Merge https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
[platform/kernel/linux-starfive.git] / net / core / skmsg.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */
3
4 #include <linux/skmsg.h>
5 #include <linux/skbuff.h>
6 #include <linux/scatterlist.h>
7
8 #include <net/sock.h>
9 #include <net/tcp.h>
10 #include <net/tls.h>
11
12 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce)
13 {
14         if (msg->sg.end > msg->sg.start &&
15             elem_first_coalesce < msg->sg.end)
16                 return true;
17
18         if (msg->sg.end < msg->sg.start &&
19             (elem_first_coalesce > msg->sg.start ||
20              elem_first_coalesce < msg->sg.end))
21                 return true;
22
23         return false;
24 }
25
26 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len,
27                  int elem_first_coalesce)
28 {
29         struct page_frag *pfrag = sk_page_frag(sk);
30         int ret = 0;
31
32         len -= msg->sg.size;
33         while (len > 0) {
34                 struct scatterlist *sge;
35                 u32 orig_offset;
36                 int use, i;
37
38                 if (!sk_page_frag_refill(sk, pfrag))
39                         return -ENOMEM;
40
41                 orig_offset = pfrag->offset;
42                 use = min_t(int, len, pfrag->size - orig_offset);
43                 if (!sk_wmem_schedule(sk, use))
44                         return -ENOMEM;
45
46                 i = msg->sg.end;
47                 sk_msg_iter_var_prev(i);
48                 sge = &msg->sg.data[i];
49
50                 if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) &&
51                     sg_page(sge) == pfrag->page &&
52                     sge->offset + sge->length == orig_offset) {
53                         sge->length += use;
54                 } else {
55                         if (sk_msg_full(msg)) {
56                                 ret = -ENOSPC;
57                                 break;
58                         }
59
60                         sge = &msg->sg.data[msg->sg.end];
61                         sg_unmark_end(sge);
62                         sg_set_page(sge, pfrag->page, use, orig_offset);
63                         get_page(pfrag->page);
64                         sk_msg_iter_next(msg, end);
65                 }
66
67                 sk_mem_charge(sk, use);
68                 msg->sg.size += use;
69                 pfrag->offset += use;
70                 len -= use;
71         }
72
73         return ret;
74 }
75 EXPORT_SYMBOL_GPL(sk_msg_alloc);
76
77 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src,
78                  u32 off, u32 len)
79 {
80         int i = src->sg.start;
81         struct scatterlist *sge = sk_msg_elem(src, i);
82         struct scatterlist *sgd = NULL;
83         u32 sge_len, sge_off;
84
85         while (off) {
86                 if (sge->length > off)
87                         break;
88                 off -= sge->length;
89                 sk_msg_iter_var_next(i);
90                 if (i == src->sg.end && off)
91                         return -ENOSPC;
92                 sge = sk_msg_elem(src, i);
93         }
94
95         while (len) {
96                 sge_len = sge->length - off;
97                 if (sge_len > len)
98                         sge_len = len;
99
100                 if (dst->sg.end)
101                         sgd = sk_msg_elem(dst, dst->sg.end - 1);
102
103                 if (sgd &&
104                     (sg_page(sge) == sg_page(sgd)) &&
105                     (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) {
106                         sgd->length += sge_len;
107                         dst->sg.size += sge_len;
108                 } else if (!sk_msg_full(dst)) {
109                         sge_off = sge->offset + off;
110                         sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off);
111                 } else {
112                         return -ENOSPC;
113                 }
114
115                 off = 0;
116                 len -= sge_len;
117                 sk_mem_charge(sk, sge_len);
118                 sk_msg_iter_var_next(i);
119                 if (i == src->sg.end && len)
120                         return -ENOSPC;
121                 sge = sk_msg_elem(src, i);
122         }
123
124         return 0;
125 }
126 EXPORT_SYMBOL_GPL(sk_msg_clone);
127
128 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes)
129 {
130         int i = msg->sg.start;
131
132         do {
133                 struct scatterlist *sge = sk_msg_elem(msg, i);
134
135                 if (bytes < sge->length) {
136                         sge->length -= bytes;
137                         sge->offset += bytes;
138                         sk_mem_uncharge(sk, bytes);
139                         break;
140                 }
141
142                 sk_mem_uncharge(sk, sge->length);
143                 bytes -= sge->length;
144                 sge->length = 0;
