1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */
4 #include <linux/skmsg.h>
5 #include <linux/skbuff.h>
6 #include <linux/scatterlist.h>
12 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce)
14 if (msg->sg.end > msg->sg.start &&
15 elem_first_coalesce < msg->sg.end)
18 if (msg->sg.end < msg->sg.start &&
19 (elem_first_coalesce > msg->sg.start ||
20 elem_first_coalesce < msg->sg.end))
26 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len,
27 int elem_first_coalesce)
29 struct page_frag *pfrag = sk_page_frag(sk);
30 u32 osize = msg->sg.size;
35 struct scatterlist *sge;
39 if (!sk_page_frag_refill(sk, pfrag)) {
44 orig_offset = pfrag->offset;
45 use = min_t(int, len, pfrag->size - orig_offset);
46 if (!sk_wmem_schedule(sk, use)) {
52 sk_msg_iter_var_prev(i);
53 sge = &msg->sg.data[i];
55 if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) &&
56 sg_page(sge) == pfrag->page &&
57 sge->offset + sge->length == orig_offset) {
60 if (sk_msg_full(msg)) {
65 sge = &msg->sg.data[msg->sg.end];
67 sg_set_page(sge, pfrag->page, use, orig_offset);
68 get_page(pfrag->page);
69 sk_msg_iter_next(msg, end);
72 sk_mem_charge(sk, use);
81 sk_msg_trim(sk, msg, osize);
84 EXPORT_SYMBOL_GPL(sk_msg_alloc);
86 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src,
89 int i = src->sg.start;
90 struct scatterlist *sge = sk_msg_elem(src, i);
91 struct scatterlist *sgd = NULL;
95 if (sge->length > off)
98 sk_msg_iter_var_next(i);
99 if (i == src->sg.end && off)
101 sge = sk_msg_elem(src, i);
105 sge_len = sge->length - off;
110 sgd = sk_msg_elem(dst, dst->sg.end - 1);
113 (sg_page(sge) == sg_page(sgd)) &&
114 (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) {
115 sgd->length += sge_len;
116 dst->sg.size += sge_len;
117 } else if (!sk_msg_full(dst)) {
118 sge_off = sge->offset + off;
119 sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off);
126 sk_mem_charge(sk, sge_len);
127 sk_msg_iter_var_next(i);
128 if (i == src->sg.end && len)
130 sge = sk_msg_elem(src, i);
135 EXPORT_SYMBOL_GPL(sk_msg_clone);
137 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes)
139 int i = msg->sg.start;
142 struct scatterlist *sge = sk_msg_elem(msg, i);
144 if (bytes < sge->length) {
145 sge->length -= bytes;
146 sge->offset += bytes;
147 sk_mem_uncharge(sk, bytes);
151 sk_mem_uncharge(sk, sge->length);
152 bytes -= sge->length;
155 sk_msg_iter_var_next(i);
156 } while (bytes && i != msg->sg.end);
159 EXPORT_SYMBOL_GPL(sk_msg_return_zero);
161 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes)
163 int i = msg->sg.start;
166 struct scatterlist *sge = &msg->sg.data[i];
167 int uncharge = (bytes < sge->length) ? bytes : sge->length;
169 sk_mem_uncharge(sk, uncharge);
171 sk_msg_iter_var_next(i);
172 } while (i != msg->sg.end);
174 EXPORT_SYMBOL_GPL(sk_msg_return);
176 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i,
179 struct scatterlist *sge = sk_msg_elem(msg, i);
180 u32 len = sge->length;
182 /* When the skb owns the memory we free it from consume_skb path. */
185 sk_mem_uncharge(sk, len);
186 put_page(sg_page(sge));
188 memset(sge, 0, sizeof(*sge));
192 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i,
195 struct scatterlist *sge = sk_msg_elem(msg, i);
198 while (msg->sg.size) {
199 msg->sg.size -= sge->length;
200 freed += sk_msg_free_elem(sk, msg, i, charge);
