1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Routines having to do with the 'struct sk_buff' memory handlers.
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
9 * Alan Cox : Fixed the worst of the load
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
32 * The functions in this file will not compile correctly with gcc 2.4.x
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
41 #include <linux/interrupt.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/bitfield.h>
62 #include <linux/if_vlan.h>
63 #include <linux/mpls.h>
64 #include <linux/kcov.h>
66 #include <net/protocol.h>
69 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
74 #include <net/mptcp.h>
76 #include <net/page_pool/helpers.h>
77 #include <net/dropreason.h>
79 #include <linux/uaccess.h>
80 #include <trace/events/skb.h>
81 #include <linux/highmem.h>
82 #include <linux/capability.h>
83 #include <linux/user_namespace.h>
84 #include <linux/indirect_call_wrapper.h>
85 #include <linux/textsearch.h>
88 #include "sock_destructor.h"
90 struct kmem_cache *skbuff_cache __ro_after_init;
91 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
92 #ifdef CONFIG_SKB_EXTENSIONS
93 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
97 static struct kmem_cache *skb_small_head_cache __ro_after_init;
99 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
101 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
102 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
103 * size, and we can differentiate heads from skb_small_head_cache
104 * vs system slabs by looking at their size (skb_end_offset()).
106 #define SKB_SMALL_HEAD_CACHE_SIZE \
107 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \
108 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \
111 #define SKB_SMALL_HEAD_HEADROOM \
112 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
114 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
115 EXPORT_SYMBOL(sysctl_max_skb_frags);
118 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
119 static const char * const drop_reasons[] = {
120 [SKB_CONSUMED] = "CONSUMED",
121 DEFINE_DROP_REASON(FN, FN)
124 static const struct drop_reason_list drop_reasons_core = {
125 .reasons = drop_reasons,
126 .n_reasons = ARRAY_SIZE(drop_reasons),
129 const struct drop_reason_list __rcu *
130 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
131 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
133 EXPORT_SYMBOL(drop_reasons_by_subsys);
136 * drop_reasons_register_subsys - register another drop reason subsystem
137 * @subsys: the subsystem to register, must not be the core
138 * @list: the list of drop reasons within the subsystem, must point to
139 * a statically initialized list
141 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
142 const struct drop_reason_list *list)
144 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
145 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
146 "invalid subsystem %d\n", subsys))
149 /* must point to statically allocated memory, so INIT is OK */
150 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
152 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
155 * drop_reasons_unregister_subsys - unregister a drop reason subsystem
156 * @subsys: the subsystem to remove, must not be the core
158 * Note: This will synchronize_rcu() to ensure no users when it returns.
160 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
162 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
163 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
164 "invalid subsystem %d\n", subsys))
167 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
171 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
174 * skb_panic - private function for out-of-line support
178 * @msg: skb_over_panic or skb_under_panic
180 * Out-of-line support for skb_put() and skb_push().
181 * Called via the wrapper skb_over_panic() or skb_under_panic().
182 * Keep out of line to prevent kernel bloat.
183 * __builtin_return_address is not used because it is not always reliable.
185 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
188 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
189 msg, addr, skb->len, sz, skb->head, skb->data,
190 (unsigned long)skb->tail, (unsigned long)skb->end,
191 skb->dev ? skb->dev->name : "<NULL>");
195 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
197 skb_panic(skb, sz, addr, __func__);
200 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
202 skb_panic(skb, sz, addr, __func__);
205 #define NAPI_SKB_CACHE_SIZE 64
206 #define NAPI_SKB_CACHE_BULK 16
207 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
209 #if PAGE_SIZE == SZ_4K
211 #define NAPI_HAS_SMALL_PAGE_FRAG 1
212 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc)
214 /* specialized page frag allocator using a single order 0 page
215 * and slicing it into 1K sized fragment. Constrained to systems
216 * with a very limited amount of 1K fragments fitting a single
217 * page - to avoid excessive truesize underestimation
220 struct page_frag_1k {
226 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
231 offset = nc->offset - SZ_1K;
232 if (likely(offset >= 0))
235 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
239 nc->va = page_address(page);
240 nc->pfmemalloc = page_is_pfmemalloc(page);
241 offset = PAGE_SIZE - SZ_1K;
242 page_ref_add(page, offset / SZ_1K);
246 return nc->va + offset;
250 /* the small page is actually unused in this build; add dummy helpers
251 * to please the compiler and avoid later preprocessor's conditionals
253 #define NAPI_HAS_SMALL_PAGE_FRAG 0
254 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false
256 struct page_frag_1k {
259 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
266 struct napi_alloc_cache {
267 struct page_frag_cache page;
268 struct page_frag_1k page_small;
269 unsigned int skb_count;
270 void *skb_cache[NAPI_SKB_CACHE_SIZE];
273 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
274 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
276 /* Double check that napi_get_frags() allocates skbs with
277 * skb->head being backed by slab, not a page fragment.
278 * This is to make sure bug fixed in 3226b158e67c
279 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
280 * does not accidentally come back.
282 void napi_get_frags_check(struct napi_struct *napi)
287 skb = napi_get_frags(napi);
288 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
289 napi_free_frags(napi);
293 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
295 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
297 fragsz = SKB_DATA_ALIGN(fragsz);
299 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
301 EXPORT_SYMBOL(__napi_alloc_frag_align);
303 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
307 fragsz = SKB_DATA_ALIGN(fragsz);
308 if (in_hardirq() || irqs_disabled()) {
309 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
311 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
313 struct napi_alloc_cache *nc;
316 nc = this_cpu_ptr(&napi_alloc_cache);
317 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
322 EXPORT_SYMBOL(__netdev_alloc_frag_align);
324 static struct sk_buff *napi_skb_cache_get(void)
326 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
329 if (unlikely(!nc->skb_count)) {
330 nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache,
334 if (unlikely(!nc->skb_count))
338 skb = nc->skb_cache[--nc->skb_count];
339 kasan_unpoison_object_data(skbuff_cache, skb);
344 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
347 struct skb_shared_info *shinfo;
349 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
351 /* Assumes caller memset cleared SKB */
352 skb->truesize = SKB_TRUESIZE(size);
353 refcount_set(&skb->users, 1);
356 skb_reset_tail_pointer(skb);
357 skb_set_end_offset(skb, size);
358 skb->mac_header = (typeof(skb->mac_header))~0U;
359 skb->transport_header = (typeof(skb->transport_header))~0U;
360 skb->alloc_cpu = raw_smp_processor_id();
361 /* make sure we initialize shinfo sequentially */
362 shinfo = skb_shinfo(skb);
363 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
364 atomic_set(&shinfo->dataref, 1);
366 skb_set_kcov_handle(skb, kcov_common_handle());
369 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
374 /* Must find the allocation size (and grow it to match). */
376 /* krealloc() will immediately return "data" when
377 * "ksize(data)" is requested: it is the existing upper
378 * bounds. As a result, GFP_ATOMIC will be ignored. Note
379 * that this "new" pointer needs to be passed back to the
380 * caller for use so the __alloc_size hinting will be
383 resized = krealloc(data, *size, GFP_ATOMIC);
384 WARN_ON_ONCE(resized != data);
388 /* build_skb() variant which can operate on slab buffers.
389 * Note that this should be used sparingly as slab buffers
390 * cannot be combined efficiently by GRO!
392 struct sk_buff *slab_build_skb(void *data)
397 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
401 memset(skb, 0, offsetof(struct sk_buff, tail));
402 data = __slab_build_skb(skb, data, &size);
403 __finalize_skb_around(skb, data, size);
407 EXPORT_SYMBOL(slab_build_skb);
409 /* Caller must provide SKB that is memset cleared */
410 static void __build_skb_around(struct sk_buff *skb, void *data,
411 unsigned int frag_size)
413 unsigned int size = frag_size;
415 /* frag_size == 0 is considered deprecated now. Callers
416 * using slab buffer should use slab_build_skb() instead.
418 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
419 data = __slab_build_skb(skb, data, &size);
421 __finalize_skb_around(skb, data, size);
425 * __build_skb - build a network buffer
426 * @data: data buffer provided by caller
427 * @frag_size: size of data (must not be 0)
429 * Allocate a new &sk_buff. Caller provides space holding head and
430 * skb_shared_info. @data must have been allocated from the page
431 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
432 * allocation is deprecated, and callers should use slab_build_skb()
434 * The return is the new skb buffer.
435 * On a failure the return is %NULL, and @data is not freed.
437 * Before IO, driver allocates only data buffer where NIC put incoming frame
438 * Driver should add room at head (NET_SKB_PAD) and
439 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
440 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
441 * before giving packet to stack.
442 * RX rings only contains data buffers, not full skbs.
444 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
448 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
452 memset(skb, 0, offsetof(struct sk_buff, tail));
453 __build_skb_around(skb, data, frag_size);
458 /* build_skb() is wrapper over __build_skb(), that specifically
459 * takes care of skb->head and skb->pfmemalloc
461 struct sk_buff *build_skb(void *data, unsigned int frag_size)
463 struct sk_buff *skb = __build_skb(data, frag_size);
465 if (likely(skb && frag_size)) {
467 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
471 EXPORT_SYMBOL(build_skb);
474 * build_skb_around - build a network buffer around provided skb
475 * @skb: sk_buff provide by caller, must be memset cleared
476 * @data: data buffer provided by caller
477 * @frag_size: size of data
479 struct sk_buff *build_skb_around(struct sk_buff *skb,
480 void *data, unsigned int frag_size)
485 __build_skb_around(skb, data, frag_size);
489 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
493 EXPORT_SYMBOL(build_skb_around);
496 * __napi_build_skb - build a network buffer
497 * @data: data buffer provided by caller
498 * @frag_size: size of data
500 * Version of __build_skb() that uses NAPI percpu caches to obtain
501 * skbuff_head instead of inplace allocation.
503 * Returns a new &sk_buff on success, %NULL on allocation failure.
505 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
509 skb = napi_skb_cache_get();
513 memset(skb, 0, offsetof(struct sk_buff, tail));
514 __build_skb_around(skb, data, frag_size);
520 * napi_build_skb - build a network buffer
521 * @data: data buffer provided by caller
522 * @frag_size: size of data
524 * Version of __napi_build_skb() that takes care of skb->head_frag
525 * and skb->pfmemalloc when the data is a page or page fragment.
527 * Returns a new &sk_buff on success, %NULL on allocation failure.
529 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
531 struct sk_buff *skb = __napi_build_skb(data, frag_size);
533 if (likely(skb) && frag_size) {
535 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
540 EXPORT_SYMBOL(napi_build_skb);
543 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
544 * the caller if emergency pfmemalloc reserves are being used. If it is and
545 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
546 * may be used. Otherwise, the packet data may be discarded until enough
549 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
552 bool ret_pfmemalloc = false;
553 unsigned int obj_size;
556 obj_size = SKB_HEAD_ALIGN(*size);
557 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
558 !(flags & KMALLOC_NOT_NORMAL_BITS)) {
559 obj = kmem_cache_alloc_node(skb_small_head_cache,
560 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
562 *size = SKB_SMALL_HEAD_CACHE_SIZE;
563 if (obj || !(gfp_pfmemalloc_allowed(flags)))
565 /* Try again but now we are using pfmemalloc reserves */
566 ret_pfmemalloc = true;
567 obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node);
570 *size = obj_size = kmalloc_size_roundup(obj_size);
572 * Try a regular allocation, when that fails and we're not entitled
573 * to the reserves, fail.
575 obj = kmalloc_node_track_caller(obj_size,
576 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
578 if (obj || !(gfp_pfmemalloc_allowed(flags)))
581 /* Try again but now we are using pfmemalloc reserves */
582 ret_pfmemalloc = true;
583 obj = kmalloc_node_track_caller(obj_size, flags, node);
587 *pfmemalloc = ret_pfmemalloc;
592 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
593 * 'private' fields and also do memory statistics to find all the
599 * __alloc_skb - allocate a network buffer
600 * @size: size to allocate
601 * @gfp_mask: allocation mask
602 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
603 * instead of head cache and allocate a cloned (child) skb.
604 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
605 * allocations in case the data is required for writeback
606 * @node: numa node to allocate memory on
608 * Allocate a new &sk_buff. The returned buffer has no headroom and a
609 * tail room of at least size bytes. The object has a reference count
610 * of one. The return is the buffer. On a failure the return is %NULL.
612 * Buffers may only be allocated from interrupts using a @gfp_mask of
615 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
618 struct kmem_cache *cache;
623 cache = (flags & SKB_ALLOC_FCLONE)
624 ? skbuff_fclone_cache : skbuff_cache;
626 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
627 gfp_mask |= __GFP_MEMALLOC;
630 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
631 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
632 skb = napi_skb_cache_get();
634 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
639 /* We do our best to align skb_shared_info on a separate cache
640 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
641 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
642 * Both skb->head and skb_shared_info are cache line aligned.
644 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
647 /* kmalloc_size_roundup() might give us more room than requested.
648 * Put skb_shared_info exactly at the end of allocated zone,
649 * to allow max possible filling before reallocation.
651 prefetchw(data + SKB_WITH_OVERHEAD(size));
654 * Only clear those fields we need to clear, not those that we will
655 * actually initialise below. Hence, don't put any more fields after
656 * the tail pointer in struct sk_buff!
658 memset(skb, 0, offsetof(struct sk_buff, tail));
659 __build_skb_around(skb, data, size);
660 skb->pfmemalloc = pfmemalloc;
662 if (flags & SKB_ALLOC_FCLONE) {
663 struct sk_buff_fclones *fclones;
665 fclones = container_of(skb, struct sk_buff_fclones, skb1);
667 skb->fclone = SKB_FCLONE_ORIG;
668 refcount_set(&fclones->fclone_ref, 1);
674 kmem_cache_free(cache, skb);
677 EXPORT_SYMBOL(__alloc_skb);
680 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
681 * @dev: network device to receive on
682 * @len: length to allocate
683 * @gfp_mask: get_free_pages mask, passed to alloc_skb
685 * Allocate a new &sk_buff and assign it a usage count of one. The
686 * buffer has NET_SKB_PAD headroom built in. Users should allocate
687 * the headroom they think they need without accounting for the
688 * built in space. The built in space is used for optimisations.
690 * %NULL is returned if there is no free memory.
692 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
695 struct page_frag_cache *nc;
702 /* If requested length is either too small or too big,
703 * we use kmalloc() for skb->head allocation.
705 if (len <= SKB_WITH_OVERHEAD(1024) ||
706 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
707 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
708 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
714 len = SKB_HEAD_ALIGN(len);
716 if (sk_memalloc_socks())
717 gfp_mask |= __GFP_MEMALLOC;
719 if (in_hardirq() || irqs_disabled()) {
720 nc = this_cpu_ptr(&netdev_alloc_cache);
721 data = page_frag_alloc(nc, len, gfp_mask);
722 pfmemalloc = nc->pfmemalloc;
725 nc = this_cpu_ptr(&napi_alloc_cache.page);
726 data = page_frag_alloc(nc, len, gfp_mask);
727 pfmemalloc = nc->pfmemalloc;
734 skb = __build_skb(data, len);
735 if (unlikely(!skb)) {
745 skb_reserve(skb, NET_SKB_PAD);
751 EXPORT_SYMBOL(__netdev_alloc_skb);
754 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
755 * @napi: napi instance this buffer was allocated for
756 * @len: length to allocate
757 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
759 * Allocate a new sk_buff for use in NAPI receive. This buffer will
760 * attempt to allocate the head from a special reserved region used
761 * only for NAPI Rx allocation. By doing this we can save several
762 * CPU cycles by avoiding having to disable and re-enable IRQs.
764 * %NULL is returned if there is no free memory.
766 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
769 struct napi_alloc_cache *nc;
774 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
775 len += NET_SKB_PAD + NET_IP_ALIGN;
777 /* If requested length is either too small or too big,
778 * we use kmalloc() for skb->head allocation.
779 * When the small frag allocator is available, prefer it over kmalloc
780 * for small fragments
782 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
783 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
784 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
785 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
792 nc = this_cpu_ptr(&napi_alloc_cache);
794 if (sk_memalloc_socks())
795 gfp_mask |= __GFP_MEMALLOC;
797 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
798 /* we are artificially inflating the allocation size, but
799 * that is not as bad as it may look like, as:
800 * - 'len' less than GRO_MAX_HEAD makes little sense
801 * - On most systems, larger 'len' values lead to fragment
802 * size above 512 bytes
803 * - kmalloc would use the kmalloc-1k slab for such values
804 * - Builds with smaller GRO_MAX_HEAD will very likely do
805 * little networking, as that implies no WiFi and no
806 * tunnels support, and 32 bits arches.
810 data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
811 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
813 len = SKB_HEAD_ALIGN(len);
815 data = page_frag_alloc(&nc->page, len, gfp_mask);
816 pfmemalloc = nc->page.pfmemalloc;
822 skb = __napi_build_skb(data, len);
823 if (unlikely(!skb)) {
833 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
834 skb->dev = napi->dev;
839 EXPORT_SYMBOL(__napi_alloc_skb);
841 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
842 int size, unsigned int truesize)
844 skb_fill_page_desc(skb, i, page, off, size);
846 skb->data_len += size;
847 skb->truesize += truesize;
849 EXPORT_SYMBOL(skb_add_rx_frag);
851 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
852 unsigned int truesize)
854 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
856 skb_frag_size_add(frag, size);
858 skb->data_len += size;
859 skb->truesize += truesize;
861 EXPORT_SYMBOL(skb_coalesce_rx_frag);
863 static void skb_drop_list(struct sk_buff **listp)
865 kfree_skb_list(*listp);
869 static inline void skb_drop_fraglist(struct sk_buff *skb)
871 skb_drop_list(&skb_shinfo(skb)->frag_list);
874 static void skb_clone_fraglist(struct sk_buff *skb)
876 struct sk_buff *list;
878 skb_walk_frags(skb, list)
882 #if IS_ENABLED(CONFIG_PAGE_POOL)
883 bool napi_pp_put_page(struct page *page, bool napi_safe)
885 bool allow_direct = false;
886 struct page_pool *pp;
888 page = compound_head(page);
890 /* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
891 * in order to preserve any existing bits, such as bit 0 for the
892 * head page of compound page and bit 1 for pfmemalloc page, so
893 * mask those bits for freeing side when doing below checking,
894 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
895 * to avoid recycling the pfmemalloc page.