145                 sge->offset = 0;
146                 sk_msg_iter_var_next(i);
147         } while (bytes && i != msg->sg.end);
148         msg->sg.start = i;
149 }
150 EXPORT_SYMBOL_GPL(sk_msg_return_zero);
151
152 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes)
153 {
154         int i = msg->sg.start;
155
156         do {
157                 struct scatterlist *sge = &msg->sg.data[i];
158                 int uncharge = (bytes < sge->length) ? bytes : sge->length;
159
160                 sk_mem_uncharge(sk, uncharge);
161                 bytes -= uncharge;
162                 sk_msg_iter_var_next(i);
163         } while (i != msg->sg.end);
164 }
165 EXPORT_SYMBOL_GPL(sk_msg_return);
166
167 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i,
168                             bool charge)
169 {
170         struct scatterlist *sge = sk_msg_elem(msg, i);
171         u32 len = sge->length;
172
173         /* When the skb owns the memory we free it from consume_skb path. */
174         if (!msg->skb) {
175                 if (charge)
176                         sk_mem_uncharge(sk, len);
177                 put_page(sg_page(sge));
178         }
179         memset(sge, 0, sizeof(*sge));
180         return len;
181 }
182
183 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i,
184                          bool charge)
185 {
186         struct scatterlist *sge = sk_msg_elem(msg, i);
187         int freed = 0;
188
189         while (msg->sg.size) {
190                 msg->sg.size -= sge->length;
191                 freed += sk_msg_free_elem(sk, msg, i, charge);
192                 sk_msg_iter_var_next(i);
193                 sk_msg_check_to_free(msg, i, msg->sg.size);
194                 sge = sk_msg_elem(msg, i);
195         }
196         consume_skb(msg->skb);
197         sk_msg_init(msg);
198         return freed;
199 }
200
201 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg)
202 {
203         return __sk_msg_free(sk, msg, msg->sg.start, false);
204 }
205 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge);
206
207 int sk_msg_free(struct sock *sk, struct sk_msg *msg)
208 {
209         return __sk_msg_free(sk, msg, msg->sg.start, true);
210 }
211 EXPORT_SYMBOL_GPL(sk_msg_free);
212
213 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg,
214                                   u32 bytes, bool charge)
215 {
216         struct scatterlist *sge;
217         u32 i = msg->sg.start;
218
219         while (bytes) {
220                 sge = sk_msg_elem(msg, i);
221                 if (!sge->length)
222                         break;
223                 if (bytes < sge->length) {
224                         if (charge)
225                                 sk_mem_uncharge(sk, bytes);
226                         sge->length -= bytes;
227                         sge->offset += bytes;
228                         msg->sg.size -= bytes;
229                         break;
230                 }
231
232                 msg->sg.size -= sge->length;
233                 bytes -= sge->length;
234                 sk_msg_free_elem(sk, msg, i, charge);
235                 sk_msg_iter_var_next(i);
236                 sk_msg_check_to_free(msg, i, bytes);
237         }
238         msg->sg.start = i;
239 }
240
241 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes)
242 {
243         __sk_msg_free_partial(sk, msg, bytes, true);
244 }
245 EXPORT_SYMBOL_GPL(sk_msg_free_partial);
246
247 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg,
248                                   u32 bytes)
249 {
250         __sk_msg_free_partial(sk, msg, bytes, false);
251 }
252
253 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len)
254 {
255         int trim = msg->sg.size - len;
256         u32 i = msg->sg.end;
257
258         if (trim <= 0) {
259                 WARN_ON(trim < 0);
260                 return;
261         }
262
263         sk_msg_iter_var_prev(i);
264         msg->sg.size = len;
265         while (msg->sg.data[i].length &&
266                trim >= msg->sg.data[i].length) {
267                 trim -= msg->sg.data[i].length;
268                 sk_msg_free_elem(sk, msg, i, true);
269                 sk_msg_iter_var_prev(i);
270                 if (!trim)
271                         goto out;
272         }
273
274         msg->sg.data[i].length -= trim;
275         sk_mem_uncharge(sk, trim);
276         /* Adjust copybreak if it falls into the trimmed part of last buf */
277         if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length)
278                 msg->sg.copybreak = msg->sg.data[i].length;
279 out:
280         sk_msg_iter_var_next(i);
281         msg->sg.end = i;
282
283         /* If we trim data a full sg elem before curr pointer update
284          * copybreak and current so that any future copy operations
285          * start at new copy location.
286          * However trimed data that has not yet been used in a copy op
287          * does not require an update.
