2 * DECnet An implementation of the DECnet protocol suite for the LINUX
3 * operating system. DECnet is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * DECnet Neighbour Functions (Adjacency Database and
9 * Author: Steve Whitehouse <SteveW@ACM.org>
13 * Steve Whitehouse : Fixed router listing routine
14 * Steve Whitehouse : Added error_report functions
15 * Steve Whitehouse : Added default router detection
16 * Steve Whitehouse : Hop counts in outgoing messages
17 * Steve Whitehouse : Fixed src/dst in outgoing messages so
18 * forwarding now stands a good chance of
20 * Steve Whitehouse : Fixed neighbour states (for now anyway).
21 * Steve Whitehouse : Made error_report functions dummies. This
22 * is not the right place to return skbs.
23 * Steve Whitehouse : Convert to seq_file
27 #include <linux/net.h>
28 #include <linux/module.h>
29 #include <linux/socket.h>
30 #include <linux/if_arp.h>
31 #include <linux/slab.h>
32 #include <linux/if_ether.h>
33 #include <linux/init.h>
34 #include <linux/proc_fs.h>
35 #include <linux/string.h>
36 #include <linux/netfilter_decnet.h>
37 #include <linux/spinlock.h>
38 #include <linux/seq_file.h>
39 #include <linux/rcupdate.h>
40 #include <linux/jhash.h>
41 #include <asm/atomic.h>
42 #include <net/net_namespace.h>
43 #include <net/neighbour.h>
47 #include <net/dn_dev.h>
48 #include <net/dn_neigh.h>
49 #include <net/dn_route.h>
51 static int dn_neigh_construct(struct neighbour *);
52 static void dn_long_error_report(struct neighbour *, struct sk_buff *);
53 static void dn_short_error_report(struct neighbour *, struct sk_buff *);
54 static int dn_long_output(struct sk_buff *);
55 static int dn_short_output(struct sk_buff *);
56 static int dn_phase3_output(struct sk_buff *);
60 * For talking to broadcast devices: Ethernet & PPP
62 static const struct neigh_ops dn_long_ops = {
64 .error_report = dn_long_error_report,
65 .output = dn_long_output,
66 .connected_output = dn_long_output,
67 .hh_output = dev_queue_xmit,
68 .queue_xmit = dev_queue_xmit,
72 * For talking to pointopoint and multidrop devices: DDCMP and X.25
74 static const struct neigh_ops dn_short_ops = {
76 .error_report = dn_short_error_report,
77 .output = dn_short_output,
78 .connected_output = dn_short_output,
79 .hh_output = dev_queue_xmit,
80 .queue_xmit = dev_queue_xmit,
84 * For talking to DECnet phase III nodes
86 static const struct neigh_ops dn_phase3_ops = {
88 .error_report = dn_short_error_report, /* Can use short version here */
89 .output = dn_phase3_output,
90 .connected_output = dn_phase3_output,
91 .hh_output = dev_queue_xmit,
92 .queue_xmit = dev_queue_xmit
95 static u32 dn_neigh_hash(const void *pkey,
96 const struct net_device *dev,
99 return jhash_2words(*(__u16 *)pkey, 0, hash_rnd);
102 struct neigh_table dn_neigh_table = {
104 .entry_size = sizeof(struct dn_neigh),
105 .key_len = sizeof(__le16),
106 .hash = dn_neigh_hash,
107 .constructor = dn_neigh_construct,
108 .id = "dn_neigh_cache",
110 .tbl = &dn_neigh_table,
111 .base_reachable_time = 30 * HZ,
112 .retrans_time = 1 * HZ,
113 .gc_staletime = 60 * HZ,
114 .reachable_time = 30 * HZ,
115 .delay_probe_time = 5 * HZ,
125 .gc_interval = 30 * HZ,
131 static int dn_neigh_construct(struct neighbour *neigh)
133 struct net_device *dev = neigh->dev;
134 struct dn_neigh *dn = (struct dn_neigh *)neigh;
135 struct dn_dev *dn_db;
136 struct neigh_parms *parms;
139 dn_db = rcu_dereference(dev->dn_ptr);
145 parms = dn_db->neigh_parms;
151 __neigh_parms_put(neigh->parms);
152 neigh->parms = neigh_parms_clone(parms);
155 neigh->ops = &dn_long_ops;
157 neigh->ops = &dn_short_ops;
160 if (dn->flags & DN_NDFLAG_P3)
161 neigh->ops = &dn_phase3_ops;
163 neigh->nud_state = NUD_NOARP;
164 neigh->output = neigh->ops->connected_output;
166 if ((dev->type == ARPHRD_IPGRE) || (dev->flags & IFF_POINTOPOINT))
167 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
168 else if ((dev->type == ARPHRD_ETHER) || (dev->type == ARPHRD_LOOPBACK))
169 dn_dn2eth(neigh->ha, dn->addr);
172 printk(KERN_DEBUG "Trying to create neigh for hw %d\n", dev->type);
177 * Make an estimate of the remote block size by assuming that its
178 * two less then the device mtu, which it true for ethernet (and
179 * other things which support long format headers) since there is
180 * an extra length field (of 16 bits) which isn't part of the
181 * ethernet headers and which the DECnet specs won't admit is part
182 * of the DECnet routing headers either.
