1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Routines having to do with the 'struct sk_buff' memory handlers.
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
9 * Alan Cox : Fixed the worst of the load
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
32 * The functions in this file will not compile correctly with gcc 2.4.x
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
41 #include <linux/interrupt.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
65 #include <net/protocol.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
72 #include <net/mptcp.h>
74 #include <net/page_pool.h>
76 #include <linux/uaccess.h>
77 #include <trace/events/skb.h>
78 #include <linux/highmem.h>
79 #include <linux/capability.h>
80 #include <linux/user_namespace.h>
81 #include <linux/indirect_call_wrapper.h>
84 #include "sock_destructor.h"
86 struct kmem_cache *skbuff_head_cache __ro_after_init;
87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
88 #ifdef CONFIG_SKB_EXTENSIONS
89 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
92 EXPORT_SYMBOL(sysctl_max_skb_frags);
95 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
96 const char * const drop_reasons[] = {
97 [SKB_CONSUMED] = "CONSUMED",
98 DEFINE_DROP_REASON(FN, FN)
100 EXPORT_SYMBOL(drop_reasons);
103 * skb_panic - private function for out-of-line support
107 * @msg: skb_over_panic or skb_under_panic
109 * Out-of-line support for skb_put() and skb_push().
110 * Called via the wrapper skb_over_panic() or skb_under_panic().
111 * Keep out of line to prevent kernel bloat.
112 * __builtin_return_address is not used because it is not always reliable.
114 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
117 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
118 msg, addr, skb->len, sz, skb->head, skb->data,
119 (unsigned long)skb->tail, (unsigned long)skb->end,
120 skb->dev ? skb->dev->name : "<NULL>");
124 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
126 skb_panic(skb, sz, addr, __func__);
129 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
131 skb_panic(skb, sz, addr, __func__);
134 #define NAPI_SKB_CACHE_SIZE 64
135 #define NAPI_SKB_CACHE_BULK 16
136 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
138 #if PAGE_SIZE == SZ_4K
140 #define NAPI_HAS_SMALL_PAGE_FRAG 1
141 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc)
143 /* specialized page frag allocator using a single order 0 page
144 * and slicing it into 1K sized fragment. Constrained to systems
145 * with a very limited amount of 1K fragments fitting a single
146 * page - to avoid excessive truesize underestimation
149 struct page_frag_1k {
155 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
160 offset = nc->offset - SZ_1K;
161 if (likely(offset >= 0))
164 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
168 nc->va = page_address(page);
169 nc->pfmemalloc = page_is_pfmemalloc(page);
170 offset = PAGE_SIZE - SZ_1K;
171 page_ref_add(page, offset / SZ_1K);
175 return nc->va + offset;
179 /* the small page is actually unused in this build; add dummy helpers
180 * to please the compiler and avoid later preprocessor's conditionals
182 #define NAPI_HAS_SMALL_PAGE_FRAG 0
183 #define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false
185 struct page_frag_1k {
188 static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
195 struct napi_alloc_cache {
196 struct page_frag_cache page;
197 struct page_frag_1k page_small;
198 unsigned int skb_count;
199 void *skb_cache[NAPI_SKB_CACHE_SIZE];
202 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
203 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
205 /* Double check that napi_get_frags() allocates skbs with
206 * skb->head being backed by slab, not a page fragment.
207 * This is to make sure bug fixed in 3226b158e67c
208 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
209 * does not accidentally come back.
211 void napi_get_frags_check(struct napi_struct *napi)
216 skb = napi_get_frags(napi);
217 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
218 napi_free_frags(napi);
222 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
224 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
226 fragsz = SKB_DATA_ALIGN(fragsz);
228 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
230 EXPORT_SYMBOL(__napi_alloc_frag_align);
232 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
236 fragsz = SKB_DATA_ALIGN(fragsz);
237 if (in_hardirq() || irqs_disabled()) {
238 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
240 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
242 struct napi_alloc_cache *nc;
245 nc = this_cpu_ptr(&napi_alloc_cache);
246 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
251 EXPORT_SYMBOL(__netdev_alloc_frag_align);
253 static struct sk_buff *napi_skb_cache_get(void)
255 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
258 if (unlikely(!nc->skb_count)) {
259 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
263 if (unlikely(!nc->skb_count))
267 skb = nc->skb_cache[--nc->skb_count];
268 kasan_unpoison_object_data(skbuff_head_cache, skb);
273 static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
276 struct skb_shared_info *shinfo;
278 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
280 /* Assumes caller memset cleared SKB */
281 skb->truesize = SKB_TRUESIZE(size);
282 refcount_set(&skb->users, 1);
285 skb_reset_tail_pointer(skb);
286 skb_set_end_offset(skb, size);
287 skb->mac_header = (typeof(skb->mac_header))~0U;
288 skb->transport_header = (typeof(skb->transport_header))~0U;
289 skb->alloc_cpu = raw_smp_processor_id();
290 /* make sure we initialize shinfo sequentially */
291 shinfo = skb_shinfo(skb);
292 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
293 atomic_set(&shinfo->dataref, 1);
295 skb_set_kcov_handle(skb, kcov_common_handle());
298 static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
303 /* Must find the allocation size (and grow it to match). */
305 /* krealloc() will immediately return "data" when
306 * "ksize(data)" is requested: it is the existing upper
307 * bounds. As a result, GFP_ATOMIC will be ignored. Note
308 * that this "new" pointer needs to be passed back to the
309 * caller for use so the __alloc_size hinting will be
312 resized = krealloc(data, *size, GFP_ATOMIC);
313 WARN_ON_ONCE(resized != data);
317 /* build_skb() variant which can operate on slab buffers.
318 * Note that this should be used sparingly as slab buffers
319 * cannot be combined efficiently by GRO!
321 struct sk_buff *slab_build_skb(void *data)
326 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
330 memset(skb, 0, offsetof(struct sk_buff, tail));
331 data = __slab_build_skb(skb, data, &size);
332 __finalize_skb_around(skb, data, size);
336 EXPORT_SYMBOL(slab_build_skb);
338 /* Caller must provide SKB that is memset cleared */
339 static void __build_skb_around(struct sk_buff *skb, void *data,
340 unsigned int frag_size)
342 unsigned int size = frag_size;
344 /* frag_size == 0 is considered deprecated now. Callers
345 * using slab buffer should use slab_build_skb() instead.
347 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
348 data = __slab_build_skb(skb, data, &size);
350 __finalize_skb_around(skb, data, size);
354 * __build_skb - build a network buffer
355 * @data: data buffer provided by caller
356 * @frag_size: size of data (must not be 0)
358 * Allocate a new &sk_buff. Caller provides space holding head and
359 * skb_shared_info. @data must have been allocated from the page
360 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
361 * allocation is deprecated, and callers should use slab_build_skb()
363 * The return is the new skb buffer.
364 * On a failure the return is %NULL, and @data is not freed.
