1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Routines having to do with the 'struct sk_buff' memory handlers.
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
9 * Alan Cox : Fixed the worst of the load
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
32 * The functions in this file will not compile correctly with gcc 2.4.x
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
41 #include <linux/interrupt.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
65 #include <net/protocol.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
72 #include <net/mptcp.h>
74 #include <linux/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
79 #include <linux/indirect_call_wrapper.h>
83 struct kmem_cache *skbuff_head_cache __ro_after_init;
84 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
85 #ifdef CONFIG_SKB_EXTENSIONS
86 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
88 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
89 EXPORT_SYMBOL(sysctl_max_skb_frags);
92 * skb_panic - private function for out-of-line support
96 * @msg: skb_over_panic or skb_under_panic
98 * Out-of-line support for skb_put() and skb_push().
99 * Called via the wrapper skb_over_panic() or skb_under_panic().
100 * Keep out of line to prevent kernel bloat.
101 * __builtin_return_address is not used because it is not always reliable.
103 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
106 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
107 msg, addr, skb->len, sz, skb->head, skb->data,
108 (unsigned long)skb->tail, (unsigned long)skb->end,
109 skb->dev ? skb->dev->name : "<NULL>");
113 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
115 skb_panic(skb, sz, addr, __func__);
118 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
120 skb_panic(skb, sz, addr, __func__);
123 #define NAPI_SKB_CACHE_SIZE 64
124 #define NAPI_SKB_CACHE_BULK 16
125 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
127 struct napi_alloc_cache {
128 struct page_frag_cache page;
129 unsigned int skb_count;
130 void *skb_cache[NAPI_SKB_CACHE_SIZE];
133 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
134 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
136 static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask,
137 unsigned int align_mask)
139 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
141 return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask);
144 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
146 fragsz = SKB_DATA_ALIGN(fragsz);
148 return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
150 EXPORT_SYMBOL(__napi_alloc_frag_align);
152 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
154 struct page_frag_cache *nc;
157 fragsz = SKB_DATA_ALIGN(fragsz);
158 if (in_irq() || irqs_disabled()) {
159 nc = this_cpu_ptr(&netdev_alloc_cache);
160 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
163 data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
168 EXPORT_SYMBOL(__netdev_alloc_frag_align);
170 static struct sk_buff *napi_skb_cache_get(void)
172 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
175 if (unlikely(!nc->skb_count))
176 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
180 if (unlikely(!nc->skb_count))
183 skb = nc->skb_cache[--nc->skb_count];
184 kasan_unpoison_object_data(skbuff_head_cache, skb);
189 /* Caller must provide SKB that is memset cleared */
190 static void __build_skb_around(struct sk_buff *skb, void *data,
191 unsigned int frag_size)
193 struct skb_shared_info *shinfo;
194 unsigned int size = frag_size ? : ksize(data);
196 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
198 /* Assumes caller memset cleared SKB */
199 skb->truesize = SKB_TRUESIZE(size);
200 refcount_set(&skb->users, 1);
203 skb_reset_tail_pointer(skb);
204 skb->end = skb->tail + size;
205 skb->mac_header = (typeof(skb->mac_header))~0U;
206 skb->transport_header = (typeof(skb->transport_header))~0U;
208 /* make sure we initialize shinfo sequentially */
209 shinfo = skb_shinfo(skb);
210 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
211 atomic_set(&shinfo->dataref, 1);
213 skb_set_kcov_handle(skb, kcov_common_handle());
217 * __build_skb - build a network buffer
218 * @data: data buffer provided by caller
219 * @frag_size: size of data, or 0 if head was kmalloced
221 * Allocate a new &sk_buff. Caller provides space holding head and
222 * skb_shared_info. @data must have been allocated by kmalloc() only if
223 * @frag_size is 0, otherwise data should come from the page allocator
225 * The return is the new skb buffer.
226 * On a failure the return is %NULL, and @data is not freed.
228 * Before IO, driver allocates only data buffer where NIC put incoming frame
229 * Driver should add room at head (NET_SKB_PAD) and
230 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
231 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
232 * before giving packet to stack.
233 * RX rings only contains data buffers, not full skbs.
235 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
239 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
243 memset(skb, 0, offsetof(struct sk_buff, tail));
244 __build_skb_around(skb, data, frag_size);
249 /* build_skb() is wrapper over __build_skb(), that specifically
250 * takes care of skb->head and skb->pfmemalloc
251 * This means that if @frag_size is not zero, then @data must be backed
252 * by a page fragment, not kmalloc() or vmalloc()
254 struct sk_buff *build_skb(void *data, unsigned int frag_size)
256 struct sk_buff *skb = __build_skb(data, frag_size);
258 if (skb && frag_size) {
260 if (page_is_pfmemalloc(virt_to_head_page(data)))
265 EXPORT_SYMBOL(build_skb);
268 * build_skb_around - build a network buffer around provided skb
269 * @skb: sk_buff provide by caller, must be memset cleared
270 * @data: data buffer provided by caller
271 * @frag_size: size of data, or 0 if head was kmalloced
273 struct sk_buff *build_skb_around(struct sk_buff *skb,
274 void *data, unsigned int frag_size)
279 __build_skb_around(skb, data, frag_size);
283 if (page_is_pfmemalloc(virt_to_head_page(data)))
288 EXPORT_SYMBOL(build_skb_around);
291 * __napi_build_skb - build a network buffer
292 * @data: data buffer provided by caller
293 * @frag_size: size of data, or 0 if head was kmalloced
295 * Version of __build_skb() that uses NAPI percpu caches to obtain
296 * skbuff_head instead of inplace allocation.
298 * Returns a new &sk_buff on success, %NULL on allocation failure.
300 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
304 skb = napi_skb_cache_get();
308 memset(skb, 0, offsetof(struct sk_buff, tail));
309 __build_skb_around(skb, data, frag_size);
315 * napi_build_skb - build a network buffer
316 * @data: data buffer provided by caller
317 * @frag_size: size of data, or 0 if head was kmalloced
319 * Version of __napi_build_skb() that takes care of skb->head_frag
320 * and skb->pfmemalloc when the data is a page or page fragment.
322 * Returns a new &sk_buff on success, %NULL on allocation failure.
324 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
326 struct sk_buff *skb = __napi_build_skb(data, frag_size);
328 if (likely(skb) && frag_size) {
330 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
335 EXPORT_SYMBOL(napi_build_skb);
338 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
339 * the caller if emergency pfmemalloc reserves are being used. If it is and
340 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
341 * may be used. Otherwise, the packet data may be discarded until enough
344 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
348 bool ret_pfmemalloc = false;
351 * Try a regular allocation, when that fails and we're not entitled
352 * to the reserves, fail.
354 obj = kmalloc_node_track_caller(size,
355 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
357 if (obj || !(gfp_pfmemalloc_allowed(flags)))
360 /* Try again but now we are using pfmemalloc reserves */
361 ret_pfmemalloc = true;
362 obj = kmalloc_node_track_caller(size, flags, node);
366 *pfmemalloc = ret_pfmemalloc;
371 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
372 * 'private' fields and also do memory statistics to find all the
378 * __alloc_skb - allocate a network buffer
379 * @size: size to allocate
380 * @gfp_mask: allocation mask
381 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
382 * instead of head cache and allocate a cloned (child) skb.
383 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
384 * allocations in case the data is required for writeback
385 * @node: numa node to allocate memory on
387 * Allocate a new &sk_buff. The returned buffer has no headroom and a
388 * tail room of at least size bytes. The object has a reference count
389 * of one. The return is the buffer. On a failure the return is %NULL.
391 * Buffers may only be allocated from interrupts using a @gfp_mask of
394 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
397 struct kmem_cache *cache;
402 cache = (flags & SKB_ALLOC_FCLONE)
403 ? skbuff_fclone_cache : skbuff_head_cache;
405 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
406 gfp_mask |= __GFP_MEMALLOC;
409 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
410 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
411 skb = napi_skb_cache_get();
413 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
418 /* We do our best to align skb_shared_info on a separate cache
419 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
420 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
421 * Both skb->head and skb_shared_info are cache line aligned.
423 size = SKB_DATA_ALIGN(size);
424 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
425 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
428 /* kmalloc(size) might give us more room than requested.
429 * Put skb_shared_info exactly at the end of allocated zone,
430 * to allow max possible filling before reallocation.
432 size = SKB_WITH_OVERHEAD(ksize(data));
433 prefetchw(data + size);
436 * Only clear those fields we need to clear, not those that we will
437 * actually initialise below. Hence, don't put any more fields after
438 * the tail pointer in struct sk_buff!
440 memset(skb, 0, offsetof(struct sk_buff, tail));
441 __build_skb_around(skb, data, 0);
442 skb->pfmemalloc = pfmemalloc;
444 if (flags & SKB_ALLOC_FCLONE) {
445 struct sk_buff_fclones *fclones;
447 fclones = container_of(skb, struct sk_buff_fclones, skb1);
449 skb->fclone = SKB_FCLONE_ORIG;
450 refcount_set(&fclones->fclone_ref, 1);
452 fclones->skb2.fclone = SKB_FCLONE_CLONE;
458 kmem_cache_free(cache, skb);
461 EXPORT_SYMBOL(__alloc_skb);
464 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
465 * @dev: network device to receive on
466 * @len: length to allocate
467 * @gfp_mask: get_free_pages mask, passed to alloc_skb
469 * Allocate a new &sk_buff and assign it a usage count of one. The
470 * buffer has NET_SKB_PAD headroom built in. Users should allocate
471 * the headroom they think they need without accounting for the
472 * built in space. The built in space is used for optimisations.
474 * %NULL is returned if there is no free memory.
476 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
479 struct page_frag_cache *nc;
486 /* If requested length is either too small or too big,
487 * we use kmalloc() for skb->head allocation.
489 if (len <= SKB_WITH_OVERHEAD(1024) ||
490 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
491 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
492 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
498 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
499 len = SKB_DATA_ALIGN(len);
501 if (sk_memalloc_socks())
502 gfp_mask |= __GFP_MEMALLOC;
504 if (in_irq() || irqs_disabled()) {
505 nc = this_cpu_ptr(&netdev_alloc_cache);
506 data = page_frag_alloc(nc, len, gfp_mask);
507 pfmemalloc = nc->pfmemalloc;
510 nc = this_cpu_ptr(&napi_alloc_cache.page);
511 data = page_frag_alloc(nc, len, gfp_mask);
512 pfmemalloc = nc->pfmemalloc;
519 skb = __build_skb(data, len);
520 if (unlikely(!skb)) {
530 skb_reserve(skb, NET_SKB_PAD);
536 EXPORT_SYMBOL(__netdev_alloc_skb);
539 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
540 * @napi: napi instance this buffer was allocated for
541 * @len: length to allocate
542 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
544 * Allocate a new sk_buff for use in NAPI receive. This buffer will
545 * attempt to allocate the head from a special reserved region used
546 * only for NAPI Rx allocation. By doing this we can save several
547 * CPU cycles by avoiding having to disable and re-enable IRQs.
549 * %NULL is returned if there is no free memory.
551 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
554 struct napi_alloc_cache *nc;
558 len += NET_SKB_PAD + NET_IP_ALIGN;
560 /* If requested length is either too small or too big,
561 * we use kmalloc() for skb->head allocation.
563 if (len <= SKB_WITH_OVERHEAD(1024) ||
564 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
565 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
566 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
573 nc = this_cpu_ptr(&napi_alloc_cache);
574 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
575 len = SKB_DATA_ALIGN(len);
577 if (sk_memalloc_socks())
578 gfp_mask |= __GFP_MEMALLOC;
580 data = page_frag_alloc(&nc->page, len, gfp_mask);
584 skb = __napi_build_skb(data, len);
585 if (unlikely(!skb)) {
590 if (nc->page.pfmemalloc)
595 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
596 skb->dev = napi->dev;
601 EXPORT_SYMBOL(__napi_alloc_skb);
603 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
604 int size, unsigned int truesize)
606 skb_fill_page_desc(skb, i, page, off, size);
608 skb->data_len += size;
609 skb->truesize += truesize;
611 EXPORT_SYMBOL(skb_add_rx_frag);
613 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
614 unsigned int truesize)
616 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
618 skb_frag_size_add(frag, size);
620 skb->data_len += size;
621 skb->truesize += truesize;
623 EXPORT_SYMBOL(skb_coalesce_rx_frag);
625 static void skb_drop_list(struct sk_buff **listp)
627 kfree_skb_list(*listp);
631 static inline void skb_drop_fraglist(struct sk_buff *skb)
633 skb_drop_list(&skb_shinfo(skb)->frag_list);
636 static void skb_clone_fraglist(struct sk_buff *skb)
638 struct sk_buff *list;
640 skb_walk_frags(skb, list)
644 static void skb_free_head(struct sk_buff *skb)
646 unsigned char *head = skb->head;
654 static void skb_release_data(struct sk_buff *skb)
656 struct skb_shared_info *shinfo = skb_shinfo(skb);
660 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
664 skb_zcopy_clear(skb, true);
666 for (i = 0; i < shinfo->nr_frags; i++)
667 __skb_frag_unref(&shinfo->frags[i]);
669 if (shinfo->frag_list)
670 kfree_skb_list(shinfo->frag_list);
676 * Free an skbuff by memory without cleaning the state.
678 static void kfree_skbmem(struct sk_buff *skb)
680 struct sk_buff_fclones *fclones;
682 switch (skb->fclone) {
683 case SKB_FCLONE_UNAVAILABLE:
684 kmem_cache_free(skbuff_head_cache, skb);
687 case SKB_FCLONE_ORIG:
688 fclones = container_of(skb, struct sk_buff_fclones, skb1);
690 /* We usually free the clone (TX completion) before original skb
691 * This test would have no chance to be true for the clone,
692 * while here, branch prediction will be good.
694 if (refcount_read(&fclones->fclone_ref) == 1)
698 default: /* SKB_FCLONE_CLONE */
699 fclones = container_of(skb, struct sk_buff_fclones, skb2);
702 if (!refcount_dec_and_test(&fclones->fclone_ref))
705 kmem_cache_free(skbuff_fclone_cache, fclones);
708 void skb_release_head_state(struct sk_buff *skb)
711 if (skb->destructor) {
713 skb->destructor(skb);
715 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
716 nf_conntrack_put(skb_nfct(skb));
721 /* Free everything but the sk_buff shell. */
722 static void skb_release_all(struct sk_buff *skb)
724 skb_release_head_state(skb);
725 if (likely(skb->head))
726 skb_release_data(skb);
730 * __kfree_skb - private function
733 * Free an sk_buff. Release anything attached to the buffer.
734 * Clean the state. This is an internal helper function. Users should
735 * always call kfree_skb
738 void __kfree_skb(struct sk_buff *skb)
740 skb_release_all(skb);
743 EXPORT_SYMBOL(__kfree_skb);
746 * kfree_skb - free an sk_buff
747 * @skb: buffer to free
749 * Drop a reference to the buffer and free it if the usage count has
752 void kfree_skb(struct sk_buff *skb)
757 trace_kfree_skb(skb, __builtin_return_address(0));
760 EXPORT_SYMBOL(kfree_skb);
762 void kfree_skb_list(struct sk_buff *segs)
765 struct sk_buff *next = segs->next;
771 EXPORT_SYMBOL(kfree_skb_list);
773 /* Dump skb information and contents.
775 * Must only be called from net_ratelimit()-ed paths.
777 * Dumps whole packets if full_pkt, only headers otherwise.
