1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
116 #include <linux/compat.h>
118 #include <linux/uaccess.h>
120 #include <linux/netdevice.h>
121 #include <net/protocol.h>
122 #include <linux/skbuff.h>
123 #include <net/net_namespace.h>
124 #include <net/request_sock.h>
125 #include <net/sock.h>
126 #include <linux/net_tstamp.h>
127 #include <net/xfrm.h>
128 #include <linux/ipsec.h>
129 #include <net/cls_cgroup.h>
130 #include <net/netprio_cgroup.h>
131 #include <linux/sock_diag.h>
133 #include <linux/filter.h>
134 #include <net/sock_reuseport.h>
135 #include <net/bpf_sk_storage.h>
137 #include <trace/events/sock.h>
140 #include <net/busy_poll.h>
142 #include <linux/ethtool.h>
144 static DEFINE_MUTEX(proto_list_mutex);
145 static LIST_HEAD(proto_list);
147 static void sock_inuse_add(struct net *net, int val);
150 * sk_ns_capable - General socket capability test
151 * @sk: Socket to use a capability on or through
152 * @user_ns: The user namespace of the capability to use
153 * @cap: The capability to use
155 * Test to see if the opener of the socket had when the socket was
156 * created and the current process has the capability @cap in the user
157 * namespace @user_ns.
159 bool sk_ns_capable(const struct sock *sk,
160 struct user_namespace *user_ns, int cap)
162 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
163 ns_capable(user_ns, cap);
165 EXPORT_SYMBOL(sk_ns_capable);
168 * sk_capable - Socket global capability test
169 * @sk: Socket to use a capability on or through
170 * @cap: The global capability to use
172 * Test to see if the opener of the socket had when the socket was
173 * created and the current process has the capability @cap in all user
176 bool sk_capable(const struct sock *sk, int cap)
178 return sk_ns_capable(sk, &init_user_ns, cap);
180 EXPORT_SYMBOL(sk_capable);
183 * sk_net_capable - Network namespace socket capability test
184 * @sk: Socket to use a capability on or through
185 * @cap: The capability to use
187 * Test to see if the opener of the socket had when the socket was created
188 * and the current process has the capability @cap over the network namespace
189 * the socket is a member of.
191 bool sk_net_capable(const struct sock *sk, int cap)
193 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
195 EXPORT_SYMBOL(sk_net_capable);
198 * Each address family might have different locking rules, so we have
199 * one slock key per address family and separate keys for internal and
202 static struct lock_class_key af_family_keys[AF_MAX];
203 static struct lock_class_key af_family_kern_keys[AF_MAX];
204 static struct lock_class_key af_family_slock_keys[AF_MAX];
205 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
208 * Make lock validator output more readable. (we pre-construct these
209 * strings build-time, so that runtime initialization of socket
213 #define _sock_locks(x) \
214 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
215 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
216 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
217 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
218 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
219 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
220 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
221 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
222 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
223 x "27" , x "28" , x "AF_CAN" , \
224 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
225 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
226 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
227 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
228 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
231 static const char *const af_family_key_strings[AF_MAX+1] = {
232 _sock_locks("sk_lock-")
234 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
235 _sock_locks("slock-")
237 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
238 _sock_locks("clock-")
241 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
242 _sock_locks("k-sk_lock-")
244 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
245 _sock_locks("k-slock-")
247 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
248 _sock_locks("k-clock-")
250 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
251 _sock_locks("rlock-")
253 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
254 _sock_locks("wlock-")
256 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
257 _sock_locks("elock-")
261 * sk_callback_lock and sk queues locking rules are per-address-family,
262 * so split the lock classes by using a per-AF key:
264 static struct lock_class_key af_callback_keys[AF_MAX];
265 static struct lock_class_key af_rlock_keys[AF_MAX];
266 static struct lock_class_key af_wlock_keys[AF_MAX];
267 static struct lock_class_key af_elock_keys[AF_MAX];
268 static struct lock_class_key af_kern_callback_keys[AF_MAX];
270 /* Run time adjustable parameters. */
271 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
272 EXPORT_SYMBOL(sysctl_wmem_max);
273 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
274 EXPORT_SYMBOL(sysctl_rmem_max);
275 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
276 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
278 /* Maximal space eaten by iovec or ancillary data plus some space */
279 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
280 EXPORT_SYMBOL(sysctl_optmem_max);
282 int sysctl_tstamp_allow_data __read_mostly = 1;
284 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
285 EXPORT_SYMBOL_GPL(memalloc_socks_key);
288 * sk_set_memalloc - sets %SOCK_MEMALLOC
289 * @sk: socket to set it on
291 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
292 * It's the responsibility of the admin to adjust min_free_kbytes
293 * to meet the requirements
295 void sk_set_memalloc(struct sock *sk)
297 sock_set_flag(sk, SOCK_MEMALLOC);
298 sk->sk_allocation |= __GFP_MEMALLOC;
299 static_branch_inc(&memalloc_socks_key);
301 EXPORT_SYMBOL_GPL(sk_set_memalloc);
303 void sk_clear_memalloc(struct sock *sk)
305 sock_reset_flag(sk, SOCK_MEMALLOC);
306 sk->sk_allocation &= ~__GFP_MEMALLOC;
307 static_branch_dec(&memalloc_socks_key);
310 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
311 * progress of swapping. SOCK_MEMALLOC may be cleared while
312 * it has rmem allocations due to the last swapfile being deactivated
313 * but there is a risk that the socket is unusable due to exceeding
314 * the rmem limits. Reclaim the reserves and obey rmem limits again.
318 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
320 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
323 unsigned int noreclaim_flag;
325 /* these should have been dropped before queueing */
326 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
328 noreclaim_flag = memalloc_noreclaim_save();
329 ret = sk->sk_backlog_rcv(sk, skb);
330 memalloc_noreclaim_restore(noreclaim_flag);
334 EXPORT_SYMBOL(__sk_backlog_rcv);
336 void sk_error_report(struct sock *sk)
338 sk->sk_error_report(sk);
340 switch (sk->sk_family) {
344 trace_inet_sk_error_report(sk);
350 EXPORT_SYMBOL(sk_error_report);
352 static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
354 struct __kernel_sock_timeval tv;
356 if (timeo == MAX_SCHEDULE_TIMEOUT) {
360 tv.tv_sec = timeo / HZ;
361 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
364 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
365 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
366 *(struct old_timeval32 *)optval = tv32;
371 struct __kernel_old_timeval old_tv;
372 old_tv.tv_sec = tv.tv_sec;
373 old_tv.tv_usec = tv.tv_usec;
374 *(struct __kernel_old_timeval *)optval = old_tv;
375 return sizeof(old_tv);
378 *(struct __kernel_sock_timeval *)optval = tv;
382 static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
385 struct __kernel_sock_timeval tv;
387 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
388 struct old_timeval32 tv32;
390 if (optlen < sizeof(tv32))
393 if (copy_from_sockptr(&tv32, optval, sizeof(tv32)))
395 tv.tv_sec = tv32.tv_sec;
396 tv.tv_usec = tv32.tv_usec;
397 } else if (old_timeval) {
398 struct __kernel_old_timeval old_tv;
400 if (optlen < sizeof(old_tv))
402 if (copy_from_sockptr(&old_tv, optval, sizeof(old_tv)))
404 tv.tv_sec = old_tv.tv_sec;
405 tv.tv_usec = old_tv.tv_usec;
407 if (optlen < sizeof(tv))
409 if (copy_from_sockptr(&tv, optval, sizeof(tv)))
412 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
416 static int warned __read_mostly;
419 if (warned < 10 && net_ratelimit()) {
421 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
422 __func__, current->comm, task_pid_nr(current));
426 *timeo_p = MAX_SCHEDULE_TIMEOUT;
427 if (tv.tv_sec == 0 && tv.tv_usec == 0)
429 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
430 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
434 static bool sock_needs_netstamp(const struct sock *sk)
436 switch (sk->sk_family) {
445 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
447 if (sk->sk_flags & flags) {
448 sk->sk_flags &= ~flags;
449 if (sock_needs_netstamp(sk) &&
450 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
451 net_disable_timestamp();
456 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
459 struct sk_buff_head *list = &sk->sk_receive_queue;
461 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
462 atomic_inc(&sk->sk_drops);
463 trace_sock_rcvqueue_full(sk, skb);
