2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115 #include <linux/user_namespace.h>
116 #include <linux/static_key.h>
117 #include <linux/memcontrol.h>
118 #include <linux/prefetch.h>
120 #include <asm/uaccess.h>
122 #include <linux/netdevice.h>
123 #include <net/protocol.h>
124 #include <linux/skbuff.h>
125 #include <net/net_namespace.h>
126 #include <net/request_sock.h>
127 #include <net/sock.h>
128 #include <linux/net_tstamp.h>
129 #include <net/xfrm.h>
130 #include <linux/ipsec.h>
131 #include <net/cls_cgroup.h>
132 #include <net/netprio_cgroup.h>
134 #include <linux/filter.h>
136 #include <trace/events/sock.h>
142 static DEFINE_MUTEX(proto_list_mutex);
143 static LIST_HEAD(proto_list);
145 #ifdef CONFIG_MEMCG_KMEM
146 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
151 mutex_lock(&proto_list_mutex);
152 list_for_each_entry(proto, &proto_list, node) {
153 if (proto->init_cgroup) {
154 ret = proto->init_cgroup(memcg, ss);
160 mutex_unlock(&proto_list_mutex);
163 list_for_each_entry_continue_reverse(proto, &proto_list, node)
164 if (proto->destroy_cgroup)
165 proto->destroy_cgroup(memcg);
166 mutex_unlock(&proto_list_mutex);
170 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
174 mutex_lock(&proto_list_mutex);
175 list_for_each_entry_reverse(proto, &proto_list, node)
176 if (proto->destroy_cgroup)
177 proto->destroy_cgroup(memcg);
178 mutex_unlock(&proto_list_mutex);
183 * Each address family might have different locking rules, so we have
184 * one slock key per address family:
186 static struct lock_class_key af_family_keys[AF_MAX];
187 static struct lock_class_key af_family_slock_keys[AF_MAX];
189 #if defined(CONFIG_MEMCG_KMEM)
190 struct static_key memcg_socket_limit_enabled;
191 EXPORT_SYMBOL(memcg_socket_limit_enabled);
195 * Make lock validator output more readable. (we pre-construct these
196 * strings build-time, so that runtime initialization of socket
199 static const char *const af_family_key_strings[AF_MAX+1] = {
200 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
201 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
202 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
203 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
204 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
205 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
206 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
207 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
208 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
209 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
210 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
211 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
212 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
213 "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
215 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
216 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
217 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
218 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
219 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
220 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
221 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
222 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
223 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
224 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
225 "slock-27" , "slock-28" , "slock-AF_CAN" ,
226 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
227 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
228 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
229 "slock-AF_NFC" , "slock-AF_MAX"
231 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
232 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
233 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
234 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
235 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
236 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
237 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
238 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
239 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
240 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
241 "clock-27" , "clock-28" , "clock-AF_CAN" ,
242 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
243 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
244 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
245 "clock-AF_NFC" , "clock-AF_MAX"
249 * sk_callback_lock locking rules are per-address-family,
250 * so split the lock classes by using a per-AF key:
252 static struct lock_class_key af_callback_keys[AF_MAX];
254 /* Take into consideration the size of the struct sk_buff overhead in the
255 * determination of these values, since that is non-constant across
256 * platforms. This makes socket queueing behavior and performance
257 * not depend upon such differences.
259 #define _SK_MEM_PACKETS 256
260 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
261 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
262 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
264 /* Run time adjustable parameters. */
265 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
266 EXPORT_SYMBOL(sysctl_wmem_max);
267 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
268 EXPORT_SYMBOL(sysctl_rmem_max);
269 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
270 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
272 /* Maximal space eaten by iovec or ancillary data plus some space */
273 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
274 EXPORT_SYMBOL(sysctl_optmem_max);
276 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
277 EXPORT_SYMBOL_GPL(memalloc_socks);
280 * sk_set_memalloc - sets %SOCK_MEMALLOC
281 * @sk: socket to set it on
283 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
284 * It's the responsibility of the admin to adjust min_free_kbytes
285 * to meet the requirements
287 void sk_set_memalloc(struct sock *sk)
289 sock_set_flag(sk, SOCK_MEMALLOC);
290 sk->sk_allocation |= __GFP_MEMALLOC;
291 static_key_slow_inc(&memalloc_socks);
293 EXPORT_SYMBOL_GPL(sk_set_memalloc);
295 void sk_clear_memalloc(struct sock *sk)
297 sock_reset_flag(sk, SOCK_MEMALLOC);
298 sk->sk_allocation &= ~__GFP_MEMALLOC;
299 static_key_slow_dec(&memalloc_socks);
302 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
303 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
304 * it has rmem allocations there is a risk that the user of the
305 * socket cannot make forward progress due to exceeding the rmem
306 * limits. By rights, sk_clear_memalloc() should only be called
307 * on sockets being torn down but warn and reset the accounting if
308 * that assumption breaks.
310 if (WARN_ON(sk->sk_forward_alloc))
313 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
315 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
318 unsigned long pflags = current->flags;
320 /* these should have been dropped before queueing */
321 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
323 current->flags |= PF_MEMALLOC;
324 ret = sk->sk_backlog_rcv(sk, skb);
325 tsk_restore_flags(current, pflags, PF_MEMALLOC);
329 EXPORT_SYMBOL(__sk_backlog_rcv);
331 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
335 if (optlen < sizeof(tv))
337 if (copy_from_user(&tv, optval, sizeof(tv)))
339 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
343 static int warned __read_mostly;
346 if (warned < 10 && net_ratelimit()) {
348 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
349 __func__, current->comm, task_pid_nr(current));
353 *timeo_p = MAX_SCHEDULE_TIMEOUT;
354 if (tv.tv_sec == 0 && tv.tv_usec == 0)
356 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
357 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
361 static void sock_warn_obsolete_bsdism(const char *name)
364 static char warncomm[TASK_COMM_LEN];
365 if (strcmp(warncomm, current->comm) && warned < 5) {
366 strcpy(warncomm, current->comm);
367 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
373 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
375 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
377 if (sk->sk_flags & flags) {
378 sk->sk_flags &= ~flags;
379 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
380 net_disable_timestamp();
385 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
390 struct sk_buff_head *list = &sk->sk_receive_queue;
392 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
393 atomic_inc(&sk->sk_drops);
394 trace_sock_rcvqueue_full(sk, skb);
398 err = sk_filter(sk, skb);
402 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
