1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Routines having to do with the 'struct sk_buff' memory handlers.
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
9 * Alan Cox : Fixed the worst of the load
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
32 * The functions in this file will not compile correctly with gcc 2.4.x
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
41 #include <linux/interrupt.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
65 #include <net/protocol.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
72 #include <net/mptcp.h>
73 #include <net/page_pool.h>
75 #include <linux/uaccess.h>
76 #include <trace/events/skb.h>
77 #include <linux/highmem.h>
78 #include <linux/capability.h>
79 #include <linux/user_namespace.h>
80 #include <linux/indirect_call_wrapper.h>
84 struct kmem_cache *skbuff_head_cache __ro_after_init;
85 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
86 #ifdef CONFIG_SKB_EXTENSIONS
87 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
89 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
90 EXPORT_SYMBOL(sysctl_max_skb_frags);
93 * skb_panic - private function for out-of-line support
97 * @msg: skb_over_panic or skb_under_panic
99 * Out-of-line support for skb_put() and skb_push().
100 * Called via the wrapper skb_over_panic() or skb_under_panic().
101 * Keep out of line to prevent kernel bloat.
102 * __builtin_return_address is not used because it is not always reliable.
104 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
107 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
108 msg, addr, skb->len, sz, skb->head, skb->data,
109 (unsigned long)skb->tail, (unsigned long)skb->end,
110 skb->dev ? skb->dev->name : "<NULL>");
114 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
116 skb_panic(skb, sz, addr, __func__);
119 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
121 skb_panic(skb, sz, addr, __func__);
124 #define NAPI_SKB_CACHE_SIZE 64
125 #define NAPI_SKB_CACHE_BULK 16
126 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
128 struct napi_alloc_cache {
129 struct page_frag_cache page;
130 unsigned int skb_count;
131 void *skb_cache[NAPI_SKB_CACHE_SIZE];
134 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
135 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
137 static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask,
138 unsigned int align_mask)
140 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
142 return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask);
145 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
147 fragsz = SKB_DATA_ALIGN(fragsz);
149 return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
151 EXPORT_SYMBOL(__napi_alloc_frag_align);
153 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
155 struct page_frag_cache *nc;
158 fragsz = SKB_DATA_ALIGN(fragsz);
159 if (in_irq() || irqs_disabled()) {
160 nc = this_cpu_ptr(&netdev_alloc_cache);
161 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
164 data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
169 EXPORT_SYMBOL(__netdev_alloc_frag_align);
171 static struct sk_buff *napi_skb_cache_get(void)
173 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
176 if (unlikely(!nc->skb_count))
177 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
181 if (unlikely(!nc->skb_count))
184 skb = nc->skb_cache[--nc->skb_count];
185 kasan_unpoison_object_data(skbuff_head_cache, skb);
190 /* Caller must provide SKB that is memset cleared */
191 static void __build_skb_around(struct sk_buff *skb, void *data,
192 unsigned int frag_size)
194 struct skb_shared_info *shinfo;
195 unsigned int size = frag_size ? : ksize(data);
197 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
199 /* Assumes caller memset cleared SKB */
200 skb->truesize = SKB_TRUESIZE(size);
201 refcount_set(&skb->users, 1);
204 skb_reset_tail_pointer(skb);
205 skb->end = skb->tail + size;
206 skb->mac_header = (typeof(skb->mac_header))~0U;
207 skb->transport_header = (typeof(skb->transport_header))~0U;
209 /* make sure we initialize shinfo sequentially */
210 shinfo = skb_shinfo(skb);
211 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
212 atomic_set(&shinfo->dataref, 1);
214 skb_set_kcov_handle(skb, kcov_common_handle());
218 * __build_skb - build a network buffer
219 * @data: data buffer provided by caller
220 * @frag_size: size of data, or 0 if head was kmalloced
222 * Allocate a new &sk_buff. Caller provides space holding head and
223 * skb_shared_info. @data must have been allocated by kmalloc() only if
224 * @frag_size is 0, otherwise data should come from the page allocator
226 * The return is the new skb buffer.
227 * On a failure the return is %NULL, and @data is not freed.
229 * Before IO, driver allocates only data buffer where NIC put incoming frame
230 * Driver should add room at head (NET_SKB_PAD) and
231 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
232 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
233 * before giving packet to stack.
234 * RX rings only contains data buffers, not full skbs.
236 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
240 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
244 memset(skb, 0, offsetof(struct sk_buff, tail));
245 __build_skb_around(skb, data, frag_size);
250 /* build_skb() is wrapper over __build_skb(), that specifically
251 * takes care of skb->head and skb->pfmemalloc
252 * This means that if @frag_size is not zero, then @data must be backed
253 * by a page fragment, not kmalloc() or vmalloc()
255 struct sk_buff *build_skb(void *data, unsigned int frag_size)
257 struct sk_buff *skb = __build_skb(data, frag_size);
259 if (skb && frag_size) {
261 if (page_is_pfmemalloc(virt_to_head_page(data)))
266 EXPORT_SYMBOL(build_skb);
269 * build_skb_around - build a network buffer around provided skb
270 * @skb: sk_buff provide by caller, must be memset cleared
271 * @data: data buffer provided by caller
272 * @frag_size: size of data, or 0 if head was kmalloced
274 struct sk_buff *build_skb_around(struct sk_buff *skb,
275 void *data, unsigned int frag_size)
280 __build_skb_around(skb, data, frag_size);
284 if (page_is_pfmemalloc(virt_to_head_page(data)))
289 EXPORT_SYMBOL(build_skb_around);
292 * __napi_build_skb - build a network buffer
293 * @data: data buffer provided by caller
294 * @frag_size: size of data, or 0 if head was kmalloced
296 * Version of __build_skb() that uses NAPI percpu caches to obtain
297 * skbuff_head instead of inplace allocation.
299 * Returns a new &sk_buff on success, %NULL on allocation failure.
301 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
305 skb = napi_skb_cache_get();
309 memset(skb, 0, offsetof(struct sk_buff, tail));
310 __build_skb_around(skb, data, frag_size);
316 * napi_build_skb - build a network buffer
317 * @data: data buffer provided by caller
318 * @frag_size: size of data, or 0 if head was kmalloced
320 * Version of __napi_build_skb() that takes care of skb->head_frag
321 * and skb->pfmemalloc when the data is a page or page fragment.
323 * Returns a new &sk_buff on success, %NULL on allocation failure.
325 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
327 struct sk_buff *skb = __napi_build_skb(data, frag_size);
329 if (likely(skb) && frag_size) {
331 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
336 EXPORT_SYMBOL(napi_build_skb);
339 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
340 * the caller if emergency pfmemalloc reserves are being used. If it is and
341 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
342 * may be used. Otherwise, the packet data may be discarded until enough
345 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
349 bool ret_pfmemalloc = false;
352 * Try a regular allocation, when that fails and we're not entitled
353 * to the reserves, fail.
355 obj = kmalloc_node_track_caller(size,
356 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
358 if (obj || !(gfp_pfmemalloc_allowed(flags)))
361 /* Try again but now we are using pfmemalloc reserves */
362 ret_pfmemalloc = true;
363 obj = kmalloc_node_track_caller(size, flags, node);
367 *pfmemalloc = ret_pfmemalloc;
372 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
373 * 'private' fields and also do memory statistics to find all the
379 * __alloc_skb - allocate a network buffer
380 * @size: size to allocate
381 * @gfp_mask: allocation mask
382 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
383 * instead of head cache and allocate a cloned (child) skb.
384 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
385 * allocations in case the data is required for writeback
386 * @node: numa node to allocate memory on
388 * Allocate a new &sk_buff. The returned buffer has no headroom and a
389 * tail room of at least size bytes. The object has a reference count
390 * of one. The return is the buffer. On a failure the return is %NULL.
392 * Buffers may only be allocated from interrupts using a @gfp_mask of
395 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
398 struct kmem_cache *cache;
403 cache = (flags & SKB_ALLOC_FCLONE)
404 ? skbuff_fclone_cache : skbuff_head_cache;
406 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
407 gfp_mask |= __GFP_MEMALLOC;
410 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
411 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
412 skb = napi_skb_cache_get();
414 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
419 /* We do our best to align skb_shared_info on a separate cache
420 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
421 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
422 * Both skb->head and skb_shared_info are cache line aligned.
424 size = SKB_DATA_ALIGN(size);
425 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
426 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
429 /* kmalloc(size) might give us more room than requested.
430 * Put skb_shared_info exactly at the end of allocated zone,
431 * to allow max possible filling before reallocation.
433 size = SKB_WITH_OVERHEAD(ksize(data));
434 prefetchw(data + size);
437 * Only clear those fields we need to clear, not those that we will
438 * actually initialise below. Hence, don't put any more fields after
439 * the tail pointer in struct sk_buff!
441 memset(skb, 0, offsetof(struct sk_buff, tail));
442 __build_skb_around(skb, data, 0);
443 skb->pfmemalloc = pfmemalloc;
445 if (flags & SKB_ALLOC_FCLONE) {
446 struct sk_buff_fclones *fclones;
448 fclones = container_of(skb, struct sk_buff_fclones, skb1);
450 skb->fclone = SKB_FCLONE_ORIG;
451 refcount_set(&fclones->fclone_ref, 1);
453 fclones->skb2.fclone = SKB_FCLONE_CLONE;
459 kmem_cache_free(cache, skb);
462 EXPORT_SYMBOL(__alloc_skb);
465 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
466 * @dev: network device to receive on
467 * @len: length to allocate
468 * @gfp_mask: get_free_pages mask, passed to alloc_skb
470 * Allocate a new &sk_buff and assign it a usage count of one. The
471 * buffer has NET_SKB_PAD headroom built in. Users should allocate
472 * the headroom they think they need without accounting for the
473 * built in space. The built in space is used for optimisations.
475 * %NULL is returned if there is no free memory.
477 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
480 struct page_frag_cache *nc;
487 /* If requested length is either too small or too big,
488 * we use kmalloc() for skb->head allocation.
490 if (len <= SKB_WITH_OVERHEAD(1024) ||
491 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
492 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
493 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
499 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
500 len = SKB_DATA_ALIGN(len);
502 if (sk_memalloc_socks())
503 gfp_mask |= __GFP_MEMALLOC;
505 if (in_irq() || irqs_disabled()) {
506 nc = this_cpu_ptr(&netdev_alloc_cache);
507 data = page_frag_alloc(nc, len, gfp_mask);
508 pfmemalloc = nc->pfmemalloc;
511 nc = this_cpu_ptr(&napi_alloc_cache.page);
512 data = page_frag_alloc(nc, len, gfp_mask);
513 pfmemalloc = nc->pfmemalloc;
520 skb = __build_skb(data, len);
521 if (unlikely(!skb)) {
531 skb_reserve(skb, NET_SKB_PAD);
537 EXPORT_SYMBOL(__netdev_alloc_skb);
540 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
541 * @napi: napi instance this buffer was allocated for
542 * @len: length to allocate
543 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
545 * Allocate a new sk_buff for use in NAPI receive. This buffer will
546 * attempt to allocate the head from a special reserved region used
547 * only for NAPI Rx allocation. By doing this we can save several
548 * CPU cycles by avoiding having to disable and re-enable IRQs.
550 * %NULL is returned if there is no free memory.
552 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
555 struct napi_alloc_cache *nc;
559 len += NET_SKB_PAD + NET_IP_ALIGN;
561 /* If requested length is either too small or too big,
562 * we use kmalloc() for skb->head allocation.
564 if (len <= SKB_WITH_OVERHEAD(1024) ||
565 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
566 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
567 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
574 nc = this_cpu_ptr(&napi_alloc_cache);
575 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
576 len = SKB_DATA_ALIGN(len);
578 if (sk_memalloc_socks())
579 gfp_mask |= __GFP_MEMALLOC;
581 data = page_frag_alloc(&nc->page, len, gfp_mask);
585 skb = __napi_build_skb(data, len);
586 if (unlikely(!skb)) {
591 if (nc->page.pfmemalloc)
596 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
597 skb->dev = napi->dev;
602 EXPORT_SYMBOL(__napi_alloc_skb);
604 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
605 int size, unsigned int truesize)
607 skb_fill_page_desc(skb, i, page, off, size);
609 skb->data_len += size;
610 skb->truesize += truesize;
612 EXPORT_SYMBOL(skb_add_rx_frag);
614 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
615 unsigned int truesize)
617 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
619 skb_frag_size_add(frag, size);
621 skb->data_len += size;
622 skb->truesize += truesize;
624 EXPORT_SYMBOL(skb_coalesce_rx_frag);
626 static void skb_drop_list(struct sk_buff **listp)
628 kfree_skb_list(*listp);
632 static inline void skb_drop_fraglist(struct sk_buff *skb)
634 skb_drop_list(&skb_shinfo(skb)->frag_list);
637 static void skb_clone_fraglist(struct sk_buff *skb)
639 struct sk_buff *list;
641 skb_walk_frags(skb, list)
645 static void skb_free_head(struct sk_buff *skb)
647 unsigned char *head = skb->head;
649 if (skb->head_frag) {
650 if (skb_pp_recycle(skb, head))
658 static void skb_release_data(struct sk_buff *skb)
660 struct skb_shared_info *shinfo = skb_shinfo(skb);
664 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
668 skb_zcopy_clear(skb, true);
670 for (i = 0; i < shinfo->nr_frags; i++)
671 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
673 if (shinfo->frag_list)
674 kfree_skb_list(shinfo->frag_list);
680 * Free an skbuff by memory without cleaning the state.
682 static void kfree_skbmem(struct sk_buff *skb)
684 struct sk_buff_fclones *fclones;
686 switch (skb->fclone) {
687 case SKB_FCLONE_UNAVAILABLE:
688 kmem_cache_free(skbuff_head_cache, skb);
691 case SKB_FCLONE_ORIG:
692 fclones = container_of(skb, struct sk_buff_fclones, skb1);
694 /* We usually free the clone (TX completion) before original skb
695 * This test would have no chance to be true for the clone,
696 * while here, branch prediction will be good.
698 if (refcount_read(&fclones->fclone_ref) == 1)
702 default: /* SKB_FCLONE_CLONE */
703 fclones = container_of(skb, struct sk_buff_fclones, skb2);
706 if (!refcount_dec_and_test(&fclones->fclone_ref))
709 kmem_cache_free(skbuff_fclone_cache, fclones);
712 void skb_release_head_state(struct sk_buff *skb)
715 if (skb->destructor) {
717 skb->destructor(skb);
719 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
720 nf_conntrack_put(skb_nfct(skb));
725 /* Free everything but the sk_buff shell. */
726 static void skb_release_all(struct sk_buff *skb)
728 skb_release_head_state(skb);
729 if (likely(skb->head))
730 skb_release_data(skb);
734 * __kfree_skb - private function
737 * Free an sk_buff. Release anything attached to the buffer.
738 * Clean the state. This is an internal helper function. Users should
739 * always call kfree_skb
742 void __kfree_skb(struct sk_buff *skb)
744 skb_release_all(skb);
747 EXPORT_SYMBOL(__kfree_skb);
750 * kfree_skb - free an sk_buff
751 * @skb: buffer to free
753 * Drop a reference to the buffer and free it if the usage count has
756 void kfree_skb(struct sk_buff *skb)
761 trace_kfree_skb(skb, __builtin_return_address(0));
764 EXPORT_SYMBOL(kfree_skb);
766 void kfree_skb_list(struct sk_buff *segs)
769 struct sk_buff *next = segs->next;
775 EXPORT_SYMBOL(kfree_skb_list);
777 /* Dump skb information and contents.
779 * Must only be called from net_ratelimit()-ed paths.
781 * Dumps whole packets if full_pkt, only headers otherwise.
