tcp: fix skb_copy_ubufs() vs BIG TCP
[platform/kernel/linux-starfive.git] / net / core / skmsg.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */
3
4 #include <linux/skmsg.h>
5 #include <linux/skbuff.h>
6 #include <linux/scatterlist.h>
7
8 #include <net/sock.h>
9 #include <net/tcp.h>
10 #include <net/tls.h>
11
12 static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce)
13 {
14         if (msg->sg.end > msg->sg.start &&
15             elem_first_coalesce < msg->sg.end)
16                 return true;
17
18         if (msg->sg.end < msg->sg.start &&
19             (elem_first_coalesce > msg->sg.start ||
20              elem_first_coalesce < msg->sg.end))
21                 return true;
22
23         return false;
24 }
25
26 int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len,
27                  int elem_first_coalesce)
28 {
29         struct page_frag *pfrag = sk_page_frag(sk);
30         u32 osize = msg->sg.size;
31         int ret = 0;
32
33         len -= msg->sg.size;
34         while (len > 0) {
35                 struct scatterlist *sge;
36                 u32 orig_offset;
37                 int use, i;
38
39                 if (!sk_page_frag_refill(sk, pfrag)) {
40                         ret = -ENOMEM;
41                         goto msg_trim;
42                 }
43
44                 orig_offset = pfrag->offset;
45                 use = min_t(int, len, pfrag->size - orig_offset);
46                 if (!sk_wmem_schedule(sk, use)) {
47                         ret = -ENOMEM;
48                         goto msg_trim;
49                 }
50
51                 i = msg->sg.end;
52                 sk_msg_iter_var_prev(i);
53                 sge = &msg->sg.data[i];
54
55                 if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) &&
56                     sg_page(sge) == pfrag->page &&
57                     sge->offset + sge->length == orig_offset) {
58                         sge->length += use;
59                 } else {
60                         if (sk_msg_full(msg)) {
61                                 ret = -ENOSPC;
62                                 break;
63                         }
64
65                         sge = &msg->sg.data[msg->sg.end];
66                         sg_unmark_end(sge);
67                         sg_set_page(sge, pfrag->page, use, orig_offset);
68                         get_page(pfrag->page);
69                         sk_msg_iter_next(msg, end);
70                 }
71
72                 sk_mem_charge(sk, use);
73                 msg->sg.size += use;
74                 pfrag->offset += use;
75                 len -= use;
76         }
77
78         return ret;
79
80 msg_trim:
81         sk_msg_trim(sk, msg, osize);
82         return ret;
83 }
84 EXPORT_SYMBOL_GPL(sk_msg_alloc);
85
86 int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src,
87                  u32 off, u32 len)
88 {
89         int i = src->sg.start;
90         struct scatterlist *sge = sk_msg_elem(src, i);
91         struct scatterlist *sgd = NULL;
92         u32 sge_len, sge_off;
93
94         while (off) {
95                 if (sge->length > off)
96                         break;
97                 off -= sge->length;
98                 sk_msg_iter_var_next(i);
99                 if (i == src->sg.end && off)
100                         return -ENOSPC;
101                 sge = sk_msg_elem(src, i);
102         }
103
104         while (len) {
105                 sge_len = sge->length - off;
106                 if (sge_len > len)
107                         sge_len = len;
108
109                 if (dst->sg.end)
110                         sgd = sk_msg_elem(dst, dst->sg.end - 1);
111
112                 if (sgd &&
113                     (sg_page(sge) == sg_page(sgd)) &&
114                     (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) {
115                         sgd->length += sge_len;
116                         dst->sg.size += sge_len;
117                 } else if (!sk_msg_full(dst)) {
118                         sge_off = sge->offset + off;
119                         sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off);
120                 } else {
121                         return -ENOSPC;
122                 }
123
124                 off = 0;
125                 len -= sge_len;
126                 sk_mem_charge(sk, sge_len);
127                 sk_msg_iter_var_next(i);
128                 if (i == src->sg.end && len)
129                         return -ENOSPC;
130                 sge = sk_msg_elem(src, i);
131         }
132
133         return 0;
134 }
135 EXPORT_SYMBOL_GPL(sk_msg_clone);
136
137 void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes)
138 {
139         int i = msg->sg.start;
140
141         do {
142                 struct scatterlist *sge = sk_msg_elem(msg, i);
143
144                 if (bytes < sge->length) {
145                         sge->length -= bytes;
146                         sge->offset += bytes;
147                         sk_mem_uncharge(sk, bytes);
148                         break;
149                 }
150