184 * If we over estimate here its no big deal, the NSP negotiations
185 * will prevent us from sending packets which are too large for the
186 * remote node to handle. In any case this figure is normally updated
187 * by a hello message in most cases.
189 dn->blksize = dev->mtu - 2;
194 static void dn_long_error_report(struct neighbour *neigh, struct sk_buff *skb)
196 printk(KERN_DEBUG "dn_long_error_report: called\n");
201 static void dn_short_error_report(struct neighbour *neigh, struct sk_buff *skb)
203 printk(KERN_DEBUG "dn_short_error_report: called\n");
207 static int dn_neigh_output_packet(struct sk_buff *skb)
209 struct dst_entry *dst = skb_dst(skb);
210 struct dn_route *rt = (struct dn_route *)dst;
211 struct neighbour *neigh = dst->neighbour;
212 struct net_device *dev = neigh->dev;
213 char mac_addr[ETH_ALEN];
215 dn_dn2eth(mac_addr, rt->rt_local_src);
216 if (dev_hard_header(skb, dev, ntohs(skb->protocol), neigh->ha,
217 mac_addr, skb->len) >= 0)
218 return neigh->ops->queue_xmit(skb);
221 printk(KERN_DEBUG "dn_neigh_output_packet: oops, can't send packet\n");
227 static int dn_long_output(struct sk_buff *skb)
229 struct dst_entry *dst = skb_dst(skb);
230 struct neighbour *neigh = dst->neighbour;
231 struct net_device *dev = neigh->dev;
232 int headroom = dev->hard_header_len + sizeof(struct dn_long_packet) + 3;
234 struct dn_long_packet *lp;
235 struct dn_skb_cb *cb = DN_SKB_CB(skb);
238 if (skb_headroom(skb) < headroom) {
239 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
242 printk(KERN_CRIT "dn_long_output: no memory\n");
249 printk(KERN_INFO "dn_long_output: Increasing headroom\n");
252 data = skb_push(skb, sizeof(struct dn_long_packet) + 3);
253 lp = (struct dn_long_packet *)(data+3);
255 *((__le16 *)data) = cpu_to_le16(skb->len - 2);
256 *(data + 2) = 1 | DN_RT_F_PF; /* Padding */
258 lp->msgflg = DN_RT_PKT_LONG|(cb->rt_flags&(DN_RT_F_IE|DN_RT_F_RQR|DN_RT_F_RTS));
259 lp->d_area = lp->d_subarea = 0;
260 dn_dn2eth(lp->d_id, cb->dst);
261 lp->s_area = lp->s_subarea = 0;
262 dn_dn2eth(lp->s_id, cb->src);
264 lp->visit_ct = cb->hops & 0x3f;
268 skb_reset_network_header(skb);
270 return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
271 neigh->dev, dn_neigh_output_packet);
274 static int dn_short_output(struct sk_buff *skb)
276 struct dst_entry *dst = skb_dst(skb);
277 struct neighbour *neigh = dst->neighbour;
278 struct net_device *dev = neigh->dev;
279 int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
280 struct dn_short_packet *sp;
282 struct dn_skb_cb *cb = DN_SKB_CB(skb);
285 if (skb_headroom(skb) < headroom) {
286 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
289 printk(KERN_CRIT "dn_short_output: no memory\n");
296 printk(KERN_INFO "dn_short_output: Increasing headroom\n");
299 data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
300 *((__le16 *)data) = cpu_to_le16(skb->len - 2);
301 sp = (struct dn_short_packet *)(data+2);
303 sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
304 sp->dstnode = cb->dst;
305 sp->srcnode = cb->src;
306 sp->forward = cb->hops & 0x3f;
308 skb_reset_network_header(skb);
310 return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
311 neigh->dev, dn_neigh_output_packet);
315 * Phase 3 output is the same is short output, execpt that
316 * it clears the area bits before transmission.