779 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
781 struct skb_shared_info *sh = skb_shinfo(skb);
782 struct net_device *dev = skb->dev;
783 struct sock *sk = skb->sk;
784 struct sk_buff *list_skb;
785 bool has_mac, has_trans;
786 int headroom, tailroom;
792 len = min_t(int, skb->len, MAX_HEADER + 128);
794 headroom = skb_headroom(skb);
795 tailroom = skb_tailroom(skb);
797 has_mac = skb_mac_header_was_set(skb);
798 has_trans = skb_transport_header_was_set(skb);
800 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
801 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
802 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
803 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
804 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
805 level, skb->len, headroom, skb_headlen(skb), tailroom,
806 has_mac ? skb->mac_header : -1,
807 has_mac ? skb_mac_header_len(skb) : -1,
809 has_trans ? skb_network_header_len(skb) : -1,
810 has_trans ? skb->transport_header : -1,
811 sh->tx_flags, sh->nr_frags,
812 sh->gso_size, sh->gso_type, sh->gso_segs,
813 skb->csum, skb->ip_summed, skb->csum_complete_sw,
814 skb->csum_valid, skb->csum_level,
815 skb->hash, skb->sw_hash, skb->l4_hash,
816 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
819 printk("%sdev name=%s feat=0x%pNF\n",
820 level, dev->name, &dev->features);
822 printk("%ssk family=%hu type=%u proto=%u\n",
823 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
825 if (full_pkt && headroom)
826 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
827 16, 1, skb->head, headroom, false);
829 seg_len = min_t(int, skb_headlen(skb), len);
831 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
832 16, 1, skb->data, seg_len, false);
835 if (full_pkt && tailroom)
836 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
837 16, 1, skb_tail_pointer(skb), tailroom, false);
839 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
840 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
841 u32 p_off, p_len, copied;
845 skb_frag_foreach_page(frag, skb_frag_off(frag),
846 skb_frag_size(frag), p, p_off, p_len,
848 seg_len = min_t(int, p_len, len);
849 vaddr = kmap_atomic(p);
850 print_hex_dump(level, "skb frag: ",
852 16, 1, vaddr + p_off, seg_len, false);
853 kunmap_atomic(vaddr);
860 if (full_pkt && skb_has_frag_list(skb)) {
861 printk("skb fraglist:\n");
862 skb_walk_frags(skb, list_skb)
863 skb_dump(level, list_skb, true);
866 EXPORT_SYMBOL(skb_dump);
869 * skb_tx_error - report an sk_buff xmit error
870 * @skb: buffer that triggered an error
872 * Report xmit error if a device callback is tracking this skb.
873 * skb must be freed afterwards.
875 void skb_tx_error(struct sk_buff *skb)
877 skb_zcopy_clear(skb, true);
879 EXPORT_SYMBOL(skb_tx_error);
881 #ifdef CONFIG_TRACEPOINTS
883 * consume_skb - free an skbuff
884 * @skb: buffer to free
886 * Drop a ref to the buffer and free it if the usage count has hit zero
887 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
888 * is being dropped after a failure and notes that
890 void consume_skb(struct sk_buff *skb)
895 trace_consume_skb(skb);
898 EXPORT_SYMBOL(consume_skb);
902 * __consume_stateless_skb - free an skbuff, assuming it is stateless
903 * @skb: buffer to free
905 * Alike consume_skb(), but this variant assumes that this is the last
906 * skb reference and all the head states have been already dropped
908 void __consume_stateless_skb(struct sk_buff *skb)
910 trace_consume_skb(skb);
911 skb_release_data(skb);
915 static void napi_skb_cache_put(struct sk_buff *skb)
917 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
920 kasan_poison_object_data(skbuff_head_cache, skb);
921 nc->skb_cache[nc->skb_count++] = skb;
923 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
924 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
925 kasan_unpoison_object_data(skbuff_head_cache,
928 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
929 nc->skb_cache + NAPI_SKB_CACHE_HALF);
930 nc->skb_count = NAPI_SKB_CACHE_HALF;
934 void __kfree_skb_defer(struct sk_buff *skb)
936 skb_release_all(skb);
937 napi_skb_cache_put(skb);
940 void napi_skb_free_stolen_head(struct sk_buff *skb)
944 napi_skb_cache_put(skb);
947 void napi_consume_skb(struct sk_buff *skb, int budget)
949 /* Zero budget indicate non-NAPI context called us, like netpoll */
950 if (unlikely(!budget)) {
951 dev_consume_skb_any(skb);
955 lockdep_assert_in_softirq();
960 /* if reaching here SKB is ready to free */
961 trace_consume_skb(skb);
963 /* if SKB is a clone, don't handle this case */
964 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
969 skb_release_all(skb);
970 napi_skb_cache_put(skb);
972 EXPORT_SYMBOL(napi_consume_skb);
974 /* Make sure a field is enclosed inside headers_start/headers_end section */
975 #define CHECK_SKB_FIELD(field) \
976 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
977 offsetof(struct sk_buff, headers_start)); \
978 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
979 offsetof(struct sk_buff, headers_end)); \
981 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
983 new->tstamp = old->tstamp;
984 /* We do not copy old->sk */
986 memcpy(new->cb, old->cb, sizeof(old->cb));
987 skb_dst_copy(new, old);
988 __skb_ext_copy(new, old);
989 __nf_copy(new, old, false);
991 /* Note : this field could be in headers_start/headers_end section
992 * It is not yet because we do not want to have a 16 bit hole
994 new->queue_mapping = old->queue_mapping;
996 memcpy(&new->headers_start, &old->headers_start,
997 offsetof(struct sk_buff, headers_end) -
998 offsetof(struct sk_buff, headers_start));
999 CHECK_SKB_FIELD(protocol);
1000 CHECK_SKB_FIELD(csum);
1001 CHECK_SKB_FIELD(hash);
1002 CHECK_SKB_FIELD(priority);
1003 CHECK_SKB_FIELD(skb_iif);
1004 CHECK_SKB_FIELD(vlan_proto);
1005 CHECK_SKB_FIELD(vlan_tci);
1006 CHECK_SKB_FIELD(transport_header);
1007 CHECK_SKB_FIELD(network_header);
1008 CHECK_SKB_FIELD(mac_header);
1009 CHECK_SKB_FIELD(inner_protocol);
1010 CHECK_SKB_FIELD(inner_transport_header);
1011 CHECK_SKB_FIELD(inner_network_header);
1012 CHECK_SKB_FIELD(inner_mac_header);
1013 CHECK_SKB_FIELD(mark);
1014 #ifdef CONFIG_NETWORK_SECMARK
1015 CHECK_SKB_FIELD(secmark);
1017 #ifdef CONFIG_NET_RX_BUSY_POLL
1018 CHECK_SKB_FIELD(napi_id);
1021 CHECK_SKB_FIELD(sender_cpu);
1023 #ifdef CONFIG_NET_SCHED
1024 CHECK_SKB_FIELD(tc_index);
1030 * You should not add any new code to this function. Add it to
1031 * __copy_skb_header above instead.
1033 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1035 #define C(x) n->x = skb->x
1037 n->next = n->prev = NULL;
1039 __copy_skb_header(n, skb);
1044 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1049 n->destructor = NULL;
1056 refcount_set(&n->users, 1);
1058 atomic_inc(&(skb_shinfo(skb)->dataref));
1066 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1067 * @first: first sk_buff of the msg
1069 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1073 n = alloc_skb(0, GFP_ATOMIC);
1077 n->len = first->len;
1078 n->data_len = first->len;
1079 n->truesize = first->truesize;
1081 skb_shinfo(n)->frag_list = first;
1083 __copy_skb_header(n, first);
1084 n->destructor = NULL;
1088 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1091 * skb_morph - morph one skb into another
1092 * @dst: the skb to receive the contents
1093 * @src: the skb to supply the contents
1095 * This is identical to skb_clone except that the target skb is
1096 * supplied by the user.
1098 * The target skb is returned upon exit.
1100 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1102 skb_release_all(dst);
1103 return __skb_clone(dst, src);
1105 EXPORT_SYMBOL_GPL(skb_morph);
1107 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1109 unsigned long max_pg, num_pg, new_pg, old_pg;
1110 struct user_struct *user;
1112 if (capable(CAP_IPC_LOCK) || !size)
1115 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1116 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1117 user = mmp->user ? : current_user();
1120 old_pg = atomic_long_read(&user->locked_vm);
1121 new_pg = old_pg + num_pg;
1122 if (new_pg > max_pg)
1124 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1128 mmp->user = get_uid(user);
1129 mmp->num_pg = num_pg;
1131 mmp->num_pg += num_pg;
1136 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1138 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1141 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1142 free_uid(mmp->user);
1145 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1147 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1149 struct ubuf_info *uarg;
1150 struct sk_buff *skb;
1152 WARN_ON_ONCE(!in_task());
1154 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1158 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1159 uarg = (void *)skb->cb;
1160 uarg->mmp.user = NULL;
1162 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1167 uarg->callback = msg_zerocopy_callback;
1168 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1170 uarg->bytelen = size;
1172 uarg->flags = SKBFL_ZEROCOPY_FRAG;
1173 refcount_set(&uarg->refcnt, 1);
1178 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc);
1180 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1182 return container_of((void *)uarg, struct sk_buff, cb);
1185 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1186 struct ubuf_info *uarg)
1189 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1192 /* realloc only when socket is locked (TCP, UDP cork),
1193 * so uarg->len and sk_zckey access is serialized
1195 if (!sock_owned_by_user(sk)) {
1200 bytelen = uarg->bytelen + size;
1201 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1202 /* TCP can create new skb to attach new uarg */
1203 if (sk->sk_type == SOCK_STREAM)
1208 next = (u32)atomic_read(&sk->sk_zckey);
1209 if ((u32)(uarg->id + uarg->len) == next) {
1210 if (mm_account_pinned_pages(&uarg->mmp, size))
1213 uarg->bytelen = bytelen;
1214 atomic_set(&sk->sk_zckey, ++next);
1216 /* no extra ref when appending to datagram (MSG_MORE) */
1217 if (sk->sk_type == SOCK_STREAM)
1218 net_zcopy_get(uarg);
1225 return msg_zerocopy_alloc(sk, size);
1227 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1229 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1231 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1235 old_lo = serr->ee.ee_info;
1236 old_hi = serr->ee.ee_data;
1237 sum_len = old_hi - old_lo + 1ULL + len;
1239 if (sum_len >= (1ULL << 32))
1242 if (lo != old_hi + 1)
1245 serr->ee.ee_data += len;
1249 static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1251 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1252 struct sock_exterr_skb *serr;
1253 struct sock *sk = skb->sk;
1254 struct sk_buff_head *q;
1255 unsigned long flags;
1260 mm_unaccount_pinned_pages(&uarg->mmp);
1262 /* if !len, there was only 1 call, and it was aborted
1263 * so do not queue a completion notification
1265 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1270 hi = uarg->id + len - 1;
1271 is_zerocopy = uarg->zerocopy;
1273 serr = SKB_EXT_ERR(skb);
1274 memset(serr, 0, sizeof(*serr));
1275 serr->ee.ee_errno = 0;
1276 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1277 serr->ee.ee_data = hi;
1278 serr->ee.ee_info = lo;
1280 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1282 q = &sk->sk_error_queue;
1283 spin_lock_irqsave(&q->lock, flags);
1284 tail = skb_peek_tail(q);
1285 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1286 !skb_zerocopy_notify_extend(tail, lo, len)) {
1287 __skb_queue_tail(q, skb);
1290 spin_unlock_irqrestore(&q->lock, flags);
1292 sk->sk_error_report(sk);
1299 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1302 uarg->zerocopy = uarg->zerocopy & success;
1304 if (refcount_dec_and_test(&uarg->refcnt))
1305 __msg_zerocopy_callback(uarg);
1307 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1309 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1311 struct sock *sk = skb_from_uarg(uarg)->sk;
1313 atomic_dec(&sk->sk_zckey);
1317 msg_zerocopy_callback(NULL, uarg, true);
1319 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1321 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1323 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1325 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1327 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1328 struct msghdr *msg, int len,
1329 struct ubuf_info *uarg)
1331 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1332 struct iov_iter orig_iter = msg->msg_iter;
1333 int err, orig_len = skb->len;
1335 /* An skb can only point to one uarg. This edge case happens when
1336 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1338 if (orig_uarg && uarg != orig_uarg)
1341 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1342 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1343 struct sock *save_sk = skb->sk;
1345 /* Streams do not free skb on error. Reset to prev state. */
1346 msg->msg_iter = orig_iter;
1348 ___pskb_trim(skb, orig_len);
1353 skb_zcopy_set(skb, uarg, NULL);
1354 return skb->len - orig_len;
1356 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1358 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1361 if (skb_zcopy(orig)) {
1362 if (skb_zcopy(nskb)) {
1363 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1368 if (skb_uarg(nskb) == skb_uarg(orig))
1370 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1373 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1379 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1380 * @skb: the skb to modify
1381 * @gfp_mask: allocation priority
1383 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1384 * It will copy all frags into kernel and drop the reference
1385 * to userspace pages.
1387 * If this function is called from an interrupt gfp_mask() must be
1390 * Returns 0 on success or a negative error code on failure
1391 * to allocate kernel memory to copy to.
1393 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1395 int num_frags = skb_shinfo(skb)->nr_frags;
1396 struct page *page, *head = NULL;
1400 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1406 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1407 for (i = 0; i < new_frags; i++) {
1408 page = alloc_page(gfp_mask);
1411 struct page *next = (struct page *)page_private(head);
1417 set_page_private(page, (unsigned long)head);
1423 for (i = 0; i < num_frags; i++) {
1424 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1425 u32 p_off, p_len, copied;
1429 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1430 p, p_off, p_len, copied) {
1432 vaddr = kmap_atomic(p);
1434 while (done < p_len) {
1435 if (d_off == PAGE_SIZE) {
1437 page = (struct page *)page_private(page);
1439 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1440 memcpy(page_address(page) + d_off,
1441 vaddr + p_off + done, copy);
1445 kunmap_atomic(vaddr);
1449 /* skb frags release userspace buffers */
1450 for (i = 0; i < num_frags; i++)
1451 skb_frag_unref(skb, i);
1453 /* skb frags point to kernel buffers */
1454 for (i = 0; i < new_frags - 1; i++) {
1455 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1456 head = (struct page *)page_private(head);
1458 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1459 skb_shinfo(skb)->nr_frags = new_frags;
1462 skb_zcopy_clear(skb, false);
1465 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1468 * skb_clone - duplicate an sk_buff
1469 * @skb: buffer to clone
1470 * @gfp_mask: allocation priority
1472 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1473 * copies share the same packet data but not structure. The new
1474 * buffer has a reference count of 1. If the allocation fails the
1475 * function returns %NULL otherwise the new buffer is returned.
1477 * If this function is called from an interrupt gfp_mask() must be
1481 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1483 struct sk_buff_fclones *fclones = container_of(skb,
1484 struct sk_buff_fclones,
1488 if (skb_orphan_frags(skb, gfp_mask))
1491 if (skb->fclone == SKB_FCLONE_ORIG &&
1492 refcount_read(&fclones->fclone_ref) == 1) {
1494 refcount_set(&fclones->fclone_ref, 2);
1496 if (skb_pfmemalloc(skb))
1497 gfp_mask |= __GFP_MEMALLOC;
1499 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1503 n->fclone = SKB_FCLONE_UNAVAILABLE;
1506 return __skb_clone(n, skb);
1508 EXPORT_SYMBOL(skb_clone);
1510 void skb_headers_offset_update(struct sk_buff *skb, int off)
1512 /* Only adjust this if it actually is csum_start rather than csum */
1513 if (skb->ip_summed == CHECKSUM_PARTIAL)
1514 skb->csum_start += off;
1515 /* {transport,network,mac}_header and tail are relative to skb->head */
1516 skb->transport_header += off;
1517 skb->network_header += off;
1518 if (skb_mac_header_was_set(skb))
1519 skb->mac_header += off;
1520 skb->inner_transport_header += off;
1521 skb->inner_network_header += off;
1522 skb->inner_mac_header += off;
1524 EXPORT_SYMBOL(skb_headers_offset_update);
1526 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1528 __copy_skb_header(new, old);
1530 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1531 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1532 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1534 EXPORT_SYMBOL(skb_copy_header);
1536 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1538 if (skb_pfmemalloc(skb))
1539 return SKB_ALLOC_RX;
1544 * skb_copy - create private copy of an sk_buff
1545 * @skb: buffer to copy
1546 * @gfp_mask: allocation priority
1548 * Make a copy of both an &sk_buff and its data. This is used when the
1549 * caller wishes to modify the data and needs a private copy of the
1550 * data to alter. Returns %NULL on failure or the pointer to the buffer
1551 * on success. The returned buffer has a reference count of 1.
1553 * As by-product this function converts non-linear &sk_buff to linear
1554 * one, so that &sk_buff becomes completely private and caller is allowed
1555 * to modify all the data of returned buffer. This means that this
1556 * function is not recommended for use in circumstances when only
1557 * header is going to be modified. Use pskb_copy() instead.
1560 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1562 int headerlen = skb_headroom(skb);
1563 unsigned int size = skb_end_offset(skb) + skb->data_len;
1564 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1565 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1570 /* Set the data pointer */
1571 skb_reserve(n, headerlen);
1572 /* Set the tail pointer and length */
1573 skb_put(n, skb->len);
1575 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1577 skb_copy_header(n, skb);
1580 EXPORT_SYMBOL(skb_copy);
1583 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1584 * @skb: buffer to copy
1585 * @headroom: headroom of new skb
1586 * @gfp_mask: allocation priority
1587 * @fclone: if true allocate the copy of the skb from the fclone
1588 * cache instead of the head cache; it is recommended to set this
1589 * to true for the cases where the copy will likely be cloned
1591 * Make a copy of both an &sk_buff and part of its data, located
1592 * in header. Fragmented data remain shared. This is used when
1593 * the caller wishes to modify only header of &sk_buff and needs
1594 * private copy of the header to alter. Returns %NULL on failure
1595 * or the pointer to the buffer on success.