151                 sk_mem_uncharge(sk, sge->length);
152                 bytes -= sge->length;
153                 sge->length = 0;
154                 sge->offset = 0;
155                 sk_msg_iter_var_next(i);
156         } while (bytes && i != msg->sg.end);
157         msg->sg.start = i;
158 }
159 EXPORT_SYMBOL_GPL(sk_msg_return_zero);
160
161 void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes)
162 {
163         int i = msg->sg.start;
164
165         do {
166                 struct scatterlist *sge = &msg->sg.data[i];
167                 int uncharge = (bytes < sge->length) ? bytes : sge->length;
168
169                 sk_mem_uncharge(sk, uncharge);
170                 bytes -= uncharge;
171                 sk_msg_iter_var_next(i);
172         } while (i != msg->sg.end);
173 }
174 EXPORT_SYMBOL_GPL(sk_msg_return);
175
176 static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i,
177                             bool charge)
178 {
179         struct scatterlist *sge = sk_msg_elem(msg, i);
180         u32 len = sge->length;
181
182         /* When the skb owns the memory we free it from consume_skb path. */
183         if (!msg->skb) {
184                 if (charge)
185                         sk_mem_uncharge(sk, len);
186                 put_page(sg_page(sge));
187         }
188         memset(sge, 0, sizeof(*sge));
189         return len;
190 }
191
192 static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i,
193                          bool charge)
194 {
195         struct scatterlist *sge = sk_msg_elem(msg, i);
196         int freed = 0;
197
198         while (msg->sg.size) {
199                 msg->sg.size -= sge->length;
200                 freed += sk_msg_free_elem(sk, msg, i, charge);
201                 sk_msg_iter_var_next(i);
202                 sk_msg_check_to_free(msg, i, msg->sg.size);
203                 sge = sk_msg_elem(msg, i);
204         }
205         consume_skb(msg->skb);
206         sk_msg_init(msg);
207         return freed;
208 }
209
210 int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg)
211 {
212         return __sk_msg_free(sk, msg, msg->sg.start, false);
213 }
214 EXPORT_SYMBOL_GPL(sk_msg_free_nocharge);
215
216 int sk_msg_free(struct sock *sk, struct sk_msg *msg)
217 {
218         return __sk_msg_free(sk, msg, msg->sg.start, true);
219 }
220 EXPORT_SYMBOL_GPL(sk_msg_free);
221
222 static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg,
223                                   u32 bytes, bool charge)
224 {
225         struct scatterlist *sge;
226         u32 i = msg->sg.start;
227
228         while (bytes) {
229                 sge = sk_msg_elem(msg, i);
230                 if (!sge->length)
231                         break;
232                 if (bytes < sge->length) {
233                         if (charge)
234                                 sk_mem_uncharge(sk, bytes);
235                         sge->length -= bytes;
236                         sge->offset += bytes;
237                         msg->sg.size -= bytes;
238                         break;
239                 }
240
241                 msg->sg.size -= sge->length;
242                 bytes -= sge->length;
243                 sk_msg_free_elem(sk, msg, i, charge);
244                 sk_msg_iter_var_next(i);
245                 sk_msg_check_to_free(msg, i, bytes);
246         }
247         msg->sg.start = i;
248 }
249
250 void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes)
251 {
252         __sk_msg_free_partial(sk, msg, bytes, true);
253 }
254 EXPORT_SYMBOL_GPL(sk_msg_free_partial);
255
256 void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg,
257                                   u32 bytes)
258 {
259         __sk_msg_free_partial(sk, msg, bytes, false);
260 }
261
262 void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len)
263 {
264         int trim = msg->sg.size - len;
265         u32 i = msg->sg.end;
266
267         if (trim <= 0) {
268                 WARN_ON(trim < 0);
269                 return;
270         }
271
272         sk_msg_iter_var_prev(i);
273         msg->sg.size = len;
274         while (msg->sg.data[i].length &&
275                trim >= msg->sg.data[i].length) {
276                 trim -= msg->sg.data[i].length;
277                 sk_msg_free_elem(sk, msg, i, true);
278                 sk_msg_iter_var_prev(i);
279                 if (!trim)
280                         goto out;
281         }
282
283         msg->sg.data[i].length -= trim;
284         sk_mem_uncharge(sk, trim);
285         /* Adjust copybreak if it falls into the trimmed part of last buf */
286         if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length)
287                 msg->sg.copybreak = msg->sg.data[i].length;
288 out:
289         sk_msg_iter_var_next(i);
290         msg->sg.end = i;
291
292         /* If we trim data a full sg elem before curr pointer update
293          * copybreak and current so that any future copy operations
294          * start at new copy location.
295          * However trimed data that has not yet been used in a copy op
296          * does not require an update.