467 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
468 atomic_inc(&sk->sk_drops);
473 skb_set_owner_r(skb, sk);
475 /* we escape from rcu protected region, make sure we dont leak
480 spin_lock_irqsave(&list->lock, flags);
481 sock_skb_set_dropcount(sk, skb);
482 __skb_queue_tail(list, skb);
483 spin_unlock_irqrestore(&list->lock, flags);
485 if (!sock_flag(sk, SOCK_DEAD))
486 sk->sk_data_ready(sk);
489 EXPORT_SYMBOL(__sock_queue_rcv_skb);
491 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
495 err = sk_filter(sk, skb);
499 return __sock_queue_rcv_skb(sk, skb);
501 EXPORT_SYMBOL(sock_queue_rcv_skb);
503 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
504 const int nested, unsigned int trim_cap, bool refcounted)
506 int rc = NET_RX_SUCCESS;
508 if (sk_filter_trim_cap(sk, skb, trim_cap))
509 goto discard_and_relse;
513 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
514 atomic_inc(&sk->sk_drops);
515 goto discard_and_relse;
518 bh_lock_sock_nested(sk);
521 if (!sock_owned_by_user(sk)) {
523 * trylock + unlock semantics:
525 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
527 rc = sk_backlog_rcv(sk, skb);
529 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
530 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
532 atomic_inc(&sk->sk_drops);
533 goto discard_and_relse;
545 EXPORT_SYMBOL(__sk_receive_skb);
547 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
549 INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
551 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
553 struct dst_entry *dst = __sk_dst_get(sk);
555 if (dst && dst->obsolete &&
556 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
557 dst, cookie) == NULL) {
558 sk_tx_queue_clear(sk);
559 sk->sk_dst_pending_confirm = 0;
560 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
567 EXPORT_SYMBOL(__sk_dst_check);
569 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
571 struct dst_entry *dst = sk_dst_get(sk);
573 if (dst && dst->obsolete &&
574 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
575 dst, cookie) == NULL) {
583 EXPORT_SYMBOL(sk_dst_check);
585 static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
587 int ret = -ENOPROTOOPT;
588 #ifdef CONFIG_NETDEVICES
589 struct net *net = sock_net(sk);
593 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
600 sk->sk_bound_dev_if = ifindex;
601 if (sk->sk_prot->rehash)
602 sk->sk_prot->rehash(sk);
613 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
619 ret = sock_bindtoindex_locked(sk, ifindex);
625 EXPORT_SYMBOL(sock_bindtoindex);
627 static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
629 int ret = -ENOPROTOOPT;
630 #ifdef CONFIG_NETDEVICES
631 struct net *net = sock_net(sk);
632 char devname[IFNAMSIZ];
639 /* Bind this socket to a particular device like "eth0",
640 * as specified in the passed interface name. If the
641 * name is "" or the option length is zero the socket
644 if (optlen > IFNAMSIZ - 1)
645 optlen = IFNAMSIZ - 1;
646 memset(devname, 0, sizeof(devname));
649 if (copy_from_sockptr(devname, optval, optlen))
653 if (devname[0] != '\0') {
654 struct net_device *dev;
657 dev = dev_get_by_name_rcu(net, devname);
659 index = dev->ifindex;
666 return sock_bindtoindex(sk, index, true);
673 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
674 int __user *optlen, int len)
676 int ret = -ENOPROTOOPT;
677 #ifdef CONFIG_NETDEVICES
678 struct net *net = sock_net(sk);
679 char devname[IFNAMSIZ];
681 if (sk->sk_bound_dev_if == 0) {
690 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
694 len = strlen(devname) + 1;
697 if (copy_to_user(optval, devname, len))
702 if (put_user(len, optlen))
713 bool sk_mc_loop(struct sock *sk)
715 if (dev_recursion_level())
719 switch (sk->sk_family) {
721 return inet_sk(sk)->mc_loop;
722 #if IS_ENABLED(CONFIG_IPV6)
724 return inet6_sk(sk)->mc_loop;
730 EXPORT_SYMBOL(sk_mc_loop);
732 void sock_set_reuseaddr(struct sock *sk)
735 sk->sk_reuse = SK_CAN_REUSE;
738 EXPORT_SYMBOL(sock_set_reuseaddr);
740 void sock_set_reuseport(struct sock *sk)
743 sk->sk_reuseport = true;
746 EXPORT_SYMBOL(sock_set_reuseport);
748 void sock_no_linger(struct sock *sk)
751 sk->sk_lingertime = 0;
752 sock_set_flag(sk, SOCK_LINGER);
755 EXPORT_SYMBOL(sock_no_linger);
757 void sock_set_priority(struct sock *sk, u32 priority)
760 sk->sk_priority = priority;
763 EXPORT_SYMBOL(sock_set_priority);
765 void sock_set_sndtimeo(struct sock *sk, s64 secs)
768 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
769 sk->sk_sndtimeo = secs * HZ;
771 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
774 EXPORT_SYMBOL(sock_set_sndtimeo);
776 static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
779 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, new);
780 sock_valbool_flag(sk, SOCK_RCVTSTAMPNS, ns);
781 sock_set_flag(sk, SOCK_RCVTSTAMP);
782 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
784 sock_reset_flag(sk, SOCK_RCVTSTAMP);
785 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
789 void sock_enable_timestamps(struct sock *sk)
792 __sock_set_timestamps(sk, true, false, true);
795 EXPORT_SYMBOL(sock_enable_timestamps);
797 void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
800 case SO_TIMESTAMP_OLD:
801 __sock_set_timestamps(sk, valbool, false, false);
803 case SO_TIMESTAMP_NEW:
804 __sock_set_timestamps(sk, valbool, true, false);
806 case SO_TIMESTAMPNS_OLD:
807 __sock_set_timestamps(sk, valbool, false, true);
809 case SO_TIMESTAMPNS_NEW:
810 __sock_set_timestamps(sk, valbool, true, true);
815 static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
817 struct net *net = sock_net(sk);
818 struct net_device *dev = NULL;
823 if (sk->sk_bound_dev_if)
824 dev = dev_get_by_index(net, sk->sk_bound_dev_if);
827 pr_err("%s: sock not bind to device\n", __func__);
831 num = ethtool_get_phc_vclocks(dev, &vclock_index);
832 for (i = 0; i < num; i++) {
833 if (*(vclock_index + i) == phc_index) {
845 sk->sk_bind_phc = phc_index;
850 int sock_set_timestamping(struct sock *sk, int optname,
851 struct so_timestamping timestamping)
853 int val = timestamping.flags;
856 if (val & ~SOF_TIMESTAMPING_MASK)
859 if (val & SOF_TIMESTAMPING_OPT_ID &&
860 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
861 if (sk->sk_protocol == IPPROTO_TCP &&
862 sk->sk_type == SOCK_STREAM) {
863 if ((1 << sk->sk_state) &
864 (TCPF_CLOSE | TCPF_LISTEN))
866 sk->sk_tskey = tcp_sk(sk)->snd_una;
872 if (val & SOF_TIMESTAMPING_OPT_STATS &&
873 !(val & SOF_TIMESTAMPING_OPT_TSONLY))
876 if (val & SOF_TIMESTAMPING_BIND_PHC) {
877 ret = sock_timestamping_bind_phc(sk, timestamping.bind_phc);
882 sk->sk_tsflags = val;
883 sock_valbool_flag(sk, SOCK_TSTAMP_NEW, optname == SO_TIMESTAMPING_NEW);
885 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
886 sock_enable_timestamp(sk,
887 SOCK_TIMESTAMPING_RX_SOFTWARE);
889 sock_disable_timestamp(sk,
890 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
894 void sock_set_keepalive(struct sock *sk)
897 if (sk->sk_prot->keepalive)
898 sk->sk_prot->keepalive(sk, true);
899 sock_valbool_flag(sk, SOCK_KEEPOPEN, true);
902 EXPORT_SYMBOL(sock_set_keepalive);
904 static void __sock_set_rcvbuf(struct sock *sk, int val)
906 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it
907 * as a negative value.
909 val = min_t(int, val, INT_MAX / 2);
910 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
912 /* We double it on the way in to account for "struct sk_buff" etc.
913 * overhead. Applications assume that the SO_RCVBUF setting they make
914 * will allow that much actual data to be received on that socket.
916 * Applications are unaware that "struct sk_buff" and other overheads
917 * allocate from the receive buffer during socket buffer allocation.
919 * And after considering the possible alternatives, returning the value
920 * we actually used in getsockopt is the most desirable behavior.
922 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
925 void sock_set_rcvbuf(struct sock *sk, int val)
928 __sock_set_rcvbuf(sk, val);
931 EXPORT_SYMBOL(sock_set_rcvbuf);
933 static void __sock_set_mark(struct sock *sk, u32 val)
935 if (val != sk->sk_mark) {
941 void sock_set_mark(struct sock *sk, u32 val)
944 __sock_set_mark(sk, val);
947 EXPORT_SYMBOL(sock_set_mark);
950 * This is meant for all protocols to use and covers goings on
951 * at the socket level. Everything here is generic.
954 int sock_setsockopt(struct socket *sock, int level, int optname,
955 sockptr_t optval, unsigned int optlen)
957 struct so_timestamping timestamping;
958 struct sock_txtime sk_txtime;
959 struct sock *sk = sock->sk;
966 * Options without arguments
969 if (optname == SO_BINDTODEVICE)
970 return sock_setbindtodevice(sk, optval, optlen);
972 if (optlen < sizeof(int))
975 if (copy_from_sockptr(&val, optval, sizeof(val)))
978 valbool = val ? 1 : 0;
984 if (val && !capable(CAP_NET_ADMIN))
987 sock_valbool_flag(sk, SOCK_DBG, valbool);
990 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
993 sk->sk_reuseport = valbool;
1002 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
1006 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
1009 /* Don't error on this BSD doesn't and if you think
1010 * about it this is right. Otherwise apps have to
1011 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1012 * are treated in BSD as hints
1014 val = min_t(u32, val, sysctl_wmem_max);
1016 /* Ensure val * 2 fits into an int, to prevent max_t()
1017 * from treating it as a negative value.