897 if (unlikely((page->pp_magic & ~0x3UL) != PP_SIGNATURE))
902 /* Allow direct recycle if we have reasons to believe that we are
903 * in the same context as the consumer would run, so there's
905 * __page_pool_put_page() makes sure we're not in hardirq context
906 * and interrupts are enabled prior to accessing the cache.
908 if (napi_safe || in_softirq()) {
909 const struct napi_struct *napi = READ_ONCE(pp->p.napi);
911 allow_direct = napi &&
912 READ_ONCE(napi->list_owner) == smp_processor_id();
915 /* Driver set this to memory recycling info. Reset it on recycle.
916 * This will *not* work for NIC using a split-page memory model.
917 * The page will be returned to the pool here regardless of the
918 * 'flipped' fragment being in use or not.
920 page_pool_put_full_page(pp, page, allow_direct);
924 EXPORT_SYMBOL(napi_pp_put_page);
927 static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe)
929 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
931 return napi_pp_put_page(virt_to_page(data), napi_safe);
934 static void skb_kfree_head(void *head, unsigned int end_offset)
936 if (end_offset == SKB_SMALL_HEAD_HEADROOM)
937 kmem_cache_free(skb_small_head_cache, head);
942 static void skb_free_head(struct sk_buff *skb, bool napi_safe)
944 unsigned char *head = skb->head;
946 if (skb->head_frag) {
947 if (skb_pp_recycle(skb, head, napi_safe))
951 skb_kfree_head(head, skb_end_offset(skb));
955 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason,
958 struct skb_shared_info *shinfo = skb_shinfo(skb);
962 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
966 if (skb_zcopy(skb)) {
967 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
969 skb_zcopy_clear(skb, true);
974 for (i = 0; i < shinfo->nr_frags; i++)
975 napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe);
978 if (shinfo->frag_list)
979 kfree_skb_list_reason(shinfo->frag_list, reason);
981 skb_free_head(skb, napi_safe);
983 /* When we clone an SKB we copy the reycling bit. The pp_recycle
984 * bit is only set on the head though, so in order to avoid races
985 * while trying to recycle fragments on __skb_frag_unref() we need
986 * to make one SKB responsible for triggering the recycle path.
987 * So disable the recycling bit if an SKB is cloned and we have
988 * additional references to the fragmented part of the SKB.
989 * Eventually the last SKB will have the recycling bit set and it's
990 * dataref set to 0, which will trigger the recycling
996 * Free an skbuff by memory without cleaning the state.
998 static void kfree_skbmem(struct sk_buff *skb)
1000 struct sk_buff_fclones *fclones;
1002 switch (skb->fclone) {
1003 case SKB_FCLONE_UNAVAILABLE:
1004 kmem_cache_free(skbuff_cache, skb);
1007 case SKB_FCLONE_ORIG:
1008 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1010 /* We usually free the clone (TX completion) before original skb
1011 * This test would have no chance to be true for the clone,
1012 * while here, branch prediction will be good.
1014 if (refcount_read(&fclones->fclone_ref) == 1)
1018 default: /* SKB_FCLONE_CLONE */
1019 fclones = container_of(skb, struct sk_buff_fclones, skb2);
1022 if (!refcount_dec_and_test(&fclones->fclone_ref))
1025 kmem_cache_free(skbuff_fclone_cache, fclones);
1028 void skb_release_head_state(struct sk_buff *skb)
1031 if (skb->destructor) {
1032 DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1033 skb->destructor(skb);
1035 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
1036 nf_conntrack_put(skb_nfct(skb));
1041 /* Free everything but the sk_buff shell. */
1042 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason,
1045 skb_release_head_state(skb);
1046 if (likely(skb->head))
1047 skb_release_data(skb, reason, napi_safe);
1051 * __kfree_skb - private function
1054 * Free an sk_buff. Release anything attached to the buffer.
1055 * Clean the state. This is an internal helper function. Users should
1056 * always call kfree_skb
1059 void __kfree_skb(struct sk_buff *skb)
1061 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false);
1064 EXPORT_SYMBOL(__kfree_skb);
1066 static __always_inline
1067 bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1069 if (unlikely(!skb_unref(skb)))
1072 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1073 u32_get_bits(reason,
1074 SKB_DROP_REASON_SUBSYS_MASK) >=
1075 SKB_DROP_REASON_SUBSYS_NUM);
1077 if (reason == SKB_CONSUMED)
1078 trace_consume_skb(skb, __builtin_return_address(0));
1080 trace_kfree_skb(skb, __builtin_return_address(0), reason);
1085 * kfree_skb_reason - free an sk_buff with special reason
1086 * @skb: buffer to free
1087 * @reason: reason why this skb is dropped
1089 * Drop a reference to the buffer and free it if the usage count has
1090 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1094 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1096 if (__kfree_skb_reason(skb, reason))
1099 EXPORT_SYMBOL(kfree_skb_reason);
1101 #define KFREE_SKB_BULK_SIZE 16
1103 struct skb_free_array {
1104 unsigned int skb_count;
1105 void *skb_array[KFREE_SKB_BULK_SIZE];
1108 static void kfree_skb_add_bulk(struct sk_buff *skb,
1109 struct skb_free_array *sa,
1110 enum skb_drop_reason reason)
1112 /* if SKB is a clone, don't handle this case */
1113 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1118 skb_release_all(skb, reason, false);
1119 sa->skb_array[sa->skb_count++] = skb;
1121 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1122 kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE,
1129 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1131 struct skb_free_array sa;
1136 struct sk_buff *next = segs->next;
1138 if (__kfree_skb_reason(segs, reason)) {
1139 skb_poison_list(segs);
1140 kfree_skb_add_bulk(segs, &sa, reason);
1147 kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array);
1149 EXPORT_SYMBOL(kfree_skb_list_reason);
1151 /* Dump skb information and contents.
1153 * Must only be called from net_ratelimit()-ed paths.
1155 * Dumps whole packets if full_pkt, only headers otherwise.
1157 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1159 struct skb_shared_info *sh = skb_shinfo(skb);
1160 struct net_device *dev = skb->dev;
1161 struct sock *sk = skb->sk;
1162 struct sk_buff *list_skb;
1163 bool has_mac, has_trans;
1164 int headroom, tailroom;
1165 int i, len, seg_len;
1170 len = min_t(int, skb->len, MAX_HEADER + 128);
1172 headroom = skb_headroom(skb);
1173 tailroom = skb_tailroom(skb);
1175 has_mac = skb_mac_header_was_set(skb);
1176 has_trans = skb_transport_header_was_set(skb);
1178 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1179 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1180 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1181 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1182 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1183 level, skb->len, headroom, skb_headlen(skb), tailroom,
1184 has_mac ? skb->mac_header : -1,
1185 has_mac ? skb_mac_header_len(skb) : -1,
1186 skb->network_header,
1187 has_trans ? skb_network_header_len(skb) : -1,
1188 has_trans ? skb->transport_header : -1,
1189 sh->tx_flags, sh->nr_frags,
1190 sh->gso_size, sh->gso_type, sh->gso_segs,
1191 skb->csum, skb->ip_summed, skb->csum_complete_sw,
1192 skb->csum_valid, skb->csum_level,
1193 skb->hash, skb->sw_hash, skb->l4_hash,
1194 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1197 printk("%sdev name=%s feat=%pNF\n",
1198 level, dev->name, &dev->features);
1200 printk("%ssk family=%hu type=%u proto=%u\n",
1201 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1203 if (full_pkt && headroom)
1204 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1205 16, 1, skb->head, headroom, false);
1207 seg_len = min_t(int, skb_headlen(skb), len);
1209 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
1210 16, 1, skb->data, seg_len, false);
1213 if (full_pkt && tailroom)
1214 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1215 16, 1, skb_tail_pointer(skb), tailroom, false);
1217 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1218 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1219 u32 p_off, p_len, copied;
1223 skb_frag_foreach_page(frag, skb_frag_off(frag),
1224 skb_frag_size(frag), p, p_off, p_len,
1226 seg_len = min_t(int, p_len, len);
1227 vaddr = kmap_atomic(p);
1228 print_hex_dump(level, "skb frag: ",
1230 16, 1, vaddr + p_off, seg_len, false);
1231 kunmap_atomic(vaddr);
1238 if (full_pkt && skb_has_frag_list(skb)) {
1239 printk("skb fraglist:\n");
1240 skb_walk_frags(skb, list_skb)
1241 skb_dump(level, list_skb, true);
1244 EXPORT_SYMBOL(skb_dump);
1247 * skb_tx_error - report an sk_buff xmit error
1248 * @skb: buffer that triggered an error
1250 * Report xmit error if a device callback is tracking this skb.
1251 * skb must be freed afterwards.
1253 void skb_tx_error(struct sk_buff *skb)
1256 skb_zcopy_downgrade_managed(skb);
1257 skb_zcopy_clear(skb, true);
1260 EXPORT_SYMBOL(skb_tx_error);
1262 #ifdef CONFIG_TRACEPOINTS
1264 * consume_skb - free an skbuff
1265 * @skb: buffer to free
1267 * Drop a ref to the buffer and free it if the usage count has hit zero
1268 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
1269 * is being dropped after a failure and notes that
1271 void consume_skb(struct sk_buff *skb)
1273 if (!skb_unref(skb))
1276 trace_consume_skb(skb, __builtin_return_address(0));
1279 EXPORT_SYMBOL(consume_skb);
1283 * __consume_stateless_skb - free an skbuff, assuming it is stateless
1284 * @skb: buffer to free
1286 * Alike consume_skb(), but this variant assumes that this is the last
1287 * skb reference and all the head states have been already dropped
1289 void __consume_stateless_skb(struct sk_buff *skb)
1291 trace_consume_skb(skb, __builtin_return_address(0));
1292 skb_release_data(skb, SKB_CONSUMED, false);
1296 static void napi_skb_cache_put(struct sk_buff *skb)
1298 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1301 kasan_poison_object_data(skbuff_cache, skb);
1302 nc->skb_cache[nc->skb_count++] = skb;
1304 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1305 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1306 kasan_unpoison_object_data(skbuff_cache,
1309 kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF,
1310 nc->skb_cache + NAPI_SKB_CACHE_HALF);
1311 nc->skb_count = NAPI_SKB_CACHE_HALF;
1315 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1317 skb_release_all(skb, reason, true);
1318 napi_skb_cache_put(skb);
1321 void napi_skb_free_stolen_head(struct sk_buff *skb)
1323 if (unlikely(skb->slow_gro)) {
1330 napi_skb_cache_put(skb);
1333 void napi_consume_skb(struct sk_buff *skb, int budget)
1335 /* Zero budget indicate non-NAPI context called us, like netpoll */
1336 if (unlikely(!budget)) {
1337 dev_consume_skb_any(skb);
1341 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1343 if (!skb_unref(skb))
1346 /* if reaching here SKB is ready to free */
1347 trace_consume_skb(skb, __builtin_return_address(0));
1349 /* if SKB is a clone, don't handle this case */
1350 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1355 skb_release_all(skb, SKB_CONSUMED, !!budget);
1356 napi_skb_cache_put(skb);
1358 EXPORT_SYMBOL(napi_consume_skb);
1360 /* Make sure a field is contained by headers group */
1361 #define CHECK_SKB_FIELD(field) \
1362 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \
1363 offsetof(struct sk_buff, headers.field)); \
1365 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1367 new->tstamp = old->tstamp;
1368 /* We do not copy old->sk */
1369 new->dev = old->dev;
1370 memcpy(new->cb, old->cb, sizeof(old->cb));
1371 skb_dst_copy(new, old);
1372 __skb_ext_copy(new, old);
1373 __nf_copy(new, old, false);
1375 /* Note : this field could be in the headers group.
1376 * It is not yet because we do not want to have a 16 bit hole
1378 new->queue_mapping = old->queue_mapping;
1380 memcpy(&new->headers, &old->headers, sizeof(new->headers));
1381 CHECK_SKB_FIELD(protocol);
1382 CHECK_SKB_FIELD(csum);
1383 CHECK_SKB_FIELD(hash);
1384 CHECK_SKB_FIELD(priority);
1385 CHECK_SKB_FIELD(skb_iif);
1386 CHECK_SKB_FIELD(vlan_proto);
1387 CHECK_SKB_FIELD(vlan_tci);
1388 CHECK_SKB_FIELD(transport_header);
1389 CHECK_SKB_FIELD(network_header);
1390 CHECK_SKB_FIELD(mac_header);
1391 CHECK_SKB_FIELD(inner_protocol);
1392 CHECK_SKB_FIELD(inner_transport_header);
1393 CHECK_SKB_FIELD(inner_network_header);
1394 CHECK_SKB_FIELD(inner_mac_header);
1395 CHECK_SKB_FIELD(mark);
1396 #ifdef CONFIG_NETWORK_SECMARK
1397 CHECK_SKB_FIELD(secmark);
1399 #ifdef CONFIG_NET_RX_BUSY_POLL
1400 CHECK_SKB_FIELD(napi_id);
1402 CHECK_SKB_FIELD(alloc_cpu);
1404 CHECK_SKB_FIELD(sender_cpu);
1406 #ifdef CONFIG_NET_SCHED
1407 CHECK_SKB_FIELD(tc_index);
1413 * You should not add any new code to this function. Add it to
1414 * __copy_skb_header above instead.
1416 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1418 #define C(x) n->x = skb->x
1420 n->next = n->prev = NULL;
1422 __copy_skb_header(n, skb);
1427 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1433 n->destructor = NULL;
1440 refcount_set(&n->users, 1);
1442 atomic_inc(&(skb_shinfo(skb)->dataref));
1450 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1451 * @first: first sk_buff of the msg
1453 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1457 n = alloc_skb(0, GFP_ATOMIC);
1461 n->len = first->len;
1462 n->data_len = first->len;
1463 n->truesize = first->truesize;
1465 skb_shinfo(n)->frag_list = first;
1467 __copy_skb_header(n, first);
1468 n->destructor = NULL;
1472 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1475 * skb_morph - morph one skb into another
1476 * @dst: the skb to receive the contents
1477 * @src: the skb to supply the contents
1479 * This is identical to skb_clone except that the target skb is
1480 * supplied by the user.
1482 * The target skb is returned upon exit.
1484 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1486 skb_release_all(dst, SKB_CONSUMED, false);
1487 return __skb_clone(dst, src);
1489 EXPORT_SYMBOL_GPL(skb_morph);
1491 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1493 unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1494 struct user_struct *user;
1496 if (capable(CAP_IPC_LOCK) || !size)
1499 rlim = rlimit(RLIMIT_MEMLOCK);
1500 if (rlim == RLIM_INFINITY)
1503 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1504 max_pg = rlim >> PAGE_SHIFT;
1505 user = mmp->user ? : current_user();
1507 old_pg = atomic_long_read(&user->locked_vm);
1509 new_pg = old_pg + num_pg;
1510 if (new_pg > max_pg)
1512 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1515 mmp->user = get_uid(user);
1516 mmp->num_pg = num_pg;
1518 mmp->num_pg += num_pg;
1523 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1525 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1528 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1529 free_uid(mmp->user);
1532 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1534 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1536 struct ubuf_info_msgzc *uarg;
1537 struct sk_buff *skb;
1539 WARN_ON_ONCE(!in_task());
1541 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1545 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1546 uarg = (void *)skb->cb;
1547 uarg->mmp.user = NULL;
1549 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1554 uarg->ubuf.callback = msg_zerocopy_callback;
1555 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1557 uarg->bytelen = size;
1559 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1560 refcount_set(&uarg->ubuf.refcnt, 1);
1566 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1568 return container_of((void *)uarg, struct sk_buff, cb);
1571 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1572 struct ubuf_info *uarg)
1575 struct ubuf_info_msgzc *uarg_zc;
1576 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1579 /* there might be non MSG_ZEROCOPY users */
1580 if (uarg->callback != msg_zerocopy_callback)
1583 /* realloc only when socket is locked (TCP, UDP cork),
1584 * so uarg->len and sk_zckey access is serialized
1586 if (!sock_owned_by_user(sk)) {
1591 uarg_zc = uarg_to_msgzc(uarg);
1592 bytelen = uarg_zc->bytelen + size;
1593 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1594 /* TCP can create new skb to attach new uarg */
1595 if (sk->sk_type == SOCK_STREAM)
1600 next = (u32)atomic_read(&sk->sk_zckey);
1601 if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1602 if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1605 uarg_zc->bytelen = bytelen;
1606 atomic_set(&sk->sk_zckey, ++next);
1608 /* no extra ref when appending to datagram (MSG_MORE) */
1609 if (sk->sk_type == SOCK_STREAM)
1610 net_zcopy_get(uarg);
1617 return msg_zerocopy_alloc(sk, size);
1619 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1621 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1623 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1627 old_lo = serr->ee.ee_info;
1628 old_hi = serr->ee.ee_data;
1629 sum_len = old_hi - old_lo + 1ULL + len;
1631 if (sum_len >= (1ULL << 32))
1634 if (lo != old_hi + 1)
1637 serr->ee.ee_data += len;
1641 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1643 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1644 struct sock_exterr_skb *serr;
1645 struct sock *sk = skb->sk;
1646 struct sk_buff_head *q;
1647 unsigned long flags;
1652 mm_unaccount_pinned_pages(&uarg->mmp);
1654 /* if !len, there was only 1 call, and it was aborted
1655 * so do not queue a completion notification
1657 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1662 hi = uarg->id + len - 1;
1663 is_zerocopy = uarg->zerocopy;
1665 serr = SKB_EXT_ERR(skb);
1666 memset(serr, 0, sizeof(*serr));
1667 serr->ee.ee_errno = 0;
1668 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1669 serr->ee.ee_data = hi;
1670 serr->ee.ee_info = lo;
1672 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1674 q = &sk->sk_error_queue;
1675 spin_lock_irqsave(&q->lock, flags);
1676 tail = skb_peek_tail(q);
1677 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1678 !skb_zerocopy_notify_extend(tail, lo, len)) {
1679 __skb_queue_tail(q, skb);
1682 spin_unlock_irqrestore(&q->lock, flags);
1684 sk_error_report(sk);
1691 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1694 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1696 uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1698 if (refcount_dec_and_test(&uarg->refcnt))
1699 __msg_zerocopy_callback(uarg_zc);
1701 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1703 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1705 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1707 atomic_dec(&sk->sk_zckey);
1708 uarg_to_msgzc(uarg)->len--;
1711 msg_zerocopy_callback(NULL, uarg, true);
1713 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1715 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1716 struct msghdr *msg, int len,
1717 struct ubuf_info *uarg)
1719 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1720 int err, orig_len = skb->len;
1722 /* An skb can only point to one uarg. This edge case happens when
1723 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1725 if (orig_uarg && uarg != orig_uarg)
1728 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1729 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1730 struct sock *save_sk = skb->sk;
1732 /* Streams do not free skb on error. Reset to prev state. */
1733 iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1735 ___pskb_trim(skb, orig_len);
1740 skb_zcopy_set(skb, uarg, NULL);
1741 return skb->len - orig_len;
1743 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1745 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1749 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1750 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1751 skb_frag_ref(skb, i);
1753 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1755 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1758 if (skb_zcopy(orig)) {
1759 if (skb_zcopy(nskb)) {
1760 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1765 if (skb_uarg(nskb) == skb_uarg(orig))
1767 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1770 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1776 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1777 * @skb: the skb to modify
1778 * @gfp_mask: allocation priority
1780 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1781 * It will copy all frags into kernel and drop the reference
1782 * to userspace pages.