783 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
785 struct skb_shared_info *sh = skb_shinfo(skb);
786 struct net_device *dev = skb->dev;
787 struct sock *sk = skb->sk;
788 struct sk_buff *list_skb;
789 bool has_mac, has_trans;
790 int headroom, tailroom;
796 len = min_t(int, skb->len, MAX_HEADER + 128);
798 headroom = skb_headroom(skb);
799 tailroom = skb_tailroom(skb);
801 has_mac = skb_mac_header_was_set(skb);
802 has_trans = skb_transport_header_was_set(skb);
804 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
805 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
806 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
807 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
808 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
809 level, skb->len, headroom, skb_headlen(skb), tailroom,
810 has_mac ? skb->mac_header : -1,
811 has_mac ? skb_mac_header_len(skb) : -1,
813 has_trans ? skb_network_header_len(skb) : -1,
814 has_trans ? skb->transport_header : -1,
815 sh->tx_flags, sh->nr_frags,
816 sh->gso_size, sh->gso_type, sh->gso_segs,
817 skb->csum, skb->ip_summed, skb->csum_complete_sw,
818 skb->csum_valid, skb->csum_level,
819 skb->hash, skb->sw_hash, skb->l4_hash,
820 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
823 printk("%sdev name=%s feat=0x%pNF\n",
824 level, dev->name, &dev->features);
826 printk("%ssk family=%hu type=%u proto=%u\n",
827 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
829 if (full_pkt && headroom)
830 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
831 16, 1, skb->head, headroom, false);
833 seg_len = min_t(int, skb_headlen(skb), len);
835 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
836 16, 1, skb->data, seg_len, false);
839 if (full_pkt && tailroom)
840 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
841 16, 1, skb_tail_pointer(skb), tailroom, false);
843 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
844 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
845 u32 p_off, p_len, copied;
849 skb_frag_foreach_page(frag, skb_frag_off(frag),
850 skb_frag_size(frag), p, p_off, p_len,
852 seg_len = min_t(int, p_len, len);
853 vaddr = kmap_atomic(p);
854 print_hex_dump(level, "skb frag: ",
856 16, 1, vaddr + p_off, seg_len, false);
857 kunmap_atomic(vaddr);
864 if (full_pkt && skb_has_frag_list(skb)) {
865 printk("skb fraglist:\n");
866 skb_walk_frags(skb, list_skb)
867 skb_dump(level, list_skb, true);
870 EXPORT_SYMBOL(skb_dump);
873 * skb_tx_error - report an sk_buff xmit error
874 * @skb: buffer that triggered an error
876 * Report xmit error if a device callback is tracking this skb.
877 * skb must be freed afterwards.
879 void skb_tx_error(struct sk_buff *skb)
881 skb_zcopy_clear(skb, true);
883 EXPORT_SYMBOL(skb_tx_error);
885 #ifdef CONFIG_TRACEPOINTS
887 * consume_skb - free an skbuff
888 * @skb: buffer to free
890 * Drop a ref to the buffer and free it if the usage count has hit zero
891 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
892 * is being dropped after a failure and notes that
894 void consume_skb(struct sk_buff *skb)
899 trace_consume_skb(skb);
902 EXPORT_SYMBOL(consume_skb);
906 * __consume_stateless_skb - free an skbuff, assuming it is stateless
907 * @skb: buffer to free
909 * Alike consume_skb(), but this variant assumes that this is the last
910 * skb reference and all the head states have been already dropped
912 void __consume_stateless_skb(struct sk_buff *skb)
914 trace_consume_skb(skb);
915 skb_release_data(skb);
919 static void napi_skb_cache_put(struct sk_buff *skb)
921 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
924 kasan_poison_object_data(skbuff_head_cache, skb);
925 nc->skb_cache[nc->skb_count++] = skb;
927 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
928 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
929 kasan_unpoison_object_data(skbuff_head_cache,
932 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
933 nc->skb_cache + NAPI_SKB_CACHE_HALF);
934 nc->skb_count = NAPI_SKB_CACHE_HALF;
938 void __kfree_skb_defer(struct sk_buff *skb)
940 skb_release_all(skb);
941 napi_skb_cache_put(skb);
944 void napi_skb_free_stolen_head(struct sk_buff *skb)
949 napi_skb_cache_put(skb);
952 void napi_consume_skb(struct sk_buff *skb, int budget)
954 /* Zero budget indicate non-NAPI context called us, like netpoll */
955 if (unlikely(!budget)) {
956 dev_consume_skb_any(skb);
960 lockdep_assert_in_softirq();
965 /* if reaching here SKB is ready to free */
966 trace_consume_skb(skb);
968 /* if SKB is a clone, don't handle this case */
969 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
974 skb_release_all(skb);
975 napi_skb_cache_put(skb);
977 EXPORT_SYMBOL(napi_consume_skb);
979 /* Make sure a field is enclosed inside headers_start/headers_end section */
980 #define CHECK_SKB_FIELD(field) \
981 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
982 offsetof(struct sk_buff, headers_start)); \
983 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
984 offsetof(struct sk_buff, headers_end)); \
986 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
988 new->tstamp = old->tstamp;
989 /* We do not copy old->sk */
991 memcpy(new->cb, old->cb, sizeof(old->cb));
992 skb_dst_copy(new, old);
993 __skb_ext_copy(new, old);
994 __nf_copy(new, old, false);
996 /* Note : this field could be in headers_start/headers_end section
997 * It is not yet because we do not want to have a 16 bit hole
999 new->queue_mapping = old->queue_mapping;
1001 memcpy(&new->headers_start, &old->headers_start,
1002 offsetof(struct sk_buff, headers_end) -
1003 offsetof(struct sk_buff, headers_start));
1004 CHECK_SKB_FIELD(protocol);
1005 CHECK_SKB_FIELD(csum);
1006 CHECK_SKB_FIELD(hash);
1007 CHECK_SKB_FIELD(priority);
1008 CHECK_SKB_FIELD(skb_iif);
1009 CHECK_SKB_FIELD(vlan_proto);
1010 CHECK_SKB_FIELD(vlan_tci);
1011 CHECK_SKB_FIELD(transport_header);
1012 CHECK_SKB_FIELD(network_header);
1013 CHECK_SKB_FIELD(mac_header);
1014 CHECK_SKB_FIELD(inner_protocol);
1015 CHECK_SKB_FIELD(inner_transport_header);
1016 CHECK_SKB_FIELD(inner_network_header);
1017 CHECK_SKB_FIELD(inner_mac_header);
1018 CHECK_SKB_FIELD(mark);
1019 #ifdef CONFIG_NETWORK_SECMARK
1020 CHECK_SKB_FIELD(secmark);
1022 #ifdef CONFIG_NET_RX_BUSY_POLL
1023 CHECK_SKB_FIELD(napi_id);
1026 CHECK_SKB_FIELD(sender_cpu);
1028 #ifdef CONFIG_NET_SCHED
1029 CHECK_SKB_FIELD(tc_index);
1035 * You should not add any new code to this function. Add it to
1036 * __copy_skb_header above instead.
1038 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1040 #define C(x) n->x = skb->x
1042 n->next = n->prev = NULL;
1044 __copy_skb_header(n, skb);
1049 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1055 n->destructor = NULL;
1062 refcount_set(&n->users, 1);
1064 atomic_inc(&(skb_shinfo(skb)->dataref));
1072 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1073 * @first: first sk_buff of the msg
1075 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1079 n = alloc_skb(0, GFP_ATOMIC);
1083 n->len = first->len;
1084 n->data_len = first->len;
1085 n->truesize = first->truesize;
1087 skb_shinfo(n)->frag_list = first;
1089 __copy_skb_header(n, first);
1090 n->destructor = NULL;
1094 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1097 * skb_morph - morph one skb into another
1098 * @dst: the skb to receive the contents
1099 * @src: the skb to supply the contents
1101 * This is identical to skb_clone except that the target skb is
1102 * supplied by the user.
1104 * The target skb is returned upon exit.
1106 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1108 skb_release_all(dst);
1109 return __skb_clone(dst, src);
1111 EXPORT_SYMBOL_GPL(skb_morph);
1113 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1115 unsigned long max_pg, num_pg, new_pg, old_pg;
1116 struct user_struct *user;
1118 if (capable(CAP_IPC_LOCK) || !size)
1121 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1122 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1123 user = mmp->user ? : current_user();
1126 old_pg = atomic_long_read(&user->locked_vm);
1127 new_pg = old_pg + num_pg;
1128 if (new_pg > max_pg)
1130 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1134 mmp->user = get_uid(user);
1135 mmp->num_pg = num_pg;
1137 mmp->num_pg += num_pg;
1142 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1144 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1147 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1148 free_uid(mmp->user);
1151 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1153 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1155 struct ubuf_info *uarg;
1156 struct sk_buff *skb;
1158 WARN_ON_ONCE(!in_task());
1160 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1164 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1165 uarg = (void *)skb->cb;
1166 uarg->mmp.user = NULL;
1168 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1173 uarg->callback = msg_zerocopy_callback;
1174 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1176 uarg->bytelen = size;
1178 uarg->flags = SKBFL_ZEROCOPY_FRAG;
1179 refcount_set(&uarg->refcnt, 1);
1184 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc);
1186 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1188 return container_of((void *)uarg, struct sk_buff, cb);
1191 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1192 struct ubuf_info *uarg)
1195 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1198 /* realloc only when socket is locked (TCP, UDP cork),
1199 * so uarg->len and sk_zckey access is serialized
1201 if (!sock_owned_by_user(sk)) {
1206 bytelen = uarg->bytelen + size;
1207 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1208 /* TCP can create new skb to attach new uarg */
1209 if (sk->sk_type == SOCK_STREAM)
1214 next = (u32)atomic_read(&sk->sk_zckey);
1215 if ((u32)(uarg->id + uarg->len) == next) {
1216 if (mm_account_pinned_pages(&uarg->mmp, size))
1219 uarg->bytelen = bytelen;
1220 atomic_set(&sk->sk_zckey, ++next);
1222 /* no extra ref when appending to datagram (MSG_MORE) */
1223 if (sk->sk_type == SOCK_STREAM)
1224 net_zcopy_get(uarg);
1231 return msg_zerocopy_alloc(sk, size);
1233 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1235 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1237 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1241 old_lo = serr->ee.ee_info;
1242 old_hi = serr->ee.ee_data;
1243 sum_len = old_hi - old_lo + 1ULL + len;
1245 if (sum_len >= (1ULL << 32))
1248 if (lo != old_hi + 1)
1251 serr->ee.ee_data += len;
1255 static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1257 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1258 struct sock_exterr_skb *serr;
1259 struct sock *sk = skb->sk;
1260 struct sk_buff_head *q;
1261 unsigned long flags;
1266 mm_unaccount_pinned_pages(&uarg->mmp);
1268 /* if !len, there was only 1 call, and it was aborted
1269 * so do not queue a completion notification
1271 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1276 hi = uarg->id + len - 1;
1277 is_zerocopy = uarg->zerocopy;
1279 serr = SKB_EXT_ERR(skb);
1280 memset(serr, 0, sizeof(*serr));
1281 serr->ee.ee_errno = 0;
1282 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1283 serr->ee.ee_data = hi;
1284 serr->ee.ee_info = lo;
1286 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1288 q = &sk->sk_error_queue;
1289 spin_lock_irqsave(&q->lock, flags);
1290 tail = skb_peek_tail(q);
1291 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1292 !skb_zerocopy_notify_extend(tail, lo, len)) {
1293 __skb_queue_tail(q, skb);
1296 spin_unlock_irqrestore(&q->lock, flags);
1298 sk_error_report(sk);
1305 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1308 uarg->zerocopy = uarg->zerocopy & success;
1310 if (refcount_dec_and_test(&uarg->refcnt))
1311 __msg_zerocopy_callback(uarg);
1313 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1315 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1317 struct sock *sk = skb_from_uarg(uarg)->sk;
1319 atomic_dec(&sk->sk_zckey);
1323 msg_zerocopy_callback(NULL, uarg, true);
1325 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1327 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1329 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1331 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1333 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1334 struct msghdr *msg, int len,
1335 struct ubuf_info *uarg)
1337 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1338 struct iov_iter orig_iter = msg->msg_iter;
1339 int err, orig_len = skb->len;
1341 /* An skb can only point to one uarg. This edge case happens when
1342 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1344 if (orig_uarg && uarg != orig_uarg)
1347 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1348 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1349 struct sock *save_sk = skb->sk;
1351 /* Streams do not free skb on error. Reset to prev state. */
1352 msg->msg_iter = orig_iter;
1354 ___pskb_trim(skb, orig_len);
1359 skb_zcopy_set(skb, uarg, NULL);
1360 return skb->len - orig_len;
1362 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1364 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1367 if (skb_zcopy(orig)) {
1368 if (skb_zcopy(nskb)) {
1369 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1374 if (skb_uarg(nskb) == skb_uarg(orig))
1376 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1379 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1385 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1386 * @skb: the skb to modify
1387 * @gfp_mask: allocation priority
1389 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1390 * It will copy all frags into kernel and drop the reference
1391 * to userspace pages.
1393 * If this function is called from an interrupt gfp_mask() must be
1396 * Returns 0 on success or a negative error code on failure
1397 * to allocate kernel memory to copy to.
1399 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1401 int num_frags = skb_shinfo(skb)->nr_frags;
1402 struct page *page, *head = NULL;
1406 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1412 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1413 for (i = 0; i < new_frags; i++) {
1414 page = alloc_page(gfp_mask);
1417 struct page *next = (struct page *)page_private(head);
1423 set_page_private(page, (unsigned long)head);
1429 for (i = 0; i < num_frags; i++) {
1430 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1431 u32 p_off, p_len, copied;
1435 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1436 p, p_off, p_len, copied) {
1438 vaddr = kmap_atomic(p);
1440 while (done < p_len) {
1441 if (d_off == PAGE_SIZE) {
1443 page = (struct page *)page_private(page);
1445 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1446 memcpy(page_address(page) + d_off,
1447 vaddr + p_off + done, copy);
1451 kunmap_atomic(vaddr);
1455 /* skb frags release userspace buffers */
1456 for (i = 0; i < num_frags; i++)
1457 skb_frag_unref(skb, i);
1459 /* skb frags point to kernel buffers */
1460 for (i = 0; i < new_frags - 1; i++) {
1461 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1462 head = (struct page *)page_private(head);
1464 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1465 skb_shinfo(skb)->nr_frags = new_frags;
1468 skb_zcopy_clear(skb, false);
1471 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1474 * skb_clone - duplicate an sk_buff
1475 * @skb: buffer to clone
1476 * @gfp_mask: allocation priority
1478 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1479 * copies share the same packet data but not structure. The new
1480 * buffer has a reference count of 1. If the allocation fails the
1481 * function returns %NULL otherwise the new buffer is returned.
1483 * If this function is called from an interrupt gfp_mask() must be
1487 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1489 struct sk_buff_fclones *fclones = container_of(skb,
1490 struct sk_buff_fclones,
1494 if (skb_orphan_frags(skb, gfp_mask))
1497 if (skb->fclone == SKB_FCLONE_ORIG &&
1498 refcount_read(&fclones->fclone_ref) == 1) {
1500 refcount_set(&fclones->fclone_ref, 2);
1502 if (skb_pfmemalloc(skb))
1503 gfp_mask |= __GFP_MEMALLOC;
1505 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1509 n->fclone = SKB_FCLONE_UNAVAILABLE;
1512 return __skb_clone(n, skb);
1514 EXPORT_SYMBOL(skb_clone);
1516 void skb_headers_offset_update(struct sk_buff *skb, int off)
1518 /* Only adjust this if it actually is csum_start rather than csum */
1519 if (skb->ip_summed == CHECKSUM_PARTIAL)
1520 skb->csum_start += off;
1521 /* {transport,network,mac}_header and tail are relative to skb->head */
1522 skb->transport_header += off;
1523 skb->network_header += off;
1524 if (skb_mac_header_was_set(skb))
1525 skb->mac_header += off;
1526 skb->inner_transport_header += off;
1527 skb->inner_network_header += off;
1528 skb->inner_mac_header += off;
1530 EXPORT_SYMBOL(skb_headers_offset_update);
1532 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1534 __copy_skb_header(new, old);
1536 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1537 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1538 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1540 EXPORT_SYMBOL(skb_copy_header);
1542 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1544 if (skb_pfmemalloc(skb))
1545 return SKB_ALLOC_RX;
1550 * skb_copy - create private copy of an sk_buff
1551 * @skb: buffer to copy
1552 * @gfp_mask: allocation priority
1554 * Make a copy of both an &sk_buff and its data. This is used when the
1555 * caller wishes to modify the data and needs a private copy of the
1556 * data to alter. Returns %NULL on failure or the pointer to the buffer
1557 * on success. The returned buffer has a reference count of 1.
1559 * As by-product this function converts non-linear &sk_buff to linear
1560 * one, so that &sk_buff becomes completely private and caller is allowed
1561 * to modify all the data of returned buffer. This means that this
1562 * function is not recommended for use in circumstances when only
1563 * header is going to be modified. Use pskb_copy() instead.
1566 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1568 int headerlen = skb_headroom(skb);
1569 unsigned int size = skb_end_offset(skb) + skb->data_len;
1570 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1571 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1576 /* Set the data pointer */
1577 skb_reserve(n, headerlen);
1578 /* Set the tail pointer and length */
1579 skb_put(n, skb->len);
1581 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1583 skb_copy_header(n, skb);
1586 EXPORT_SYMBOL(skb_copy);
1589 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1590 * @skb: buffer to copy
1591 * @headroom: headroom of new skb
1592 * @gfp_mask: allocation priority
1593 * @fclone: if true allocate the copy of the skb from the fclone
1594 * cache instead of the head cache; it is recommended to set this
1595 * to true for the cases where the copy will likely be cloned
1597 * Make a copy of both an &sk_buff and part of its data, located
1598 * in header. Fragmented data remain shared. This is used when
1599 * the caller wishes to modify only header of &sk_buff and needs
1600 * private copy of the header to alter. Returns %NULL on failure
1601 * or the pointer to the buffer on success.