318 static int dn_phase3_output(struct sk_buff *skb)
320 struct dst_entry *dst = skb_dst(skb);
321 struct neighbour *neigh = dst->neighbour;
322 struct net_device *dev = neigh->dev;
323 int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
324 struct dn_short_packet *sp;
326 struct dn_skb_cb *cb = DN_SKB_CB(skb);
328 if (skb_headroom(skb) < headroom) {
329 struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
332 printk(KERN_CRIT "dn_phase3_output: no memory\n");
339 printk(KERN_INFO "dn_phase3_output: Increasing headroom\n");
342 data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
343 *((__le16 *)data) = cpu_to_le16(skb->len - 2);
344 sp = (struct dn_short_packet *)(data + 2);
346 sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
347 sp->dstnode = cb->dst & cpu_to_le16(0x03ff);
348 sp->srcnode = cb->src & cpu_to_le16(0x03ff);
349 sp->forward = cb->hops & 0x3f;
351 skb_reset_network_header(skb);
353 return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
354 neigh->dev, dn_neigh_output_packet);
358 * Unfortunately, the neighbour code uses the device in its hash
359 * function, so we don't get any advantage from it. This function
360 * basically does a neigh_lookup(), but without comparing the device
361 * field. This is required for the On-Ethernet cache
365 * Pointopoint link receives a hello message
367 void dn_neigh_pointopoint_hello(struct sk_buff *skb)
373 * Ethernet router hello message received
375 int dn_neigh_router_hello(struct sk_buff *skb)
377 struct rtnode_hello_message *msg = (struct rtnode_hello_message *)skb->data;
379 struct neighbour *neigh;
381 struct dn_dev *dn_db;
384 src = dn_eth2dn(msg->id);
386 neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
388 dn = (struct dn_neigh *)neigh;
391 write_lock(&neigh->lock);
393 neigh->used = jiffies;
394 dn_db = rcu_dereference(neigh->dev->dn_ptr);
396 if (!(neigh->nud_state & NUD_PERMANENT)) {
397 neigh->updated = jiffies;
399 if (neigh->dev->type == ARPHRD_ETHER)
400 memcpy(neigh->ha, ð_hdr(skb)->h_source, ETH_ALEN);
402 dn->blksize = le16_to_cpu(msg->blksize);
403 dn->priority = msg->priority;
405 dn->flags &= ~DN_NDFLAG_P3;
407 switch(msg->iinfo & DN_RT_INFO_TYPE) {
408 case DN_RT_INFO_L1RT:
409 dn->flags &=~DN_NDFLAG_R2;
410 dn->flags |= DN_NDFLAG_R1;
412 case DN_RT_INFO_L2RT:
413 dn->flags |= DN_NDFLAG_R2;
417 /* Only use routers in our area */
418 if ((le16_to_cpu(src)>>10) == (le16_to_cpu((decnet_address))>>10)) {
419 if (!dn_db->router) {
420 dn_db->router = neigh_clone(neigh);
422 if (msg->priority > ((struct dn_neigh *)dn_db->router)->priority)
423 neigh_release(xchg(&dn_db->router, neigh_clone(neigh)));
426 write_unlock(&neigh->lock);
427 neigh_release(neigh);
435 * Endnode hello message received
437 int dn_neigh_endnode_hello(struct sk_buff *skb)
439 struct endnode_hello_message *msg = (struct endnode_hello_message *)skb->data;
440 struct neighbour *neigh;
444 src = dn_eth2dn(msg->id);
446 neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
