old entries overriding normal timeout, when
1011          * situation becomes dangerous.
1012          *
1013          * Essentially, we reserve half of room for young
1014          * embrions; and abort old ones without pity, if old
1015          * ones are about to clog our table.
1016          */
1017         queue = &icsk->icsk_accept_queue;
1018         qlen = reqsk_queue_len(queue);
1019         if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1020                 int young = reqsk_queue_len_young(queue) << 1;
1021
1022                 while (max_syn_ack_retries > 2) {
1023                         if (qlen < young)
1024                                 break;
1025                         max_syn_ack_retries--;
1026                         young <<= 1;
1027                 }
1028         }
1029         syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1030                        &expire, &resend);
1031         req->rsk_ops->syn_ack_timeout(req);
1032         if (!expire &&
1033             (!resend ||
1034              !inet_rtx_syn_ack(sk_listener, req) ||
1035              inet_rsk(req)->acked)) {
1036                 if (req->num_timeout++ == 0)
1037                         atomic_dec(&queue->young);
1038                 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1039
1040                 if (!nreq)
1041                         return;
1042
1043                 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1044                         /* delete timer */
1045                         inet_csk_reqsk_queue_drop(sk_listener, nreq);
1046                         goto no_ownership;
1047                 }
1048
1049                 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1050                 reqsk_migrate_reset(oreq);
1051                 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1052                 reqsk_put(oreq);
1053
1054                 reqsk_put(nreq);
1055                 return;
1056         }
1057
1058         /* Even if we can clone the req, we may need not retransmit any more
1059          * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1060          * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1061          */
1062         if (nreq) {
1063                 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1064 no_ownership:
1065                 reqsk_migrate_reset(nreq);
1066                 reqsk_queue_removed(queue, nreq);
1067                 __reqsk_free(nreq);
1068         }
1069
1070 drop:
1071         inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq);
1072 }
1073
1074 static void reqsk_queue_hash_req(struct request_sock *req,
1075                                  unsigned long timeout)
1076 {
1077         timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1078         mod_timer(&req->rsk_timer, jiffies + timeout);
1079
1080         inet_ehash_insert(req_to_sk(req), NULL, NULL);
1081         /* before letting lookups find us, make sure all req fields
1082          * are committed to memory and refcnt initialized.
1083          */
1084         smp_wmb();
1085         refcount_set(&req->rsk_refcnt, 2 + 1);
1086 }
1087
1088 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1089                                    unsigned long timeout)
1090 {
1091         reqsk_queue_hash_req(req, timeout);
1092         inet_csk_reqsk_queue_added(sk);
1093 }
1094 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
1095
1096 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1097                            const gfp_t priority)
1098 {
1099         struct inet_connection_sock *icsk = inet_csk(newsk);
1100
1101         if (!icsk->icsk_ulp_ops)
1102                 return;
1103
1104         if (icsk->icsk_ulp_ops->clone)
1105                 icsk->icsk_ulp_ops->clone(req, newsk, priority);
1106 }
1107
1108 /**
1109  *      inet_csk_clone_lock - clone an inet socket, and lock its clone
1110  *      @sk: the socket to clone
1111  *      @req: request_sock
1112  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1113  *
1114  *      Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1115  */
1116 struct sock *inet_csk_clone_lock(const struct sock *sk,
1117                                  const struct request_sock *req,
1118                                  const gfp_t priority)
1119 {
1120         struct sock *newsk = sk_clone_lock(sk, priority);
1121
1122         if (newsk) {
1123                 struct inet_connection_sock *newicsk = inet_csk(newsk);
1124
1125                 inet_sk_set_state(newsk, TCP_SYN_RECV);
1126                 newicsk->icsk_bind_hash = NULL;
1127                 newicsk->icsk_bind2_hash = NULL;
1128
1129                 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
1130                 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
1131                 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
1132
1133                 /* listeners have SOCK_RCU_FREE, not the children */
1134                 sock_reset_flag(newsk, SOCK_RCU_FREE);
1135
1136                 inet_sk(newsk)->mc_list = NULL;
1137
1138                 newsk->sk_mark = inet_rsk(req)->ir_mark;
1139                 atomic64_set(&newsk->sk_cookie,
1140                              atomic64_read(&inet_rsk(req)->ir_cookie));
1141
1142                 newicsk->icsk_retransmits = 0;
1143                 newicsk->icsk_backoff     = 0;
1144                 newicsk->icsk_probes_out  = 0;
1145                 newicsk->icsk_probes_tstamp = 0;
1146
1147                 /* Deinitialize accept_queue to trap illegal accesses. */
1148                 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
1149
1150                 inet_clone_ulp(req, newsk, priority);
1151
1152                 security_inet_csk_clone(newsk, req);
1153         }
1154         return newsk;
1155 }
1156 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
1157
1158 /*
1159  * At this point, there should be no process reference to this
1160  * socket, and thus no user references at all.  Therefore we
1161  * can assume the socket waitqueue is inactive and nobody will
1162  * try to jump onto it.
