1 /* linux/net/ipv4/arp.c
3 * Version: $Id: arp.c,v 1.99 2001/08/30 22:55:42 davem Exp $
5 * Copyright (C) 1994 by Florian La Roche
7 * This module implements the Address Resolution Protocol ARP (RFC 826),
8 * which is used to convert IP addresses (or in the future maybe other
9 * high-level addresses) into a low-level hardware address (like an Ethernet
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
18 * Alan Cox : Removed the Ethernet assumptions in
20 * Alan Cox : Fixed some small errors in the ARP
22 * Alan Cox : Allow >4K in /proc
23 * Alan Cox : Make ARP add its own protocol entry
24 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
25 * Stephen Henson : Add AX25 support to arp_get_info()
26 * Alan Cox : Drop data when a device is downed.
27 * Alan Cox : Use init_timer().
28 * Alan Cox : Double lock fixes.
29 * Martin Seine : Move the arphdr structure
30 * to if_arp.h for compatibility.
31 * with BSD based programs.
32 * Andrew Tridgell : Added ARP netmask code and
33 * re-arranged proxy handling.
34 * Alan Cox : Changed to use notifiers.
35 * Niibe Yutaka : Reply for this device or proxies only.
36 * Alan Cox : Don't proxy across hardware types!
37 * Jonathan Naylor : Added support for NET/ROM.
38 * Mike Shaver : RFC1122 checks.
39 * Jonathan Naylor : Only lookup the hardware address for
40 * the correct hardware type.
41 * Germano Caronni : Assorted subtle races.
42 * Craig Schlenter : Don't modify permanent entry
44 * Russ Nelson : Tidied up a few bits.
45 * Alexey Kuznetsov: Major changes to caching and behaviour,
46 * eg intelligent arp probing and
48 * of host down events.
49 * Alan Cox : Missing unlock in device events.
50 * Eckes : ARP ioctl control errors.
51 * Alexey Kuznetsov: Arp free fix.
52 * Manuel Rodriguez: Gratuitous ARP.
53 * Jonathan Layes : Added arpd support through kerneld
54 * message queue (960314)
55 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
56 * Mike McLagan : Routing by source
57 * Stuart Cheshire : Metricom and grat arp fixes
58 * *** FOR 2.1 clean this up ***
59 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
60 * Alan Cox : Took the AP1000 nasty FDDI hack and
61 * folded into the mainstream FDDI code.
62 * Ack spit, Linus how did you allow that
64 * Jes Sorensen : Make FDDI work again in 2.1.x and
65 * clean up the APFDDI & gen. FDDI bits.
66 * Alexey Kuznetsov: new arp state machine;
67 * now it is in net/core/neighbour.c.
68 * Krzysztof Halasa: Added Frame Relay ARP support.
69 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
70 * Shmulik Hen: Split arp_send to arp_create and
71 * arp_xmit so intermediate drivers like
72 * bonding can change the skb before
73 * sending (e.g. insert 8021q tag).
74 * Harald Welte : convert to make use of jenkins hash
77 #include <linux/module.h>
78 #include <linux/types.h>
79 #include <linux/string.h>
80 #include <linux/kernel.h>
81 #include <linux/capability.h>
82 #include <linux/socket.h>
83 #include <linux/sockios.h>
84 #include <linux/errno.h>
87 #include <linux/inet.h>
88 #include <linux/inetdevice.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/fddidevice.h>
92 #include <linux/if_arp.h>
93 #include <linux/trdevice.h>
94 #include <linux/skbuff.h>
95 #include <linux/proc_fs.h>
96 #include <linux/seq_file.h>
97 #include <linux/stat.h>
98 #include <linux/init.h>
99 #include <linux/net.h>
100 #include <linux/rcupdate.h>
101 #include <linux/jhash.h>
103 #include <linux/sysctl.h>
106 #include <net/net_namespace.h>
108 #include <net/icmp.h>
109 #include <net/route.h>
110 #include <net/protocol.h>
112 #include <net/sock.h>
114 #include <net/ax25.h>
115 #include <net/netrom.h>
116 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
117 #include <net/atmclip.h>
118 struct neigh_table *clip_tbl_hook;
121 #include <asm/system.h>
122 #include <asm/uaccess.h>
124 #include <linux/netfilter_arp.h>
127 * Interface to generic neighbour cache.