297          */
298         if (!msg->sg.size) {
299                 msg->sg.curr = msg->sg.start;
300                 msg->sg.copybreak = 0;
301         } else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >=
302                    sk_msg_iter_dist(msg->sg.start, msg->sg.end)) {
303                 sk_msg_iter_var_prev(i);
304                 msg->sg.curr = i;
305                 msg->sg.copybreak = msg->sg.data[i].length;
306         }
307 }
308 EXPORT_SYMBOL_GPL(sk_msg_trim);
309
310 int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
311                               struct sk_msg *msg, u32 bytes)
312 {
313         int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg);
314         const int to_max_pages = MAX_MSG_FRAGS;
315         struct page *pages[MAX_MSG_FRAGS];
316         ssize_t orig, copied, use, offset;
317
318         orig = msg->sg.size;
319         while (bytes > 0) {
320                 i = 0;
321                 maxpages = to_max_pages - num_elems;
322                 if (maxpages == 0) {
323                         ret = -EFAULT;
324                         goto out;
325                 }
326
327                 copied = iov_iter_get_pages2(from, pages, bytes, maxpages,
328                                             &offset);
329                 if (copied <= 0) {
330                         ret = -EFAULT;
331                         goto out;
332                 }
333
334                 bytes -= copied;
335                 msg->sg.size += copied;
336
337                 while (copied) {
338                         use = min_t(int, copied, PAGE_SIZE - offset);
339                         sg_set_page(&msg->sg.data[msg->sg.end],
340                                     pages[i], use, offset);
341                         sg_unmark_end(&msg->sg.data[msg->sg.end]);
342                         sk_mem_charge(sk, use);
343
344                         offset = 0;
345                         copied -= use;
346                         sk_msg_iter_next(msg, end);
347                         num_elems++;
348                         i++;
349                 }
350                 /* When zerocopy is mixed with sk_msg_*copy* operations we
351                  * may have a copybreak set in this case clear and prefer
352                  * zerocopy remainder when possible.
353                  */
354                 msg->sg.copybreak = 0;
355                 msg->sg.curr = msg->sg.end;
356         }
357 out:
358         /* Revert iov_iter updates, msg will need to use 'trim' later if it
359          * also needs to be cleared.
360          */
361         if (ret)
362                 iov_iter_revert(from, msg->sg.size - orig);
363         return ret;
364 }
365 EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter);
366
367 int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from,
368                              struct sk_msg *msg, u32 bytes)
369 {
370         int ret = -ENOSPC, i = msg->sg.curr;
371         struct scatterlist *sge;
372         u32 copy, buf_size;
373         void *to;
374
375         do {
376                 sge = sk_msg_elem(msg, i);
377                 /* This is possible if a trim operation shrunk the buffer */
378                 if (msg->sg.copybreak >= sge->length) {
379                         msg->sg.copybreak = 0;
380                         sk_msg_iter_var_next(i);
381                         if (i == msg->sg.end)
382                                 break;
383                         sge = sk_msg_elem(msg, i);
384                 }
385
386                 buf_size = sge->length - msg->sg.copybreak;
387                 copy = (buf_size > bytes) ? bytes : buf_size;
388                 to = sg_virt(sge) + msg->sg.copybreak;
389                 msg->sg.copybreak += copy;
390                 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
391                         ret = copy_from_iter_nocache(to, copy, from);
392                 else
393                         ret = copy_from_iter(to, copy, from);
394                 if (ret != copy) {
395                         ret = -EFAULT;
396                         goto out;
397                 }
398                 bytes -= copy;
399                 if (!bytes)
400                         break;
401                 msg->sg.copybreak = 0;
402                 sk_msg_iter_var_next(i);
403         } while (i != msg->sg.end);
404 out:
405         msg->sg.curr = i;
406         return ret;
407 }
408 EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter);
409
410 /* Receive sk_msg from psock->ingress_msg to @msg. */
411 int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg,
412                    int len, int flags)
413 {
414         struct iov_iter *iter = &msg->msg_iter;
415         int peek = flags & MSG_PEEK;
416         struct sk_msg *msg_rx;
417         int i, copied = 0;
418
419         msg_rx = sk_psock_peek_msg(psock);
420         while (copied != len) {
421                 struct scatterlist *sge;
422
423                 if (unlikely(!msg_rx))
424                         break;
425
426                 i = msg_rx->sg.start;
427                 do {
428                         struct page *page;
429                         int copy;
430
431                         sge = sk_msg_elem(msg_rx, i);
432                         copy = sge->length;
433                         page = sg_page(sge);
434                         if (copied + copy > len)
435                                 copy = len - copied;
436                         copy = copy_page_to_iter(page, sge->offset, copy, iter);
437                         if (!copy) {
438                                 copied = copied ? copied : -EFAULT;
439                                 goto out;
440                         }
441
442                         copied += copy;
443                         if (likely(!peek)) {
444                                 sge->offset += copy;
445                                 sge->length -= copy;
446                                 if (!msg_rx->skb)
447                                         sk_mem_uncharge(sk, copy);
448                                 msg_rx->sg.size -= copy;
449
450                                 if (!sge->length) {
451                                         sk_msg_iter_var_next(i);
452                                         if (!msg_rx->skb)
453                                                 put_page(page);
454                                 }
455                         } else {
456                                 /* Lets not optimize peek case if copy_page_to_iter
457                                  * didn't copy the entire length lets just break.