1602 * The returned buffer has a reference count of 1.
1605 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1606 gfp_t gfp_mask, bool fclone)
1608 unsigned int size = skb_headlen(skb) + headroom;
1609 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1610 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1615 /* Set the data pointer */
1616 skb_reserve(n, headroom);
1617 /* Set the tail pointer and length */
1618 skb_put(n, skb_headlen(skb));
1619 /* Copy the bytes */
1620 skb_copy_from_linear_data(skb, n->data, n->len);
1622 n->truesize += skb->data_len;
1623 n->data_len = skb->data_len;
1626 if (skb_shinfo(skb)->nr_frags) {
1629 if (skb_orphan_frags(skb, gfp_mask) ||
1630 skb_zerocopy_clone(n, skb, gfp_mask)) {
1635 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1636 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1637 skb_frag_ref(skb, i);
1639 skb_shinfo(n)->nr_frags = i;
1642 if (skb_has_frag_list(skb)) {
1643 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1644 skb_clone_fraglist(n);
1647 skb_copy_header(n, skb);
1651 EXPORT_SYMBOL(__pskb_copy_fclone);
1654 * pskb_expand_head - reallocate header of &sk_buff
1655 * @skb: buffer to reallocate
1656 * @nhead: room to add at head
1657 * @ntail: room to add at tail
1658 * @gfp_mask: allocation priority
1660 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1661 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1662 * reference count of 1. Returns zero in the case of success or error,
1663 * if expansion failed. In the last case, &sk_buff is not changed.
1665 * All the pointers pointing into skb header may change and must be
1666 * reloaded after call to this function.
1669 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1672 int i, osize = skb_end_offset(skb);
1673 int size = osize + nhead + ntail;
1679 BUG_ON(skb_shared(skb));
1681 size = SKB_DATA_ALIGN(size);
1683 if (skb_pfmemalloc(skb))
1684 gfp_mask |= __GFP_MEMALLOC;
1685 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1686 gfp_mask, NUMA_NO_NODE, NULL);
1689 size = SKB_WITH_OVERHEAD(ksize(data));
1691 /* Copy only real data... and, alas, header. This should be
1692 * optimized for the cases when header is void.
1694 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1696 memcpy((struct skb_shared_info *)(data + size),
1698 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1701 * if shinfo is shared we must drop the old head gracefully, but if it
1702 * is not we can just drop the old head and let the existing refcount
1703 * be since all we did is relocate the values
1705 if (skb_cloned(skb)) {
1706 if (skb_orphan_frags(skb, gfp_mask))
1709 refcount_inc(&skb_uarg(skb)->refcnt);
1710 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1711 skb_frag_ref(skb, i);
1713 if (skb_has_frag_list(skb))
1714 skb_clone_fraglist(skb);
1716 skb_release_data(skb);
1720 off = (data + nhead) - skb->head;
1725 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1729 skb->end = skb->head + size;
1732 skb_headers_offset_update(skb, nhead);
1736 atomic_set(&skb_shinfo(skb)->dataref, 1);
1738 skb_metadata_clear(skb);
1740 /* It is not generally safe to change skb->truesize.
1741 * For the moment, we really care of rx path, or
1742 * when skb is orphaned (not attached to a socket).
1744 if (!skb->sk || skb->destructor == sock_edemux)
1745 skb->truesize += size - osize;
1754 EXPORT_SYMBOL(pskb_expand_head);
1756 /* Make private copy of skb with writable head and some headroom */
1758 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1760 struct sk_buff *skb2;
1761 int delta = headroom - skb_headroom(skb);
1764 skb2 = pskb_copy(skb, GFP_ATOMIC);
1766 skb2 = skb_clone(skb, GFP_ATOMIC);
1767 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1775 EXPORT_SYMBOL(skb_realloc_headroom);
1778 * skb_copy_expand - copy and expand sk_buff
1779 * @skb: buffer to copy
1780 * @newheadroom: new free bytes at head
1781 * @newtailroom: new free bytes at tail
1782 * @gfp_mask: allocation priority
1784 * Make a copy of both an &sk_buff and its data and while doing so
1785 * allocate additional space.
1787 * This is used when the caller wishes to modify the data and needs a
1788 * private copy of the data to alter as well as more space for new fields.
1789 * Returns %NULL on failure or the pointer to the buffer
1790 * on success. The returned buffer has a reference count of 1.
1792 * You must pass %GFP_ATOMIC as the allocation priority if this function
1793 * is called from an interrupt.
1795 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1796 int newheadroom, int newtailroom,
1800 * Allocate the copy buffer
1802 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1803 gfp_mask, skb_alloc_rx_flag(skb),
1805 int oldheadroom = skb_headroom(skb);
1806 int head_copy_len, head_copy_off;
1811 skb_reserve(n, newheadroom);
1813 /* Set the tail pointer and length */
1814 skb_put(n, skb->len);
1816 head_copy_len = oldheadroom;
1818 if (newheadroom <= head_copy_len)
1819 head_copy_len = newheadroom;
1821 head_copy_off = newheadroom - head_copy_len;
1823 /* Copy the linear header and data. */
1824 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1825 skb->len + head_copy_len));
1827 skb_copy_header(n, skb);
1829 skb_headers_offset_update(n, newheadroom - oldheadroom);
1833 EXPORT_SYMBOL(skb_copy_expand);
1836 * __skb_pad - zero pad the tail of an skb
1837 * @skb: buffer to pad
1838 * @pad: space to pad
1839 * @free_on_error: free buffer on error
1841 * Ensure that a buffer is followed by a padding area that is zero
1842 * filled. Used by network drivers which may DMA or transfer data
1843 * beyond the buffer end onto the wire.
1845 * May return error in out of memory cases. The skb is freed on error
1846 * if @free_on_error is true.
1849 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1854 /* If the skbuff is non linear tailroom is always zero.. */
1855 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1856 memset(skb->data+skb->len, 0, pad);
1860 ntail = skb->data_len + pad - (skb->end - skb->tail);
1861 if (likely(skb_cloned(skb) || ntail > 0)) {
1862 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1867 /* FIXME: The use of this function with non-linear skb's really needs
1870 err = skb_linearize(skb);
1874 memset(skb->data + skb->len, 0, pad);
1882 EXPORT_SYMBOL(__skb_pad);
1885 * pskb_put - add data to the tail of a potentially fragmented buffer
1886 * @skb: start of the buffer to use
1887 * @tail: tail fragment of the buffer to use
1888 * @len: amount of data to add
1890 * This function extends the used data area of the potentially
1891 * fragmented buffer. @tail must be the last fragment of @skb -- or
1892 * @skb itself. If this would exceed the total buffer size the kernel
1893 * will panic. A pointer to the first byte of the extra data is
1897 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1900 skb->data_len += len;
1903 return skb_put(tail, len);
1905 EXPORT_SYMBOL_GPL(pskb_put);
1908 * skb_put - add data to a buffer
1909 * @skb: buffer to use
1910 * @len: amount of data to add
1912 * This function extends the used data area of the buffer. If this would
1913 * exceed the total buffer size the kernel will panic. A pointer to the
1914 * first byte of the extra data is returned.
1916 void *skb_put(struct sk_buff *skb, unsigned int len)
1918 void *tmp = skb_tail_pointer(skb);
1919 SKB_LINEAR_ASSERT(skb);
1922 if (unlikely(skb->tail > skb->end))
1923 skb_over_panic(skb, len, __builtin_return_address(0));
1926 EXPORT_SYMBOL(skb_put);
1929 * skb_push - add data to the start of a buffer
1930 * @skb: buffer to use
1931 * @len: amount of data to add
1933 * This function extends the used data area of the buffer at the buffer
1934 * start. If this would exceed the total buffer headroom the kernel will
1935 * panic. A pointer to the first byte of the extra data is returned.
1937 void *skb_push(struct sk_buff *skb, unsigned int len)
1941 if (unlikely(skb->data < skb->head))
1942 skb_under_panic(skb, len, __builtin_return_address(0));
1945 EXPORT_SYMBOL(skb_push);
1948 * skb_pull - remove data from the start of a buffer
1949 * @skb: buffer to use
1950 * @len: amount of data to remove
1952 * This function removes data from the start of a buffer, returning
1953 * the memory to the headroom. A pointer to the next data in the buffer
1954 * is returned. Once the data has been pulled future pushes will overwrite
1957 void *skb_pull(struct sk_buff *skb, unsigned int len)
1959 return skb_pull_inline(skb, len);
1961 EXPORT_SYMBOL(skb_pull);
1964 * skb_trim - remove end from a buffer
1965 * @skb: buffer to alter
1968 * Cut the length of a buffer down by removing data from the tail. If
1969 * the buffer is already under the length specified it is not modified.
1970 * The skb must be linear.
1972 void skb_trim(struct sk_buff *skb, unsigned int len)
1975 __skb_trim(skb, len);
1977 EXPORT_SYMBOL(skb_trim);
1979 /* Trims skb to length len. It can change skb pointers.
1982 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1984 struct sk_buff **fragp;
1985 struct sk_buff *frag;
1986 int offset = skb_headlen(skb);
1987 int nfrags = skb_shinfo(skb)->nr_frags;
1991 if (skb_cloned(skb) &&
1992 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1999 for (; i < nfrags; i++) {
2000 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2007 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2010 skb_shinfo(skb)->nr_frags = i;
2012 for (; i < nfrags; i++)
2013 skb_frag_unref(skb, i);
2015 if (skb_has_frag_list(skb))
2016 skb_drop_fraglist(skb);
2020 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2021 fragp = &frag->next) {
2022 int end = offset + frag->len;
2024 if (skb_shared(frag)) {
2025 struct sk_buff *nfrag;
2027 nfrag = skb_clone(frag, GFP_ATOMIC);
2028 if (unlikely(!nfrag))
2031 nfrag->next = frag->next;
2043 unlikely((err = pskb_trim(frag, len - offset))))
2047 skb_drop_list(&frag->next);
2052 if (len > skb_headlen(skb)) {
2053 skb->data_len -= skb->len - len;
2058 skb_set_tail_pointer(skb, len);
2061 if (!skb->sk || skb->destructor == sock_edemux)
2065 EXPORT_SYMBOL(___pskb_trim);
2067 /* Note : use pskb_trim_rcsum() instead of calling this directly
2069 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2071 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2072 int delta = skb->len - len;
2074 skb->csum = csum_block_sub(skb->csum,
2075 skb_checksum(skb, len, delta, 0),
2077 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2078 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2079 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2081 if (offset + sizeof(__sum16) > hdlen)
2084 return __pskb_trim(skb, len);
2086 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2089 * __pskb_pull_tail - advance tail of skb header
2090 * @skb: buffer to reallocate
2091 * @delta: number of bytes to advance tail
2093 * The function makes a sense only on a fragmented &sk_buff,
2094 * it expands header moving its tail forward and copying necessary
2095 * data from fragmented part.
2097 * &sk_buff MUST have reference count of 1.
2099 * Returns %NULL (and &sk_buff does not change) if pull failed
2100 * or value of new tail of skb in the case of success.
2102 * All the pointers pointing into skb header may change and must be
2103 * reloaded after call to this function.
2106 /* Moves tail of skb head forward, copying data from fragmented part,
2107 * when it is necessary.
2108 * 1. It may fail due to malloc failure.
2109 * 2. It may change skb pointers.
2111 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2113 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2115 /* If skb has not enough free space at tail, get new one
2116 * plus 128 bytes for future expansions. If we have enough
2117 * room at tail, reallocate without expansion only if skb is cloned.
2119 int i, k, eat = (skb->tail + delta) - skb->end;
2121 if (eat > 0 || skb_cloned(skb)) {
2122 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2127 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2128 skb_tail_pointer(skb), delta));
2130 /* Optimization: no fragments, no reasons to preestimate
2131 * size of pulled pages. Superb.
2133 if (!skb_has_frag_list(skb))
2136 /* Estimate size of pulled pages. */
2138 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2139 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2146 /* If we need update frag list, we are in troubles.
2147 * Certainly, it is possible to add an offset to skb data,
2148 * but taking into account that pulling is expected to
2149 * be very rare operation, it is worth to fight against
2150 * further bloating skb head and crucify ourselves here instead.
2151 * Pure masohism, indeed. 8)8)
2154 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2155 struct sk_buff *clone = NULL;
2156 struct sk_buff *insp = NULL;
2159 if (list->len <= eat) {
2160 /* Eaten as whole. */
2165 /* Eaten partially. */
2167 if (skb_shared(list)) {
2168 /* Sucks! We need to fork list. :-( */
2169 clone = skb_clone(list, GFP_ATOMIC);
2175 /* This may be pulled without
2179 if (!pskb_pull(list, eat)) {
2187 /* Free pulled out fragments. */
2188 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2189 skb_shinfo(skb)->frag_list = list->next;
2192 /* And insert new clone at head. */
2195 skb_shinfo(skb)->frag_list = clone;
2198 /* Success! Now we may commit changes to skb data. */
2203 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2204 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2207 skb_frag_unref(skb, i);
2210 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2212 *frag = skb_shinfo(skb)->frags[i];
2214 skb_frag_off_add(frag, eat);
2215 skb_frag_size_sub(frag, eat);
2223 skb_shinfo(skb)->nr_frags = k;
2227 skb->data_len -= delta;
2230 skb_zcopy_clear(skb, false);
2232 return skb_tail_pointer(skb);
2234 EXPORT_SYMBOL(__pskb_pull_tail);
2237 * skb_copy_bits - copy bits from skb to kernel buffer
2239 * @offset: offset in source
2240 * @to: destination buffer
2241 * @len: number of bytes to copy
2243 * Copy the specified number of bytes from the source skb to the
2244 * destination buffer.
2247 * If its prototype is ever changed,
2248 * check arch/{*}/net/{*}.S files,
2249 * since it is called from BPF assembly code.
2251 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2253 int start = skb_headlen(skb);
2254 struct sk_buff *frag_iter;
2257 if (offset > (int)skb->len - len)
2261 if ((copy = start - offset) > 0) {
2264 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2265 if ((len -= copy) == 0)
2271 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2273 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2275 WARN_ON(start > offset + len);
2277 end = start + skb_frag_size(f);
2278 if ((copy = end - offset) > 0) {
2279 u32 p_off, p_len, copied;
2286 skb_frag_foreach_page(f,
2287 skb_frag_off(f) + offset - start,
2288 copy, p, p_off, p_len, copied) {
2289 vaddr = kmap_atomic(p);
2290 memcpy(to + copied, vaddr + p_off, p_len);
2291 kunmap_atomic(vaddr);
2294 if ((len -= copy) == 0)
2302 skb_walk_frags(skb, frag_iter) {
2305 WARN_ON(start > offset + len);
2307 end = start + frag_iter->len;
2308 if ((copy = end - offset) > 0) {
2311 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2313 if ((len -= copy) == 0)
2327 EXPORT_SYMBOL(skb_copy_bits);
2330 * Callback from splice_to_pipe(), if we need to release some pages
2331 * at the end of the spd in case we error'ed out in filling the pipe.
2333 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2335 put_page(spd->pages[i]);
2338 static struct page *linear_to_page(struct page *page, unsigned int *len,
2339 unsigned int *offset,
2342 struct page_frag *pfrag = sk_page_frag(sk);
2344 if (!sk_page_frag_refill(sk, pfrag))
2347 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2349 memcpy(page_address(pfrag->page) + pfrag->offset,
2350 page_address(page) + *offset, *len);
2351 *offset = pfrag->offset;
2352 pfrag->offset += *len;
2357 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2359 unsigned int offset)
2361 return spd->nr_pages &&
2362 spd->pages[spd->nr_pages - 1] == page &&
2363 (spd->partial[spd->nr_pages - 1].offset +
2364 spd->partial[spd->nr_pages - 1].len == offset);
2368 * Fill page/offset/length into spd, if it can hold more pages.