366 * Before IO, driver allocates only data buffer where NIC put incoming frame
367 * Driver should add room at head (NET_SKB_PAD) and
368 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
369 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
370 * before giving packet to stack.
371 * RX rings only contains data buffers, not full skbs.
373 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
377 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
381 memset(skb, 0, offsetof(struct sk_buff, tail));
382 __build_skb_around(skb, data, frag_size);
387 /* build_skb() is wrapper over __build_skb(), that specifically
388 * takes care of skb->head and skb->pfmemalloc
390 struct sk_buff *build_skb(void *data, unsigned int frag_size)
392 struct sk_buff *skb = __build_skb(data, frag_size);
394 if (skb && frag_size) {
396 if (page_is_pfmemalloc(virt_to_head_page(data)))
401 EXPORT_SYMBOL(build_skb);
404 * build_skb_around - build a network buffer around provided skb
405 * @skb: sk_buff provide by caller, must be memset cleared
406 * @data: data buffer provided by caller
407 * @frag_size: size of data
409 struct sk_buff *build_skb_around(struct sk_buff *skb,
410 void *data, unsigned int frag_size)
415 __build_skb_around(skb, data, frag_size);
419 if (page_is_pfmemalloc(virt_to_head_page(data)))
424 EXPORT_SYMBOL(build_skb_around);
427 * __napi_build_skb - build a network buffer
428 * @data: data buffer provided by caller
429 * @frag_size: size of data
431 * Version of __build_skb() that uses NAPI percpu caches to obtain
432 * skbuff_head instead of inplace allocation.
434 * Returns a new &sk_buff on success, %NULL on allocation failure.
436 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
440 skb = napi_skb_cache_get();
444 memset(skb, 0, offsetof(struct sk_buff, tail));
445 __build_skb_around(skb, data, frag_size);
451 * napi_build_skb - build a network buffer
452 * @data: data buffer provided by caller
453 * @frag_size: size of data
455 * Version of __napi_build_skb() that takes care of skb->head_frag
456 * and skb->pfmemalloc when the data is a page or page fragment.
458 * Returns a new &sk_buff on success, %NULL on allocation failure.
460 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
462 struct sk_buff *skb = __napi_build_skb(data, frag_size);
464 if (likely(skb) && frag_size) {
466 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
471 EXPORT_SYMBOL(napi_build_skb);
474 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
475 * the caller if emergency pfmemalloc reserves are being used. If it is and
476 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
477 * may be used. Otherwise, the packet data may be discarded until enough
480 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
484 bool ret_pfmemalloc = false;
487 * Try a regular allocation, when that fails and we're not entitled
488 * to the reserves, fail.
490 obj = kmalloc_node_track_caller(size,
491 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
493 if (obj || !(gfp_pfmemalloc_allowed(flags)))
496 /* Try again but now we are using pfmemalloc reserves */
497 ret_pfmemalloc = true;
498 obj = kmalloc_node_track_caller(size, flags, node);
502 *pfmemalloc = ret_pfmemalloc;
507 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
508 * 'private' fields and also do memory statistics to find all the
514 * __alloc_skb - allocate a network buffer
515 * @size: size to allocate
516 * @gfp_mask: allocation mask
517 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
518 * instead of head cache and allocate a cloned (child) skb.
519 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
520 * allocations in case the data is required for writeback
521 * @node: numa node to allocate memory on
523 * Allocate a new &sk_buff. The returned buffer has no headroom and a
524 * tail room of at least size bytes. The object has a reference count
525 * of one. The return is the buffer. On a failure the return is %NULL.
527 * Buffers may only be allocated from interrupts using a @gfp_mask of
530 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
533 struct kmem_cache *cache;
539 cache = (flags & SKB_ALLOC_FCLONE)
540 ? skbuff_fclone_cache : skbuff_head_cache;
542 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
543 gfp_mask |= __GFP_MEMALLOC;
546 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
547 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
548 skb = napi_skb_cache_get();
550 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
555 /* We do our best to align skb_shared_info on a separate cache
556 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
557 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
558 * Both skb->head and skb_shared_info are cache line aligned.
560 size = SKB_DATA_ALIGN(size);
561 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
562 osize = kmalloc_size_roundup(size);
563 data = kmalloc_reserve(osize, gfp_mask, node, &pfmemalloc);
566 /* kmalloc_size_roundup() might give us more room than requested.
567 * Put skb_shared_info exactly at the end of allocated zone,
568 * to allow max possible filling before reallocation.
570 size = SKB_WITH_OVERHEAD(osize);
571 prefetchw(data + size);
574 * Only clear those fields we need to clear, not those that we will
575 * actually initialise below. Hence, don't put any more fields after
576 * the tail pointer in struct sk_buff!
578 memset(skb, 0, offsetof(struct sk_buff, tail));
579 __build_skb_around(skb, data, osize);
580 skb->pfmemalloc = pfmemalloc;
582 if (flags & SKB_ALLOC_FCLONE) {
583 struct sk_buff_fclones *fclones;
585 fclones = container_of(skb, struct sk_buff_fclones, skb1);
587 skb->fclone = SKB_FCLONE_ORIG;
588 refcount_set(&fclones->fclone_ref, 1);
594 kmem_cache_free(cache, skb);
597 EXPORT_SYMBOL(__alloc_skb);
600 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
601 * @dev: network device to receive on
602 * @len: length to allocate
603 * @gfp_mask: get_free_pages mask, passed to alloc_skb
605 * Allocate a new &sk_buff and assign it a usage count of one. The
606 * buffer has NET_SKB_PAD headroom built in. Users should allocate
607 * the headroom they think they need without accounting for the
608 * built in space. The built in space is used for optimisations.
610 * %NULL is returned if there is no free memory.
612 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
615 struct page_frag_cache *nc;
622 /* If requested length is either too small or too big,
623 * we use kmalloc() for skb->head allocation.
625 if (len <= SKB_WITH_OVERHEAD(1024) ||
626 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
627 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
628 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
634 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
635 len = SKB_DATA_ALIGN(len);
637 if (sk_memalloc_socks())
638 gfp_mask |= __GFP_MEMALLOC;
640 if (in_hardirq() || irqs_disabled()) {
641 nc = this_cpu_ptr(&netdev_alloc_cache);
642 data = page_frag_alloc(nc, len, gfp_mask);
643 pfmemalloc = nc->pfmemalloc;
646 nc = this_cpu_ptr(&napi_alloc_cache.page);
647 data = page_frag_alloc(nc, len, gfp_mask);
648 pfmemalloc = nc->pfmemalloc;
655 skb = __build_skb(data, len);
656 if (unlikely(!skb)) {
666 skb_reserve(skb, NET_SKB_PAD);
672 EXPORT_SYMBOL(__netdev_alloc_skb);
675 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
676 * @napi: napi instance this buffer was allocated for
677 * @len: length to allocate
678 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
680 * Allocate a new sk_buff for use in NAPI receive. This buffer will
681 * attempt to allocate the head from a special reserved region used
682 * only for NAPI Rx allocation. By doing this we can save several
683 * CPU cycles by avoiding having to disable and re-enable IRQs.