288          */
289         if (!msg->sg.size) {
290                 msg->sg.curr = msg->sg.start;
291                 msg->sg.copybreak = 0;
292         } else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >=
293                    sk_msg_iter_dist(msg->sg.start, msg->sg.end)) {
294                 sk_msg_iter_var_prev(i);
295                 msg->sg.curr = i;
296                 msg->sg.copybreak = msg->sg.data[i].length;
297         }
298 }
299 EXPORT_SYMBOL_GPL(sk_msg_trim);
300
301 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
302                               struct sk_msg *msg, u32 bytes)
303 {
304         int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg);
305         const int to_max_pages = MAX_MSG_FRAGS;
306         struct page *pages[MAX_MSG_FRAGS];
307         ssize_t orig, copied, use, offset;
308
309         orig = msg->sg.size;
310         while (bytes > 0) {
311                 i = 0;
312                 maxpages = to_max_pages - num_elems;
313                 if (maxpages == 0) {
314                         ret = -EFAULT;
315                         goto out;
316                 }
317
318                 copied = iov_iter_get_pages(from, pages, bytes, maxpages,
319                                             &offset);
320                 if (copied <= 0) {
321                         ret = -EFAULT;
322                         goto out;
323                 }
324
325                 iov_iter_advance(from, copied);
326                 bytes -= copied;
327                 msg->sg.size += copied;
328
329                 while (copied) {
330                         use = min_t(int, copied, PAGE_SIZE - offset);
331                         sg_set_page(&msg->sg.data[msg->sg.end],
332                                     pages[i], use, offset);
333                         sg_unmark_end(&msg->sg.data[msg->sg.end]);
334                         sk_mem_charge(sk, use);
335
336                         offset = 0;
337                         copied -= use;
338                         sk_msg_iter_next(msg, end);
339                         num_elems++;
340                         i++;
341                 }
342                 /* When zerocopy is mixed with sk_msg_*copy* operations we
343                  * may have a copybreak set in this case clear and prefer
344                  * zerocopy remainder when possible.
345                  */
346                 msg->sg.copybreak = 0;
347                 msg->sg.curr = msg->sg.end;
348         }
349 out:
350         /* Revert iov_iter updates, msg will need to use 'trim' later if it
351          * also needs to be cleared.
352          */
353         if (ret)
354                 iov_iter_revert(from, msg->sg.size - orig);
355         return ret;
356 }
357 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter);
358
359 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from,
360                              struct sk_msg *msg, u32 bytes)
361 {
362         int ret = -ENOSPC, i = msg->sg.curr;
363         struct scatterlist *sge;
364         u32 copy, buf_size;
365         void *to;
366
367         do {
368                 sge = sk_msg_elem(msg, i);
369                 /* This is possible if a trim operation shrunk the buffer */
370                 if (msg->sg.copybreak >= sge->length) {
371                         msg->sg.copybreak = 0;
372                         sk_msg_iter_var_next(i);
373                         if (i == msg->sg.end)
374                                 break;
375                         sge = sk_msg_elem(msg, i);
376                 }
377
378                 buf_size = sge->length - msg->sg.copybreak;
379                 copy = (buf_size > bytes) ? bytes : buf_size;
380                 to = sg_virt(sge) + msg->sg.copybreak;
381                 msg->sg.copybreak += copy;
382                 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
383                         ret = copy_from_iter_nocache(to, copy, from);
384                 else
385                         ret = copy_from_iter(to, copy, from);
386                 if (ret != copy) {
387                         ret = -EFAULT;
388                         goto out;
389                 }
390                 bytes -= copy;
391                 if (!bytes)
392                         break;
393                 msg->sg.copybreak = 0;
394                 sk_msg_iter_var_next(i);
395         } while (i != msg->sg.end);
396 out:
397         msg->sg.curr = i;
398         return ret;
399 }
400 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter);
401
402 /* Receive sk_msg from psock->ingress_msg to @msg. */
403 int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg,
404                    int len, int flags)
405 {
406         struct iov_iter *iter = &msg->msg_iter;
407         int peek = flags & MSG_PEEK;
408         struct sk_msg *msg_rx;
409         int i, copied = 0;
410
411         msg_rx = sk_psock_peek_msg(psock);
412         while (copied != len) {
413                 struct scatterlist *sge;
414
415                 if (unlikely(!msg_rx))
416                         break;
417
418                 i = msg_rx->sg.start;
419                 do {
420                         struct page *page;
421                         int copy;
422
423                         sge = sk_msg_elem(msg_rx, i);
424                         copy = sge->length;
425                         page = sg_page(sge);
426                         if (copied + copy > len)
427                                 copy = len - copied;
428                         copy = copy_page_to_iter(page, sge->offset, copy, iter);
429                         if (!copy)
430                                 return copied ? copied : -EFAULT;
431
432                         copied += copy;
433                         if (likely(!peek)) {
434                                 sge->offset += copy;
435                                 sge->length -= copy;
436                                 if (!msg_rx->skb)
437                                         sk_mem_uncharge(sk, copy);
438                                 msg_rx->sg.size -= copy;
439
440                                 if (!sge->length) {
441                                         sk_msg_iter_var_next(i);
442                                         if (!msg_rx->skb)
443                                                 put_page(page);
444                                 }
445                         } else {
446                                 /* Lets not optimize peek case if copy_page_to_iter
447                                  * didn't copy the entire length lets just break.