1596 * The returned buffer has a reference count of 1.
1599 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1600 gfp_t gfp_mask, bool fclone)
1602 unsigned int size = skb_headlen(skb) + headroom;
1603 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1604 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1609 /* Set the data pointer */
1610 skb_reserve(n, headroom);
1611 /* Set the tail pointer and length */
1612 skb_put(n, skb_headlen(skb));
1613 /* Copy the bytes */
1614 skb_copy_from_linear_data(skb, n->data, n->len);
1616 n->truesize += skb->data_len;
1617 n->data_len = skb->data_len;
1620 if (skb_shinfo(skb)->nr_frags) {
1623 if (skb_orphan_frags(skb, gfp_mask) ||
1624 skb_zerocopy_clone(n, skb, gfp_mask)) {
1629 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1630 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1631 skb_frag_ref(skb, i);
1633 skb_shinfo(n)->nr_frags = i;
1636 if (skb_has_frag_list(skb)) {
1637 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1638 skb_clone_fraglist(n);
1641 skb_copy_header(n, skb);
1645 EXPORT_SYMBOL(__pskb_copy_fclone);
1648 * pskb_expand_head - reallocate header of &sk_buff
1649 * @skb: buffer to reallocate
1650 * @nhead: room to add at head
1651 * @ntail: room to add at tail
1652 * @gfp_mask: allocation priority
1654 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1655 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1656 * reference count of 1. Returns zero in the case of success or error,
1657 * if expansion failed. In the last case, &sk_buff is not changed.
1659 * All the pointers pointing into skb header may change and must be
1660 * reloaded after call to this function.
1663 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1666 int i, osize = skb_end_offset(skb);
1667 int size = osize + nhead + ntail;
1673 BUG_ON(skb_shared(skb));
1675 size = SKB_DATA_ALIGN(size);
1677 if (skb_pfmemalloc(skb))
1678 gfp_mask |= __GFP_MEMALLOC;
1679 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1680 gfp_mask, NUMA_NO_NODE, NULL);
1683 size = SKB_WITH_OVERHEAD(ksize(data));
1685 /* Copy only real data... and, alas, header. This should be
1686 * optimized for the cases when header is void.
1688 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1690 memcpy((struct skb_shared_info *)(data + size),
1692 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1695 * if shinfo is shared we must drop the old head gracefully, but if it
1696 * is not we can just drop the old head and let the existing refcount
1697 * be since all we did is relocate the values
1699 if (skb_cloned(skb)) {
1700 if (skb_orphan_frags(skb, gfp_mask))
1703 refcount_inc(&skb_uarg(skb)->refcnt);
1704 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1705 skb_frag_ref(skb, i);
1707 if (skb_has_frag_list(skb))
1708 skb_clone_fraglist(skb);
1710 skb_release_data(skb);
1714 off = (data + nhead) - skb->head;
1719 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1723 skb->end = skb->head + size;
1726 skb_headers_offset_update(skb, nhead);
1730 atomic_set(&skb_shinfo(skb)->dataref, 1);
1732 skb_metadata_clear(skb);
1734 /* It is not generally safe to change skb->truesize.
1735 * For the moment, we really care of rx path, or
1736 * when skb is orphaned (not attached to a socket).
1738 if (!skb->sk || skb->destructor == sock_edemux)
1739 skb->truesize += size - osize;
1748 EXPORT_SYMBOL(pskb_expand_head);
1750 /* Make private copy of skb with writable head and some headroom */
1752 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1754 struct sk_buff *skb2;
1755 int delta = headroom - skb_headroom(skb);
1758 skb2 = pskb_copy(skb, GFP_ATOMIC);
1760 skb2 = skb_clone(skb, GFP_ATOMIC);
1761 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1769 EXPORT_SYMBOL(skb_realloc_headroom);
1772 * skb_copy_expand - copy and expand sk_buff
1773 * @skb: buffer to copy
1774 * @newheadroom: new free bytes at head
1775 * @newtailroom: new free bytes at tail
1776 * @gfp_mask: allocation priority
1778 * Make a copy of both an &sk_buff and its data and while doing so
1779 * allocate additional space.
1781 * This is used when the caller wishes to modify the data and needs a
1782 * private copy of the data to alter as well as more space for new fields.
1783 * Returns %NULL on failure or the pointer to the buffer
1784 * on success. The returned buffer has a reference count of 1.
1786 * You must pass %GFP_ATOMIC as the allocation priority if this function
1787 * is called from an interrupt.
1789 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1790 int newheadroom, int newtailroom,
1794 * Allocate the copy buffer
1796 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1797 gfp_mask, skb_alloc_rx_flag(skb),
1799 int oldheadroom = skb_headroom(skb);
1800 int head_copy_len, head_copy_off;
1805 skb_reserve(n, newheadroom);
1807 /* Set the tail pointer and length */
1808 skb_put(n, skb->len);
1810 head_copy_len = oldheadroom;
1812 if (newheadroom <= head_copy_len)
1813 head_copy_len = newheadroom;
1815 head_copy_off = newheadroom - head_copy_len;
1817 /* Copy the linear header and data. */
1818 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1819 skb->len + head_copy_len));
1821 skb_copy_header(n, skb);
1823 skb_headers_offset_update(n, newheadroom - oldheadroom);
1827 EXPORT_SYMBOL(skb_copy_expand);
1830 * __skb_pad - zero pad the tail of an skb
1831 * @skb: buffer to pad
1832 * @pad: space to pad
1833 * @free_on_error: free buffer on error
1835 * Ensure that a buffer is followed by a padding area that is zero
1836 * filled. Used by network drivers which may DMA or transfer data
1837 * beyond the buffer end onto the wire.
1839 * May return error in out of memory cases. The skb is freed on error
1840 * if @free_on_error is true.
1843 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1848 /* If the skbuff is non linear tailroom is always zero.. */
1849 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1850 memset(skb->data+skb->len, 0, pad);
1854 ntail = skb->data_len + pad - (skb->end - skb->tail);
1855 if (likely(skb_cloned(skb) || ntail > 0)) {
1856 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1861 /* FIXME: The use of this function with non-linear skb's really needs
1864 err = skb_linearize(skb);
1868 memset(skb->data + skb->len, 0, pad);
1876 EXPORT_SYMBOL(__skb_pad);
1879 * pskb_put - add data to the tail of a potentially fragmented buffer
1880 * @skb: start of the buffer to use
1881 * @tail: tail fragment of the buffer to use
1882 * @len: amount of data to add
1884 * This function extends the used data area of the potentially
1885 * fragmented buffer. @tail must be the last fragment of @skb -- or
1886 * @skb itself. If this would exceed the total buffer size the kernel
1887 * will panic. A pointer to the first byte of the extra data is
1891 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1894 skb->data_len += len;
1897 return skb_put(tail, len);
1899 EXPORT_SYMBOL_GPL(pskb_put);
1902 * skb_put - add data to a buffer
1903 * @skb: buffer to use
1904 * @len: amount of data to add
1906 * This function extends the used data area of the buffer. If this would
1907 * exceed the total buffer size the kernel will panic. A pointer to the
1908 * first byte of the extra data is returned.
1910 void *skb_put(struct sk_buff *skb, unsigned int len)
1912 void *tmp = skb_tail_pointer(skb);
1913 SKB_LINEAR_ASSERT(skb);
1916 if (unlikely(skb->tail > skb->end))
1917 skb_over_panic(skb, len, __builtin_return_address(0));
1920 EXPORT_SYMBOL(skb_put);
1923 * skb_push - add data to the start of a buffer
1924 * @skb: buffer to use
1925 * @len: amount of data to add
1927 * This function extends the used data area of the buffer at the buffer
1928 * start. If this would exceed the total buffer headroom the kernel will
1929 * panic. A pointer to the first byte of the extra data is returned.
1931 void *skb_push(struct sk_buff *skb, unsigned int len)
1935 if (unlikely(skb->data < skb->head))
1936 skb_under_panic(skb, len, __builtin_return_address(0));
1939 EXPORT_SYMBOL(skb_push);
1942 * skb_pull - remove data from the start of a buffer
1943 * @skb: buffer to use
1944 * @len: amount of data to remove
1946 * This function removes data from the start of a buffer, returning
1947 * the memory to the headroom. A pointer to the next data in the buffer
1948 * is returned. Once the data has been pulled future pushes will overwrite
1951 void *skb_pull(struct sk_buff *skb, unsigned int len)
1953 return skb_pull_inline(skb, len);
1955 EXPORT_SYMBOL(skb_pull);
1958 * skb_trim - remove end from a buffer
1959 * @skb: buffer to alter
1962 * Cut the length of a buffer down by removing data from the tail. If
1963 * the buffer is already under the length specified it is not modified.
1964 * The skb must be linear.
1966 void skb_trim(struct sk_buff *skb, unsigned int len)
1969 __skb_trim(skb, len);
1971 EXPORT_SYMBOL(skb_trim);
1973 /* Trims skb to length len. It can change skb pointers.
1976 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1978 struct sk_buff **fragp;
1979 struct sk_buff *frag;
1980 int offset = skb_headlen(skb);
1981 int nfrags = skb_shinfo(skb)->nr_frags;
1985 if (skb_cloned(skb) &&
1986 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1993 for (; i < nfrags; i++) {
1994 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2001 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2004 skb_shinfo(skb)->nr_frags = i;
2006 for (; i < nfrags; i++)
2007 skb_frag_unref(skb, i);
2009 if (skb_has_frag_list(skb))
2010 skb_drop_fraglist(skb);
2014 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2015 fragp = &frag->next) {
2016 int end = offset + frag->len;
2018 if (skb_shared(frag)) {
2019 struct sk_buff *nfrag;
2021 nfrag = skb_clone(frag, GFP_ATOMIC);
2022 if (unlikely(!nfrag))
2025 nfrag->next = frag->next;
2037 unlikely((err = pskb_trim(frag, len - offset))))
2041 skb_drop_list(&frag->next);
2046 if (len > skb_headlen(skb)) {
2047 skb->data_len -= skb->len - len;
2052 skb_set_tail_pointer(skb, len);
2055 if (!skb->sk || skb->destructor == sock_edemux)
2059 EXPORT_SYMBOL(___pskb_trim);
2061 /* Note : use pskb_trim_rcsum() instead of calling this directly
2063 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2065 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2066 int delta = skb->len - len;
2068 skb->csum = csum_block_sub(skb->csum,
2069 skb_checksum(skb, len, delta, 0),
2071 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2072 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2073 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2075 if (offset + sizeof(__sum16) > hdlen)
2078 return __pskb_trim(skb, len);
2080 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2083 * __pskb_pull_tail - advance tail of skb header
2084 * @skb: buffer to reallocate
2085 * @delta: number of bytes to advance tail
2087 * The function makes a sense only on a fragmented &sk_buff,
2088 * it expands header moving its tail forward and copying necessary
2089 * data from fragmented part.
2091 * &sk_buff MUST have reference count of 1.
2093 * Returns %NULL (and &sk_buff does not change) if pull failed
2094 * or value of new tail of skb in the case of success.
2096 * All the pointers pointing into skb header may change and must be
2097 * reloaded after call to this function.
2100 /* Moves tail of skb head forward, copying data from fragmented part,
2101 * when it is necessary.
2102 * 1. It may fail due to malloc failure.
2103 * 2. It may change skb pointers.
2105 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2107 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2109 /* If skb has not enough free space at tail, get new one
2110 * plus 128 bytes for future expansions. If we have enough
2111 * room at tail, reallocate without expansion only if skb is cloned.
2113 int i, k, eat = (skb->tail + delta) - skb->end;
2115 if (eat > 0 || skb_cloned(skb)) {
2116 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2121 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2122 skb_tail_pointer(skb), delta));
2124 /* Optimization: no fragments, no reasons to preestimate
2125 * size of pulled pages. Superb.
2127 if (!skb_has_frag_list(skb))
2130 /* Estimate size of pulled pages. */
2132 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2133 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2140 /* If we need update frag list, we are in troubles.
2141 * Certainly, it is possible to add an offset to skb data,
2142 * but taking into account that pulling is expected to
2143 * be very rare operation, it is worth to fight against
2144 * further bloating skb head and crucify ourselves here instead.
2145 * Pure masohism, indeed. 8)8)
2148 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2149 struct sk_buff *clone = NULL;
2150 struct sk_buff *insp = NULL;
2153 if (list->len <= eat) {
2154 /* Eaten as whole. */
2159 /* Eaten partially. */
2161 if (skb_shared(list)) {
2162 /* Sucks! We need to fork list. :-( */
2163 clone = skb_clone(list, GFP_ATOMIC);
2169 /* This may be pulled without
2173 if (!pskb_pull(list, eat)) {
2181 /* Free pulled out fragments. */
2182 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2183 skb_shinfo(skb)->frag_list = list->next;
2186 /* And insert new clone at head. */
2189 skb_shinfo(skb)->frag_list = clone;
2192 /* Success! Now we may commit changes to skb data. */
2197 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2198 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2201 skb_frag_unref(skb, i);
2204 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2206 *frag = skb_shinfo(skb)->frags[i];
2208 skb_frag_off_add(frag, eat);
2209 skb_frag_size_sub(frag, eat);
2217 skb_shinfo(skb)->nr_frags = k;
2221 skb->data_len -= delta;
2224 skb_zcopy_clear(skb, false);
2226 return skb_tail_pointer(skb);
2228 EXPORT_SYMBOL(__pskb_pull_tail);
2231 * skb_copy_bits - copy bits from skb to kernel buffer
2233 * @offset: offset in source
2234 * @to: destination buffer
2235 * @len: number of bytes to copy
2237 * Copy the specified number of bytes from the source skb to the
2238 * destination buffer.
2241 * If its prototype is ever changed,
2242 * check arch/{*}/net/{*}.S files,
2243 * since it is called from BPF assembly code.
2245 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2247 int start = skb_headlen(skb);
2248 struct sk_buff *frag_iter;
2251 if (offset > (int)skb->len - len)
2255 if ((copy = start - offset) > 0) {
2258 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2259 if ((len -= copy) == 0)
2265 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2267 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2269 WARN_ON(start > offset + len);
2271 end = start + skb_frag_size(f);
2272 if ((copy = end - offset) > 0) {
2273 u32 p_off, p_len, copied;
2280 skb_frag_foreach_page(f,
2281 skb_frag_off(f) + offset - start,
2282 copy, p, p_off, p_len, copied) {
2283 vaddr = kmap_atomic(p);
2284 memcpy(to + copied, vaddr + p_off, p_len);
2285 kunmap_atomic(vaddr);
2288 if ((len -= copy) == 0)
2296 skb_walk_frags(skb, frag_iter) {
2299 WARN_ON(start > offset + len);
2301 end = start + frag_iter->len;
2302 if ((copy = end - offset) > 0) {
2305 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2307 if ((len -= copy) == 0)
2321 EXPORT_SYMBOL(skb_copy_bits);
2324 * Callback from splice_to_pipe(), if we need to release some pages
2325 * at the end of the spd in case we error'ed out in filling the pipe.
2327 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2329 put_page(spd->pages[i]);
2332 static struct page *linear_to_page(struct page *page, unsigned int *len,
2333 unsigned int *offset,
2336 struct page_frag *pfrag = sk_page_frag(sk);
2338 if (!sk_page_frag_refill(sk, pfrag))
2341 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2343 memcpy(page_address(pfrag->page) + pfrag->offset,
2344 page_address(page) + *offset, *len);
2345 *offset = pfrag->offset;
2346 pfrag->offset += *len;
2351 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2353 unsigned int offset)
2355 return spd->nr_pages &&
2356 spd->pages[spd->nr_pages - 1] == page &&
2357 (spd->partial[spd->nr_pages - 1].offset +
2358 spd->partial[spd->nr_pages - 1].len == offset);
2362 * Fill page/offset/length into spd, if it can hold more pages.