403 atomic_inc(&sk->sk_drops);
408 skb_set_owner_r(skb, sk);
410 /* Cache the SKB length before we tack it onto the receive
411 * queue. Once it is added it no longer belongs to us and
412 * may be freed by other threads of control pulling packets
417 /* we escape from rcu protected region, make sure we dont leak
422 spin_lock_irqsave(&list->lock, flags);
423 skb->dropcount = atomic_read(&sk->sk_drops);
424 __skb_queue_tail(list, skb);
425 spin_unlock_irqrestore(&list->lock, flags);
427 if (!sock_flag(sk, SOCK_DEAD))
428 sk->sk_data_ready(sk, skb_len);
431 EXPORT_SYMBOL(sock_queue_rcv_skb);
433 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
435 int rc = NET_RX_SUCCESS;
437 if (sk_filter(sk, skb))
438 goto discard_and_relse;
442 if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
443 atomic_inc(&sk->sk_drops);
444 goto discard_and_relse;
447 bh_lock_sock_nested(sk);
450 if (!sock_owned_by_user(sk)) {
452 * trylock + unlock semantics:
454 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
456 rc = sk_backlog_rcv(sk, skb);
458 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
459 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
461 atomic_inc(&sk->sk_drops);
462 goto discard_and_relse;
473 EXPORT_SYMBOL(sk_receive_skb);
475 void sk_reset_txq(struct sock *sk)
477 sk_tx_queue_clear(sk);
479 EXPORT_SYMBOL(sk_reset_txq);
481 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
483 struct dst_entry *dst = __sk_dst_get(sk);
485 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
486 sk_tx_queue_clear(sk);
487 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
494 EXPORT_SYMBOL(__sk_dst_check);
496 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
498 struct dst_entry *dst = sk_dst_get(sk);
500 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
508 EXPORT_SYMBOL(sk_dst_check);
510 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
513 int ret = -ENOPROTOOPT;
514 #ifdef CONFIG_NETDEVICES
515 struct net *net = sock_net(sk);
516 char devname[IFNAMSIZ];
521 if (!ns_capable(net->user_ns, CAP_NET_RAW))
528 /* Bind this socket to a particular device like "eth0",
529 * as specified in the passed interface name. If the
530 * name is "" or the option length is zero the socket
533 if (optlen > IFNAMSIZ - 1)
534 optlen = IFNAMSIZ - 1;
535 memset(devname, 0, sizeof(devname));
538 if (copy_from_user(devname, optval, optlen))
542 if (devname[0] != '\0') {
543 struct net_device *dev;
546 dev = dev_get_by_name_rcu(net, devname);
548 index = dev->ifindex;
556 sk->sk_bound_dev_if = index;
568 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
569 int __user *optlen, int len)
571 int ret = -ENOPROTOOPT;
572 #ifdef CONFIG_NETDEVICES
573 struct net *net = sock_net(sk);
574 struct net_device *dev;
575 char devname[IFNAMSIZ];
578 if (sk->sk_bound_dev_if == 0) {
588 seq = read_seqcount_begin(&devnet_rename_seq);
590 dev = dev_get_by_index_rcu(net, sk->sk_bound_dev_if);
597 strcpy(devname, dev->name);
599 if (read_seqcount_retry(&devnet_rename_seq, seq))
602 len = strlen(devname) + 1;
605 if (copy_to_user(optval, devname, len))
610 if (put_user(len, optlen))
621 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
624 sock_set_flag(sk, bit);
626 sock_reset_flag(sk, bit);
630 * This is meant for all protocols to use and covers goings on
631 * at the socket level. Everything here is generic.
634 int sock_setsockopt(struct socket *sock, int level, int optname,
635 char __user *optval, unsigned int optlen)
637 struct sock *sk = sock->sk;
644 * Options without arguments
647 if (optname == SO_BINDTODEVICE)
648 return sock_setbindtodevice(sk, optval, optlen);
650 if (optlen < sizeof(int))
653 if (get_user(val, (int __user *)optval))
656 valbool = val ? 1 : 0;
662 if (val && !capable(CAP_NET_ADMIN))
665 sock_valbool_flag(sk, SOCK_DBG, valbool);
668 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
671 sk->sk_reuseport = valbool;
680 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
683 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
686 /* Don't error on this BSD doesn't and if you think
687 * about it this is right. Otherwise apps have to
688 * play 'guess the biggest size' games. RCVBUF/SNDBUF
689 * are treated in BSD as hints
691 val = min_t(u32, val, sysctl_wmem_max);
693 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
694 sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
695 /* Wake up sending tasks if we upped the value. */
696 sk->sk_write_space(sk);
700 if (!capable(CAP_NET_ADMIN)) {
707 /* Don't error on this BSD doesn't and if you think
708 * about it this is right. Otherwise apps have to
709 * play 'guess the biggest size' games. RCVBUF/SNDBUF
710 * are treated in BSD as hints
712 val = min_t(u32, val, sysctl_rmem_max);
714 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
716 * We double it on the way in to account for
717 * "struct sk_buff" etc. overhead. Applications
718 * assume that the SO_RCVBUF setting they make will
719 * allow that much actual data to be received on that
722 * Applications are unaware that "struct sk_buff" and
723 * other overheads allocate from the receive buffer
724 * during socket buffer allocation.
726 * And after considering the possible alternatives,
727 * returning the value we actually used in getsockopt
728 * is the most desirable behavior.
730 sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
734 if (!capable(CAP_NET_ADMIN)) {
742 if (sk->sk_protocol == IPPROTO_TCP &&
743 sk->sk_type == SOCK_STREAM)
744 tcp_set_keepalive(sk, valbool);
746 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
750 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
754 sk->sk_no_check = valbool;
758 if ((val >= 0 && val <= 6) ||
759 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
760 sk->sk_priority = val;
766 if (optlen < sizeof(ling)) {
767 ret = -EINVAL; /* 1003.1g */
770 if (copy_from_user(&ling, optval, sizeof(ling))) {
775 sock_reset_flag(sk, SOCK_LINGER);
777 #if (BITS_PER_LONG == 32)
778 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
779 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
782 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
783 sock_set_flag(sk, SOCK_LINGER);
788 sock_warn_obsolete_bsdism("setsockopt");
793 set_bit(SOCK_PASSCRED, &sock->flags);
795 clear_bit(SOCK_PASSCRED, &sock->flags);
801 if (optname == SO_TIMESTAMP)
802 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
804 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
805 sock_set_flag(sk, SOCK_RCVTSTAMP);
806 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
808 sock_reset_flag(sk, SOCK_RCVTSTAMP);
809 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
813 case SO_TIMESTAMPING:
814 if (val & ~SOF_TIMESTAMPING_MASK) {
818 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
819 val & SOF_TIMESTAMPING_TX_HARDWARE);
820 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
821 val & SOF_TIMESTAMPING_TX_SOFTWARE);
822 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
823 val & SOF_TIMESTAMPING_RX_HARDWARE);
824 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
825 sock_enable_timestamp(sk,
826 SOCK_TIMESTAMPING_RX_SOFTWARE);
828 sock_disable_timestamp(sk,
829 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
830 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
831 val & SOF_TIMESTAMPING_SOFTWARE);
832 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
833 val & SOF_TIMESTAMPING_SYS_HARDWARE);
834 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
835 val & SOF_TIMESTAMPING_RAW_HARDWARE);
841 sk->sk_rcvlowat = val ? : 1;
845 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
849 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
852 case SO_ATTACH_FILTER:
854 if (optlen == sizeof(struct sock_fprog)) {
855 struct sock_fprog fprog;
858 if (copy_from_user(&fprog, optval, sizeof(fprog)))
861 ret = sk_attach_filter(&fprog, sk);
865 case SO_DETACH_FILTER:
866 ret = sk_detach_filter(sk);
870 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
873 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
878 set_bit(SOCK_PASSSEC, &sock->flags);
880 clear_bit(SOCK_PASSSEC, &sock->flags);
883 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
889 /* We implement the SO_SNDLOWAT etc to
890 not be settable (1003.1g 5.3) */
892 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
896 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
900 if (sock->ops->set_peek_off)
901 sock->ops->set_peek_off(sk, val);
907 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
917 EXPORT_SYMBOL(sock_setsockopt);
920 void cred_to_ucred(struct pid *pid, const struct cred *cred,