2370 static bool spd_fill_page(struct splice_pipe_desc *spd,
2371 struct pipe_inode_info *pipe, struct page *page,
2372 unsigned int *len, unsigned int offset,
2376 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2380 page = linear_to_page(page, len, &offset, sk);
2384 if (spd_can_coalesce(spd, page, offset)) {
2385 spd->partial[spd->nr_pages - 1].len += *len;
2389 spd->pages[spd->nr_pages] = page;
2390 spd->partial[spd->nr_pages].len = *len;
2391 spd->partial[spd->nr_pages].offset = offset;
2397 static bool __splice_segment(struct page *page, unsigned int poff,
2398 unsigned int plen, unsigned int *off,
2400 struct splice_pipe_desc *spd, bool linear,
2402 struct pipe_inode_info *pipe)
2407 /* skip this segment if already processed */
2413 /* ignore any bits we already processed */
2419 unsigned int flen = min(*len, plen);
2421 if (spd_fill_page(spd, pipe, page, &flen, poff,
2427 } while (*len && plen);
2433 * Map linear and fragment data from the skb to spd. It reports true if the
2434 * pipe is full or if we already spliced the requested length.
2436 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2437 unsigned int *offset, unsigned int *len,
2438 struct splice_pipe_desc *spd, struct sock *sk)
2441 struct sk_buff *iter;
2443 /* map the linear part :
2444 * If skb->head_frag is set, this 'linear' part is backed by a
2445 * fragment, and if the head is not shared with any clones then
2446 * we can avoid a copy since we own the head portion of this page.
2448 if (__splice_segment(virt_to_page(skb->data),
2449 (unsigned long) skb->data & (PAGE_SIZE - 1),
2452 skb_head_is_locked(skb),
2457 * then map the fragments
2459 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2460 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2462 if (__splice_segment(skb_frag_page(f),
2463 skb_frag_off(f), skb_frag_size(f),
2464 offset, len, spd, false, sk, pipe))
2468 skb_walk_frags(skb, iter) {
2469 if (*offset >= iter->len) {
2470 *offset -= iter->len;
2473 /* __skb_splice_bits() only fails if the output has no room
2474 * left, so no point in going over the frag_list for the error
2477 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2485 * Map data from the skb to a pipe. Should handle both the linear part,
2486 * the fragments, and the frag list.
2488 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2489 struct pipe_inode_info *pipe, unsigned int tlen,
2492 struct partial_page partial[MAX_SKB_FRAGS];
2493 struct page *pages[MAX_SKB_FRAGS];
2494 struct splice_pipe_desc spd = {
2497 .nr_pages_max = MAX_SKB_FRAGS,
2498 .ops = &nosteal_pipe_buf_ops,
2499 .spd_release = sock_spd_release,
2503 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2506 ret = splice_to_pipe(pipe, &spd);
2510 EXPORT_SYMBOL_GPL(skb_splice_bits);
2512 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2513 struct kvec *vec, size_t num, size_t size)
2515 struct socket *sock = sk->sk_socket;
2519 return kernel_sendmsg(sock, msg, vec, num, size);
2522 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2523 size_t size, int flags)
2525 struct socket *sock = sk->sk_socket;
2529 return kernel_sendpage(sock, page, offset, size, flags);
2532 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2533 struct kvec *vec, size_t num, size_t size);
2534 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2535 size_t size, int flags);
2536 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2537 int len, sendmsg_func sendmsg, sendpage_func sendpage)
2539 unsigned int orig_len = len;
2540 struct sk_buff *head = skb;
2541 unsigned short fragidx;
2546 /* Deal with head data */
2547 while (offset < skb_headlen(skb) && len) {
2551 slen = min_t(int, len, skb_headlen(skb) - offset);
2552 kv.iov_base = skb->data + offset;
2554 memset(&msg, 0, sizeof(msg));
2555 msg.msg_flags = MSG_DONTWAIT;
2557 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2558 sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2566 /* All the data was skb head? */
2570 /* Make offset relative to start of frags */
2571 offset -= skb_headlen(skb);
2573 /* Find where we are in frag list */
2574 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2575 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2577 if (offset < skb_frag_size(frag))
2580 offset -= skb_frag_size(frag);
2583 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2584 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2586 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2589 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2590 sendpage_unlocked, sk,
2591 skb_frag_page(frag),
2592 skb_frag_off(frag) + offset,
2593 slen, MSG_DONTWAIT);
2606 /* Process any frag lists */
2609 if (skb_has_frag_list(skb)) {
2610 skb = skb_shinfo(skb)->frag_list;
2613 } else if (skb->next) {
2620 return orig_len - len;
2623 return orig_len == len ? ret : orig_len - len;
2626 /* Send skb data on a socket. Socket must be locked. */
2627 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2630 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2631 kernel_sendpage_locked);
2633 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2635 /* Send skb data on a socket. Socket must be unlocked. */
2636 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2638 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2643 * skb_store_bits - store bits from kernel buffer to skb
2644 * @skb: destination buffer
2645 * @offset: offset in destination
2646 * @from: source buffer
2647 * @len: number of bytes to copy
2649 * Copy the specified number of bytes from the source buffer to the
2650 * destination skb. This function handles all the messy bits of
2651 * traversing fragment lists and such.
2654 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2656 int start = skb_headlen(skb);
2657 struct sk_buff *frag_iter;
2660 if (offset > (int)skb->len - len)
2663 if ((copy = start - offset) > 0) {
2666 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2667 if ((len -= copy) == 0)
2673 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2674 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2677 WARN_ON(start > offset + len);
2679 end = start + skb_frag_size(frag);
2680 if ((copy = end - offset) > 0) {
2681 u32 p_off, p_len, copied;
2688 skb_frag_foreach_page(frag,
2689 skb_frag_off(frag) + offset - start,
2690 copy, p, p_off, p_len, copied) {
2691 vaddr = kmap_atomic(p);
2692 memcpy(vaddr + p_off, from + copied, p_len);
2693 kunmap_atomic(vaddr);
2696 if ((len -= copy) == 0)
2704 skb_walk_frags(skb, frag_iter) {
2707 WARN_ON(start > offset + len);
2709 end = start + frag_iter->len;
2710 if ((copy = end - offset) > 0) {
2713 if (skb_store_bits(frag_iter, offset - start,
2716 if ((len -= copy) == 0)
2729 EXPORT_SYMBOL(skb_store_bits);
2731 /* Checksum skb data. */
2732 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2733 __wsum csum, const struct skb_checksum_ops *ops)
2735 int start = skb_headlen(skb);
2736 int i, copy = start - offset;
2737 struct sk_buff *frag_iter;
2740 /* Checksum header. */
2744 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2745 skb->data + offset, copy, csum);
2746 if ((len -= copy) == 0)
2752 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2754 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2756 WARN_ON(start > offset + len);
2758 end = start + skb_frag_size(frag);
2759 if ((copy = end - offset) > 0) {
2760 u32 p_off, p_len, copied;
2768 skb_frag_foreach_page(frag,
2769 skb_frag_off(frag) + offset - start,
2770 copy, p, p_off, p_len, copied) {
2771 vaddr = kmap_atomic(p);
2772 csum2 = INDIRECT_CALL_1(ops->update,
2774 vaddr + p_off, p_len, 0);
2775 kunmap_atomic(vaddr);
2776 csum = INDIRECT_CALL_1(ops->combine,
2777 csum_block_add_ext, csum,
2789 skb_walk_frags(skb, frag_iter) {
2792 WARN_ON(start > offset + len);
2794 end = start + frag_iter->len;
2795 if ((copy = end - offset) > 0) {
2799 csum2 = __skb_checksum(frag_iter, offset - start,
2801 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2802 csum, csum2, pos, copy);
2803 if ((len -= copy) == 0)
2814 EXPORT_SYMBOL(__skb_checksum);
2816 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2817 int len, __wsum csum)
2819 const struct skb_checksum_ops ops = {
2820 .update = csum_partial_ext,
2821 .combine = csum_block_add_ext,
2824 return __skb_checksum(skb, offset, len, csum, &ops);
2826 EXPORT_SYMBOL(skb_checksum);
2828 /* Both of above in one bottle. */
2830 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2833 int start = skb_headlen(skb);
2834 int i, copy = start - offset;
2835 struct sk_buff *frag_iter;
2843 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2845 if ((len -= copy) == 0)
2852 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2855 WARN_ON(start > offset + len);
2857 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2858 if ((copy = end - offset) > 0) {
2859 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2860 u32 p_off, p_len, copied;
2868 skb_frag_foreach_page(frag,
2869 skb_frag_off(frag) + offset - start,
2870 copy, p, p_off, p_len, copied) {
2871 vaddr = kmap_atomic(p);
2872 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2875 kunmap_atomic(vaddr);
2876 csum = csum_block_add(csum, csum2, pos);
2888 skb_walk_frags(skb, frag_iter) {
2892 WARN_ON(start > offset + len);
2894 end = start + frag_iter->len;
2895 if ((copy = end - offset) > 0) {
2898 csum2 = skb_copy_and_csum_bits(frag_iter,
2901 csum = csum_block_add(csum, csum2, pos);
2902 if ((len -= copy) == 0)
2913 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2915 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2919 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2920 /* See comments in __skb_checksum_complete(). */
2922 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2923 !skb->csum_complete_sw)
2924 netdev_rx_csum_fault(skb->dev, skb);
2926 if (!skb_shared(skb))
2927 skb->csum_valid = !sum;
2930 EXPORT_SYMBOL(__skb_checksum_complete_head);
2932 /* This function assumes skb->csum already holds pseudo header's checksum,
2933 * which has been changed from the hardware checksum, for example, by
2934 * __skb_checksum_validate_complete(). And, the original skb->csum must
2935 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2937 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2938 * zero. The new checksum is stored back into skb->csum unless the skb is
2941 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2946 csum = skb_checksum(skb, 0, skb->len, 0);
2948 sum = csum_fold(csum_add(skb->csum, csum));
2949 /* This check is inverted, because we already knew the hardware
2950 * checksum is invalid before calling this function. So, if the
2951 * re-computed checksum is valid instead, then we have a mismatch
2952 * between the original skb->csum and skb_checksum(). This means either
2953 * the original hardware checksum is incorrect or we screw up skb->csum
2954 * when moving skb->data around.
2957 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2958 !skb->csum_complete_sw)
2959 netdev_rx_csum_fault(skb->dev, skb);
2962 if (!skb_shared(skb)) {
2963 /* Save full packet checksum */
2965 skb->ip_summed = CHECKSUM_COMPLETE;
2966 skb->csum_complete_sw = 1;
2967 skb->csum_valid = !sum;
2972 EXPORT_SYMBOL(__skb_checksum_complete);
2974 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2976 net_warn_ratelimited(
2977 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2982 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2983 int offset, int len)
2985 net_warn_ratelimited(
2986 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2991 static const struct skb_checksum_ops default_crc32c_ops = {
2992 .update = warn_crc32c_csum_update,
2993 .combine = warn_crc32c_csum_combine,
2996 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2997 &default_crc32c_ops;
2998 EXPORT_SYMBOL(crc32c_csum_stub);
3001 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3002 * @from: source buffer
3004 * Calculates the amount of linear headroom needed in the 'to' skb passed
3005 * into skb_zerocopy().
3008 skb_zerocopy_headlen(const struct sk_buff *from)
3010 unsigned int hlen = 0;
3012 if (!from->head_frag ||
3013 skb_headlen(from) < L1_CACHE_BYTES ||
3014 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3015 hlen = skb_headlen(from);
3017 if (skb_has_frag_list(from))
3022 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3025 * skb_zerocopy - Zero copy skb to skb
3026 * @to: destination buffer
3027 * @from: source buffer
3028 * @len: number of bytes to copy from source buffer
3029 * @hlen: size of linear headroom in destination buffer
3031 * Copies up to `len` bytes from `from` to `to` by creating references
3032 * to the frags in the source buffer.
3034 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3035 * headroom in the `to` buffer.
3038 * 0: everything is OK
3039 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3040 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3043 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3046 int plen = 0; /* length of skb->head fragment */
3049 unsigned int offset;
3051 BUG_ON(!from->head_frag && !hlen);
3053 /* dont bother with small payloads */
3054 if (len <= skb_tailroom(to))
3055 return skb_copy_bits(from, 0, skb_put(to, len), len);
3058 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3063 plen = min_t(int, skb_headlen(from), len);
3065 page = virt_to_head_page(from->head);
3066 offset = from->data - (unsigned char *)page_address(page);
3067 __skb_fill_page_desc(to, 0, page, offset, plen);
3074 to->truesize += len + plen;
3075 to->len += len + plen;
3076 to->data_len += len + plen;
3078 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3082 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3084 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3089 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3090 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3092 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3094 skb_frag_ref(to, j);
3097 skb_shinfo(to)->nr_frags = j;
3101 EXPORT_SYMBOL_GPL(skb_zerocopy);
3103 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3108 if (skb->ip_summed == CHECKSUM_PARTIAL)
3109 csstart = skb_checksum_start_offset(skb);
3111 csstart = skb_headlen(skb);
3113 BUG_ON(csstart > skb_headlen(skb));
3115 skb_copy_from_linear_data(skb, to, csstart);
3118 if (csstart != skb->len)
3119 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3120 skb->len - csstart);
3122 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3123 long csstuff = csstart + skb->csum_offset;
3125 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3128 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3131 * skb_dequeue - remove from the head of the queue
3132 * @list: list to dequeue from
3134 * Remove the head of the list. The list lock is taken so the function
3135 * may be used safely with other locking list functions. The head item is
3136 * returned or %NULL if the list is empty.
3139 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3141 unsigned long flags;
3142 struct sk_buff *result;
3144 spin_lock_irqsave(&list->lock, flags);
3145 result = __skb_dequeue(list);
3146 spin_unlock_irqrestore(&list->lock, flags);
3149 EXPORT_SYMBOL(skb_dequeue);
3152 * skb_dequeue_tail - remove from the tail of the queue
3153 * @list: list to dequeue from
3155 * Remove the tail of the list. The list lock is taken so the function
3156 * may be used safely with other locking list functions. The tail item is
3157 * returned or %NULL if the list is empty.
3159 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3161 unsigned long flags;
3162 struct sk_buff *result;
3164 spin_lock_irqsave(&list->lock, flags);
3165 result = __skb_dequeue_tail(list);
3166 spin_unlock_irqrestore(&list->lock, flags);
3169 EXPORT_SYMBOL(skb_dequeue_tail);
3172 * skb_queue_purge - empty a list
3173 * @list: list to empty
3175 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3176 * the list and one reference dropped. This function takes the list
3177 * lock and is atomic with respect to other list locking functions.
3179 void skb_queue_purge(struct sk_buff_head *list)
3181 struct sk_buff *skb;
3182 while ((skb = skb_dequeue(list)) != NULL)
3185 EXPORT_SYMBOL(skb_queue_purge);
3188 * skb_rbtree_purge - empty a skb rbtree
3189 * @root: root of the rbtree to empty
3190 * Return value: the sum of truesizes of all purged skbs.
3192 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3193 * the list and one reference dropped. This function does not take
3194 * any lock. Synchronization should be handled by the caller (e.g., TCP
3195 * out-of-order queue is protected by the socket lock).
3197 unsigned int skb_rbtree_purge(struct rb_root *root)
3199 struct rb_node *p = rb_first(root);
3200 unsigned int sum = 0;
3203 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3206 rb_erase(&skb->rbnode, root);
3207 sum += skb->truesize;
3214 * skb_queue_head - queue a buffer at the list head
3215 * @list: list to use
3216 * @newsk: buffer to queue
3218 * Queue a buffer at the start of the list. This function takes the
3219 * list lock and can be used safely with other locking &sk_buff functions
3222 * A buffer cannot be placed on two lists at the same time.
3224 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3226 unsigned long flags;
3228 spin_lock_irqsave(&list->lock, flags);
3229 __skb_queue_head(list, newsk);
3230 spin_unlock_irqrestore(&list->lock, flags);
3232 EXPORT_SYMBOL(skb_queue_head);
3235 * skb_queue_tail - queue a buffer at the list tail
3236 * @list: list to use
3237 * @newsk: buffer to queue
3239 * Queue a buffer at the tail of the list. This function takes the
3240 * list lock and can be used safely with other locking &sk_buff functions
3243 * A buffer cannot be placed on two lists at the same time.
3245 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3247 unsigned long flags;
3249 spin_lock_irqsave(&list->lock, flags);
3250 __skb_queue_tail(list, newsk);
3251 spin_unlock_irqrestore(&list->lock, flags);
3253 EXPORT_SYMBOL(skb_queue_tail);
3256 * skb_unlink - remove a buffer from a list
3257 * @skb: buffer to remove
3258 * @list: list to use
3260 * Remove a packet from a list. The list locks are taken and this
3261 * function is atomic with respect to other list locked calls
3263 * You must know what list the SKB is on.
3265 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3267 unsigned long flags;
3269 spin_lock_irqsave(&list->lock, flags);
3270 __skb_unlink(skb, list);
3271 spin_unlock_irqrestore(&list->lock, flags);
3273 EXPORT_SYMBOL(skb_unlink);
3276 * skb_append - append a buffer
3277 * @old: buffer to insert after
3278 * @newsk: buffer to insert
3279 * @list: list to use
3281 * Place a packet after a given packet in a list. The list locks are taken
3282 * and this function is atomic with respect to other list locked calls.