1784 * If this function is called from an interrupt gfp_mask() must be
1787 * Returns 0 on success or a negative error code on failure
1788 * to allocate kernel memory to copy to.
1790 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1792 int num_frags = skb_shinfo(skb)->nr_frags;
1793 struct page *page, *head = NULL;
1794 int i, order, psize, new_frags;
1797 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1803 /* We might have to allocate high order pages, so compute what minimum
1804 * page order is needed.
1807 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1809 psize = (PAGE_SIZE << order);
1811 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1812 for (i = 0; i < new_frags; i++) {
1813 page = alloc_pages(gfp_mask | __GFP_COMP, order);
1816 struct page *next = (struct page *)page_private(head);
1822 set_page_private(page, (unsigned long)head);
1828 for (i = 0; i < num_frags; i++) {
1829 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1830 u32 p_off, p_len, copied;
1834 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1835 p, p_off, p_len, copied) {
1837 vaddr = kmap_atomic(p);
1839 while (done < p_len) {
1840 if (d_off == psize) {
1842 page = (struct page *)page_private(page);
1844 copy = min_t(u32, psize - d_off, p_len - done);
1845 memcpy(page_address(page) + d_off,
1846 vaddr + p_off + done, copy);
1850 kunmap_atomic(vaddr);
1854 /* skb frags release userspace buffers */
1855 for (i = 0; i < num_frags; i++)
1856 skb_frag_unref(skb, i);
1858 /* skb frags point to kernel buffers */
1859 for (i = 0; i < new_frags - 1; i++) {
1860 __skb_fill_page_desc(skb, i, head, 0, psize);
1861 head = (struct page *)page_private(head);
1863 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1864 skb_shinfo(skb)->nr_frags = new_frags;
1867 skb_zcopy_clear(skb, false);
1870 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1873 * skb_clone - duplicate an sk_buff
1874 * @skb: buffer to clone
1875 * @gfp_mask: allocation priority
1877 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1878 * copies share the same packet data but not structure. The new
1879 * buffer has a reference count of 1. If the allocation fails the
1880 * function returns %NULL otherwise the new buffer is returned.
1882 * If this function is called from an interrupt gfp_mask() must be
1886 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1888 struct sk_buff_fclones *fclones = container_of(skb,
1889 struct sk_buff_fclones,
1893 if (skb_orphan_frags(skb, gfp_mask))
1896 if (skb->fclone == SKB_FCLONE_ORIG &&
1897 refcount_read(&fclones->fclone_ref) == 1) {
1899 refcount_set(&fclones->fclone_ref, 2);
1900 n->fclone = SKB_FCLONE_CLONE;
1902 if (skb_pfmemalloc(skb))
1903 gfp_mask |= __GFP_MEMALLOC;
1905 n = kmem_cache_alloc(skbuff_cache, gfp_mask);
1909 n->fclone = SKB_FCLONE_UNAVAILABLE;
1912 return __skb_clone(n, skb);
1914 EXPORT_SYMBOL(skb_clone);
1916 void skb_headers_offset_update(struct sk_buff *skb, int off)
1918 /* Only adjust this if it actually is csum_start rather than csum */
1919 if (skb->ip_summed == CHECKSUM_PARTIAL)
1920 skb->csum_start += off;
1921 /* {transport,network,mac}_header and tail are relative to skb->head */
1922 skb->transport_header += off;
1923 skb->network_header += off;
1924 if (skb_mac_header_was_set(skb))
1925 skb->mac_header += off;
1926 skb->inner_transport_header += off;
1927 skb->inner_network_header += off;
1928 skb->inner_mac_header += off;
1930 EXPORT_SYMBOL(skb_headers_offset_update);
1932 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1934 __copy_skb_header(new, old);
1936 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1937 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1938 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1940 EXPORT_SYMBOL(skb_copy_header);
1942 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1944 if (skb_pfmemalloc(skb))
1945 return SKB_ALLOC_RX;
1950 * skb_copy - create private copy of an sk_buff
1951 * @skb: buffer to copy
1952 * @gfp_mask: allocation priority
1954 * Make a copy of both an &sk_buff and its data. This is used when the
1955 * caller wishes to modify the data and needs a private copy of the
1956 * data to alter. Returns %NULL on failure or the pointer to the buffer
1957 * on success. The returned buffer has a reference count of 1.
1959 * As by-product this function converts non-linear &sk_buff to linear
1960 * one, so that &sk_buff becomes completely private and caller is allowed
1961 * to modify all the data of returned buffer. This means that this
1962 * function is not recommended for use in circumstances when only
1963 * header is going to be modified. Use pskb_copy() instead.
1966 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1968 int headerlen = skb_headroom(skb);
1969 unsigned int size = skb_end_offset(skb) + skb->data_len;
1970 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1971 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1976 /* Set the data pointer */
1977 skb_reserve(n, headerlen);
1978 /* Set the tail pointer and length */
1979 skb_put(n, skb->len);
1981 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1983 skb_copy_header(n, skb);
1986 EXPORT_SYMBOL(skb_copy);
1989 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1990 * @skb: buffer to copy
1991 * @headroom: headroom of new skb
1992 * @gfp_mask: allocation priority
1993 * @fclone: if true allocate the copy of the skb from the fclone
1994 * cache instead of the head cache; it is recommended to set this
1995 * to true for the cases where the copy will likely be cloned
1997 * Make a copy of both an &sk_buff and part of its data, located
1998 * in header. Fragmented data remain shared. This is used when
1999 * the caller wishes to modify only header of &sk_buff and needs
2000 * private copy of the header to alter. Returns %NULL on failure
2001 * or the pointer to the buffer on success.
2002 * The returned buffer has a reference count of 1.
2005 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2006 gfp_t gfp_mask, bool fclone)
2008 unsigned int size = skb_headlen(skb) + headroom;
2009 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2010 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2015 /* Set the data pointer */
2016 skb_reserve(n, headroom);
2017 /* Set the tail pointer and length */
2018 skb_put(n, skb_headlen(skb));
2019 /* Copy the bytes */
2020 skb_copy_from_linear_data(skb, n->data, n->len);
2022 n->truesize += skb->data_len;
2023 n->data_len = skb->data_len;
2026 if (skb_shinfo(skb)->nr_frags) {
2029 if (skb_orphan_frags(skb, gfp_mask) ||
2030 skb_zerocopy_clone(n, skb, gfp_mask)) {
2035 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2036 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2037 skb_frag_ref(skb, i);
2039 skb_shinfo(n)->nr_frags = i;
2042 if (skb_has_frag_list(skb)) {
2043 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2044 skb_clone_fraglist(n);
2047 skb_copy_header(n, skb);
2051 EXPORT_SYMBOL(__pskb_copy_fclone);
2054 * pskb_expand_head - reallocate header of &sk_buff
2055 * @skb: buffer to reallocate
2056 * @nhead: room to add at head
2057 * @ntail: room to add at tail
2058 * @gfp_mask: allocation priority
2060 * Expands (or creates identical copy, if @nhead and @ntail are zero)
2061 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2062 * reference count of 1. Returns zero in the case of success or error,
2063 * if expansion failed. In the last case, &sk_buff is not changed.
2065 * All the pointers pointing into skb header may change and must be
2066 * reloaded after call to this function.
2069 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2072 unsigned int osize = skb_end_offset(skb);
2073 unsigned int size = osize + nhead + ntail;
2080 BUG_ON(skb_shared(skb));
2082 skb_zcopy_downgrade_managed(skb);
2084 if (skb_pfmemalloc(skb))
2085 gfp_mask |= __GFP_MEMALLOC;
2087 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2090 size = SKB_WITH_OVERHEAD(size);
2092 /* Copy only real data... and, alas, header. This should be
2093 * optimized for the cases when header is void.
2095 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2097 memcpy((struct skb_shared_info *)(data + size),
2099 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2102 * if shinfo is shared we must drop the old head gracefully, but if it
2103 * is not we can just drop the old head and let the existing refcount
2104 * be since all we did is relocate the values
2106 if (skb_cloned(skb)) {
2107 if (skb_orphan_frags(skb, gfp_mask))
2110 refcount_inc(&skb_uarg(skb)->refcnt);
2111 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2112 skb_frag_ref(skb, i);
2114 if (skb_has_frag_list(skb))
2115 skb_clone_fraglist(skb);
2117 skb_release_data(skb, SKB_CONSUMED, false);
2119 skb_free_head(skb, false);
2121 off = (data + nhead) - skb->head;
2127 skb_set_end_offset(skb, size);
2128 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2132 skb_headers_offset_update(skb, nhead);
2136 atomic_set(&skb_shinfo(skb)->dataref, 1);
2138 skb_metadata_clear(skb);
2140 /* It is not generally safe to change skb->truesize.
2141 * For the moment, we really care of rx path, or
2142 * when skb is orphaned (not attached to a socket).
2144 if (!skb->sk || skb->destructor == sock_edemux)
2145 skb->truesize += size - osize;
2150 skb_kfree_head(data, size);
2154 EXPORT_SYMBOL(pskb_expand_head);
2156 /* Make private copy of skb with writable head and some headroom */
2158 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2160 struct sk_buff *skb2;
2161 int delta = headroom - skb_headroom(skb);
2164 skb2 = pskb_copy(skb, GFP_ATOMIC);
2166 skb2 = skb_clone(skb, GFP_ATOMIC);
2167 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2175 EXPORT_SYMBOL(skb_realloc_headroom);
2177 /* Note: We plan to rework this in linux-6.4 */
2178 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2180 unsigned int saved_end_offset, saved_truesize;
2181 struct skb_shared_info *shinfo;
2184 saved_end_offset = skb_end_offset(skb);
2185 saved_truesize = skb->truesize;
2187 res = pskb_expand_head(skb, 0, 0, pri);
2191 skb->truesize = saved_truesize;
2193 if (likely(skb_end_offset(skb) == saved_end_offset))
2196 /* We can not change skb->end if the original or new value
2197 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2199 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2200 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2201 /* We think this path should not be taken.
2202 * Add a temporary trace to warn us just in case.
2204 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2205 saved_end_offset, skb_end_offset(skb));
2210 shinfo = skb_shinfo(skb);
2212 /* We are about to change back skb->end,
2213 * we need to move skb_shinfo() to its new location.
2215 memmove(skb->head + saved_end_offset,
2217 offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2219 skb_set_end_offset(skb, saved_end_offset);
2225 * skb_expand_head - reallocate header of &sk_buff
2226 * @skb: buffer to reallocate
2227 * @headroom: needed headroom
2229 * Unlike skb_realloc_headroom, this one does not allocate a new skb
2230 * if possible; copies skb->sk to new skb as needed
2231 * and frees original skb in case of failures.
2233 * It expect increased headroom and generates warning otherwise.
2236 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2238 int delta = headroom - skb_headroom(skb);
2239 int osize = skb_end_offset(skb);
2240 struct sock *sk = skb->sk;
2242 if (WARN_ONCE(delta <= 0,
2243 "%s is expecting an increase in the headroom", __func__))
2246 delta = SKB_DATA_ALIGN(delta);
2247 /* pskb_expand_head() might crash, if skb is shared. */
2248 if (skb_shared(skb) || !is_skb_wmem(skb)) {
2249 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2251 if (unlikely(!nskb))
2255 skb_set_owner_w(nskb, sk);
2259 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2262 if (sk && is_skb_wmem(skb)) {
2263 delta = skb_end_offset(skb) - osize;
2264 refcount_add(delta, &sk->sk_wmem_alloc);
2265 skb->truesize += delta;
2273 EXPORT_SYMBOL(skb_expand_head);
2276 * skb_copy_expand - copy and expand sk_buff
2277 * @skb: buffer to copy
2278 * @newheadroom: new free bytes at head
2279 * @newtailroom: new free bytes at tail
2280 * @gfp_mask: allocation priority
2282 * Make a copy of both an &sk_buff and its data and while doing so
2283 * allocate additional space.
2285 * This is used when the caller wishes to modify the data and needs a
2286 * private copy of the data to alter as well as more space for new fields.
2287 * Returns %NULL on failure or the pointer to the buffer
2288 * on success. The returned buffer has a reference count of 1.
2290 * You must pass %GFP_ATOMIC as the allocation priority if this function
2291 * is called from an interrupt.
2293 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2294 int newheadroom, int newtailroom,
2298 * Allocate the copy buffer
2300 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2301 gfp_mask, skb_alloc_rx_flag(skb),
2303 int oldheadroom = skb_headroom(skb);
2304 int head_copy_len, head_copy_off;
2309 skb_reserve(n, newheadroom);
2311 /* Set the tail pointer and length */
2312 skb_put(n, skb->len);
2314 head_copy_len = oldheadroom;
2316 if (newheadroom <= head_copy_len)
2317 head_copy_len = newheadroom;
2319 head_copy_off = newheadroom - head_copy_len;
2321 /* Copy the linear header and data. */
2322 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2323 skb->len + head_copy_len));
2325 skb_copy_header(n, skb);
2327 skb_headers_offset_update(n, newheadroom - oldheadroom);
2331 EXPORT_SYMBOL(skb_copy_expand);
2334 * __skb_pad - zero pad the tail of an skb
2335 * @skb: buffer to pad
2336 * @pad: space to pad
2337 * @free_on_error: free buffer on error
2339 * Ensure that a buffer is followed by a padding area that is zero
2340 * filled. Used by network drivers which may DMA or transfer data
2341 * beyond the buffer end onto the wire.
2343 * May return error in out of memory cases. The skb is freed on error
2344 * if @free_on_error is true.
2347 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2352 /* If the skbuff is non linear tailroom is always zero.. */
2353 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2354 memset(skb->data+skb->len, 0, pad);
2358 ntail = skb->data_len + pad - (skb->end - skb->tail);
2359 if (likely(skb_cloned(skb) || ntail > 0)) {
2360 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2365 /* FIXME: The use of this function with non-linear skb's really needs
2368 err = skb_linearize(skb);
2372 memset(skb->data + skb->len, 0, pad);
2380 EXPORT_SYMBOL(__skb_pad);
2383 * pskb_put - add data to the tail of a potentially fragmented buffer
2384 * @skb: start of the buffer to use
2385 * @tail: tail fragment of the buffer to use
2386 * @len: amount of data to add
2388 * This function extends the used data area of the potentially
2389 * fragmented buffer. @tail must be the last fragment of @skb -- or
2390 * @skb itself. If this would exceed the total buffer size the kernel
2391 * will panic. A pointer to the first byte of the extra data is
2395 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2398 skb->data_len += len;
2401 return skb_put(tail, len);
2403 EXPORT_SYMBOL_GPL(pskb_put);
2406 * skb_put - add data to a buffer
2407 * @skb: buffer to use
2408 * @len: amount of data to add
2410 * This function extends the used data area of the buffer. If this would
2411 * exceed the total buffer size the kernel will panic. A pointer to the
2412 * first byte of the extra data is returned.
2414 void *skb_put(struct sk_buff *skb, unsigned int len)
2416 void *tmp = skb_tail_pointer(skb);
2417 SKB_LINEAR_ASSERT(skb);
2420 if (unlikely(skb->tail > skb->end))
2421 skb_over_panic(skb, len, __builtin_return_address(0));
2424 EXPORT_SYMBOL(skb_put);
2427 * skb_push - add data to the start of a buffer
2428 * @skb: buffer to use
2429 * @len: amount of data to add
2431 * This function extends the used data area of the buffer at the buffer
2432 * start. If this would exceed the total buffer headroom the kernel will
2433 * panic. A pointer to the first byte of the extra data is returned.
2435 void *skb_push(struct sk_buff *skb, unsigned int len)
2439 if (unlikely(skb->data < skb->head))
2440 skb_under_panic(skb, len, __builtin_return_address(0));
2443 EXPORT_SYMBOL(skb_push);
2446 * skb_pull - remove data from the start of a buffer
2447 * @skb: buffer to use
2448 * @len: amount of data to remove
2450 * This function removes data from the start of a buffer, returning
2451 * the memory to the headroom. A pointer to the next data in the buffer
2452 * is returned. Once the data has been pulled future pushes will overwrite
2455 void *skb_pull(struct sk_buff *skb, unsigned int len)
2457 return skb_pull_inline(skb, len);
2459 EXPORT_SYMBOL(skb_pull);
2462 * skb_pull_data - remove data from the start of a buffer returning its
2463 * original position.
2464 * @skb: buffer to use
2465 * @len: amount of data to remove
2467 * This function removes data from the start of a buffer, returning
2468 * the memory to the headroom. A pointer to the original data in the buffer
2469 * is returned after checking if there is enough data to pull. Once the
2470 * data has been pulled future pushes will overwrite the old data.