923 ucred->pid = pid_vnr(pid);
924 ucred->uid = ucred->gid = -1;
926 struct user_namespace *current_ns = current_user_ns();
928 ucred->uid = from_kuid_munged(current_ns, cred->euid);
929 ucred->gid = from_kgid_munged(current_ns, cred->egid);
932 EXPORT_SYMBOL_GPL(cred_to_ucred);
934 int sock_getsockopt(struct socket *sock, int level, int optname,
935 char __user *optval, int __user *optlen)
937 struct sock *sk = sock->sk;
945 int lv = sizeof(int);
948 if (get_user(len, optlen))
953 memset(&v, 0, sizeof(v));
957 v.val = sock_flag(sk, SOCK_DBG);
961 v.val = sock_flag(sk, SOCK_LOCALROUTE);
965 v.val = sock_flag(sk, SOCK_BROADCAST);
969 v.val = sk->sk_sndbuf;
973 v.val = sk->sk_rcvbuf;
977 v.val = sk->sk_reuse;
981 v.val = sk->sk_reuseport;
985 v.val = sock_flag(sk, SOCK_KEEPOPEN);
993 v.val = sk->sk_protocol;
997 v.val = sk->sk_family;
1001 v.val = -sock_error(sk);
1003 v.val = xchg(&sk->sk_err_soft, 0);
1007 v.val = sock_flag(sk, SOCK_URGINLINE);
1011 v.val = sk->sk_no_check;
1015 v.val = sk->sk_priority;
1019 lv = sizeof(v.ling);
1020 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1021 v.ling.l_linger = sk->sk_lingertime / HZ;
1025 sock_warn_obsolete_bsdism("getsockopt");
1029 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1030 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1033 case SO_TIMESTAMPNS:
1034 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1037 case SO_TIMESTAMPING:
1039 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
1040 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
1041 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
1042 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
1043 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
1044 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
1045 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1046 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
1047 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
1048 v.val |= SOF_TIMESTAMPING_SOFTWARE;
1049 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
1050 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
1051 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
1052 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
1056 lv = sizeof(struct timeval);
1057 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1061 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1062 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1067 lv = sizeof(struct timeval);
1068 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1072 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1073 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1078 v.val = sk->sk_rcvlowat;
1086 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1091 struct ucred peercred;
1092 if (len > sizeof(peercred))
1093 len = sizeof(peercred);
1094 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1095 if (copy_to_user(optval, &peercred, len))
1104 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1108 if (copy_to_user(optval, address, len))
1113 /* Dubious BSD thing... Probably nobody even uses it, but
1114 * the UNIX standard wants it for whatever reason... -DaveM
1117 v.val = sk->sk_state == TCP_LISTEN;
1121 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1125 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1128 v.val = sk->sk_mark;
1132 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1135 case SO_WIFI_STATUS:
1136 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1140 if (!sock->ops->set_peek_off)
1143 v.val = sk->sk_peek_off;
1146 v.val = sock_flag(sk, SOCK_NOFCS);
1149 case SO_BINDTODEVICE:
1150 return sock_getbindtodevice(sk, optval, optlen, len);
1153 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1159 case SO_LOCK_FILTER:
1160 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1164 return -ENOPROTOOPT;
1169 if (copy_to_user(optval, &v, len))
1172 if (put_user(len, optlen))
1178 * Initialize an sk_lock.
1180 * (We also register the sk_lock with the lock validator.)
1182 static inline void sock_lock_init(struct sock *sk)
1184 sock_lock_init_class_and_name(sk,
1185 af_family_slock_key_strings[sk->sk_family],
1186 af_family_slock_keys + sk->sk_family,
1187 af_family_key_strings[sk->sk_family],
1188 af_family_keys + sk->sk_family);
1192 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1193 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1194 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1196 static void sock_copy(struct sock *nsk, const struct sock *osk)
1198 #ifdef CONFIG_SECURITY_NETWORK
1199 void *sptr = nsk->sk_security;
1201 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1203 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1204 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1206 #ifdef CONFIG_SECURITY_NETWORK
1207 nsk->sk_security = sptr;
1208 security_sk_clone(osk, nsk);
1213 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1214 * un-modified. Special care is taken when initializing object to zero.
1216 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1218 if (offsetof(struct sock, sk_node.next) != 0)
1219 memset(sk, 0, offsetof(struct sock, sk_node.next));
1220 memset(&sk->sk_node.pprev, 0,
1221 size - offsetof(struct sock, sk_node.pprev));
1224 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1226 unsigned long nulls1, nulls2;
1228 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1229 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1230 if (nulls1 > nulls2)
1231 swap(nulls1, nulls2);
1234 memset((char *)sk, 0, nulls1);
1235 memset((char *)sk + nulls1 + sizeof(void *), 0,
1236 nulls2 - nulls1 - sizeof(void *));
1237 memset((char *)sk + nulls2 + sizeof(void *), 0,
1238 size - nulls2 - sizeof(void *));
1240 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1242 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1246 struct kmem_cache *slab;
1250 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1253 if (priority & __GFP_ZERO) {
1255 prot->clear_sk(sk, prot->obj_size);
1257 sk_prot_clear_nulls(sk, prot->obj_size);
1260 sk = kmalloc(prot->obj_size, priority);
1263 kmemcheck_annotate_bitfield(sk, flags);
1265 if (security_sk_alloc(sk, family, priority))
1268 if (!try_module_get(prot->owner))
1270 sk_tx_queue_clear(sk);
1276 security_sk_free(sk);
1279 kmem_cache_free(slab, sk);
1285 static void sk_prot_free(struct proto *prot, struct sock *sk)
1287 struct kmem_cache *slab;
1288 struct module *owner;
1290 owner = prot->owner;
1293 security_sk_free(sk);
1295 kmem_cache_free(slab, sk);
1301 #ifdef CONFIG_CGROUPS
1302 #if IS_ENABLED(CONFIG_NET_CLS_CGROUP)
1303 void sock_update_classid(struct sock *sk, struct task_struct *task)
1307 classid = task_cls_classid(task);
1308 if (classid != sk->sk_classid)
1309 sk->sk_classid = classid;
1311 EXPORT_SYMBOL(sock_update_classid);
1314 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1315 void sock_update_netprioidx(struct sock *sk, struct task_struct *task)
1320 sk->sk_cgrp_prioidx = task_netprioidx(task);
1322 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1327 * sk_alloc - All socket objects are allocated here
1328 * @net: the applicable net namespace
1329 * @family: protocol family
1330 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1331 * @prot: struct proto associated with this new sock instance
1333 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1338 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1340 sk->sk_family = family;
1342 * See comment in struct sock definition to understand
1343 * why we need sk_prot_creator -acme
1345 sk->sk_prot = sk->sk_prot_creator = prot;
1347 sock_net_set(sk, get_net(net));
1348 atomic_set(&sk->sk_wmem_alloc, 1);
1350 sock_update_classid(sk, current);
1351 sock_update_netprioidx(sk, current);
1356 EXPORT_SYMBOL(sk_alloc);
1358 static void __sk_free(struct sock *sk)
1360 struct sk_filter *filter;
1362 if (sk->sk_destruct)
1363 sk->sk_destruct(sk);
1365 filter = rcu_dereference_check(sk->sk_filter,
1366 atomic_read(&sk->sk_wmem_alloc) == 0);
1368 sk_filter_uncharge(sk, filter);
1369 RCU_INIT_POINTER(sk->sk_filter, NULL);
1372 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1374 if (atomic_read(&sk->sk_omem_alloc))
1375 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1376 __func__, atomic_read(&sk->sk_omem_alloc));
1378 if (sk->sk_peer_cred)
1379 put_cred(sk->sk_peer_cred);
1380 put_pid(sk->sk_peer_pid);
1381 put_net(sock_net(sk));
1382 sk_prot_free(sk->sk_prot_creator, sk);
1385 void sk_free(struct sock *sk)
1388 * We subtract one from sk_wmem_alloc and can know if
1389 * some packets are still in some tx queue.