1163  */
1164 void inet_csk_destroy_sock(struct sock *sk)
1165 {
1166         WARN_ON(sk->sk_state != TCP_CLOSE);
1167         WARN_ON(!sock_flag(sk, SOCK_DEAD));
1168
1169         /* It cannot be in hash table! */
1170         WARN_ON(!sk_unhashed(sk));
1171
1172         /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1173         WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1174
1175         sk->sk_prot->destroy(sk);
1176
1177         sk_stream_kill_queues(sk);
1178
1179         xfrm_sk_free_policy(sk);
1180
1181         sk_refcnt_debug_release(sk);
1182
1183         this_cpu_dec(*sk->sk_prot->orphan_count);
1184
1185         sock_put(sk);
1186 }
1187 EXPORT_SYMBOL(inet_csk_destroy_sock);
1188
1189 /* This function allows to force a closure of a socket after the call to
1190  * tcp/dccp_create_openreq_child().
1191  */
1192 void inet_csk_prepare_forced_close(struct sock *sk)
1193         __releases(&sk->sk_lock.slock)
1194 {
1195         /* sk_clone_lock locked the socket and set refcnt to 2 */
1196         bh_unlock_sock(sk);
1197         sock_put(sk);
1198         inet_csk_prepare_for_destroy_sock(sk);
1199         inet_sk(sk)->inet_num = 0;
1200 }
1201 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1202
1203 int inet_csk_listen_start(struct sock *sk)
1204 {
1205         struct inet_connection_sock *icsk = inet_csk(sk);
1206         struct inet_sock *inet = inet_sk(sk);
1207         int err;
1208
1209         reqsk_queue_alloc(&icsk->icsk_accept_queue);
1210
1211         sk->sk_ack_backlog = 0;
1212         inet_csk_delack_init(sk);
1213
1214         if (sk->sk_txrehash == SOCK_TXREHASH_DEFAULT)
1215                 sk->sk_txrehash = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1216
1217         /* There is race window here: we announce ourselves listening,
1218          * but this transition is still not validated by get_port().
1219          * It is OK, because this socket enters to hash table only
1220          * after validation is complete.
1221          */
1222         inet_sk_state_store(sk, TCP_LISTEN);
1223         err = sk->sk_prot->get_port(sk, inet->inet_num);
1224         if (!err) {
1225                 inet->inet_sport = htons(inet->inet_num);
1226
1227                 sk_dst_reset(sk);
1228                 err = sk->sk_prot->hash(sk);
1229
1230                 if (likely(!err))
1231                         return 0;
1232         }
1233
1234         inet_sk_set_state(sk, TCP_CLOSE);
1235         return err;
1236 }
1237 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
1238
1239 static void inet_child_forget(struct sock *sk, struct request_sock *req,
1240                               struct sock *child)
1241 {
1242         sk->sk_prot->disconnect(child, O_NONBLOCK);
1243
1244         sock_orphan(child);
1245
1246         this_cpu_inc(*sk->sk_prot->orphan_count);
1247
1248         if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1249                 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1250                 BUG_ON(sk != req->rsk_listener);
1251
1252                 /* Paranoid, to prevent race condition if
1253                  * an inbound pkt destined for child is
1254                  * blocked by sock lock in tcp_v4_rcv().
1255                  * Also to satisfy an assertion in
1256                  * tcp_v4_destroy_sock().
1257                  */
1258                 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1259         }
1260         inet_csk_destroy_sock(child);
1261 }
1262
1263 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1264                                       struct request_sock *req,
1265                                       struct sock *child)
1266 {
1267         struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1268
1269         spin_lock(&queue->rskq_lock);
1270         if (unlikely(sk->sk_state != TCP_LISTEN)) {
1271                 inet_child_forget(sk, req, child);
1272                 child = NULL;
1273         } else {
1274                 req->sk = child;
1275                 req->dl_next = NULL;
1276                 if (queue->rskq_accept_head == NULL)
1277                         WRITE_ONCE(queue->rskq_accept_head, req);
1278                 else
1279                         queue->rskq_accept_tail->dl_next = req;
1280                 queue->rskq_accept_tail = req;
1281                 sk_acceptq_added(sk);
1282         }
1283         spin_unlock(&queue->rskq_lock);
1284         return child;
1285 }
1286 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1287
1288 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1289                                          struct request_sock *req, bool own_req)
1290 {
1291         if (own_req) {
1292                 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1293                 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1294
1295                 if (sk != req->rsk_listener) {
1296                         /* another listening sk has been selected,
1297                          * migrate the req to it.
1298                          */
1299                         struct request_sock *nreq;
1300
1301                         /* hold a refcnt for the nreq->rsk_listener
1302                          * which is assigned in inet_reqsk_clone()
1303                          */
1304                         sock_hold(sk);
1305                         nreq = inet_reqsk_clone(req, sk);
1306                         if (!nreq) {
1307                                 inet_child_forget(sk, req, child);
1308                                 goto child_put;
1309                         }
1310
1311                         refcount_set(&nreq->rsk_refcnt, 1);
1312                         if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1313                                 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1314                                 reqsk_migrate_reset(req);
1315                                 reqsk_put(req);
1316                                 return child;
1317                         }
1318
1319                         __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1320                         reqsk_migrate_reset(nreq);
1321                         __reqsk_free(nreq);
1322                 } else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1323                         return child;
1324                 }
1325         }
1326         /* Too bad, another child took ownership of the request, undo. */
1327 child_put:
1328         bh_unlock_sock(child);
1329         sock_put(child);
1330         return NULL;
1331 }
1332 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1333
1334 /*
1335  *      This routine closes sockets which have been at least partially
1336  *      opened, but not yet accepted.