2364 static bool spd_fill_page(struct splice_pipe_desc *spd,
2365 struct pipe_inode_info *pipe, struct page *page,
2366 unsigned int *len, unsigned int offset,
2370 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2374 page = linear_to_page(page, len, &offset, sk);
2378 if (spd_can_coalesce(spd, page, offset)) {
2379 spd->partial[spd->nr_pages - 1].len += *len;
2383 spd->pages[spd->nr_pages] = page;
2384 spd->partial[spd->nr_pages].len = *len;
2385 spd->partial[spd->nr_pages].offset = offset;
2391 static bool __splice_segment(struct page *page, unsigned int poff,
2392 unsigned int plen, unsigned int *off,
2394 struct splice_pipe_desc *spd, bool linear,
2396 struct pipe_inode_info *pipe)
2401 /* skip this segment if already processed */
2407 /* ignore any bits we already processed */
2413 unsigned int flen = min(*len, plen);
2415 if (spd_fill_page(spd, pipe, page, &flen, poff,
2421 } while (*len && plen);
2427 * Map linear and fragment data from the skb to spd. It reports true if the
2428 * pipe is full or if we already spliced the requested length.
2430 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2431 unsigned int *offset, unsigned int *len,
2432 struct splice_pipe_desc *spd, struct sock *sk)
2435 struct sk_buff *iter;
2437 /* map the linear part :
2438 * If skb->head_frag is set, this 'linear' part is backed by a
2439 * fragment, and if the head is not shared with any clones then
2440 * we can avoid a copy since we own the head portion of this page.
2442 if (__splice_segment(virt_to_page(skb->data),
2443 (unsigned long) skb->data & (PAGE_SIZE - 1),
2446 skb_head_is_locked(skb),
2451 * then map the fragments
2453 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2454 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2456 if (__splice_segment(skb_frag_page(f),
2457 skb_frag_off(f), skb_frag_size(f),
2458 offset, len, spd, false, sk, pipe))
2462 skb_walk_frags(skb, iter) {
2463 if (*offset >= iter->len) {
2464 *offset -= iter->len;
2467 /* __skb_splice_bits() only fails if the output has no room
2468 * left, so no point in going over the frag_list for the error
2471 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2479 * Map data from the skb to a pipe. Should handle both the linear part,
2480 * the fragments, and the frag list.
2482 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2483 struct pipe_inode_info *pipe, unsigned int tlen,
2486 struct partial_page partial[MAX_SKB_FRAGS];
2487 struct page *pages[MAX_SKB_FRAGS];
2488 struct splice_pipe_desc spd = {
2491 .nr_pages_max = MAX_SKB_FRAGS,
2492 .ops = &nosteal_pipe_buf_ops,
2493 .spd_release = sock_spd_release,
2497 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2500 ret = splice_to_pipe(pipe, &spd);
2504 EXPORT_SYMBOL_GPL(skb_splice_bits);
2506 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2507 struct kvec *vec, size_t num, size_t size)
2509 struct socket *sock = sk->sk_socket;
2513 return kernel_sendmsg(sock, msg, vec, num, size);
2516 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2517 size_t size, int flags)
2519 struct socket *sock = sk->sk_socket;
2523 return kernel_sendpage(sock, page, offset, size, flags);
2526 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2527 struct kvec *vec, size_t num, size_t size);
2528 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2529 size_t size, int flags);
2530 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2531 int len, sendmsg_func sendmsg, sendpage_func sendpage)
2533 unsigned int orig_len = len;
2534 struct sk_buff *head = skb;
2535 unsigned short fragidx;
2540 /* Deal with head data */
2541 while (offset < skb_headlen(skb) && len) {
2545 slen = min_t(int, len, skb_headlen(skb) - offset);
2546 kv.iov_base = skb->data + offset;
2548 memset(&msg, 0, sizeof(msg));
2549 msg.msg_flags = MSG_DONTWAIT;
2551 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2552 sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2560 /* All the data was skb head? */
2564 /* Make offset relative to start of frags */
2565 offset -= skb_headlen(skb);
2567 /* Find where we are in frag list */
2568 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2569 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2571 if (offset < skb_frag_size(frag))
2574 offset -= skb_frag_size(frag);
2577 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2578 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2580 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2583 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2584 sendpage_unlocked, sk,
2585 skb_frag_page(frag),
2586 skb_frag_off(frag) + offset,
2587 slen, MSG_DONTWAIT);
2600 /* Process any frag lists */
2603 if (skb_has_frag_list(skb)) {
2604 skb = skb_shinfo(skb)->frag_list;
2607 } else if (skb->next) {
2614 return orig_len - len;
2617 return orig_len == len ? ret : orig_len - len;
2620 /* Send skb data on a socket. Socket must be locked. */
2621 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2624 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2625 kernel_sendpage_locked);
2627 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2629 /* Send skb data on a socket. Socket must be unlocked. */
2630 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2632 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2637 * skb_store_bits - store bits from kernel buffer to skb
2638 * @skb: destination buffer
2639 * @offset: offset in destination
2640 * @from: source buffer
2641 * @len: number of bytes to copy
2643 * Copy the specified number of bytes from the source buffer to the
2644 * destination skb. This function handles all the messy bits of
2645 * traversing fragment lists and such.
2648 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2650 int start = skb_headlen(skb);
2651 struct sk_buff *frag_iter;
2654 if (offset > (int)skb->len - len)
2657 if ((copy = start - offset) > 0) {
2660 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2661 if ((len -= copy) == 0)
2667 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2668 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2671 WARN_ON(start > offset + len);
2673 end = start + skb_frag_size(frag);
2674 if ((copy = end - offset) > 0) {
2675 u32 p_off, p_len, copied;
2682 skb_frag_foreach_page(frag,
2683 skb_frag_off(frag) + offset - start,
2684 copy, p, p_off, p_len, copied) {
2685 vaddr = kmap_atomic(p);
2686 memcpy(vaddr + p_off, from + copied, p_len);
2687 kunmap_atomic(vaddr);
2690 if ((len -= copy) == 0)
2698 skb_walk_frags(skb, frag_iter) {
2701 WARN_ON(start > offset + len);
2703 end = start + frag_iter->len;
2704 if ((copy = end - offset) > 0) {
2707 if (skb_store_bits(frag_iter, offset - start,
2710 if ((len -= copy) == 0)
2723 EXPORT_SYMBOL(skb_store_bits);
2725 /* Checksum skb data. */
2726 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2727 __wsum csum, const struct skb_checksum_ops *ops)
2729 int start = skb_headlen(skb);
2730 int i, copy = start - offset;
2731 struct sk_buff *frag_iter;
2734 /* Checksum header. */
2738 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2739 skb->data + offset, copy, csum);
2740 if ((len -= copy) == 0)
2746 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2748 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2750 WARN_ON(start > offset + len);
2752 end = start + skb_frag_size(frag);
2753 if ((copy = end - offset) > 0) {
2754 u32 p_off, p_len, copied;
2762 skb_frag_foreach_page(frag,
2763 skb_frag_off(frag) + offset - start,
2764 copy, p, p_off, p_len, copied) {
2765 vaddr = kmap_atomic(p);
2766 csum2 = INDIRECT_CALL_1(ops->update,
2768 vaddr + p_off, p_len, 0);
2769 kunmap_atomic(vaddr);
2770 csum = INDIRECT_CALL_1(ops->combine,
2771 csum_block_add_ext, csum,
2783 skb_walk_frags(skb, frag_iter) {
2786 WARN_ON(start > offset + len);
2788 end = start + frag_iter->len;
2789 if ((copy = end - offset) > 0) {
2793 csum2 = __skb_checksum(frag_iter, offset - start,
2795 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2796 csum, csum2, pos, copy);
2797 if ((len -= copy) == 0)
2808 EXPORT_SYMBOL(__skb_checksum);
2810 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2811 int len, __wsum csum)
2813 const struct skb_checksum_ops ops = {
2814 .update = csum_partial_ext,
2815 .combine = csum_block_add_ext,
2818 return __skb_checksum(skb, offset, len, csum, &ops);
2820 EXPORT_SYMBOL(skb_checksum);
2822 /* Both of above in one bottle. */
2824 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2827 int start = skb_headlen(skb);
2828 int i, copy = start - offset;
2829 struct sk_buff *frag_iter;
2837 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2839 if ((len -= copy) == 0)
2846 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2849 WARN_ON(start > offset + len);
2851 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2852 if ((copy = end - offset) > 0) {
2853 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2854 u32 p_off, p_len, copied;
2862 skb_frag_foreach_page(frag,
2863 skb_frag_off(frag) + offset - start,
2864 copy, p, p_off, p_len, copied) {
2865 vaddr = kmap_atomic(p);
2866 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2869 kunmap_atomic(vaddr);
2870 csum = csum_block_add(csum, csum2, pos);
2882 skb_walk_frags(skb, frag_iter) {
2886 WARN_ON(start > offset + len);
2888 end = start + frag_iter->len;
2889 if ((copy = end - offset) > 0) {
2892 csum2 = skb_copy_and_csum_bits(frag_iter,
2895 csum = csum_block_add(csum, csum2, pos);
2896 if ((len -= copy) == 0)
2907 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2909 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2913 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2914 /* See comments in __skb_checksum_complete(). */
2916 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2917 !skb->csum_complete_sw)
2918 netdev_rx_csum_fault(skb->dev, skb);
2920 if (!skb_shared(skb))
2921 skb->csum_valid = !sum;
2924 EXPORT_SYMBOL(__skb_checksum_complete_head);
2926 /* This function assumes skb->csum already holds pseudo header's checksum,
2927 * which has been changed from the hardware checksum, for example, by
2928 * __skb_checksum_validate_complete(). And, the original skb->csum must
2929 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2931 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2932 * zero. The new checksum is stored back into skb->csum unless the skb is
2935 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2940 csum = skb_checksum(skb, 0, skb->len, 0);
2942 sum = csum_fold(csum_add(skb->csum, csum));
2943 /* This check is inverted, because we already knew the hardware
2944 * checksum is invalid before calling this function. So, if the
2945 * re-computed checksum is valid instead, then we have a mismatch
2946 * between the original skb->csum and skb_checksum(). This means either
2947 * the original hardware checksum is incorrect or we screw up skb->csum
2948 * when moving skb->data around.
2951 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2952 !skb->csum_complete_sw)
2953 netdev_rx_csum_fault(skb->dev, skb);
2956 if (!skb_shared(skb)) {
2957 /* Save full packet checksum */
2959 skb->ip_summed = CHECKSUM_COMPLETE;
2960 skb->csum_complete_sw = 1;
2961 skb->csum_valid = !sum;
2966 EXPORT_SYMBOL(__skb_checksum_complete);
2968 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2970 net_warn_ratelimited(
2971 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2976 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2977 int offset, int len)
2979 net_warn_ratelimited(
2980 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2985 static const struct skb_checksum_ops default_crc32c_ops = {
2986 .update = warn_crc32c_csum_update,
2987 .combine = warn_crc32c_csum_combine,
2990 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2991 &default_crc32c_ops;
2992 EXPORT_SYMBOL(crc32c_csum_stub);
2995 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2996 * @from: source buffer
2998 * Calculates the amount of linear headroom needed in the 'to' skb passed
2999 * into skb_zerocopy().
3002 skb_zerocopy_headlen(const struct sk_buff *from)
3004 unsigned int hlen = 0;
3006 if (!from->head_frag ||
3007 skb_headlen(from) < L1_CACHE_BYTES ||
3008 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3009 hlen = skb_headlen(from);
3011 if (skb_has_frag_list(from))
3016 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3019 * skb_zerocopy - Zero copy skb to skb
3020 * @to: destination buffer
3021 * @from: source buffer
3022 * @len: number of bytes to copy from source buffer
3023 * @hlen: size of linear headroom in destination buffer
3025 * Copies up to `len` bytes from `from` to `to` by creating references
3026 * to the frags in the source buffer.
3028 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3029 * headroom in the `to` buffer.
3032 * 0: everything is OK
3033 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3034 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3037 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3040 int plen = 0; /* length of skb->head fragment */
3043 unsigned int offset;
3045 BUG_ON(!from->head_frag && !hlen);
3047 /* dont bother with small payloads */
3048 if (len <= skb_tailroom(to))
3049 return skb_copy_bits(from, 0, skb_put(to, len), len);
3052 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3057 plen = min_t(int, skb_headlen(from), len);
3059 page = virt_to_head_page(from->head);
3060 offset = from->data - (unsigned char *)page_address(page);
3061 __skb_fill_page_desc(to, 0, page, offset, plen);
3068 to->truesize += len + plen;
3069 to->len += len + plen;
3070 to->data_len += len + plen;
3072 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3076 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3078 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3083 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3084 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3086 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3088 skb_frag_ref(to, j);
3091 skb_shinfo(to)->nr_frags = j;
3095 EXPORT_SYMBOL_GPL(skb_zerocopy);
3097 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3102 if (skb->ip_summed == CHECKSUM_PARTIAL)
3103 csstart = skb_checksum_start_offset(skb);
3105 csstart = skb_headlen(skb);
3107 BUG_ON(csstart > skb_headlen(skb));
3109 skb_copy_from_linear_data(skb, to, csstart);
3112 if (csstart != skb->len)
3113 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3114 skb->len - csstart);
3116 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3117 long csstuff = csstart + skb->csum_offset;
3119 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3122 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3125 * skb_dequeue - remove from the head of the queue
3126 * @list: list to dequeue from
3128 * Remove the head of the list. The list lock is taken so the function
3129 * may be used safely with other locking list functions. The head item is
3130 * returned or %NULL if the list is empty.
3133 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3135 unsigned long flags;
3136 struct sk_buff *result;
3138 spin_lock_irqsave(&list->lock, flags);
3139 result = __skb_dequeue(list);
3140 spin_unlock_irqrestore(&list->lock, flags);
3143 EXPORT_SYMBOL(skb_dequeue);
3146 * skb_dequeue_tail - remove from the tail of the queue
3147 * @list: list to dequeue from
3149 * Remove the tail of the list. The list lock is taken so the function
3150 * may be used safely with other locking list functions. The tail item is
3151 * returned or %NULL if the list is empty.
3153 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3155 unsigned long flags;
3156 struct sk_buff *result;
3158 spin_lock_irqsave(&list->lock, flags);
3159 result = __skb_dequeue_tail(list);
3160 spin_unlock_irqrestore(&list->lock, flags);
3163 EXPORT_SYMBOL(skb_dequeue_tail);
3166 * skb_queue_purge - empty a list
3167 * @list: list to empty
3169 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3170 * the list and one reference dropped. This function takes the list
3171 * lock and is atomic with respect to other list locking functions.
3173 void skb_queue_purge(struct sk_buff_head *list)
3175 struct sk_buff *skb;
3176 while ((skb = skb_dequeue(list)) != NULL)
3179 EXPORT_SYMBOL(skb_queue_purge);
3182 * skb_rbtree_purge - empty a skb rbtree
3183 * @root: root of the rbtree to empty
3184 * Return value: the sum of truesizes of all purged skbs.
3186 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3187 * the list and one reference dropped. This function does not take
3188 * any lock. Synchronization should be handled by the caller (e.g., TCP
3189 * out-of-order queue is protected by the socket lock).
3191 unsigned int skb_rbtree_purge(struct rb_root *root)
3193 struct rb_node *p = rb_first(root);
3194 unsigned int sum = 0;
3197 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3200 rb_erase(&skb->rbnode, root);
3201 sum += skb->truesize;
3208 * skb_queue_head - queue a buffer at the list head
3209 * @list: list to use
3210 * @newsk: buffer to queue
3212 * Queue a buffer at the start of the list. This function takes the
3213 * list lock and can be used safely with other locking &sk_buff functions
3216 * A buffer cannot be placed on two lists at the same time.
3218 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3220 unsigned long flags;
3222 spin_lock_irqsave(&list->lock, flags);
3223 __skb_queue_head(list, newsk);
3224 spin_unlock_irqrestore(&list->lock, flags);
3226 EXPORT_SYMBOL(skb_queue_head);
3229 * skb_queue_tail - queue a buffer at the list tail
3230 * @list: list to use
3231 * @newsk: buffer to queue
3233 * Queue a buffer at the tail of the list. This function takes the
3234 * list lock and can be used safely with other locking &sk_buff functions
3237 * A buffer cannot be placed on two lists at the same time.
3239 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3241 unsigned long flags;
3243 spin_lock_irqsave(&list->lock, flags);
3244 __skb_queue_tail(list, newsk);
3245 spin_unlock_irqrestore(&list->lock, flags);
3247 EXPORT_SYMBOL(skb_queue_tail);
3250 * skb_unlink - remove a buffer from a list
3251 * @skb: buffer to remove
3252 * @list: list to use
3254 * Remove a packet from a list. The list locks are taken and this
3255 * function is atomic with respect to other list locked calls
3257 * You must know what list the SKB is on.
3259 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3261 unsigned long flags;
3263 spin_lock_irqsave(&list->lock, flags);
3264 __skb_unlink(skb, list);
3265 spin_unlock_irqrestore(&list->lock, flags);
3267 EXPORT_SYMBOL(skb_unlink);
3270 * skb_append - append a buffer
3271 * @old: buffer to insert after
3272 * @newsk: buffer to insert
3273 * @list: list to use
3275 * Place a packet after a given packet in a list. The list locks are taken
3276 * and this function is atomic with respect to other list locked calls.