1390 * If not null, sock_wfree() will call __sk_free(sk) later
1392 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1395 EXPORT_SYMBOL(sk_free);
1398 * Last sock_put should drop reference to sk->sk_net. It has already
1399 * been dropped in sk_change_net. Taking reference to stopping namespace
1401 * Take reference to a socket to remove it from hash _alive_ and after that
1402 * destroy it in the context of init_net.
1404 void sk_release_kernel(struct sock *sk)
1406 if (sk == NULL || sk->sk_socket == NULL)
1410 sock_release(sk->sk_socket);
1411 release_net(sock_net(sk));
1412 sock_net_set(sk, get_net(&init_net));
1415 EXPORT_SYMBOL(sk_release_kernel);
1417 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1419 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1420 sock_update_memcg(newsk);
1424 * sk_clone_lock - clone a socket, and lock its clone
1425 * @sk: the socket to clone
1426 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1428 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1430 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1434 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1435 if (newsk != NULL) {
1436 struct sk_filter *filter;
1438 sock_copy(newsk, sk);
1441 get_net(sock_net(newsk));
1442 sk_node_init(&newsk->sk_node);
1443 sock_lock_init(newsk);
1444 bh_lock_sock(newsk);
1445 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1446 newsk->sk_backlog.len = 0;
1448 atomic_set(&newsk->sk_rmem_alloc, 0);
1450 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1452 atomic_set(&newsk->sk_wmem_alloc, 1);
1453 atomic_set(&newsk->sk_omem_alloc, 0);
1454 skb_queue_head_init(&newsk->sk_receive_queue);
1455 skb_queue_head_init(&newsk->sk_write_queue);
1456 #ifdef CONFIG_NET_DMA
1457 skb_queue_head_init(&newsk->sk_async_wait_queue);
1460 spin_lock_init(&newsk->sk_dst_lock);
1461 rwlock_init(&newsk->sk_callback_lock);
1462 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1463 af_callback_keys + newsk->sk_family,
1464 af_family_clock_key_strings[newsk->sk_family]);
1466 newsk->sk_dst_cache = NULL;
1467 newsk->sk_wmem_queued = 0;
1468 newsk->sk_forward_alloc = 0;
1469 newsk->sk_send_head = NULL;
1470 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1472 sock_reset_flag(newsk, SOCK_DONE);
1473 skb_queue_head_init(&newsk->sk_error_queue);
1475 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1477 sk_filter_charge(newsk, filter);
1479 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1480 /* It is still raw copy of parent, so invalidate
1481 * destructor and make plain sk_free() */
1482 newsk->sk_destruct = NULL;
1483 bh_unlock_sock(newsk);
1490 newsk->sk_priority = 0;
1492 * Before updating sk_refcnt, we must commit prior changes to memory
1493 * (Documentation/RCU/rculist_nulls.txt for details)
1496 atomic_set(&newsk->sk_refcnt, 2);
1499 * Increment the counter in the same struct proto as the master
1500 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1501 * is the same as sk->sk_prot->socks, as this field was copied
1504 * This _changes_ the previous behaviour, where
1505 * tcp_create_openreq_child always was incrementing the
1506 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1507 * to be taken into account in all callers. -acme
1509 sk_refcnt_debug_inc(newsk);
1510 sk_set_socket(newsk, NULL);
1511 newsk->sk_wq = NULL;
1513 sk_update_clone(sk, newsk);
1515 if (newsk->sk_prot->sockets_allocated)
1516 sk_sockets_allocated_inc(newsk);
1518 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1519 net_enable_timestamp();
1524 EXPORT_SYMBOL_GPL(sk_clone_lock);
1526 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1528 __sk_dst_set(sk, dst);
1529 sk->sk_route_caps = dst->dev->features;
1530 if (sk->sk_route_caps & NETIF_F_GSO)
1531 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1532 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1533 if (sk_can_gso(sk)) {
1534 if (dst->header_len) {
1535 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1537 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1538 sk->sk_gso_max_size = dst->dev->gso_max_size;
1539 sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1543 EXPORT_SYMBOL_GPL(sk_setup_caps);
1546 * Simple resource managers for sockets.
1551 * Write buffer destructor automatically called from kfree_skb.
1553 void sock_wfree(struct sk_buff *skb)
1555 struct sock *sk = skb->sk;
1556 unsigned int len = skb->truesize;
1558 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1560 * Keep a reference on sk_wmem_alloc, this will be released
1561 * after sk_write_space() call
1563 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1564 sk->sk_write_space(sk);
1568 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1569 * could not do because of in-flight packets
1571 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1574 EXPORT_SYMBOL(sock_wfree);
1577 * Read buffer destructor automatically called from kfree_skb.
1579 void sock_rfree(struct sk_buff *skb)
1581 struct sock *sk = skb->sk;
1582 unsigned int len = skb->truesize;
1584 atomic_sub(len, &sk->sk_rmem_alloc);
1585 sk_mem_uncharge(sk, len);
1587 EXPORT_SYMBOL(sock_rfree);
1589 void sock_edemux(struct sk_buff *skb)
1591 struct sock *sk = skb->sk;
1594 if (sk->sk_state == TCP_TIME_WAIT)
1595 inet_twsk_put(inet_twsk(sk));
1600 EXPORT_SYMBOL(sock_edemux);
1602 kuid_t sock_i_uid(struct sock *sk)
1606 read_lock_bh(&sk->sk_callback_lock);
1607 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1608 read_unlock_bh(&sk->sk_callback_lock);
1611 EXPORT_SYMBOL(sock_i_uid);
1613 unsigned long sock_i_ino(struct sock *sk)
1617 read_lock_bh(&sk->sk_callback_lock);
1618 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1619 read_unlock_bh(&sk->sk_callback_lock);
1622 EXPORT_SYMBOL(sock_i_ino);
1625 * Allocate a skb from the socket's send buffer.