448                                  */
449                                 if (copy != sge->length)
450                                         return copied;
451                                 sk_msg_iter_var_next(i);
452                         }
453
454                         if (copied == len)
455                                 break;
456                 } while (i != msg_rx->sg.end);
457
458                 if (unlikely(peek)) {
459                         msg_rx = sk_psock_next_msg(psock, msg_rx);
460                         if (!msg_rx)
461                                 break;
462                         continue;
463                 }
464
465                 msg_rx->sg.start = i;
466                 if (!sge->length && msg_rx->sg.start == msg_rx->sg.end) {
467                         msg_rx = sk_psock_dequeue_msg(psock);
468                         kfree_sk_msg(msg_rx);
469                 }
470                 msg_rx = sk_psock_peek_msg(psock);
471         }
472
473         return copied;
474 }
475 EXPORT_SYMBOL_GPL(sk_msg_recvmsg);
476
477 bool sk_msg_is_readable(struct sock *sk)
478 {
479         struct sk_psock *psock;
480         bool empty = true;
481
482         rcu_read_lock();
483         psock = sk_psock(sk);
484         if (likely(psock))
485                 empty = list_empty(&psock->ingress_msg);
486         rcu_read_unlock();
487         return !empty;
488 }
489 EXPORT_SYMBOL_GPL(sk_msg_is_readable);
490
491 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk,
492                                                   struct sk_buff *skb)
493 {
494         struct sk_msg *msg;
495
496         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
497                 return NULL;
498
499         if (!sk_rmem_schedule(sk, skb, skb->truesize))
500                 return NULL;
501
502         msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_KERNEL);
503         if (unlikely(!msg))
504                 return NULL;
505
506         sk_msg_init(msg);
507         return msg;
508 }
509
510 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb,
511                                         struct sk_psock *psock,
512                                         struct sock *sk,
513                                         struct sk_msg *msg)
514 {
515         int num_sge, copied;
516
517         /* skb linearize may fail with ENOMEM, but lets simply try again
518          * later if this happens. Under memory pressure we don't want to
519          * drop the skb. We need to linearize the skb so that the mapping
520          * in skb_to_sgvec can not error.
521          */
522         if (skb_linearize(skb))
523                 return -EAGAIN;
524         num_sge = skb_to_sgvec(skb, msg->sg.data, 0, skb->len);
525         if (unlikely(num_sge < 0))
526                 return num_sge;
527
528         copied = skb->len;
529         msg->sg.start = 0;
530         msg->sg.size = copied;
531         msg->sg.end = num_sge;
532         msg->skb = skb;
533
534         sk_psock_queue_msg(psock, msg);
535         sk_psock_data_ready(sk, psock);
536         return copied;
537 }
538
539 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb);
540
541 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb)
542 {
543         struct sock *sk = psock->sk;
544         struct sk_msg *msg;
545         int err;
546
547         /* If we are receiving on the same sock skb->sk is already assigned,
548          * skip memory accounting and owner transition seeing it already set
549          * correctly.
550          */
551         if (unlikely(skb->sk == sk))
552                 return sk_psock_skb_ingress_self(psock, skb);
553         msg = sk_psock_create_ingress_msg(sk, skb);
554         if (!msg)
555                 return -EAGAIN;
556
557         /* This will transition ownership of the data from the socket where
558          * the BPF program was run initiating the redirect to the socket
559          * we will eventually receive this data on. The data will be released
560          * from skb_consume found in __tcp_bpf_recvmsg() after its been copied
561          * into user buffers.
562          */
563         skb_set_owner_r(skb, sk);
564         err = sk_psock_skb_ingress_enqueue(skb, psock, sk, msg);
565         if (err < 0)
566                 kfree(msg);
567         return err;
568 }
569
570 /* Puts an skb on the ingress queue of the socket already assigned to the
571  * skb. In this case we do not need to check memory limits or skb_set_owner_r
572  * because the skb is already accounted for here.