3277 * A buffer cannot be placed on two lists at the same time.
3279 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3281 unsigned long flags;
3283 spin_lock_irqsave(&list->lock, flags);
3284 __skb_queue_after(list, old, newsk);
3285 spin_unlock_irqrestore(&list->lock, flags);
3287 EXPORT_SYMBOL(skb_append);
3289 static inline void skb_split_inside_header(struct sk_buff *skb,
3290 struct sk_buff* skb1,
3291 const u32 len, const int pos)
3295 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3297 /* And move data appendix as is. */
3298 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3299 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3301 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3302 skb_shinfo(skb)->nr_frags = 0;
3303 skb1->data_len = skb->data_len;
3304 skb1->len += skb1->data_len;
3307 skb_set_tail_pointer(skb, len);
3310 static inline void skb_split_no_header(struct sk_buff *skb,
3311 struct sk_buff* skb1,
3312 const u32 len, int pos)
3315 const int nfrags = skb_shinfo(skb)->nr_frags;
3317 skb_shinfo(skb)->nr_frags = 0;
3318 skb1->len = skb1->data_len = skb->len - len;
3320 skb->data_len = len - pos;
3322 for (i = 0; i < nfrags; i++) {
3323 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3325 if (pos + size > len) {
3326 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3330 * We have two variants in this case:
3331 * 1. Move all the frag to the second
3332 * part, if it is possible. F.e.
3333 * this approach is mandatory for TUX,
3334 * where splitting is expensive.
3335 * 2. Split is accurately. We make this.
3337 skb_frag_ref(skb, i);
3338 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3339 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3340 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3341 skb_shinfo(skb)->nr_frags++;
3345 skb_shinfo(skb)->nr_frags++;
3348 skb_shinfo(skb1)->nr_frags = k;
3352 * skb_split - Split fragmented skb to two parts at length len.
3353 * @skb: the buffer to split
3354 * @skb1: the buffer to receive the second part
3355 * @len: new length for skb
3357 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3359 int pos = skb_headlen(skb);
3361 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3362 skb_zerocopy_clone(skb1, skb, 0);
3363 if (len < pos) /* Split line is inside header. */
3364 skb_split_inside_header(skb, skb1, len, pos);
3365 else /* Second chunk has no header, nothing to copy. */
3366 skb_split_no_header(skb, skb1, len, pos);
3368 EXPORT_SYMBOL(skb_split);
3370 /* Shifting from/to a cloned skb is a no-go.
3372 * Caller cannot keep skb_shinfo related pointers past calling here!
3374 static int skb_prepare_for_shift(struct sk_buff *skb)
3378 if (skb_cloned(skb)) {
3379 /* Save and restore truesize: pskb_expand_head() may reallocate
3380 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we
3381 * cannot change truesize at this point.
3383 unsigned int save_truesize = skb->truesize;
3385 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3386 skb->truesize = save_truesize;
3392 * skb_shift - Shifts paged data partially from skb to another
3393 * @tgt: buffer into which tail data gets added
3394 * @skb: buffer from which the paged data comes from
3395 * @shiftlen: shift up to this many bytes
3397 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3398 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3399 * It's up to caller to free skb if everything was shifted.
3401 * If @tgt runs out of frags, the whole operation is aborted.
3403 * Skb cannot include anything else but paged data while tgt is allowed
3404 * to have non-paged data as well.
3406 * TODO: full sized shift could be optimized but that would need
3407 * specialized skb free'er to handle frags without up-to-date nr_frags.
3409 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3411 int from, to, merge, todo;
3412 skb_frag_t *fragfrom, *fragto;
3414 BUG_ON(shiftlen > skb->len);
3416 if (skb_headlen(skb))
3418 if (skb_zcopy(tgt) || skb_zcopy(skb))
3423 to = skb_shinfo(tgt)->nr_frags;
3424 fragfrom = &skb_shinfo(skb)->frags[from];
3426 /* Actual merge is delayed until the point when we know we can
3427 * commit all, so that we don't have to undo partial changes
3430 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3431 skb_frag_off(fragfrom))) {
3436 todo -= skb_frag_size(fragfrom);
3438 if (skb_prepare_for_shift(skb) ||
3439 skb_prepare_for_shift(tgt))
3442 /* All previous frag pointers might be stale! */
3443 fragfrom = &skb_shinfo(skb)->frags[from];
3444 fragto = &skb_shinfo(tgt)->frags[merge];
3446 skb_frag_size_add(fragto, shiftlen);
3447 skb_frag_size_sub(fragfrom, shiftlen);
3448 skb_frag_off_add(fragfrom, shiftlen);
3456 /* Skip full, not-fitting skb to avoid expensive operations */
3457 if ((shiftlen == skb->len) &&
3458 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3461 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3464 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3465 if (to == MAX_SKB_FRAGS)
3468 fragfrom = &skb_shinfo(skb)->frags[from];
3469 fragto = &skb_shinfo(tgt)->frags[to];
3471 if (todo >= skb_frag_size(fragfrom)) {
3472 *fragto = *fragfrom;
3473 todo -= skb_frag_size(fragfrom);
3478 __skb_frag_ref(fragfrom);
3479 skb_frag_page_copy(fragto, fragfrom);
3480 skb_frag_off_copy(fragto, fragfrom);
3481 skb_frag_size_set(fragto, todo);
3483 skb_frag_off_add(fragfrom, todo);
3484 skb_frag_size_sub(fragfrom, todo);
3492 /* Ready to "commit" this state change to tgt */
3493 skb_shinfo(tgt)->nr_frags = to;
3496 fragfrom = &skb_shinfo(skb)->frags[0];
3497 fragto = &skb_shinfo(tgt)->frags[merge];
3499 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3500 __skb_frag_unref(fragfrom);
3503 /* Reposition in the original skb */
3505 while (from < skb_shinfo(skb)->nr_frags)
3506 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3507 skb_shinfo(skb)->nr_frags = to;
3509 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3512 /* Most likely the tgt won't ever need its checksum anymore, skb on
3513 * the other hand might need it if it needs to be resent
3515 tgt->ip_summed = CHECKSUM_PARTIAL;
3516 skb->ip_summed = CHECKSUM_PARTIAL;
3518 /* Yak, is it really working this way? Some helper please? */
3519 skb->len -= shiftlen;
3520 skb->data_len -= shiftlen;
3521 skb->truesize -= shiftlen;
3522 tgt->len += shiftlen;
3523 tgt->data_len += shiftlen;
3524 tgt->truesize += shiftlen;
3530 * skb_prepare_seq_read - Prepare a sequential read of skb data
3531 * @skb: the buffer to read
3532 * @from: lower offset of data to be read
3533 * @to: upper offset of data to be read
3534 * @st: state variable
3536 * Initializes the specified state variable. Must be called before
3537 * invoking skb_seq_read() for the first time.
3539 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3540 unsigned int to, struct skb_seq_state *st)
3542 st->lower_offset = from;
3543 st->upper_offset = to;
3544 st->root_skb = st->cur_skb = skb;
3545 st->frag_idx = st->stepped_offset = 0;
3546 st->frag_data = NULL;
3549 EXPORT_SYMBOL(skb_prepare_seq_read);
3552 * skb_seq_read - Sequentially read skb data
3553 * @consumed: number of bytes consumed by the caller so far
3554 * @data: destination pointer for data to be returned
3555 * @st: state variable
3557 * Reads a block of skb data at @consumed relative to the
3558 * lower offset specified to skb_prepare_seq_read(). Assigns
3559 * the head of the data block to @data and returns the length
3560 * of the block or 0 if the end of the skb data or the upper
3561 * offset has been reached.
3563 * The caller is not required to consume all of the data
3564 * returned, i.e. @consumed is typically set to the number
3565 * of bytes already consumed and the next call to
3566 * skb_seq_read() will return the remaining part of the block.
3568 * Note 1: The size of each block of data returned can be arbitrary,
3569 * this limitation is the cost for zerocopy sequential
3570 * reads of potentially non linear data.
3572 * Note 2: Fragment lists within fragments are not implemented
3573 * at the moment, state->root_skb could be replaced with
3574 * a stack for this purpose.
3576 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3577 struct skb_seq_state *st)
3579 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3582 if (unlikely(abs_offset >= st->upper_offset)) {
3583 if (st->frag_data) {
3584 kunmap_atomic(st->frag_data);
3585 st->frag_data = NULL;
3591 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3593 if (abs_offset < block_limit && !st->frag_data) {
3594 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3595 return block_limit - abs_offset;
3598 if (st->frag_idx == 0 && !st->frag_data)
3599 st->stepped_offset += skb_headlen(st->cur_skb);
3601 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3602 unsigned int pg_idx, pg_off, pg_sz;
3604 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3607 pg_off = skb_frag_off(frag);
3608 pg_sz = skb_frag_size(frag);
3610 if (skb_frag_must_loop(skb_frag_page(frag))) {
3611 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3612 pg_off = offset_in_page(pg_off + st->frag_off);
3613 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3614 PAGE_SIZE - pg_off);
3617 block_limit = pg_sz + st->stepped_offset;
3618 if (abs_offset < block_limit) {
3620 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3622 *data = (u8 *)st->frag_data + pg_off +
3623 (abs_offset - st->stepped_offset);
3625 return block_limit - abs_offset;
3628 if (st->frag_data) {
3629 kunmap_atomic(st->frag_data);
3630 st->frag_data = NULL;
3633 st->stepped_offset += pg_sz;
3634 st->frag_off += pg_sz;
3635 if (st->frag_off == skb_frag_size(frag)) {
3641 if (st->frag_data) {
3642 kunmap_atomic(st->frag_data);
3643 st->frag_data = NULL;
3646 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3647 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3650 } else if (st->cur_skb->next) {
3651 st->cur_skb = st->cur_skb->next;
3658 EXPORT_SYMBOL(skb_seq_read);
3661 * skb_abort_seq_read - Abort a sequential read of skb data
3662 * @st: state variable
3664 * Must be called if skb_seq_read() was not called until it
3667 void skb_abort_seq_read(struct skb_seq_state *st)
3670 kunmap_atomic(st->frag_data);
3672 EXPORT_SYMBOL(skb_abort_seq_read);
3674 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3676 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3677 struct ts_config *conf,
3678 struct ts_state *state)
3680 return skb_seq_read(offset, text, TS_SKB_CB(state));
3683 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3685 skb_abort_seq_read(TS_SKB_CB(state));
3689 * skb_find_text - Find a text pattern in skb data
3690 * @skb: the buffer to look in
3691 * @from: search offset
3693 * @config: textsearch configuration
3695 * Finds a pattern in the skb data according to the specified
3696 * textsearch configuration. Use textsearch_next() to retrieve
3697 * subsequent occurrences of the pattern. Returns the offset
3698 * to the first occurrence or UINT_MAX if no match was found.
3700 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3701 unsigned int to, struct ts_config *config)
3703 struct ts_state state;
3706 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3708 config->get_next_block = skb_ts_get_next_block;
3709 config->finish = skb_ts_finish;
3711 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3713 ret = textsearch_find(config, &state);
3714 return (ret <= to - from ? ret : UINT_MAX);
3716 EXPORT_SYMBOL(skb_find_text);
3718 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3719 int offset, size_t size)
3721 int i = skb_shinfo(skb)->nr_frags;
3723 if (skb_can_coalesce(skb, i, page, offset)) {
3724 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3725 } else if (i < MAX_SKB_FRAGS) {
3727 skb_fill_page_desc(skb, i, page, offset, size);
3734 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3737 * skb_pull_rcsum - pull skb and update receive checksum
3738 * @skb: buffer to update
3739 * @len: length of data pulled
3741 * This function performs an skb_pull on the packet and updates
3742 * the CHECKSUM_COMPLETE checksum. It should be used on
3743 * receive path processing instead of skb_pull unless you know
3744 * that the checksum difference is zero (e.g., a valid IP header)
3745 * or you are setting ip_summed to CHECKSUM_NONE.
3747 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3749 unsigned char *data = skb->data;
3751 BUG_ON(len > skb->len);
3752 __skb_pull(skb, len);
3753 skb_postpull_rcsum(skb, data, len);
3756 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3758 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3760 skb_frag_t head_frag;
3763 page = virt_to_head_page(frag_skb->head);
3764 __skb_frag_set_page(&head_frag, page);
3765 skb_frag_off_set(&head_frag, frag_skb->data -
3766 (unsigned char *)page_address(page));
3767 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3771 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3772 netdev_features_t features,
3773 unsigned int offset)
3775 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3776 unsigned int tnl_hlen = skb_tnl_header_len(skb);
3777 unsigned int delta_truesize = 0;
3778 unsigned int delta_len = 0;
3779 struct sk_buff *tail = NULL;
3780 struct sk_buff *nskb, *tmp;
3783 skb_push(skb, -skb_network_offset(skb) + offset);
3785 skb_shinfo(skb)->frag_list = NULL;
3789 list_skb = list_skb->next;
3792 if (skb_shared(nskb)) {
3793 tmp = skb_clone(nskb, GFP_ATOMIC);
3797 err = skb_unclone(nskb, GFP_ATOMIC);
3808 if (unlikely(err)) {
3809 nskb->next = list_skb;
3815 delta_len += nskb->len;
3816 delta_truesize += nskb->truesize;
3818 skb_push(nskb, -skb_network_offset(nskb) + offset);
3820 skb_release_head_state(nskb);
3821 __copy_skb_header(nskb, skb);
3823 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3824 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3825 nskb->data - tnl_hlen,
3828 if (skb_needs_linearize(nskb, features) &&
3829 __skb_linearize(nskb))
3834 skb->truesize = skb->truesize - delta_truesize;
3835 skb->data_len = skb->data_len - delta_len;
3836 skb->len = skb->len - delta_len;
3842 if (skb_needs_linearize(skb, features) &&
3843 __skb_linearize(skb))
3851 kfree_skb_list(skb->next);
3853 return ERR_PTR(-ENOMEM);
3855 EXPORT_SYMBOL_GPL(skb_segment_list);
3857 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3859 if (unlikely(p->len + skb->len >= 65536))
3862 if (NAPI_GRO_CB(p)->last == p)
3863 skb_shinfo(p)->frag_list = skb;
3865 NAPI_GRO_CB(p)->last->next = skb;
3867 skb_pull(skb, skb_gro_offset(skb));
3869 NAPI_GRO_CB(p)->last = skb;
3870 NAPI_GRO_CB(p)->count++;
3871 p->data_len += skb->len;
3872 p->truesize += skb->truesize;
3875 NAPI_GRO_CB(skb)->same_flow = 1;
3881 * skb_segment - Perform protocol segmentation on skb.
3882 * @head_skb: buffer to segment
3883 * @features: features for the output path (see dev->features)
3885 * This function performs segmentation on the given skb. It returns
3886 * a pointer to the first in a list of new skbs for the segments.
3887 * In case of error it returns ERR_PTR(err).
3889 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3890 netdev_features_t features)
3892 struct sk_buff *segs = NULL;
3893 struct sk_buff *tail = NULL;
3894 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3895 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3896 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3897 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3898 struct sk_buff *frag_skb = head_skb;
3899 unsigned int offset = doffset;
3900 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3901 unsigned int partial_segs = 0;
3902 unsigned int headroom;
3903 unsigned int len = head_skb->len;
3906 int nfrags = skb_shinfo(head_skb)->nr_frags;
3911 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3912 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3913 /* gso_size is untrusted, and we have a frag_list with a linear
3914 * non head_frag head.
3916 * (we assume checking the first list_skb member suffices;
3917 * i.e if either of the list_skb members have non head_frag
3918 * head, then the first one has too).
3920 * If head_skb's headlen does not fit requested gso_size, it
3921 * means that the frag_list members do NOT terminate on exact
3922 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3923 * sharing. Therefore we must fallback to copying the frag_list
3924 * skbs; we do so by disabling SG.
3926 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3927 features &= ~NETIF_F_SG;
3930 __skb_push(head_skb, doffset);
3931 proto = skb_network_protocol(head_skb, NULL);
3932 if (unlikely(!proto))
3933 return ERR_PTR(-EINVAL);
3935 sg = !!(features & NETIF_F_SG);
3936 csum = !!can_checksum_protocol(features, proto);
3938 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3939 if (!(features & NETIF_F_GSO_PARTIAL)) {
3940 struct sk_buff *iter;
3941 unsigned int frag_len;
3944 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3947 /* If we get here then all the required
3948 * GSO features except frag_list are supported.