1627 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1630 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1631 struct sk_buff *skb = alloc_skb(size, priority);
1633 skb_set_owner_w(skb, sk);
1639 EXPORT_SYMBOL(sock_wmalloc);
1642 * Allocate a skb from the socket's receive buffer.
1644 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1647 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1648 struct sk_buff *skb = alloc_skb(size, priority);
1650 skb_set_owner_r(skb, sk);
1658 * Allocate a memory block from the socket's option memory buffer.
1660 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1662 if ((unsigned int)size <= sysctl_optmem_max &&
1663 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1665 /* First do the add, to avoid the race if kmalloc
1668 atomic_add(size, &sk->sk_omem_alloc);
1669 mem = kmalloc(size, priority);
1672 atomic_sub(size, &sk->sk_omem_alloc);
1676 EXPORT_SYMBOL(sock_kmalloc);
1679 * Free an option memory block.
1681 void sock_kfree_s(struct sock *sk, void *mem, int size)
1684 atomic_sub(size, &sk->sk_omem_alloc);
1686 EXPORT_SYMBOL(sock_kfree_s);
1688 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1689 I think, these locks should be removed for datagram sockets.
1691 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1695 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1699 if (signal_pending(current))
1701 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1702 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1703 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1705 if (sk->sk_shutdown & SEND_SHUTDOWN)
1709 timeo = schedule_timeout(timeo);
1711 finish_wait(sk_sleep(sk), &wait);
1717 * Generic send/receive buffer handlers
1720 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1721 unsigned long data_len, int noblock,
1724 struct sk_buff *skb;
1728 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1731 if (npages > MAX_SKB_FRAGS)
1734 gfp_mask = sk->sk_allocation;
1735 if (gfp_mask & __GFP_WAIT)
1736 gfp_mask |= __GFP_REPEAT;
1738 timeo = sock_sndtimeo(sk, noblock);
1740 err = sock_error(sk);
1745 if (sk->sk_shutdown & SEND_SHUTDOWN)
1748 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1749 skb = alloc_skb(header_len, gfp_mask);
1753 /* No pages, we're done... */
1757 skb->truesize += data_len;
1758 skb_shinfo(skb)->nr_frags = npages;
1759 for (i = 0; i < npages; i++) {
1762 page = alloc_pages(sk->sk_allocation, 0);
1765 skb_shinfo(skb)->nr_frags = i;
1770 __skb_fill_page_desc(skb, i,
1772 (data_len >= PAGE_SIZE ?
1775 data_len -= PAGE_SIZE;
1778 /* Full success... */
1784 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1785 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1789 if (signal_pending(current))
1791 timeo = sock_wait_for_wmem(sk, timeo);
1794 skb_set_owner_w(skb, sk);
1798 err = sock_intr_errno(timeo);
1803 EXPORT_SYMBOL(sock_alloc_send_pskb);
1805 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1806 int noblock, int *errcode)
1808 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1810 EXPORT_SYMBOL(sock_alloc_send_skb);
1812 /* On 32bit arches, an skb frag is limited to 2^15 */
1813 #define SKB_FRAG_PAGE_ORDER get_order(32768)
1815 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1820 if (atomic_read(&pfrag->page->_count) == 1) {
1824 if (pfrag->offset < pfrag->size)
1826 put_page(pfrag->page);
1829 /* We restrict high order allocations to users that can afford to wait */
1830 order = (sk->sk_allocation & __GFP_WAIT) ? SKB_FRAG_PAGE_ORDER : 0;
1833 gfp_t gfp = sk->sk_allocation;
1836 gfp |= __GFP_COMP | __GFP_NOWARN;
1837 pfrag->page = alloc_pages(gfp, order);
1838 if (likely(pfrag->page)) {
1840 pfrag->size = PAGE_SIZE << order;
1843 } while (--order >= 0);
1845 sk_enter_memory_pressure(sk);
1846 sk_stream_moderate_sndbuf(sk);
1849 EXPORT_SYMBOL(sk_page_frag_refill);
1851 static void __lock_sock(struct sock *sk)
1852 __releases(&sk->sk_lock.slock)
1853 __acquires(&sk->sk_lock.slock)
1858 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1859 TASK_UNINTERRUPTIBLE);
1860 spin_unlock_bh(&sk->sk_lock.slock);
1862 spin_lock_bh(&sk->sk_lock.slock);
1863 if (!sock_owned_by_user(sk))
1866 finish_wait(&sk->sk_lock.wq, &wait);
1869 static void __release_sock(struct sock *sk)
1870 __releases(&sk->sk_lock.slock)
1871 __acquires(&sk->sk_lock.slock)
1873 struct sk_buff *skb = sk->sk_backlog.head;
1876 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1880 struct sk_buff *next = skb->next;
1883 WARN_ON_ONCE(skb_dst_is_noref(skb));
1885 sk_backlog_rcv(sk, skb);
1888 * We are in process context here with softirqs
1889 * disabled, use cond_resched_softirq() to preempt.
1890 * This is safe to do because we've taken the backlog
1893 cond_resched_softirq();
1896 } while (skb != NULL);
1899 } while ((skb = sk->sk_backlog.head) != NULL);
1902 * Doing the zeroing here guarantee we can not loop forever
1903 * while a wild producer attempts to flood us.
1905 sk->sk_backlog.len = 0;
1909 * sk_wait_data - wait for data to arrive at sk_receive_queue
1910 * @sk: sock to wait on
1911 * @timeo: for how long
1913 * Now socket state including sk->sk_err is changed only under lock,
1914 * hence we may omit checks after joining wait queue.
1915 * We check receive queue before schedule() only as optimization;
1916 * it is very likely that release_sock() added new data.
1918 int sk_wait_data(struct sock *sk, long *timeo)
1923 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1924 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1925 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1926 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1927 finish_wait(sk_sleep(sk), &wait);
1930 EXPORT_SYMBOL(sk_wait_data);
1933 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1935 * @size: memory size to allocate
1936 * @kind: allocation type
1938 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1939 * rmem allocation. This function assumes that protocols which have
1940 * memory_pressure use sk_wmem_queued as write buffer accounting.