201 sk_msg_iter_var_next(i);
202 sk_msg_check_to_free(msg, i, msg->sg.size);
203 sge = sk_msg_elem(msg, i);
205 consume_skb(msg->skb);
210 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg)
212 return __sk_msg_free(sk, msg, msg->sg.start, false);
214 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge);
216 int sk_msg_free(struct sock *sk, struct sk_msg *msg)
218 return __sk_msg_free(sk, msg, msg->sg.start, true);
220 EXPORT_SYMBOL_GPL(sk_msg_free);
222 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg,
223 u32 bytes, bool charge)
225 struct scatterlist *sge;
226 u32 i = msg->sg.start;
229 sge = sk_msg_elem(msg, i);
232 if (bytes < sge->length) {
234 sk_mem_uncharge(sk, bytes);
235 sge->length -= bytes;
236 sge->offset += bytes;
237 msg->sg.size -= bytes;
241 msg->sg.size -= sge->length;
242 bytes -= sge->length;
243 sk_msg_free_elem(sk, msg, i, charge);
244 sk_msg_iter_var_next(i);
245 sk_msg_check_to_free(msg, i, bytes);
250 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes)
252 __sk_msg_free_partial(sk, msg, bytes, true);
254 EXPORT_SYMBOL_GPL(sk_msg_free_partial);
256 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg,
259 __sk_msg_free_partial(sk, msg, bytes, false);
262 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len)
264 int trim = msg->sg.size - len;
272 sk_msg_iter_var_prev(i);
274 while (msg->sg.data[i].length &&
275 trim >= msg->sg.data[i].length) {
276 trim -= msg->sg.data[i].length;
277 sk_msg_free_elem(sk, msg, i, true);
278 sk_msg_iter_var_prev(i);
283 msg->sg.data[i].length -= trim;
284 sk_mem_uncharge(sk, trim);
285 /* Adjust copybreak if it falls into the trimmed part of last buf */
286 if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length)
287 msg->sg.copybreak = msg->sg.data[i].length;
289 sk_msg_iter_var_next(i);
292 /* If we trim data a full sg elem before curr pointer update
293 * copybreak and current so that any future copy operations
294 * start at new copy location.
295 * However trimed data that has not yet been used in a copy op
296 * does not require an update.
299 msg->sg.curr = msg->sg.start;
300 msg->sg.copybreak = 0;
301 } else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >=
302 sk_msg_iter_dist(msg->sg.start, msg->sg.end)) {
303 sk_msg_iter_var_prev(i);
305 msg->sg.copybreak = msg->sg.data[i].length;
308 EXPORT_SYMBOL_GPL(sk_msg_trim);
310 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
311 struct sk_msg *msg, u32 bytes)
313 int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg);
314 const int to_max_pages = MAX_MSG_FRAGS;
315 struct page *pages[MAX_MSG_FRAGS];
316 ssize_t orig, copied, use, offset;
321 maxpages = to_max_pages - num_elems;
327 copied = iov_iter_get_pages(from, pages, bytes, maxpages,
334 iov_iter_advance(from, copied);
336 msg->sg.size += copied;
339 use = min_t(int, copied, PAGE_SIZE - offset);
340 sg_set_page(&msg->sg.data[msg->sg.end],
341 pages[i], use, offset);
342 sg_unmark_end(&msg->sg.data[msg->sg.end]);
343 sk_mem_charge(sk, use);
347 sk_msg_iter_next(msg, end);
351 /* When zerocopy is mixed with sk_msg_*copy* operations we
352 * may have a copybreak set in this case clear and prefer
353 * zerocopy remainder when possible.
355 msg->sg.copybreak = 0;
356 msg->sg.curr = msg->sg.end;
359 /* Revert iov_iter updates, msg will need to use 'trim' later if it
360 * also needs to be cleared.