685 * %NULL is returned if there is no free memory.
687 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
690 struct napi_alloc_cache *nc;
695 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
696 len += NET_SKB_PAD + NET_IP_ALIGN;
698 /* If requested length is either too small or too big,
699 * we use kmalloc() for skb->head allocation.
700 * When the small frag allocator is available, prefer it over kmalloc
701 * for small fragments
703 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
704 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
705 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
706 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
713 nc = this_cpu_ptr(&napi_alloc_cache);
715 if (sk_memalloc_socks())
716 gfp_mask |= __GFP_MEMALLOC;
718 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
719 /* we are artificially inflating the allocation size, but
720 * that is not as bad as it may look like, as:
721 * - 'len' less than GRO_MAX_HEAD makes little sense
722 * - On most systems, larger 'len' values lead to fragment
723 * size above 512 bytes
724 * - kmalloc would use the kmalloc-1k slab for such values
725 * - Builds with smaller GRO_MAX_HEAD will very likely do
726 * little networking, as that implies no WiFi and no
727 * tunnels support, and 32 bits arches.
731 data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
732 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
734 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
735 len = SKB_DATA_ALIGN(len);
737 data = page_frag_alloc(&nc->page, len, gfp_mask);
738 pfmemalloc = nc->page.pfmemalloc;
744 skb = __napi_build_skb(data, len);
745 if (unlikely(!skb)) {
755 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
756 skb->dev = napi->dev;
761 EXPORT_SYMBOL(__napi_alloc_skb);
763 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
764 int size, unsigned int truesize)
766 skb_fill_page_desc(skb, i, page, off, size);
768 skb->data_len += size;
769 skb->truesize += truesize;
771 EXPORT_SYMBOL(skb_add_rx_frag);
773 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
774 unsigned int truesize)
776 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
778 skb_frag_size_add(frag, size);
780 skb->data_len += size;
781 skb->truesize += truesize;
783 EXPORT_SYMBOL(skb_coalesce_rx_frag);
785 static void skb_drop_list(struct sk_buff **listp)
787 kfree_skb_list(*listp);
791 static inline void skb_drop_fraglist(struct sk_buff *skb)
793 skb_drop_list(&skb_shinfo(skb)->frag_list);
796 static void skb_clone_fraglist(struct sk_buff *skb)
798 struct sk_buff *list;
800 skb_walk_frags(skb, list)
804 static bool skb_pp_recycle(struct sk_buff *skb, void *data)
806 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
808 return page_pool_return_skb_page(virt_to_page(data));
811 static void skb_free_head(struct sk_buff *skb)
813 unsigned char *head = skb->head;
815 if (skb->head_frag) {
816 if (skb_pp_recycle(skb, head))
824 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason)
826 struct skb_shared_info *shinfo = skb_shinfo(skb);
830 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
834 if (skb_zcopy(skb)) {
835 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
837 skb_zcopy_clear(skb, true);
842 for (i = 0; i < shinfo->nr_frags; i++)
843 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
846 if (shinfo->frag_list)
847 kfree_skb_list_reason(shinfo->frag_list, reason);
851 /* When we clone an SKB we copy the reycling bit. The pp_recycle
852 * bit is only set on the head though, so in order to avoid races
853 * while trying to recycle fragments on __skb_frag_unref() we need
854 * to make one SKB responsible for triggering the recycle path.
855 * So disable the recycling bit if an SKB is cloned and we have
856 * additional references to the fragmented part of the SKB.
857 * Eventually the last SKB will have the recycling bit set and it's
858 * dataref set to 0, which will trigger the recycling
864 * Free an skbuff by memory without cleaning the state.
866 static void kfree_skbmem(struct sk_buff *skb)
868 struct sk_buff_fclones *fclones;
870 switch (skb->fclone) {
871 case SKB_FCLONE_UNAVAILABLE:
872 kmem_cache_free(skbuff_head_cache, skb);
875 case SKB_FCLONE_ORIG:
876 fclones = container_of(skb, struct sk_buff_fclones, skb1);
878 /* We usually free the clone (TX completion) before original skb
879 * This test would have no chance to be true for the clone,
880 * while here, branch prediction will be good.
882 if (refcount_read(&fclones->fclone_ref) == 1)
886 default: /* SKB_FCLONE_CLONE */
887 fclones = container_of(skb, struct sk_buff_fclones, skb2);
890 if (!refcount_dec_and_test(&fclones->fclone_ref))
893 kmem_cache_free(skbuff_fclone_cache, fclones);
896 void skb_release_head_state(struct sk_buff *skb)
899 if (skb->destructor) {
900 DEBUG_NET_WARN_ON_ONCE(in_hardirq());
901 skb->destructor(skb);
903 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
904 nf_conntrack_put(skb_nfct(skb));
909 /* Free everything but the sk_buff shell. */
910 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason)
912 skb_release_head_state(skb);
913 if (likely(skb->head))
914 skb_release_data(skb, reason);
918 * __kfree_skb - private function
921 * Free an sk_buff. Release anything attached to the buffer.
922 * Clean the state. This is an internal helper function. Users should
923 * always call kfree_skb
926 void __kfree_skb(struct sk_buff *skb)
928 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
931 EXPORT_SYMBOL(__kfree_skb);
934 * kfree_skb_reason - free an sk_buff with special reason
935 * @skb: buffer to free
936 * @reason: reason why this skb is dropped
938 * Drop a reference to the buffer and free it if the usage count has
939 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
943 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
945 if (unlikely(!skb_unref(skb)))
948 DEBUG_NET_WARN_ON_ONCE(reason <= 0 || reason >= SKB_DROP_REASON_MAX);
950 if (reason == SKB_CONSUMED)
951 trace_consume_skb(skb);
953 trace_kfree_skb(skb, __builtin_return_address(0), reason);
956 EXPORT_SYMBOL(kfree_skb_reason);
958 void kfree_skb_list_reason(struct sk_buff *segs,
959 enum skb_drop_reason reason)
962 struct sk_buff *next = segs->next;
964 kfree_skb_reason(segs, reason);
968 EXPORT_SYMBOL(kfree_skb_list_reason);
970 /* Dump skb information and contents.
972 * Must only be called from net_ratelimit()-ed paths.
974 * Dumps whole packets if full_pkt, only headers otherwise.