458                                  */
459                                 if (copy != sge->length)
460                                         goto out;
461                                 sk_msg_iter_var_next(i);
462                         }
463
464                         if (copied == len)
465                                 break;
466                 } while ((i != msg_rx->sg.end) && !sg_is_last(sge));
467
468                 if (unlikely(peek)) {
469                         msg_rx = sk_psock_next_msg(psock, msg_rx);
470                         if (!msg_rx)
471                                 break;
472                         continue;
473                 }
474
475                 msg_rx->sg.start = i;
476                 if (!sge->length && (i == msg_rx->sg.end || sg_is_last(sge))) {
477                         msg_rx = sk_psock_dequeue_msg(psock);
478                         kfree_sk_msg(msg_rx);
479                 }
480                 msg_rx = sk_psock_peek_msg(psock);
481         }
482 out:
483         if (psock->work_state.skb && copied > 0)
484                 schedule_work(&psock->work);
485         return copied;
486 }
487 EXPORT_SYMBOL_GPL(sk_msg_recvmsg);
488
489 bool sk_msg_is_readable(struct sock *sk)
490 {
491         struct sk_psock *psock;
492         bool empty = true;
493
494         rcu_read_lock();
495         psock = sk_psock(sk);
496         if (likely(psock))
497                 empty = list_empty(&psock->ingress_msg);
498         rcu_read_unlock();
499         return !empty;
500 }
501 EXPORT_SYMBOL_GPL(sk_msg_is_readable);
502
503 static struct sk_msg *alloc_sk_msg(gfp_t gfp)
504 {
505         struct sk_msg *msg;
506
507         msg = kzalloc(sizeof(*msg), gfp | __GFP_NOWARN);
508         if (unlikely(!msg))
509                 return NULL;
510         sg_init_marker(msg->sg.data, NR_MSG_FRAG_IDS);
511         return msg;
512 }
513
514 static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk,
515                                                   struct sk_buff *skb)
516 {
517         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
518                 return NULL;
519
520         if (!sk_rmem_schedule(sk, skb, skb->truesize))
521                 return NULL;
522
523         return alloc_sk_msg(GFP_KERNEL);
524 }
525
526 static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb,
527                                         u32 off, u32 len,
528                                         struct sk_psock *psock,
529                                         struct sock *sk,
530                                         struct sk_msg *msg)
531 {
532         int num_sge, copied;
533
534         num_sge = skb_to_sgvec(skb, msg->sg.data, off, len);
535         if (num_sge < 0) {
536                 /* skb linearize may fail with ENOMEM, but lets simply try again
537                  * later if this happens. Under memory pressure we don't want to
538                  * drop the skb. We need to linearize the skb so that the mapping
539                  * in skb_to_sgvec can not error.
540                  */
541                 if (skb_linearize(skb))
542                         return -EAGAIN;
543
544                 num_sge = skb_to_sgvec(skb, msg->sg.data, off, len);
545                 if (unlikely(num_sge < 0))
546                         return num_sge;
547         }
548
549         copied = len;
550         msg->sg.start = 0;
551         msg->sg.size = copied;
552         msg->sg.end = num_sge;
553         msg->skb = skb;
554
555         sk_psock_queue_msg(psock, msg);
556         sk_psock_data_ready(sk, psock);
557         return copied;
558 }
559
560 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
561                                      u32 off, u32 len);
562
563 static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb,
564                                 u32 off, u32 len)
565 {
566         struct sock *sk = psock->sk;
567         struct sk_msg *msg;
568         int err;
569
570         /* If we are receiving on the same sock skb->sk is already assigned,
571          * skip memory accounting and owner transition seeing it already set
572          * correctly.
573          */
574         if (unlikely(skb->sk == sk))
575                 return sk_psock_skb_ingress_self(psock, skb, off, len);
576         msg = sk_psock_create_ingress_msg(sk, skb);
577         if (!msg)
578                 return -EAGAIN;
579
580         /* This will transition ownership of the data from the socket where
581          * the BPF program was run initiating the redirect to the socket
582          * we will eventually receive this data on. The data will be released
583          * from skb_consume found in __tcp_bpf_recvmsg() after its been copied
584          * into user buffers.
585          */
586         skb_set_owner_r(skb, sk);
587         err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg);
588         if (err < 0)
589                 kfree(msg);
590         return err;
591 }
592
593 /* Puts an skb on the ingress queue of the socket already assigned to the
594  * skb. In this case we do not need to check memory limits or skb_set_owner_r
595  * because the skb is already accounted for here.