129 static u32 arp_hash(const void *pkey, const struct net_device *dev);
130 static int arp_constructor(struct neighbour *neigh);
131 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
132 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
133 static void parp_redo(struct sk_buff *skb);
135 static struct neigh_ops arp_generic_ops = {
137 .solicit = arp_solicit,
138 .error_report = arp_error_report,
139 .output = neigh_resolve_output,
140 .connected_output = neigh_connected_output,
141 .hh_output = dev_queue_xmit,
142 .queue_xmit = dev_queue_xmit,
145 static struct neigh_ops arp_hh_ops = {
147 .solicit = arp_solicit,
148 .error_report = arp_error_report,
149 .output = neigh_resolve_output,
150 .connected_output = neigh_resolve_output,
151 .hh_output = dev_queue_xmit,
152 .queue_xmit = dev_queue_xmit,
155 static struct neigh_ops arp_direct_ops = {
157 .output = dev_queue_xmit,
158 .connected_output = dev_queue_xmit,
159 .hh_output = dev_queue_xmit,
160 .queue_xmit = dev_queue_xmit,
163 struct neigh_ops arp_broken_ops = {
165 .solicit = arp_solicit,
166 .error_report = arp_error_report,
167 .output = neigh_compat_output,
168 .connected_output = neigh_compat_output,
169 .hh_output = dev_queue_xmit,
170 .queue_xmit = dev_queue_xmit,
173 struct neigh_table arp_tbl = {
175 .entry_size = sizeof(struct neighbour) + 4,
178 .constructor = arp_constructor,
179 .proxy_redo = parp_redo,
183 .base_reachable_time = 30 * HZ,
184 .retrans_time = 1 * HZ,
185 .gc_staletime = 60 * HZ,
186 .reachable_time = 30 * HZ,
187 .delay_probe_time = 5 * HZ,
191 .anycast_delay = 1 * HZ,
192 .proxy_delay = (8 * HZ) / 10,
196 .gc_interval = 30 * HZ,
202 int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
208 ip_eth_mc_map(addr, haddr);
210 case ARPHRD_IEEE802_TR:
211 ip_tr_mc_map(addr, haddr);
213 case ARPHRD_INFINIBAND:
214 ip_ib_mc_map(addr, dev->broadcast, haddr);
218 memcpy(haddr, dev->broadcast, dev->addr_len);
226 static u32 arp_hash(const void *pkey, const struct net_device *dev)
228 return jhash_2words(*(u32 *)pkey, dev->ifindex, arp_tbl.hash_rnd);
231 static int arp_constructor(struct neighbour *neigh)
233 __be32 addr = *(__be32*)neigh->primary_key;
234 struct net_device *dev = neigh->dev;
235 struct in_device *in_dev;
236 struct neigh_parms *parms;
239 in_dev = __in_dev_get_rcu(dev);
240 if (in_dev == NULL) {
245 neigh->type = inet_addr_type(dev_net(dev), addr);
247 parms = in_dev->arp_parms;
248 __neigh_parms_put(neigh->parms);
249 neigh->parms = neigh_parms_clone(parms);
252 if (!dev->header_ops) {
253 neigh->nud_state = NUD_NOARP;
254 neigh->ops = &arp_direct_ops;
255 neigh->output = neigh->ops->queue_xmit;
257 /* Good devices (checked by reading texts, but only Ethernet is
260 ARPHRD_ETHER: (ethernet, apfddi)
263 ARPHRD_METRICOM: (strip)
267 ARPHRD_IPDDP will also work, if author repairs it.
268 I did not it, because this driver does not work even
273 /* So... these "amateur" devices are hopeless.
274 The only thing, that I can say now:
275 It is very sad that we need to keep ugly obsolete
276 code to make them happy.