2472 void *skb_pull_data(struct sk_buff *skb, size_t len)
2474 void *data = skb->data;
2483 EXPORT_SYMBOL(skb_pull_data);
2486 * skb_trim - remove end from a buffer
2487 * @skb: buffer to alter
2490 * Cut the length of a buffer down by removing data from the tail. If
2491 * the buffer is already under the length specified it is not modified.
2492 * The skb must be linear.
2494 void skb_trim(struct sk_buff *skb, unsigned int len)
2497 __skb_trim(skb, len);
2499 EXPORT_SYMBOL(skb_trim);
2501 /* Trims skb to length len. It can change skb pointers.
2504 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2506 struct sk_buff **fragp;
2507 struct sk_buff *frag;
2508 int offset = skb_headlen(skb);
2509 int nfrags = skb_shinfo(skb)->nr_frags;
2513 if (skb_cloned(skb) &&
2514 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2521 for (; i < nfrags; i++) {
2522 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2529 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2532 skb_shinfo(skb)->nr_frags = i;
2534 for (; i < nfrags; i++)
2535 skb_frag_unref(skb, i);
2537 if (skb_has_frag_list(skb))
2538 skb_drop_fraglist(skb);
2542 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2543 fragp = &frag->next) {
2544 int end = offset + frag->len;
2546 if (skb_shared(frag)) {
2547 struct sk_buff *nfrag;
2549 nfrag = skb_clone(frag, GFP_ATOMIC);
2550 if (unlikely(!nfrag))
2553 nfrag->next = frag->next;
2565 unlikely((err = pskb_trim(frag, len - offset))))
2569 skb_drop_list(&frag->next);
2574 if (len > skb_headlen(skb)) {
2575 skb->data_len -= skb->len - len;
2580 skb_set_tail_pointer(skb, len);
2583 if (!skb->sk || skb->destructor == sock_edemux)
2587 EXPORT_SYMBOL(___pskb_trim);
2589 /* Note : use pskb_trim_rcsum() instead of calling this directly
2591 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2593 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2594 int delta = skb->len - len;
2596 skb->csum = csum_block_sub(skb->csum,
2597 skb_checksum(skb, len, delta, 0),
2599 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2600 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2601 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2603 if (offset + sizeof(__sum16) > hdlen)
2606 return __pskb_trim(skb, len);
2608 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2611 * __pskb_pull_tail - advance tail of skb header
2612 * @skb: buffer to reallocate
2613 * @delta: number of bytes to advance tail
2615 * The function makes a sense only on a fragmented &sk_buff,
2616 * it expands header moving its tail forward and copying necessary
2617 * data from fragmented part.
2619 * &sk_buff MUST have reference count of 1.
2621 * Returns %NULL (and &sk_buff does not change) if pull failed
2622 * or value of new tail of skb in the case of success.
2624 * All the pointers pointing into skb header may change and must be
2625 * reloaded after call to this function.
2628 /* Moves tail of skb head forward, copying data from fragmented part,
2629 * when it is necessary.
2630 * 1. It may fail due to malloc failure.
2631 * 2. It may change skb pointers.
2633 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2635 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2637 /* If skb has not enough free space at tail, get new one
2638 * plus 128 bytes for future expansions. If we have enough
2639 * room at tail, reallocate without expansion only if skb is cloned.
2641 int i, k, eat = (skb->tail + delta) - skb->end;
2643 if (eat > 0 || skb_cloned(skb)) {
2644 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2649 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2650 skb_tail_pointer(skb), delta));
2652 /* Optimization: no fragments, no reasons to preestimate
2653 * size of pulled pages. Superb.
2655 if (!skb_has_frag_list(skb))
2658 /* Estimate size of pulled pages. */
2660 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2661 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2668 /* If we need update frag list, we are in troubles.
2669 * Certainly, it is possible to add an offset to skb data,
2670 * but taking into account that pulling is expected to
2671 * be very rare operation, it is worth to fight against
2672 * further bloating skb head and crucify ourselves here instead.
2673 * Pure masohism, indeed. 8)8)
2676 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2677 struct sk_buff *clone = NULL;
2678 struct sk_buff *insp = NULL;
2681 if (list->len <= eat) {
2682 /* Eaten as whole. */
2687 /* Eaten partially. */
2688 if (skb_is_gso(skb) && !list->head_frag &&
2690 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2692 if (skb_shared(list)) {
2693 /* Sucks! We need to fork list. :-( */
2694 clone = skb_clone(list, GFP_ATOMIC);
2700 /* This may be pulled without
2704 if (!pskb_pull(list, eat)) {
2712 /* Free pulled out fragments. */
2713 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2714 skb_shinfo(skb)->frag_list = list->next;
2717 /* And insert new clone at head. */
2720 skb_shinfo(skb)->frag_list = clone;
2723 /* Success! Now we may commit changes to skb data. */
2728 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2729 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2732 skb_frag_unref(skb, i);
2735 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2737 *frag = skb_shinfo(skb)->frags[i];
2739 skb_frag_off_add(frag, eat);
2740 skb_frag_size_sub(frag, eat);
2748 skb_shinfo(skb)->nr_frags = k;
2752 skb->data_len -= delta;
2755 skb_zcopy_clear(skb, false);
2757 return skb_tail_pointer(skb);
2759 EXPORT_SYMBOL(__pskb_pull_tail);
2762 * skb_copy_bits - copy bits from skb to kernel buffer
2764 * @offset: offset in source
2765 * @to: destination buffer
2766 * @len: number of bytes to copy
2768 * Copy the specified number of bytes from the source skb to the
2769 * destination buffer.
2772 * If its prototype is ever changed,
2773 * check arch/{*}/net/{*}.S files,
2774 * since it is called from BPF assembly code.
2776 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2778 int start = skb_headlen(skb);
2779 struct sk_buff *frag_iter;
2782 if (offset > (int)skb->len - len)
2786 if ((copy = start - offset) > 0) {
2789 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2790 if ((len -= copy) == 0)
2796 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2798 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2800 WARN_ON(start > offset + len);
2802 end = start + skb_frag_size(f);
2803 if ((copy = end - offset) > 0) {
2804 u32 p_off, p_len, copied;
2811 skb_frag_foreach_page(f,
2812 skb_frag_off(f) + offset - start,
2813 copy, p, p_off, p_len, copied) {
2814 vaddr = kmap_atomic(p);
2815 memcpy(to + copied, vaddr + p_off, p_len);
2816 kunmap_atomic(vaddr);
2819 if ((len -= copy) == 0)
2827 skb_walk_frags(skb, frag_iter) {
2830 WARN_ON(start > offset + len);
2832 end = start + frag_iter->len;
2833 if ((copy = end - offset) > 0) {
2836 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2838 if ((len -= copy) == 0)
2852 EXPORT_SYMBOL(skb_copy_bits);
2855 * Callback from splice_to_pipe(), if we need to release some pages
2856 * at the end of the spd in case we error'ed out in filling the pipe.
2858 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2860 put_page(spd->pages[i]);
2863 static struct page *linear_to_page(struct page *page, unsigned int *len,
2864 unsigned int *offset,
2867 struct page_frag *pfrag = sk_page_frag(sk);
2869 if (!sk_page_frag_refill(sk, pfrag))
2872 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2874 memcpy(page_address(pfrag->page) + pfrag->offset,
2875 page_address(page) + *offset, *len);
2876 *offset = pfrag->offset;
2877 pfrag->offset += *len;
2882 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2884 unsigned int offset)
2886 return spd->nr_pages &&
2887 spd->pages[spd->nr_pages - 1] == page &&
2888 (spd->partial[spd->nr_pages - 1].offset +
2889 spd->partial[spd->nr_pages - 1].len == offset);
2893 * Fill page/offset/length into spd, if it can hold more pages.
2895 static bool spd_fill_page(struct splice_pipe_desc *spd,
2896 struct pipe_inode_info *pipe, struct page *page,
2897 unsigned int *len, unsigned int offset,
2901 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2905 page = linear_to_page(page, len, &offset, sk);
2909 if (spd_can_coalesce(spd, page, offset)) {
2910 spd->partial[spd->nr_pages - 1].len += *len;
2914 spd->pages[spd->nr_pages] = page;
2915 spd->partial[spd->nr_pages].len = *len;
2916 spd->partial[spd->nr_pages].offset = offset;
2922 static bool __splice_segment(struct page *page, unsigned int poff,
2923 unsigned int plen, unsigned int *off,
2925 struct splice_pipe_desc *spd, bool linear,
2927 struct pipe_inode_info *pipe)
2932 /* skip this segment if already processed */
2938 /* ignore any bits we already processed */
2944 unsigned int flen = min(*len, plen);
2946 if (spd_fill_page(spd, pipe, page, &flen, poff,
2952 } while (*len && plen);
2958 * Map linear and fragment data from the skb to spd. It reports true if the
2959 * pipe is full or if we already spliced the requested length.
2961 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2962 unsigned int *offset, unsigned int *len,
2963 struct splice_pipe_desc *spd, struct sock *sk)
2966 struct sk_buff *iter;
2968 /* map the linear part :
2969 * If skb->head_frag is set, this 'linear' part is backed by a
2970 * fragment, and if the head is not shared with any clones then
2971 * we can avoid a copy since we own the head portion of this page.
2973 if (__splice_segment(virt_to_page(skb->data),
2974 (unsigned long) skb->data & (PAGE_SIZE - 1),
2977 skb_head_is_locked(skb),
2982 * then map the fragments
2984 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2985 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2987 if (__splice_segment(skb_frag_page(f),
2988 skb_frag_off(f), skb_frag_size(f),
2989 offset, len, spd, false, sk, pipe))
2993 skb_walk_frags(skb, iter) {
2994 if (*offset >= iter->len) {
2995 *offset -= iter->len;
2998 /* __skb_splice_bits() only fails if the output has no room
2999 * left, so no point in going over the frag_list for the error
3002 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3010 * Map data from the skb to a pipe. Should handle both the linear part,
3011 * the fragments, and the frag list.
3013 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3014 struct pipe_inode_info *pipe, unsigned int tlen,
3017 struct partial_page partial[MAX_SKB_FRAGS];
3018 struct page *pages[MAX_SKB_FRAGS];
3019 struct splice_pipe_desc spd = {
3022 .nr_pages_max = MAX_SKB_FRAGS,
3023 .ops = &nosteal_pipe_buf_ops,
3024 .spd_release = sock_spd_release,
3028 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3031 ret = splice_to_pipe(pipe, &spd);
3035 EXPORT_SYMBOL_GPL(skb_splice_bits);
3037 static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3039 struct socket *sock = sk->sk_socket;
3040 size_t size = msg_data_left(msg);
3045 if (!sock->ops->sendmsg_locked)
3046 return sock_no_sendmsg_locked(sk, msg, size);
3048 return sock->ops->sendmsg_locked(sk, msg, size);
3051 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3053 struct socket *sock = sk->sk_socket;
3057 return sock_sendmsg(sock, msg);
3060 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3061 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3062 int len, sendmsg_func sendmsg)
3064 unsigned int orig_len = len;
3065 struct sk_buff *head = skb;
3066 unsigned short fragidx;
3071 /* Deal with head data */
3072 while (offset < skb_headlen(skb) && len) {
3076 slen = min_t(int, len, skb_headlen(skb) - offset);
3077 kv.iov_base = skb->data + offset;
3079 memset(&msg, 0, sizeof(msg));
3080 msg.msg_flags = MSG_DONTWAIT;
3082 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3083 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3084 sendmsg_unlocked, sk, &msg);
3092 /* All the data was skb head? */
3096 /* Make offset relative to start of frags */
3097 offset -= skb_headlen(skb);
3099 /* Find where we are in frag list */
3100 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3101 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3103 if (offset < skb_frag_size(frag))
3106 offset -= skb_frag_size(frag);
3109 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3110 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3112 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3115 struct bio_vec bvec;
3116 struct msghdr msg = {
3117 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3120 bvec_set_page(&bvec, skb_frag_page(frag), slen,
3121 skb_frag_off(frag) + offset);
3122 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3125 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3126 sendmsg_unlocked, sk, &msg);
3139 /* Process any frag lists */
3142 if (skb_has_frag_list(skb)) {
3143 skb = skb_shinfo(skb)->frag_list;
3146 } else if (skb->next) {
3153 return orig_len - len;
3156 return orig_len == len ? ret : orig_len - len;
3159 /* Send skb data on a socket. Socket must be locked. */
3160 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3163 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3165 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3167 /* Send skb data on a socket. Socket must be unlocked. */
3168 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3170 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3174 * skb_store_bits - store bits from kernel buffer to skb
3175 * @skb: destination buffer
3176 * @offset: offset in destination
3177 * @from: source buffer
3178 * @len: number of bytes to copy
3180 * Copy the specified number of bytes from the source buffer to the
3181 * destination skb. This function handles all the messy bits of
3182 * traversing fragment lists and such.
3185 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3187 int start = skb_headlen(skb);
3188 struct sk_buff *frag_iter;
3191 if (offset > (int)skb->len - len)
3194 if ((copy = start - offset) > 0) {
3197 skb_copy_to_linear_data_offset(skb, offset, from, copy);
3198 if ((len -= copy) == 0)
3204 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3205 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3208 WARN_ON(start > offset + len);
3210 end = start + skb_frag_size(frag);
3211 if ((copy = end - offset) > 0) {
3212 u32 p_off, p_len, copied;
3219 skb_frag_foreach_page(frag,
3220 skb_frag_off(frag) + offset - start,
3221 copy, p, p_off, p_len, copied) {
3222 vaddr = kmap_atomic(p);
3223 memcpy(vaddr + p_off, from + copied, p_len);
3224 kunmap_atomic(vaddr);
3227 if ((len -= copy) == 0)
3235 skb_walk_frags(skb, frag_iter) {
3238 WARN_ON(start > offset + len);
3240 end = start + frag_iter->len;
3241 if ((copy = end - offset) > 0) {
3244 if (skb_store_bits(frag_iter, offset - start,
3247 if ((len -= copy) == 0)
3260 EXPORT_SYMBOL(skb_store_bits);
3262 /* Checksum skb data. */
3263 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3264 __wsum csum, const struct skb_checksum_ops *ops)
3266 int start = skb_headlen(skb);
3267 int i, copy = start - offset;
3268 struct sk_buff *frag_iter;
3271 /* Checksum header. */
3275 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3276 skb->data + offset, copy, csum);
3277 if ((len -= copy) == 0)
3283 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3285 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3287 WARN_ON(start > offset + len);
3289 end = start + skb_frag_size(frag);
3290 if ((copy = end - offset) > 0) {
3291 u32 p_off, p_len, copied;
3299 skb_frag_foreach_page(frag,
3300 skb_frag_off(frag) + offset - start,
3301 copy, p, p_off, p_len, copied) {
3302 vaddr = kmap_atomic(p);
3303 csum2 = INDIRECT_CALL_1(ops->update,
3305 vaddr + p_off, p_len, 0);
3306 kunmap_atomic(vaddr);
3307 csum = INDIRECT_CALL_1(ops->combine,
3308 csum_block_add_ext, csum,
3320 skb_walk_frags(skb, frag_iter) {
3323 WARN_ON(start > offset + len);
3325 end = start + frag_iter->len;
3326 if ((copy = end - offset) > 0) {
3330 csum2 = __skb_checksum(frag_iter, offset - start,
3332 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3333 csum, csum2, pos, copy);
3334 if ((len -= copy) == 0)
3345 EXPORT_SYMBOL(__skb_checksum);
3347 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3348 int len, __wsum csum)
3350 const struct skb_checksum_ops ops = {
3351 .update = csum_partial_ext,
3352 .combine = csum_block_add_ext,
3355 return __skb_checksum(skb, offset, len, csum, &ops);
3357 EXPORT_SYMBOL(skb_checksum);
3359 /* Both of above in one bottle. */
3361 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3364 int start = skb_headlen(skb);
3365 int i, copy = start - offset;
3366 struct sk_buff *frag_iter;
3374 csum = csum_partial_copy_nocheck(skb->data + offset, to,
3376 if ((len -= copy) == 0)
3383 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3386 WARN_ON(start > offset + len);
3388 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3389 if ((copy = end - offset) > 0) {
3390 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3391 u32 p_off, p_len, copied;
3399 skb_frag_foreach_page(frag,
3400 skb_frag_off(frag) + offset - start,
3401 copy, p, p_off, p_len, copied) {
3402 vaddr = kmap_atomic(p);
3403 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3406 kunmap_atomic(vaddr);
3407 csum = csum_block_add(csum, csum2, pos);
3419 skb_walk_frags(skb, frag_iter) {
3423 WARN_ON(start > offset + len);
3425 end = start + frag_iter->len;
3426 if ((copy = end - offset) > 0) {
3429 csum2 = skb_copy_and_csum_bits(frag_iter,
3432 csum = csum_block_add(csum, csum2, pos);
3433 if ((len -= copy) == 0)
3444 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3446 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3450 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3451 /* See comments in __skb_checksum_complete(). */
3453 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3454 !skb->csum_complete_sw)
3455 netdev_rx_csum_fault(skb->dev, skb);
3457 if (!skb_shared(skb))
3458 skb->csum_valid = !sum;
3461 EXPORT_SYMBOL(__skb_checksum_complete_head);
3463 /* This function assumes skb->csum already holds pseudo header's checksum,
3464 * which has been changed from the hardware checksum, for example, by
3465 * __skb_checksum_validate_complete(). And, the original skb->csum must
3466 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3468 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3469 * zero. The new checksum is stored back into skb->csum unless the skb is
3472 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3477 csum = skb_checksum(skb, 0, skb->len, 0);
3479 sum = csum_fold(csum_add(skb->csum, csum));
3480 /* This check is inverted, because we already knew the hardware
3481 * checksum is invalid before calling this function. So, if the
3482 * re-computed checksum is valid instead, then we have a mismatch
3483 * between the original skb->csum and skb_checksum(). This means either
3484 * the original hardware checksum is incorrect or we screw up skb->csum
3485 * when moving skb->data around.