1019 val = min_t(int, val, INT_MAX / 2);
1020 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1021 WRITE_ONCE(sk->sk_sndbuf,
1022 max_t(int, val * 2, SOCK_MIN_SNDBUF));
1023 /* Wake up sending tasks if we upped the value. */
1024 sk->sk_write_space(sk);
1027 case SO_SNDBUFFORCE:
1028 if (!capable(CAP_NET_ADMIN)) {
1033 /* No negative values (to prevent underflow, as val will be
1041 /* Don't error on this BSD doesn't and if you think
1042 * about it this is right. Otherwise apps have to
1043 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1044 * are treated in BSD as hints
1046 __sock_set_rcvbuf(sk, min_t(u32, val, sysctl_rmem_max));
1049 case SO_RCVBUFFORCE:
1050 if (!capable(CAP_NET_ADMIN)) {
1055 /* No negative values (to prevent underflow, as val will be
1058 __sock_set_rcvbuf(sk, max(val, 0));
1062 if (sk->sk_prot->keepalive)
1063 sk->sk_prot->keepalive(sk, valbool);
1064 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
1068 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
1072 sk->sk_no_check_tx = valbool;
1076 if ((val >= 0 && val <= 6) ||
1077 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
1078 sk->sk_priority = val;
1084 if (optlen < sizeof(ling)) {
1085 ret = -EINVAL; /* 1003.1g */
1088 if (copy_from_sockptr(&ling, optval, sizeof(ling))) {
1093 sock_reset_flag(sk, SOCK_LINGER);
1095 #if (BITS_PER_LONG == 32)
1096 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
1097 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
1100 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
1101 sock_set_flag(sk, SOCK_LINGER);
1110 set_bit(SOCK_PASSCRED, &sock->flags);
1112 clear_bit(SOCK_PASSCRED, &sock->flags);
1115 case SO_TIMESTAMP_OLD:
1116 case SO_TIMESTAMP_NEW:
1117 case SO_TIMESTAMPNS_OLD:
1118 case SO_TIMESTAMPNS_NEW:
1119 sock_set_timestamp(sk, optname, valbool);
1122 case SO_TIMESTAMPING_NEW:
1123 case SO_TIMESTAMPING_OLD:
1124 if (optlen == sizeof(timestamping)) {
1125 if (copy_from_sockptr(×tamping, optval,
1126 sizeof(timestamping))) {
1131 memset(×tamping, 0, sizeof(timestamping));
1132 timestamping.flags = val;
1134 ret = sock_set_timestamping(sk, optname, timestamping);
1140 if (sock->ops->set_rcvlowat)
1141 ret = sock->ops->set_rcvlowat(sk, val);
1143 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1146 case SO_RCVTIMEO_OLD:
1147 case SO_RCVTIMEO_NEW:
1148 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval,
1149 optlen, optname == SO_RCVTIMEO_OLD);
1152 case SO_SNDTIMEO_OLD:
1153 case SO_SNDTIMEO_NEW:
1154 ret = sock_set_timeout(&sk->sk_sndtimeo, optval,
1155 optlen, optname == SO_SNDTIMEO_OLD);
1158 case SO_ATTACH_FILTER: {
1159 struct sock_fprog fprog;
1161 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1163 ret = sk_attach_filter(&fprog, sk);
1168 if (optlen == sizeof(u32)) {
1172 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1175 ret = sk_attach_bpf(ufd, sk);
1179 case SO_ATTACH_REUSEPORT_CBPF: {
1180 struct sock_fprog fprog;
1182 ret = copy_bpf_fprog_from_user(&fprog, optval, optlen);
1184 ret = sk_reuseport_attach_filter(&fprog, sk);
1187 case SO_ATTACH_REUSEPORT_EBPF:
1189 if (optlen == sizeof(u32)) {
1193 if (copy_from_sockptr(&ufd, optval, sizeof(ufd)))
1196 ret = sk_reuseport_attach_bpf(ufd, sk);
1200 case SO_DETACH_REUSEPORT_BPF:
1201 ret = reuseport_detach_prog(sk);
1204 case SO_DETACH_FILTER:
1205 ret = sk_detach_filter(sk);
1208 case SO_LOCK_FILTER:
1209 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1212 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1217 set_bit(SOCK_PASSSEC, &sock->flags);
1219 clear_bit(SOCK_PASSSEC, &sock->flags);
1222 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1227 __sock_set_mark(sk, val);
1231 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1234 case SO_WIFI_STATUS:
1235 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1239 if (sock->ops->set_peek_off)
1240 ret = sock->ops->set_peek_off(sk, val);
1246 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1249 case SO_SELECT_ERR_QUEUE:
1250 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1253 #ifdef CONFIG_NET_RX_BUSY_POLL
1255 /* allow unprivileged users to decrease the value */
1256 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1262 WRITE_ONCE(sk->sk_ll_usec, val);
1265 case SO_PREFER_BUSY_POLL:
1266 if (valbool && !capable(CAP_NET_ADMIN))
1269 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1271 case SO_BUSY_POLL_BUDGET:
1272 if (val > READ_ONCE(sk->sk_busy_poll_budget) && !capable(CAP_NET_ADMIN)) {
1275 if (val < 0 || val > U16_MAX)
1278 WRITE_ONCE(sk->sk_busy_poll_budget, val);
1283 case SO_MAX_PACING_RATE:
1285 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1287 if (sizeof(ulval) != sizeof(val) &&
1288 optlen >= sizeof(ulval) &&
1289 copy_from_sockptr(&ulval, optval, sizeof(ulval))) {
1294 cmpxchg(&sk->sk_pacing_status,
1297 sk->sk_max_pacing_rate = ulval;
1298 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1301 case SO_INCOMING_CPU:
1302 WRITE_ONCE(sk->sk_incoming_cpu, val);
1307 dst_negative_advice(sk);
1311 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1312 if (!((sk->sk_type == SOCK_STREAM &&
1313 sk->sk_protocol == IPPROTO_TCP) ||
1314 (sk->sk_type == SOCK_DGRAM &&
1315 sk->sk_protocol == IPPROTO_UDP)))
1317 } else if (sk->sk_family != PF_RDS) {
1321 if (val < 0 || val > 1)
1324 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1329 if (optlen != sizeof(struct sock_txtime)) {
1332 } else if (copy_from_sockptr(&sk_txtime, optval,
1333 sizeof(struct sock_txtime))) {
1336 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1340 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1341 * scheduler has enough safe guards.
1343 if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1344 !ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1348 sock_valbool_flag(sk, SOCK_TXTIME, true);
1349 sk->sk_clockid = sk_txtime.clockid;
1350 sk->sk_txtime_deadline_mode =
1351 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1352 sk->sk_txtime_report_errors =
1353 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1356 case SO_BINDTOIFINDEX:
1357 ret = sock_bindtoindex_locked(sk, val);
1367 EXPORT_SYMBOL(sock_setsockopt);
1370 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1371 struct ucred *ucred)
1373 ucred->pid = pid_vnr(pid);
1374 ucred->uid = ucred->gid = -1;
1376 struct user_namespace *current_ns = current_user_ns();
1378 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1379 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1383 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1385 struct user_namespace *user_ns = current_user_ns();
1388 for (i = 0; i < src->ngroups; i++)
1389 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1395 int sock_getsockopt(struct socket *sock, int level, int optname,
1396 char __user *optval, int __user *optlen)
1398 struct sock *sk = sock->sk;
1403 unsigned long ulval;
1405 struct old_timeval32 tm32;
1406 struct __kernel_old_timeval tm;
1407 struct __kernel_sock_timeval stm;
1408 struct sock_txtime txtime;
1409 struct so_timestamping timestamping;
1412 int lv = sizeof(int);
1415 if (get_user(len, optlen))
1420 memset(&v, 0, sizeof(v));
1424 v.val = sock_flag(sk, SOCK_DBG);
1428 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1432 v.val = sock_flag(sk, SOCK_BROADCAST);
1436 v.val = sk->sk_sndbuf;
1440 v.val = sk->sk_rcvbuf;
1444 v.val = sk->sk_reuse;
1448 v.val = sk->sk_reuseport;
1452 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1456 v.val = sk->sk_type;
1460 v.val = sk->sk_protocol;
1464 v.val = sk->sk_family;
1468 v.val = -sock_error(sk);
1470 v.val = xchg(&sk->sk_err_soft, 0);
1474 v.val = sock_flag(sk, SOCK_URGINLINE);
1478 v.val = sk->sk_no_check_tx;
1482 v.val = sk->sk_priority;
1486 lv = sizeof(v.ling);
1487 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1488 v.ling.l_linger = sk->sk_lingertime / HZ;
1494 case SO_TIMESTAMP_OLD:
1495 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1496 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1497 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1500 case SO_TIMESTAMPNS_OLD:
1501 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1504 case SO_TIMESTAMP_NEW:
1505 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1508 case SO_TIMESTAMPNS_NEW:
1509 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1512 case SO_TIMESTAMPING_OLD:
1513 lv = sizeof(v.timestamping);
1514 v.timestamping.flags = sk->sk_tsflags;
1515 v.timestamping.bind_phc = sk->sk_bind_phc;
1518 case SO_RCVTIMEO_OLD:
1519 case SO_RCVTIMEO_NEW:
1520 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1523 case SO_SNDTIMEO_OLD:
1524 case SO_SNDTIMEO_NEW:
1525 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1529 v.val = sk->sk_rcvlowat;
1537 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1542 struct ucred peercred;
1543 if (len > sizeof(peercred))
1544 len = sizeof(peercred);
1545 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1546 if (copy_to_user(optval, &peercred, len))
1555 if (!sk->sk_peer_cred)
1558 n = sk->sk_peer_cred->group_info->ngroups;
1559 if (len < n * sizeof(gid_t)) {
1560 len = n * sizeof(gid_t);
1561 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1563 len = n * sizeof(gid_t);
1565 ret = groups_to_user((gid_t __user *)optval,
1566 sk->sk_peer_cred->group_info);
1576 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1581 if (copy_to_user(optval, address, len))
1586 /* Dubious BSD thing... Probably nobody even uses it, but
1587 * the UNIX standard wants it for whatever reason... -DaveM
1590 v.val = sk->sk_state == TCP_LISTEN;
1594 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1598 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1601 v.val = sk->sk_mark;
1605 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1608 case SO_WIFI_STATUS:
1609 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1613 if (!sock->ops->set_peek_off)
1616 v.val = sk->sk_peek_off;
1619 v.val = sock_flag(sk, SOCK_NOFCS);
1622 case SO_BINDTODEVICE:
1623 return sock_getbindtodevice(sk, optval, optlen, len);
1626 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1632 case SO_LOCK_FILTER:
1633 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1636 case SO_BPF_EXTENSIONS:
1637 v.val = bpf_tell_extensions();
1640 case SO_SELECT_ERR_QUEUE:
1641 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1644 #ifdef CONFIG_NET_RX_BUSY_POLL
1646 v.val = sk->sk_ll_usec;
1648 case SO_PREFER_BUSY_POLL:
1649 v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1653 case SO_MAX_PACING_RATE:
1654 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1655 lv = sizeof(v.ulval);
1656 v.ulval = sk->sk_max_pacing_rate;
1659 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1663 case SO_INCOMING_CPU:
1664 v.val = READ_ONCE(sk->sk_incoming_cpu);
1669 u32 meminfo[SK_MEMINFO_VARS];
1671 sk_get_meminfo(sk, meminfo);
1673 len = min_t(unsigned int, len, sizeof(meminfo));
1674 if (copy_to_user(optval, &meminfo, len))
1680 #ifdef CONFIG_NET_RX_BUSY_POLL
1681 case SO_INCOMING_NAPI_ID:
1682 v.val = READ_ONCE(sk->sk_napi_id);
1684 /* aggregate non-NAPI IDs down to 0 */
1685 if (v.val < MIN_NAPI_ID)
1695 v.val64 = sock_gen_cookie(sk);
1699 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1703 lv = sizeof(v.txtime);
1704 v.txtime.clockid = sk->sk_clockid;
1705 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1706 SOF_TXTIME_DEADLINE_MODE : 0;
1707 v.txtime.flags |= sk->sk_txtime_report_errors ?