1942 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1944 struct proto *prot = sk->sk_prot;
1945 int amt = sk_mem_pages(size);
1947 int parent_status = UNDER_LIMIT;
1949 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1951 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1954 if (parent_status == UNDER_LIMIT &&
1955 allocated <= sk_prot_mem_limits(sk, 0)) {
1956 sk_leave_memory_pressure(sk);
1960 /* Under pressure. (we or our parents) */
1961 if ((parent_status > SOFT_LIMIT) ||
1962 allocated > sk_prot_mem_limits(sk, 1))
1963 sk_enter_memory_pressure(sk);
1965 /* Over hard limit (we or our parents) */
1966 if ((parent_status == OVER_LIMIT) ||
1967 (allocated > sk_prot_mem_limits(sk, 2)))
1968 goto suppress_allocation;
1970 /* guarantee minimum buffer size under pressure */
1971 if (kind == SK_MEM_RECV) {
1972 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1975 } else { /* SK_MEM_SEND */
1976 if (sk->sk_type == SOCK_STREAM) {
1977 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1979 } else if (atomic_read(&sk->sk_wmem_alloc) <
1980 prot->sysctl_wmem[0])
1984 if (sk_has_memory_pressure(sk)) {
1987 if (!sk_under_memory_pressure(sk))
1989 alloc = sk_sockets_allocated_read_positive(sk);
1990 if (sk_prot_mem_limits(sk, 2) > alloc *
1991 sk_mem_pages(sk->sk_wmem_queued +
1992 atomic_read(&sk->sk_rmem_alloc) +
1993 sk->sk_forward_alloc))
1997 suppress_allocation:
1999 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2000 sk_stream_moderate_sndbuf(sk);
2002 /* Fail only if socket is _under_ its sndbuf.
2003 * In this case we cannot block, so that we have to fail.
2005 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2009 trace_sock_exceed_buf_limit(sk, prot, allocated);
2011 /* Alas. Undo changes. */
2012 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2014 sk_memory_allocated_sub(sk, amt);
2018 EXPORT_SYMBOL(__sk_mem_schedule);
2021 * __sk_reclaim - reclaim memory_allocated
2024 void __sk_mem_reclaim(struct sock *sk)
2026 sk_memory_allocated_sub(sk,
2027 sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2028 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
2030 if (sk_under_memory_pressure(sk) &&
2031 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2032 sk_leave_memory_pressure(sk);
2034 EXPORT_SYMBOL(__sk_mem_reclaim);
2038 * Set of default routines for initialising struct proto_ops when
2039 * the protocol does not support a particular function. In certain
2040 * cases where it makes no sense for a protocol to have a "do nothing"
2041 * function, some default processing is provided.
2044 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2048 EXPORT_SYMBOL(sock_no_bind);
2050 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2055 EXPORT_SYMBOL(sock_no_connect);
2057 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2061 EXPORT_SYMBOL(sock_no_socketpair);
2063 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2067 EXPORT_SYMBOL(sock_no_accept);
2069 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2074 EXPORT_SYMBOL(sock_no_getname);
2076 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2080 EXPORT_SYMBOL(sock_no_poll);
2082 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2086 EXPORT_SYMBOL(sock_no_ioctl);
2088 int sock_no_listen(struct socket *sock, int backlog)
2092 EXPORT_SYMBOL(sock_no_listen);
2094 int sock_no_shutdown(struct socket *sock, int how)
2098 EXPORT_SYMBOL(sock_no_shutdown);
2100 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2101 char __user *optval, unsigned int optlen)
2105 EXPORT_SYMBOL(sock_no_setsockopt);
2107 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2108 char __user *optval, int __user *optlen)
2112 EXPORT_SYMBOL(sock_no_getsockopt);
2114 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2119 EXPORT_SYMBOL(sock_no_sendmsg);
2121 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2122 size_t len, int flags)
2126 EXPORT_SYMBOL(sock_no_recvmsg);
2128 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2130 /* Mirror missing mmap method error code */
2133 EXPORT_SYMBOL(sock_no_mmap);
2135 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2138 struct msghdr msg = {.msg_flags = flags};
2140 char *kaddr = kmap(page);
2141 iov.iov_base = kaddr + offset;
2143 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2147 EXPORT_SYMBOL(sock_no_sendpage);
2150 * Default Socket Callbacks
2153 static void sock_def_wakeup(struct sock *sk)
2155 struct socket_wq *wq;
2158 wq = rcu_dereference(sk->sk_wq);
2159 if (wq_has_sleeper(wq))
2160 wake_up_interruptible_all(&wq->wait);
2164 static void sock_def_error_report(struct sock *sk)
2166 struct socket_wq *wq;
2169 wq = rcu_dereference(sk->sk_wq);
2170 if (wq_has_sleeper(wq))
2171 wake_up_interruptible_poll(&wq->wait, POLLERR);
2172 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2176 static void sock_def_readable(struct sock *sk, int len)
2178 struct socket_wq *wq;
2181 wq = rcu_dereference(sk->sk_wq);
2182 if (wq_has_sleeper(wq))
2183 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2184 POLLRDNORM | POLLRDBAND);
2185 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2189 static void sock_def_write_space(struct sock *sk)
2191 struct socket_wq *wq;
2195 /* Do not wake up a writer until he can make "significant"
2198 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2199 wq = rcu_dereference(sk->sk_wq);
2200 if (wq_has_sleeper(wq))
2201 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2202 POLLWRNORM | POLLWRBAND);
2204 /* Should agree with poll, otherwise some programs break */
2205 if (sock_writeable(sk))
2206 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2212 static void sock_def_destruct(struct sock *sk)
2214 kfree(sk->sk_protinfo);
2217 void sk_send_sigurg(struct sock *sk)
2219 if (sk->sk_socket && sk->sk_socket->file)
2220 if (send_sigurg(&sk->sk_socket->file->f_owner))
2221 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2223 EXPORT_SYMBOL(sk_send_sigurg);
2225 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2226 unsigned long expires)
2228 if (!mod_timer(timer, expires))
2231 EXPORT_SYMBOL(sk_reset_timer);
2233 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2235 if (del_timer(timer))
2238 EXPORT_SYMBOL(sk_stop_timer);
2240 void sock_init_data(struct socket *sock, struct sock *sk)
2242 skb_queue_head_init(&sk->sk_receive_queue);
2243 skb_queue_head_init(&sk->sk_write_queue);
2244 skb_queue_head_init(&sk->sk_error_queue);
2245 #ifdef CONFIG_NET_DMA
2246 skb_queue_head_init(&sk->sk_async_wait_queue);
2249 sk->sk_send_head = NULL;
2251 init_timer(&sk->sk_timer);
2253 sk->sk_allocation = GFP_KERNEL;
2254 sk->sk_rcvbuf = sysctl_rmem_default;
2255 sk->sk_sndbuf = sysctl_wmem_default;