596  */
597 static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
598                                      u32 off, u32 len)
599 {
600         struct sk_msg *msg = alloc_sk_msg(GFP_ATOMIC);
601         struct sock *sk = psock->sk;
602         int err;
603
604         if (unlikely(!msg))
605                 return -EAGAIN;
606         skb_set_owner_r(skb, sk);
607         err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg);
608         if (err < 0)
609                 kfree(msg);
610         return err;
611 }
612
613 static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb,
614                                u32 off, u32 len, bool ingress)
615 {
616         if (!ingress) {
617                 if (!sock_writeable(psock->sk))
618                         return -EAGAIN;
619                 return skb_send_sock(psock->sk, skb, off, len);
620         }
621         return sk_psock_skb_ingress(psock, skb, off, len);
622 }
623
624 static void sk_psock_skb_state(struct sk_psock *psock,
625                                struct sk_psock_work_state *state,
626                                struct sk_buff *skb,
627                                int len, int off)
628 {
629         spin_lock_bh(&psock->ingress_lock);
630         if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
631                 state->skb = skb;
632                 state->len = len;
633                 state->off = off;
634         } else {
635                 sock_drop(psock->sk, skb);
636         }
637         spin_unlock_bh(&psock->ingress_lock);
638 }
639
640 static void sk_psock_backlog(struct work_struct *work)
641 {
642         struct sk_psock *psock = container_of(work, struct sk_psock, work);
643         struct sk_psock_work_state *state = &psock->work_state;
644         struct sk_buff *skb = NULL;
645         bool ingress;
646         u32 len, off;
647         int ret;
648
649         mutex_lock(&psock->work_mutex);
650         if (unlikely(state->skb)) {
651                 spin_lock_bh(&psock->ingress_lock);
652                 skb = state->skb;
653                 len = state->len;
654                 off = state->off;
655                 state->skb = NULL;
656                 spin_unlock_bh(&psock->ingress_lock);
657         }
658         if (skb)
659                 goto start;
660
661         while ((skb = skb_dequeue(&psock->ingress_skb))) {
662                 len = skb->len;
663                 off = 0;
664                 if (skb_bpf_strparser(skb)) {
665                         struct strp_msg *stm = strp_msg(skb);
666
667                         off = stm->offset;
668                         len = stm->full_len;
669                 }
670 start:
671                 ingress = skb_bpf_ingress(skb);
672                 skb_bpf_redirect_clear(skb);
673                 do {
674                         ret = -EIO;
675                         if (!sock_flag(psock->sk, SOCK_DEAD))
676                                 ret = sk_psock_handle_skb(psock, skb, off,
677                                                           len, ingress);
678                         if (ret <= 0) {
679                                 if (ret == -EAGAIN) {
680                                         sk_psock_skb_state(psock, state, skb,
681                                                            len, off);
682                                         goto end;
683                                 }
684                                 /* Hard errors break pipe and stop xmit. */
685                                 sk_psock_report_error(psock, ret ? -ret : EPIPE);
686                                 sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
687                                 sock_drop(psock->sk, skb);
688                                 goto end;
689                         }
690                         off += ret;
691                         len -= ret;
692                 } while (len);
693
694                 if (!ingress)
695                         kfree_skb(skb);
696         }
697 end:
698         mutex_unlock(&psock->work_mutex);
699 }
700
701 struct sk_psock *sk_psock_init(struct sock *sk, int node)
702 {
703         struct sk_psock *psock;
704         struct proto *prot;
705
706         write_lock_bh(&sk->sk_callback_lock);
707
708         if (sk_is_inet(sk) && inet_csk_has_ulp(sk)) {
709                 psock = ERR_PTR(-EINVAL);
710                 goto out;
711         }
712
713         if (sk->sk_user_data) {
714                 psock = ERR_PTR(-EBUSY);
715                 goto out;
716         }
717
718         psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node);
719         if (!psock) {
720                 psock = ERR_PTR(-ENOMEM);
721                 goto out;
722         }
723
724         prot = READ_ONCE(sk->sk_prot);
725         psock->sk = sk;
726         psock->eval = __SK_NONE;
727         psock->sk_proto = prot;
728         psock->saved_unhash = prot->unhash;
729         psock->saved_destroy = prot->destroy;
730         psock->saved_close = prot->close;
731         psock->saved_write_space = sk->sk_write_space;
732
733         INIT_LIST_HEAD(&psock->link);
734         spin_lock_init(&psock->link_lock);
735
736         INIT_WORK(&psock->work, sk_psock_backlog);
737         mutex_init(&psock->work_mutex);
738         INIT_LIST_HEAD(&psock->ingress_msg);
739         spin_lock_init(&psock->ingress_lock);
740         skb_queue_head_init(&psock->ingress_skb);
741
742         sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED);
743         refcount_set(&psock->refcnt, 1);
744
745         __rcu_assign_sk_user_data_with_flags(sk, psock,
746                                              SK_USER_DATA_NOCOPY |
747                                              SK_USER_DATA_PSOCK);
748         sock_hold(sk);
749
750 out:
751         write_unlock_bh(&sk->sk_callback_lock);
752         return psock;
753 }
754 EXPORT_SYMBOL_GPL(sk_psock_init);
755
756 struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock)
757 {
758         struct sk_psock_link *link;
759
760         spin_lock_bh(&psock->link_lock);
761         link = list_first_entry_or_null(&psock->link, struct sk_psock_link,
762                                         list);
763         if (link)
764                 list_del(&link->list);
765         spin_unlock_bh(&psock->link_lock);
766         return link;
767 }
768
769 static void __sk_psock_purge_ingress_msg(struct sk_psock *psock)
770 {
771         struct sk_msg *msg, *tmp;
772
773         list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) {
774                 list_del(&msg->list);
775                 sk_msg_free(psock->sk, msg);
776                 kfree(msg);
777         }
778 }
779
780 static void __sk_psock_zap_ingress(struct sk_psock *psock)
781 {
782         struct sk_buff *skb;
783
784         while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) {
785                 skb_bpf_redirect_clear(skb);
786                 sock_drop(psock->sk, skb);
787         }
788         kfree_skb(psock->work_state.skb);
789         /* We null the skb here to ensure that calls to sk_psock_backlog
790          * do not pick up the free'd skb.