573  */
574 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb)
575 {
576         struct sk_msg *msg = kzalloc(sizeof(*msg), __GFP_NOWARN | GFP_ATOMIC);
577         struct sock *sk = psock->sk;
578         int err;
579
580         if (unlikely(!msg))
581                 return -EAGAIN;
582         sk_msg_init(msg);
583         skb_set_owner_r(skb, sk);
584         err = sk_psock_skb_ingress_enqueue(skb, psock, sk, msg);
585         if (err < 0)
586                 kfree(msg);
587         return err;
588 }
589
590 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb,
591                                u32 off, u32 len, bool ingress)
592 {
593         if (!ingress) {
594                 if (!sock_writeable(psock->sk))
595                         return -EAGAIN;
596                 return skb_send_sock(psock->sk, skb, off, len);
597         }
598         return sk_psock_skb_ingress(psock, skb);
599 }
600
601 static void sk_psock_skb_state(struct sk_psock *psock,
602                                struct sk_psock_work_state *state,
603                                struct sk_buff *skb,
604                                int len, int off)
605 {
606         spin_lock_bh(&psock->ingress_lock);
607         if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
608                 state->skb = skb;
609                 state->len = len;
610                 state->off = off;
611         } else {
612                 sock_drop(psock->sk, skb);
613         }
614         spin_unlock_bh(&psock->ingress_lock);
615 }
616
617 static void sk_psock_backlog(struct work_struct *work)
618 {
619         struct sk_psock *psock = container_of(work, struct sk_psock, work);
620         struct sk_psock_work_state *state = &psock->work_state;
621         struct sk_buff *skb = NULL;
622         bool ingress;
623         u32 len, off;
624         int ret;
625
626         mutex_lock(&psock->work_mutex);
627         if (unlikely(state->skb)) {
628                 spin_lock_bh(&psock->ingress_lock);
629                 skb = state->skb;
630                 len = state->len;
631                 off = state->off;
632                 state->skb = NULL;
633                 spin_unlock_bh(&psock->ingress_lock);
634         }
635         if (skb)
636                 goto start;
637
638         while ((skb = skb_dequeue(&psock->ingress_skb))) {
639                 len = skb->len;
640                 off = 0;
641 start:
642                 ingress = skb_bpf_ingress(skb);
643                 skb_bpf_redirect_clear(skb);
644                 do {
645                         ret = -EIO;
646                         if (!sock_flag(psock->sk, SOCK_DEAD))
647                                 ret = sk_psock_handle_skb(psock, skb, off,
648                                                           len, ingress);
649                         if (ret <= 0) {
650                                 if (ret == -EAGAIN) {
651                                         sk_psock_skb_state(psock, state, skb,
652                                                            len, off);
653                                         goto end;
654                                 }
655                                 /* Hard errors break pipe and stop xmit. */
656                                 sk_psock_report_error(psock, ret ? -ret : EPIPE);
657                                 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
658                                 sock_drop(psock->sk, skb);
659                                 goto end;
660                         }
661                         off += ret;
662                         len -= ret;
663                 } while (len);
664
665                 if (!ingress)
666                         kfree_skb(skb);
667         }
668 end:
669         mutex_unlock(&psock->work_mutex);
670 }
671
672 struct sk_psock *sk_psock_init(struct sock *sk, int node)
673 {
674         struct sk_psock *psock;
675         struct proto *prot;
676
677         write_lock_bh(&sk->sk_callback_lock);
678
679         if (sk->sk_user_data) {
680                 psock = ERR_PTR(-EBUSY);
681                 goto out;
682         }
683
684         psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node);
685         if (!psock) {
686                 psock = ERR_PTR(-ENOMEM);
687                 goto out;
688         }
689
690         prot = READ_ONCE(sk->sk_prot);
691         psock->sk = sk;
692         psock->eval = __SK_NONE;
693         psock->sk_proto = prot;
694         psock->saved_unhash = prot->unhash;
695         psock->saved_close = prot->close;
696         psock->saved_write_space = sk->sk_write_space;
697
698         INIT_LIST_HEAD(&psock->link);
699         spin_lock_init(&psock->link_lock);
700
701         INIT_WORK(&psock->work, sk_psock_backlog);
702         mutex_init(&psock->work_mutex);
703         INIT_LIST_HEAD(&psock->ingress_msg);
704         spin_lock_init(&psock->ingress_lock);
705         skb_queue_head_init(&psock->ingress_skb);
706
707         sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED);
708         refcount_set(&psock->refcnt, 1);
709
710         rcu_assign_sk_user_data_nocopy(sk, psock);
711         sock_hold(sk);
712
713 out:
714         write_unlock_bh(&sk->sk_callback_lock);
715         return psock;
716 }
717 EXPORT_SYMBOL_GPL(sk_psock_init);
718
719 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock)
720 {
721         struct sk_psock_link *link;
722
723         spin_lock_bh(&psock->link_lock);
724         link = list_first_entry_or_null(&psock->link, struct sk_psock_link,
725                                         list);
726         if (link)
727                 list_del(&link->list);
728         spin_unlock_bh(&psock->link_lock);
729         return link;
730 }
731
732 static void __sk_psock_purge_ingress_msg(struct sk_psock *psock)
733 {
734         struct sk_msg *msg, *tmp;
735
736         list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) {
737                 list_del(&msg->list);
738                 sk_msg_free(psock->sk, msg);
739                 kfree(msg);
740         }
741 }
742
743 static void __sk_psock_zap_ingress(struct sk_psock *psock)
744 {
745         struct sk_buff *skb;
746
747         while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) {
748                 skb_bpf_redirect_clear(skb);
749                 sock_drop(psock->sk, skb);
750         }
751         kfree_skb(psock->work_state.skb);
752         /* We null the skb here to ensure that calls to sk_psock_backlog
753          * do not pick up the free'd skb.