3488 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3489 !skb->csum_complete_sw)
3490 netdev_rx_csum_fault(skb->dev, skb);
3493 if (!skb_shared(skb)) {
3494 /* Save full packet checksum */
3496 skb->ip_summed = CHECKSUM_COMPLETE;
3497 skb->csum_complete_sw = 1;
3498 skb->csum_valid = !sum;
3503 EXPORT_SYMBOL(__skb_checksum_complete);
3505 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3507 net_warn_ratelimited(
3508 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3513 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3514 int offset, int len)
3516 net_warn_ratelimited(
3517 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3522 static const struct skb_checksum_ops default_crc32c_ops = {
3523 .update = warn_crc32c_csum_update,
3524 .combine = warn_crc32c_csum_combine,
3527 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3528 &default_crc32c_ops;
3529 EXPORT_SYMBOL(crc32c_csum_stub);
3532 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3533 * @from: source buffer
3535 * Calculates the amount of linear headroom needed in the 'to' skb passed
3536 * into skb_zerocopy().
3539 skb_zerocopy_headlen(const struct sk_buff *from)
3541 unsigned int hlen = 0;
3543 if (!from->head_frag ||
3544 skb_headlen(from) < L1_CACHE_BYTES ||
3545 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3546 hlen = skb_headlen(from);
3551 if (skb_has_frag_list(from))
3556 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3559 * skb_zerocopy - Zero copy skb to skb
3560 * @to: destination buffer
3561 * @from: source buffer
3562 * @len: number of bytes to copy from source buffer
3563 * @hlen: size of linear headroom in destination buffer
3565 * Copies up to `len` bytes from `from` to `to` by creating references
3566 * to the frags in the source buffer.
3568 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3569 * headroom in the `to` buffer.
3572 * 0: everything is OK
3573 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3574 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3577 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3580 int plen = 0; /* length of skb->head fragment */
3583 unsigned int offset;
3585 BUG_ON(!from->head_frag && !hlen);
3587 /* dont bother with small payloads */
3588 if (len <= skb_tailroom(to))
3589 return skb_copy_bits(from, 0, skb_put(to, len), len);
3592 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3597 plen = min_t(int, skb_headlen(from), len);
3599 page = virt_to_head_page(from->head);
3600 offset = from->data - (unsigned char *)page_address(page);
3601 __skb_fill_page_desc(to, 0, page, offset, plen);
3608 skb_len_add(to, len + plen);
3610 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3614 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3616 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3621 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3622 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3624 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3626 skb_frag_ref(to, j);
3629 skb_shinfo(to)->nr_frags = j;
3633 EXPORT_SYMBOL_GPL(skb_zerocopy);
3635 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3640 if (skb->ip_summed == CHECKSUM_PARTIAL)
3641 csstart = skb_checksum_start_offset(skb);
3643 csstart = skb_headlen(skb);
3645 BUG_ON(csstart > skb_headlen(skb));
3647 skb_copy_from_linear_data(skb, to, csstart);
3650 if (csstart != skb->len)
3651 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3652 skb->len - csstart);
3654 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3655 long csstuff = csstart + skb->csum_offset;
3657 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3660 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3663 * skb_dequeue - remove from the head of the queue
3664 * @list: list to dequeue from
3666 * Remove the head of the list. The list lock is taken so the function
3667 * may be used safely with other locking list functions. The head item is
3668 * returned or %NULL if the list is empty.
3671 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3673 unsigned long flags;
3674 struct sk_buff *result;
3676 spin_lock_irqsave(&list->lock, flags);
3677 result = __skb_dequeue(list);
3678 spin_unlock_irqrestore(&list->lock, flags);
3681 EXPORT_SYMBOL(skb_dequeue);
3684 * skb_dequeue_tail - remove from the tail of the queue
3685 * @list: list to dequeue from
3687 * Remove the tail of the list. The list lock is taken so the function
3688 * may be used safely with other locking list functions. The tail item is
3689 * returned or %NULL if the list is empty.
3691 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3693 unsigned long flags;
3694 struct sk_buff *result;
3696 spin_lock_irqsave(&list->lock, flags);
3697 result = __skb_dequeue_tail(list);
3698 spin_unlock_irqrestore(&list->lock, flags);
3701 EXPORT_SYMBOL(skb_dequeue_tail);
3704 * skb_queue_purge_reason - empty a list
3705 * @list: list to empty
3706 * @reason: drop reason
3708 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3709 * the list and one reference dropped. This function takes the list
3710 * lock and is atomic with respect to other list locking functions.
3712 void skb_queue_purge_reason(struct sk_buff_head *list,
3713 enum skb_drop_reason reason)
3715 struct sk_buff *skb;
3717 while ((skb = skb_dequeue(list)) != NULL)
3718 kfree_skb_reason(skb, reason);
3720 EXPORT_SYMBOL(skb_queue_purge_reason);
3723 * skb_rbtree_purge - empty a skb rbtree
3724 * @root: root of the rbtree to empty
3725 * Return value: the sum of truesizes of all purged skbs.
3727 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3728 * the list and one reference dropped. This function does not take
3729 * any lock. Synchronization should be handled by the caller (e.g., TCP
3730 * out-of-order queue is protected by the socket lock).
3732 unsigned int skb_rbtree_purge(struct rb_root *root)
3734 struct rb_node *p = rb_first(root);
3735 unsigned int sum = 0;
3738 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3741 rb_erase(&skb->rbnode, root);
3742 sum += skb->truesize;
3748 void skb_errqueue_purge(struct sk_buff_head *list)
3750 struct sk_buff *skb, *next;
3751 struct sk_buff_head kill;
3752 unsigned long flags;
3754 __skb_queue_head_init(&kill);
3756 spin_lock_irqsave(&list->lock, flags);
3757 skb_queue_walk_safe(list, skb, next) {
3758 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3759 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3761 __skb_unlink(skb, list);
3762 __skb_queue_tail(&kill, skb);
3764 spin_unlock_irqrestore(&list->lock, flags);
3765 __skb_queue_purge(&kill);
3767 EXPORT_SYMBOL(skb_errqueue_purge);
3770 * skb_queue_head - queue a buffer at the list head
3771 * @list: list to use
3772 * @newsk: buffer to queue
3774 * Queue a buffer at the start of the list. This function takes the
3775 * list lock and can be used safely with other locking &sk_buff functions
3778 * A buffer cannot be placed on two lists at the same time.
3780 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3782 unsigned long flags;
3784 spin_lock_irqsave(&list->lock, flags);
3785 __skb_queue_head(list, newsk);
3786 spin_unlock_irqrestore(&list->lock, flags);
3788 EXPORT_SYMBOL(skb_queue_head);
3791 * skb_queue_tail - queue a buffer at the list tail
3792 * @list: list to use
3793 * @newsk: buffer to queue
3795 * Queue a buffer at the tail of the list. This function takes the
3796 * list lock and can be used safely with other locking &sk_buff functions
3799 * A buffer cannot be placed on two lists at the same time.
3801 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3803 unsigned long flags;
3805 spin_lock_irqsave(&list->lock, flags);
3806 __skb_queue_tail(list, newsk);
3807 spin_unlock_irqrestore(&list->lock, flags);
3809 EXPORT_SYMBOL(skb_queue_tail);
3812 * skb_unlink - remove a buffer from a list
3813 * @skb: buffer to remove
3814 * @list: list to use
3816 * Remove a packet from a list. The list locks are taken and this
3817 * function is atomic with respect to other list locked calls
3819 * You must know what list the SKB is on.
3821 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3823 unsigned long flags;
3825 spin_lock_irqsave(&list->lock, flags);
3826 __skb_unlink(skb, list);
3827 spin_unlock_irqrestore(&list->lock, flags);
3829 EXPORT_SYMBOL(skb_unlink);
3832 * skb_append - append a buffer
3833 * @old: buffer to insert after
3834 * @newsk: buffer to insert
3835 * @list: list to use
3837 * Place a packet after a given packet in a list. The list locks are taken
3838 * and this function is atomic with respect to other list locked calls.
3839 * A buffer cannot be placed on two lists at the same time.
3841 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3843 unsigned long flags;
3845 spin_lock_irqsave(&list->lock, flags);
3846 __skb_queue_after(list, old, newsk);
3847 spin_unlock_irqrestore(&list->lock, flags);
3849 EXPORT_SYMBOL(skb_append);
3851 static inline void skb_split_inside_header(struct sk_buff *skb,
3852 struct sk_buff* skb1,
3853 const u32 len, const int pos)
3857 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3859 /* And move data appendix as is. */
3860 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3861 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3863 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3864 skb_shinfo(skb)->nr_frags = 0;
3865 skb1->data_len = skb->data_len;
3866 skb1->len += skb1->data_len;
3869 skb_set_tail_pointer(skb, len);
3872 static inline void skb_split_no_header(struct sk_buff *skb,
3873 struct sk_buff* skb1,
3874 const u32 len, int pos)
3877 const int nfrags = skb_shinfo(skb)->nr_frags;
3879 skb_shinfo(skb)->nr_frags = 0;
3880 skb1->len = skb1->data_len = skb->len - len;
3882 skb->data_len = len - pos;
3884 for (i = 0; i < nfrags; i++) {
3885 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3887 if (pos + size > len) {
3888 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3892 * We have two variants in this case:
3893 * 1. Move all the frag to the second
3894 * part, if it is possible. F.e.
3895 * this approach is mandatory for TUX,
3896 * where splitting is expensive.
3897 * 2. Split is accurately. We make this.
3899 skb_frag_ref(skb, i);
3900 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3901 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3902 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3903 skb_shinfo(skb)->nr_frags++;
3907 skb_shinfo(skb)->nr_frags++;
3910 skb_shinfo(skb1)->nr_frags = k;
3914 * skb_split - Split fragmented skb to two parts at length len.
3915 * @skb: the buffer to split
3916 * @skb1: the buffer to receive the second part
3917 * @len: new length for skb
3919 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3921 int pos = skb_headlen(skb);
3922 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3924 skb_zcopy_downgrade_managed(skb);
3926 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3927 skb_zerocopy_clone(skb1, skb, 0);
3928 if (len < pos) /* Split line is inside header. */
3929 skb_split_inside_header(skb, skb1, len, pos);
3930 else /* Second chunk has no header, nothing to copy. */
3931 skb_split_no_header(skb, skb1, len, pos);
3933 EXPORT_SYMBOL(skb_split);
3935 /* Shifting from/to a cloned skb is a no-go.
3937 * Caller cannot keep skb_shinfo related pointers past calling here!
3939 static int skb_prepare_for_shift(struct sk_buff *skb)
3941 return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3945 * skb_shift - Shifts paged data partially from skb to another
3946 * @tgt: buffer into which tail data gets added
3947 * @skb: buffer from which the paged data comes from
3948 * @shiftlen: shift up to this many bytes
3950 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3951 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3952 * It's up to caller to free skb if everything was shifted.
3954 * If @tgt runs out of frags, the whole operation is aborted.
3956 * Skb cannot include anything else but paged data while tgt is allowed
3957 * to have non-paged data as well.
3959 * TODO: full sized shift could be optimized but that would need
3960 * specialized skb free'er to handle frags without up-to-date nr_frags.
3962 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3964 int from, to, merge, todo;
3965 skb_frag_t *fragfrom, *fragto;
3967 BUG_ON(shiftlen > skb->len);
3969 if (skb_headlen(skb))
3971 if (skb_zcopy(tgt) || skb_zcopy(skb))
3976 to = skb_shinfo(tgt)->nr_frags;
3977 fragfrom = &skb_shinfo(skb)->frags[from];
3979 /* Actual merge is delayed until the point when we know we can
3980 * commit all, so that we don't have to undo partial changes
3983 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3984 skb_frag_off(fragfrom))) {
3989 todo -= skb_frag_size(fragfrom);
3991 if (skb_prepare_for_shift(skb) ||
3992 skb_prepare_for_shift(tgt))
3995 /* All previous frag pointers might be stale! */
3996 fragfrom = &skb_shinfo(skb)->frags[from];
3997 fragto = &skb_shinfo(tgt)->frags[merge];
3999 skb_frag_size_add(fragto, shiftlen);
4000 skb_frag_size_sub(fragfrom, shiftlen);
4001 skb_frag_off_add(fragfrom, shiftlen);
4009 /* Skip full, not-fitting skb to avoid expensive operations */
4010 if ((shiftlen == skb->len) &&
4011 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4014 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4017 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4018 if (to == MAX_SKB_FRAGS)
4021 fragfrom = &skb_shinfo(skb)->frags[from];
4022 fragto = &skb_shinfo(tgt)->frags[to];
4024 if (todo >= skb_frag_size(fragfrom)) {
4025 *fragto = *fragfrom;
4026 todo -= skb_frag_size(fragfrom);
4031 __skb_frag_ref(fragfrom);
4032 skb_frag_page_copy(fragto, fragfrom);
4033 skb_frag_off_copy(fragto, fragfrom);
4034 skb_frag_size_set(fragto, todo);
4036 skb_frag_off_add(fragfrom, todo);
4037 skb_frag_size_sub(fragfrom, todo);
4045 /* Ready to "commit" this state change to tgt */
4046 skb_shinfo(tgt)->nr_frags = to;
4049 fragfrom = &skb_shinfo(skb)->frags[0];
4050 fragto = &skb_shinfo(tgt)->frags[merge];
4052 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4053 __skb_frag_unref(fragfrom, skb->pp_recycle);
4056 /* Reposition in the original skb */
4058 while (from < skb_shinfo(skb)->nr_frags)
4059 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4060 skb_shinfo(skb)->nr_frags = to;
4062 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4065 /* Most likely the tgt won't ever need its checksum anymore, skb on
4066 * the other hand might need it if it needs to be resent
4068 tgt->ip_summed = CHECKSUM_PARTIAL;
4069 skb->ip_summed = CHECKSUM_PARTIAL;
4071 skb_len_add(skb, -shiftlen);
4072 skb_len_add(tgt, shiftlen);
4078 * skb_prepare_seq_read - Prepare a sequential read of skb data
4079 * @skb: the buffer to read
4080 * @from: lower offset of data to be read
4081 * @to: upper offset of data to be read
4082 * @st: state variable
4084 * Initializes the specified state variable. Must be called before
4085 * invoking skb_seq_read() for the first time.
4087 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4088 unsigned int to, struct skb_seq_state *st)
4090 st->lower_offset = from;
4091 st->upper_offset = to;
4092 st->root_skb = st->cur_skb = skb;
4093 st->frag_idx = st->stepped_offset = 0;
4094 st->frag_data = NULL;
4097 EXPORT_SYMBOL(skb_prepare_seq_read);
4100 * skb_seq_read - Sequentially read skb data
4101 * @consumed: number of bytes consumed by the caller so far
4102 * @data: destination pointer for data to be returned
4103 * @st: state variable
4105 * Reads a block of skb data at @consumed relative to the
4106 * lower offset specified to skb_prepare_seq_read(). Assigns
4107 * the head of the data block to @data and returns the length
4108 * of the block or 0 if the end of the skb data or the upper
4109 * offset has been reached.
4111 * The caller is not required to consume all of the data
4112 * returned, i.e. @consumed is typically set to the number
4113 * of bytes already consumed and the next call to
4114 * skb_seq_read() will return the remaining part of the block.
4116 * Note 1: The size of each block of data returned can be arbitrary,
4117 * this limitation is the cost for zerocopy sequential
4118 * reads of potentially non linear data.
4120 * Note 2: Fragment lists within fragments are not implemented
4121 * at the moment, state->root_skb could be replaced with
4122 * a stack for this purpose.
4124 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4125 struct skb_seq_state *st)
4127 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4130 if (unlikely(abs_offset >= st->upper_offset)) {
4131 if (st->frag_data) {
4132 kunmap_atomic(st->frag_data);
4133 st->frag_data = NULL;
4139 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4141 if (abs_offset < block_limit && !st->frag_data) {
4142 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4143 return block_limit - abs_offset;
4146 if (st->frag_idx == 0 && !st->frag_data)
4147 st->stepped_offset += skb_headlen(st->cur_skb);
4149 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4150 unsigned int pg_idx, pg_off, pg_sz;
4152 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4155 pg_off = skb_frag_off(frag);
4156 pg_sz = skb_frag_size(frag);
4158 if (skb_frag_must_loop(skb_frag_page(frag))) {
4159 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4160 pg_off = offset_in_page(pg_off + st->frag_off);
4161 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4162 PAGE_SIZE - pg_off);
4165 block_limit = pg_sz + st->stepped_offset;
4166 if (abs_offset < block_limit) {
4168 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4170 *data = (u8 *)st->frag_data + pg_off +
4171 (abs_offset - st->stepped_offset);
4173 return block_limit - abs_offset;
4176 if (st->frag_data) {
4177 kunmap_atomic(st->frag_data);
4178 st->frag_data = NULL;
4181 st->stepped_offset += pg_sz;
4182 st->frag_off += pg_sz;
4183 if (st->frag_off == skb_frag_size(frag)) {
4189 if (st->frag_data) {
4190 kunmap_atomic(st->frag_data);
4191 st->frag_data = NULL;
4194 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4195 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4198 } else if (st->cur_skb->next) {
4199 st->cur_skb = st->cur_skb->next;
4206 EXPORT_SYMBOL(skb_seq_read);
4209 * skb_abort_seq_read - Abort a sequential read of skb data
4210 * @st: state variable
4212 * Must be called if skb_seq_read() was not called until it
4215 void skb_abort_seq_read(struct skb_seq_state *st)
4218 kunmap_atomic(st->frag_data);
4220 EXPORT_SYMBOL(skb_abort_seq_read);
4222 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
4224 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4225 struct ts_config *conf,
4226 struct ts_state *state)
4228 return skb_seq_read(offset, text, TS_SKB_CB(state));
4231 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4233 skb_abort_seq_read(TS_SKB_CB(state));
4237 * skb_find_text - Find a text pattern in skb data
4238 * @skb: the buffer to look in
4239 * @from: search offset
4241 * @config: textsearch configuration
4243 * Finds a pattern in the skb data according to the specified
4244 * textsearch configuration. Use textsearch_next() to retrieve
4245 * subsequent occurrences of the pattern. Returns the offset
4246 * to the first occurrence or UINT_MAX if no match was found.