1708 SOF_TXTIME_REPORT_ERRORS : 0;
1711 case SO_BINDTOIFINDEX:
1712 v.val = sk->sk_bound_dev_if;
1715 case SO_NETNS_COOKIE:
1719 v.val64 = sock_net(sk)->net_cookie;
1723 /* We implement the SO_SNDLOWAT etc to not be settable
1726 return -ENOPROTOOPT;
1731 if (copy_to_user(optval, &v, len))
1734 if (put_user(len, optlen))
1740 * Initialize an sk_lock.
1742 * (We also register the sk_lock with the lock validator.)
1744 static inline void sock_lock_init(struct sock *sk)
1746 if (sk->sk_kern_sock)
1747 sock_lock_init_class_and_name(
1749 af_family_kern_slock_key_strings[sk->sk_family],
1750 af_family_kern_slock_keys + sk->sk_family,
1751 af_family_kern_key_strings[sk->sk_family],
1752 af_family_kern_keys + sk->sk_family);
1754 sock_lock_init_class_and_name(
1756 af_family_slock_key_strings[sk->sk_family],
1757 af_family_slock_keys + sk->sk_family,
1758 af_family_key_strings[sk->sk_family],
1759 af_family_keys + sk->sk_family);
1763 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1764 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1765 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1767 static void sock_copy(struct sock *nsk, const struct sock *osk)
1769 const struct proto *prot = READ_ONCE(osk->sk_prot);
1770 #ifdef CONFIG_SECURITY_NETWORK
1771 void *sptr = nsk->sk_security;
1774 /* If we move sk_tx_queue_mapping out of the private section,
1775 * we must check if sk_tx_queue_clear() is called after
1776 * sock_copy() in sk_clone_lock().
1778 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
1779 offsetof(struct sock, sk_dontcopy_begin) ||
1780 offsetof(struct sock, sk_tx_queue_mapping) >=
1781 offsetof(struct sock, sk_dontcopy_end));
1783 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1785 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1786 prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1788 #ifdef CONFIG_SECURITY_NETWORK
1789 nsk->sk_security = sptr;
1790 security_sk_clone(osk, nsk);
1794 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1798 struct kmem_cache *slab;
1802 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1805 if (want_init_on_alloc(priority))
1806 sk_prot_clear_nulls(sk, prot->obj_size);
1808 sk = kmalloc(prot->obj_size, priority);
1811 if (security_sk_alloc(sk, family, priority))
1814 if (!try_module_get(prot->owner))
1821 security_sk_free(sk);
1824 kmem_cache_free(slab, sk);
1830 static void sk_prot_free(struct proto *prot, struct sock *sk)
1832 struct kmem_cache *slab;
1833 struct module *owner;
1835 owner = prot->owner;
1838 cgroup_sk_free(&sk->sk_cgrp_data);
1839 mem_cgroup_sk_free(sk);
1840 security_sk_free(sk);
1842 kmem_cache_free(slab, sk);
1849 * sk_alloc - All socket objects are allocated here
1850 * @net: the applicable net namespace
1851 * @family: protocol family
1852 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1853 * @prot: struct proto associated with this new sock instance
1854 * @kern: is this to be a kernel socket?
1856 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1857 struct proto *prot, int kern)
1861 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1863 sk->sk_family = family;
1865 * See comment in struct sock definition to understand
1866 * why we need sk_prot_creator -acme
1868 sk->sk_prot = sk->sk_prot_creator = prot;
1869 sk->sk_kern_sock = kern;
1871 sk->sk_net_refcnt = kern ? 0 : 1;
1872 if (likely(sk->sk_net_refcnt)) {
1874 sock_inuse_add(net, 1);
1877 sock_net_set(sk, net);
1878 refcount_set(&sk->sk_wmem_alloc, 1);
1880 mem_cgroup_sk_alloc(sk);
1881 cgroup_sk_alloc(&sk->sk_cgrp_data);
1882 sock_update_classid(&sk->sk_cgrp_data);
1883 sock_update_netprioidx(&sk->sk_cgrp_data);
1884 sk_tx_queue_clear(sk);
1889 EXPORT_SYMBOL(sk_alloc);
1891 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1892 * grace period. This is the case for UDP sockets and TCP listeners.
1894 static void __sk_destruct(struct rcu_head *head)
1896 struct sock *sk = container_of(head, struct sock, sk_rcu);
1897 struct sk_filter *filter;
1899 if (sk->sk_destruct)
1900 sk->sk_destruct(sk);
1902 filter = rcu_dereference_check(sk->sk_filter,
1903 refcount_read(&sk->sk_wmem_alloc) == 0);
1905 sk_filter_uncharge(sk, filter);
1906 RCU_INIT_POINTER(sk->sk_filter, NULL);
1909 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1911 #ifdef CONFIG_BPF_SYSCALL
1912 bpf_sk_storage_free(sk);
1915 if (atomic_read(&sk->sk_omem_alloc))
1916 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1917 __func__, atomic_read(&sk->sk_omem_alloc));
1919 if (sk->sk_frag.page) {
1920 put_page(sk->sk_frag.page);
1921 sk->sk_frag.page = NULL;
1924 if (sk->sk_peer_cred)
1925 put_cred(sk->sk_peer_cred);
1926 put_pid(sk->sk_peer_pid);
1927 if (likely(sk->sk_net_refcnt))
1928 put_net(sock_net(sk));
1929 sk_prot_free(sk->sk_prot_creator, sk);
1932 void sk_destruct(struct sock *sk)
1934 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1936 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1937 reuseport_detach_sock(sk);
1938 use_call_rcu = true;
1942 call_rcu(&sk->sk_rcu, __sk_destruct);
1944 __sk_destruct(&sk->sk_rcu);
1947 static void __sk_free(struct sock *sk)
1949 if (likely(sk->sk_net_refcnt))
1950 sock_inuse_add(sock_net(sk), -1);
1952 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1953 sock_diag_broadcast_destroy(sk);
1958 void sk_free(struct sock *sk)
1961 * We subtract one from sk_wmem_alloc and can know if
1962 * some packets are still in some tx queue.
1963 * If not null, sock_wfree() will call __sk_free(sk) later
1965 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1968 EXPORT_SYMBOL(sk_free);
1970 static void sk_init_common(struct sock *sk)
1972 skb_queue_head_init(&sk->sk_receive_queue);
1973 skb_queue_head_init(&sk->sk_write_queue);
1974 skb_queue_head_init(&sk->sk_error_queue);
1976 rwlock_init(&sk->sk_callback_lock);
1977 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1978 af_rlock_keys + sk->sk_family,
1979 af_family_rlock_key_strings[sk->sk_family]);
1980 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1981 af_wlock_keys + sk->sk_family,
1982 af_family_wlock_key_strings[sk->sk_family]);
1983 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1984 af_elock_keys + sk->sk_family,
1985 af_family_elock_key_strings[sk->sk_family]);
1986 lockdep_set_class_and_name(&sk->sk_callback_lock,
1987 af_callback_keys + sk->sk_family,
1988 af_family_clock_key_strings[sk->sk_family]);
1992 * sk_clone_lock - clone a socket, and lock its clone
1993 * @sk: the socket to clone
1994 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1996 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1998 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2000 struct proto *prot = READ_ONCE(sk->sk_prot);
2001 struct sk_filter *filter;
2002 bool is_charged = true;
2005 newsk = sk_prot_alloc(prot, priority, sk->sk_family);
2009 sock_copy(newsk, sk);
2011 newsk->sk_prot_creator = prot;
2014 if (likely(newsk->sk_net_refcnt))
2015 get_net(sock_net(newsk));
2016 sk_node_init(&newsk->sk_node);
2017 sock_lock_init(newsk);
2018 bh_lock_sock(newsk);
2019 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
2020 newsk->sk_backlog.len = 0;
2022 atomic_set(&newsk->sk_rmem_alloc, 0);
2024 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2025 refcount_set(&newsk->sk_wmem_alloc, 1);
2027 atomic_set(&newsk->sk_omem_alloc, 0);
2028 sk_init_common(newsk);
2030 newsk->sk_dst_cache = NULL;
2031 newsk->sk_dst_pending_confirm = 0;
2032 newsk->sk_wmem_queued = 0;
2033 newsk->sk_forward_alloc = 0;
2034 atomic_set(&newsk->sk_drops, 0);
2035 newsk->sk_send_head = NULL;
2036 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2037 atomic_set(&newsk->sk_zckey, 0);
2039 sock_reset_flag(newsk, SOCK_DONE);
2041 /* sk->sk_memcg will be populated at accept() time */
2042 newsk->sk_memcg = NULL;
2044 cgroup_sk_clone(&newsk->sk_cgrp_data);
2047 filter = rcu_dereference(sk->sk_filter);
2049 /* though it's an empty new sock, the charging may fail
2050 * if sysctl_optmem_max was changed between creation of
2051 * original socket and cloning
2053 is_charged = sk_filter_charge(newsk, filter);
2054 RCU_INIT_POINTER(newsk->sk_filter, filter);
2057 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2058 /* We need to make sure that we don't uncharge the new
2059 * socket if we couldn't charge it in the first place
2060 * as otherwise we uncharge the parent's filter.