278 They should be moved to more reasonable state, now
279 they use rebuild_header INSTEAD OF hard_start_xmit!!!
280 Besides that, they are sort of out of date
281 (a lot of redundant clones/copies, useless in 2.1),
282 I wonder why people believe that they work.
288 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
290 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
293 neigh->ops = &arp_broken_ops;
294 neigh->output = neigh->ops->output;
299 if (neigh->type == RTN_MULTICAST) {
300 neigh->nud_state = NUD_NOARP;
301 arp_mc_map(addr, neigh->ha, dev, 1);
302 } else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) {
303 neigh->nud_state = NUD_NOARP;
304 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
305 } else if (neigh->type == RTN_BROADCAST || dev->flags&IFF_POINTOPOINT) {
306 neigh->nud_state = NUD_NOARP;
307 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
310 if (dev->header_ops->cache)
311 neigh->ops = &arp_hh_ops;
313 neigh->ops = &arp_generic_ops;
315 if (neigh->nud_state&NUD_VALID)
316 neigh->output = neigh->ops->connected_output;
318 neigh->output = neigh->ops->output;
323 static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
325 dst_link_failure(skb);
329 static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
333 struct net_device *dev = neigh->dev;
334 __be32 target = *(__be32*)neigh->primary_key;
335 int probes = atomic_read(&neigh->probes);
336 struct in_device *in_dev = in_dev_get(dev);
341 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
343 case 0: /* By default announce any local IP */
344 if (skb && inet_addr_type(dev_net(dev), ip_hdr(skb)->saddr) == RTN_LOCAL)
345 saddr = ip_hdr(skb)->saddr;
347 case 1: /* Restrict announcements of saddr in same subnet */
350 saddr = ip_hdr(skb)->saddr;
351 if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
352 /* saddr should be known to target */
353 if (inet_addr_onlink(in_dev, target, saddr))
358 case 2: /* Avoid secondary IPs, get a primary/preferred one */
365 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
367 if ((probes -= neigh->parms->ucast_probes) < 0) {
368 if (!(neigh->nud_state&NUD_VALID))
369 printk(KERN_DEBUG "trying to ucast probe in NUD_INVALID\n");
371 read_lock_bh(&neigh->lock);
372 } else if ((probes -= neigh->parms->app_probes) < 0) {
379 arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
380 dst_ha, dev->dev_addr, NULL);
382 read_unlock_bh(&neigh->lock);
385 static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
389 switch (IN_DEV_ARP_IGNORE(in_dev)) {
390 case 0: /* Reply, the tip is already validated */
392 case 1: /* Reply only if tip is configured on the incoming interface */
394 scope = RT_SCOPE_HOST;
397 * Reply only if tip is configured on the incoming interface
398 * and is in same subnet as sip
400 scope = RT_SCOPE_HOST;
402 case 3: /* Do not reply for scope host addresses */
404 scope = RT_SCOPE_LINK;
406 case 4: /* Reserved */
411 case 8: /* Do not reply */
416 return !inet_confirm_addr(in_dev, sip, tip, scope);
419 static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
421 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = sip,
425 /*unsigned long now; */
427 if (ip_route_output_key(dev_net(dev), &rt, &fl) < 0)
429 if (rt->u.dst.dev != dev) {
430 NET_INC_STATS_BH(LINUX_MIB_ARPFILTER);
437 /* OBSOLETE FUNCTIONS */
440 * Find an arp mapping in the cache. If not found, post a request.