3949 * Try to split the SKB to multiple GSO SKBs
3950 * with no frag_list.
3951 * Currently we can do that only when the buffers don't
3952 * have a linear part and all the buffers except
3953 * the last are of the same length.
3955 frag_len = list_skb->len;
3956 skb_walk_frags(head_skb, iter) {
3957 if (frag_len != iter->len && iter->next)
3959 if (skb_headlen(iter) && !iter->head_frag)
3965 if (len != frag_len)
3969 /* GSO partial only requires that we trim off any excess that
3970 * doesn't fit into an MSS sized block, so take care of that
3973 partial_segs = len / mss;
3974 if (partial_segs > 1)
3975 mss *= partial_segs;
3981 headroom = skb_headroom(head_skb);
3982 pos = skb_headlen(head_skb);
3985 struct sk_buff *nskb;
3986 skb_frag_t *nskb_frag;
3990 if (unlikely(mss == GSO_BY_FRAGS)) {
3991 len = list_skb->len;
3993 len = head_skb->len - offset;
3998 hsize = skb_headlen(head_skb) - offset;
4000 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4001 (skb_headlen(list_skb) == len || sg)) {
4002 BUG_ON(skb_headlen(list_skb) > len);
4005 nfrags = skb_shinfo(list_skb)->nr_frags;
4006 frag = skb_shinfo(list_skb)->frags;
4007 frag_skb = list_skb;
4008 pos += skb_headlen(list_skb);
4010 while (pos < offset + len) {
4011 BUG_ON(i >= nfrags);
4013 size = skb_frag_size(frag);
4014 if (pos + size > offset + len)
4022 nskb = skb_clone(list_skb, GFP_ATOMIC);
4023 list_skb = list_skb->next;
4025 if (unlikely(!nskb))
4028 if (unlikely(pskb_trim(nskb, len))) {
4033 hsize = skb_end_offset(nskb);
4034 if (skb_cow_head(nskb, doffset + headroom)) {
4039 nskb->truesize += skb_end_offset(nskb) - hsize;
4040 skb_release_head_state(nskb);
4041 __skb_push(nskb, doffset);
4045 if (hsize > len || !sg)
4048 nskb = __alloc_skb(hsize + doffset + headroom,
4049 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4052 if (unlikely(!nskb))
4055 skb_reserve(nskb, headroom);
4056 __skb_put(nskb, doffset);
4065 __copy_skb_header(nskb, head_skb);
4067 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4068 skb_reset_mac_len(nskb);
4070 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4071 nskb->data - tnl_hlen,
4072 doffset + tnl_hlen);
4074 if (nskb->len == len + doffset)
4075 goto perform_csum_check;
4079 if (!nskb->remcsum_offload)
4080 nskb->ip_summed = CHECKSUM_NONE;
4081 SKB_GSO_CB(nskb)->csum =
4082 skb_copy_and_csum_bits(head_skb, offset,
4086 SKB_GSO_CB(nskb)->csum_start =
4087 skb_headroom(nskb) + doffset;
4089 skb_copy_bits(head_skb, offset,
4096 nskb_frag = skb_shinfo(nskb)->frags;
4098 skb_copy_from_linear_data_offset(head_skb, offset,
4099 skb_put(nskb, hsize), hsize);
4101 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4104 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4105 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4108 while (pos < offset + len) {
4111 nfrags = skb_shinfo(list_skb)->nr_frags;
4112 frag = skb_shinfo(list_skb)->frags;
4113 frag_skb = list_skb;
4114 if (!skb_headlen(list_skb)) {
4117 BUG_ON(!list_skb->head_frag);
4119 /* to make room for head_frag. */
4123 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4124 skb_zerocopy_clone(nskb, frag_skb,
4128 list_skb = list_skb->next;
4131 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4133 net_warn_ratelimited(
4134 "skb_segment: too many frags: %u %u\n",
4140 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4141 __skb_frag_ref(nskb_frag);
4142 size = skb_frag_size(nskb_frag);
4145 skb_frag_off_add(nskb_frag, offset - pos);
4146 skb_frag_size_sub(nskb_frag, offset - pos);
4149 skb_shinfo(nskb)->nr_frags++;
4151 if (pos + size <= offset + len) {
4156 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4164 nskb->data_len = len - hsize;
4165 nskb->len += nskb->data_len;
4166 nskb->truesize += nskb->data_len;
4170 if (skb_has_shared_frag(nskb) &&
4171 __skb_linearize(nskb))
4174 if (!nskb->remcsum_offload)
4175 nskb->ip_summed = CHECKSUM_NONE;
4176 SKB_GSO_CB(nskb)->csum =
4177 skb_checksum(nskb, doffset,
4178 nskb->len - doffset, 0);
4179 SKB_GSO_CB(nskb)->csum_start =
4180 skb_headroom(nskb) + doffset;
4182 } while ((offset += len) < head_skb->len);
4184 /* Some callers want to get the end of the list.
4185 * Put it in segs->prev to avoid walking the list.
4186 * (see validate_xmit_skb_list() for example)
4191 struct sk_buff *iter;
4192 int type = skb_shinfo(head_skb)->gso_type;
4193 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4195 /* Update type to add partial and then remove dodgy if set */
4196 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4197 type &= ~SKB_GSO_DODGY;
4199 /* Update GSO info and prepare to start updating headers on
4200 * our way back down the stack of protocols.
4202 for (iter = segs; iter; iter = iter->next) {
4203 skb_shinfo(iter)->gso_size = gso_size;
4204 skb_shinfo(iter)->gso_segs = partial_segs;
4205 skb_shinfo(iter)->gso_type = type;
4206 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4209 if (tail->len - doffset <= gso_size)
4210 skb_shinfo(tail)->gso_size = 0;
4211 else if (tail != segs)
4212 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4215 /* Following permits correct backpressure, for protocols
4216 * using skb_set_owner_w().
4217 * Idea is to tranfert ownership from head_skb to last segment.
4219 if (head_skb->destructor == sock_wfree) {
4220 swap(tail->truesize, head_skb->truesize);
4221 swap(tail->destructor, head_skb->destructor);
4222 swap(tail->sk, head_skb->sk);
4227 kfree_skb_list(segs);
4228 return ERR_PTR(err);
4230 EXPORT_SYMBOL_GPL(skb_segment);
4232 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4234 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4235 unsigned int offset = skb_gro_offset(skb);
4236 unsigned int headlen = skb_headlen(skb);
4237 unsigned int len = skb_gro_len(skb);
4238 unsigned int delta_truesize;
4241 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4244 lp = NAPI_GRO_CB(p)->last;
4245 pinfo = skb_shinfo(lp);
4247 if (headlen <= offset) {
4250 int i = skbinfo->nr_frags;
4251 int nr_frags = pinfo->nr_frags + i;
4253 if (nr_frags > MAX_SKB_FRAGS)
4257 pinfo->nr_frags = nr_frags;
4258 skbinfo->nr_frags = 0;
4260 frag = pinfo->frags + nr_frags;
4261 frag2 = skbinfo->frags + i;
4266 skb_frag_off_add(frag, offset);
4267 skb_frag_size_sub(frag, offset);
4269 /* all fragments truesize : remove (head size + sk_buff) */
4270 delta_truesize = skb->truesize -
4271 SKB_TRUESIZE(skb_end_offset(skb));
4273 skb->truesize -= skb->data_len;
4274 skb->len -= skb->data_len;
4277 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4279 } else if (skb->head_frag) {
4280 int nr_frags = pinfo->nr_frags;
4281 skb_frag_t *frag = pinfo->frags + nr_frags;
4282 struct page *page = virt_to_head_page(skb->head);
4283 unsigned int first_size = headlen - offset;
4284 unsigned int first_offset;
4286 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4289 first_offset = skb->data -
4290 (unsigned char *)page_address(page) +
4293 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4295 __skb_frag_set_page(frag, page);
4296 skb_frag_off_set(frag, first_offset);
4297 skb_frag_size_set(frag, first_size);
4299 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4300 /* We dont need to clear skbinfo->nr_frags here */
4302 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4303 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4308 delta_truesize = skb->truesize;
4309 if (offset > headlen) {
4310 unsigned int eat = offset - headlen;
4312 skb_frag_off_add(&skbinfo->frags[0], eat);
4313 skb_frag_size_sub(&skbinfo->frags[0], eat);
4314 skb->data_len -= eat;
4319 __skb_pull(skb, offset);
4321 if (NAPI_GRO_CB(p)->last == p)
4322 skb_shinfo(p)->frag_list = skb;
4324 NAPI_GRO_CB(p)->last->next = skb;
4325 NAPI_GRO_CB(p)->last = skb;
4326 __skb_header_release(skb);
4330 NAPI_GRO_CB(p)->count++;
4332 p->truesize += delta_truesize;
4335 lp->data_len += len;
4336 lp->truesize += delta_truesize;
4339 NAPI_GRO_CB(skb)->same_flow = 1;
4343 #ifdef CONFIG_SKB_EXTENSIONS
4344 #define SKB_EXT_ALIGN_VALUE 8
4345 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4347 static const u8 skb_ext_type_len[] = {
4348 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4349 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4352 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4354 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4355 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4357 #if IS_ENABLED(CONFIG_MPTCP)
4358 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4362 static __always_inline unsigned int skb_ext_total_length(void)
4364 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4365 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4366 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4369 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4371 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4372 skb_ext_type_len[TC_SKB_EXT] +
4374 #if IS_ENABLED(CONFIG_MPTCP)
4375 skb_ext_type_len[SKB_EXT_MPTCP] +
4380 static void skb_extensions_init(void)
4382 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4383 BUILD_BUG_ON(skb_ext_total_length() > 255);
4385 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4386 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4388 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4392 static void skb_extensions_init(void) {}
4395 void __init skb_init(void)
4397 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4398 sizeof(struct sk_buff),
4400 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4401 offsetof(struct sk_buff, cb),
4402 sizeof_field(struct sk_buff, cb),
4404 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4405 sizeof(struct sk_buff_fclones),
4407 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4409 skb_extensions_init();
4413 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4414 unsigned int recursion_level)
4416 int start = skb_headlen(skb);
4417 int i, copy = start - offset;
4418 struct sk_buff *frag_iter;
4421 if (unlikely(recursion_level >= 24))
4427 sg_set_buf(sg, skb->data + offset, copy);
4429 if ((len -= copy) == 0)
4434 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4437 WARN_ON(start > offset + len);
4439 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4440 if ((copy = end - offset) > 0) {
4441 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4442 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4447 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4448 skb_frag_off(frag) + offset - start);
4457 skb_walk_frags(skb, frag_iter) {
4460 WARN_ON(start > offset + len);
4462 end = start + frag_iter->len;
4463 if ((copy = end - offset) > 0) {
4464 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4469 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4470 copy, recursion_level + 1);
4471 if (unlikely(ret < 0))
4474 if ((len -= copy) == 0)
4485 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4486 * @skb: Socket buffer containing the buffers to be mapped
4487 * @sg: The scatter-gather list to map into
4488 * @offset: The offset into the buffer's contents to start mapping
4489 * @len: Length of buffer space to be mapped
4491 * Fill the specified scatter-gather list with mappings/pointers into a
4492 * region of the buffer space attached to a socket buffer. Returns either
4493 * the number of scatterlist items used, or -EMSGSIZE if the contents
4496 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4498 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4503 sg_mark_end(&sg[nsg - 1]);
4507 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4509 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4510 * sglist without mark the sg which contain last skb data as the end.
4511 * So the caller can mannipulate sg list as will when padding new data after
4512 * the first call without calling sg_unmark_end to expend sg list.
4514 * Scenario to use skb_to_sgvec_nomark:
4516 * 2. skb_to_sgvec_nomark(payload1)
4517 * 3. skb_to_sgvec_nomark(payload2)
4519 * This is equivalent to:
4521 * 2. skb_to_sgvec(payload1)
4523 * 4. skb_to_sgvec(payload2)
4525 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4526 * is more preferable.
4528 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4529 int offset, int len)
4531 return __skb_to_sgvec(skb, sg, offset, len, 0);
4533 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4538 * skb_cow_data - Check that a socket buffer's data buffers are writable
4539 * @skb: The socket buffer to check.
4540 * @tailbits: Amount of trailing space to be added
4541 * @trailer: Returned pointer to the skb where the @tailbits space begins
4543 * Make sure that the data buffers attached to a socket buffer are
4544 * writable. If they are not, private copies are made of the data buffers
4545 * and the socket buffer is set to use these instead.
4547 * If @tailbits is given, make sure that there is space to write @tailbits
4548 * bytes of data beyond current end of socket buffer. @trailer will be
4549 * set to point to the skb in which this space begins.
4551 * The number of scatterlist elements required to completely map the
4552 * COW'd and extended socket buffer will be returned.
4554 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4558 struct sk_buff *skb1, **skb_p;
4560 /* If skb is cloned or its head is paged, reallocate
4561 * head pulling out all the pages (pages are considered not writable
4562 * at the moment even if they are anonymous).
4564 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4565 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4568 /* Easy case. Most of packets will go this way. */
4569 if (!skb_has_frag_list(skb)) {
4570 /* A little of trouble, not enough of space for trailer.
4571 * This should not happen, when stack is tuned to generate
4572 * good frames. OK, on miss we reallocate and reserve even more
4573 * space, 128 bytes is fair. */
4575 if (skb_tailroom(skb) < tailbits &&
4576 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4584 /* Misery. We are in troubles, going to mincer fragments... */
4587 skb_p = &skb_shinfo(skb)->frag_list;
4590 while ((skb1 = *skb_p) != NULL) {
4593 /* The fragment is partially pulled by someone,
4594 * this can happen on input. Copy it and everything
4597 if (skb_shared(skb1))
4600 /* If the skb is the last, worry about trailer. */
4602 if (skb1->next == NULL && tailbits) {
4603 if (skb_shinfo(skb1)->nr_frags ||
4604 skb_has_frag_list(skb1) ||
4605 skb_tailroom(skb1) < tailbits)
4606 ntail = tailbits + 128;
4612 skb_shinfo(skb1)->nr_frags ||
4613 skb_has_frag_list(skb1)) {
4614 struct sk_buff *skb2;
4616 /* Fuck, we are miserable poor guys... */
4618 skb2 = skb_copy(skb1, GFP_ATOMIC);
4620 skb2 = skb_copy_expand(skb1,
4624 if (unlikely(skb2 == NULL))
4628 skb_set_owner_w(skb2, skb1->sk);
4630 /* Looking around. Are we still alive?
4631 * OK, link new skb, drop old one */
4633 skb2->next = skb1->next;
4640 skb_p = &skb1->next;
4645 EXPORT_SYMBOL_GPL(skb_cow_data);
4647 static void sock_rmem_free(struct sk_buff *skb)
4649 struct sock *sk = skb->sk;
4651 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4654 static void skb_set_err_queue(struct sk_buff *skb)
4656 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4657 * So, it is safe to (mis)use it to mark skbs on the error queue.
4659 skb->pkt_type = PACKET_OUTGOING;
4660 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4664 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4666 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4668 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4669 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4674 skb->destructor = sock_rmem_free;
4675 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4676 skb_set_err_queue(skb);
4678 /* before exiting rcu section, make sure dst is refcounted */
4681 skb_queue_tail(&sk->sk_error_queue, skb);
4682 if (!sock_flag(sk, SOCK_DEAD))
4683 sk->sk_error_report(sk);
4686 EXPORT_SYMBOL(sock_queue_err_skb);
4688 static bool is_icmp_err_skb(const struct sk_buff *skb)
4690 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4691 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4694 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4696 struct sk_buff_head *q = &sk->sk_error_queue;
4697 struct sk_buff *skb, *skb_next = NULL;
4698 bool icmp_next = false;
4699 unsigned long flags;
4701 spin_lock_irqsave(&q->lock, flags);
4702 skb = __skb_dequeue(q);
4703 if (skb && (skb_next = skb_peek(q))) {
4704 icmp_next = is_icmp_err_skb(skb_next);
4706 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4708 spin_unlock_irqrestore(&q->lock, flags);
4710 if (is_icmp_err_skb(skb) && !icmp_next)
4714 sk->sk_error_report(sk);
4718 EXPORT_SYMBOL(sock_dequeue_err_skb);
4721 * skb_clone_sk - create clone of skb, and take reference to socket
4722 * @skb: the skb to clone
4724 * This function creates a clone of a buffer that holds a reference on
4725 * sk_refcnt. Buffers created via this function are meant to be
4726 * returned using sock_queue_err_skb, or free via kfree_skb.