4248 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4249 unsigned int to, struct ts_config *config)
4251 struct ts_state state;
4254 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4256 config->get_next_block = skb_ts_get_next_block;
4257 config->finish = skb_ts_finish;
4259 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4261 ret = textsearch_find(config, &state);
4262 return (ret <= to - from ? ret : UINT_MAX);
4264 EXPORT_SYMBOL(skb_find_text);
4266 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4267 int offset, size_t size, size_t max_frags)
4269 int i = skb_shinfo(skb)->nr_frags;
4271 if (skb_can_coalesce(skb, i, page, offset)) {
4272 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4273 } else if (i < max_frags) {
4274 skb_zcopy_downgrade_managed(skb);
4276 skb_fill_page_desc_noacc(skb, i, page, offset, size);
4283 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4286 * skb_pull_rcsum - pull skb and update receive checksum
4287 * @skb: buffer to update
4288 * @len: length of data pulled
4290 * This function performs an skb_pull on the packet and updates
4291 * the CHECKSUM_COMPLETE checksum. It should be used on
4292 * receive path processing instead of skb_pull unless you know
4293 * that the checksum difference is zero (e.g., a valid IP header)
4294 * or you are setting ip_summed to CHECKSUM_NONE.
4296 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4298 unsigned char *data = skb->data;
4300 BUG_ON(len > skb->len);
4301 __skb_pull(skb, len);
4302 skb_postpull_rcsum(skb, data, len);
4305 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4307 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4309 skb_frag_t head_frag;
4312 page = virt_to_head_page(frag_skb->head);
4313 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4314 (unsigned char *)page_address(page),
4315 skb_headlen(frag_skb));
4319 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4320 netdev_features_t features,
4321 unsigned int offset)
4323 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4324 unsigned int tnl_hlen = skb_tnl_header_len(skb);
4325 unsigned int delta_truesize = 0;
4326 unsigned int delta_len = 0;
4327 struct sk_buff *tail = NULL;
4328 struct sk_buff *nskb, *tmp;
4331 skb_push(skb, -skb_network_offset(skb) + offset);
4333 /* Ensure the head is writeable before touching the shared info */
4334 err = skb_unclone(skb, GFP_ATOMIC);
4338 skb_shinfo(skb)->frag_list = NULL;
4342 list_skb = list_skb->next;
4345 delta_truesize += nskb->truesize;
4346 if (skb_shared(nskb)) {
4347 tmp = skb_clone(nskb, GFP_ATOMIC);
4351 err = skb_unclone(nskb, GFP_ATOMIC);
4362 if (unlikely(err)) {
4363 nskb->next = list_skb;
4369 delta_len += nskb->len;
4371 skb_push(nskb, -skb_network_offset(nskb) + offset);
4373 skb_release_head_state(nskb);
4374 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4375 __copy_skb_header(nskb, skb);
4377 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4378 nskb->transport_header += len_diff;
4379 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4380 nskb->data - tnl_hlen,
4383 if (skb_needs_linearize(nskb, features) &&
4384 __skb_linearize(nskb))
4388 skb->truesize = skb->truesize - delta_truesize;
4389 skb->data_len = skb->data_len - delta_len;
4390 skb->len = skb->len - delta_len;
4396 if (skb_needs_linearize(skb, features) &&
4397 __skb_linearize(skb))
4405 kfree_skb_list(skb->next);
4407 return ERR_PTR(-ENOMEM);
4409 EXPORT_SYMBOL_GPL(skb_segment_list);
4412 * skb_segment - Perform protocol segmentation on skb.
4413 * @head_skb: buffer to segment
4414 * @features: features for the output path (see dev->features)
4416 * This function performs segmentation on the given skb. It returns
4417 * a pointer to the first in a list of new skbs for the segments.
4418 * In case of error it returns ERR_PTR(err).
4420 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4421 netdev_features_t features)
4423 struct sk_buff *segs = NULL;
4424 struct sk_buff *tail = NULL;
4425 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4426 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
4427 unsigned int mss = skb_shinfo(head_skb)->gso_size;
4428 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4429 struct sk_buff *frag_skb = head_skb;
4430 unsigned int offset = doffset;
4431 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4432 unsigned int partial_segs = 0;
4433 unsigned int headroom;
4434 unsigned int len = head_skb->len;
4437 int nfrags = skb_shinfo(head_skb)->nr_frags;
4442 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4443 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4444 struct sk_buff *check_skb;
4446 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4447 if (skb_headlen(check_skb) && !check_skb->head_frag) {
4448 /* gso_size is untrusted, and we have a frag_list with
4449 * a linear non head_frag item.
4451 * If head_skb's headlen does not fit requested gso_size,
4452 * it means that the frag_list members do NOT terminate
4453 * on exact gso_size boundaries. Hence we cannot perform
4454 * skb_frag_t page sharing. Therefore we must fallback to
4455 * copying the frag_list skbs; we do so by disabling SG.
4457 features &= ~NETIF_F_SG;
4463 __skb_push(head_skb, doffset);
4464 proto = skb_network_protocol(head_skb, NULL);
4465 if (unlikely(!proto))
4466 return ERR_PTR(-EINVAL);
4468 sg = !!(features & NETIF_F_SG);
4469 csum = !!can_checksum_protocol(features, proto);
4471 if (sg && csum && (mss != GSO_BY_FRAGS)) {
4472 if (!(features & NETIF_F_GSO_PARTIAL)) {
4473 struct sk_buff *iter;
4474 unsigned int frag_len;
4477 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4480 /* If we get here then all the required
4481 * GSO features except frag_list are supported.
4482 * Try to split the SKB to multiple GSO SKBs
4483 * with no frag_list.
4484 * Currently we can do that only when the buffers don't
4485 * have a linear part and all the buffers except
4486 * the last are of the same length.
4488 frag_len = list_skb->len;
4489 skb_walk_frags(head_skb, iter) {
4490 if (frag_len != iter->len && iter->next)
4492 if (skb_headlen(iter) && !iter->head_frag)
4498 if (len != frag_len)
4502 /* GSO partial only requires that we trim off any excess that
4503 * doesn't fit into an MSS sized block, so take care of that
4506 partial_segs = len / mss;
4507 if (partial_segs > 1)
4508 mss *= partial_segs;
4514 headroom = skb_headroom(head_skb);
4515 pos = skb_headlen(head_skb);
4518 struct sk_buff *nskb;
4519 skb_frag_t *nskb_frag;
4523 if (unlikely(mss == GSO_BY_FRAGS)) {
4524 len = list_skb->len;
4526 len = head_skb->len - offset;
4531 hsize = skb_headlen(head_skb) - offset;
4533 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4534 (skb_headlen(list_skb) == len || sg)) {
4535 BUG_ON(skb_headlen(list_skb) > len);
4538 nfrags = skb_shinfo(list_skb)->nr_frags;
4539 frag = skb_shinfo(list_skb)->frags;
4540 frag_skb = list_skb;
4541 pos += skb_headlen(list_skb);
4543 while (pos < offset + len) {
4544 BUG_ON(i >= nfrags);
4546 size = skb_frag_size(frag);
4547 if (pos + size > offset + len)
4555 nskb = skb_clone(list_skb, GFP_ATOMIC);
4556 list_skb = list_skb->next;
4558 if (unlikely(!nskb))
4561 if (unlikely(pskb_trim(nskb, len))) {
4566 hsize = skb_end_offset(nskb);
4567 if (skb_cow_head(nskb, doffset + headroom)) {
4572 nskb->truesize += skb_end_offset(nskb) - hsize;
4573 skb_release_head_state(nskb);
4574 __skb_push(nskb, doffset);
4578 if (hsize > len || !sg)
4581 nskb = __alloc_skb(hsize + doffset + headroom,
4582 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4585 if (unlikely(!nskb))
4588 skb_reserve(nskb, headroom);
4589 __skb_put(nskb, doffset);
4598 __copy_skb_header(nskb, head_skb);
4600 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4601 skb_reset_mac_len(nskb);
4603 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4604 nskb->data - tnl_hlen,
4605 doffset + tnl_hlen);
4607 if (nskb->len == len + doffset)
4608 goto perform_csum_check;
4612 if (!nskb->remcsum_offload)
4613 nskb->ip_summed = CHECKSUM_NONE;
4614 SKB_GSO_CB(nskb)->csum =
4615 skb_copy_and_csum_bits(head_skb, offset,
4619 SKB_GSO_CB(nskb)->csum_start =
4620 skb_headroom(nskb) + doffset;
4622 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4628 nskb_frag = skb_shinfo(nskb)->frags;
4630 skb_copy_from_linear_data_offset(head_skb, offset,
4631 skb_put(nskb, hsize), hsize);
4633 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4636 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4637 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4640 while (pos < offset + len) {
4643 nfrags = skb_shinfo(list_skb)->nr_frags;
4644 frag = skb_shinfo(list_skb)->frags;
4645 frag_skb = list_skb;
4646 if (!skb_headlen(list_skb)) {
4649 BUG_ON(!list_skb->head_frag);
4651 /* to make room for head_frag. */
4655 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4656 skb_zerocopy_clone(nskb, frag_skb,
4660 list_skb = list_skb->next;
4663 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4665 net_warn_ratelimited(
4666 "skb_segment: too many frags: %u %u\n",
4672 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4673 __skb_frag_ref(nskb_frag);
4674 size = skb_frag_size(nskb_frag);
4677 skb_frag_off_add(nskb_frag, offset - pos);
4678 skb_frag_size_sub(nskb_frag, offset - pos);
4681 skb_shinfo(nskb)->nr_frags++;
4683 if (pos + size <= offset + len) {
4688 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4696 nskb->data_len = len - hsize;
4697 nskb->len += nskb->data_len;
4698 nskb->truesize += nskb->data_len;
4702 if (skb_has_shared_frag(nskb) &&
4703 __skb_linearize(nskb))
4706 if (!nskb->remcsum_offload)
4707 nskb->ip_summed = CHECKSUM_NONE;
4708 SKB_GSO_CB(nskb)->csum =
4709 skb_checksum(nskb, doffset,
4710 nskb->len - doffset, 0);
4711 SKB_GSO_CB(nskb)->csum_start =
4712 skb_headroom(nskb) + doffset;
4714 } while ((offset += len) < head_skb->len);
4716 /* Some callers want to get the end of the list.
4717 * Put it in segs->prev to avoid walking the list.
4718 * (see validate_xmit_skb_list() for example)
4723 struct sk_buff *iter;
4724 int type = skb_shinfo(head_skb)->gso_type;
4725 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4727 /* Update type to add partial and then remove dodgy if set */
4728 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4729 type &= ~SKB_GSO_DODGY;
4731 /* Update GSO info and prepare to start updating headers on
4732 * our way back down the stack of protocols.
4734 for (iter = segs; iter; iter = iter->next) {
4735 skb_shinfo(iter)->gso_size = gso_size;
4736 skb_shinfo(iter)->gso_segs = partial_segs;
4737 skb_shinfo(iter)->gso_type = type;
4738 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4741 if (tail->len - doffset <= gso_size)
4742 skb_shinfo(tail)->gso_size = 0;
4743 else if (tail != segs)
4744 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4747 /* Following permits correct backpressure, for protocols
4748 * using skb_set_owner_w().
4749 * Idea is to tranfert ownership from head_skb to last segment.
4751 if (head_skb->destructor == sock_wfree) {
4752 swap(tail->truesize, head_skb->truesize);
4753 swap(tail->destructor, head_skb->destructor);
4754 swap(tail->sk, head_skb->sk);
4759 kfree_skb_list(segs);
4760 return ERR_PTR(err);
4762 EXPORT_SYMBOL_GPL(skb_segment);
4764 #ifdef CONFIG_SKB_EXTENSIONS
4765 #define SKB_EXT_ALIGN_VALUE 8
4766 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4768 static const u8 skb_ext_type_len[] = {
4769 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4770 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4773 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4775 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4776 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4778 #if IS_ENABLED(CONFIG_MPTCP)
4779 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4781 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4782 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4786 static __always_inline unsigned int skb_ext_total_length(void)
4788 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4791 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4792 l += skb_ext_type_len[i];
4797 static void skb_extensions_init(void)
4799 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4800 BUILD_BUG_ON(skb_ext_total_length() > 255);
4802 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4803 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4805 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4809 static void skb_extensions_init(void) {}
4812 /* The SKB kmem_cache slab is critical for network performance. Never
4813 * merge/alias the slab with similar sized objects. This avoids fragmentation
4814 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
4816 #ifndef CONFIG_SLUB_TINY
4817 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE
4818 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
4819 #define FLAG_SKB_NO_MERGE 0
4822 void __init skb_init(void)
4824 skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4825 sizeof(struct sk_buff),
4827 SLAB_HWCACHE_ALIGN|SLAB_PANIC|
4829 offsetof(struct sk_buff, cb),
4830 sizeof_field(struct sk_buff, cb),
4832 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4833 sizeof(struct sk_buff_fclones),
4835 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4837 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
4838 * struct skb_shared_info is located at the end of skb->head,
4839 * and should not be copied to/from user.
4841 skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
4842 SKB_SMALL_HEAD_CACHE_SIZE,
4844 SLAB_HWCACHE_ALIGN | SLAB_PANIC,
4846 SKB_SMALL_HEAD_HEADROOM,
4848 skb_extensions_init();
4852 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4853 unsigned int recursion_level)
4855 int start = skb_headlen(skb);
4856 int i, copy = start - offset;
4857 struct sk_buff *frag_iter;
4860 if (unlikely(recursion_level >= 24))
4866 sg_set_buf(sg, skb->data + offset, copy);
4868 if ((len -= copy) == 0)
4873 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4876 WARN_ON(start > offset + len);
4878 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4879 if ((copy = end - offset) > 0) {
4880 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4881 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4886 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4887 skb_frag_off(frag) + offset - start);
4896 skb_walk_frags(skb, frag_iter) {
4899 WARN_ON(start > offset + len);
4901 end = start + frag_iter->len;
4902 if ((copy = end - offset) > 0) {
4903 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4908 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4909 copy, recursion_level + 1);
4910 if (unlikely(ret < 0))
4913 if ((len -= copy) == 0)
4924 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4925 * @skb: Socket buffer containing the buffers to be mapped
4926 * @sg: The scatter-gather list to map into
4927 * @offset: The offset into the buffer's contents to start mapping
4928 * @len: Length of buffer space to be mapped
4930 * Fill the specified scatter-gather list with mappings/pointers into a
4931 * region of the buffer space attached to a socket buffer. Returns either
4932 * the number of scatterlist items used, or -EMSGSIZE if the contents
4935 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4937 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4942 sg_mark_end(&sg[nsg - 1]);
4946 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4948 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4949 * sglist without mark the sg which contain last skb data as the end.
4950 * So the caller can mannipulate sg list as will when padding new data after
4951 * the first call without calling sg_unmark_end to expend sg list.
4953 * Scenario to use skb_to_sgvec_nomark:
4955 * 2. skb_to_sgvec_nomark(payload1)
4956 * 3. skb_to_sgvec_nomark(payload2)
4958 * This is equivalent to:
4960 * 2. skb_to_sgvec(payload1)
4962 * 4. skb_to_sgvec(payload2)
4964 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4965 * is more preferable.
4967 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4968 int offset, int len)
4970 return __skb_to_sgvec(skb, sg, offset, len, 0);
4972 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4977 * skb_cow_data - Check that a socket buffer's data buffers are writable
4978 * @skb: The socket buffer to check.
4979 * @tailbits: Amount of trailing space to be added
4980 * @trailer: Returned pointer to the skb where the @tailbits space begins
4982 * Make sure that the data buffers attached to a socket buffer are
4983 * writable. If they are not, private copies are made of the data buffers
4984 * and the socket buffer is set to use these instead.
4986 * If @tailbits is given, make sure that there is space to write @tailbits
4987 * bytes of data beyond current end of socket buffer. @trailer will be
4988 * set to point to the skb in which this space begins.
4990 * The number of scatterlist elements required to completely map the
4991 * COW'd and extended socket buffer will be returned.
4993 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4997 struct sk_buff *skb1, **skb_p;
4999 /* If skb is cloned or its head is paged, reallocate
5000 * head pulling out all the pages (pages are considered not writable
5001 * at the moment even if they are anonymous).
5003 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5004 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5007 /* Easy case. Most of packets will go this way. */
5008 if (!skb_has_frag_list(skb)) {
5009 /* A little of trouble, not enough of space for trailer.
5010 * This should not happen, when stack is tuned to generate
5011 * good frames. OK, on miss we reallocate and reserve even more
5012 * space, 128 bytes is fair. */
5014 if (skb_tailroom(skb) < tailbits &&
5015 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5023 /* Misery. We are in troubles, going to mincer fragments... */
5026 skb_p = &skb_shinfo(skb)->frag_list;
5029 while ((skb1 = *skb_p) != NULL) {
5032 /* The fragment is partially pulled by someone,
5033 * this can happen on input. Copy it and everything
5036 if (skb_shared(skb1))
5039 /* If the skb is the last, worry about trailer. */
5041 if (skb1->next == NULL && tailbits) {
5042 if (skb_shinfo(skb1)->nr_frags ||
5043 skb_has_frag_list(skb1) ||
5044 skb_tailroom(skb1) < tailbits)
5045 ntail = tailbits + 128;
5051 skb_shinfo(skb1)->nr_frags ||
5052 skb_has_frag_list(skb1)) {
5053 struct sk_buff *skb2;
5055 /* Fuck, we are miserable poor guys... */
5057 skb2 = skb_copy(skb1, GFP_ATOMIC);
5059 skb2 = skb_copy_expand(skb1,
5063 if (unlikely(skb2 == NULL))
5067 skb_set_owner_w(skb2, skb1->sk);
5069 /* Looking around. Are we still alive?
5070 * OK, link new skb, drop old one */
5072 skb2->next = skb1->next;
5079 skb_p = &skb1->next;
5084 EXPORT_SYMBOL_GPL(skb_cow_data);
5086 static void sock_rmem_free(struct sk_buff *skb)
5088 struct sock *sk = skb->sk;
5090 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5093 static void skb_set_err_queue(struct sk_buff *skb)
5095 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5096 * So, it is safe to (mis)use it to mark skbs on the error queue.