448 dn = (struct dn_neigh *)neigh;
451 write_lock(&neigh->lock);
453 neigh->used = jiffies;
455 if (!(neigh->nud_state & NUD_PERMANENT)) {
456 neigh->updated = jiffies;
458 if (neigh->dev->type == ARPHRD_ETHER)
459 memcpy(neigh->ha, ð_hdr(skb)->h_source, ETH_ALEN);
460 dn->flags &= ~(DN_NDFLAG_R1 | DN_NDFLAG_R2);
461 dn->blksize = le16_to_cpu(msg->blksize);
465 write_unlock(&neigh->lock);
466 neigh_release(neigh);
473 static char *dn_find_slot(char *base, int max, int priority)
476 unsigned char *min = NULL;
478 base += 6; /* skip first id */
480 for(i = 0; i < max; i++) {
481 if (!min || (*base < *min))
483 base += 7; /* find next priority */
489 return (*min < priority) ? (min - 6) : NULL;
492 struct elist_cb_state {
493 struct net_device *dev;
499 static void neigh_elist_cb(struct neighbour *neigh, void *_info)
501 struct elist_cb_state *s = _info;
504 if (neigh->dev != s->dev)
507 dn = (struct dn_neigh *) neigh;
508 if (!(dn->flags & (DN_NDFLAG_R1|DN_NDFLAG_R2)))
512 s->rs = dn_find_slot(s->ptr, s->n, dn->priority);
518 dn_dn2eth(s->rs, dn->addr);
520 *(s->rs) = neigh->nud_state & NUD_CONNECTED ? 0x80 : 0x0;
521 *(s->rs) |= dn->priority;
525 int dn_neigh_elist(struct net_device *dev, unsigned char *ptr, int n)
527 struct elist_cb_state state;
535 neigh_for_each(&dn_neigh_table, neigh_elist_cb, &state);
541 #ifdef CONFIG_PROC_FS
543 static inline void dn_neigh_format_entry(struct seq_file *seq,
546 struct dn_neigh *dn = (struct dn_neigh *) n;
547 char buf[DN_ASCBUF_LEN];
550 seq_printf(seq, "%-7s %s%s%s %02x %02d %07ld %-8s\n",
551 dn_addr2asc(le16_to_cpu(dn->addr), buf),
552 (dn->flags&DN_NDFLAG_R1) ? "1" : "-",
553 (dn->flags&DN_NDFLAG_R2) ? "2" : "-",
554 (dn->flags&DN_NDFLAG_P3) ? "3" : "-",
556 atomic_read(&dn->n.refcnt),
558 (dn->n.dev) ? dn->n.dev->name : "?");
559 read_unlock(&n->lock);
562 static int dn_neigh_seq_show(struct seq_file *seq, void *v)
564 if (v == SEQ_START_TOKEN) {
565 seq_puts(seq, "Addr Flags State Use Blksize Dev\n");
567 dn_neigh_format_entry(seq, v);
573 static void *dn_neigh_seq_start(struct seq_file *seq, loff_t *pos)
575 return neigh_seq_start(seq, pos, &dn_neigh_table,
576 NEIGH_SEQ_NEIGH_ONLY);
579 static const struct seq_operations dn_neigh_seq_ops = {
580 .start = dn_neigh_seq_start,
581 .next = neigh_seq_next,
582 .stop = neigh_seq_stop,
583 .show = dn_neigh_seq_show,
586 static int dn_neigh_seq_open(struct inode *inode, struct file *file)
588 return seq_open_net(inode, file, &dn_neigh_seq_ops,
589 sizeof(struct neigh_seq_state));
592 static const struct file_operations dn_neigh_seq_fops = {
593 .owner = THIS_MODULE,
594 .open = dn_neigh_seq_open,
597 .release = seq_release_net,
602 void __init dn_neigh_init(void)
604 neigh_table_init(&dn_neigh_table);
605 proc_net_fops_create(&init_net, "decnet_neigh", S_IRUGO, &dn_neigh_seq_fops);
608 void __exit dn_neigh_cleanup(void)
610 proc_net_remove(&init_net, "decnet_neigh");
611 neigh_table_clear(&dn_neigh_table);