2063 RCU_INIT_POINTER(newsk->sk_filter, NULL);
2064 sk_free_unlock_clone(newsk);
2068 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2070 if (bpf_sk_storage_clone(sk, newsk)) {
2071 sk_free_unlock_clone(newsk);
2076 /* Clear sk_user_data if parent had the pointer tagged
2077 * as not suitable for copying when cloning.
2079 if (sk_user_data_is_nocopy(newsk))
2080 newsk->sk_user_data = NULL;
2083 newsk->sk_err_soft = 0;
2084 newsk->sk_priority = 0;
2085 newsk->sk_incoming_cpu = raw_smp_processor_id();
2086 if (likely(newsk->sk_net_refcnt))
2087 sock_inuse_add(sock_net(newsk), 1);
2089 /* Before updating sk_refcnt, we must commit prior changes to memory
2090 * (Documentation/RCU/rculist_nulls.rst for details)
2093 refcount_set(&newsk->sk_refcnt, 2);
2095 /* Increment the counter in the same struct proto as the master
2096 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
2097 * is the same as sk->sk_prot->socks, as this field was copied
2100 * This _changes_ the previous behaviour, where
2101 * tcp_create_openreq_child always was incrementing the
2102 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
2103 * to be taken into account in all callers. -acme
2105 sk_refcnt_debug_inc(newsk);
2106 sk_set_socket(newsk, NULL);
2107 sk_tx_queue_clear(newsk);
2108 RCU_INIT_POINTER(newsk->sk_wq, NULL);
2110 if (newsk->sk_prot->sockets_allocated)
2111 sk_sockets_allocated_inc(newsk);
2113 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2114 net_enable_timestamp();
2118 EXPORT_SYMBOL_GPL(sk_clone_lock);
2120 void sk_free_unlock_clone(struct sock *sk)
2122 /* It is still raw copy of parent, so invalidate
2123 * destructor and make plain sk_free() */
2124 sk->sk_destruct = NULL;
2128 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2130 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2134 sk_dst_set(sk, dst);
2135 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
2136 if (sk->sk_route_caps & NETIF_F_GSO)
2137 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2138 sk->sk_route_caps &= ~sk->sk_route_nocaps;
2139 if (sk_can_gso(sk)) {
2140 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2141 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2143 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2144 sk->sk_gso_max_size = dst->dev->gso_max_size;
2145 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
2148 sk->sk_gso_max_segs = max_segs;
2150 EXPORT_SYMBOL_GPL(sk_setup_caps);
2153 * Simple resource managers for sockets.
2158 * Write buffer destructor automatically called from kfree_skb.
2160 void sock_wfree(struct sk_buff *skb)
2162 struct sock *sk = skb->sk;
2163 unsigned int len = skb->truesize;
2165 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
2167 * Keep a reference on sk_wmem_alloc, this will be released
2168 * after sk_write_space() call
2170 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2171 sk->sk_write_space(sk);
2175 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2176 * could not do because of in-flight packets
2178 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
2181 EXPORT_SYMBOL(sock_wfree);
2183 /* This variant of sock_wfree() is used by TCP,
2184 * since it sets SOCK_USE_WRITE_QUEUE.
2186 void __sock_wfree(struct sk_buff *skb)
2188 struct sock *sk = skb->sk;
2190 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
2194 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2199 if (unlikely(!sk_fullsock(sk))) {
2200 skb->destructor = sock_edemux;
2205 skb->destructor = sock_wfree;
2206 skb_set_hash_from_sk(skb, sk);
2208 * We used to take a refcount on sk, but following operation
2209 * is enough to guarantee sk_free() wont free this sock until
2210 * all in-flight packets are completed
2212 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2214 EXPORT_SYMBOL(skb_set_owner_w);
2216 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2218 #ifdef CONFIG_TLS_DEVICE
2219 /* Drivers depend on in-order delivery for crypto offload,
2220 * partial orphan breaks out-of-order-OK logic.
2225 return (skb->destructor == sock_wfree ||
2226 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2229 /* This helper is used by netem, as it can hold packets in its
2230 * delay queue. We want to allow the owner socket to send more
2231 * packets, as if they were already TX completed by a typical driver.
2232 * But we also want to keep skb->sk set because some packet schedulers
2233 * rely on it (sch_fq for example).
2235 void skb_orphan_partial(struct sk_buff *skb)
2237 if (skb_is_tcp_pure_ack(skb))
2240 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, skb->sk))
2245 EXPORT_SYMBOL(skb_orphan_partial);
2248 * Read buffer destructor automatically called from kfree_skb.
2250 void sock_rfree(struct sk_buff *skb)
2252 struct sock *sk = skb->sk;
2253 unsigned int len = skb->truesize;
2255 atomic_sub(len, &sk->sk_rmem_alloc);
2256 sk_mem_uncharge(sk, len);
2258 EXPORT_SYMBOL(sock_rfree);
2261 * Buffer destructor for skbs that are not used directly in read or write
2262 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2264 void sock_efree(struct sk_buff *skb)
2268 EXPORT_SYMBOL(sock_efree);
2270 /* Buffer destructor for prefetch/receive path where reference count may
2271 * not be held, e.g. for listen sockets.
2274 void sock_pfree(struct sk_buff *skb)
2276 if (sk_is_refcounted(skb->sk))
2277 sock_gen_put(skb->sk);
2279 EXPORT_SYMBOL(sock_pfree);
2280 #endif /* CONFIG_INET */
2282 kuid_t sock_i_uid(struct sock *sk)
2286 read_lock_bh(&sk->sk_callback_lock);
2287 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2288 read_unlock_bh(&sk->sk_callback_lock);
2291 EXPORT_SYMBOL(sock_i_uid);
2293 unsigned long sock_i_ino(struct sock *sk)
2297 read_lock_bh(&sk->sk_callback_lock);
2298 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2299 read_unlock_bh(&sk->sk_callback_lock);
2302 EXPORT_SYMBOL(sock_i_ino);
2305 * Allocate a skb from the socket's send buffer.
2307 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2311 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2312 struct sk_buff *skb = alloc_skb(size, priority);
2315 skb_set_owner_w(skb, sk);
2321 EXPORT_SYMBOL(sock_wmalloc);
2323 static void sock_ofree(struct sk_buff *skb)
2325 struct sock *sk = skb->sk;
2327 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2330 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2333 struct sk_buff *skb;
2335 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2336 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2340 skb = alloc_skb(size, priority);
2344 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2346 skb->destructor = sock_ofree;
2351 * Allocate a memory block from the socket's option memory buffer.
2353 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2355 if ((unsigned int)size <= sysctl_optmem_max &&
2356 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2358 /* First do the add, to avoid the race if kmalloc
2361 atomic_add(size, &sk->sk_omem_alloc);
2362 mem = kmalloc(size, priority);
2365 atomic_sub(size, &sk->sk_omem_alloc);
2369 EXPORT_SYMBOL(sock_kmalloc);
2371 /* Free an option memory block. Note, we actually want the inline
2372 * here as this allows gcc to detect the nullify and fold away the
2373 * condition entirely.
2375 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2378 if (WARN_ON_ONCE(!mem))
2381 kfree_sensitive(mem);
2384 atomic_sub(size, &sk->sk_omem_alloc);
2387 void sock_kfree_s(struct sock *sk, void *mem, int size)
2389 __sock_kfree_s(sk, mem, size, false);
2391 EXPORT_SYMBOL(sock_kfree_s);
2393 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2395 __sock_kfree_s(sk, mem, size, true);
2397 EXPORT_SYMBOL(sock_kzfree_s);
2399 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2400 I think, these locks should be removed for datagram sockets.