791          */
792         psock->work_state.skb = NULL;
793         __sk_psock_purge_ingress_msg(psock);
794 }
795
796 static void sk_psock_link_destroy(struct sk_psock *psock)
797 {
798         struct sk_psock_link *link, *tmp;
799
800         list_for_each_entry_safe(link, tmp, &psock->link, list) {
801                 list_del(&link->list);
802                 sk_psock_free_link(link);
803         }
804 }
805
806 void sk_psock_stop(struct sk_psock *psock)
807 {
808         spin_lock_bh(&psock->ingress_lock);
809         sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
810         sk_psock_cork_free(psock);
811         __sk_psock_zap_ingress(psock);
812         spin_unlock_bh(&psock->ingress_lock);
813 }
814
815 static void sk_psock_done_strp(struct sk_psock *psock);
816
817 static void sk_psock_destroy(struct work_struct *work)
818 {
819         struct sk_psock *psock = container_of(to_rcu_work(work),
820                                               struct sk_psock, rwork);
821         /* No sk_callback_lock since already detached. */
822
823         sk_psock_done_strp(psock);
824
825         cancel_work_sync(&psock->work);
826         mutex_destroy(&psock->work_mutex);
827
828         psock_progs_drop(&psock->progs);
829
830         sk_psock_link_destroy(psock);
831         sk_psock_cork_free(psock);
832
833         if (psock->sk_redir)
834                 sock_put(psock->sk_redir);
835         sock_put(psock->sk);
836         kfree(psock);
837 }
838
839 void sk_psock_drop(struct sock *sk, struct sk_psock *psock)
840 {
841         write_lock_bh(&sk->sk_callback_lock);
842         sk_psock_restore_proto(sk, psock);
843         rcu_assign_sk_user_data(sk, NULL);
844         if (psock->progs.stream_parser)
845                 sk_psock_stop_strp(sk, psock);
846         else if (psock->progs.stream_verdict || psock->progs.skb_verdict)
847                 sk_psock_stop_verdict(sk, psock);
848         write_unlock_bh(&sk->sk_callback_lock);
849
850         sk_psock_stop(psock);
851
852         INIT_RCU_WORK(&psock->rwork, sk_psock_destroy);
853         queue_rcu_work(system_wq, &psock->rwork);
854 }
855 EXPORT_SYMBOL_GPL(sk_psock_drop);
856
857 static int sk_psock_map_verd(int verdict, bool redir)
858 {
859         switch (verdict) {
860         case SK_PASS:
861                 return redir ? __SK_REDIRECT : __SK_PASS;
862         case SK_DROP:
863         default:
864                 break;
865         }
866
867         return __SK_DROP;
868 }
869
870 int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock,
871                          struct sk_msg *msg)
872 {
873         struct bpf_prog *prog;
874         int ret;
875
876         rcu_read_lock();
877         prog = READ_ONCE(psock->progs.msg_parser);
878         if (unlikely(!prog)) {
879                 ret = __SK_PASS;
880                 goto out;
881         }
882
883         sk_msg_compute_data_pointers(msg);
884         msg->sk = sk;
885         ret = bpf_prog_run_pin_on_cpu(prog, msg);
886         ret = sk_psock_map_verd(ret, msg->sk_redir);
887         psock->apply_bytes = msg->apply_bytes;
888         if (ret == __SK_REDIRECT) {
889                 if (psock->sk_redir) {
890                         sock_put(psock->sk_redir);
891                         psock->sk_redir = NULL;
892                 }
893                 if (!msg->sk_redir) {
894                         ret = __SK_DROP;
895                         goto out;
896                 }
897                 psock->redir_ingress = sk_msg_to_ingress(msg);
898                 psock->sk_redir = msg->sk_redir;
899                 sock_hold(psock->sk_redir);
900         }
901 out:
902         rcu_read_unlock();
903         return ret;
904 }
905 EXPORT_SYMBOL_GPL(sk_psock_msg_verdict);
906
907 static int sk_psock_skb_redirect(struct sk_psock *from, struct sk_buff *skb)
908 {
909         struct sk_psock *psock_other;
910         struct sock *sk_other;
911
912         sk_other = skb_bpf_redirect_fetch(skb);
913         /* This error is a buggy BPF program, it returned a redirect
914          * return code, but then didn't set a redirect interface.
915          */
916         if (unlikely(!sk_other)) {
917                 skb_bpf_redirect_clear(skb);
918                 sock_drop(from->sk, skb);
919                 return -EIO;
920         }
921         psock_other = sk_psock(sk_other);
922         /* This error indicates the socket is being torn down or had another
923          * error that caused the pipe to break. We can't send a packet on
924          * a socket that is in this state so we drop the skb.