4728 * When passing buffers allocated with this function to sock_queue_err_skb
4729 * it is necessary to wrap the call with sock_hold/sock_put in order to
4730 * prevent the socket from being released prior to being enqueued on
4731 * the sk_error_queue.
4733 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4735 struct sock *sk = skb->sk;
4736 struct sk_buff *clone;
4738 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4741 clone = skb_clone(skb, GFP_ATOMIC);
4748 clone->destructor = sock_efree;
4752 EXPORT_SYMBOL(skb_clone_sk);
4754 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4759 struct sock_exterr_skb *serr;
4762 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4764 serr = SKB_EXT_ERR(skb);
4765 memset(serr, 0, sizeof(*serr));
4766 serr->ee.ee_errno = ENOMSG;
4767 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4768 serr->ee.ee_info = tstype;
4769 serr->opt_stats = opt_stats;
4770 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4771 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4772 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4773 if (sk->sk_protocol == IPPROTO_TCP &&
4774 sk->sk_type == SOCK_STREAM)
4775 serr->ee.ee_data -= sk->sk_tskey;
4778 err = sock_queue_err_skb(sk, skb);
4784 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4788 if (likely(sysctl_tstamp_allow_data || tsonly))
4791 read_lock_bh(&sk->sk_callback_lock);
4792 ret = sk->sk_socket && sk->sk_socket->file &&
4793 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4794 read_unlock_bh(&sk->sk_callback_lock);
4798 void skb_complete_tx_timestamp(struct sk_buff *skb,
4799 struct skb_shared_hwtstamps *hwtstamps)
4801 struct sock *sk = skb->sk;
4803 if (!skb_may_tx_timestamp(sk, false))
4806 /* Take a reference to prevent skb_orphan() from freeing the socket,
4807 * but only if the socket refcount is not zero.
4809 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4810 *skb_hwtstamps(skb) = *hwtstamps;
4811 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4819 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4821 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4822 const struct sk_buff *ack_skb,
4823 struct skb_shared_hwtstamps *hwtstamps,
4824 struct sock *sk, int tstype)
4826 struct sk_buff *skb;
4827 bool tsonly, opt_stats = false;
4832 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4833 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4836 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4837 if (!skb_may_tx_timestamp(sk, tsonly))
4842 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4843 sk->sk_protocol == IPPROTO_TCP &&
4844 sk->sk_type == SOCK_STREAM) {
4845 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4850 skb = alloc_skb(0, GFP_ATOMIC);
4852 skb = skb_clone(orig_skb, GFP_ATOMIC);
4858 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4860 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4864 *skb_hwtstamps(skb) = *hwtstamps;
4866 skb->tstamp = ktime_get_real();
4868 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4870 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4872 void skb_tstamp_tx(struct sk_buff *orig_skb,
4873 struct skb_shared_hwtstamps *hwtstamps)
4875 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4878 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4880 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4882 struct sock *sk = skb->sk;
4883 struct sock_exterr_skb *serr;
4886 skb->wifi_acked_valid = 1;
4887 skb->wifi_acked = acked;
4889 serr = SKB_EXT_ERR(skb);
4890 memset(serr, 0, sizeof(*serr));
4891 serr->ee.ee_errno = ENOMSG;
4892 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4894 /* Take a reference to prevent skb_orphan() from freeing the socket,
4895 * but only if the socket refcount is not zero.
4897 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4898 err = sock_queue_err_skb(sk, skb);
4904 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4907 * skb_partial_csum_set - set up and verify partial csum values for packet
4908 * @skb: the skb to set
4909 * @start: the number of bytes after skb->data to start checksumming.
4910 * @off: the offset from start to place the checksum.
4912 * For untrusted partially-checksummed packets, we need to make sure the values
4913 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4915 * This function checks and sets those values and skb->ip_summed: if this
4916 * returns false you should drop the packet.
4918 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4920 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4921 u32 csum_start = skb_headroom(skb) + (u32)start;
4923 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4924 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4925 start, off, skb_headroom(skb), skb_headlen(skb));
4928 skb->ip_summed = CHECKSUM_PARTIAL;
4929 skb->csum_start = csum_start;
4930 skb->csum_offset = off;
4931 skb_set_transport_header(skb, start);
4934 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4936 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4939 if (skb_headlen(skb) >= len)
4942 /* If we need to pullup then pullup to the max, so we
4943 * won't need to do it again.
4948 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4951 if (skb_headlen(skb) < len)
4957 #define MAX_TCP_HDR_LEN (15 * 4)
4959 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4960 typeof(IPPROTO_IP) proto,
4967 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4968 off + MAX_TCP_HDR_LEN);
4969 if (!err && !skb_partial_csum_set(skb, off,
4970 offsetof(struct tcphdr,
4973 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4976 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4977 off + sizeof(struct udphdr));
4978 if (!err && !skb_partial_csum_set(skb, off,
4979 offsetof(struct udphdr,
4982 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4985 return ERR_PTR(-EPROTO);
4988 /* This value should be large enough to cover a tagged ethernet header plus
4989 * maximally sized IP and TCP or UDP headers.
4991 #define MAX_IP_HDR_LEN 128
4993 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5002 err = skb_maybe_pull_tail(skb,
5003 sizeof(struct iphdr),
5008 if (ip_is_fragment(ip_hdr(skb)))
5011 off = ip_hdrlen(skb);
5018 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5020 return PTR_ERR(csum);
5023 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5026 ip_hdr(skb)->protocol, 0);
5033 /* This value should be large enough to cover a tagged ethernet header plus
5034 * an IPv6 header, all options, and a maximal TCP or UDP header.
5036 #define MAX_IPV6_HDR_LEN 256
5038 #define OPT_HDR(type, skb, off) \
5039 (type *)(skb_network_header(skb) + (off))
5041 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5054 off = sizeof(struct ipv6hdr);
5056 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5060 nexthdr = ipv6_hdr(skb)->nexthdr;
5062 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5063 while (off <= len && !done) {
5065 case IPPROTO_DSTOPTS:
5066 case IPPROTO_HOPOPTS:
5067 case IPPROTO_ROUTING: {
5068 struct ipv6_opt_hdr *hp;
5070 err = skb_maybe_pull_tail(skb,
5072 sizeof(struct ipv6_opt_hdr),
5077 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5078 nexthdr = hp->nexthdr;
5079 off += ipv6_optlen(hp);
5083 struct ip_auth_hdr *hp;
5085 err = skb_maybe_pull_tail(skb,
5087 sizeof(struct ip_auth_hdr),
5092 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5093 nexthdr = hp->nexthdr;
5094 off += ipv6_authlen(hp);
5097 case IPPROTO_FRAGMENT: {
5098 struct frag_hdr *hp;
5100 err = skb_maybe_pull_tail(skb,
5102 sizeof(struct frag_hdr),
5107 hp = OPT_HDR(struct frag_hdr, skb, off);
5109 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5112 nexthdr = hp->nexthdr;
5113 off += sizeof(struct frag_hdr);
5124 if (!done || fragment)
5127 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5129 return PTR_ERR(csum);
5132 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5133 &ipv6_hdr(skb)->daddr,
5134 skb->len - off, nexthdr, 0);
5142 * skb_checksum_setup - set up partial checksum offset
5143 * @skb: the skb to set up
5144 * @recalculate: if true the pseudo-header checksum will be recalculated
5146 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5150 switch (skb->protocol) {
5151 case htons(ETH_P_IP):
5152 err = skb_checksum_setup_ipv4(skb, recalculate);
5155 case htons(ETH_P_IPV6):
5156 err = skb_checksum_setup_ipv6(skb, recalculate);
5166 EXPORT_SYMBOL(skb_checksum_setup);
5169 * skb_checksum_maybe_trim - maybe trims the given skb
5170 * @skb: the skb to check
5171 * @transport_len: the data length beyond the network header
5173 * Checks whether the given skb has data beyond the given transport length.
5174 * If so, returns a cloned skb trimmed to this transport length.
5175 * Otherwise returns the provided skb. Returns NULL in error cases
5176 * (e.g. transport_len exceeds skb length or out-of-memory).
5178 * Caller needs to set the skb transport header and free any returned skb if it
5179 * differs from the provided skb.
5181 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5182 unsigned int transport_len)
5184 struct sk_buff *skb_chk;
5185 unsigned int len = skb_transport_offset(skb) + transport_len;
5190 else if (skb->len == len)
5193 skb_chk = skb_clone(skb, GFP_ATOMIC);
5197 ret = pskb_trim_rcsum(skb_chk, len);
5207 * skb_checksum_trimmed - validate checksum of an skb
5208 * @skb: the skb to check
5209 * @transport_len: the data length beyond the network header
5210 * @skb_chkf: checksum function to use
5212 * Applies the given checksum function skb_chkf to the provided skb.
5213 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5215 * If the skb has data beyond the given transport length, then a
5216 * trimmed & cloned skb is checked and returned.
5218 * Caller needs to set the skb transport header and free any returned skb if it
5219 * differs from the provided skb.
5221 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5222 unsigned int transport_len,
5223 __sum16(*skb_chkf)(struct sk_buff *skb))
5225 struct sk_buff *skb_chk;
5226 unsigned int offset = skb_transport_offset(skb);
5229 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5233 if (!pskb_may_pull(skb_chk, offset))
5236 skb_pull_rcsum(skb_chk, offset);
5237 ret = skb_chkf(skb_chk);
5238 skb_push_rcsum(skb_chk, offset);
5246 if (skb_chk && skb_chk != skb)
5252 EXPORT_SYMBOL(skb_checksum_trimmed);
5254 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5256 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5259 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5261 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5264 skb_release_head_state(skb);
5265 kmem_cache_free(skbuff_head_cache, skb);
5270 EXPORT_SYMBOL(kfree_skb_partial);
5273 * skb_try_coalesce - try to merge skb to prior one
5275 * @from: buffer to add
5276 * @fragstolen: pointer to boolean
5277 * @delta_truesize: how much more was allocated than was requested
5279 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5280 bool *fragstolen, int *delta_truesize)
5282 struct skb_shared_info *to_shinfo, *from_shinfo;
5283 int i, delta, len = from->len;
5285 *fragstolen = false;
5290 if (len <= skb_tailroom(to)) {
5292 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5293 *delta_truesize = 0;
5297 to_shinfo = skb_shinfo(to);
5298 from_shinfo = skb_shinfo(from);
5299 if (to_shinfo->frag_list || from_shinfo->frag_list)
5301 if (skb_zcopy(to) || skb_zcopy(from))
5304 if (skb_headlen(from) != 0) {
5306 unsigned int offset;
5308 if (to_shinfo->nr_frags +
5309 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5312 if (skb_head_is_locked(from))
5315 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5317 page = virt_to_head_page(from->head);
5318 offset = from->data - (unsigned char *)page_address(page);
5320 skb_fill_page_desc(to, to_shinfo->nr_frags,
5321 page, offset, skb_headlen(from));
5324 if (to_shinfo->nr_frags +
5325 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5328 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5331 WARN_ON_ONCE(delta < len);
5333 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5335 from_shinfo->nr_frags * sizeof(skb_frag_t));
5336 to_shinfo->nr_frags += from_shinfo->nr_frags;
5338 if (!skb_cloned(from))
5339 from_shinfo->nr_frags = 0;
5341 /* if the skb is not cloned this does nothing
5342 * since we set nr_frags to 0.
5344 for (i = 0; i < from_shinfo->nr_frags; i++)
5345 __skb_frag_ref(&from_shinfo->frags[i]);
5347 to->truesize += delta;
5349 to->data_len += len;
5351 *delta_truesize = delta;
5354 EXPORT_SYMBOL(skb_try_coalesce);
5357 * skb_scrub_packet - scrub an skb
5359 * @skb: buffer to clean
5360 * @xnet: packet is crossing netns
5362 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5363 * into/from a tunnel. Some information have to be cleared during these
5365 * skb_scrub_packet can also be used to clean a skb before injecting it in
5366 * another namespace (@xnet == true). We have to clear all information in the
5367 * skb that could impact namespace isolation.
5369 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5371 skb->pkt_type = PACKET_HOST;
5377 nf_reset_trace(skb);
5379 #ifdef CONFIG_NET_SWITCHDEV
5380 skb->offload_fwd_mark = 0;
5381 skb->offload_l3_fwd_mark = 0;
5391 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5394 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5398 * skb_gso_transport_seglen is used to determine the real size of the
5399 * individual segments, including Layer4 headers (TCP/UDP).
5401 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5403 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5405 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5406 unsigned int thlen = 0;
5408 if (skb->encapsulation) {
5409 thlen = skb_inner_transport_header(skb) -
5410 skb_transport_header(skb);
5412 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5413 thlen += inner_tcp_hdrlen(skb);
5414 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5415 thlen = tcp_hdrlen(skb);
5416 } else if (unlikely(skb_is_gso_sctp(skb))) {
5417 thlen = sizeof(struct sctphdr);
5418 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5419 thlen = sizeof(struct udphdr);
5421 /* UFO sets gso_size to the size of the fragmentation
5422 * payload, i.e. the size of the L4 (UDP) header is already
5425 return thlen + shinfo->gso_size;
5429 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5433 * skb_gso_network_seglen is used to determine the real size of the
5434 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5436 * The MAC/L2 header is not accounted for.
5438 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5440 unsigned int hdr_len = skb_transport_header(skb) -
5441 skb_network_header(skb);
5443 return hdr_len + skb_gso_transport_seglen(skb);
5447 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5451 * skb_gso_mac_seglen is used to determine the real size of the
5452 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5453 * headers (TCP/UDP).
5455 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5457 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5459 return hdr_len + skb_gso_transport_seglen(skb);
5463 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5465 * There are a couple of instances where we have a GSO skb, and we
5466 * want to determine what size it would be after it is segmented.
5468 * We might want to check:
5469 * - L3+L4+payload size (e.g. IP forwarding)
5470 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5472 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5476 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5477 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5479 * @max_len: The maximum permissible length.
5481 * Returns true if the segmented length <= max length.
5483 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5484 unsigned int seg_len,
5485 unsigned int max_len) {
5486 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5487 const struct sk_buff *iter;
5489 if (shinfo->gso_size != GSO_BY_FRAGS)
5490 return seg_len <= max_len;
5492 /* Undo this so we can re-use header sizes */
5493 seg_len -= GSO_BY_FRAGS;
5495 skb_walk_frags(skb, iter) {
5496 if (seg_len + skb_headlen(iter) > max_len)
5504 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5507 * @mtu: MTU to validate against
5509 * skb_gso_validate_network_len validates if a given skb will fit a
5510 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5513 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5515 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5517 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5520 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5523 * @len: length to validate against
5525 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5526 * length once split, including L2, L3 and L4 headers and the payload.
5528 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5530 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5532 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5534 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5536 int mac_len, meta_len;
5539 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5544 mac_len = skb->data - skb_mac_header(skb);
5545 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5546 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5547 mac_len - VLAN_HLEN - ETH_TLEN);
5550 meta_len = skb_metadata_len(skb);
5552 meta = skb_metadata_end(skb) - meta_len;
5553 memmove(meta + VLAN_HLEN, meta, meta_len);
5556 skb->mac_header += VLAN_HLEN;
5560 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5562 struct vlan_hdr *vhdr;
5565 if (unlikely(skb_vlan_tag_present(skb))) {
5566 /* vlan_tci is already set-up so leave this for another time */
5570 skb = skb_share_check(skb, GFP_ATOMIC);
5573 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5574 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5577 vhdr = (struct vlan_hdr *)skb->data;
5578 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5579 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5581 skb_pull_rcsum(skb, VLAN_HLEN);
5582 vlan_set_encap_proto(skb, vhdr);
5584 skb = skb_reorder_vlan_header(skb);
5588 skb_reset_network_header(skb);
5589 if (!skb_transport_header_was_set(skb))
5590 skb_reset_transport_header(skb);
5591 skb_reset_mac_len(skb);
5599 EXPORT_SYMBOL(skb_vlan_untag);
5601 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5603 if (!pskb_may_pull(skb, write_len))
5606 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5609 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5611 EXPORT_SYMBOL(skb_ensure_writable);
5613 /* remove VLAN header from packet and update csum accordingly.
5614 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5616 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5618 struct vlan_hdr *vhdr;
5619 int offset = skb->data - skb_mac_header(skb);
5622 if (WARN_ONCE(offset,
5623 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5628 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5632 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5634 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5635 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5637 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5638 __skb_pull(skb, VLAN_HLEN);
5640 vlan_set_encap_proto(skb, vhdr);
5641 skb->mac_header += VLAN_HLEN;
5643 if (skb_network_offset(skb) < ETH_HLEN)
5644 skb_set_network_header(skb, ETH_HLEN);
5646 skb_reset_mac_len(skb);
5650 EXPORT_SYMBOL(__skb_vlan_pop);
5652 /* Pop a vlan tag either from hwaccel or from payload.