442 * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
443 * even if it exists. It is supposed that skb->dev was mangled
444 * by a virtual device (eql, shaper). Nobody but broken devices
445 * is allowed to use this function, it is scheduled to be removed. --ANK
448 static int arp_set_predefined(int addr_hint, unsigned char * haddr, __be32 paddr, struct net_device * dev)
452 printk(KERN_DEBUG "ARP: arp called for own IP address\n");
453 memcpy(haddr, dev->dev_addr, dev->addr_len);
456 arp_mc_map(paddr, haddr, dev, 1);
459 memcpy(haddr, dev->broadcast, dev->addr_len);
466 int arp_find(unsigned char *haddr, struct sk_buff *skb)
468 struct net_device *dev = skb->dev;
473 printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
478 paddr = skb->rtable->rt_gateway;
480 if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr, paddr, dev))
483 n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
487 if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) {
488 read_lock_bh(&n->lock);
489 memcpy(haddr, n->ha, dev->addr_len);
490 read_unlock_bh(&n->lock);
500 /* END OF OBSOLETE FUNCTIONS */
502 int arp_bind_neighbour(struct dst_entry *dst)
504 struct net_device *dev = dst->dev;
505 struct neighbour *n = dst->neighbour;
510 __be32 nexthop = ((struct rtable*)dst)->rt_gateway;
511 if (dev->flags&(IFF_LOOPBACK|IFF_POINTOPOINT))
513 n = __neigh_lookup_errno(
514 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
515 dev->type == ARPHRD_ATM ? clip_tbl_hook :
517 &arp_tbl, &nexthop, dev);
526 * Check if we can use proxy ARP for this path
529 static inline int arp_fwd_proxy(struct in_device *in_dev, struct rtable *rt)
531 struct in_device *out_dev;
534 if (!IN_DEV_PROXY_ARP(in_dev))
537 if ((imi = IN_DEV_MEDIUM_ID(in_dev)) == 0)
542 /* place to check for proxy_arp for routes */
544 if ((out_dev = in_dev_get(rt->u.dst.dev)) != NULL) {
545 omi = IN_DEV_MEDIUM_ID(out_dev);
548 return (omi != imi && omi != -1);
552 * Interface to link layer: send routine and receive handler.
556 * Create an arp packet. If (dest_hw == NULL), we create a broadcast
559 struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
560 struct net_device *dev, __be32 src_ip,
561 const unsigned char *dest_hw,
562 const unsigned char *src_hw,
563 const unsigned char *target_hw)
567 unsigned char *arp_ptr;
573 skb = alloc_skb(arp_hdr_len(dev) + LL_ALLOCATED_SPACE(dev), GFP_ATOMIC);
577 skb_reserve(skb, LL_RESERVED_SPACE(dev));
578 skb_reset_network_header(skb);
579 arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
581 skb->protocol = htons(ETH_P_ARP);
583 src_hw = dev->dev_addr;
585 dest_hw = dev->broadcast;
588 * Fill the device header for the ARP frame
590 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
594 * Fill out the arp protocol part.
596 * The arp hardware type should match the device type, except for FDDI,
597 * which (according to RFC 1390) should always equal 1 (Ethernet).
600 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
601 * DIX code for the protocol. Make these device structure fields.
605 arp->ar_hrd = htons(dev->type);
606 arp->ar_pro = htons(ETH_P_IP);
609 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
611 arp->ar_hrd = htons(ARPHRD_AX25);
612 arp->ar_pro = htons(AX25_P_IP);
615 #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
617 arp->ar_hrd = htons(ARPHRD_NETROM);
618 arp->ar_pro = htons(AX25_P_IP);
625 arp->ar_hrd = htons(ARPHRD_ETHER);
626 arp->ar_pro = htons(ETH_P_IP);
630 case ARPHRD_IEEE802_TR:
631 arp->ar_hrd = htons(ARPHRD_IEEE802);
632 arp->ar_pro = htons(ETH_P_IP);
637 arp->ar_hln = dev->addr_len;
639 arp->ar_op = htons(type);
641 arp_ptr=(unsigned char *)(arp+1);
643 memcpy(arp_ptr, src_hw, dev->addr_len);
644 arp_ptr+=dev->addr_len;
645 memcpy(arp_ptr, &src_ip,4);
647 if (target_hw != NULL)
648 memcpy(arp_ptr, target_hw, dev->addr_len);
650 memset(arp_ptr, 0, dev->addr_len);
651 arp_ptr+=dev->addr_len;
652 memcpy(arp_ptr, &dest_ip, 4);
662 * Send an arp packet.