2256 sk->sk_state = TCP_CLOSE;
2257 sk_set_socket(sk, sock);
2259 sock_set_flag(sk, SOCK_ZAPPED);
2262 sk->sk_type = sock->type;
2263 sk->sk_wq = sock->wq;
2268 spin_lock_init(&sk->sk_dst_lock);
2269 rwlock_init(&sk->sk_callback_lock);
2270 lockdep_set_class_and_name(&sk->sk_callback_lock,
2271 af_callback_keys + sk->sk_family,
2272 af_family_clock_key_strings[sk->sk_family]);
2274 sk->sk_state_change = sock_def_wakeup;
2275 sk->sk_data_ready = sock_def_readable;
2276 sk->sk_write_space = sock_def_write_space;
2277 sk->sk_error_report = sock_def_error_report;
2278 sk->sk_destruct = sock_def_destruct;
2280 sk->sk_frag.page = NULL;
2281 sk->sk_frag.offset = 0;
2282 sk->sk_peek_off = -1;
2284 sk->sk_peer_pid = NULL;
2285 sk->sk_peer_cred = NULL;
2286 sk->sk_write_pending = 0;
2287 sk->sk_rcvlowat = 1;
2288 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2289 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2291 sk->sk_stamp = ktime_set(-1L, 0);
2294 * Before updating sk_refcnt, we must commit prior changes to memory
2295 * (Documentation/RCU/rculist_nulls.txt for details)
2298 atomic_set(&sk->sk_refcnt, 1);
2299 atomic_set(&sk->sk_drops, 0);
2301 EXPORT_SYMBOL(sock_init_data);
2303 void lock_sock_nested(struct sock *sk, int subclass)
2306 spin_lock_bh(&sk->sk_lock.slock);
2307 if (sk->sk_lock.owned)
2309 sk->sk_lock.owned = 1;
2310 spin_unlock(&sk->sk_lock.slock);
2312 * The sk_lock has mutex_lock() semantics here:
2314 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2317 EXPORT_SYMBOL(lock_sock_nested);
2319 void release_sock(struct sock *sk)
2322 * The sk_lock has mutex_unlock() semantics:
2324 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2326 spin_lock_bh(&sk->sk_lock.slock);
2327 if (sk->sk_backlog.tail)
2330 if (sk->sk_prot->release_cb)
2331 sk->sk_prot->release_cb(sk);
2333 sk->sk_lock.owned = 0;
2334 if (waitqueue_active(&sk->sk_lock.wq))
2335 wake_up(&sk->sk_lock.wq);
2336 spin_unlock_bh(&sk->sk_lock.slock);
2338 EXPORT_SYMBOL(release_sock);
2341 * lock_sock_fast - fast version of lock_sock
2344 * This version should be used for very small section, where process wont block
2345 * return false if fast path is taken
2346 * sk_lock.slock locked, owned = 0, BH disabled
2347 * return true if slow path is taken
2348 * sk_lock.slock unlocked, owned = 1, BH enabled
2350 bool lock_sock_fast(struct sock *sk)
2353 spin_lock_bh(&sk->sk_lock.slock);
2355 if (!sk->sk_lock.owned)
2357 * Note : We must disable BH
2362 sk->sk_lock.owned = 1;
2363 spin_unlock(&sk->sk_lock.slock);
2365 * The sk_lock has mutex_lock() semantics here:
2367 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2371 EXPORT_SYMBOL(lock_sock_fast);
2373 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2376 if (!sock_flag(sk, SOCK_TIMESTAMP))
2377 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2378 tv = ktime_to_timeval(sk->sk_stamp);
2379 if (tv.tv_sec == -1)
2381 if (tv.tv_sec == 0) {
2382 sk->sk_stamp = ktime_get_real();
2383 tv = ktime_to_timeval(sk->sk_stamp);
2385 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2387 EXPORT_SYMBOL(sock_get_timestamp);
2389 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2392 if (!sock_flag(sk, SOCK_TIMESTAMP))
2393 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2394 ts = ktime_to_timespec(sk->sk_stamp);
2395 if (ts.tv_sec == -1)
2397 if (ts.tv_sec == 0) {
2398 sk->sk_stamp = ktime_get_real();
2399 ts = ktime_to_timespec(sk->sk_stamp);
2401 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2403 EXPORT_SYMBOL(sock_get_timestampns);
2405 void sock_enable_timestamp(struct sock *sk, int flag)
2407 if (!sock_flag(sk, flag)) {
2408 unsigned long previous_flags = sk->sk_flags;
2410 sock_set_flag(sk, flag);
2412 * we just set one of the two flags which require net
2413 * time stamping, but time stamping might have been on
2414 * already because of the other one
2416 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2417 net_enable_timestamp();
2422 * Get a socket option on an socket.
2424 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2425 * asynchronous errors should be reported by getsockopt. We assume
2426 * this means if you specify SO_ERROR (otherwise whats the point of it).
2428 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2429 char __user *optval, int __user *optlen)
2431 struct sock *sk = sock->sk;
2433 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2435 EXPORT_SYMBOL(sock_common_getsockopt);
2437 #ifdef CONFIG_COMPAT
2438 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2439 char __user *optval, int __user *optlen)
2441 struct sock *sk = sock->sk;
2443 if (sk->sk_prot->compat_getsockopt != NULL)
2444 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2446 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2448 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2451 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2452 struct msghdr *msg, size_t size, int flags)
2454 struct sock *sk = sock->sk;
2458 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2459 flags & ~MSG_DONTWAIT, &addr_len);
2461 msg->msg_namelen = addr_len;
2464 EXPORT_SYMBOL(sock_common_recvmsg);
2467 * Set socket options on an inet socket.
2469 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2470 char __user *optval, unsigned int optlen)
2472 struct sock *sk = sock->sk;
2474 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2476 EXPORT_SYMBOL(sock_common_setsockopt);
2478 #ifdef CONFIG_COMPAT
2479 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2480 char __user *optval, unsigned int optlen)
2482 struct sock *sk = sock->sk;
2484 if (sk->sk_prot->compat_setsockopt != NULL)
2485 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2487 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2489 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2492 void sk_common_release(struct sock *sk)
2494 if (sk->sk_prot->destroy)
2495 sk->sk_prot->destroy(sk);
2498 * Observation: when sock_common_release is called, processes have
2499 * no access to socket. But net still has.
2500 * Step one, detach it from networking:
2502 * A. Remove from hash tables.
2505 sk->sk_prot->unhash(sk);
2508 * In this point socket cannot receive new packets, but it is possible
2509 * that some packets are in flight because some CPU runs receiver and
2510 * did hash table lookup before we unhashed socket. They will achieve
2511 * receive queue and will be purged by socket destructor.
2513 * Also we still have packets pending on receive queue and probably,
2514 * our own packets waiting in device queues. sock_destroy will drain
2515 * receive queue, but transmitted packets will delay socket destruction
2516 * until the last reference will be released.