363 iov_iter_revert(from, msg->sg.size - orig);
366 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter);
368 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from,
369 struct sk_msg *msg, u32 bytes)
371 int ret = -ENOSPC, i = msg->sg.curr;
372 struct scatterlist *sge;
377 sge = sk_msg_elem(msg, i);
378 /* This is possible if a trim operation shrunk the buffer */
379 if (msg->sg.copybreak >= sge->length) {
380 msg->sg.copybreak = 0;
381 sk_msg_iter_var_next(i);
382 if (i == msg->sg.end)
384 sge = sk_msg_elem(msg, i);
387 buf_size = sge->length - msg->sg.copybreak;
388 copy = (buf_size > bytes) ? bytes : buf_size;
389 to = sg_virt(sge) + msg->sg.copybreak;
390 msg->sg.copybreak += copy;
391 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
392 ret = copy_from_iter_nocache(to, copy, from);
394 ret = copy_from_iter(to, copy, from);
402 msg->sg.copybreak = 0;
403 sk_msg_iter_var_next(i);
404 } while (i != msg->sg.end);
409 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter);
411 /* Receive sk_msg from psock->ingress_msg to @msg. */
412 int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg,
415 struct iov_iter *iter = &msg->msg_iter;
416 int peek = flags & MSG_PEEK;
417 struct sk_msg *msg_rx;
420 msg_rx = sk_psock_peek_msg(psock);
421 while (copied != len) {
422 struct scatterlist *sge;
424 if (unlikely(!msg_rx))
427 i = msg_rx->sg.start;
432 sge = sk_msg_elem(msg_rx, i);
435 if (copied + copy > len)
437 copy = copy_page_to_iter(page, sge->offset, copy, iter);
439 copied = copied ? copied : -EFAULT;
448 sk_mem_uncharge(sk, copy);
449 msg_rx->sg.size -= copy;
452 sk_msg_iter_var_next(i);
457 /* Lets not optimize peek case if copy_page_to_iter
458 * didn't copy the entire length lets just break.
460 if (copy != sge->length)
462 sk_msg_iter_var_next(i);
467 } while ((i != msg_rx->sg.end) && !sg_is_last(sge));
469 if (unlikely(peek)) {
470 msg_rx = sk_psock_next_msg(psock, msg_rx);
476 msg_rx->sg.start = i;
477 if (!sge->length && (i == msg_rx->sg.end || sg_is_last(sge))) {
478 msg_rx = sk_psock_dequeue_msg(psock);
479 kfree_sk_msg(msg_rx);
481 msg_rx = sk_psock_peek_msg(psock);
484 if (psock->work_state.skb && copied > 0)
485 schedule_work(&psock->work);
488 EXPORT_SYMBOL_GPL(sk_msg_recvmsg);
490 bool sk_msg_is_readable(struct sock *sk)
492 struct sk_psock *psock;
496 psock = sk_psock(sk);
498 empty = list_empty(&psock->ingress_msg);
502 EXPORT_SYMBOL_GPL(sk_msg_is_readable);
504 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk,
509 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
512 if (!sk_rmem_schedule(sk, skb, skb->truesize))
515 msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_KERNEL);
523 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb,
525 struct sk_psock *psock,
531 /* skb linearize may fail with ENOMEM, but lets simply try again
532 * later if this happens. Under memory pressure we don't want to
533 * drop the skb. We need to linearize the skb so that the mapping
534 * in skb_to_sgvec can not error.
536 if (skb_linearize(skb))
538 num_sge = skb_to_sgvec(skb, msg->sg.data, off, len);
539 if (unlikely(num_sge < 0))
544 msg->sg.size = copied;
545 msg->sg.end = num_sge;
548 sk_psock_queue_msg(psock, msg);
549 sk_psock_data_ready(sk, psock);
553 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
556 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb,
559 struct sock *sk = psock->sk;
563 /* If we are receiving on the same sock skb->sk is already assigned,
564 * skip memory accounting and owner transition seeing it already set
567 if (unlikely(skb->sk == sk))
568 return sk_psock_skb_ingress_self(psock, skb, off, len);
569 msg = sk_psock_create_ingress_msg(sk, skb);
573 /* This will transition ownership of the data from the socket where
574 * the BPF program was run initiating the redirect to the socket
575 * we will eventually receive this data on. The data will be released
576 * from skb_consume found in __tcp_bpf_recvmsg() after its been copied
579 skb_set_owner_r(skb, sk);
580 err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg);
586 /* Puts an skb on the ingress queue of the socket already assigned to the
587 * skb. In this case we do not need to check memory limits or skb_set_owner_r
588 * because the skb is already accounted for here.