976 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
978 struct skb_shared_info *sh = skb_shinfo(skb);
979 struct net_device *dev = skb->dev;
980 struct sock *sk = skb->sk;
981 struct sk_buff *list_skb;
982 bool has_mac, has_trans;
983 int headroom, tailroom;
989 len = min_t(int, skb->len, MAX_HEADER + 128);
991 headroom = skb_headroom(skb);
992 tailroom = skb_tailroom(skb);
994 has_mac = skb_mac_header_was_set(skb);
995 has_trans = skb_transport_header_was_set(skb);
997 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
998 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
999 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1000 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1001 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1002 level, skb->len, headroom, skb_headlen(skb), tailroom,
1003 has_mac ? skb->mac_header : -1,
1004 has_mac ? skb_mac_header_len(skb) : -1,
1005 skb->network_header,
1006 has_trans ? skb_network_header_len(skb) : -1,
1007 has_trans ? skb->transport_header : -1,
1008 sh->tx_flags, sh->nr_frags,
1009 sh->gso_size, sh->gso_type, sh->gso_segs,
1010 skb->csum, skb->ip_summed, skb->csum_complete_sw,
1011 skb->csum_valid, skb->csum_level,
1012 skb->hash, skb->sw_hash, skb->l4_hash,
1013 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1016 printk("%sdev name=%s feat=%pNF\n",
1017 level, dev->name, &dev->features);
1019 printk("%ssk family=%hu type=%u proto=%u\n",
1020 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1022 if (full_pkt && headroom)
1023 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1024 16, 1, skb->head, headroom, false);
1026 seg_len = min_t(int, skb_headlen(skb), len);
1028 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
1029 16, 1, skb->data, seg_len, false);
1032 if (full_pkt && tailroom)
1033 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1034 16, 1, skb_tail_pointer(skb), tailroom, false);
1036 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1037 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1038 u32 p_off, p_len, copied;
1042 skb_frag_foreach_page(frag, skb_frag_off(frag),
1043 skb_frag_size(frag), p, p_off, p_len,
1045 seg_len = min_t(int, p_len, len);
1046 vaddr = kmap_atomic(p);
1047 print_hex_dump(level, "skb frag: ",
1049 16, 1, vaddr + p_off, seg_len, false);
1050 kunmap_atomic(vaddr);
1057 if (full_pkt && skb_has_frag_list(skb)) {
1058 printk("skb fraglist:\n");
1059 skb_walk_frags(skb, list_skb)
1060 skb_dump(level, list_skb, true);
1063 EXPORT_SYMBOL(skb_dump);
1066 * skb_tx_error - report an sk_buff xmit error
1067 * @skb: buffer that triggered an error
1069 * Report xmit error if a device callback is tracking this skb.
1070 * skb must be freed afterwards.
1072 void skb_tx_error(struct sk_buff *skb)
1075 skb_zcopy_downgrade_managed(skb);
1076 skb_zcopy_clear(skb, true);
1079 EXPORT_SYMBOL(skb_tx_error);
1081 #ifdef CONFIG_TRACEPOINTS
1083 * consume_skb - free an skbuff
1084 * @skb: buffer to free
1086 * Drop a ref to the buffer and free it if the usage count has hit zero
1087 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
1088 * is being dropped after a failure and notes that
1090 void consume_skb(struct sk_buff *skb)
1092 if (!skb_unref(skb))
1095 trace_consume_skb(skb);
1098 EXPORT_SYMBOL(consume_skb);
1102 * __consume_stateless_skb - free an skbuff, assuming it is stateless
1103 * @skb: buffer to free
1105 * Alike consume_skb(), but this variant assumes that this is the last
1106 * skb reference and all the head states have been already dropped
1108 void __consume_stateless_skb(struct sk_buff *skb)
1110 trace_consume_skb(skb);
1111 skb_release_data(skb, SKB_CONSUMED);
1115 static void napi_skb_cache_put(struct sk_buff *skb)
1117 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1120 kasan_poison_object_data(skbuff_head_cache, skb);
1121 nc->skb_cache[nc->skb_count++] = skb;
1123 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1124 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1125 kasan_unpoison_object_data(skbuff_head_cache,
1128 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
1129 nc->skb_cache + NAPI_SKB_CACHE_HALF);
1130 nc->skb_count = NAPI_SKB_CACHE_HALF;
1134 void __kfree_skb_defer(struct sk_buff *skb)
1136 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1137 napi_skb_cache_put(skb);
1140 void napi_skb_free_stolen_head(struct sk_buff *skb)
1142 if (unlikely(skb->slow_gro)) {
1149 napi_skb_cache_put(skb);
1152 void napi_consume_skb(struct sk_buff *skb, int budget)
1154 /* Zero budget indicate non-NAPI context called us, like netpoll */
1155 if (unlikely(!budget)) {
1156 dev_consume_skb_any(skb);
1160 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1162 if (!skb_unref(skb))
1165 /* if reaching here SKB is ready to free */
1166 trace_consume_skb(skb);
1168 /* if SKB is a clone, don't handle this case */
1169 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1174 skb_release_all(skb, SKB_CONSUMED);
1175 napi_skb_cache_put(skb);
1177 EXPORT_SYMBOL(napi_consume_skb);
1179 /* Make sure a field is contained by headers group */
1180 #define CHECK_SKB_FIELD(field) \
1181 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \
1182 offsetof(struct sk_buff, headers.field)); \
1184 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1186 new->tstamp = old->tstamp;
1187 /* We do not copy old->sk */
1188 new->dev = old->dev;
1189 memcpy(new->cb, old->cb, sizeof(old->cb));
1190 skb_dst_copy(new, old);
1191 __skb_ext_copy(new, old);
1192 __nf_copy(new, old, false);
1194 /* Note : this field could be in the headers group.
1195 * It is not yet because we do not want to have a 16 bit hole
1197 new->queue_mapping = old->queue_mapping;
1199 memcpy(&new->headers, &old->headers, sizeof(new->headers));
1200 CHECK_SKB_FIELD(protocol);
1201 CHECK_SKB_FIELD(csum);
1202 CHECK_SKB_FIELD(hash);
1203 CHECK_SKB_FIELD(priority);
1204 CHECK_SKB_FIELD(skb_iif);
1205 CHECK_SKB_FIELD(vlan_proto);
1206 CHECK_SKB_FIELD(vlan_tci);
1207 CHECK_SKB_FIELD(transport_header);
1208 CHECK_SKB_FIELD(network_header);
1209 CHECK_SKB_FIELD(mac_header);
1210 CHECK_SKB_FIELD(inner_protocol);
1211 CHECK_SKB_FIELD(inner_transport_header);
1212 CHECK_SKB_FIELD(inner_network_header);
1213 CHECK_SKB_FIELD(inner_mac_header);
1214 CHECK_SKB_FIELD(mark);
1215 #ifdef CONFIG_NETWORK_SECMARK
1216 CHECK_SKB_FIELD(secmark);
1218 #ifdef CONFIG_NET_RX_BUSY_POLL
1219 CHECK_SKB_FIELD(napi_id);
1221 CHECK_SKB_FIELD(alloc_cpu);
1223 CHECK_SKB_FIELD(sender_cpu);
1225 #ifdef CONFIG_NET_SCHED
1226 CHECK_SKB_FIELD(tc_index);
1232 * You should not add any new code to this function. Add it to
1233 * __copy_skb_header above instead.