754          */
755         psock->work_state.skb = NULL;
756         __sk_psock_purge_ingress_msg(psock);
757 }
758
759 static void sk_psock_link_destroy(struct sk_psock *psock)
760 {
761         struct sk_psock_link *link, *tmp;
762
763         list_for_each_entry_safe(link, tmp, &psock->link, list) {
764                 list_del(&link->list);
765                 sk_psock_free_link(link);
766         }
767 }
768
769 void sk_psock_stop(struct sk_psock *psock, bool wait)
770 {
771         spin_lock_bh(&psock->ingress_lock);
772         sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
773         sk_psock_cork_free(psock);
774         __sk_psock_zap_ingress(psock);
775         spin_unlock_bh(&psock->ingress_lock);
776
777         if (wait)
778                 cancel_work_sync(&psock->work);
779 }
780
781 static void sk_psock_done_strp(struct sk_psock *psock);
782
783 static void sk_psock_destroy(struct work_struct *work)
784 {
785         struct sk_psock *psock = container_of(to_rcu_work(work),
786                                               struct sk_psock, rwork);
787         /* No sk_callback_lock since already detached. */
788
789         sk_psock_done_strp(psock);
790
791         cancel_work_sync(&psock->work);
792         mutex_destroy(&psock->work_mutex);
793
794         psock_progs_drop(&psock->progs);
795
796         sk_psock_link_destroy(psock);
797         sk_psock_cork_free(psock);
798
799         if (psock->sk_redir)
800                 sock_put(psock->sk_redir);
801         sock_put(psock->sk);
802         kfree(psock);
803 }
804
805 void sk_psock_drop(struct sock *sk, struct sk_psock *psock)
806 {
807         write_lock_bh(&sk->sk_callback_lock);
808         sk_psock_restore_proto(sk, psock);
809         rcu_assign_sk_user_data(sk, NULL);
810         if (psock->progs.stream_parser)
811                 sk_psock_stop_strp(sk, psock);
812         else if (psock->progs.stream_verdict || psock->progs.skb_verdict)
813                 sk_psock_stop_verdict(sk, psock);
814         write_unlock_bh(&sk->sk_callback_lock);
815
816         sk_psock_stop(psock, false);
817
818         INIT_RCU_WORK(&psock->rwork, sk_psock_destroy);
819         queue_rcu_work(system_wq, &psock->rwork);
820 }
821 EXPORT_SYMBOL_GPL(sk_psock_drop);
822
823 static int sk_psock_map_verd(int verdict, bool redir)
824 {
825         switch (verdict) {
826         case SK_PASS:
827                 return redir ? __SK_REDIRECT : __SK_PASS;
828         case SK_DROP:
829         default:
830                 break;
831         }
832
833         return __SK_DROP;
834 }
835
836 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock,
837                          struct sk_msg *msg)
838 {
839         struct bpf_prog *prog;
840         int ret;
841
842         rcu_read_lock();
843         prog = READ_ONCE(psock->progs.msg_parser);
844         if (unlikely(!prog)) {
845                 ret = __SK_PASS;
846                 goto out;
847         }
848
849         sk_msg_compute_data_pointers(msg);
850         msg->sk = sk;
851         ret = bpf_prog_run_pin_on_cpu(prog, msg);
852         ret = sk_psock_map_verd(ret, msg->sk_redir);
853         psock->apply_bytes = msg->apply_bytes;
854         if (ret == __SK_REDIRECT) {
855                 if (psock->sk_redir)
856                         sock_put(psock->sk_redir);
857                 psock->sk_redir = msg->sk_redir;
858                 if (!psock->sk_redir) {
859                         ret = __SK_DROP;
860                         goto out;
861                 }
862                 sock_hold(psock->sk_redir);
863         }
864 out:
865         rcu_read_unlock();
866         return ret;
867 }
868 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict);
869
870 static int sk_psock_skb_redirect(struct sk_psock *from, struct sk_buff *skb)
871 {
872         struct sk_psock *psock_other;
873         struct sock *sk_other;
874
875         sk_other = skb_bpf_redirect_fetch(skb);
876         /* This error is a buggy BPF program, it returned a redirect
877          * return code, but then didn't set a redirect interface.
878          */
879         if (unlikely(!sk_other)) {
880                 sock_drop(from->sk, skb);
881                 return -EIO;
882         }
883         psock_other = sk_psock(sk_other);
884         /* This error indicates the socket is being torn down or had another
885          * error that caused the pipe to break. We can't send a packet on
886          * a socket that is in this state so we drop the skb.