1337  */
1338 void inet_csk_listen_stop(struct sock *sk)
1339 {
1340         struct inet_connection_sock *icsk = inet_csk(sk);
1341         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1342         struct request_sock *next, *req;
1343
1344         /* Following specs, it would be better either to send FIN
1345          * (and enter FIN-WAIT-1, it is normal close)
1346          * or to send active reset (abort).
1347          * Certainly, it is pretty dangerous while synflood, but it is
1348          * bad justification for our negligence 8)
1349          * To be honest, we are not able to make either
1350          * of the variants now.                 --ANK
1351          */
1352         while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1353                 struct sock *child = req->sk, *nsk;
1354                 struct request_sock *nreq;
1355
1356                 local_bh_disable();
1357                 bh_lock_sock(child);
1358                 WARN_ON(sock_owned_by_user(child));
1359                 sock_hold(child);
1360
1361                 nsk = reuseport_migrate_sock(sk, child, NULL);
1362                 if (nsk) {
1363                         nreq = inet_reqsk_clone(req, nsk);
1364                         if (nreq) {
1365                                 refcount_set(&nreq->rsk_refcnt, 1);
1366
1367                                 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1368                                         __NET_INC_STATS(sock_net(nsk),
1369                                                         LINUX_MIB_TCPMIGRATEREQSUCCESS);
1370                                         reqsk_migrate_reset(req);
1371                                 } else {
1372                                         __NET_INC_STATS(sock_net(nsk),
1373                                                         LINUX_MIB_TCPMIGRATEREQFAILURE);
1374                                         reqsk_migrate_reset(nreq);
1375                                         __reqsk_free(nreq);
1376                                 }
1377
1378                                 /* inet_csk_reqsk_queue_add() has already
1379                                  * called inet_child_forget() on failure case.
1380                                  */
1381                                 goto skip_child_forget;
1382                         }
1383                 }
1384
1385                 inet_child_forget(sk, req, child);
1386 skip_child_forget:
1387                 reqsk_put(req);
1388                 bh_unlock_sock(child);
1389                 local_bh_enable();
1390                 sock_put(child);
1391
1392                 cond_resched();
1393         }
1394         if (queue->fastopenq.rskq_rst_head) {
1395                 /* Free all the reqs queued in rskq_rst_head. */
1396                 spin_lock_bh(&queue->fastopenq.lock);
1397                 req = queue->fastopenq.rskq_rst_head;
1398                 queue->fastopenq.rskq_rst_head = NULL;
1399                 spin_unlock_bh(&queue->fastopenq.lock);
1400                 while (req != NULL) {
1401                         next = req->dl_next;
1402                         reqsk_put(req);
1403                         req = next;
1404                 }
1405         }
1406         WARN_ON_ONCE(sk->sk_ack_backlog);
1407 }
1408 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1409
1410 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1411 {
1412         struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1413         const struct inet_sock *inet = inet_sk(sk);
1414
1415         sin->sin_family         = AF_INET;
1416         sin->sin_addr.s_addr    = inet->inet_daddr;
1417         sin->sin_port           = inet->inet_dport;
1418 }
1419 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1420
1421 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1422 {
1423         const struct inet_sock *inet = inet_sk(sk);
1424         const struct ip_options_rcu *inet_opt;
1425         __be32 daddr = inet->inet_daddr;
1426         struct flowi4 *fl4;
1427         struct rtable *rt;
1428
1429         rcu_read_lock();
1430         inet_opt = rcu_dereference(inet->inet_opt);
1431         if (inet_opt && inet_opt->opt.srr)
1432                 daddr = inet_opt->opt.faddr;
1433         fl4 = &fl->u.ip4;
1434         rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1435                                    inet->inet_saddr, inet->inet_dport,
1436                                    inet->inet_sport, sk->sk_protocol,
1437                                    RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1438         if (IS_ERR(rt))
1439                 rt = NULL;
1440         if (rt)
1441                 sk_setup_caps(sk, &rt->dst);
1442         rcu_read_unlock();
1443
1444         return &rt->dst;
1445 }
1446
1447 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1448 {
1449         struct dst_entry *dst = __sk_dst_check(sk, 0);
1450         struct inet_sock *inet = inet_sk(sk);
1451
1452         if (!dst) {
1453                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1454                 if (!dst)
1455                         goto out;
1456         }
1457         dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1458
1459         dst = __sk_dst_check(sk, 0);
1460         if (!dst)
1461                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1462 out:
1463         return dst;
1464 }
1465 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);