590 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
593 struct sk_msg *msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_ATOMIC);
594 struct sock *sk = psock->sk;
600 skb_set_owner_r(skb, sk);
601 err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg);
607 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb,
608 u32 off, u32 len, bool ingress)
611 if (!sock_writeable(psock->sk))
613 return skb_send_sock(psock->sk, skb, off, len);
615 return sk_psock_skb_ingress(psock, skb, off, len);
618 static void sk_psock_skb_state(struct sk_psock *psock,
619 struct sk_psock_work_state *state,
623 spin_lock_bh(&psock->ingress_lock);
624 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
629 sock_drop(psock->sk, skb);
631 spin_unlock_bh(&psock->ingress_lock);
634 static void sk_psock_backlog(struct work_struct *work)
636 struct sk_psock *psock = container_of(work, struct sk_psock, work);
637 struct sk_psock_work_state *state = &psock->work_state;
638 struct sk_buff *skb = NULL;
643 mutex_lock(&psock->work_mutex);
644 if (unlikely(state->skb)) {
645 spin_lock_bh(&psock->ingress_lock);
650 spin_unlock_bh(&psock->ingress_lock);
655 while ((skb = skb_dequeue(&psock->ingress_skb))) {
658 if (skb_bpf_strparser(skb)) {
659 struct strp_msg *stm = strp_msg(skb);
665 ingress = skb_bpf_ingress(skb);
666 skb_bpf_redirect_clear(skb);
669 if (!sock_flag(psock->sk, SOCK_DEAD))
670 ret = sk_psock_handle_skb(psock, skb, off,
673 if (ret == -EAGAIN) {
674 sk_psock_skb_state(psock, state, skb,
678 /* Hard errors break pipe and stop xmit. */
679 sk_psock_report_error(psock, ret ? -ret : EPIPE);
680 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
681 sock_drop(psock->sk, skb);
692 mutex_unlock(&psock->work_mutex);
695 struct sk_psock *sk_psock_init(struct sock *sk, int node)
697 struct sk_psock *psock;
700 write_lock_bh(&sk->sk_callback_lock);
702 if (sk_is_inet(sk) && inet_csk_has_ulp(sk)) {
703 psock = ERR_PTR(-EINVAL);
707 if (sk->sk_user_data) {
708 psock = ERR_PTR(-EBUSY);
712 psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node);
714 psock = ERR_PTR(-ENOMEM);
718 prot = READ_ONCE(sk->sk_prot);
720 psock->eval = __SK_NONE;
721 psock->sk_proto = prot;
722 psock->saved_unhash = prot->unhash;
723 psock->saved_destroy = prot->destroy;
724 psock->saved_close = prot->close;
725 psock->saved_write_space = sk->sk_write_space;
727 INIT_LIST_HEAD(&psock->link);
728 spin_lock_init(&psock->link_lock);
730 INIT_WORK(&psock->work, sk_psock_backlog);
731 mutex_init(&psock->work_mutex);
732 INIT_LIST_HEAD(&psock->ingress_msg);
733 spin_lock_init(&psock->ingress_lock);
734 skb_queue_head_init(&psock->ingress_skb);
736 sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED);
737 refcount_set(&psock->refcnt, 1);
739 __rcu_assign_sk_user_data_with_flags(sk, psock,
740 SK_USER_DATA_NOCOPY |
745 write_unlock_bh(&sk->sk_callback_lock);
748 EXPORT_SYMBOL_GPL(sk_psock_init);
750 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock)
752 struct sk_psock_link *link;
754 spin_lock_bh(&psock->link_lock);
755 link = list_first_entry_or_null(&psock->link, struct sk_psock_link,
758 list_del(&link->list);
759 spin_unlock_bh(&psock->link_lock);
763 static void __sk_psock_purge_ingress_msg(struct sk_psock *psock)
765 struct sk_msg *msg, *tmp;
767 list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) {
768 list_del(&msg->list);
769 sk_msg_free(psock->sk, msg);
774 static void __sk_psock_zap_ingress(struct sk_psock *psock)
778 while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) {
779 skb_bpf_redirect_clear(skb);
780 sock_drop(psock->sk, skb);
782 kfree_skb(psock->work_state.skb);
783 /* We null the skb here to ensure that calls to sk_psock_backlog
784 * do not pick up the free'd skb.