887          */
888         if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) {
889                 skb_bpf_redirect_clear(skb);
890                 sock_drop(from->sk, skb);
891                 return -EIO;
892         }
893         spin_lock_bh(&psock_other->ingress_lock);
894         if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) {
895                 spin_unlock_bh(&psock_other->ingress_lock);
896                 skb_bpf_redirect_clear(skb);
897                 sock_drop(from->sk, skb);
898                 return -EIO;
899         }
900
901         skb_queue_tail(&psock_other->ingress_skb, skb);
902         schedule_work(&psock_other->work);
903         spin_unlock_bh(&psock_other->ingress_lock);
904         return 0;
905 }
906
907 static void sk_psock_tls_verdict_apply(struct sk_buff *skb,
908                                        struct sk_psock *from, int verdict)
909 {
910         switch (verdict) {
911         case __SK_REDIRECT:
912                 sk_psock_skb_redirect(from, skb);
913                 break;
914         case __SK_PASS:
915         case __SK_DROP:
916         default:
917                 break;
918         }
919 }
920
921 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb)
922 {
923         struct bpf_prog *prog;
924         int ret = __SK_PASS;
925
926         rcu_read_lock();
927         prog = READ_ONCE(psock->progs.stream_verdict);
928         if (likely(prog)) {
929                 skb->sk = psock->sk;
930                 skb_dst_drop(skb);
931                 skb_bpf_redirect_clear(skb);
932                 ret = bpf_prog_run_pin_on_cpu(prog, skb);
933                 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
934                 skb->sk = NULL;
935         }
936         sk_psock_tls_verdict_apply(skb, psock, ret);
937         rcu_read_unlock();
938         return ret;
939 }
940 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read);
941
942 static int sk_psock_verdict_apply(struct sk_psock *psock, struct sk_buff *skb,
943                                   int verdict)
944 {
945         struct sock *sk_other;
946         int err = 0;
947
948         switch (verdict) {
949         case __SK_PASS:
950                 err = -EIO;
951                 sk_other = psock->sk;
952                 if (sock_flag(sk_other, SOCK_DEAD) ||
953                     !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
954                         goto out_free;
955                 }
956
957                 skb_bpf_set_ingress(skb);
958
959                 /* If the queue is empty then we can submit directly
960                  * into the msg queue. If its not empty we have to
961                  * queue work otherwise we may get OOO data. Otherwise,
962                  * if sk_psock_skb_ingress errors will be handled by
963                  * retrying later from workqueue.
964                  */
965                 if (skb_queue_empty(&psock->ingress_skb)) {
966                         err = sk_psock_skb_ingress_self(psock, skb);
967                 }
968                 if (err < 0) {
969                         spin_lock_bh(&psock->ingress_lock);
970                         if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
971                                 skb_queue_tail(&psock->ingress_skb, skb);
972                                 schedule_work(&psock->work);
973                                 err = 0;
974                         }
975                         spin_unlock_bh(&psock->ingress_lock);
976                         if (err < 0) {
977                                 skb_bpf_redirect_clear(skb);
978                                 goto out_free;
979                         }
980                 }
981                 break;
982         case __SK_REDIRECT:
983                 err = sk_psock_skb_redirect(psock, skb);
984                 break;
985         case __SK_DROP:
986         default:
987 out_free:
988                 sock_drop(psock->sk, skb);
989         }
990
991         return err;
992 }
993
994 static void sk_psock_write_space(struct sock *sk)
995 {
996         struct sk_psock *psock;
997         void (*write_space)(struct sock *sk) = NULL;
998
999         rcu_read_lock();
1000         psock = sk_psock(sk);
1001         if (likely(psock)) {
1002                 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
1003                         schedule_work(&psock->work);
1004                 write_space = psock->saved_write_space;
1005         }
1006         rcu_read_unlock();
1007         if (write_space)
1008                 write_space(sk);
1009 }
1010
1011 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER)
1012 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb)
1013 {
1014         struct sk_psock *psock;
1015         struct bpf_prog *prog;
1016         int ret = __SK_DROP;
1017         struct sock *sk;
1018
1019         rcu_read_lock();
1020         sk = strp->sk;
1021         psock = sk_psock(sk);
1022         if (unlikely(!psock)) {
1023                 sock_drop(sk, skb);
1024                 goto out;
1025         }
1026         prog = READ_ONCE(psock->progs.stream_verdict);
1027         if (likely(prog)) {
1028                 skb->sk = sk;
1029                 skb_dst_drop(skb);
1030                 skb_bpf_redirect_clear(skb);
1031                 ret = bpf_prog_run_pin_on_cpu(prog, skb);