1235 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1237 #define C(x) n->x = skb->x
1239 n->next = n->prev = NULL;
1241 __copy_skb_header(n, skb);
1246 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1252 n->destructor = NULL;
1259 refcount_set(&n->users, 1);
1261 atomic_inc(&(skb_shinfo(skb)->dataref));
1269 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1270 * @first: first sk_buff of the msg
1272 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1276 n = alloc_skb(0, GFP_ATOMIC);
1280 n->len = first->len;
1281 n->data_len = first->len;
1282 n->truesize = first->truesize;
1284 skb_shinfo(n)->frag_list = first;
1286 __copy_skb_header(n, first);
1287 n->destructor = NULL;
1291 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1294 * skb_morph - morph one skb into another
1295 * @dst: the skb to receive the contents
1296 * @src: the skb to supply the contents
1298 * This is identical to skb_clone except that the target skb is
1299 * supplied by the user.
1301 * The target skb is returned upon exit.
1303 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1305 skb_release_all(dst, SKB_CONSUMED);
1306 return __skb_clone(dst, src);
1308 EXPORT_SYMBOL_GPL(skb_morph);
1310 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1312 unsigned long max_pg, num_pg, new_pg, old_pg;
1313 struct user_struct *user;
1315 if (capable(CAP_IPC_LOCK) || !size)
1318 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1319 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1320 user = mmp->user ? : current_user();
1322 old_pg = atomic_long_read(&user->locked_vm);
1324 new_pg = old_pg + num_pg;
1325 if (new_pg > max_pg)
1327 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1330 mmp->user = get_uid(user);
1331 mmp->num_pg = num_pg;
1333 mmp->num_pg += num_pg;
1338 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1340 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1343 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1344 free_uid(mmp->user);
1347 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1349 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1351 struct ubuf_info_msgzc *uarg;
1352 struct sk_buff *skb;
1354 WARN_ON_ONCE(!in_task());
1356 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1360 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1361 uarg = (void *)skb->cb;
1362 uarg->mmp.user = NULL;
1364 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1369 uarg->ubuf.callback = msg_zerocopy_callback;
1370 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1372 uarg->bytelen = size;
1374 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1375 refcount_set(&uarg->ubuf.refcnt, 1);
1381 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1383 return container_of((void *)uarg, struct sk_buff, cb);
1386 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1387 struct ubuf_info *uarg)
1390 struct ubuf_info_msgzc *uarg_zc;
1391 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1394 /* there might be non MSG_ZEROCOPY users */
1395 if (uarg->callback != msg_zerocopy_callback)
1398 /* realloc only when socket is locked (TCP, UDP cork),
1399 * so uarg->len and sk_zckey access is serialized
1401 if (!sock_owned_by_user(sk)) {
1406 uarg_zc = uarg_to_msgzc(uarg);
1407 bytelen = uarg_zc->bytelen + size;
1408 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1409 /* TCP can create new skb to attach new uarg */
1410 if (sk->sk_type == SOCK_STREAM)
1415 next = (u32)atomic_read(&sk->sk_zckey);
1416 if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1417 if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1420 uarg_zc->bytelen = bytelen;
1421 atomic_set(&sk->sk_zckey, ++next);
1423 /* no extra ref when appending to datagram (MSG_MORE) */
1424 if (sk->sk_type == SOCK_STREAM)
1425 net_zcopy_get(uarg);
1432 return msg_zerocopy_alloc(sk, size);
1434 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1436 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1438 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1442 old_lo = serr->ee.ee_info;
1443 old_hi = serr->ee.ee_data;
1444 sum_len = old_hi - old_lo + 1ULL + len;
1446 if (sum_len >= (1ULL << 32))
1449 if (lo != old_hi + 1)
1452 serr->ee.ee_data += len;
1456 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1458 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1459 struct sock_exterr_skb *serr;
1460 struct sock *sk = skb->sk;
1461 struct sk_buff_head *q;
1462 unsigned long flags;
1467 mm_unaccount_pinned_pages(&uarg->mmp);
1469 /* if !len, there was only 1 call, and it was aborted
1470 * so do not queue a completion notification
1472 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1477 hi = uarg->id + len - 1;
1478 is_zerocopy = uarg->zerocopy;
1480 serr = SKB_EXT_ERR(skb);
1481 memset(serr, 0, sizeof(*serr));
1482 serr->ee.ee_errno = 0;
1483 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1484 serr->ee.ee_data = hi;
1485 serr->ee.ee_info = lo;
1487 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1489 q = &sk->sk_error_queue;
1490 spin_lock_irqsave(&q->lock, flags);
1491 tail = skb_peek_tail(q);
1492 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1493 !skb_zerocopy_notify_extend(tail, lo, len)) {
1494 __skb_queue_tail(q, skb);
1497 spin_unlock_irqrestore(&q->lock, flags);
1499 sk_error_report(sk);
1506 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1509 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1511 uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1513 if (refcount_dec_and_test(&uarg->refcnt))
1514 __msg_zerocopy_callback(uarg_zc);
1516 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1518 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1520 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1522 atomic_dec(&sk->sk_zckey);
1523 uarg_to_msgzc(uarg)->len--;
1526 msg_zerocopy_callback(NULL, uarg, true);
1528 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1530 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1531 struct msghdr *msg, int len,
1532 struct ubuf_info *uarg)
1534 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1535 int err, orig_len = skb->len;
1537 /* An skb can only point to one uarg. This edge case happens when
1538 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1540 if (orig_uarg && uarg != orig_uarg)
1543 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1544 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1545 struct sock *save_sk = skb->sk;
1547 /* Streams do not free skb on error. Reset to prev state. */
1548 iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1550 ___pskb_trim(skb, orig_len);
1555 skb_zcopy_set(skb, uarg, NULL);
1556 return skb->len - orig_len;
1558 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1560 void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1564 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1565 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1566 skb_frag_ref(skb, i);
1568 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1570 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1573 if (skb_zcopy(orig)) {
1574 if (skb_zcopy(nskb)) {
1575 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1580 if (skb_uarg(nskb) == skb_uarg(orig))
1582 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1585 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1591 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1592 * @skb: the skb to modify
1593 * @gfp_mask: allocation priority
1595 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1596 * It will copy all frags into kernel and drop the reference
1597 * to userspace pages.
1599 * If this function is called from an interrupt gfp_mask() must be
1602 * Returns 0 on success or a negative error code on failure
1603 * to allocate kernel memory to copy to.