786 psock->work_state.skb = NULL;
787 __sk_psock_purge_ingress_msg(psock);
790 static void sk_psock_link_destroy(struct sk_psock *psock)
792 struct sk_psock_link *link, *tmp;
794 list_for_each_entry_safe(link, tmp, &psock->link, list) {
795 list_del(&link->list);
796 sk_psock_free_link(link);
800 void sk_psock_stop(struct sk_psock *psock)
802 spin_lock_bh(&psock->ingress_lock);
803 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
804 sk_psock_cork_free(psock);
805 __sk_psock_zap_ingress(psock);
806 spin_unlock_bh(&psock->ingress_lock);
809 static void sk_psock_done_strp(struct sk_psock *psock);
811 static void sk_psock_destroy(struct work_struct *work)
813 struct sk_psock *psock = container_of(to_rcu_work(work),
814 struct sk_psock, rwork);
815 /* No sk_callback_lock since already detached. */
817 sk_psock_done_strp(psock);
819 cancel_work_sync(&psock->work);
820 mutex_destroy(&psock->work_mutex);
822 psock_progs_drop(&psock->progs);
824 sk_psock_link_destroy(psock);
825 sk_psock_cork_free(psock);
828 sock_put(psock->sk_redir);
833 void sk_psock_drop(struct sock *sk, struct sk_psock *psock)
835 write_lock_bh(&sk->sk_callback_lock);
836 sk_psock_restore_proto(sk, psock);
837 rcu_assign_sk_user_data(sk, NULL);
838 if (psock->progs.stream_parser)
839 sk_psock_stop_strp(sk, psock);
840 else if (psock->progs.stream_verdict || psock->progs.skb_verdict)
841 sk_psock_stop_verdict(sk, psock);
842 write_unlock_bh(&sk->sk_callback_lock);
844 sk_psock_stop(psock);
846 INIT_RCU_WORK(&psock->rwork, sk_psock_destroy);
847 queue_rcu_work(system_wq, &psock->rwork);
849 EXPORT_SYMBOL_GPL(sk_psock_drop);
851 static int sk_psock_map_verd(int verdict, bool redir)
855 return redir ? __SK_REDIRECT : __SK_PASS;
864 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock,
867 struct bpf_prog *prog;
871 prog = READ_ONCE(psock->progs.msg_parser);
872 if (unlikely(!prog)) {
877 sk_msg_compute_data_pointers(msg);
879 ret = bpf_prog_run_pin_on_cpu(prog, msg);
880 ret = sk_psock_map_verd(ret, msg->sk_redir);
881 psock->apply_bytes = msg->apply_bytes;
882 if (ret == __SK_REDIRECT) {
883 if (psock->sk_redir) {
884 sock_put(psock->sk_redir);
885 psock->sk_redir = NULL;
887 if (!msg->sk_redir) {
891 psock->redir_ingress = sk_msg_to_ingress(msg);
892 psock->sk_redir = msg->sk_redir;
893 sock_hold(psock->sk_redir);
899 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict);
901 static int sk_psock_skb_redirect(struct sk_psock *from, struct sk_buff *skb)
903 struct sk_psock *psock_other;
904 struct sock *sk_other;
906 sk_other = skb_bpf_redirect_fetch(skb);
907 /* This error is a buggy BPF program, it returned a redirect
908 * return code, but then didn't set a redirect interface.