5098 skb->pkt_type = PACKET_OUTGOING;
5099 BUILD_BUG_ON(PACKET_OUTGOING == 0);
5103 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5105 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5107 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5108 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5113 skb->destructor = sock_rmem_free;
5114 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5115 skb_set_err_queue(skb);
5117 /* before exiting rcu section, make sure dst is refcounted */
5120 skb_queue_tail(&sk->sk_error_queue, skb);
5121 if (!sock_flag(sk, SOCK_DEAD))
5122 sk_error_report(sk);
5125 EXPORT_SYMBOL(sock_queue_err_skb);
5127 static bool is_icmp_err_skb(const struct sk_buff *skb)
5129 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5130 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5133 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5135 struct sk_buff_head *q = &sk->sk_error_queue;
5136 struct sk_buff *skb, *skb_next = NULL;
5137 bool icmp_next = false;
5138 unsigned long flags;
5140 spin_lock_irqsave(&q->lock, flags);
5141 skb = __skb_dequeue(q);
5142 if (skb && (skb_next = skb_peek(q))) {
5143 icmp_next = is_icmp_err_skb(skb_next);
5145 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5147 spin_unlock_irqrestore(&q->lock, flags);
5149 if (is_icmp_err_skb(skb) && !icmp_next)
5153 sk_error_report(sk);
5157 EXPORT_SYMBOL(sock_dequeue_err_skb);
5160 * skb_clone_sk - create clone of skb, and take reference to socket
5161 * @skb: the skb to clone
5163 * This function creates a clone of a buffer that holds a reference on
5164 * sk_refcnt. Buffers created via this function are meant to be
5165 * returned using sock_queue_err_skb, or free via kfree_skb.
5167 * When passing buffers allocated with this function to sock_queue_err_skb
5168 * it is necessary to wrap the call with sock_hold/sock_put in order to
5169 * prevent the socket from being released prior to being enqueued on
5170 * the sk_error_queue.
5172 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5174 struct sock *sk = skb->sk;
5175 struct sk_buff *clone;
5177 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5180 clone = skb_clone(skb, GFP_ATOMIC);
5187 clone->destructor = sock_efree;
5191 EXPORT_SYMBOL(skb_clone_sk);
5193 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5198 struct sock_exterr_skb *serr;
5201 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5203 serr = SKB_EXT_ERR(skb);
5204 memset(serr, 0, sizeof(*serr));
5205 serr->ee.ee_errno = ENOMSG;
5206 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5207 serr->ee.ee_info = tstype;
5208 serr->opt_stats = opt_stats;
5209 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5210 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
5211 serr->ee.ee_data = skb_shinfo(skb)->tskey;
5213 serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5216 err = sock_queue_err_skb(sk, skb);
5222 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5226 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5229 read_lock_bh(&sk->sk_callback_lock);
5230 ret = sk->sk_socket && sk->sk_socket->file &&
5231 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5232 read_unlock_bh(&sk->sk_callback_lock);
5236 void skb_complete_tx_timestamp(struct sk_buff *skb,
5237 struct skb_shared_hwtstamps *hwtstamps)
5239 struct sock *sk = skb->sk;
5241 if (!skb_may_tx_timestamp(sk, false))
5244 /* Take a reference to prevent skb_orphan() from freeing the socket,
5245 * but only if the socket refcount is not zero.
5247 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5248 *skb_hwtstamps(skb) = *hwtstamps;
5249 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5257 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5259 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5260 const struct sk_buff *ack_skb,
5261 struct skb_shared_hwtstamps *hwtstamps,
5262 struct sock *sk, int tstype)
5264 struct sk_buff *skb;
5265 bool tsonly, opt_stats = false;
5270 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5271 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5274 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5275 if (!skb_may_tx_timestamp(sk, tsonly))
5280 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5282 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5287 skb = alloc_skb(0, GFP_ATOMIC);
5289 skb = skb_clone(orig_skb, GFP_ATOMIC);
5291 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5300 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5302 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5306 *skb_hwtstamps(skb) = *hwtstamps;
5308 __net_timestamp(skb);
5310 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5312 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5314 void skb_tstamp_tx(struct sk_buff *orig_skb,
5315 struct skb_shared_hwtstamps *hwtstamps)
5317 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5320 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5322 #ifdef CONFIG_WIRELESS
5323 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5325 struct sock *sk = skb->sk;
5326 struct sock_exterr_skb *serr;
5329 skb->wifi_acked_valid = 1;
5330 skb->wifi_acked = acked;
5332 serr = SKB_EXT_ERR(skb);
5333 memset(serr, 0, sizeof(*serr));
5334 serr->ee.ee_errno = ENOMSG;
5335 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5337 /* Take a reference to prevent skb_orphan() from freeing the socket,
5338 * but only if the socket refcount is not zero.
5340 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5341 err = sock_queue_err_skb(sk, skb);
5347 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5348 #endif /* CONFIG_WIRELESS */
5351 * skb_partial_csum_set - set up and verify partial csum values for packet
5352 * @skb: the skb to set
5353 * @start: the number of bytes after skb->data to start checksumming.
5354 * @off: the offset from start to place the checksum.
5356 * For untrusted partially-checksummed packets, we need to make sure the values
5357 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5359 * This function checks and sets those values and skb->ip_summed: if this
5360 * returns false you should drop the packet.
5362 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5364 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5365 u32 csum_start = skb_headroom(skb) + (u32)start;
5367 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5368 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5369 start, off, skb_headroom(skb), skb_headlen(skb));
5372 skb->ip_summed = CHECKSUM_PARTIAL;
5373 skb->csum_start = csum_start;
5374 skb->csum_offset = off;
5375 skb->transport_header = csum_start;
5378 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5380 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5383 if (skb_headlen(skb) >= len)
5386 /* If we need to pullup then pullup to the max, so we
5387 * won't need to do it again.
5392 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5395 if (skb_headlen(skb) < len)
5401 #define MAX_TCP_HDR_LEN (15 * 4)
5403 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5404 typeof(IPPROTO_IP) proto,
5411 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5412 off + MAX_TCP_HDR_LEN);
5413 if (!err && !skb_partial_csum_set(skb, off,
5414 offsetof(struct tcphdr,
5417 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5420 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5421 off + sizeof(struct udphdr));
5422 if (!err && !skb_partial_csum_set(skb, off,
5423 offsetof(struct udphdr,
5426 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5429 return ERR_PTR(-EPROTO);
5432 /* This value should be large enough to cover a tagged ethernet header plus
5433 * maximally sized IP and TCP or UDP headers.
5435 #define MAX_IP_HDR_LEN 128
5437 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5446 err = skb_maybe_pull_tail(skb,
5447 sizeof(struct iphdr),
5452 if (ip_is_fragment(ip_hdr(skb)))
5455 off = ip_hdrlen(skb);
5462 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5464 return PTR_ERR(csum);
5467 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5470 ip_hdr(skb)->protocol, 0);
5477 /* This value should be large enough to cover a tagged ethernet header plus
5478 * an IPv6 header, all options, and a maximal TCP or UDP header.
5480 #define MAX_IPV6_HDR_LEN 256
5482 #define OPT_HDR(type, skb, off) \
5483 (type *)(skb_network_header(skb) + (off))
5485 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5498 off = sizeof(struct ipv6hdr);
5500 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5504 nexthdr = ipv6_hdr(skb)->nexthdr;
5506 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5507 while (off <= len && !done) {
5509 case IPPROTO_DSTOPTS:
5510 case IPPROTO_HOPOPTS:
5511 case IPPROTO_ROUTING: {
5512 struct ipv6_opt_hdr *hp;
5514 err = skb_maybe_pull_tail(skb,
5516 sizeof(struct ipv6_opt_hdr),
5521 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5522 nexthdr = hp->nexthdr;
5523 off += ipv6_optlen(hp);
5527 struct ip_auth_hdr *hp;
5529 err = skb_maybe_pull_tail(skb,
5531 sizeof(struct ip_auth_hdr),
5536 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5537 nexthdr = hp->nexthdr;
5538 off += ipv6_authlen(hp);
5541 case IPPROTO_FRAGMENT: {
5542 struct frag_hdr *hp;
5544 err = skb_maybe_pull_tail(skb,
5546 sizeof(struct frag_hdr),
5551 hp = OPT_HDR(struct frag_hdr, skb, off);
5553 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5556 nexthdr = hp->nexthdr;
5557 off += sizeof(struct frag_hdr);
5568 if (!done || fragment)
5571 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5573 return PTR_ERR(csum);
5576 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5577 &ipv6_hdr(skb)->daddr,
5578 skb->len - off, nexthdr, 0);
5586 * skb_checksum_setup - set up partial checksum offset
5587 * @skb: the skb to set up
5588 * @recalculate: if true the pseudo-header checksum will be recalculated
5590 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5594 switch (skb->protocol) {
5595 case htons(ETH_P_IP):
5596 err = skb_checksum_setup_ipv4(skb, recalculate);
5599 case htons(ETH_P_IPV6):
5600 err = skb_checksum_setup_ipv6(skb, recalculate);
5610 EXPORT_SYMBOL(skb_checksum_setup);
5613 * skb_checksum_maybe_trim - maybe trims the given skb
5614 * @skb: the skb to check
5615 * @transport_len: the data length beyond the network header
5617 * Checks whether the given skb has data beyond the given transport length.
5618 * If so, returns a cloned skb trimmed to this transport length.
5619 * Otherwise returns the provided skb. Returns NULL in error cases
5620 * (e.g. transport_len exceeds skb length or out-of-memory).
5622 * Caller needs to set the skb transport header and free any returned skb if it
5623 * differs from the provided skb.
5625 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5626 unsigned int transport_len)
5628 struct sk_buff *skb_chk;
5629 unsigned int len = skb_transport_offset(skb) + transport_len;
5634 else if (skb->len == len)
5637 skb_chk = skb_clone(skb, GFP_ATOMIC);
5641 ret = pskb_trim_rcsum(skb_chk, len);
5651 * skb_checksum_trimmed - validate checksum of an skb
5652 * @skb: the skb to check
5653 * @transport_len: the data length beyond the network header
5654 * @skb_chkf: checksum function to use
5656 * Applies the given checksum function skb_chkf to the provided skb.
5657 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5659 * If the skb has data beyond the given transport length, then a
5660 * trimmed & cloned skb is checked and returned.
5662 * Caller needs to set the skb transport header and free any returned skb if it
5663 * differs from the provided skb.
5665 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5666 unsigned int transport_len,
5667 __sum16(*skb_chkf)(struct sk_buff *skb))
5669 struct sk_buff *skb_chk;
5670 unsigned int offset = skb_transport_offset(skb);
5673 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5677 if (!pskb_may_pull(skb_chk, offset))
5680 skb_pull_rcsum(skb_chk, offset);
5681 ret = skb_chkf(skb_chk);
5682 skb_push_rcsum(skb_chk, offset);
5690 if (skb_chk && skb_chk != skb)
5696 EXPORT_SYMBOL(skb_checksum_trimmed);
5698 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5700 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5703 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5705 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5708 skb_release_head_state(skb);
5709 kmem_cache_free(skbuff_cache, skb);
5714 EXPORT_SYMBOL(kfree_skb_partial);
5717 * skb_try_coalesce - try to merge skb to prior one
5719 * @from: buffer to add
5720 * @fragstolen: pointer to boolean
5721 * @delta_truesize: how much more was allocated than was requested
5723 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5724 bool *fragstolen, int *delta_truesize)
5726 struct skb_shared_info *to_shinfo, *from_shinfo;
5727 int i, delta, len = from->len;
5729 *fragstolen = false;
5734 /* In general, avoid mixing page_pool and non-page_pool allocated
5735 * pages within the same SKB. Additionally avoid dealing with clones
5736 * with page_pool pages, in case the SKB is using page_pool fragment
5737 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5738 * references for cloned SKBs at the moment that would result in
5739 * inconsistent reference counts.
5740 * In theory we could take full references if @from is cloned and
5741 * !@to->pp_recycle but its tricky (due to potential race with
5742 * the clone disappearing) and rare, so not worth dealing with.
5744 if (to->pp_recycle != from->pp_recycle ||
5745 (from->pp_recycle && skb_cloned(from)))
5748 if (len <= skb_tailroom(to)) {
5750 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5751 *delta_truesize = 0;
5755 to_shinfo = skb_shinfo(to);
5756 from_shinfo = skb_shinfo(from);
5757 if (to_shinfo->frag_list || from_shinfo->frag_list)
5759 if (skb_zcopy(to) || skb_zcopy(from))
5762 if (skb_headlen(from) != 0) {
5764 unsigned int offset;
5766 if (to_shinfo->nr_frags +
5767 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5770 if (skb_head_is_locked(from))
5773 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5775 page = virt_to_head_page(from->head);
5776 offset = from->data - (unsigned char *)page_address(page);
5778 skb_fill_page_desc(to, to_shinfo->nr_frags,
5779 page, offset, skb_headlen(from));
5782 if (to_shinfo->nr_frags +
5783 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5786 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5789 WARN_ON_ONCE(delta < len);
5791 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5793 from_shinfo->nr_frags * sizeof(skb_frag_t));
5794 to_shinfo->nr_frags += from_shinfo->nr_frags;
5796 if (!skb_cloned(from))
5797 from_shinfo->nr_frags = 0;
5799 /* if the skb is not cloned this does nothing
5800 * since we set nr_frags to 0.
5802 for (i = 0; i < from_shinfo->nr_frags; i++)
5803 __skb_frag_ref(&from_shinfo->frags[i]);
5805 to->truesize += delta;
5807 to->data_len += len;
5809 *delta_truesize = delta;
5812 EXPORT_SYMBOL(skb_try_coalesce);
5815 * skb_scrub_packet - scrub an skb
5817 * @skb: buffer to clean
5818 * @xnet: packet is crossing netns
5820 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5821 * into/from a tunnel. Some information have to be cleared during these
5823 * skb_scrub_packet can also be used to clean a skb before injecting it in
5824 * another namespace (@xnet == true). We have to clear all information in the
5825 * skb that could impact namespace isolation.
5827 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5829 skb->pkt_type = PACKET_HOST;
5835 nf_reset_trace(skb);
5837 #ifdef CONFIG_NET_SWITCHDEV
5838 skb->offload_fwd_mark = 0;
5839 skb->offload_l3_fwd_mark = 0;
5847 skb_clear_tstamp(skb);
5849 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5851 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5853 int mac_len, meta_len;
5856 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5861 mac_len = skb->data - skb_mac_header(skb);
5862 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5863 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5864 mac_len - VLAN_HLEN - ETH_TLEN);
5867 meta_len = skb_metadata_len(skb);
5869 meta = skb_metadata_end(skb) - meta_len;
5870 memmove(meta + VLAN_HLEN, meta, meta_len);
5873 skb->mac_header += VLAN_HLEN;
5877 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5879 struct vlan_hdr *vhdr;
5882 if (unlikely(skb_vlan_tag_present(skb))) {
5883 /* vlan_tci is already set-up so leave this for another time */
5887 skb = skb_share_check(skb, GFP_ATOMIC);
5890 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5891 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5894 vhdr = (struct vlan_hdr *)skb->data;
5895 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5896 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5898 skb_pull_rcsum(skb, VLAN_HLEN);
5899 vlan_set_encap_proto(skb, vhdr);
5901 skb = skb_reorder_vlan_header(skb);
5905 skb_reset_network_header(skb);
5906 if (!skb_transport_header_was_set(skb))
5907 skb_reset_transport_header(skb);
5908 skb_reset_mac_len(skb);
5916 EXPORT_SYMBOL(skb_vlan_untag);
5918 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5920 if (!pskb_may_pull(skb, write_len))
5923 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5926 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5928 EXPORT_SYMBOL(skb_ensure_writable);
5930 /* remove VLAN header from packet and update csum accordingly.
5931 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5933 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5935 int offset = skb->data - skb_mac_header(skb);
5938 if (WARN_ONCE(offset,
5939 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5944 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5948 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5950 vlan_remove_tag(skb, vlan_tci);
5952 skb->mac_header += VLAN_HLEN;
5954 if (skb_network_offset(skb) < ETH_HLEN)
5955 skb_set_network_header(skb, ETH_HLEN);
5957 skb_reset_mac_len(skb);
5961 EXPORT_SYMBOL(__skb_vlan_pop);
5963 /* Pop a vlan tag either from hwaccel or from payload.
5964 * Expects skb->data at mac header.
5966 int skb_vlan_pop(struct sk_buff *skb)
5972 if (likely(skb_vlan_tag_present(skb))) {
5973 __vlan_hwaccel_clear_tag(skb);
5975 if (unlikely(!eth_type_vlan(skb->protocol)))
5978 err = __skb_vlan_pop(skb, &vlan_tci);
5982 /* move next vlan tag to hw accel tag */
5983 if (likely(!eth_type_vlan(skb->protocol)))
5986 vlan_proto = skb->protocol;
5987 err = __skb_vlan_pop(skb, &vlan_tci);
5991 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5994 EXPORT_SYMBOL(skb_vlan_pop);
5996 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5997 * Expects skb->data at mac header.
5999 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6001 if (skb_vlan_tag_present(skb)) {
6002 int offset = skb->data - skb_mac_header(skb);
6005 if (WARN_ONCE(offset,
6006 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6011 err = __vlan_insert_tag(skb, skb->vlan_proto,
6012 skb_vlan_tag_get(skb));
6016 skb->protocol = skb->vlan_proto;
6017 skb->mac_len += VLAN_HLEN;
6019 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6021 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6024 EXPORT_SYMBOL(skb_vlan_push);
6027 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6029 * @skb: Socket buffer to modify
6031 * Drop the Ethernet header of @skb.
6033 * Expects that skb->data points to the mac header and that no VLAN tags are
6036 * Returns 0 on success, -errno otherwise.