925          */
926         if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) {
927                 skb_bpf_redirect_clear(skb);
928                 sock_drop(from->sk, skb);
929                 return -EIO;
930         }
931         spin_lock_bh(&psock_other->ingress_lock);
932         if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) {
933                 spin_unlock_bh(&psock_other->ingress_lock);
934                 skb_bpf_redirect_clear(skb);
935                 sock_drop(from->sk, skb);
936                 return -EIO;
937         }
938
939         skb_queue_tail(&psock_other->ingress_skb, skb);
940         schedule_work(&psock_other->work);
941         spin_unlock_bh(&psock_other->ingress_lock);
942         return 0;
943 }
944
945 static void sk_psock_tls_verdict_apply(struct sk_buff *skb,
946                                        struct sk_psock *from, int verdict)
947 {
948         switch (verdict) {
949         case __SK_REDIRECT:
950                 sk_psock_skb_redirect(from, skb);
951                 break;
952         case __SK_PASS:
953         case __SK_DROP:
954         default:
955                 break;
956         }
957 }
958
959 int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb)
960 {
961         struct bpf_prog *prog;
962         int ret = __SK_PASS;
963
964         rcu_read_lock();
965         prog = READ_ONCE(psock->progs.stream_verdict);
966         if (likely(prog)) {
967                 skb->sk = psock->sk;
968                 skb_dst_drop(skb);
969                 skb_bpf_redirect_clear(skb);
970                 ret = bpf_prog_run_pin_on_cpu(prog, skb);
971                 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
972                 skb->sk = NULL;
973         }
974         sk_psock_tls_verdict_apply(skb, psock, ret);
975         rcu_read_unlock();
976         return ret;
977 }
978 EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read);
979
980 static int sk_psock_verdict_apply(struct sk_psock *psock, struct sk_buff *skb,
981                                   int verdict)
982 {
983         struct sock *sk_other;
984         int err = 0;
985         u32 len, off;
986
987         switch (verdict) {
988         case __SK_PASS:
989                 err = -EIO;
990                 sk_other = psock->sk;
991                 if (sock_flag(sk_other, SOCK_DEAD) ||
992                     !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
993                         skb_bpf_redirect_clear(skb);
994                         goto out_free;
995                 }
996
997                 skb_bpf_set_ingress(skb);
998
999                 /* If the queue is empty then we can submit directly
1000                  * into the msg queue. If its not empty we have to
1001                  * queue work otherwise we may get OOO data. Otherwise,
1002                  * if sk_psock_skb_ingress errors will be handled by
1003                  * retrying later from workqueue.
1004                  */
1005                 if (skb_queue_empty(&psock->ingress_skb)) {
1006                         len = skb->len;
1007                         off = 0;
1008                         if (skb_bpf_strparser(skb)) {
1009                                 struct strp_msg *stm = strp_msg(skb);
1010
1011                                 off = stm->offset;
1012                                 len = stm->full_len;
1013                         }
1014                         err = sk_psock_skb_ingress_self(psock, skb, off, len);
1015                 }
1016                 if (err < 0) {
1017                         spin_lock_bh(&psock->ingress_lock);
1018                         if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
1019                                 skb_queue_tail(&psock->ingress_skb, skb);
1020                                 schedule_work(&psock->work);
1021                                 err = 0;
1022                         }
1023                         spin_unlock_bh(&psock->ingress_lock);
1024                         if (err < 0) {
1025                                 skb_bpf_redirect_clear(skb);
1026                                 goto out_free;
1027                         }
1028                 }
1029                 break;
1030         case __SK_REDIRECT:
1031                 err = sk_psock_skb_redirect(psock, skb);
1032                 break;
1033         case __SK_DROP:
1034         default:
1035 out_free:
1036                 sock_drop(psock->sk, skb);
1037         }
1038
1039         return err;
1040 }
1041
1042 static void sk_psock_write_space(struct sock *sk)
1043 {
1044         struct sk_psock *psock;
1045         void (*write_space)(struct sock *sk) = NULL;
1046
1047         rcu_read_lock();
1048         psock = sk_psock(sk);
1049         if (likely(psock)) {
1050                 if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
1051                         schedule_work(&psock->work);
1052                 write_space = psock->saved_write_space;
1053         }
1054         rcu_read_unlock();
1055         if (write_space)
1056                 write_space(sk);
1057 }
1058
1059 #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER)
1060 static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb)
1061 {
1062         struct sk_psock *psock;
1063         struct bpf_prog *prog;
1064         int ret = __SK_DROP;
1065         struct sock *sk;
1066
1067         rcu_read_lock();
1068         sk = strp->sk;
1069         psock = sk_psock(sk);
1070         if (unlikely(!psock)) {
1071                 sock_drop(sk, skb);