2402 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2406 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2410 if (signal_pending(current))
2412 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2413 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2414 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2416 if (sk->sk_shutdown & SEND_SHUTDOWN)
2420 timeo = schedule_timeout(timeo);
2422 finish_wait(sk_sleep(sk), &wait);
2428 * Generic send/receive buffer handlers
2431 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2432 unsigned long data_len, int noblock,
2433 int *errcode, int max_page_order)
2435 struct sk_buff *skb;
2439 timeo = sock_sndtimeo(sk, noblock);
2441 err = sock_error(sk);
2446 if (sk->sk_shutdown & SEND_SHUTDOWN)
2449 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2452 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2453 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2457 if (signal_pending(current))
2459 timeo = sock_wait_for_wmem(sk, timeo);
2461 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2462 errcode, sk->sk_allocation);
2464 skb_set_owner_w(skb, sk);
2468 err = sock_intr_errno(timeo);
2473 EXPORT_SYMBOL(sock_alloc_send_pskb);
2475 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2476 int noblock, int *errcode)
2478 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2480 EXPORT_SYMBOL(sock_alloc_send_skb);
2482 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2483 struct sockcm_cookie *sockc)
2487 switch (cmsg->cmsg_type) {
2489 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2491 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2493 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2495 case SO_TIMESTAMPING_OLD:
2496 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2499 tsflags = *(u32 *)CMSG_DATA(cmsg);
2500 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2503 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2504 sockc->tsflags |= tsflags;
2507 if (!sock_flag(sk, SOCK_TXTIME))
2509 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2511 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2513 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2515 case SCM_CREDENTIALS:
2522 EXPORT_SYMBOL(__sock_cmsg_send);
2524 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2525 struct sockcm_cookie *sockc)
2527 struct cmsghdr *cmsg;
2530 for_each_cmsghdr(cmsg, msg) {
2531 if (!CMSG_OK(msg, cmsg))
2533 if (cmsg->cmsg_level != SOL_SOCKET)
2535 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2541 EXPORT_SYMBOL(sock_cmsg_send);
2543 static void sk_enter_memory_pressure(struct sock *sk)
2545 if (!sk->sk_prot->enter_memory_pressure)
2548 sk->sk_prot->enter_memory_pressure(sk);
2551 static void sk_leave_memory_pressure(struct sock *sk)
2553 if (sk->sk_prot->leave_memory_pressure) {
2554 sk->sk_prot->leave_memory_pressure(sk);
2556 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2558 if (memory_pressure && READ_ONCE(*memory_pressure))
2559 WRITE_ONCE(*memory_pressure, 0);
2563 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2564 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2567 * skb_page_frag_refill - check that a page_frag contains enough room
2568 * @sz: minimum size of the fragment we want to get
2569 * @pfrag: pointer to page_frag
2570 * @gfp: priority for memory allocation
2572 * Note: While this allocator tries to use high order pages, there is
2573 * no guarantee that allocations succeed. Therefore, @sz MUST be
2574 * less or equal than PAGE_SIZE.
2576 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2579 if (page_ref_count(pfrag->page) == 1) {
2583 if (pfrag->offset + sz <= pfrag->size)
2585 put_page(pfrag->page);
2589 if (SKB_FRAG_PAGE_ORDER &&
2590 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2591 /* Avoid direct reclaim but allow kswapd to wake */
2592 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2593 __GFP_COMP | __GFP_NOWARN |
2595 SKB_FRAG_PAGE_ORDER);
2596 if (likely(pfrag->page)) {
2597 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2601 pfrag->page = alloc_page(gfp);
2602 if (likely(pfrag->page)) {
2603 pfrag->size = PAGE_SIZE;
2608 EXPORT_SYMBOL(skb_page_frag_refill);
2610 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2612 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2615 sk_enter_memory_pressure(sk);
2616 sk_stream_moderate_sndbuf(sk);
2619 EXPORT_SYMBOL(sk_page_frag_refill);
2621 void __lock_sock(struct sock *sk)
2622 __releases(&sk->sk_lock.slock)
2623 __acquires(&sk->sk_lock.slock)
2628 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2629 TASK_UNINTERRUPTIBLE);
2630 spin_unlock_bh(&sk->sk_lock.slock);
2632 spin_lock_bh(&sk->sk_lock.slock);
2633 if (!sock_owned_by_user(sk))
2636 finish_wait(&sk->sk_lock.wq, &wait);
2639 void __release_sock(struct sock *sk)
2640 __releases(&sk->sk_lock.slock)
2641 __acquires(&sk->sk_lock.slock)
2643 struct sk_buff *skb, *next;
2645 while ((skb = sk->sk_backlog.head) != NULL) {
2646 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2648 spin_unlock_bh(&sk->sk_lock.slock);
2653 WARN_ON_ONCE(skb_dst_is_noref(skb));
2654 skb_mark_not_on_list(skb);
2655 sk_backlog_rcv(sk, skb);
2660 } while (skb != NULL);
2662 spin_lock_bh(&sk->sk_lock.slock);
2666 * Doing the zeroing here guarantee we can not loop forever
2667 * while a wild producer attempts to flood us.
2669 sk->sk_backlog.len = 0;
2672 void __sk_flush_backlog(struct sock *sk)
2674 spin_lock_bh(&sk->sk_lock.slock);
2676 spin_unlock_bh(&sk->sk_lock.slock);
2680 * sk_wait_data - wait for data to arrive at sk_receive_queue
2681 * @sk: sock to wait on
2682 * @timeo: for how long
2683 * @skb: last skb seen on sk_receive_queue
2685 * Now socket state including sk->sk_err is changed only under lock,
2686 * hence we may omit checks after joining wait queue.
2687 * We check receive queue before schedule() only as optimization;
2688 * it is very likely that release_sock() added new data.
2690 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2692 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2695 add_wait_queue(sk_sleep(sk), &wait);
2696 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2697 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2698 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2699 remove_wait_queue(sk_sleep(sk), &wait);
2702 EXPORT_SYMBOL(sk_wait_data);
2705 * __sk_mem_raise_allocated - increase memory_allocated
2707 * @size: memory size to allocate
2708 * @amt: pages to allocate
2709 * @kind: allocation type
2711 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2713 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2715 struct proto *prot = sk->sk_prot;
2716 long allocated = sk_memory_allocated_add(sk, amt);
2717 bool charged = true;
2719 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2720 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2721 goto suppress_allocation;
2724 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2725 sk_leave_memory_pressure(sk);
2729 /* Under pressure. */
2730 if (allocated > sk_prot_mem_limits(sk, 1))
2731 sk_enter_memory_pressure(sk);
2733 /* Over hard limit. */
2734 if (allocated > sk_prot_mem_limits(sk, 2))
2735 goto suppress_allocation;
2737 /* guarantee minimum buffer size under pressure */
2738 if (kind == SK_MEM_RECV) {
2739 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2742 } else { /* SK_MEM_SEND */
2743 int wmem0 = sk_get_wmem0(sk, prot);
2745 if (sk->sk_type == SOCK_STREAM) {
2746 if (sk->sk_wmem_queued < wmem0)
2748 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2753 if (sk_has_memory_pressure(sk)) {
2756 if (!sk_under_memory_pressure(sk))
2758 alloc = sk_sockets_allocated_read_positive(sk);
2759 if (sk_prot_mem_limits(sk, 2) > alloc *
2760 sk_mem_pages(sk->sk_wmem_queued +
2761 atomic_read(&sk->sk_rmem_alloc) +
2762 sk->sk_forward_alloc))
2766 suppress_allocation:
2768 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2769 sk_stream_moderate_sndbuf(sk);
2771 /* Fail only if socket is _under_ its sndbuf.
2772 * In this case we cannot block, so that we have to fail.
2774 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2778 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2779 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2781 sk_memory_allocated_sub(sk, amt);
2783 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2784 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2788 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2791 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2793 * @size: memory size to allocate
2794 * @kind: allocation type
2796 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2797 * rmem allocation. This function assumes that protocols which have
2798 * memory_pressure use sk_wmem_queued as write buffer accounting.
2800 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2802 int ret, amt = sk_mem_pages(size);
2804 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2805 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2807 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2810 EXPORT_SYMBOL(__sk_mem_schedule);
2813 * __sk_mem_reduce_allocated - reclaim memory_allocated
2815 * @amount: number of quanta
2817 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2819 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2821 sk_memory_allocated_sub(sk, amount);
2823 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2824 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2826 if (sk_under_memory_pressure(sk) &&
2827 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2828 sk_leave_memory_pressure(sk);
2830 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2833 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2835 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2837 void __sk_mem_reclaim(struct sock *sk, int amount)
2839 amount >>= SK_MEM_QUANTUM_SHIFT;
2840 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2841 __sk_mem_reduce_allocated(sk, amount);
2843 EXPORT_SYMBOL(__sk_mem_reclaim);
2845 int sk_set_peek_off(struct sock *sk, int val)
2847 sk->sk_peek_off = val;
2850 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2853 * Set of default routines for initialising struct proto_ops when
2854 * the protocol does not support a particular function. In certain
2855 * cases where it makes no sense for a protocol to have a "do nothing"
2856 * function, some default processing is provided.
2859 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2863 EXPORT_SYMBOL(sock_no_bind);
2865 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2870 EXPORT_SYMBOL(sock_no_connect);
2872 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2876 EXPORT_SYMBOL(sock_no_socketpair);
2878 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2883 EXPORT_SYMBOL(sock_no_accept);
2885 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2890 EXPORT_SYMBOL(sock_no_getname);
2892 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2896 EXPORT_SYMBOL(sock_no_ioctl);
2898 int sock_no_listen(struct socket *sock, int backlog)
2902 EXPORT_SYMBOL(sock_no_listen);
2904 int sock_no_shutdown(struct socket *sock, int how)
2908 EXPORT_SYMBOL(sock_no_shutdown);
2910 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2914 EXPORT_SYMBOL(sock_no_sendmsg);
2916 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2920 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2922 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2927 EXPORT_SYMBOL(sock_no_recvmsg);
2929 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2931 /* Mirror missing mmap method error code */
2934 EXPORT_SYMBOL(sock_no_mmap);
2937 * When a file is received (via SCM_RIGHTS, etc), we must bump the
2938 * various sock-based usage counts.