910 if (unlikely(!sk_other)) {
911 skb_bpf_redirect_clear(skb);
912 sock_drop(from->sk, skb);
915 psock_other = sk_psock(sk_other);
916 /* This error indicates the socket is being torn down or had another
917 * error that caused the pipe to break. We can't send a packet on
918 * a socket that is in this state so we drop the skb.
920 if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) {
921 skb_bpf_redirect_clear(skb);
922 sock_drop(from->sk, skb);
925 spin_lock_bh(&psock_other->ingress_lock);
926 if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) {
927 spin_unlock_bh(&psock_other->ingress_lock);
928 skb_bpf_redirect_clear(skb);
929 sock_drop(from->sk, skb);
933 skb_queue_tail(&psock_other->ingress_skb, skb);
934 schedule_work(&psock_other->work);
935 spin_unlock_bh(&psock_other->ingress_lock);
939 static void sk_psock_tls_verdict_apply(struct sk_buff *skb,
940 struct sk_psock *from, int verdict)
944 sk_psock_skb_redirect(from, skb);
953 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb)
955 struct bpf_prog *prog;
959 prog = READ_ONCE(psock->progs.stream_verdict);
963 skb_bpf_redirect_clear(skb);
964 ret = bpf_prog_run_pin_on_cpu(prog, skb);
965 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
968 sk_psock_tls_verdict_apply(skb, psock, ret);
972 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read);
974 static int sk_psock_verdict_apply(struct sk_psock *psock, struct sk_buff *skb,
977 struct sock *sk_other;
984 sk_other = psock->sk;
985 if (sock_flag(sk_other, SOCK_DEAD) ||
986 !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
987 skb_bpf_redirect_clear(skb);
991 skb_bpf_set_ingress(skb);
993 /* If the queue is empty then we can submit directly
994 * into the msg queue. If its not empty we have to
995 * queue work otherwise we may get OOO data. Otherwise,
996 * if sk_psock_skb_ingress errors will be handled by
997 * retrying later from workqueue.
999 if (skb_queue_empty(&psock->ingress_skb)) {
1002 if (skb_bpf_strparser(skb)) {
1003 struct strp_msg *stm = strp_msg(skb);
1006 len = stm->full_len;
1008 err = sk_psock_skb_ingress_self(psock, skb, off, len);
1011 spin_lock_bh(&psock->ingress_lock);
1012 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
1013 skb_queue_tail(&psock->ingress_skb, skb);
1014 schedule_work(&psock->work);
1017 spin_unlock_bh(&psock->ingress_lock);
1019 skb_bpf_redirect_clear(skb);
1025 err = sk_psock_skb_redirect(psock, skb);
1030 sock_drop(psock->sk, skb);
1036 static void sk_psock_write_space(struct sock *sk)
1038 struct sk_psock *psock;
1039 void (*write_space)(struct sock *sk) = NULL;
1042 psock = sk_psock(sk);
1043 if (likely(psock)) {
1044 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
1045 schedule_work(&psock->work);
1046 write_space = psock->saved_write_space;
1053 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER)
1054 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb)
1056 struct sk_psock *psock;
1057 struct bpf_prog *prog;
1058 int ret = __SK_DROP;
1063 psock = sk_psock(sk);
1064 if (unlikely(!psock)) {
1068 prog = READ_ONCE(psock->progs.stream_verdict);
1072 skb_bpf_redirect_clear(skb);
1073 ret = bpf_prog_run_pin_on_cpu(prog, skb);
1075 skb_bpf_set_strparser(skb);
1076 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1079 sk_psock_verdict_apply(psock, skb, ret);