6038 int skb_eth_pop(struct sk_buff *skb)
6040 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6041 skb_network_offset(skb) < ETH_HLEN)
6044 skb_pull_rcsum(skb, ETH_HLEN);
6045 skb_reset_mac_header(skb);
6046 skb_reset_mac_len(skb);
6050 EXPORT_SYMBOL(skb_eth_pop);
6053 * skb_eth_push() - Add a new Ethernet header at the head of a packet
6055 * @skb: Socket buffer to modify
6056 * @dst: Destination MAC address of the new header
6057 * @src: Source MAC address of the new header
6059 * Prepend @skb with a new Ethernet header.
6061 * Expects that skb->data points to the mac header, which must be empty.
6063 * Returns 0 on success, -errno otherwise.
6065 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6066 const unsigned char *src)
6071 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6074 err = skb_cow_head(skb, sizeof(*eth));
6078 skb_push(skb, sizeof(*eth));
6079 skb_reset_mac_header(skb);
6080 skb_reset_mac_len(skb);
6083 ether_addr_copy(eth->h_dest, dst);
6084 ether_addr_copy(eth->h_source, src);
6085 eth->h_proto = skb->protocol;
6087 skb_postpush_rcsum(skb, eth, sizeof(*eth));
6091 EXPORT_SYMBOL(skb_eth_push);
6093 /* Update the ethertype of hdr and the skb csum value if required. */
6094 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6097 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6098 __be16 diff[] = { ~hdr->h_proto, ethertype };
6100 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6103 hdr->h_proto = ethertype;
6107 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6111 * @mpls_lse: MPLS label stack entry to push
6112 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6113 * @mac_len: length of the MAC header
6114 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6117 * Expects skb->data at mac header.
6119 * Returns 0 on success, -errno otherwise.
6121 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6122 int mac_len, bool ethernet)
6124 struct mpls_shim_hdr *lse;
6127 if (unlikely(!eth_p_mpls(mpls_proto)))
6130 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6131 if (skb->encapsulation)
6134 err = skb_cow_head(skb, MPLS_HLEN);
6138 if (!skb->inner_protocol) {
6139 skb_set_inner_network_header(skb, skb_network_offset(skb));
6140 skb_set_inner_protocol(skb, skb->protocol);
6143 skb_push(skb, MPLS_HLEN);
6144 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6146 skb_reset_mac_header(skb);
6147 skb_set_network_header(skb, mac_len);
6148 skb_reset_mac_len(skb);
6150 lse = mpls_hdr(skb);
6151 lse->label_stack_entry = mpls_lse;
6152 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6154 if (ethernet && mac_len >= ETH_HLEN)
6155 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6156 skb->protocol = mpls_proto;
6160 EXPORT_SYMBOL_GPL(skb_mpls_push);
6163 * skb_mpls_pop() - pop the outermost MPLS header
6166 * @next_proto: ethertype of header after popped MPLS header
6167 * @mac_len: length of the MAC header
6168 * @ethernet: flag to indicate if the packet is ethernet
6170 * Expects skb->data at mac header.
6172 * Returns 0 on success, -errno otherwise.
6174 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6179 if (unlikely(!eth_p_mpls(skb->protocol)))
6182 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6186 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6187 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6190 __skb_pull(skb, MPLS_HLEN);
6191 skb_reset_mac_header(skb);
6192 skb_set_network_header(skb, mac_len);
6194 if (ethernet && mac_len >= ETH_HLEN) {
6197 /* use mpls_hdr() to get ethertype to account for VLANs. */
6198 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6199 skb_mod_eth_type(skb, hdr, next_proto);
6201 skb->protocol = next_proto;
6205 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6208 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6211 * @mpls_lse: new MPLS label stack entry to update to
6213 * Expects skb->data at mac header.
6215 * Returns 0 on success, -errno otherwise.
6217 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6221 if (unlikely(!eth_p_mpls(skb->protocol)))
6224 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6228 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6229 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6231 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6234 mpls_hdr(skb)->label_stack_entry = mpls_lse;
6238 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6241 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6245 * Expects skb->data at mac header.
6247 * Returns 0 on success, -errno otherwise.
6249 int skb_mpls_dec_ttl(struct sk_buff *skb)
6254 if (unlikely(!eth_p_mpls(skb->protocol)))
6257 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6260 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6261 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6265 lse &= ~MPLS_LS_TTL_MASK;
6266 lse |= ttl << MPLS_LS_TTL_SHIFT;
6268 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6270 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6273 * alloc_skb_with_frags - allocate skb with page frags
6275 * @header_len: size of linear part
6276 * @data_len: needed length in frags
6277 * @order: max page order desired.
6278 * @errcode: pointer to error code if any
6279 * @gfp_mask: allocation mask
6281 * This can be used to allocate a paged skb, given a maximal order for frags.
6283 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6284 unsigned long data_len,
6289 unsigned long chunk;
6290 struct sk_buff *skb;
6294 *errcode = -EMSGSIZE;
6295 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6298 *errcode = -ENOBUFS;
6299 skb = alloc_skb(header_len, gfp_mask);
6304 if (nr_frags == MAX_SKB_FRAGS - 1)
6306 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6310 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6319 page = alloc_page(gfp_mask);
6323 chunk = min_t(unsigned long, data_len,
6324 PAGE_SIZE << order);
6325 skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6327 skb->truesize += (PAGE_SIZE << order);
6336 EXPORT_SYMBOL(alloc_skb_with_frags);
6338 /* carve out the first off bytes from skb when off < headlen */
6339 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6340 const int headlen, gfp_t gfp_mask)
6343 unsigned int size = skb_end_offset(skb);
6344 int new_hlen = headlen - off;
6347 if (skb_pfmemalloc(skb))
6348 gfp_mask |= __GFP_MEMALLOC;
6350 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6353 size = SKB_WITH_OVERHEAD(size);
6355 /* Copy real data, and all frags */
6356 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6359 memcpy((struct skb_shared_info *)(data + size),
6361 offsetof(struct skb_shared_info,
6362 frags[skb_shinfo(skb)->nr_frags]));
6363 if (skb_cloned(skb)) {
6364 /* drop the old head gracefully */
6365 if (skb_orphan_frags(skb, gfp_mask)) {
6366 skb_kfree_head(data, size);
6369 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6370 skb_frag_ref(skb, i);
6371 if (skb_has_frag_list(skb))
6372 skb_clone_fraglist(skb);
6373 skb_release_data(skb, SKB_CONSUMED, false);
6375 /* we can reuse existing recount- all we did was
6378 skb_free_head(skb, false);
6384 skb_set_end_offset(skb, size);
6385 skb_set_tail_pointer(skb, skb_headlen(skb));
6386 skb_headers_offset_update(skb, 0);
6390 atomic_set(&skb_shinfo(skb)->dataref, 1);
6395 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6397 /* carve out the first eat bytes from skb's frag_list. May recurse into
6400 static int pskb_carve_frag_list(struct sk_buff *skb,
6401 struct skb_shared_info *shinfo, int eat,
6404 struct sk_buff *list = shinfo->frag_list;
6405 struct sk_buff *clone = NULL;
6406 struct sk_buff *insp = NULL;
6410 pr_err("Not enough bytes to eat. Want %d\n", eat);
6413 if (list->len <= eat) {
6414 /* Eaten as whole. */
6419 /* Eaten partially. */
6420 if (skb_shared(list)) {
6421 clone = skb_clone(list, gfp_mask);
6427 /* This may be pulled without problems. */
6430 if (pskb_carve(list, eat, gfp_mask) < 0) {
6438 /* Free pulled out fragments. */
6439 while ((list = shinfo->frag_list) != insp) {
6440 shinfo->frag_list = list->next;
6443 /* And insert new clone at head. */
6446 shinfo->frag_list = clone;
6451 /* carve off first len bytes from skb. Split line (off) is in the
6452 * non-linear part of skb
6454 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6455 int pos, gfp_t gfp_mask)
6458 unsigned int size = skb_end_offset(skb);
6460 const int nfrags = skb_shinfo(skb)->nr_frags;
6461 struct skb_shared_info *shinfo;
6463 if (skb_pfmemalloc(skb))
6464 gfp_mask |= __GFP_MEMALLOC;
6466 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6469 size = SKB_WITH_OVERHEAD(size);
6471 memcpy((struct skb_shared_info *)(data + size),
6472 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6473 if (skb_orphan_frags(skb, gfp_mask)) {
6474 skb_kfree_head(data, size);
6477 shinfo = (struct skb_shared_info *)(data + size);
6478 for (i = 0; i < nfrags; i++) {
6479 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6481 if (pos + fsize > off) {
6482 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6486 * We have two variants in this case:
6487 * 1. Move all the frag to the second
6488 * part, if it is possible. F.e.
6489 * this approach is mandatory for TUX,
6490 * where splitting is expensive.
6491 * 2. Split is accurately. We make this.
6493 skb_frag_off_add(&shinfo->frags[0], off - pos);
6494 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6496 skb_frag_ref(skb, i);
6501 shinfo->nr_frags = k;
6502 if (skb_has_frag_list(skb))
6503 skb_clone_fraglist(skb);
6505 /* split line is in frag list */
6506 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6507 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6508 if (skb_has_frag_list(skb))
6509 kfree_skb_list(skb_shinfo(skb)->frag_list);
6510 skb_kfree_head(data, size);
6513 skb_release_data(skb, SKB_CONSUMED, false);
6518 skb_set_end_offset(skb, size);
6519 skb_reset_tail_pointer(skb);
6520 skb_headers_offset_update(skb, 0);
6525 skb->data_len = skb->len;
6526 atomic_set(&skb_shinfo(skb)->dataref, 1);
6530 /* remove len bytes from the beginning of the skb */
6531 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6533 int headlen = skb_headlen(skb);
6536 return pskb_carve_inside_header(skb, len, headlen, gfp);
6538 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6541 /* Extract to_copy bytes starting at off from skb, and return this in
6544 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6545 int to_copy, gfp_t gfp)
6547 struct sk_buff *clone = skb_clone(skb, gfp);
6552 if (pskb_carve(clone, off, gfp) < 0 ||
6553 pskb_trim(clone, to_copy)) {
6559 EXPORT_SYMBOL(pskb_extract);
6562 * skb_condense - try to get rid of fragments/frag_list if possible
6565 * Can be used to save memory before skb is added to a busy queue.
6566 * If packet has bytes in frags and enough tail room in skb->head,
6567 * pull all of them, so that we can free the frags right now and adjust
6570 * We do not reallocate skb->head thus can not fail.
6571 * Caller must re-evaluate skb->truesize if needed.
6573 void skb_condense(struct sk_buff *skb)
6575 if (skb->data_len) {
6576 if (skb->data_len > skb->end - skb->tail ||
6580 /* Nice, we can free page frag(s) right now */
6581 __pskb_pull_tail(skb, skb->data_len);
6583 /* At this point, skb->truesize might be over estimated,
6584 * because skb had a fragment, and fragments do not tell
6586 * When we pulled its content into skb->head, fragment
6587 * was freed, but __pskb_pull_tail() could not possibly
6588 * adjust skb->truesize, not knowing the frag truesize.
6590 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6592 EXPORT_SYMBOL(skb_condense);
6594 #ifdef CONFIG_SKB_EXTENSIONS
6595 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6597 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6601 * __skb_ext_alloc - allocate a new skb extensions storage
6603 * @flags: See kmalloc().
6605 * Returns the newly allocated pointer. The pointer can later attached to a
6606 * skb via __skb_ext_set().
6607 * Note: caller must handle the skb_ext as an opaque data.
6609 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6611 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6614 memset(new->offset, 0, sizeof(new->offset));
6615 refcount_set(&new->refcnt, 1);
6621 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6622 unsigned int old_active)
6624 struct skb_ext *new;
6626 if (refcount_read(&old->refcnt) == 1)
6629 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6633 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6634 refcount_set(&new->refcnt, 1);
6637 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6638 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6641 for (i = 0; i < sp->len; i++)
6642 xfrm_state_hold(sp->xvec[i]);
6650 * __skb_ext_set - attach the specified extension storage to this skb
6653 * @ext: extension storage previously allocated via __skb_ext_alloc()
6655 * Existing extensions, if any, are cleared.
6657 * Returns the pointer to the extension.
6659 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6660 struct skb_ext *ext)
6662 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6665 newlen = newoff + skb_ext_type_len[id];
6666 ext->chunks = newlen;
6667 ext->offset[id] = newoff;
6668 skb->extensions = ext;
6669 skb->active_extensions = 1 << id;
6670 return skb_ext_get_ptr(ext, id);
6674 * skb_ext_add - allocate space for given extension, COW if needed
6676 * @id: extension to allocate space for
6678 * Allocates enough space for the given extension.
6679 * If the extension is already present, a pointer to that extension
6682 * If the skb was cloned, COW applies and the returned memory can be
6683 * modified without changing the extension space of clones buffers.
6685 * Returns pointer to the extension or NULL on allocation failure.
6687 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6689 struct skb_ext *new, *old = NULL;
6690 unsigned int newlen, newoff;
6692 if (skb->active_extensions) {
6693 old = skb->extensions;
6695 new = skb_ext_maybe_cow(old, skb->active_extensions);
6699 if (__skb_ext_exist(new, id))
6702 newoff = new->chunks;
6704 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6706 new = __skb_ext_alloc(GFP_ATOMIC);
6711 newlen = newoff + skb_ext_type_len[id];
6712 new->chunks = newlen;
6713 new->offset[id] = newoff;
6716 skb->extensions = new;
6717 skb->active_extensions |= 1 << id;
6718 return skb_ext_get_ptr(new, id);
6720 EXPORT_SYMBOL(skb_ext_add);
6723 static void skb_ext_put_sp(struct sec_path *sp)
6727 for (i = 0; i < sp->len; i++)
6728 xfrm_state_put(sp->xvec[i]);
6732 #ifdef CONFIG_MCTP_FLOWS
6733 static void skb_ext_put_mctp(struct mctp_flow *flow)
6736 mctp_key_unref(flow->key);
6740 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6742 struct skb_ext *ext = skb->extensions;
6744 skb->active_extensions &= ~(1 << id);
6745 if (skb->active_extensions == 0) {
6746 skb->extensions = NULL;
6749 } else if (id == SKB_EXT_SEC_PATH &&
6750 refcount_read(&ext->refcnt) == 1) {
6751 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6758 EXPORT_SYMBOL(__skb_ext_del);
6760 void __skb_ext_put(struct skb_ext *ext)
6762 /* If this is last clone, nothing can increment
6763 * it after check passes. Avoids one atomic op.
6765 if (refcount_read(&ext->refcnt) == 1)
6768 if (!refcount_dec_and_test(&ext->refcnt))
6772 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6773 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6775 #ifdef CONFIG_MCTP_FLOWS
6776 if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6777 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6780 kmem_cache_free(skbuff_ext_cache, ext);
6782 EXPORT_SYMBOL(__skb_ext_put);
6783 #endif /* CONFIG_SKB_EXTENSIONS */
6786 * skb_attempt_defer_free - queue skb for remote freeing
6789 * Put @skb in a per-cpu list, using the cpu which
6790 * allocated the skb/pages to reduce false sharing
6791 * and memory zone spinlock contention.
6793 void skb_attempt_defer_free(struct sk_buff *skb)
6795 int cpu = skb->alloc_cpu;
6796 struct softnet_data *sd;
6797 unsigned int defer_max;
6800 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6802 cpu == raw_smp_processor_id()) {
6803 nodefer: __kfree_skb(skb);
6807 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
6808 DEBUG_NET_WARN_ON_ONCE(skb->destructor);
6810 sd = &per_cpu(softnet_data, cpu);
6811 defer_max = READ_ONCE(sysctl_skb_defer_max);
6812 if (READ_ONCE(sd->defer_count) >= defer_max)
6815 spin_lock_bh(&sd->defer_lock);
6816 /* Send an IPI every time queue reaches half capacity. */
6817 kick = sd->defer_count == (defer_max >> 1);
6818 /* Paired with the READ_ONCE() few lines above */
6819 WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6821 skb->next = sd->defer_list;
6822 /* Paired with READ_ONCE() in skb_defer_free_flush() */
6823 WRITE_ONCE(sd->defer_list, skb);
6824 spin_unlock_bh(&sd->defer_lock);
6826 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6827 * if we are unlucky enough (this seems very unlikely).
6829 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6830 smp_call_function_single_async(cpu, &sd->defer_csd);
6833 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
6834 size_t offset, size_t len)
6839 kaddr = kmap_local_page(page);
6840 csum = csum_partial(kaddr + offset, len, 0);
6841 kunmap_local(kaddr);
6842 skb->csum = csum_block_add(skb->csum, csum, skb->len);
6846 * skb_splice_from_iter - Splice (or copy) pages to skbuff
6847 * @skb: The buffer to add pages to
6848 * @iter: Iterator representing the pages to be added
6849 * @maxsize: Maximum amount of pages to be added
6850 * @gfp: Allocation flags
6852 * This is a common helper function for supporting MSG_SPLICE_PAGES. It
6853 * extracts pages from an iterator and adds them to the socket buffer if
6854 * possible, copying them to fragments if not possible (such as if they're slab
6857 * Returns the amount of data spliced/copied or -EMSGSIZE if there's
6858 * insufficient space in the buffer to transfer anything.
6860 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
6861 ssize_t maxsize, gfp_t gfp)
6863 size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
6864 struct page *pages[8], **ppages = pages;
6865 ssize_t spliced = 0, ret = 0;
6868 while (iter->count > 0) {
6869 ssize_t space, nr, len;
6873 space = frag_limit - skb_shinfo(skb)->nr_frags;
6877 /* We might be able to coalesce without increasing nr_frags */
6878 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
6880 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
6888 struct page *page = pages[i++];
6889 size_t part = min_t(size_t, PAGE_SIZE - off, len);
6892 if (WARN_ON_ONCE(!sendpage_ok(page)))
6895 ret = skb_append_pagefrags(skb, page, off, part,
6898 iov_iter_revert(iter, len);
6902 if (skb->ip_summed == CHECKSUM_NONE)
6903 skb_splice_csum_page(skb, page, off, part);
6916 skb_len_add(skb, spliced);
6917 return spliced ?: ret;
6919 EXPORT_SYMBOL(skb_splice_from_iter);