1605 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1607 int num_frags = skb_shinfo(skb)->nr_frags;
1608 struct page *page, *head = NULL;
1612 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1618 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1619 for (i = 0; i < new_frags; i++) {
1620 page = alloc_page(gfp_mask);
1623 struct page *next = (struct page *)page_private(head);
1629 set_page_private(page, (unsigned long)head);
1635 for (i = 0; i < num_frags; i++) {
1636 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1637 u32 p_off, p_len, copied;
1641 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1642 p, p_off, p_len, copied) {
1644 vaddr = kmap_atomic(p);
1646 while (done < p_len) {
1647 if (d_off == PAGE_SIZE) {
1649 page = (struct page *)page_private(page);
1651 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1652 memcpy(page_address(page) + d_off,
1653 vaddr + p_off + done, copy);
1657 kunmap_atomic(vaddr);
1661 /* skb frags release userspace buffers */
1662 for (i = 0; i < num_frags; i++)
1663 skb_frag_unref(skb, i);
1665 /* skb frags point to kernel buffers */
1666 for (i = 0; i < new_frags - 1; i++) {
1667 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1668 head = (struct page *)page_private(head);
1670 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1671 skb_shinfo(skb)->nr_frags = new_frags;
1674 skb_zcopy_clear(skb, false);
1677 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1680 * skb_clone - duplicate an sk_buff
1681 * @skb: buffer to clone
1682 * @gfp_mask: allocation priority
1684 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1685 * copies share the same packet data but not structure. The new
1686 * buffer has a reference count of 1. If the allocation fails the
1687 * function returns %NULL otherwise the new buffer is returned.
1689 * If this function is called from an interrupt gfp_mask() must be
1693 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1695 struct sk_buff_fclones *fclones = container_of(skb,
1696 struct sk_buff_fclones,
1700 if (skb_orphan_frags(skb, gfp_mask))
1703 if (skb->fclone == SKB_FCLONE_ORIG &&
1704 refcount_read(&fclones->fclone_ref) == 1) {
1706 refcount_set(&fclones->fclone_ref, 2);
1707 n->fclone = SKB_FCLONE_CLONE;
1709 if (skb_pfmemalloc(skb))
1710 gfp_mask |= __GFP_MEMALLOC;
1712 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1716 n->fclone = SKB_FCLONE_UNAVAILABLE;
1719 return __skb_clone(n, skb);
1721 EXPORT_SYMBOL(skb_clone);
1723 void skb_headers_offset_update(struct sk_buff *skb, int off)
1725 /* Only adjust this if it actually is csum_start rather than csum */
1726 if (skb->ip_summed == CHECKSUM_PARTIAL)
1727 skb->csum_start += off;
1728 /* {transport,network,mac}_header and tail are relative to skb->head */
1729 skb->transport_header += off;
1730 skb->network_header += off;
1731 if (skb_mac_header_was_set(skb))
1732 skb->mac_header += off;
1733 skb->inner_transport_header += off;
1734 skb->inner_network_header += off;
1735 skb->inner_mac_header += off;
1737 EXPORT_SYMBOL(skb_headers_offset_update);
1739 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1741 __copy_skb_header(new, old);
1743 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1744 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1745 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1747 EXPORT_SYMBOL(skb_copy_header);
1749 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1751 if (skb_pfmemalloc(skb))
1752 return SKB_ALLOC_RX;
1757 * skb_copy - create private copy of an sk_buff
1758 * @skb: buffer to copy
1759 * @gfp_mask: allocation priority
1761 * Make a copy of both an &sk_buff and its data. This is used when the
1762 * caller wishes to modify the data and needs a private copy of the
1763 * data to alter. Returns %NULL on failure or the pointer to the buffer
1764 * on success. The returned buffer has a reference count of 1.
1766 * As by-product this function converts non-linear &sk_buff to linear
1767 * one, so that &sk_buff becomes completely private and caller is allowed
1768 * to modify all the data of returned buffer. This means that this
1769 * function is not recommended for use in circumstances when only
1770 * header is going to be modified. Use pskb_copy() instead.
1773 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1775 int headerlen = skb_headroom(skb);
1776 unsigned int size = skb_end_offset(skb) + skb->data_len;
1777 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1778 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1783 /* Set the data pointer */
1784 skb_reserve(n, headerlen);
1785 /* Set the tail pointer and length */
1786 skb_put(n, skb->len);
1788 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1790 skb_copy_header(n, skb);
1793 EXPORT_SYMBOL(skb_copy);
1796 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1797 * @skb: buffer to copy
1798 * @headroom: headroom of new skb
1799 * @gfp_mask: allocation priority
1800 * @fclone: if true allocate the copy of the skb from the fclone
1801 * cache instead of the head cache; it is recommended to set this
1802 * to true for the cases where the copy will likely be cloned
1804 * Make a copy of both an &sk_buff and part of its data, located
1805 * in header. Fragmented data remain shared. This is used when
1806 * the caller wishes to modify only header of &sk_buff and needs
1807 * private copy of the header to alter. Returns %NULL on failure
1808 * or the pointer to the buffer on success.
1809 * The returned buffer has a reference count of 1.
1812 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1813 gfp_t gfp_mask, bool fclone)
1815 unsigned int size = skb_headlen(skb) + headroom;
1816 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1817 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1822 /* Set the data pointer */
1823 skb_reserve(n, headroom);
1824 /* Set the tail pointer and length */
1825 skb_put(n, skb_headlen(skb));
1826 /* Copy the bytes */
1827 skb_copy_from_linear_data(skb, n->data, n->len);
1829 n->truesize += skb->data_len;
1830 n->data_len = skb->data_len;
1833 if (skb_shinfo(skb)->nr_frags) {
1836 if (skb_orphan_frags(skb, gfp_mask) ||
1837 skb_zerocopy_clone(n, skb, gfp_mask)) {
1842 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1843 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1844 skb_frag_ref(skb, i);
1846 skb_shinfo(n)->nr_frags = i;
1849 if (skb_has_frag_list(skb)) {
1850 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1851 skb_clone_fraglist(n);
1854 skb_copy_header(n, skb);
1858 EXPORT_SYMBOL(__pskb_copy_fclone);
1861 * pskb_expand_head - reallocate header of &sk_buff
1862 * @skb: buffer to reallocate
1863 * @nhead: room to add at head
1864 * @ntail: room to add at tail
1865 * @gfp_mask: allocation priority
1867 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1868 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1869 * reference count of 1. Returns zero in the case of success or error,
1870 * if expansion failed. In the last case, &sk_buff is not changed.
1872 * All the pointers pointing into skb header may change and must be
1873 * reloaded after call to this function.
1876 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1879 unsigned int osize = skb_end_offset(skb);
1880 unsigned int size = osize + nhead + ntail;
1887 BUG_ON(skb_shared(skb));
1889 skb_zcopy_downgrade_managed(skb);
1891 if (skb_pfmemalloc(skb))
1892 gfp_mask |= __GFP_MEMALLOC;
1894 size = SKB_DATA_ALIGN(size);
1895 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1896 size = kmalloc_size_roundup(size);
1897 data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
1900 size = SKB_WITH_OVERHEAD(size);
1902 /* Copy only real data... and, alas, header. This should be
1903 * optimized for the cases when header is void.