1084 static int sk_psock_strp_read_done(struct strparser *strp, int err)
1089 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb)
1091 struct sk_psock *psock = container_of(strp, struct sk_psock, strp);
1092 struct bpf_prog *prog;
1096 prog = READ_ONCE(psock->progs.stream_parser);
1098 skb->sk = psock->sk;
1099 ret = bpf_prog_run_pin_on_cpu(prog, skb);
1106 /* Called with socket lock held. */
1107 static void sk_psock_strp_data_ready(struct sock *sk)
1109 struct sk_psock *psock;
1112 psock = sk_psock(sk);
1113 if (likely(psock)) {
1114 if (tls_sw_has_ctx_rx(sk)) {
1115 psock->saved_data_ready(sk);
1117 write_lock_bh(&sk->sk_callback_lock);
1118 strp_data_ready(&psock->strp);
1119 write_unlock_bh(&sk->sk_callback_lock);
1125 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock)
1127 static const struct strp_callbacks cb = {
1128 .rcv_msg = sk_psock_strp_read,
1129 .read_sock_done = sk_psock_strp_read_done,
1130 .parse_msg = sk_psock_strp_parse,
1133 return strp_init(&psock->strp, sk, &cb);
1136 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock)
1138 if (psock->saved_data_ready)
1141 psock->saved_data_ready = sk->sk_data_ready;
1142 sk->sk_data_ready = sk_psock_strp_data_ready;
1143 sk->sk_write_space = sk_psock_write_space;
1146 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock)
1148 psock_set_prog(&psock->progs.stream_parser, NULL);
1150 if (!psock->saved_data_ready)
1153 sk->sk_data_ready = psock->saved_data_ready;
1154 psock->saved_data_ready = NULL;
1155 strp_stop(&psock->strp);
1158 static void sk_psock_done_strp(struct sk_psock *psock)
1160 /* Parser has been stopped */
1161 if (psock->progs.stream_parser)
1162 strp_done(&psock->strp);
1165 static void sk_psock_done_strp(struct sk_psock *psock)
1168 #endif /* CONFIG_BPF_STREAM_PARSER */
1170 static int sk_psock_verdict_recv(read_descriptor_t *desc, struct sk_buff *skb,
1171 unsigned int offset, size_t orig_len)
1173 struct sock *sk = (struct sock *)desc->arg.data;
1174 struct sk_psock *psock;
1175 struct bpf_prog *prog;
1176 int ret = __SK_DROP;
1179 /* clone here so sk_eat_skb() in tcp_read_sock does not drop our data */
1180 skb = skb_clone(skb, GFP_ATOMIC);
1182 desc->error = -ENOMEM;
1187 psock = sk_psock(sk);
1188 if (unlikely(!psock)) {
1193 prog = READ_ONCE(psock->progs.stream_verdict);
1195 prog = READ_ONCE(psock->progs.skb_verdict);
1199 skb_bpf_redirect_clear(skb);
1200 ret = bpf_prog_run_pin_on_cpu(prog, skb);
1201 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1204 if (sk_psock_verdict_apply(psock, skb, ret) < 0)
1211 static void sk_psock_verdict_data_ready(struct sock *sk)
1213 struct socket *sock = sk->sk_socket;
1214 read_descriptor_t desc;
1216 if (unlikely(!sock || !sock->ops || !sock->ops->read_sock))
1223 sock->ops->read_sock(sk, &desc, sk_psock_verdict_recv);
1226 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock)
1228 if (psock->saved_data_ready)
1231 psock->saved_data_ready = sk->sk_data_ready;
1232 sk->sk_data_ready = sk_psock_verdict_data_ready;
1233 sk->sk_write_space = sk_psock_write_space;
1236 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock)
1238 psock_set_prog(&psock->progs.stream_verdict, NULL);
1239 psock_set_prog(&psock->progs.skb_verdict, NULL);
1241 if (!psock->saved_data_ready)
1244 sk->sk_data_ready = psock->saved_data_ready;
1245 psock->saved_data_ready = NULL;