1072                 goto out;
1073         }
1074         prog = READ_ONCE(psock->progs.stream_verdict);
1075         if (likely(prog)) {
1076                 skb->sk = sk;
1077                 skb_dst_drop(skb);
1078                 skb_bpf_redirect_clear(skb);
1079                 ret = bpf_prog_run_pin_on_cpu(prog, skb);
1080                 if (ret == SK_PASS)
1081                         skb_bpf_set_strparser(skb);
1082                 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1083                 skb->sk = NULL;
1084         }
1085         sk_psock_verdict_apply(psock, skb, ret);
1086 out:
1087         rcu_read_unlock();
1088 }
1089
1090 static int sk_psock_strp_read_done(struct strparser *strp, int err)
1091 {
1092         return err;
1093 }
1094
1095 static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb)
1096 {
1097         struct sk_psock *psock = container_of(strp, struct sk_psock, strp);
1098         struct bpf_prog *prog;
1099         int ret = skb->len;
1100
1101         rcu_read_lock();
1102         prog = READ_ONCE(psock->progs.stream_parser);
1103         if (likely(prog)) {
1104                 skb->sk = psock->sk;
1105                 ret = bpf_prog_run_pin_on_cpu(prog, skb);
1106                 skb->sk = NULL;
1107         }
1108         rcu_read_unlock();
1109         return ret;
1110 }
1111
1112 /* Called with socket lock held. */
1113 static void sk_psock_strp_data_ready(struct sock *sk)
1114 {
1115         struct sk_psock *psock;
1116
1117         rcu_read_lock();
1118         psock = sk_psock(sk);
1119         if (likely(psock)) {
1120                 if (tls_sw_has_ctx_rx(sk)) {
1121                         psock->saved_data_ready(sk);
1122                 } else {
1123                         write_lock_bh(&sk->sk_callback_lock);
1124                         strp_data_ready(&psock->strp);
1125                         write_unlock_bh(&sk->sk_callback_lock);
1126                 }
1127         }
1128         rcu_read_unlock();
1129 }
1130
1131 int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock)
1132 {
1133         static const struct strp_callbacks cb = {
1134                 .rcv_msg        = sk_psock_strp_read,
1135                 .read_sock_done = sk_psock_strp_read_done,
1136                 .parse_msg      = sk_psock_strp_parse,
1137         };
1138
1139         return strp_init(&psock->strp, sk, &cb);
1140 }
1141
1142 void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock)
1143 {
1144         if (psock->saved_data_ready)
1145                 return;
1146
1147         psock->saved_data_ready = sk->sk_data_ready;
1148         sk->sk_data_ready = sk_psock_strp_data_ready;
1149         sk->sk_write_space = sk_psock_write_space;
1150 }
1151
1152 void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock)
1153 {
1154         psock_set_prog(&psock->progs.stream_parser, NULL);
1155
1156         if (!psock->saved_data_ready)
1157                 return;
1158
1159         sk->sk_data_ready = psock->saved_data_ready;
1160         psock->saved_data_ready = NULL;
1161         strp_stop(&psock->strp);
1162 }
1163
1164 static void sk_psock_done_strp(struct sk_psock *psock)
1165 {
1166         /* Parser has been stopped */
1167         if (psock->progs.stream_parser)
1168                 strp_done(&psock->strp);
1169 }
1170 #else
1171 static void sk_psock_done_strp(struct sk_psock *psock)
1172 {
1173 }
1174 #endif /* CONFIG_BPF_STREAM_PARSER */
1175
1176 static int sk_psock_verdict_recv(struct sock *sk, struct sk_buff *skb)
1177 {
1178         struct sk_psock *psock;
1179         struct bpf_prog *prog;
1180         int ret = __SK_DROP;
1181         int len = skb->len;
1182
1183         skb_get(skb);
1184
1185         rcu_read_lock();
1186         psock = sk_psock(sk);
1187         if (unlikely(!psock)) {
1188                 len = 0;
1189                 sock_drop(sk, skb);
1190                 goto out;
1191         }
1192         prog = READ_ONCE(psock->progs.stream_verdict);
1193         if (!prog)
1194                 prog = READ_ONCE(psock->progs.skb_verdict);
1195         if (likely(prog)) {
1196                 skb_dst_drop(skb);
1197                 skb_bpf_redirect_clear(skb);
1198                 ret = bpf_prog_run_pin_on_cpu(prog, skb);
1199                 ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
1200         }
1201         ret = sk_psock_verdict_apply(psock, skb, ret);
1202         if (ret < 0)
1203                 len = ret;
1204 out:
1205         rcu_read_unlock();
1206         return len;
1207 }
1208
1209 static void sk_psock_verdict_data_ready(struct sock *sk)
1210 {
1211         struct socket *sock = sk->sk_socket;
1212
1213         if (unlikely(!sock || !sock->ops || !sock->ops->read_skb))
1214                 return;
1215         sock->ops->read_skb(sk, sk_psock_verdict_recv);
1216 }
1217
1218 void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock)
1219 {
1220         if (psock->saved_data_ready)
1221                 return;
1222
1223         psock->saved_data_ready = sk->sk_data_ready;
1224         sk->sk_data_ready = sk_psock_verdict_data_ready;
1225         sk->sk_write_space = sk_psock_write_space;
1226 }
1227
1228 void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock)
1229 {
1230         psock_set_prog(&psock->progs.stream_verdict, NULL);
1231         psock_set_prog(&psock->progs.skb_verdict, NULL);
1232
1233         if (!psock->saved_data_ready)
1234                 return;
1235
1236         sk->sk_data_ready = psock->saved_data_ready;
1237         psock->saved_data_ready = NULL;
1238 }