664 void arp_xmit(struct sk_buff *skb)
666 /* Send it off, maybe filter it using firewalling first. */
667 NF_HOOK(NF_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
671 * Create and send an arp packet.
673 void arp_send(int type, int ptype, __be32 dest_ip,
674 struct net_device *dev, __be32 src_ip,
675 const unsigned char *dest_hw, const unsigned char *src_hw,
676 const unsigned char *target_hw)
681 * No arp on this interface.
684 if (dev->flags&IFF_NOARP)
687 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
688 dest_hw, src_hw, target_hw);
697 * Process an arp request.
700 static int arp_process(struct sk_buff *skb)
702 struct net_device *dev = skb->dev;
703 struct in_device *in_dev = in_dev_get(dev);
705 unsigned char *arp_ptr;
709 u16 dev_type = dev->type;
712 struct net *net = dev_net(dev);
714 /* arp_rcv below verifies the ARP header and verifies the device
725 if (arp->ar_pro != htons(ETH_P_IP) ||
726 htons(dev_type) != arp->ar_hrd)
730 case ARPHRD_IEEE802_TR:
734 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
735 * devices, according to RFC 2625) devices will accept ARP
736 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
737 * This is the case also of FDDI, where the RFC 1390 says that
738 * FDDI devices should accept ARP hardware of (1) Ethernet,
739 * however, to be more robust, we'll accept both 1 (Ethernet)
742 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
743 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
744 arp->ar_pro != htons(ETH_P_IP))
748 if (arp->ar_pro != htons(AX25_P_IP) ||
749 arp->ar_hrd != htons(ARPHRD_AX25))
753 if (arp->ar_pro != htons(AX25_P_IP) ||
754 arp->ar_hrd != htons(ARPHRD_NETROM))
759 /* Understand only these message types */
761 if (arp->ar_op != htons(ARPOP_REPLY) &&
762 arp->ar_op != htons(ARPOP_REQUEST))
768 arp_ptr= (unsigned char *)(arp+1);
770 arp_ptr += dev->addr_len;
771 memcpy(&sip, arp_ptr, 4);
773 arp_ptr += dev->addr_len;
774 memcpy(&tip, arp_ptr, 4);
776 * Check for bad requests for 127.x.x.x and requests for multicast
777 * addresses. If this is one such, delete it.
779 if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
783 * Special case: We must set Frame Relay source Q.922 address
785 if (dev_type == ARPHRD_DLCI)
786 sha = dev->broadcast;
789 * Process entry. The idea here is we want to send a reply if it is a
790 * request for us or if it is a request for someone else that we hold
791 * a proxy for. We want to add an entry to our cache if it is a reply
792 * to us or if it is a request for our address.
793 * (The assumption for this last is that if someone is requesting our
794 * address, they are probably intending to talk to us, so it saves time
795 * if we cache their address. Their address is also probably not in
796 * our cache, since ours is not in their cache.)
798 * Putting this another way, we only care about replies if they are to
799 * us, in which case we add them to the cache. For requests, we care
800 * about those for us and those for our proxies. We reply to both,
801 * and in the case of requests for us we add the requester to the arp
805 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
807 if (arp->ar_op == htons(ARPOP_REQUEST) &&
808 inet_addr_type(net, tip) == RTN_LOCAL &&
809 !arp_ignore(in_dev, sip, tip))
810 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
815 if (arp->ar_op == htons(ARPOP_REQUEST) &&
816 ip_route_input(skb, tip, sip, 0, dev) == 0) {
819 addr_type = rt->rt_type;
821 if (addr_type == RTN_LOCAL) {
822 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
827 dont_send |= arp_ignore(in_dev,sip,tip);
828 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
829 dont_send |= arp_filter(sip,tip,dev);
831 arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
836 } else if (IN_DEV_FORWARD(in_dev)) {
837 if (addr_type == RTN_UNICAST && rt->u.dst.dev != dev &&
838 (arp_fwd_proxy(in_dev, rt) || pneigh_lookup(&arp_tbl, net, &tip, dev, 0))) {
839 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
843 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
844 skb->pkt_type == PACKET_HOST ||
845 in_dev->arp_parms->proxy_delay == 0) {
846 arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
848 pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb);
857 /* Update our ARP tables */
859 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
861 if (IPV4_DEVCONF_ALL(dev_net(dev), ARP_ACCEPT)) {
862 /* Unsolicited ARP is not accepted by default.