3283 * A buffer cannot be placed on two lists at the same time.
3285 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3287 unsigned long flags;
3289 spin_lock_irqsave(&list->lock, flags);
3290 __skb_queue_after(list, old, newsk);
3291 spin_unlock_irqrestore(&list->lock, flags);
3293 EXPORT_SYMBOL(skb_append);
3295 static inline void skb_split_inside_header(struct sk_buff *skb,
3296 struct sk_buff* skb1,
3297 const u32 len, const int pos)
3301 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3303 /* And move data appendix as is. */
3304 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3305 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3307 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3308 skb_shinfo(skb)->nr_frags = 0;
3309 skb1->data_len = skb->data_len;
3310 skb1->len += skb1->data_len;
3313 skb_set_tail_pointer(skb, len);
3316 static inline void skb_split_no_header(struct sk_buff *skb,
3317 struct sk_buff* skb1,
3318 const u32 len, int pos)
3321 const int nfrags = skb_shinfo(skb)->nr_frags;
3323 skb_shinfo(skb)->nr_frags = 0;
3324 skb1->len = skb1->data_len = skb->len - len;
3326 skb->data_len = len - pos;
3328 for (i = 0; i < nfrags; i++) {
3329 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3331 if (pos + size > len) {
3332 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3336 * We have two variants in this case:
3337 * 1. Move all the frag to the second
3338 * part, if it is possible. F.e.
3339 * this approach is mandatory for TUX,
3340 * where splitting is expensive.
3341 * 2. Split is accurately. We make this.
3343 skb_frag_ref(skb, i);
3344 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3345 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3346 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3347 skb_shinfo(skb)->nr_frags++;
3351 skb_shinfo(skb)->nr_frags++;
3354 skb_shinfo(skb1)->nr_frags = k;
3358 * skb_split - Split fragmented skb to two parts at length len.
3359 * @skb: the buffer to split
3360 * @skb1: the buffer to receive the second part
3361 * @len: new length for skb
3363 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3365 int pos = skb_headlen(skb);
3367 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3368 skb_zerocopy_clone(skb1, skb, 0);
3369 if (len < pos) /* Split line is inside header. */
3370 skb_split_inside_header(skb, skb1, len, pos);
3371 else /* Second chunk has no header, nothing to copy. */
3372 skb_split_no_header(skb, skb1, len, pos);
3374 EXPORT_SYMBOL(skb_split);
3376 /* Shifting from/to a cloned skb is a no-go.
3378 * Caller cannot keep skb_shinfo related pointers past calling here!
3380 static int skb_prepare_for_shift(struct sk_buff *skb)
3384 if (skb_cloned(skb)) {
3385 /* Save and restore truesize: pskb_expand_head() may reallocate
3386 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we
3387 * cannot change truesize at this point.
3389 unsigned int save_truesize = skb->truesize;
3391 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3392 skb->truesize = save_truesize;
3398 * skb_shift - Shifts paged data partially from skb to another
3399 * @tgt: buffer into which tail data gets added
3400 * @skb: buffer from which the paged data comes from
3401 * @shiftlen: shift up to this many bytes
3403 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3404 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3405 * It's up to caller to free skb if everything was shifted.
3407 * If @tgt runs out of frags, the whole operation is aborted.
3409 * Skb cannot include anything else but paged data while tgt is allowed
3410 * to have non-paged data as well.
3412 * TODO: full sized shift could be optimized but that would need
3413 * specialized skb free'er to handle frags without up-to-date nr_frags.
3415 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3417 int from, to, merge, todo;
3418 skb_frag_t *fragfrom, *fragto;
3420 BUG_ON(shiftlen > skb->len);
3422 if (skb_headlen(skb))
3424 if (skb_zcopy(tgt) || skb_zcopy(skb))
3429 to = skb_shinfo(tgt)->nr_frags;
3430 fragfrom = &skb_shinfo(skb)->frags[from];
3432 /* Actual merge is delayed until the point when we know we can
3433 * commit all, so that we don't have to undo partial changes
3436 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3437 skb_frag_off(fragfrom))) {
3442 todo -= skb_frag_size(fragfrom);
3444 if (skb_prepare_for_shift(skb) ||
3445 skb_prepare_for_shift(tgt))
3448 /* All previous frag pointers might be stale! */
3449 fragfrom = &skb_shinfo(skb)->frags[from];
3450 fragto = &skb_shinfo(tgt)->frags[merge];
3452 skb_frag_size_add(fragto, shiftlen);
3453 skb_frag_size_sub(fragfrom, shiftlen);
3454 skb_frag_off_add(fragfrom, shiftlen);
3462 /* Skip full, not-fitting skb to avoid expensive operations */
3463 if ((shiftlen == skb->len) &&
3464 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3467 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3470 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3471 if (to == MAX_SKB_FRAGS)
3474 fragfrom = &skb_shinfo(skb)->frags[from];
3475 fragto = &skb_shinfo(tgt)->frags[to];
3477 if (todo >= skb_frag_size(fragfrom)) {
3478 *fragto = *fragfrom;
3479 todo -= skb_frag_size(fragfrom);
3484 __skb_frag_ref(fragfrom);
3485 skb_frag_page_copy(fragto, fragfrom);
3486 skb_frag_off_copy(fragto, fragfrom);
3487 skb_frag_size_set(fragto, todo);
3489 skb_frag_off_add(fragfrom, todo);
3490 skb_frag_size_sub(fragfrom, todo);
3498 /* Ready to "commit" this state change to tgt */
3499 skb_shinfo(tgt)->nr_frags = to;
3502 fragfrom = &skb_shinfo(skb)->frags[0];
3503 fragto = &skb_shinfo(tgt)->frags[merge];
3505 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3506 __skb_frag_unref(fragfrom, skb->pp_recycle);
3509 /* Reposition in the original skb */
3511 while (from < skb_shinfo(skb)->nr_frags)
3512 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3513 skb_shinfo(skb)->nr_frags = to;
3515 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3518 /* Most likely the tgt won't ever need its checksum anymore, skb on
3519 * the other hand might need it if it needs to be resent
3521 tgt->ip_summed = CHECKSUM_PARTIAL;
3522 skb->ip_summed = CHECKSUM_PARTIAL;
3524 /* Yak, is it really working this way? Some helper please? */
3525 skb->len -= shiftlen;
3526 skb->data_len -= shiftlen;
3527 skb->truesize -= shiftlen;
3528 tgt->len += shiftlen;
3529 tgt->data_len += shiftlen;
3530 tgt->truesize += shiftlen;
3536 * skb_prepare_seq_read - Prepare a sequential read of skb data
3537 * @skb: the buffer to read
3538 * @from: lower offset of data to be read
3539 * @to: upper offset of data to be read
3540 * @st: state variable
3542 * Initializes the specified state variable. Must be called before
3543 * invoking skb_seq_read() for the first time.
3545 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3546 unsigned int to, struct skb_seq_state *st)
3548 st->lower_offset = from;
3549 st->upper_offset = to;
3550 st->root_skb = st->cur_skb = skb;
3551 st->frag_idx = st->stepped_offset = 0;
3552 st->frag_data = NULL;
3555 EXPORT_SYMBOL(skb_prepare_seq_read);
3558 * skb_seq_read - Sequentially read skb data
3559 * @consumed: number of bytes consumed by the caller so far
3560 * @data: destination pointer for data to be returned
3561 * @st: state variable
3563 * Reads a block of skb data at @consumed relative to the
3564 * lower offset specified to skb_prepare_seq_read(). Assigns
3565 * the head of the data block to @data and returns the length
3566 * of the block or 0 if the end of the skb data or the upper
3567 * offset has been reached.
3569 * The caller is not required to consume all of the data
3570 * returned, i.e. @consumed is typically set to the number
3571 * of bytes already consumed and the next call to
3572 * skb_seq_read() will return the remaining part of the block.
3574 * Note 1: The size of each block of data returned can be arbitrary,
3575 * this limitation is the cost for zerocopy sequential
3576 * reads of potentially non linear data.
3578 * Note 2: Fragment lists within fragments are not implemented
3579 * at the moment, state->root_skb could be replaced with
3580 * a stack for this purpose.
3582 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3583 struct skb_seq_state *st)
3585 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3588 if (unlikely(abs_offset >= st->upper_offset)) {
3589 if (st->frag_data) {
3590 kunmap_atomic(st->frag_data);
3591 st->frag_data = NULL;
3597 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3599 if (abs_offset < block_limit && !st->frag_data) {
3600 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3601 return block_limit - abs_offset;
3604 if (st->frag_idx == 0 && !st->frag_data)
3605 st->stepped_offset += skb_headlen(st->cur_skb);
3607 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3608 unsigned int pg_idx, pg_off, pg_sz;
3610 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3613 pg_off = skb_frag_off(frag);
3614 pg_sz = skb_frag_size(frag);
3616 if (skb_frag_must_loop(skb_frag_page(frag))) {
3617 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3618 pg_off = offset_in_page(pg_off + st->frag_off);
3619 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3620 PAGE_SIZE - pg_off);
3623 block_limit = pg_sz + st->stepped_offset;
3624 if (abs_offset < block_limit) {
3626 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3628 *data = (u8 *)st->frag_data + pg_off +
3629 (abs_offset - st->stepped_offset);
3631 return block_limit - abs_offset;
3634 if (st->frag_data) {
3635 kunmap_atomic(st->frag_data);
3636 st->frag_data = NULL;
3639 st->stepped_offset += pg_sz;
3640 st->frag_off += pg_sz;
3641 if (st->frag_off == skb_frag_size(frag)) {
3647 if (st->frag_data) {
3648 kunmap_atomic(st->frag_data);
3649 st->frag_data = NULL;
3652 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3653 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3656 } else if (st->cur_skb->next) {
3657 st->cur_skb = st->cur_skb->next;
3664 EXPORT_SYMBOL(skb_seq_read);
3667 * skb_abort_seq_read - Abort a sequential read of skb data
3668 * @st: state variable
3670 * Must be called if skb_seq_read() was not called until it
3673 void skb_abort_seq_read(struct skb_seq_state *st)
3676 kunmap_atomic(st->frag_data);
3678 EXPORT_SYMBOL(skb_abort_seq_read);
3680 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3682 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3683 struct ts_config *conf,
3684 struct ts_state *state)
3686 return skb_seq_read(offset, text, TS_SKB_CB(state));
3689 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3691 skb_abort_seq_read(TS_SKB_CB(state));
3695 * skb_find_text - Find a text pattern in skb data
3696 * @skb: the buffer to look in
3697 * @from: search offset
3699 * @config: textsearch configuration
3701 * Finds a pattern in the skb data according to the specified
3702 * textsearch configuration. Use textsearch_next() to retrieve
3703 * subsequent occurrences of the pattern. Returns the offset
3704 * to the first occurrence or UINT_MAX if no match was found.
3706 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3707 unsigned int to, struct ts_config *config)
3709 struct ts_state state;
3712 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3714 config->get_next_block = skb_ts_get_next_block;
3715 config->finish = skb_ts_finish;
3717 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3719 ret = textsearch_find(config, &state);
3720 return (ret <= to - from ? ret : UINT_MAX);
3722 EXPORT_SYMBOL(skb_find_text);
3724 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3725 int offset, size_t size)
3727 int i = skb_shinfo(skb)->nr_frags;
3729 if (skb_can_coalesce(skb, i, page, offset)) {
3730 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3731 } else if (i < MAX_SKB_FRAGS) {
3733 skb_fill_page_desc(skb, i, page, offset, size);
3740 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3743 * skb_pull_rcsum - pull skb and update receive checksum
3744 * @skb: buffer to update
3745 * @len: length of data pulled
3747 * This function performs an skb_pull on the packet and updates
3748 * the CHECKSUM_COMPLETE checksum. It should be used on
3749 * receive path processing instead of skb_pull unless you know
3750 * that the checksum difference is zero (e.g., a valid IP header)
3751 * or you are setting ip_summed to CHECKSUM_NONE.
3753 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3755 unsigned char *data = skb->data;
3757 BUG_ON(len > skb->len);
3758 __skb_pull(skb, len);
3759 skb_postpull_rcsum(skb, data, len);
3762 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3764 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3766 skb_frag_t head_frag;
3769 page = virt_to_head_page(frag_skb->head);
3770 __skb_frag_set_page(&head_frag, page);
3771 skb_frag_off_set(&head_frag, frag_skb->data -
3772 (unsigned char *)page_address(page));
3773 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3777 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3778 netdev_features_t features,
3779 unsigned int offset)
3781 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3782 unsigned int tnl_hlen = skb_tnl_header_len(skb);
3783 unsigned int delta_truesize = 0;
3784 unsigned int delta_len = 0;
3785 struct sk_buff *tail = NULL;
3786 struct sk_buff *nskb, *tmp;
3789 skb_push(skb, -skb_network_offset(skb) + offset);
3791 skb_shinfo(skb)->frag_list = NULL;
3795 list_skb = list_skb->next;
3798 if (skb_shared(nskb)) {
3799 tmp = skb_clone(nskb, GFP_ATOMIC);
3803 err = skb_unclone(nskb, GFP_ATOMIC);
3814 if (unlikely(err)) {
3815 nskb->next = list_skb;
3821 delta_len += nskb->len;
3822 delta_truesize += nskb->truesize;
3824 skb_push(nskb, -skb_network_offset(nskb) + offset);
3826 skb_release_head_state(nskb);
3827 __copy_skb_header(nskb, skb);
3829 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3830 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3831 nskb->data - tnl_hlen,
3834 if (skb_needs_linearize(nskb, features) &&
3835 __skb_linearize(nskb))
3840 skb->truesize = skb->truesize - delta_truesize;
3841 skb->data_len = skb->data_len - delta_len;
3842 skb->len = skb->len - delta_len;
3848 if (skb_needs_linearize(skb, features) &&
3849 __skb_linearize(skb))
3857 kfree_skb_list(skb->next);
3859 return ERR_PTR(-ENOMEM);
3861 EXPORT_SYMBOL_GPL(skb_segment_list);
3863 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3865 if (unlikely(p->len + skb->len >= 65536))
3868 if (NAPI_GRO_CB(p)->last == p)
3869 skb_shinfo(p)->frag_list = skb;
3871 NAPI_GRO_CB(p)->last->next = skb;
3873 skb_pull(skb, skb_gro_offset(skb));
3875 NAPI_GRO_CB(p)->last = skb;
3876 NAPI_GRO_CB(p)->count++;
3877 p->data_len += skb->len;
3878 p->truesize += skb->truesize;
3881 NAPI_GRO_CB(skb)->same_flow = 1;
3887 * skb_segment - Perform protocol segmentation on skb.
3888 * @head_skb: buffer to segment
3889 * @features: features for the output path (see dev->features)
3891 * This function performs segmentation on the given skb. It returns
3892 * a pointer to the first in a list of new skbs for the segments.
3893 * In case of error it returns ERR_PTR(err).
3895 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3896 netdev_features_t features)
3898 struct sk_buff *segs = NULL;
3899 struct sk_buff *tail = NULL;
3900 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3901 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3902 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3903 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3904 struct sk_buff *frag_skb = head_skb;
3905 unsigned int offset = doffset;
3906 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3907 unsigned int partial_segs = 0;
3908 unsigned int headroom;
3909 unsigned int len = head_skb->len;
3912 int nfrags = skb_shinfo(head_skb)->nr_frags;
3917 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3918 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3919 /* gso_size is untrusted, and we have a frag_list with a linear
3920 * non head_frag head.
3922 * (we assume checking the first list_skb member suffices;
3923 * i.e if either of the list_skb members have non head_frag
3924 * head, then the first one has too).
3926 * If head_skb's headlen does not fit requested gso_size, it
3927 * means that the frag_list members do NOT terminate on exact
3928 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3929 * sharing. Therefore we must fallback to copying the frag_list
3930 * skbs; we do so by disabling SG.
3932 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3933 features &= ~NETIF_F_SG;
3936 __skb_push(head_skb, doffset);
3937 proto = skb_network_protocol(head_skb, NULL);
3938 if (unlikely(!proto))
3939 return ERR_PTR(-EINVAL);
3941 sg = !!(features & NETIF_F_SG);
3942 csum = !!can_checksum_protocol(features, proto);
3944 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3945 if (!(features & NETIF_F_GSO_PARTIAL)) {
3946 struct sk_buff *iter;
3947 unsigned int frag_len;
3950 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3953 /* If we get here then all the required
3954 * GSO features except frag_list are supported.