5653 * Expects skb->data at mac header.
5655 int skb_vlan_pop(struct sk_buff *skb)
5661 if (likely(skb_vlan_tag_present(skb))) {
5662 __vlan_hwaccel_clear_tag(skb);
5664 if (unlikely(!eth_type_vlan(skb->protocol)))
5667 err = __skb_vlan_pop(skb, &vlan_tci);
5671 /* move next vlan tag to hw accel tag */
5672 if (likely(!eth_type_vlan(skb->protocol)))
5675 vlan_proto = skb->protocol;
5676 err = __skb_vlan_pop(skb, &vlan_tci);
5680 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5683 EXPORT_SYMBOL(skb_vlan_pop);
5685 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5686 * Expects skb->data at mac header.
5688 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5690 if (skb_vlan_tag_present(skb)) {
5691 int offset = skb->data - skb_mac_header(skb);
5694 if (WARN_ONCE(offset,
5695 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5700 err = __vlan_insert_tag(skb, skb->vlan_proto,
5701 skb_vlan_tag_get(skb));
5705 skb->protocol = skb->vlan_proto;
5706 skb->mac_len += VLAN_HLEN;
5708 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5710 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5713 EXPORT_SYMBOL(skb_vlan_push);
5716 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5718 * @skb: Socket buffer to modify
5720 * Drop the Ethernet header of @skb.
5722 * Expects that skb->data points to the mac header and that no VLAN tags are
5725 * Returns 0 on success, -errno otherwise.
5727 int skb_eth_pop(struct sk_buff *skb)
5729 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5730 skb_network_offset(skb) < ETH_HLEN)
5733 skb_pull_rcsum(skb, ETH_HLEN);
5734 skb_reset_mac_header(skb);
5735 skb_reset_mac_len(skb);
5739 EXPORT_SYMBOL(skb_eth_pop);
5742 * skb_eth_push() - Add a new Ethernet header at the head of a packet
5744 * @skb: Socket buffer to modify
5745 * @dst: Destination MAC address of the new header
5746 * @src: Source MAC address of the new header
5748 * Prepend @skb with a new Ethernet header.
5750 * Expects that skb->data points to the mac header, which must be empty.
5752 * Returns 0 on success, -errno otherwise.
5754 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5755 const unsigned char *src)
5760 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5763 err = skb_cow_head(skb, sizeof(*eth));
5767 skb_push(skb, sizeof(*eth));
5768 skb_reset_mac_header(skb);
5769 skb_reset_mac_len(skb);
5772 ether_addr_copy(eth->h_dest, dst);
5773 ether_addr_copy(eth->h_source, src);
5774 eth->h_proto = skb->protocol;
5776 skb_postpush_rcsum(skb, eth, sizeof(*eth));
5780 EXPORT_SYMBOL(skb_eth_push);
5782 /* Update the ethertype of hdr and the skb csum value if required. */
5783 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5786 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5787 __be16 diff[] = { ~hdr->h_proto, ethertype };
5789 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5792 hdr->h_proto = ethertype;
5796 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5800 * @mpls_lse: MPLS label stack entry to push
5801 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5802 * @mac_len: length of the MAC header
5803 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5806 * Expects skb->data at mac header.
5808 * Returns 0 on success, -errno otherwise.
5810 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5811 int mac_len, bool ethernet)
5813 struct mpls_shim_hdr *lse;
5816 if (unlikely(!eth_p_mpls(mpls_proto)))
5819 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5820 if (skb->encapsulation)
5823 err = skb_cow_head(skb, MPLS_HLEN);
5827 if (!skb->inner_protocol) {
5828 skb_set_inner_network_header(skb, skb_network_offset(skb));
5829 skb_set_inner_protocol(skb, skb->protocol);
5832 skb_push(skb, MPLS_HLEN);
5833 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5835 skb_reset_mac_header(skb);
5836 skb_set_network_header(skb, mac_len);
5837 skb_reset_mac_len(skb);
5839 lse = mpls_hdr(skb);
5840 lse->label_stack_entry = mpls_lse;
5841 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5843 if (ethernet && mac_len >= ETH_HLEN)
5844 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5845 skb->protocol = mpls_proto;
5849 EXPORT_SYMBOL_GPL(skb_mpls_push);
5852 * skb_mpls_pop() - pop the outermost MPLS header
5855 * @next_proto: ethertype of header after popped MPLS header
5856 * @mac_len: length of the MAC header
5857 * @ethernet: flag to indicate if the packet is ethernet
5859 * Expects skb->data at mac header.
5861 * Returns 0 on success, -errno otherwise.
5863 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5868 if (unlikely(!eth_p_mpls(skb->protocol)))
5871 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5875 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5876 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5879 __skb_pull(skb, MPLS_HLEN);
5880 skb_reset_mac_header(skb);
5881 skb_set_network_header(skb, mac_len);
5883 if (ethernet && mac_len >= ETH_HLEN) {
5886 /* use mpls_hdr() to get ethertype to account for VLANs. */
5887 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5888 skb_mod_eth_type(skb, hdr, next_proto);
5890 skb->protocol = next_proto;
5894 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5897 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5900 * @mpls_lse: new MPLS label stack entry to update to
5902 * Expects skb->data at mac header.
5904 * Returns 0 on success, -errno otherwise.
5906 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5910 if (unlikely(!eth_p_mpls(skb->protocol)))
5913 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5917 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5918 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5920 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5923 mpls_hdr(skb)->label_stack_entry = mpls_lse;
5927 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5930 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5934 * Expects skb->data at mac header.
5936 * Returns 0 on success, -errno otherwise.
5938 int skb_mpls_dec_ttl(struct sk_buff *skb)
5943 if (unlikely(!eth_p_mpls(skb->protocol)))
5946 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5949 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5950 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5954 lse &= ~MPLS_LS_TTL_MASK;
5955 lse |= ttl << MPLS_LS_TTL_SHIFT;
5957 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5959 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5962 * alloc_skb_with_frags - allocate skb with page frags
5964 * @header_len: size of linear part
5965 * @data_len: needed length in frags
5966 * @max_page_order: max page order desired.
5967 * @errcode: pointer to error code if any
5968 * @gfp_mask: allocation mask
5970 * This can be used to allocate a paged skb, given a maximal order for frags.
5972 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5973 unsigned long data_len,
5978 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5979 unsigned long chunk;
5980 struct sk_buff *skb;
5984 *errcode = -EMSGSIZE;
5985 /* Note this test could be relaxed, if we succeed to allocate
5986 * high order pages...
5988 if (npages > MAX_SKB_FRAGS)
5991 *errcode = -ENOBUFS;
5992 skb = alloc_skb(header_len, gfp_mask);
5996 skb->truesize += npages << PAGE_SHIFT;
5998 for (i = 0; npages > 0; i++) {
5999 int order = max_page_order;
6002 if (npages >= 1 << order) {
6003 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6009 /* Do not retry other high order allocations */
6015 page = alloc_page(gfp_mask);
6019 chunk = min_t(unsigned long, data_len,
6020 PAGE_SIZE << order);
6021 skb_fill_page_desc(skb, i, page, 0, chunk);
6023 npages -= 1 << order;
6031 EXPORT_SYMBOL(alloc_skb_with_frags);
6033 /* carve out the first off bytes from skb when off < headlen */
6034 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6035 const int headlen, gfp_t gfp_mask)
6038 int size = skb_end_offset(skb);
6039 int new_hlen = headlen - off;
6042 size = SKB_DATA_ALIGN(size);
6044 if (skb_pfmemalloc(skb))
6045 gfp_mask |= __GFP_MEMALLOC;
6046 data = kmalloc_reserve(size +
6047 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6048 gfp_mask, NUMA_NO_NODE, NULL);
6052 size = SKB_WITH_OVERHEAD(ksize(data));
6054 /* Copy real data, and all frags */
6055 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6058 memcpy((struct skb_shared_info *)(data + size),
6060 offsetof(struct skb_shared_info,
6061 frags[skb_shinfo(skb)->nr_frags]));
6062 if (skb_cloned(skb)) {
6063 /* drop the old head gracefully */
6064 if (skb_orphan_frags(skb, gfp_mask)) {
6068 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6069 skb_frag_ref(skb, i);
6070 if (skb_has_frag_list(skb))
6071 skb_clone_fraglist(skb);
6072 skb_release_data(skb);
6074 /* we can reuse existing recount- all we did was
6083 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6086 skb->end = skb->head + size;
6088 skb_set_tail_pointer(skb, skb_headlen(skb));
6089 skb_headers_offset_update(skb, 0);
6093 atomic_set(&skb_shinfo(skb)->dataref, 1);
6098 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6100 /* carve out the first eat bytes from skb's frag_list. May recurse into
6103 static int pskb_carve_frag_list(struct sk_buff *skb,
6104 struct skb_shared_info *shinfo, int eat,
6107 struct sk_buff *list = shinfo->frag_list;
6108 struct sk_buff *clone = NULL;
6109 struct sk_buff *insp = NULL;
6113 pr_err("Not enough bytes to eat. Want %d\n", eat);
6116 if (list->len <= eat) {
6117 /* Eaten as whole. */
6122 /* Eaten partially. */
6123 if (skb_shared(list)) {
6124 clone = skb_clone(list, gfp_mask);
6130 /* This may be pulled without problems. */
6133 if (pskb_carve(list, eat, gfp_mask) < 0) {
6141 /* Free pulled out fragments. */
6142 while ((list = shinfo->frag_list) != insp) {
6143 shinfo->frag_list = list->next;
6146 /* And insert new clone at head. */
6149 shinfo->frag_list = clone;
6154 /* carve off first len bytes from skb. Split line (off) is in the
6155 * non-linear part of skb
6157 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6158 int pos, gfp_t gfp_mask)
6161 int size = skb_end_offset(skb);
6163 const int nfrags = skb_shinfo(skb)->nr_frags;
6164 struct skb_shared_info *shinfo;
6166 size = SKB_DATA_ALIGN(size);
6168 if (skb_pfmemalloc(skb))
6169 gfp_mask |= __GFP_MEMALLOC;
6170 data = kmalloc_reserve(size +
6171 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6172 gfp_mask, NUMA_NO_NODE, NULL);
6176 size = SKB_WITH_OVERHEAD(ksize(data));
6178 memcpy((struct skb_shared_info *)(data + size),
6179 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6180 if (skb_orphan_frags(skb, gfp_mask)) {
6184 shinfo = (struct skb_shared_info *)(data + size);
6185 for (i = 0; i < nfrags; i++) {
6186 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6188 if (pos + fsize > off) {
6189 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6193 * We have two variants in this case:
6194 * 1. Move all the frag to the second
6195 * part, if it is possible. F.e.
6196 * this approach is mandatory for TUX,
6197 * where splitting is expensive.
6198 * 2. Split is accurately. We make this.
6200 skb_frag_off_add(&shinfo->frags[0], off - pos);
6201 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6203 skb_frag_ref(skb, i);
6208 shinfo->nr_frags = k;
6209 if (skb_has_frag_list(skb))
6210 skb_clone_fraglist(skb);
6212 /* split line is in frag list */
6213 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6214 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6215 if (skb_has_frag_list(skb))
6216 kfree_skb_list(skb_shinfo(skb)->frag_list);
6220 skb_release_data(skb);
6225 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6228 skb->end = skb->head + size;
6230 skb_reset_tail_pointer(skb);
6231 skb_headers_offset_update(skb, 0);
6236 skb->data_len = skb->len;
6237 atomic_set(&skb_shinfo(skb)->dataref, 1);
6241 /* remove len bytes from the beginning of the skb */
6242 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6244 int headlen = skb_headlen(skb);
6247 return pskb_carve_inside_header(skb, len, headlen, gfp);
6249 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6252 /* Extract to_copy bytes starting at off from skb, and return this in
6255 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6256 int to_copy, gfp_t gfp)
6258 struct sk_buff *clone = skb_clone(skb, gfp);
6263 if (pskb_carve(clone, off, gfp) < 0 ||
6264 pskb_trim(clone, to_copy)) {
6270 EXPORT_SYMBOL(pskb_extract);
6273 * skb_condense - try to get rid of fragments/frag_list if possible
6276 * Can be used to save memory before skb is added to a busy queue.
6277 * If packet has bytes in frags and enough tail room in skb->head,
6278 * pull all of them, so that we can free the frags right now and adjust
6281 * We do not reallocate skb->head thus can not fail.
6282 * Caller must re-evaluate skb->truesize if needed.
6284 void skb_condense(struct sk_buff *skb)
6286 if (skb->data_len) {
6287 if (skb->data_len > skb->end - skb->tail ||
6291 /* Nice, we can free page frag(s) right now */
6292 __pskb_pull_tail(skb, skb->data_len);
6294 /* At this point, skb->truesize might be over estimated,
6295 * because skb had a fragment, and fragments do not tell
6297 * When we pulled its content into skb->head, fragment
6298 * was freed, but __pskb_pull_tail() could not possibly
6299 * adjust skb->truesize, not knowing the frag truesize.
6301 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6304 #ifdef CONFIG_SKB_EXTENSIONS
6305 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6307 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6311 * __skb_ext_alloc - allocate a new skb extensions storage
6313 * @flags: See kmalloc().
6315 * Returns the newly allocated pointer. The pointer can later attached to a
6316 * skb via __skb_ext_set().
6317 * Note: caller must handle the skb_ext as an opaque data.
6319 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6321 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6324 memset(new->offset, 0, sizeof(new->offset));
6325 refcount_set(&new->refcnt, 1);
6331 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6332 unsigned int old_active)
6334 struct skb_ext *new;
6336 if (refcount_read(&old->refcnt) == 1)
6339 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6343 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6344 refcount_set(&new->refcnt, 1);
6347 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6348 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6351 for (i = 0; i < sp->len; i++)
6352 xfrm_state_hold(sp->xvec[i]);
6360 * __skb_ext_set - attach the specified extension storage to this skb
6363 * @ext: extension storage previously allocated via __skb_ext_alloc()
6365 * Existing extensions, if any, are cleared.
6367 * Returns the pointer to the extension.
6369 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6370 struct skb_ext *ext)
6372 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6375 newlen = newoff + skb_ext_type_len[id];
6376 ext->chunks = newlen;
6377 ext->offset[id] = newoff;
6378 skb->extensions = ext;
6379 skb->active_extensions = 1 << id;
6380 return skb_ext_get_ptr(ext, id);
6384 * skb_ext_add - allocate space for given extension, COW if needed
6386 * @id: extension to allocate space for
6388 * Allocates enough space for the given extension.
6389 * If the extension is already present, a pointer to that extension
6392 * If the skb was cloned, COW applies and the returned memory can be
6393 * modified without changing the extension space of clones buffers.
6395 * Returns pointer to the extension or NULL on allocation failure.
6397 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6399 struct skb_ext *new, *old = NULL;
6400 unsigned int newlen, newoff;
6402 if (skb->active_extensions) {
6403 old = skb->extensions;
6405 new = skb_ext_maybe_cow(old, skb->active_extensions);
6409 if (__skb_ext_exist(new, id))
6412 newoff = new->chunks;
6414 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6416 new = __skb_ext_alloc(GFP_ATOMIC);
6421 newlen = newoff + skb_ext_type_len[id];
6422 new->chunks = newlen;
6423 new->offset[id] = newoff;
6425 skb->extensions = new;
6426 skb->active_extensions |= 1 << id;
6427 return skb_ext_get_ptr(new, id);
6429 EXPORT_SYMBOL(skb_ext_add);
6432 static void skb_ext_put_sp(struct sec_path *sp)
6436 for (i = 0; i < sp->len; i++)
6437 xfrm_state_put(sp->xvec[i]);
6441 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6443 struct skb_ext *ext = skb->extensions;
6445 skb->active_extensions &= ~(1 << id);
6446 if (skb->active_extensions == 0) {
6447 skb->extensions = NULL;
6450 } else if (id == SKB_EXT_SEC_PATH &&
6451 refcount_read(&ext->refcnt) == 1) {
6452 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6459 EXPORT_SYMBOL(__skb_ext_del);
6461 void __skb_ext_put(struct skb_ext *ext)
6463 /* If this is last clone, nothing can increment
6464 * it after check passes. Avoids one atomic op.
6466 if (refcount_read(&ext->refcnt) == 1)
6469 if (!refcount_dec_and_test(&ext->refcnt))
6473 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6474 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6477 kmem_cache_free(skbuff_ext_cache, ext);
6479 EXPORT_SYMBOL(__skb_ext_put);
6480 #endif /* CONFIG_SKB_EXTENSIONS */