1905 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1907 memcpy((struct skb_shared_info *)(data + size),
1909 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1912 * if shinfo is shared we must drop the old head gracefully, but if it
1913 * is not we can just drop the old head and let the existing refcount
1914 * be since all we did is relocate the values
1916 if (skb_cloned(skb)) {
1917 if (skb_orphan_frags(skb, gfp_mask))
1920 refcount_inc(&skb_uarg(skb)->refcnt);
1921 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1922 skb_frag_ref(skb, i);
1924 if (skb_has_frag_list(skb))
1925 skb_clone_fraglist(skb);
1927 skb_release_data(skb, SKB_CONSUMED);
1931 off = (data + nhead) - skb->head;
1937 skb_set_end_offset(skb, size);
1938 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1942 skb_headers_offset_update(skb, nhead);
1946 atomic_set(&skb_shinfo(skb)->dataref, 1);
1948 skb_metadata_clear(skb);
1950 /* It is not generally safe to change skb->truesize.
1951 * For the moment, we really care of rx path, or
1952 * when skb is orphaned (not attached to a socket).
1954 if (!skb->sk || skb->destructor == sock_edemux)
1955 skb->truesize += size - osize;
1964 EXPORT_SYMBOL(pskb_expand_head);
1966 /* Make private copy of skb with writable head and some headroom */
1968 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1970 struct sk_buff *skb2;
1971 int delta = headroom - skb_headroom(skb);
1974 skb2 = pskb_copy(skb, GFP_ATOMIC);
1976 skb2 = skb_clone(skb, GFP_ATOMIC);
1977 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1985 EXPORT_SYMBOL(skb_realloc_headroom);
1987 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1989 unsigned int saved_end_offset, saved_truesize;
1990 struct skb_shared_info *shinfo;
1993 saved_end_offset = skb_end_offset(skb);
1994 saved_truesize = skb->truesize;
1996 res = pskb_expand_head(skb, 0, 0, pri);
2000 skb->truesize = saved_truesize;
2002 if (likely(skb_end_offset(skb) == saved_end_offset))
2005 shinfo = skb_shinfo(skb);
2007 /* We are about to change back skb->end,
2008 * we need to move skb_shinfo() to its new location.
2010 memmove(skb->head + saved_end_offset,
2012 offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2014 skb_set_end_offset(skb, saved_end_offset);
2020 * skb_expand_head - reallocate header of &sk_buff
2021 * @skb: buffer to reallocate
2022 * @headroom: needed headroom
2024 * Unlike skb_realloc_headroom, this one does not allocate a new skb
2025 * if possible; copies skb->sk to new skb as needed
2026 * and frees original skb in case of failures.
2028 * It expect increased headroom and generates warning otherwise.
2031 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2033 int delta = headroom - skb_headroom(skb);
2034 int osize = skb_end_offset(skb);
2035 struct sock *sk = skb->sk;
2037 if (WARN_ONCE(delta <= 0,
2038 "%s is expecting an increase in the headroom", __func__))
2041 delta = SKB_DATA_ALIGN(delta);
2042 /* pskb_expand_head() might crash, if skb is shared. */
2043 if (skb_shared(skb) || !is_skb_wmem(skb)) {
2044 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2046 if (unlikely(!nskb))
2050 skb_set_owner_w(nskb, sk);
2054 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2057 if (sk && is_skb_wmem(skb)) {
2058 delta = skb_end_offset(skb) - osize;
2059 refcount_add(delta, &sk->sk_wmem_alloc);
2060 skb->truesize += delta;
2068 EXPORT_SYMBOL(skb_expand_head);
2071 * skb_copy_expand - copy and expand sk_buff
2072 * @skb: buffer to copy
2073 * @newheadroom: new free bytes at head
2074 * @newtailroom: new free bytes at tail
2075 * @gfp_mask: allocation priority
2077 * Make a copy of both an &sk_buff and its data and while doing so
2078 * allocate additional space.
2080 * This is used when the caller wishes to modify the data and needs a
2081 * private copy of the data to alter as well as more space for new fields.
2082 * Returns %NULL on failure or the pointer to the buffer
2083 * on success. The returned buffer has a reference count of 1.
2085 * You must pass %GFP_ATOMIC as the allocation priority if this function
2086 * is called from an interrupt.
2088 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2089 int newheadroom, int newtailroom,
2093 * Allocate the copy buffer
2095 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2096 gfp_mask, skb_alloc_rx_flag(skb),
2098 int oldheadroom = skb_headroom(skb);
2099 int head_copy_len, head_copy_off;
2104 skb_reserve(n, newheadroom);
2106 /* Set the tail pointer and length */
2107 skb_put(n, skb->len);
2109 head_copy_len = oldheadroom;
2111 if (newheadroom <= head_copy_len)
2112 head_copy_len = newheadroom;
2114 head_copy_off = newheadroom - head_copy_len;
2116 /* Copy the linear header and data. */
2117 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2118 skb->len + head_copy_len));
2120 skb_copy_header(n, skb);
2122 skb_headers_offset_update(n, newheadroom - oldheadroom);
2126 EXPORT_SYMBOL(skb_copy_expand);
2129 * __skb_pad - zero pad the tail of an skb
2130 * @skb: buffer to pad
2131 * @pad: space to pad
2132 * @free_on_error: free buffer on error
2134 * Ensure that a buffer is followed by a padding area that is zero
2135 * filled. Used by network drivers which may DMA or transfer data
2136 * beyond the buffer end onto the wire.
2138 * May return error in out of memory cases. The skb is freed on error
2139 * if @free_on_error is true.
2142 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2147 /* If the skbuff is non linear tailroom is always zero.. */
2148 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2149 memset(skb->data+skb->len, 0, pad);
2153 ntail = skb->data_len + pad - (skb->end - skb->tail);
2154 if (likely(skb_cloned(skb) || ntail > 0)) {
2155 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2160 /* FIXME: The use of this function with non-linear skb's really needs
2163 err = skb_linearize(skb);
2167 memset(skb->data + skb->len, 0, pad);
2175 EXPORT_SYMBOL(__skb_pad);
2178 * pskb_put - add data to the tail of a potentially fragmented buffer
2179 * @skb: start of the buffer to use
2180 * @tail: tail fragment of the buffer to use
2181 * @len: amount of data to add
2183 * This function extends the used data area of the potentially
2184 * fragmented buffer. @tail must be the last fragment of @skb -- or
2185 * @skb itself. If this would exceed the total buffer size the kernel
2186 * will panic. A pointer to the first byte of the extra data is
2190 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2193 skb->data_len += len;
2196 return skb_put(tail, len);
2198 EXPORT_SYMBOL_GPL(pskb_put);
2201 * skb_put - add data to a buffer
2202 * @skb: buffer to use
2203 * @len: amount of data to add
2205 * This function extends the used data area of the buffer. If this would
2206 * exceed the total buffer size the kernel will panic. A pointer to the
2207 * first byte of the extra data is returned.