2521 xfrm_sk_free_policy(sk);
2523 sk_refcnt_debug_release(sk);
2525 if (sk->sk_frag.page) {
2526 put_page(sk->sk_frag.page);
2527 sk->sk_frag.page = NULL;
2532 EXPORT_SYMBOL(sk_common_release);
2534 #ifdef CONFIG_PROC_FS
2535 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2537 int val[PROTO_INUSE_NR];
2540 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2542 #ifdef CONFIG_NET_NS
2543 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2545 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2547 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2549 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2551 int cpu, idx = prot->inuse_idx;
2554 for_each_possible_cpu(cpu)
2555 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2557 return res >= 0 ? res : 0;
2559 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2561 static int __net_init sock_inuse_init_net(struct net *net)
2563 net->core.inuse = alloc_percpu(struct prot_inuse);
2564 return net->core.inuse ? 0 : -ENOMEM;
2567 static void __net_exit sock_inuse_exit_net(struct net *net)
2569 free_percpu(net->core.inuse);
2572 static struct pernet_operations net_inuse_ops = {
2573 .init = sock_inuse_init_net,
2574 .exit = sock_inuse_exit_net,
2577 static __init int net_inuse_init(void)
2579 if (register_pernet_subsys(&net_inuse_ops))
2580 panic("Cannot initialize net inuse counters");
2585 core_initcall(net_inuse_init);
2587 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2589 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2591 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2593 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2595 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2597 int cpu, idx = prot->inuse_idx;
2600 for_each_possible_cpu(cpu)
2601 res += per_cpu(prot_inuse, cpu).val[idx];
2603 return res >= 0 ? res : 0;
2605 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2608 static void assign_proto_idx(struct proto *prot)
2610 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2612 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2613 pr_err("PROTO_INUSE_NR exhausted\n");
2617 set_bit(prot->inuse_idx, proto_inuse_idx);
2620 static void release_proto_idx(struct proto *prot)
2622 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2623 clear_bit(prot->inuse_idx, proto_inuse_idx);
2626 static inline void assign_proto_idx(struct proto *prot)
2630 static inline void release_proto_idx(struct proto *prot)
2635 int proto_register(struct proto *prot, int alloc_slab)
2638 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2639 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2642 if (prot->slab == NULL) {
2643 pr_crit("%s: Can't create sock SLAB cache!\n",
2648 if (prot->rsk_prot != NULL) {
2649 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2650 if (prot->rsk_prot->slab_name == NULL)
2651 goto out_free_sock_slab;
2653 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2654 prot->rsk_prot->obj_size, 0,
2655 SLAB_HWCACHE_ALIGN, NULL);
2657 if (prot->rsk_prot->slab == NULL) {
2658 pr_crit("%s: Can't create request sock SLAB cache!\n",
2660 goto out_free_request_sock_slab_name;
2664 if (prot->twsk_prot != NULL) {
2665 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2667 if (prot->twsk_prot->twsk_slab_name == NULL)
2668 goto out_free_request_sock_slab;
2670 prot->twsk_prot->twsk_slab =
2671 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2672 prot->twsk_prot->twsk_obj_size,
2674 SLAB_HWCACHE_ALIGN |
2677 if (prot->twsk_prot->twsk_slab == NULL)
2678 goto out_free_timewait_sock_slab_name;
2682 mutex_lock(&proto_list_mutex);
2683 list_add(&prot->node, &proto_list);
2684 assign_proto_idx(prot);
2685 mutex_unlock(&proto_list_mutex);
2688 out_free_timewait_sock_slab_name:
2689 kfree(prot->twsk_prot->twsk_slab_name);
2690 out_free_request_sock_slab:
2691 if (prot->rsk_prot && prot->rsk_prot->slab) {
2692 kmem_cache_destroy(prot->rsk_prot->slab);
2693 prot->rsk_prot->slab = NULL;
2695 out_free_request_sock_slab_name:
2697 kfree(prot->rsk_prot->slab_name);
2699 kmem_cache_destroy(prot->slab);
2704 EXPORT_SYMBOL(proto_register);
2706 void proto_unregister(struct proto *prot)
2708 mutex_lock(&proto_list_mutex);
2709 release_proto_idx(prot);
2710 list_del(&prot->node);
2711 mutex_unlock(&proto_list_mutex);
2713 if (prot->slab != NULL) {
2714 kmem_cache_destroy(prot->slab);
2718 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2719 kmem_cache_destroy(prot->rsk_prot->slab);
2720 kfree(prot->rsk_prot->slab_name);
2721 prot->rsk_prot->slab = NULL;
2724 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2725 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2726 kfree(prot->twsk_prot->twsk_slab_name);
2727 prot->twsk_prot->twsk_slab = NULL;
2730 EXPORT_SYMBOL(proto_unregister);
2732 #ifdef CONFIG_PROC_FS
2733 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2734 __acquires(proto_list_mutex)
2736 mutex_lock(&proto_list_mutex);
2737 return seq_list_start_head(&proto_list, *pos);
2740 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2742 return seq_list_next(v, &proto_list, pos);
2745 static void proto_seq_stop(struct seq_file *seq, void *v)
2746 __releases(proto_list_mutex)
2748 mutex_unlock(&proto_list_mutex);
2751 static char proto_method_implemented(const void *method)
2753 return method == NULL ? 'n' : 'y';
2755 static long sock_prot_memory_allocated(struct proto *proto)
2757 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2760 static char *sock_prot_memory_pressure(struct proto *proto)
2762 return proto->memory_pressure != NULL ?
2763 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2766 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2769 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2770 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2773 sock_prot_inuse_get(seq_file_net(seq), proto),
2774 sock_prot_memory_allocated(proto),
2775 sock_prot_memory_pressure(proto),
2777 proto->slab == NULL ? "no" : "yes",
2778 module_name(proto->owner),
2779 proto_method_implemented(proto->close),
2780 proto_method_implemented(proto->connect),
2781 proto_method_implemented(proto->disconnect),
2782 proto_method_implemented(proto->accept),
2783 proto_method_implemented(proto->ioctl),
2784 proto_method_implemented(proto->init),
2785 proto_method_implemented(proto->destroy),
2786 proto_method_implemented(proto->shutdown),
2787 proto_method_implemented(proto->setsockopt),
2788 proto_method_implemented(proto->getsockopt),
2789 proto_method_implemented(proto->sendmsg),
2790 proto_method_implemented(proto->recvmsg),
2791 proto_method_implemented(proto->sendpage),
2792 proto_method_implemented(proto->bind),
2793 proto_method_implemented(proto->backlog_rcv),
2794 proto_method_implemented(proto->hash),
2795 proto_method_implemented(proto->unhash),
2796 proto_method_implemented(proto->get_port),
2797 proto_method_implemented(proto->enter_memory_pressure));
2800 static int proto_seq_show(struct seq_file *seq, void *v)
2802 if (v == &proto_list)
2803 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2812 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2814 proto_seq_printf(seq, list_entry(v, struct proto, node));
2818 static const struct seq_operations proto_seq_ops = {
2819 .start = proto_seq_start,
2820 .next = proto_seq_next,
2821 .stop = proto_seq_stop,
2822 .show = proto_seq_show,
2825 static int proto_seq_open(struct inode *inode, struct file *file)
2827 return seq_open_net(inode, file, &proto_seq_ops,
2828 sizeof(struct seq_net_private));
2831 static const struct file_operations proto_seq_fops = {
2832 .owner = THIS_MODULE,
2833 .open = proto_seq_open,
2835 .llseek = seq_lseek,
2836 .release = seq_release_net,
2839 static __net_init int proto_init_net(struct net *net)
2841 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2847 static __net_exit void proto_exit_net(struct net *net)
2849 remove_proc_entry("protocols", net->proc_net);
2853 static __net_initdata struct pernet_operations proto_net_ops = {
2854 .init = proto_init_net,
2855 .exit = proto_exit_net,
2858 static int __init proto_init(void)
2860 return register_pernet_subsys(&proto_net_ops);
2863 subsys_initcall(proto_init);
2865 #endif /* PROC_FS */