3955 * Try to split the SKB to multiple GSO SKBs
3956 * with no frag_list.
3957 * Currently we can do that only when the buffers don't
3958 * have a linear part and all the buffers except
3959 * the last are of the same length.
3961 frag_len = list_skb->len;
3962 skb_walk_frags(head_skb, iter) {
3963 if (frag_len != iter->len && iter->next)
3965 if (skb_headlen(iter) && !iter->head_frag)
3971 if (len != frag_len)
3975 /* GSO partial only requires that we trim off any excess that
3976 * doesn't fit into an MSS sized block, so take care of that
3979 partial_segs = len / mss;
3980 if (partial_segs > 1)
3981 mss *= partial_segs;
3987 headroom = skb_headroom(head_skb);
3988 pos = skb_headlen(head_skb);
3991 struct sk_buff *nskb;
3992 skb_frag_t *nskb_frag;
3996 if (unlikely(mss == GSO_BY_FRAGS)) {
3997 len = list_skb->len;
3999 len = head_skb->len - offset;
4004 hsize = skb_headlen(head_skb) - offset;
4006 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4007 (skb_headlen(list_skb) == len || sg)) {
4008 BUG_ON(skb_headlen(list_skb) > len);
4011 nfrags = skb_shinfo(list_skb)->nr_frags;
4012 frag = skb_shinfo(list_skb)->frags;
4013 frag_skb = list_skb;
4014 pos += skb_headlen(list_skb);
4016 while (pos < offset + len) {
4017 BUG_ON(i >= nfrags);
4019 size = skb_frag_size(frag);
4020 if (pos + size > offset + len)
4028 nskb = skb_clone(list_skb, GFP_ATOMIC);
4029 list_skb = list_skb->next;
4031 if (unlikely(!nskb))
4034 if (unlikely(pskb_trim(nskb, len))) {
4039 hsize = skb_end_offset(nskb);
4040 if (skb_cow_head(nskb, doffset + headroom)) {
4045 nskb->truesize += skb_end_offset(nskb) - hsize;
4046 skb_release_head_state(nskb);
4047 __skb_push(nskb, doffset);
4051 if (hsize > len || !sg)
4054 nskb = __alloc_skb(hsize + doffset + headroom,
4055 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4058 if (unlikely(!nskb))
4061 skb_reserve(nskb, headroom);
4062 __skb_put(nskb, doffset);
4071 __copy_skb_header(nskb, head_skb);
4073 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4074 skb_reset_mac_len(nskb);
4076 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4077 nskb->data - tnl_hlen,
4078 doffset + tnl_hlen);
4080 if (nskb->len == len + doffset)
4081 goto perform_csum_check;
4085 if (!nskb->remcsum_offload)
4086 nskb->ip_summed = CHECKSUM_NONE;
4087 SKB_GSO_CB(nskb)->csum =
4088 skb_copy_and_csum_bits(head_skb, offset,
4092 SKB_GSO_CB(nskb)->csum_start =
4093 skb_headroom(nskb) + doffset;
4095 skb_copy_bits(head_skb, offset,
4102 nskb_frag = skb_shinfo(nskb)->frags;
4104 skb_copy_from_linear_data_offset(head_skb, offset,
4105 skb_put(nskb, hsize), hsize);
4107 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4110 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4111 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4114 while (pos < offset + len) {
4117 nfrags = skb_shinfo(list_skb)->nr_frags;
4118 frag = skb_shinfo(list_skb)->frags;
4119 frag_skb = list_skb;
4120 if (!skb_headlen(list_skb)) {
4123 BUG_ON(!list_skb->head_frag);
4125 /* to make room for head_frag. */
4129 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4130 skb_zerocopy_clone(nskb, frag_skb,
4134 list_skb = list_skb->next;
4137 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4139 net_warn_ratelimited(
4140 "skb_segment: too many frags: %u %u\n",
4146 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4147 __skb_frag_ref(nskb_frag);
4148 size = skb_frag_size(nskb_frag);
4151 skb_frag_off_add(nskb_frag, offset - pos);
4152 skb_frag_size_sub(nskb_frag, offset - pos);
4155 skb_shinfo(nskb)->nr_frags++;
4157 if (pos + size <= offset + len) {
4162 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4170 nskb->data_len = len - hsize;
4171 nskb->len += nskb->data_len;
4172 nskb->truesize += nskb->data_len;
4176 if (skb_has_shared_frag(nskb) &&
4177 __skb_linearize(nskb))
4180 if (!nskb->remcsum_offload)
4181 nskb->ip_summed = CHECKSUM_NONE;
4182 SKB_GSO_CB(nskb)->csum =
4183 skb_checksum(nskb, doffset,
4184 nskb->len - doffset, 0);
4185 SKB_GSO_CB(nskb)->csum_start =
4186 skb_headroom(nskb) + doffset;
4188 } while ((offset += len) < head_skb->len);
4190 /* Some callers want to get the end of the list.
4191 * Put it in segs->prev to avoid walking the list.
4192 * (see validate_xmit_skb_list() for example)
4197 struct sk_buff *iter;
4198 int type = skb_shinfo(head_skb)->gso_type;
4199 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4201 /* Update type to add partial and then remove dodgy if set */
4202 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4203 type &= ~SKB_GSO_DODGY;
4205 /* Update GSO info and prepare to start updating headers on
4206 * our way back down the stack of protocols.
4208 for (iter = segs; iter; iter = iter->next) {
4209 skb_shinfo(iter)->gso_size = gso_size;
4210 skb_shinfo(iter)->gso_segs = partial_segs;
4211 skb_shinfo(iter)->gso_type = type;
4212 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4215 if (tail->len - doffset <= gso_size)
4216 skb_shinfo(tail)->gso_size = 0;
4217 else if (tail != segs)
4218 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4221 /* Following permits correct backpressure, for protocols
4222 * using skb_set_owner_w().
4223 * Idea is to tranfert ownership from head_skb to last segment.
4225 if (head_skb->destructor == sock_wfree) {
4226 swap(tail->truesize, head_skb->truesize);
4227 swap(tail->destructor, head_skb->destructor);
4228 swap(tail->sk, head_skb->sk);
4233 kfree_skb_list(segs);
4234 return ERR_PTR(err);
4236 EXPORT_SYMBOL_GPL(skb_segment);
4238 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4240 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4241 unsigned int offset = skb_gro_offset(skb);
4242 unsigned int headlen = skb_headlen(skb);
4243 unsigned int len = skb_gro_len(skb);
4244 unsigned int delta_truesize;
4247 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4250 lp = NAPI_GRO_CB(p)->last;
4251 pinfo = skb_shinfo(lp);
4253 if (headlen <= offset) {
4256 int i = skbinfo->nr_frags;
4257 int nr_frags = pinfo->nr_frags + i;
4259 if (nr_frags > MAX_SKB_FRAGS)
4263 pinfo->nr_frags = nr_frags;
4264 skbinfo->nr_frags = 0;
4266 frag = pinfo->frags + nr_frags;
4267 frag2 = skbinfo->frags + i;
4272 skb_frag_off_add(frag, offset);
4273 skb_frag_size_sub(frag, offset);
4275 /* all fragments truesize : remove (head size + sk_buff) */
4276 delta_truesize = skb->truesize -
4277 SKB_TRUESIZE(skb_end_offset(skb));
4279 skb->truesize -= skb->data_len;
4280 skb->len -= skb->data_len;
4283 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4285 } else if (skb->head_frag) {
4286 int nr_frags = pinfo->nr_frags;
4287 skb_frag_t *frag = pinfo->frags + nr_frags;
4288 struct page *page = virt_to_head_page(skb->head);
4289 unsigned int first_size = headlen - offset;
4290 unsigned int first_offset;
4292 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4295 first_offset = skb->data -
4296 (unsigned char *)page_address(page) +
4299 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4301 __skb_frag_set_page(frag, page);
4302 skb_frag_off_set(frag, first_offset);
4303 skb_frag_size_set(frag, first_size);
4305 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4306 /* We dont need to clear skbinfo->nr_frags here */
4308 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4309 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4314 delta_truesize = skb->truesize;
4315 if (offset > headlen) {
4316 unsigned int eat = offset - headlen;
4318 skb_frag_off_add(&skbinfo->frags[0], eat);
4319 skb_frag_size_sub(&skbinfo->frags[0], eat);
4320 skb->data_len -= eat;
4325 __skb_pull(skb, offset);
4327 if (NAPI_GRO_CB(p)->last == p)
4328 skb_shinfo(p)->frag_list = skb;
4330 NAPI_GRO_CB(p)->last->next = skb;
4331 NAPI_GRO_CB(p)->last = skb;
4332 __skb_header_release(skb);
4336 NAPI_GRO_CB(p)->count++;
4338 p->truesize += delta_truesize;
4341 lp->data_len += len;
4342 lp->truesize += delta_truesize;
4345 NAPI_GRO_CB(skb)->same_flow = 1;
4349 #ifdef CONFIG_SKB_EXTENSIONS
4350 #define SKB_EXT_ALIGN_VALUE 8
4351 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4353 static const u8 skb_ext_type_len[] = {
4354 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4355 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4358 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4360 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4361 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4363 #if IS_ENABLED(CONFIG_MPTCP)
4364 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4368 static __always_inline unsigned int skb_ext_total_length(void)
4370 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4371 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4372 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4375 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4377 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4378 skb_ext_type_len[TC_SKB_EXT] +
4380 #if IS_ENABLED(CONFIG_MPTCP)
4381 skb_ext_type_len[SKB_EXT_MPTCP] +
4386 static void skb_extensions_init(void)
4388 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4389 BUILD_BUG_ON(skb_ext_total_length() > 255);
4391 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4392 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4394 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4398 static void skb_extensions_init(void) {}
4401 void __init skb_init(void)
4403 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4404 sizeof(struct sk_buff),
4406 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4407 offsetof(struct sk_buff, cb),
4408 sizeof_field(struct sk_buff, cb),
4410 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4411 sizeof(struct sk_buff_fclones),
4413 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4415 skb_extensions_init();
4419 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4420 unsigned int recursion_level)
4422 int start = skb_headlen(skb);
4423 int i, copy = start - offset;
4424 struct sk_buff *frag_iter;
4427 if (unlikely(recursion_level >= 24))
4433 sg_set_buf(sg, skb->data + offset, copy);
4435 if ((len -= copy) == 0)
4440 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4443 WARN_ON(start > offset + len);
4445 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4446 if ((copy = end - offset) > 0) {
4447 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4448 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4453 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4454 skb_frag_off(frag) + offset - start);
4463 skb_walk_frags(skb, frag_iter) {
4466 WARN_ON(start > offset + len);
4468 end = start + frag_iter->len;
4469 if ((copy = end - offset) > 0) {
4470 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4475 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4476 copy, recursion_level + 1);
4477 if (unlikely(ret < 0))
4480 if ((len -= copy) == 0)
4491 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4492 * @skb: Socket buffer containing the buffers to be mapped
4493 * @sg: The scatter-gather list to map into
4494 * @offset: The offset into the buffer's contents to start mapping
4495 * @len: Length of buffer space to be mapped
4497 * Fill the specified scatter-gather list with mappings/pointers into a
4498 * region of the buffer space attached to a socket buffer. Returns either
4499 * the number of scatterlist items used, or -EMSGSIZE if the contents
4502 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4504 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4509 sg_mark_end(&sg[nsg - 1]);
4513 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4515 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4516 * sglist without mark the sg which contain last skb data as the end.
4517 * So the caller can mannipulate sg list as will when padding new data after
4518 * the first call without calling sg_unmark_end to expend sg list.
4520 * Scenario to use skb_to_sgvec_nomark:
4522 * 2. skb_to_sgvec_nomark(payload1)
4523 * 3. skb_to_sgvec_nomark(payload2)
4525 * This is equivalent to:
4527 * 2. skb_to_sgvec(payload1)
4529 * 4. skb_to_sgvec(payload2)
4531 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4532 * is more preferable.
4534 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4535 int offset, int len)
4537 return __skb_to_sgvec(skb, sg, offset, len, 0);
4539 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4544 * skb_cow_data - Check that a socket buffer's data buffers are writable
4545 * @skb: The socket buffer to check.
4546 * @tailbits: Amount of trailing space to be added
4547 * @trailer: Returned pointer to the skb where the @tailbits space begins
4549 * Make sure that the data buffers attached to a socket buffer are
4550 * writable. If they are not, private copies are made of the data buffers
4551 * and the socket buffer is set to use these instead.
4553 * If @tailbits is given, make sure that there is space to write @tailbits
4554 * bytes of data beyond current end of socket buffer. @trailer will be
4555 * set to point to the skb in which this space begins.
4557 * The number of scatterlist elements required to completely map the
4558 * COW'd and extended socket buffer will be returned.
4560 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4564 struct sk_buff *skb1, **skb_p;
4566 /* If skb is cloned or its head is paged, reallocate
4567 * head pulling out all the pages (pages are considered not writable
4568 * at the moment even if they are anonymous).
4570 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4571 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4574 /* Easy case. Most of packets will go this way. */
4575 if (!skb_has_frag_list(skb)) {
4576 /* A little of trouble, not enough of space for trailer.
4577 * This should not happen, when stack is tuned to generate
4578 * good frames. OK, on miss we reallocate and reserve even more
4579 * space, 128 bytes is fair. */
4581 if (skb_tailroom(skb) < tailbits &&
4582 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4590 /* Misery. We are in troubles, going to mincer fragments... */
4593 skb_p = &skb_shinfo(skb)->frag_list;
4596 while ((skb1 = *skb_p) != NULL) {
4599 /* The fragment is partially pulled by someone,
4600 * this can happen on input. Copy it and everything
4603 if (skb_shared(skb1))
4606 /* If the skb is the last, worry about trailer. */
4608 if (skb1->next == NULL && tailbits) {
4609 if (skb_shinfo(skb1)->nr_frags ||
4610 skb_has_frag_list(skb1) ||
4611 skb_tailroom(skb1) < tailbits)
4612 ntail = tailbits + 128;
4618 skb_shinfo(skb1)->nr_frags ||
4619 skb_has_frag_list(skb1)) {
4620 struct sk_buff *skb2;
4622 /* Fuck, we are miserable poor guys... */
4624 skb2 = skb_copy(skb1, GFP_ATOMIC);
4626 skb2 = skb_copy_expand(skb1,
4630 if (unlikely(skb2 == NULL))
4634 skb_set_owner_w(skb2, skb1->sk);
4636 /* Looking around. Are we still alive?
4637 * OK, link new skb, drop old one */
4639 skb2->next = skb1->next;
4646 skb_p = &skb1->next;
4651 EXPORT_SYMBOL_GPL(skb_cow_data);
4653 static void sock_rmem_free(struct sk_buff *skb)
4655 struct sock *sk = skb->sk;
4657 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4660 static void skb_set_err_queue(struct sk_buff *skb)
4662 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4663 * So, it is safe to (mis)use it to mark skbs on the error queue.
4665 skb->pkt_type = PACKET_OUTGOING;
4666 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4670 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4672 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4674 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4675 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4680 skb->destructor = sock_rmem_free;
4681 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4682 skb_set_err_queue(skb);
4684 /* before exiting rcu section, make sure dst is refcounted */
4687 skb_queue_tail(&sk->sk_error_queue, skb);
4688 if (!sock_flag(sk, SOCK_DEAD))
4689 sk_error_report(sk);
4692 EXPORT_SYMBOL(sock_queue_err_skb);
4694 static bool is_icmp_err_skb(const struct sk_buff *skb)
4696 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4697 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4700 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4702 struct sk_buff_head *q = &sk->sk_error_queue;
4703 struct sk_buff *skb, *skb_next = NULL;
4704 bool icmp_next = false;
4705 unsigned long flags;
4707 spin_lock_irqsave(&q->lock, flags);
4708 skb = __skb_dequeue(q);
4709 if (skb && (skb_next = skb_peek(q))) {
4710 icmp_next = is_icmp_err_skb(skb_next);
4712 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4714 spin_unlock_irqrestore(&q->lock, flags);
4716 if (is_icmp_err_skb(skb) && !icmp_next)
4720 sk_error_report(sk);
4724 EXPORT_SYMBOL(sock_dequeue_err_skb);
4727 * skb_clone_sk - create clone of skb, and take reference to socket
4728 * @skb: the skb to clone
4730 * This function creates a clone of a buffer that holds a reference on
4731 * sk_refcnt. Buffers created via this function are meant to be
4732 * returned using sock_queue_err_skb, or free via kfree_skb.
4734 * When passing buffers allocated with this function to sock_queue_err_skb
4735 * it is necessary to wrap the call with sock_hold/sock_put in order to
4736 * prevent the socket from being released prior to being enqueued on
4737 * the sk_error_queue.