863 It is possible, that this option should be enabled for some
864 devices (strip is candidate)
867 arp->ar_op == htons(ARPOP_REPLY) &&
868 inet_addr_type(net, sip) == RTN_UNICAST)
869 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
873 int state = NUD_REACHABLE;
876 /* If several different ARP replies follows back-to-back,
877 use the FIRST one. It is possible, if several proxy
878 agents are active. Taking the first reply prevents
879 arp trashing and chooses the fastest router.
881 override = time_after(jiffies, n->updated + n->parms->locktime);
883 /* Broadcast replies and request packets
884 do not assert neighbour reachability.
886 if (arp->ar_op != htons(ARPOP_REPLY) ||
887 skb->pkt_type != PACKET_HOST)
889 neigh_update(n, sha, state, override ? NEIGH_UPDATE_F_OVERRIDE : 0);
900 static void parp_redo(struct sk_buff *skb)
907 * Receive an arp request from the device layer.
910 static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
911 struct packet_type *pt, struct net_device *orig_dev)
915 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
916 if (!pskb_may_pull(skb, arp_hdr_len(dev)))
920 if (arp->ar_hln != dev->addr_len ||
921 dev->flags & IFF_NOARP ||
922 skb->pkt_type == PACKET_OTHERHOST ||
923 skb->pkt_type == PACKET_LOOPBACK ||
927 if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL)
930 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
932 return NF_HOOK(NF_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
941 * User level interface (ioctl)
945 * Set (create) an ARP cache entry.
948 static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
951 IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
954 if (__in_dev_get_rtnl(dev)) {
955 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
961 static int arp_req_set_public(struct net *net, struct arpreq *r,
962 struct net_device *dev)
964 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
965 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
967 if (mask && mask != htonl(0xFFFFFFFF))
969 if (!dev && (r->arp_flags & ATF_COM)) {
970 dev = dev_getbyhwaddr(net, r->arp_ha.sa_family,
976 if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
981 return arp_req_set_proxy(net, dev, 1);
984 static int arp_req_set(struct net *net, struct arpreq *r,
985 struct net_device * dev)
988 struct neighbour *neigh;
991 if (r->arp_flags & ATF_PUBL)
992 return arp_req_set_public(net, r, dev);
994 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
995 if (r->arp_flags & ATF_PERM)
996 r->arp_flags |= ATF_COM;
998 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
999 .tos = RTO_ONLINK } } };
1001 if ((err = ip_route_output_key(net, &rt, &fl)) != 0)
1003 dev = rt->u.dst.dev;
1008 switch (dev->type) {
1012 * According to RFC 1390, FDDI devices should accept ARP
1013 * hardware types of 1 (Ethernet). However, to be more
1014 * robust, we'll accept hardware types of either 1 (Ethernet)
1015 * or 6 (IEEE 802.2).
1017 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1018 r->arp_ha.sa_family != ARPHRD_ETHER &&
1019 r->arp_ha.sa_family != ARPHRD_IEEE802)
1024 if (r->arp_ha.sa_family != dev->type)
1029 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1030 err = PTR_ERR(neigh);
1031 if (!IS_ERR(neigh)) {
1032 unsigned state = NUD_STALE;
1033 if (r->arp_flags & ATF_PERM)
1034 state = NUD_PERMANENT;
1035 err = neigh_update(neigh, (r->arp_flags&ATF_COM) ?