2940 void __receive_sock(struct file *file)
2942 struct socket *sock;
2944 sock = sock_from_file(file);
2946 sock_update_netprioidx(&sock->sk->sk_cgrp_data);
2947 sock_update_classid(&sock->sk->sk_cgrp_data);
2951 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2954 struct msghdr msg = {.msg_flags = flags};
2956 char *kaddr = kmap(page);
2957 iov.iov_base = kaddr + offset;
2959 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2963 EXPORT_SYMBOL(sock_no_sendpage);
2965 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2966 int offset, size_t size, int flags)
2969 struct msghdr msg = {.msg_flags = flags};
2971 char *kaddr = kmap(page);
2973 iov.iov_base = kaddr + offset;
2975 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2979 EXPORT_SYMBOL(sock_no_sendpage_locked);
2982 * Default Socket Callbacks
2985 static void sock_def_wakeup(struct sock *sk)
2987 struct socket_wq *wq;
2990 wq = rcu_dereference(sk->sk_wq);
2991 if (skwq_has_sleeper(wq))
2992 wake_up_interruptible_all(&wq->wait);
2996 static void sock_def_error_report(struct sock *sk)
2998 struct socket_wq *wq;
3001 wq = rcu_dereference(sk->sk_wq);
3002 if (skwq_has_sleeper(wq))
3003 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3004 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
3008 void sock_def_readable(struct sock *sk)
3010 struct socket_wq *wq;
3013 wq = rcu_dereference(sk->sk_wq);
3014 if (skwq_has_sleeper(wq))
3015 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3016 EPOLLRDNORM | EPOLLRDBAND);
3017 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3021 static void sock_def_write_space(struct sock *sk)
3023 struct socket_wq *wq;
3027 /* Do not wake up a writer until he can make "significant"
3030 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
3031 wq = rcu_dereference(sk->sk_wq);
3032 if (skwq_has_sleeper(wq))
3033 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3034 EPOLLWRNORM | EPOLLWRBAND);
3036 /* Should agree with poll, otherwise some programs break */
3037 if (sock_writeable(sk))
3038 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
3044 static void sock_def_destruct(struct sock *sk)
3048 void sk_send_sigurg(struct sock *sk)
3050 if (sk->sk_socket && sk->sk_socket->file)
3051 if (send_sigurg(&sk->sk_socket->file->f_owner))
3052 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
3054 EXPORT_SYMBOL(sk_send_sigurg);
3056 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3057 unsigned long expires)
3059 if (!mod_timer(timer, expires))
3062 EXPORT_SYMBOL(sk_reset_timer);
3064 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3066 if (del_timer(timer))
3069 EXPORT_SYMBOL(sk_stop_timer);
3071 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3073 if (del_timer_sync(timer))
3076 EXPORT_SYMBOL(sk_stop_timer_sync);
3078 void sock_init_data(struct socket *sock, struct sock *sk)
3081 sk->sk_send_head = NULL;
3083 timer_setup(&sk->sk_timer, NULL, 0);
3085 sk->sk_allocation = GFP_KERNEL;
3086 sk->sk_rcvbuf = sysctl_rmem_default;
3087 sk->sk_sndbuf = sysctl_wmem_default;
3088 sk->sk_state = TCP_CLOSE;
3089 sk_set_socket(sk, sock);
3091 sock_set_flag(sk, SOCK_ZAPPED);
3094 sk->sk_type = sock->type;
3095 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3097 sk->sk_uid = SOCK_INODE(sock)->i_uid;
3099 RCU_INIT_POINTER(sk->sk_wq, NULL);
3100 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
3103 rwlock_init(&sk->sk_callback_lock);
3104 if (sk->sk_kern_sock)
3105 lockdep_set_class_and_name(
3106 &sk->sk_callback_lock,
3107 af_kern_callback_keys + sk->sk_family,
3108 af_family_kern_clock_key_strings[sk->sk_family]);
3110 lockdep_set_class_and_name(
3111 &sk->sk_callback_lock,
3112 af_callback_keys + sk->sk_family,
3113 af_family_clock_key_strings[sk->sk_family]);
3115 sk->sk_state_change = sock_def_wakeup;
3116 sk->sk_data_ready = sock_def_readable;
3117 sk->sk_write_space = sock_def_write_space;
3118 sk->sk_error_report = sock_def_error_report;
3119 sk->sk_destruct = sock_def_destruct;
3121 sk->sk_frag.page = NULL;
3122 sk->sk_frag.offset = 0;
3123 sk->sk_peek_off = -1;
3125 sk->sk_peer_pid = NULL;
3126 sk->sk_peer_cred = NULL;
3127 sk->sk_write_pending = 0;
3128 sk->sk_rcvlowat = 1;
3129 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
3130 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
3132 sk->sk_stamp = SK_DEFAULT_STAMP;
3133 #if BITS_PER_LONG==32
3134 seqlock_init(&sk->sk_stamp_seq);
3136 atomic_set(&sk->sk_zckey, 0);
3138 #ifdef CONFIG_NET_RX_BUSY_POLL
3140 sk->sk_ll_usec = sysctl_net_busy_read;
3143 sk->sk_max_pacing_rate = ~0UL;
3144 sk->sk_pacing_rate = ~0UL;
3145 WRITE_ONCE(sk->sk_pacing_shift, 10);
3146 sk->sk_incoming_cpu = -1;
3148 sk_rx_queue_clear(sk);
3150 * Before updating sk_refcnt, we must commit prior changes to memory
3151 * (Documentation/RCU/rculist_nulls.rst for details)
3154 refcount_set(&sk->sk_refcnt, 1);
3155 atomic_set(&sk->sk_drops, 0);
3157 EXPORT_SYMBOL(sock_init_data);
3159 void lock_sock_nested(struct sock *sk, int subclass)
3162 spin_lock_bh(&sk->sk_lock.slock);
3163 if (sk->sk_lock.owned)
3165 sk->sk_lock.owned = 1;
3166 spin_unlock(&sk->sk_lock.slock);
3168 * The sk_lock has mutex_lock() semantics here:
3170 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3173 EXPORT_SYMBOL(lock_sock_nested);
3175 void release_sock(struct sock *sk)
3177 spin_lock_bh(&sk->sk_lock.slock);
3178 if (sk->sk_backlog.tail)
3181 /* Warning : release_cb() might need to release sk ownership,
3182 * ie call sock_release_ownership(sk) before us.
3184 if (sk->sk_prot->release_cb)
3185 sk->sk_prot->release_cb(sk);
3187 sock_release_ownership(sk);
3188 if (waitqueue_active(&sk->sk_lock.wq))
3189 wake_up(&sk->sk_lock.wq);
3190 spin_unlock_bh(&sk->sk_lock.slock);
3192 EXPORT_SYMBOL(release_sock);
3195 * lock_sock_fast - fast version of lock_sock
3198 * This version should be used for very small section, where process wont block
3199 * return false if fast path is taken:
3201 * sk_lock.slock locked, owned = 0, BH disabled
3203 * return true if slow path is taken:
3205 * sk_lock.slock unlocked, owned = 1, BH enabled
3207 bool lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3210 spin_lock_bh(&sk->sk_lock.slock);
3212 if (!sk->sk_lock.owned)
3214 * Note : We must disable BH
3219 sk->sk_lock.owned = 1;
3220 spin_unlock(&sk->sk_lock.slock);
3222 * The sk_lock has mutex_lock() semantics here:
3224 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3225 __acquire(&sk->sk_lock.slock);
3229 EXPORT_SYMBOL(lock_sock_fast);
3231 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3232 bool timeval, bool time32)
3234 struct sock *sk = sock->sk;
3235 struct timespec64 ts;
3237 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3238 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3239 if (ts.tv_sec == -1)
3241 if (ts.tv_sec == 0) {
3242 ktime_t kt = ktime_get_real();
3243 sock_write_timestamp(sk, kt);
3244 ts = ktime_to_timespec64(kt);
3250 #ifdef CONFIG_COMPAT_32BIT_TIME
3252 return put_old_timespec32(&ts, userstamp);
3254 #ifdef CONFIG_SPARC64
3255 /* beware of padding in sparc64 timeval */
3256 if (timeval && !in_compat_syscall()) {
3257 struct __kernel_old_timeval __user tv = {
3258 .tv_sec = ts.tv_sec,
3259 .tv_usec = ts.tv_nsec,
3261 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3266 return put_timespec64(&ts, userstamp);
3268 EXPORT_SYMBOL(sock_gettstamp);
3270 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3272 if (!sock_flag(sk, flag)) {
3273 unsigned long previous_flags = sk->sk_flags;
3275 sock_set_flag(sk, flag);
3277 * we just set one of the two flags which require net
3278 * time stamping, but time stamping might have been on
3279 * already because of the other one
3281 if (sock_needs_netstamp(sk) &&
3282 !(previous_flags & SK_FLAGS_TIMESTAMP))
3283 net_enable_timestamp();
3287 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3288 int level, int type)
3290 struct sock_exterr_skb *serr;
3291 struct sk_buff *skb;
3295 skb = sock_dequeue_err_skb(sk);
3301 msg->msg_flags |= MSG_TRUNC;
3304 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3308 sock_recv_timestamp(msg, sk, skb);
3310 serr = SKB_EXT_ERR(skb);
3311 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3313 msg->msg_flags |= MSG_ERRQUEUE;
3321 EXPORT_SYMBOL(sock_recv_errqueue);
3324 * Get a socket option on an socket.
3326 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3327 * asynchronous errors should be reported by getsockopt. We assume
3328 * this means if you specify SO_ERROR (otherwise whats the point of it).
3330 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3331 char __user *optval, int __user *optlen)
3333 struct sock *sk = sock->sk;
3335 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3337 EXPORT_SYMBOL(sock_common_getsockopt);
3339 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3342 struct sock *sk = sock->sk;
3346 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3347 flags & ~MSG_DONTWAIT, &addr_len);
3349 msg->msg_namelen = addr_len;
3352 EXPORT_SYMBOL(sock_common_recvmsg);
3355 * Set socket options on an inet socket.
3357 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3358 sockptr_t optval, unsigned int optlen)
3360 struct sock *sk = sock->sk;
3362 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3364 EXPORT_SYMBOL(sock_common_setsockopt);
3366 void sk_common_release(struct sock *sk)
3368 if (sk->sk_prot->destroy)
3369 sk->sk_prot->destroy(sk);
3372 * Observation: when sk_common_release is called, processes have
3373 * no access to socket. But net still has.