1032                 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1033                 skb->sk = NULL;
1034         }
1035         sk_psock_verdict_apply(psock, skb, ret);
1036 out:
1037         rcu_read_unlock();
1038 }
1039
1040 static int sk_psock_strp_read_done(struct strparser *strp, int err)
1041 {
1042         return err;
1043 }
1044
1045 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb)
1046 {
1047         struct sk_psock *psock = container_of(strp, struct sk_psock, strp);
1048         struct bpf_prog *prog;
1049         int ret = skb->len;
1050
1051         rcu_read_lock();
1052         prog = READ_ONCE(psock->progs.stream_parser);
1053         if (likely(prog)) {
1054                 skb->sk = psock->sk;
1055                 ret = bpf_prog_run_pin_on_cpu(prog, skb);
1056                 skb->sk = NULL;
1057         }
1058         rcu_read_unlock();
1059         return ret;
1060 }
1061
1062 /* Called with socket lock held. */
1063 static void sk_psock_strp_data_ready(struct sock *sk)
1064 {
1065         struct sk_psock *psock;
1066
1067         rcu_read_lock();
1068         psock = sk_psock(sk);
1069         if (likely(psock)) {
1070                 if (tls_sw_has_ctx_rx(sk)) {
1071                         psock->saved_data_ready(sk);
1072                 } else {
1073                         write_lock_bh(&sk->sk_callback_lock);
1074                         strp_data_ready(&psock->strp);
1075                         write_unlock_bh(&sk->sk_callback_lock);
1076                 }
1077         }
1078         rcu_read_unlock();
1079 }
1080
1081 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock)
1082 {
1083         static const struct strp_callbacks cb = {
1084                 .rcv_msg        = sk_psock_strp_read,
1085                 .read_sock_done = sk_psock_strp_read_done,
1086                 .parse_msg      = sk_psock_strp_parse,
1087         };
1088
1089         return strp_init(&psock->strp, sk, &cb);
1090 }
1091
1092 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock)
1093 {
1094         if (psock->saved_data_ready)
1095                 return;
1096
1097         psock->saved_data_ready = sk->sk_data_ready;
1098         sk->sk_data_ready = sk_psock_strp_data_ready;
1099         sk->sk_write_space = sk_psock_write_space;
1100 }
1101
1102 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock)
1103 {
1104         if (!psock->saved_data_ready)
1105                 return;
1106
1107         sk->sk_data_ready = psock->saved_data_ready;
1108         psock->saved_data_ready = NULL;
1109         strp_stop(&psock->strp);
1110 }
1111
1112 static void sk_psock_done_strp(struct sk_psock *psock)
1113 {
1114         /* Parser has been stopped */
1115         if (psock->progs.stream_parser)
1116                 strp_done(&psock->strp);
1117 }
1118 #else
1119 static void sk_psock_done_strp(struct sk_psock *psock)
1120 {
1121 }
1122 #endif /* CONFIG_BPF_STREAM_PARSER */
1123
1124 static int sk_psock_verdict_recv(read_descriptor_t *desc, struct sk_buff *skb,
1125                                  unsigned int offset, size_t orig_len)
1126 {
1127         struct sock *sk = (struct sock *)desc->arg.data;
1128         struct sk_psock *psock;
1129         struct bpf_prog *prog;
1130         int ret = __SK_DROP;
1131         int len = skb->len;
1132
1133         /* clone here so sk_eat_skb() in tcp_read_sock does not drop our data */
1134         skb = skb_clone(skb, GFP_ATOMIC);
1135         if (!skb) {
1136                 desc->error = -ENOMEM;
1137                 return 0;
1138         }
1139
1140         rcu_read_lock();
1141         psock = sk_psock(sk);
1142         if (unlikely(!psock)) {
1143                 len = 0;
1144                 sock_drop(sk, skb);
1145                 goto out;
1146         }
1147         prog = READ_ONCE(psock->progs.stream_verdict);
1148         if (!prog)
1149                 prog = READ_ONCE(psock->progs.skb_verdict);
1150         if (likely(prog)) {
1151                 skb->sk = sk;
1152                 skb_dst_drop(skb);
1153                 skb_bpf_redirect_clear(skb);
1154                 ret = bpf_prog_run_pin_on_cpu(prog, skb);
1155                 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1156                 skb->sk = NULL;
1157         }
1158         if (sk_psock_verdict_apply(psock, skb, ret) < 0)
1159                 len = 0;
1160 out:
1161         rcu_read_unlock();
1162         return len;
1163 }
1164
1165 static void sk_psock_verdict_data_ready(struct sock *sk)
1166 {
1167         struct socket *sock = sk->sk_socket;
1168         read_descriptor_t desc;
1169
1170         if (unlikely(!sock || !sock->ops || !sock->ops->read_sock))
1171                 return;
1172
1173         desc.arg.data = sk;
1174         desc.error = 0;
1175         desc.count = 1;
1176
1177         sock->ops->read_sock(sk, &desc, sk_psock_verdict_recv);
1178 }
1179
1180 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock)
1181 {
1182         if (psock->saved_data_ready)
1183                 return;
1184
1185         psock->saved_data_ready = sk->sk_data_ready;
1186         sk->sk_data_ready = sk_psock_verdict_data_ready;
1187         sk->sk_write_space = sk_psock_write_space;
1188 }
1189
1190 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock)
1191 {
1192         if (!psock->saved_data_ready)
1193                 return;
1194
1195         sk->sk_data_ready = psock->saved_data_ready;
1196         psock->saved_data_ready = NULL;
1197 }