4739 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4741 struct sock *sk = skb->sk;
4742 struct sk_buff *clone;
4744 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4747 clone = skb_clone(skb, GFP_ATOMIC);
4754 clone->destructor = sock_efree;
4758 EXPORT_SYMBOL(skb_clone_sk);
4760 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4765 struct sock_exterr_skb *serr;
4768 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4770 serr = SKB_EXT_ERR(skb);
4771 memset(serr, 0, sizeof(*serr));
4772 serr->ee.ee_errno = ENOMSG;
4773 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4774 serr->ee.ee_info = tstype;
4775 serr->opt_stats = opt_stats;
4776 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4777 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4778 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4779 if (sk->sk_protocol == IPPROTO_TCP &&
4780 sk->sk_type == SOCK_STREAM)
4781 serr->ee.ee_data -= sk->sk_tskey;
4784 err = sock_queue_err_skb(sk, skb);
4790 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4794 if (likely(sysctl_tstamp_allow_data || tsonly))
4797 read_lock_bh(&sk->sk_callback_lock);
4798 ret = sk->sk_socket && sk->sk_socket->file &&
4799 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4800 read_unlock_bh(&sk->sk_callback_lock);
4804 void skb_complete_tx_timestamp(struct sk_buff *skb,
4805 struct skb_shared_hwtstamps *hwtstamps)
4807 struct sock *sk = skb->sk;
4809 if (!skb_may_tx_timestamp(sk, false))
4812 /* Take a reference to prevent skb_orphan() from freeing the socket,
4813 * but only if the socket refcount is not zero.
4815 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4816 *skb_hwtstamps(skb) = *hwtstamps;
4817 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4825 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4827 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4828 const struct sk_buff *ack_skb,
4829 struct skb_shared_hwtstamps *hwtstamps,
4830 struct sock *sk, int tstype)
4832 struct sk_buff *skb;
4833 bool tsonly, opt_stats = false;
4838 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4839 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4842 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4843 if (!skb_may_tx_timestamp(sk, tsonly))
4848 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4849 sk->sk_protocol == IPPROTO_TCP &&
4850 sk->sk_type == SOCK_STREAM) {
4851 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4856 skb = alloc_skb(0, GFP_ATOMIC);
4858 skb = skb_clone(orig_skb, GFP_ATOMIC);
4864 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4866 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4870 *skb_hwtstamps(skb) = *hwtstamps;
4872 skb->tstamp = ktime_get_real();
4874 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4876 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4878 void skb_tstamp_tx(struct sk_buff *orig_skb,
4879 struct skb_shared_hwtstamps *hwtstamps)
4881 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4884 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4886 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4888 struct sock *sk = skb->sk;
4889 struct sock_exterr_skb *serr;
4892 skb->wifi_acked_valid = 1;
4893 skb->wifi_acked = acked;
4895 serr = SKB_EXT_ERR(skb);
4896 memset(serr, 0, sizeof(*serr));
4897 serr->ee.ee_errno = ENOMSG;
4898 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4900 /* Take a reference to prevent skb_orphan() from freeing the socket,
4901 * but only if the socket refcount is not zero.
4903 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4904 err = sock_queue_err_skb(sk, skb);
4910 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4913 * skb_partial_csum_set - set up and verify partial csum values for packet
4914 * @skb: the skb to set
4915 * @start: the number of bytes after skb->data to start checksumming.
4916 * @off: the offset from start to place the checksum.
4918 * For untrusted partially-checksummed packets, we need to make sure the values
4919 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4921 * This function checks and sets those values and skb->ip_summed: if this
4922 * returns false you should drop the packet.
4924 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4926 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4927 u32 csum_start = skb_headroom(skb) + (u32)start;
4929 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4930 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4931 start, off, skb_headroom(skb), skb_headlen(skb));
4934 skb->ip_summed = CHECKSUM_PARTIAL;
4935 skb->csum_start = csum_start;
4936 skb->csum_offset = off;
4937 skb_set_transport_header(skb, start);
4940 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4942 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4945 if (skb_headlen(skb) >= len)
4948 /* If we need to pullup then pullup to the max, so we
4949 * won't need to do it again.
4954 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4957 if (skb_headlen(skb) < len)
4963 #define MAX_TCP_HDR_LEN (15 * 4)
4965 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4966 typeof(IPPROTO_IP) proto,
4973 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4974 off + MAX_TCP_HDR_LEN);
4975 if (!err && !skb_partial_csum_set(skb, off,
4976 offsetof(struct tcphdr,
4979 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4982 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4983 off + sizeof(struct udphdr));
4984 if (!err && !skb_partial_csum_set(skb, off,
4985 offsetof(struct udphdr,
4988 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4991 return ERR_PTR(-EPROTO);
4994 /* This value should be large enough to cover a tagged ethernet header plus
4995 * maximally sized IP and TCP or UDP headers.
4997 #define MAX_IP_HDR_LEN 128
4999 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5008 err = skb_maybe_pull_tail(skb,
5009 sizeof(struct iphdr),
5014 if (ip_is_fragment(ip_hdr(skb)))
5017 off = ip_hdrlen(skb);
5024 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5026 return PTR_ERR(csum);
5029 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5032 ip_hdr(skb)->protocol, 0);
5039 /* This value should be large enough to cover a tagged ethernet header plus
5040 * an IPv6 header, all options, and a maximal TCP or UDP header.
5042 #define MAX_IPV6_HDR_LEN 256
5044 #define OPT_HDR(type, skb, off) \
5045 (type *)(skb_network_header(skb) + (off))
5047 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5060 off = sizeof(struct ipv6hdr);
5062 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5066 nexthdr = ipv6_hdr(skb)->nexthdr;
5068 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5069 while (off <= len && !done) {
5071 case IPPROTO_DSTOPTS:
5072 case IPPROTO_HOPOPTS:
5073 case IPPROTO_ROUTING: {
5074 struct ipv6_opt_hdr *hp;
5076 err = skb_maybe_pull_tail(skb,
5078 sizeof(struct ipv6_opt_hdr),
5083 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5084 nexthdr = hp->nexthdr;
5085 off += ipv6_optlen(hp);
5089 struct ip_auth_hdr *hp;
5091 err = skb_maybe_pull_tail(skb,
5093 sizeof(struct ip_auth_hdr),
5098 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5099 nexthdr = hp->nexthdr;
5100 off += ipv6_authlen(hp);
5103 case IPPROTO_FRAGMENT: {
5104 struct frag_hdr *hp;
5106 err = skb_maybe_pull_tail(skb,
5108 sizeof(struct frag_hdr),
5113 hp = OPT_HDR(struct frag_hdr, skb, off);
5115 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5118 nexthdr = hp->nexthdr;
5119 off += sizeof(struct frag_hdr);
5130 if (!done || fragment)
5133 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5135 return PTR_ERR(csum);
5138 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5139 &ipv6_hdr(skb)->daddr,
5140 skb->len - off, nexthdr, 0);
5148 * skb_checksum_setup - set up partial checksum offset
5149 * @skb: the skb to set up
5150 * @recalculate: if true the pseudo-header checksum will be recalculated
5152 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5156 switch (skb->protocol) {
5157 case htons(ETH_P_IP):
5158 err = skb_checksum_setup_ipv4(skb, recalculate);
5161 case htons(ETH_P_IPV6):
5162 err = skb_checksum_setup_ipv6(skb, recalculate);
5172 EXPORT_SYMBOL(skb_checksum_setup);
5175 * skb_checksum_maybe_trim - maybe trims the given skb
5176 * @skb: the skb to check
5177 * @transport_len: the data length beyond the network header
5179 * Checks whether the given skb has data beyond the given transport length.
5180 * If so, returns a cloned skb trimmed to this transport length.
5181 * Otherwise returns the provided skb. Returns NULL in error cases
5182 * (e.g. transport_len exceeds skb length or out-of-memory).
5184 * Caller needs to set the skb transport header and free any returned skb if it
5185 * differs from the provided skb.
5187 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5188 unsigned int transport_len)
5190 struct sk_buff *skb_chk;
5191 unsigned int len = skb_transport_offset(skb) + transport_len;
5196 else if (skb->len == len)
5199 skb_chk = skb_clone(skb, GFP_ATOMIC);
5203 ret = pskb_trim_rcsum(skb_chk, len);
5213 * skb_checksum_trimmed - validate checksum of an skb
5214 * @skb: the skb to check
5215 * @transport_len: the data length beyond the network header
5216 * @skb_chkf: checksum function to use
5218 * Applies the given checksum function skb_chkf to the provided skb.
5219 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5221 * If the skb has data beyond the given transport length, then a
5222 * trimmed & cloned skb is checked and returned.
5224 * Caller needs to set the skb transport header and free any returned skb if it
5225 * differs from the provided skb.
5227 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5228 unsigned int transport_len,
5229 __sum16(*skb_chkf)(struct sk_buff *skb))
5231 struct sk_buff *skb_chk;
5232 unsigned int offset = skb_transport_offset(skb);
5235 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5239 if (!pskb_may_pull(skb_chk, offset))
5242 skb_pull_rcsum(skb_chk, offset);
5243 ret = skb_chkf(skb_chk);
5244 skb_push_rcsum(skb_chk, offset);
5252 if (skb_chk && skb_chk != skb)
5258 EXPORT_SYMBOL(skb_checksum_trimmed);
5260 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5262 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5265 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5267 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5270 skb_release_head_state(skb);
5271 kmem_cache_free(skbuff_head_cache, skb);
5276 EXPORT_SYMBOL(kfree_skb_partial);
5279 * skb_try_coalesce - try to merge skb to prior one
5281 * @from: buffer to add
5282 * @fragstolen: pointer to boolean
5283 * @delta_truesize: how much more was allocated than was requested
5285 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5286 bool *fragstolen, int *delta_truesize)
5288 struct skb_shared_info *to_shinfo, *from_shinfo;
5289 int i, delta, len = from->len;
5291 *fragstolen = false;
5296 /* The page pool signature of struct page will eventually figure out
5297 * which pages can be recycled or not but for now let's prohibit slab
5298 * allocated and page_pool allocated SKBs from being coalesced.
5300 if (to->pp_recycle != from->pp_recycle)
5303 if (len <= skb_tailroom(to)) {
5305 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5306 *delta_truesize = 0;
5310 to_shinfo = skb_shinfo(to);
5311 from_shinfo = skb_shinfo(from);
5312 if (to_shinfo->frag_list || from_shinfo->frag_list)
5314 if (skb_zcopy(to) || skb_zcopy(from))
5317 if (skb_headlen(from) != 0) {
5319 unsigned int offset;
5321 if (to_shinfo->nr_frags +
5322 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5325 if (skb_head_is_locked(from))
5328 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5330 page = virt_to_head_page(from->head);
5331 offset = from->data - (unsigned char *)page_address(page);
5333 skb_fill_page_desc(to, to_shinfo->nr_frags,
5334 page, offset, skb_headlen(from));
5337 if (to_shinfo->nr_frags +
5338 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5341 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5344 WARN_ON_ONCE(delta < len);
5346 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5348 from_shinfo->nr_frags * sizeof(skb_frag_t));
5349 to_shinfo->nr_frags += from_shinfo->nr_frags;
5351 if (!skb_cloned(from))
5352 from_shinfo->nr_frags = 0;
5354 /* if the skb is not cloned this does nothing
5355 * since we set nr_frags to 0.
5357 for (i = 0; i < from_shinfo->nr_frags; i++)
5358 __skb_frag_ref(&from_shinfo->frags[i]);
5360 to->truesize += delta;
5362 to->data_len += len;
5364 *delta_truesize = delta;
5367 EXPORT_SYMBOL(skb_try_coalesce);
5370 * skb_scrub_packet - scrub an skb
5372 * @skb: buffer to clean
5373 * @xnet: packet is crossing netns
5375 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5376 * into/from a tunnel. Some information have to be cleared during these
5378 * skb_scrub_packet can also be used to clean a skb before injecting it in
5379 * another namespace (@xnet == true). We have to clear all information in the
5380 * skb that could impact namespace isolation.
5382 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5384 skb->pkt_type = PACKET_HOST;
5390 nf_reset_trace(skb);
5392 #ifdef CONFIG_NET_SWITCHDEV
5393 skb->offload_fwd_mark = 0;
5394 skb->offload_l3_fwd_mark = 0;
5404 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5407 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5411 * skb_gso_transport_seglen is used to determine the real size of the
5412 * individual segments, including Layer4 headers (TCP/UDP).
5414 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5416 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5418 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5419 unsigned int thlen = 0;
5421 if (skb->encapsulation) {
5422 thlen = skb_inner_transport_header(skb) -
5423 skb_transport_header(skb);
5425 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5426 thlen += inner_tcp_hdrlen(skb);
5427 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5428 thlen = tcp_hdrlen(skb);
5429 } else if (unlikely(skb_is_gso_sctp(skb))) {
5430 thlen = sizeof(struct sctphdr);
5431 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5432 thlen = sizeof(struct udphdr);
5434 /* UFO sets gso_size to the size of the fragmentation
5435 * payload, i.e. the size of the L4 (UDP) header is already
5438 return thlen + shinfo->gso_size;
5442 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5446 * skb_gso_network_seglen is used to determine the real size of the
5447 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5449 * The MAC/L2 header is not accounted for.
5451 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5453 unsigned int hdr_len = skb_transport_header(skb) -
5454 skb_network_header(skb);
5456 return hdr_len + skb_gso_transport_seglen(skb);
5460 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5464 * skb_gso_mac_seglen is used to determine the real size of the
5465 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5466 * headers (TCP/UDP).
5468 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5470 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5472 return hdr_len + skb_gso_transport_seglen(skb);
5476 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5478 * There are a couple of instances where we have a GSO skb, and we
5479 * want to determine what size it would be after it is segmented.
5481 * We might want to check:
5482 * - L3+L4+payload size (e.g. IP forwarding)
5483 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5485 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5489 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5490 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5492 * @max_len: The maximum permissible length.
5494 * Returns true if the segmented length <= max length.
5496 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5497 unsigned int seg_len,
5498 unsigned int max_len) {
5499 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5500 const struct sk_buff *iter;
5502 if (shinfo->gso_size != GSO_BY_FRAGS)
5503 return seg_len <= max_len;
5505 /* Undo this so we can re-use header sizes */
5506 seg_len -= GSO_BY_FRAGS;
5508 skb_walk_frags(skb, iter) {
5509 if (seg_len + skb_headlen(iter) > max_len)
5517 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5520 * @mtu: MTU to validate against
5522 * skb_gso_validate_network_len validates if a given skb will fit a
5523 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5526 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5528 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5530 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5533 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5536 * @len: length to validate against
5538 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5539 * length once split, including L2, L3 and L4 headers and the payload.
5541 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5543 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5545 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5547 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5549 int mac_len, meta_len;
5552 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5557 mac_len = skb->data - skb_mac_header(skb);
5558 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5559 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5560 mac_len - VLAN_HLEN - ETH_TLEN);
5563 meta_len = skb_metadata_len(skb);
5565 meta = skb_metadata_end(skb) - meta_len;
5566 memmove(meta + VLAN_HLEN, meta, meta_len);
5569 skb->mac_header += VLAN_HLEN;
5573 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5575 struct vlan_hdr *vhdr;
5578 if (unlikely(skb_vlan_tag_present(skb))) {
5579 /* vlan_tci is already set-up so leave this for another time */
5583 skb = skb_share_check(skb, GFP_ATOMIC);
5586 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5587 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5590 vhdr = (struct vlan_hdr *)skb->data;
5591 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5592 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5594 skb_pull_rcsum(skb, VLAN_HLEN);
5595 vlan_set_encap_proto(skb, vhdr);
5597 skb = skb_reorder_vlan_header(skb);
5601 skb_reset_network_header(skb);
5602 if (!skb_transport_header_was_set(skb))
5603 skb_reset_transport_header(skb);
5604 skb_reset_mac_len(skb);
5612 EXPORT_SYMBOL(skb_vlan_untag);
5614 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5616 if (!pskb_may_pull(skb, write_len))
5619 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5622 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5624 EXPORT_SYMBOL(skb_ensure_writable);
5626 /* remove VLAN header from packet and update csum accordingly.
5627 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5629 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5631 struct vlan_hdr *vhdr;
5632 int offset = skb->data - skb_mac_header(skb);
5635 if (WARN_ONCE(offset,
5636 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5641 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5645 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5647 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5648 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5650 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5651 __skb_pull(skb, VLAN_HLEN);
5653 vlan_set_encap_proto(skb, vhdr);
5654 skb->mac_header += VLAN_HLEN;
5656 if (skb_network_offset(skb) < ETH_HLEN)
5657 skb_set_network_header(skb, ETH_HLEN);
5659 skb_reset_mac_len(skb);
5663 EXPORT_SYMBOL(__skb_vlan_pop);
5665 /* Pop a vlan tag either from hwaccel or from payload.