3374 * Step one, detach it from networking:
3376 * A. Remove from hash tables.
3379 sk->sk_prot->unhash(sk);
3382 * In this point socket cannot receive new packets, but it is possible
3383 * that some packets are in flight because some CPU runs receiver and
3384 * did hash table lookup before we unhashed socket. They will achieve
3385 * receive queue and will be purged by socket destructor.
3387 * Also we still have packets pending on receive queue and probably,
3388 * our own packets waiting in device queues. sock_destroy will drain
3389 * receive queue, but transmitted packets will delay socket destruction
3390 * until the last reference will be released.
3395 xfrm_sk_free_policy(sk);
3397 sk_refcnt_debug_release(sk);
3401 EXPORT_SYMBOL(sk_common_release);
3403 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3405 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3407 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3408 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3409 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3410 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3411 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3412 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3413 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3414 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3415 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3418 #ifdef CONFIG_PROC_FS
3419 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
3421 int val[PROTO_INUSE_NR];
3424 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3426 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3428 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3430 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3432 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3434 int cpu, idx = prot->inuse_idx;
3437 for_each_possible_cpu(cpu)
3438 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3440 return res >= 0 ? res : 0;
3442 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3444 static void sock_inuse_add(struct net *net, int val)
3446 this_cpu_add(*net->core.sock_inuse, val);
3449 int sock_inuse_get(struct net *net)
3453 for_each_possible_cpu(cpu)
3454 res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3459 EXPORT_SYMBOL_GPL(sock_inuse_get);
3461 static int __net_init sock_inuse_init_net(struct net *net)
3463 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3464 if (net->core.prot_inuse == NULL)
3467 net->core.sock_inuse = alloc_percpu(int);
3468 if (net->core.sock_inuse == NULL)
3474 free_percpu(net->core.prot_inuse);
3478 static void __net_exit sock_inuse_exit_net(struct net *net)
3480 free_percpu(net->core.prot_inuse);
3481 free_percpu(net->core.sock_inuse);
3484 static struct pernet_operations net_inuse_ops = {
3485 .init = sock_inuse_init_net,
3486 .exit = sock_inuse_exit_net,
3489 static __init int net_inuse_init(void)
3491 if (register_pernet_subsys(&net_inuse_ops))
3492 panic("Cannot initialize net inuse counters");
3497 core_initcall(net_inuse_init);
3499 static int assign_proto_idx(struct proto *prot)
3501 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3503 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3504 pr_err("PROTO_INUSE_NR exhausted\n");
3508 set_bit(prot->inuse_idx, proto_inuse_idx);
3512 static void release_proto_idx(struct proto *prot)
3514 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3515 clear_bit(prot->inuse_idx, proto_inuse_idx);
3518 static inline int assign_proto_idx(struct proto *prot)
3523 static inline void release_proto_idx(struct proto *prot)
3527 static void sock_inuse_add(struct net *net, int val)
3532 static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3536 kfree(twsk_prot->twsk_slab_name);
3537 twsk_prot->twsk_slab_name = NULL;
3538 kmem_cache_destroy(twsk_prot->twsk_slab);
3539 twsk_prot->twsk_slab = NULL;
3542 static int tw_prot_init(const struct proto *prot)
3544 struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3549 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s",
3551 if (!twsk_prot->twsk_slab_name)
3554 twsk_prot->twsk_slab =
3555 kmem_cache_create(twsk_prot->twsk_slab_name,
3556 twsk_prot->twsk_obj_size, 0,
3557 SLAB_ACCOUNT | prot->slab_flags,
3559 if (!twsk_prot->twsk_slab) {
3560 pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3568 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3572 kfree(rsk_prot->slab_name);
3573 rsk_prot->slab_name = NULL;
3574 kmem_cache_destroy(rsk_prot->slab);
3575 rsk_prot->slab = NULL;
3578 static int req_prot_init(const struct proto *prot)
3580 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3585 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3587 if (!rsk_prot->slab_name)
3590 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3591 rsk_prot->obj_size, 0,
3592 SLAB_ACCOUNT | prot->slab_flags,
3595 if (!rsk_prot->slab) {
3596 pr_crit("%s: Can't create request sock SLAB cache!\n",
3603 int proto_register(struct proto *prot, int alloc_slab)
3608 prot->slab = kmem_cache_create_usercopy(prot->name,
3610 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3612 prot->useroffset, prot->usersize,
3615 if (prot->slab == NULL) {
3616 pr_crit("%s: Can't create sock SLAB cache!\n",
3621 if (req_prot_init(prot))
3622 goto out_free_request_sock_slab;
3624 if (tw_prot_init(prot))
3625 goto out_free_timewait_sock_slab;
3628 mutex_lock(&proto_list_mutex);
3629 ret = assign_proto_idx(prot);
3631 mutex_unlock(&proto_list_mutex);
3632 goto out_free_timewait_sock_slab;
3634 list_add(&prot->node, &proto_list);
3635 mutex_unlock(&proto_list_mutex);
3638 out_free_timewait_sock_slab:
3640 tw_prot_cleanup(prot->twsk_prot);
3641 out_free_request_sock_slab:
3643 req_prot_cleanup(prot->rsk_prot);
3645 kmem_cache_destroy(prot->slab);
3651 EXPORT_SYMBOL(proto_register);
3653 void proto_unregister(struct proto *prot)
3655 mutex_lock(&proto_list_mutex);
3656 release_proto_idx(prot);
3657 list_del(&prot->node);
3658 mutex_unlock(&proto_list_mutex);
3660 kmem_cache_destroy(prot->slab);
3663 req_prot_cleanup(prot->rsk_prot);
3664 tw_prot_cleanup(prot->twsk_prot);
3666 EXPORT_SYMBOL(proto_unregister);
3668 int sock_load_diag_module(int family, int protocol)
3671 if (!sock_is_registered(family))
3674 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3675 NETLINK_SOCK_DIAG, family);
3679 if (family == AF_INET &&
3680 protocol != IPPROTO_RAW &&
3681 protocol < MAX_INET_PROTOS &&
3682 !rcu_access_pointer(inet_protos[protocol]))
3686 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3687 NETLINK_SOCK_DIAG, family, protocol);
3689 EXPORT_SYMBOL(sock_load_diag_module);
3691 #ifdef CONFIG_PROC_FS
3692 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3693 __acquires(proto_list_mutex)
3695 mutex_lock(&proto_list_mutex);
3696 return seq_list_start_head(&proto_list, *pos);
3699 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3701 return seq_list_next(v, &proto_list, pos);
3704 static void proto_seq_stop(struct seq_file *seq, void *v)
3705 __releases(proto_list_mutex)
3707 mutex_unlock(&proto_list_mutex);
3710 static char proto_method_implemented(const void *method)
3712 return method == NULL ? 'n' : 'y';
3714 static long sock_prot_memory_allocated(struct proto *proto)
3716 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3719 static const char *sock_prot_memory_pressure(struct proto *proto)
3721 return proto->memory_pressure != NULL ?
3722 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3725 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3728 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3729 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3732 sock_prot_inuse_get(seq_file_net(seq), proto),
3733 sock_prot_memory_allocated(proto),
3734 sock_prot_memory_pressure(proto),
3736 proto->slab == NULL ? "no" : "yes",
3737 module_name(proto->owner),
3738 proto_method_implemented(proto->close),
3739 proto_method_implemented(proto->connect),
3740 proto_method_implemented(proto->disconnect),
3741 proto_method_implemented(proto->accept),
3742 proto_method_implemented(proto->ioctl),
3743 proto_method_implemented(proto->init),
3744 proto_method_implemented(proto->destroy),
3745 proto_method_implemented(proto->shutdown),
3746 proto_method_implemented(proto->setsockopt),
3747 proto_method_implemented(proto->getsockopt),
3748 proto_method_implemented(proto->sendmsg),
3749 proto_method_implemented(proto->recvmsg),
3750 proto_method_implemented(proto->sendpage),
3751 proto_method_implemented(proto->bind),
3752 proto_method_implemented(proto->backlog_rcv),
3753 proto_method_implemented(proto->hash),
3754 proto_method_implemented(proto->unhash),
3755 proto_method_implemented(proto->get_port),
3756 proto_method_implemented(proto->enter_memory_pressure));
3759 static int proto_seq_show(struct seq_file *seq, void *v)
3761 if (v == &proto_list)
3762 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3771 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3773 proto_seq_printf(seq, list_entry(v, struct proto, node));
3777 static const struct seq_operations proto_seq_ops = {
3778 .start = proto_seq_start,
3779 .next = proto_seq_next,
3780 .stop = proto_seq_stop,
3781 .show = proto_seq_show,
3784 static __net_init int proto_init_net(struct net *net)
3786 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3787 sizeof(struct seq_net_private)))
3793 static __net_exit void proto_exit_net(struct net *net)
3795 remove_proc_entry("protocols", net->proc_net);
3799 static __net_initdata struct pernet_operations proto_net_ops = {
3800 .init = proto_init_net,
3801 .exit = proto_exit_net,
3804 static int __init proto_init(void)
3806 return register_pernet_subsys(&proto_net_ops);
3809 subsys_initcall(proto_init);
3811 #endif /* PROC_FS */
3813 #ifdef CONFIG_NET_RX_BUSY_POLL
3814 bool sk_busy_loop_end(void *p, unsigned long start_time)
3816 struct sock *sk = p;
3818 return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3819 sk_busy_loop_timeout(sk, start_time);
3821 EXPORT_SYMBOL(sk_busy_loop_end);
3822 #endif /* CONFIG_NET_RX_BUSY_POLL */
3824 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
3826 if (!sk->sk_prot->bind_add)
3828 return sk->sk_prot->bind_add(sk, addr, addr_len);
3830 EXPORT_SYMBOL(sock_bind_add);