1036 r->arp_ha.sa_data : NULL, state,
1037 NEIGH_UPDATE_F_OVERRIDE|
1038 NEIGH_UPDATE_F_ADMIN);
1039 neigh_release(neigh);
1044 static unsigned arp_state_to_flags(struct neighbour *neigh)
1047 if (neigh->nud_state&NUD_PERMANENT)
1048 flags = ATF_PERM|ATF_COM;
1049 else if (neigh->nud_state&NUD_VALID)
1055 * Get an ARP cache entry.
1058 static int arp_req_get(struct arpreq *r, struct net_device *dev)
1060 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1061 struct neighbour *neigh;
1064 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1066 read_lock_bh(&neigh->lock);
1067 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1068 r->arp_flags = arp_state_to_flags(neigh);
1069 read_unlock_bh(&neigh->lock);
1070 r->arp_ha.sa_family = dev->type;
1071 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1072 neigh_release(neigh);
1078 static int arp_req_delete_public(struct net *net, struct arpreq *r,
1079 struct net_device *dev)
1081 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1082 __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1084 if (mask == htonl(0xFFFFFFFF))
1085 return pneigh_delete(&arp_tbl, net, &ip, dev);
1090 return arp_req_set_proxy(net, dev, 0);
1093 static int arp_req_delete(struct net *net, struct arpreq *r,
1094 struct net_device * dev)
1098 struct neighbour *neigh;
1100 if (r->arp_flags & ATF_PUBL)
1101 return arp_req_delete_public(net, r, dev);
1103 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1105 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1106 .tos = RTO_ONLINK } } };
1108 if ((err = ip_route_output_key(net, &rt, &fl)) != 0)
1110 dev = rt->u.dst.dev;
1116 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1118 if (neigh->nud_state&~NUD_NOARP)
1119 err = neigh_update(neigh, NULL, NUD_FAILED,
1120 NEIGH_UPDATE_F_OVERRIDE|
1121 NEIGH_UPDATE_F_ADMIN);
1122 neigh_release(neigh);
1128 * Handle an ARP layer I/O control request.
1131 int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1135 struct net_device *dev = NULL;
1140 if (!capable(CAP_NET_ADMIN))
1143 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1151 if (r.arp_pa.sa_family != AF_INET)
1152 return -EPFNOSUPPORT;
1154 if (!(r.arp_flags & ATF_PUBL) &&
1155 (r.arp_flags & (ATF_NETMASK|ATF_DONTPUB)))
1157 if (!(r.arp_flags & ATF_NETMASK))
1158 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1159 htonl(0xFFFFFFFFUL);
1163 if ((dev = __dev_get_by_name(net, r.arp_dev)) == NULL)
1166 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1167 if (!r.arp_ha.sa_family)
1168 r.arp_ha.sa_family = dev->type;
1170 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1172 } else if (cmd == SIOCGARP) {
1179 err = arp_req_delete(net, &r, dev);
1182 err = arp_req_set(net, &r, dev);
1185 err = arp_req_get(&r, dev);
1186 if (!err && copy_to_user(arg, &r, sizeof(r)))
1195 static int arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
1197 struct net_device *dev = ptr;
1200 case NETDEV_CHANGEADDR:
1201 neigh_changeaddr(&arp_tbl, dev);
1211 static struct notifier_block arp_netdev_notifier = {
1212 .notifier_call = arp_netdev_event,
1215 /* Note, that it is not on notifier chain.
1216 It is necessary, that this routine was called after route cache will be
1219 void arp_ifdown(struct net_device *dev)
1221 neigh_ifdown(&arp_tbl, dev);
1226 * Called once on startup.