5666 * Expects skb->data at mac header.
5668 int skb_vlan_pop(struct sk_buff *skb)
5674 if (likely(skb_vlan_tag_present(skb))) {
5675 __vlan_hwaccel_clear_tag(skb);
5677 if (unlikely(!eth_type_vlan(skb->protocol)))
5680 err = __skb_vlan_pop(skb, &vlan_tci);
5684 /* move next vlan tag to hw accel tag */
5685 if (likely(!eth_type_vlan(skb->protocol)))
5688 vlan_proto = skb->protocol;
5689 err = __skb_vlan_pop(skb, &vlan_tci);
5693 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5696 EXPORT_SYMBOL(skb_vlan_pop);
5698 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5699 * Expects skb->data at mac header.
5701 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5703 if (skb_vlan_tag_present(skb)) {
5704 int offset = skb->data - skb_mac_header(skb);
5707 if (WARN_ONCE(offset,
5708 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5713 err = __vlan_insert_tag(skb, skb->vlan_proto,
5714 skb_vlan_tag_get(skb));
5718 skb->protocol = skb->vlan_proto;
5719 skb->mac_len += VLAN_HLEN;
5721 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5723 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5726 EXPORT_SYMBOL(skb_vlan_push);
5729 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5731 * @skb: Socket buffer to modify
5733 * Drop the Ethernet header of @skb.
5735 * Expects that skb->data points to the mac header and that no VLAN tags are
5738 * Returns 0 on success, -errno otherwise.
5740 int skb_eth_pop(struct sk_buff *skb)
5742 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5743 skb_network_offset(skb) < ETH_HLEN)
5746 skb_pull_rcsum(skb, ETH_HLEN);
5747 skb_reset_mac_header(skb);
5748 skb_reset_mac_len(skb);
5752 EXPORT_SYMBOL(skb_eth_pop);
5755 * skb_eth_push() - Add a new Ethernet header at the head of a packet
5757 * @skb: Socket buffer to modify
5758 * @dst: Destination MAC address of the new header
5759 * @src: Source MAC address of the new header
5761 * Prepend @skb with a new Ethernet header.
5763 * Expects that skb->data points to the mac header, which must be empty.
5765 * Returns 0 on success, -errno otherwise.
5767 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5768 const unsigned char *src)
5773 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5776 err = skb_cow_head(skb, sizeof(*eth));
5780 skb_push(skb, sizeof(*eth));
5781 skb_reset_mac_header(skb);
5782 skb_reset_mac_len(skb);
5785 ether_addr_copy(eth->h_dest, dst);
5786 ether_addr_copy(eth->h_source, src);
5787 eth->h_proto = skb->protocol;
5789 skb_postpush_rcsum(skb, eth, sizeof(*eth));
5793 EXPORT_SYMBOL(skb_eth_push);
5795 /* Update the ethertype of hdr and the skb csum value if required. */
5796 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5799 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5800 __be16 diff[] = { ~hdr->h_proto, ethertype };
5802 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5805 hdr->h_proto = ethertype;
5809 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5813 * @mpls_lse: MPLS label stack entry to push
5814 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5815 * @mac_len: length of the MAC header
5816 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5819 * Expects skb->data at mac header.
5821 * Returns 0 on success, -errno otherwise.
5823 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5824 int mac_len, bool ethernet)
5826 struct mpls_shim_hdr *lse;
5829 if (unlikely(!eth_p_mpls(mpls_proto)))
5832 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5833 if (skb->encapsulation)
5836 err = skb_cow_head(skb, MPLS_HLEN);
5840 if (!skb->inner_protocol) {
5841 skb_set_inner_network_header(skb, skb_network_offset(skb));
5842 skb_set_inner_protocol(skb, skb->protocol);
5845 skb_push(skb, MPLS_HLEN);
5846 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5848 skb_reset_mac_header(skb);
5849 skb_set_network_header(skb, mac_len);
5850 skb_reset_mac_len(skb);
5852 lse = mpls_hdr(skb);
5853 lse->label_stack_entry = mpls_lse;
5854 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5856 if (ethernet && mac_len >= ETH_HLEN)
5857 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5858 skb->protocol = mpls_proto;
5862 EXPORT_SYMBOL_GPL(skb_mpls_push);
5865 * skb_mpls_pop() - pop the outermost MPLS header
5868 * @next_proto: ethertype of header after popped MPLS header
5869 * @mac_len: length of the MAC header
5870 * @ethernet: flag to indicate if the packet is ethernet
5872 * Expects skb->data at mac header.
5874 * Returns 0 on success, -errno otherwise.
5876 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5881 if (unlikely(!eth_p_mpls(skb->protocol)))
5884 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5888 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5889 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5892 __skb_pull(skb, MPLS_HLEN);
5893 skb_reset_mac_header(skb);
5894 skb_set_network_header(skb, mac_len);
5896 if (ethernet && mac_len >= ETH_HLEN) {
5899 /* use mpls_hdr() to get ethertype to account for VLANs. */
5900 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5901 skb_mod_eth_type(skb, hdr, next_proto);
5903 skb->protocol = next_proto;
5907 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5910 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5913 * @mpls_lse: new MPLS label stack entry to update to
5915 * Expects skb->data at mac header.
5917 * Returns 0 on success, -errno otherwise.
5919 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5923 if (unlikely(!eth_p_mpls(skb->protocol)))
5926 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5930 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5931 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5933 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5936 mpls_hdr(skb)->label_stack_entry = mpls_lse;
5940 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5943 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5947 * Expects skb->data at mac header.
5949 * Returns 0 on success, -errno otherwise.
5951 int skb_mpls_dec_ttl(struct sk_buff *skb)
5956 if (unlikely(!eth_p_mpls(skb->protocol)))
5959 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5962 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5963 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5967 lse &= ~MPLS_LS_TTL_MASK;
5968 lse |= ttl << MPLS_LS_TTL_SHIFT;
5970 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5972 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5975 * alloc_skb_with_frags - allocate skb with page frags
5977 * @header_len: size of linear part
5978 * @data_len: needed length in frags
5979 * @max_page_order: max page order desired.
5980 * @errcode: pointer to error code if any
5981 * @gfp_mask: allocation mask
5983 * This can be used to allocate a paged skb, given a maximal order for frags.
5985 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5986 unsigned long data_len,
5991 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5992 unsigned long chunk;
5993 struct sk_buff *skb;
5997 *errcode = -EMSGSIZE;
5998 /* Note this test could be relaxed, if we succeed to allocate
5999 * high order pages...
6001 if (npages > MAX_SKB_FRAGS)
6004 *errcode = -ENOBUFS;
6005 skb = alloc_skb(header_len, gfp_mask);
6009 skb->truesize += npages << PAGE_SHIFT;
6011 for (i = 0; npages > 0; i++) {
6012 int order = max_page_order;
6015 if (npages >= 1 << order) {
6016 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6022 /* Do not retry other high order allocations */
6028 page = alloc_page(gfp_mask);
6032 chunk = min_t(unsigned long, data_len,
6033 PAGE_SIZE << order);
6034 skb_fill_page_desc(skb, i, page, 0, chunk);
6036 npages -= 1 << order;
6044 EXPORT_SYMBOL(alloc_skb_with_frags);
6046 /* carve out the first off bytes from skb when off < headlen */
6047 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6048 const int headlen, gfp_t gfp_mask)
6051 int size = skb_end_offset(skb);
6052 int new_hlen = headlen - off;
6055 size = SKB_DATA_ALIGN(size);
6057 if (skb_pfmemalloc(skb))
6058 gfp_mask |= __GFP_MEMALLOC;
6059 data = kmalloc_reserve(size +
6060 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6061 gfp_mask, NUMA_NO_NODE, NULL);
6065 size = SKB_WITH_OVERHEAD(ksize(data));
6067 /* Copy real data, and all frags */
6068 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6071 memcpy((struct skb_shared_info *)(data + size),
6073 offsetof(struct skb_shared_info,
6074 frags[skb_shinfo(skb)->nr_frags]));
6075 if (skb_cloned(skb)) {
6076 /* drop the old head gracefully */
6077 if (skb_orphan_frags(skb, gfp_mask)) {
6081 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6082 skb_frag_ref(skb, i);
6083 if (skb_has_frag_list(skb))
6084 skb_clone_fraglist(skb);
6085 skb_release_data(skb);
6087 /* we can reuse existing recount- all we did was
6096 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6099 skb->end = skb->head + size;
6101 skb_set_tail_pointer(skb, skb_headlen(skb));
6102 skb_headers_offset_update(skb, 0);
6106 atomic_set(&skb_shinfo(skb)->dataref, 1);
6111 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6113 /* carve out the first eat bytes from skb's frag_list. May recurse into
6116 static int pskb_carve_frag_list(struct sk_buff *skb,
6117 struct skb_shared_info *shinfo, int eat,
6120 struct sk_buff *list = shinfo->frag_list;
6121 struct sk_buff *clone = NULL;
6122 struct sk_buff *insp = NULL;
6126 pr_err("Not enough bytes to eat. Want %d\n", eat);
6129 if (list->len <= eat) {
6130 /* Eaten as whole. */
6135 /* Eaten partially. */
6136 if (skb_shared(list)) {
6137 clone = skb_clone(list, gfp_mask);
6143 /* This may be pulled without problems. */
6146 if (pskb_carve(list, eat, gfp_mask) < 0) {
6154 /* Free pulled out fragments. */
6155 while ((list = shinfo->frag_list) != insp) {
6156 shinfo->frag_list = list->next;
6159 /* And insert new clone at head. */
6162 shinfo->frag_list = clone;
6167 /* carve off first len bytes from skb. Split line (off) is in the
6168 * non-linear part of skb
6170 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6171 int pos, gfp_t gfp_mask)
6174 int size = skb_end_offset(skb);
6176 const int nfrags = skb_shinfo(skb)->nr_frags;
6177 struct skb_shared_info *shinfo;
6179 size = SKB_DATA_ALIGN(size);
6181 if (skb_pfmemalloc(skb))
6182 gfp_mask |= __GFP_MEMALLOC;
6183 data = kmalloc_reserve(size +
6184 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6185 gfp_mask, NUMA_NO_NODE, NULL);
6189 size = SKB_WITH_OVERHEAD(ksize(data));
6191 memcpy((struct skb_shared_info *)(data + size),
6192 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6193 if (skb_orphan_frags(skb, gfp_mask)) {
6197 shinfo = (struct skb_shared_info *)(data + size);
6198 for (i = 0; i < nfrags; i++) {
6199 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6201 if (pos + fsize > off) {
6202 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6206 * We have two variants in this case:
6207 * 1. Move all the frag to the second
6208 * part, if it is possible. F.e.
6209 * this approach is mandatory for TUX,
6210 * where splitting is expensive.
6211 * 2. Split is accurately. We make this.
6213 skb_frag_off_add(&shinfo->frags[0], off - pos);
6214 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6216 skb_frag_ref(skb, i);
6221 shinfo->nr_frags = k;
6222 if (skb_has_frag_list(skb))
6223 skb_clone_fraglist(skb);
6225 /* split line is in frag list */
6226 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6227 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6228 if (skb_has_frag_list(skb))
6229 kfree_skb_list(skb_shinfo(skb)->frag_list);
6233 skb_release_data(skb);
6238 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6241 skb->end = skb->head + size;
6243 skb_reset_tail_pointer(skb);
6244 skb_headers_offset_update(skb, 0);
6249 skb->data_len = skb->len;
6250 atomic_set(&skb_shinfo(skb)->dataref, 1);
6254 /* remove len bytes from the beginning of the skb */
6255 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6257 int headlen = skb_headlen(skb);
6260 return pskb_carve_inside_header(skb, len, headlen, gfp);
6262 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6265 /* Extract to_copy bytes starting at off from skb, and return this in
6268 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6269 int to_copy, gfp_t gfp)
6271 struct sk_buff *clone = skb_clone(skb, gfp);
6276 if (pskb_carve(clone, off, gfp) < 0 ||
6277 pskb_trim(clone, to_copy)) {
6283 EXPORT_SYMBOL(pskb_extract);
6286 * skb_condense - try to get rid of fragments/frag_list if possible
6289 * Can be used to save memory before skb is added to a busy queue.
6290 * If packet has bytes in frags and enough tail room in skb->head,
6291 * pull all of them, so that we can free the frags right now and adjust
6294 * We do not reallocate skb->head thus can not fail.
6295 * Caller must re-evaluate skb->truesize if needed.
6297 void skb_condense(struct sk_buff *skb)
6299 if (skb->data_len) {
6300 if (skb->data_len > skb->end - skb->tail ||
6304 /* Nice, we can free page frag(s) right now */
6305 __pskb_pull_tail(skb, skb->data_len);
6307 /* At this point, skb->truesize might be over estimated,
6308 * because skb had a fragment, and fragments do not tell
6310 * When we pulled its content into skb->head, fragment
6311 * was freed, but __pskb_pull_tail() could not possibly
6312 * adjust skb->truesize, not knowing the frag truesize.
6314 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6317 #ifdef CONFIG_SKB_EXTENSIONS
6318 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6320 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6324 * __skb_ext_alloc - allocate a new skb extensions storage
6326 * @flags: See kmalloc().
6328 * Returns the newly allocated pointer. The pointer can later attached to a
6329 * skb via __skb_ext_set().
6330 * Note: caller must handle the skb_ext as an opaque data.
6332 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6334 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6337 memset(new->offset, 0, sizeof(new->offset));
6338 refcount_set(&new->refcnt, 1);
6344 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6345 unsigned int old_active)
6347 struct skb_ext *new;
6349 if (refcount_read(&old->refcnt) == 1)
6352 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6356 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6357 refcount_set(&new->refcnt, 1);
6360 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6361 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6364 for (i = 0; i < sp->len; i++)
6365 xfrm_state_hold(sp->xvec[i]);
6373 * __skb_ext_set - attach the specified extension storage to this skb
6376 * @ext: extension storage previously allocated via __skb_ext_alloc()
6378 * Existing extensions, if any, are cleared.
6380 * Returns the pointer to the extension.
6382 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6383 struct skb_ext *ext)
6385 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6388 newlen = newoff + skb_ext_type_len[id];
6389 ext->chunks = newlen;
6390 ext->offset[id] = newoff;
6391 skb->extensions = ext;
6392 skb->active_extensions = 1 << id;
6393 return skb_ext_get_ptr(ext, id);
6397 * skb_ext_add - allocate space for given extension, COW if needed
6399 * @id: extension to allocate space for
6401 * Allocates enough space for the given extension.
6402 * If the extension is already present, a pointer to that extension
6405 * If the skb was cloned, COW applies and the returned memory can be
6406 * modified without changing the extension space of clones buffers.
6408 * Returns pointer to the extension or NULL on allocation failure.
6410 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6412 struct skb_ext *new, *old = NULL;
6413 unsigned int newlen, newoff;
6415 if (skb->active_extensions) {
6416 old = skb->extensions;
6418 new = skb_ext_maybe_cow(old, skb->active_extensions);
6422 if (__skb_ext_exist(new, id))
6425 newoff = new->chunks;
6427 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6429 new = __skb_ext_alloc(GFP_ATOMIC);
6434 newlen = newoff + skb_ext_type_len[id];
6435 new->chunks = newlen;
6436 new->offset[id] = newoff;
6438 skb->extensions = new;
6439 skb->active_extensions |= 1 << id;
6440 return skb_ext_get_ptr(new, id);
6442 EXPORT_SYMBOL(skb_ext_add);
6445 static void skb_ext_put_sp(struct sec_path *sp)
6449 for (i = 0; i < sp->len; i++)
6450 xfrm_state_put(sp->xvec[i]);
6454 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6456 struct skb_ext *ext = skb->extensions;
6458 skb->active_extensions &= ~(1 << id);
6459 if (skb->active_extensions == 0) {
6460 skb->extensions = NULL;
6463 } else if (id == SKB_EXT_SEC_PATH &&
6464 refcount_read(&ext->refcnt) == 1) {
6465 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6472 EXPORT_SYMBOL(__skb_ext_del);
6474 void __skb_ext_put(struct skb_ext *ext)
6476 /* If this is last clone, nothing can increment
6477 * it after check passes. Avoids one atomic op.
6479 if (refcount_read(&ext->refcnt) == 1)
6482 if (!refcount_dec_and_test(&ext->refcnt))
6486 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6487 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6490 kmem_cache_free(skbuff_ext_cache, ext);
6492 EXPORT_SYMBOL(__skb_ext_put);
6493 #endif /* CONFIG_SKB_EXTENSIONS */