1229 static struct packet_type arp_packet_type = {
1230 .type = __constant_htons(ETH_P_ARP),
1234 static int arp_proc_init(void);
1236 void __init arp_init(void)
1238 neigh_table_init(&arp_tbl);
1240 dev_add_pack(&arp_packet_type);
1242 #ifdef CONFIG_SYSCTL
1243 neigh_sysctl_register(NULL, &arp_tbl.parms, NET_IPV4,
1244 NET_IPV4_NEIGH, "ipv4", NULL, NULL);
1246 register_netdevice_notifier(&arp_netdev_notifier);
1249 #ifdef CONFIG_PROC_FS
1250 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1252 /* ------------------------------------------------------------------------ */
1254 * ax25 -> ASCII conversion
1256 static char *ax2asc2(ax25_address *a, char *buf)
1261 for (n = 0, s = buf; n < 6; n++) {
1262 c = (a->ax25_call[n] >> 1) & 0x7F;
1264 if (c != ' ') *s++ = c;
1269 if ((n = ((a->ax25_call[6] >> 1) & 0x0F)) > 9) {
1277 if (*buf == '\0' || *buf == '-')
1283 #endif /* CONFIG_AX25 */
1285 #define HBUFFERLEN 30
1287 static void arp_format_neigh_entry(struct seq_file *seq,
1288 struct neighbour *n)
1290 char hbuffer[HBUFFERLEN];
1293 struct net_device *dev = n->dev;
1294 int hatype = dev->type;
1296 read_lock(&n->lock);
1297 /* Convert hardware address to XX:XX:XX:XX ... form. */
1298 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1299 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1300 ax2asc2((ax25_address *)n->ha, hbuffer);
1303 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1304 hbuffer[k++] = hex_asc_hi(n->ha[j]);
1305 hbuffer[k++] = hex_asc_lo(n->ha[j]);
1309 #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1312 sprintf(tbuf, NIPQUAD_FMT, NIPQUAD(*(u32*)n->primary_key));
1313 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1314 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1315 read_unlock(&n->lock);
1318 static void arp_format_pneigh_entry(struct seq_file *seq,
1319 struct pneigh_entry *n)
1321 struct net_device *dev = n->dev;
1322 int hatype = dev ? dev->type : 0;
1325 sprintf(tbuf, NIPQUAD_FMT, NIPQUAD(*(u32*)n->key));
1326 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1327 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1328 dev ? dev->name : "*");
1331 static int arp_seq_show(struct seq_file *seq, void *v)
1333 if (v == SEQ_START_TOKEN) {
1334 seq_puts(seq, "IP address HW type Flags "
1335 "HW address Mask Device\n");
1337 struct neigh_seq_state *state = seq->private;
1339 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1340 arp_format_pneigh_entry(seq, v);
1342 arp_format_neigh_entry(seq, v);
1348 static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1350 /* Don't want to confuse "arp -a" w/ magic entries,
1351 * so we tell the generic iterator to skip NUD_NOARP.
1353 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1356 /* ------------------------------------------------------------------------ */
1358 static const struct seq_operations arp_seq_ops = {
1359 .start = arp_seq_start,
1360 .next = neigh_seq_next,
1361 .stop = neigh_seq_stop,
1362 .show = arp_seq_show,
1365 static int arp_seq_open(struct inode *inode, struct file *file)
1367 return seq_open_net(inode, file, &arp_seq_ops,
1368 sizeof(struct neigh_seq_state));
1371 static const struct file_operations arp_seq_fops = {
1372 .owner = THIS_MODULE,
1373 .open = arp_seq_open,
1375 .llseek = seq_lseek,
1376 .release = seq_release_net,
1380 static int __net_init arp_net_init(struct net *net)
1382 if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
1387 static void __net_exit arp_net_exit(struct net *net)
1389 proc_net_remove(net, "arp");
1392 static struct pernet_operations arp_net_ops = {
1393 .init = arp_net_init,
1394 .exit = arp_net_exit,
1397 static int __init arp_proc_init(void)
1399 return register_pernet_subsys(&arp_net_ops);
1402 #else /* CONFIG_PROC_FS */
1404 static int __init arp_proc_init(void)
1409 #endif /* CONFIG_PROC_FS */
1411 EXPORT_SYMBOL(arp_broken_ops);
1412 EXPORT_SYMBOL(arp_find);
1413 EXPORT_SYMBOL(arp_create);
1414 EXPORT_SYMBOL(arp_xmit);
1415 EXPORT_SYMBOL(arp_send);
1416 EXPORT_SYMBOL(arp_tbl);
1418 #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
1419 EXPORT_SYMBOL(clip_tbl_hook);