2209 void *skb_put(struct sk_buff *skb, unsigned int len)
2211 void *tmp = skb_tail_pointer(skb);
2212 SKB_LINEAR_ASSERT(skb);
2215 if (unlikely(skb->tail > skb->end))
2216 skb_over_panic(skb, len, __builtin_return_address(0));
2219 EXPORT_SYMBOL(skb_put);
2222 * skb_push - add data to the start of a buffer
2223 * @skb: buffer to use
2224 * @len: amount of data to add
2226 * This function extends the used data area of the buffer at the buffer
2227 * start. If this would exceed the total buffer headroom the kernel will
2228 * panic. A pointer to the first byte of the extra data is returned.
2230 void *skb_push(struct sk_buff *skb, unsigned int len)
2234 if (unlikely(skb->data < skb->head))
2235 skb_under_panic(skb, len, __builtin_return_address(0));
2238 EXPORT_SYMBOL(skb_push);
2241 * skb_pull - remove data from the start of a buffer
2242 * @skb: buffer to use
2243 * @len: amount of data to remove
2245 * This function removes data from the start of a buffer, returning
2246 * the memory to the headroom. A pointer to the next data in the buffer
2247 * is returned. Once the data has been pulled future pushes will overwrite
2250 void *skb_pull(struct sk_buff *skb, unsigned int len)
2252 return skb_pull_inline(skb, len);
2254 EXPORT_SYMBOL(skb_pull);
2257 * skb_pull_data - remove data from the start of a buffer returning its
2258 * original position.
2259 * @skb: buffer to use
2260 * @len: amount of data to remove
2262 * This function removes data from the start of a buffer, returning
2263 * the memory to the headroom. A pointer to the original data in the buffer
2264 * is returned after checking if there is enough data to pull. Once the
2265 * data has been pulled future pushes will overwrite the old data.
2267 void *skb_pull_data(struct sk_buff *skb, size_t len)
2269 void *data = skb->data;
2278 EXPORT_SYMBOL(skb_pull_data);
2281 * skb_trim - remove end from a buffer
2282 * @skb: buffer to alter
2285 * Cut the length of a buffer down by removing data from the tail. If
2286 * the buffer is already under the length specified it is not modified.
2287 * The skb must be linear.
2289 void skb_trim(struct sk_buff *skb, unsigned int len)
2292 __skb_trim(skb, len);
2294 EXPORT_SYMBOL(skb_trim);
2296 /* Trims skb to length len. It can change skb pointers.
2299 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2301 struct sk_buff **fragp;
2302 struct sk_buff *frag;
2303 int offset = skb_headlen(skb);
2304 int nfrags = skb_shinfo(skb)->nr_frags;
2308 if (skb_cloned(skb) &&
2309 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2316 for (; i < nfrags; i++) {
2317 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2324 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2327 skb_shinfo(skb)->nr_frags = i;
2329 for (; i < nfrags; i++)
2330 skb_frag_unref(skb, i);
2332 if (skb_has_frag_list(skb))
2333 skb_drop_fraglist(skb);
2337 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2338 fragp = &frag->next) {
2339 int end = offset + frag->len;
2341 if (skb_shared(frag)) {
2342 struct sk_buff *nfrag;
2344 nfrag = skb_clone(frag, GFP_ATOMIC);
2345 if (unlikely(!nfrag))
2348 nfrag->next = frag->next;
2360 unlikely((err = pskb_trim(frag, len - offset))))
2364 skb_drop_list(&frag->next);
2369 if (len > skb_headlen(skb)) {
2370 skb->data_len -= skb->len - len;
2375 skb_set_tail_pointer(skb, len);
2378 if (!skb->sk || skb->destructor == sock_edemux)
2382 EXPORT_SYMBOL(___pskb_trim);
2384 /* Note : use pskb_trim_rcsum() instead of calling this directly
2386 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2388 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2389 int delta = skb->len - len;
2391 skb->csum = csum_block_sub(skb->csum,
2392 skb_checksum(skb, len, delta, 0),
2394 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2395 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2396 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2398 if (offset + sizeof(__sum16) > hdlen)
2401 return __pskb_trim(skb, len);
2403 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2406 * __pskb_pull_tail - advance tail of skb header
2407 * @skb: buffer to reallocate
2408 * @delta: number of bytes to advance tail
2410 * The function makes a sense only on a fragmented &sk_buff,
2411 * it expands header moving its tail forward and copying necessary
2412 * data from fragmented part.
2414 * &sk_buff MUST have reference count of 1.
2416 * Returns %NULL (and &sk_buff does not change) if pull failed
2417 * or value of new tail of skb in the case of success.
2419 * All the pointers pointing into skb header may change and must be
2420 * reloaded after call to this function.
2423 /* Moves tail of skb head forward, copying data from fragmented part,
2424 * when it is necessary.
2425 * 1. It may fail due to malloc failure.
2426 * 2. It may change skb pointers.
2428 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2430 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2432 /* If skb has not enough free space at tail, get new one
2433 * plus 128 bytes for future expansions. If we have enough
2434 * room at tail, reallocate without expansion only if skb is cloned.
2436 int i, k, eat = (skb->tail + delta) - skb->end;
2438 if (eat > 0 || skb_cloned(skb)) {
2439 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2444 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2445 skb_tail_pointer(skb), delta));
2447 /* Optimization: no fragments, no reasons to preestimate
2448 * size of pulled pages. Superb.
2450 if (!skb_has_frag_list(skb))
2453 /* Estimate size of pulled pages. */
2455 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2456 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2463 /* If we need update frag list, we are in troubles.
2464 * Certainly, it is possible to add an offset to skb data,
2465 * but taking into account that pulling is expected to
2466 * be very rare operation, it is worth to fight against
2467 * further bloating skb head and crucify ourselves here instead.
2468 * Pure masohism, indeed. 8)8)
2471 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2472 struct sk_buff *clone = NULL;
2473 struct sk_buff *insp = NULL;
2476 if (list->len <= eat) {
2477 /* Eaten as whole. */
2482 /* Eaten partially. */
2483 if (skb_is_gso(skb) && !list->head_frag &&
2485 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2487 if (skb_shared(list)) {
2488 /* Sucks! We need to fork list. :-( */
2489 clone = skb_clone(list, GFP_ATOMIC);
2495 /* This may be pulled without
2499 if (!pskb_pull(list, eat)) {
2507 /* Free pulled out fragments. */
2508 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2509 skb_shinfo(skb)->frag_list = list->next;
2512 /* And insert new clone at head. */
2515 skb_shinfo(skb)->frag_list = clone;
2518 /* Success! Now we may commit changes to skb data. */
2523 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2524 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2527 skb_frag_unref(skb, i);
2530 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2532 *frag = skb_shinfo(skb)->frags[i];
2534 skb_frag_off_add(frag, eat);
2535 skb_frag_size_sub(frag, eat);
2543 skb_shinfo(skb)->nr_frags = k;
2547 skb->data_len -= delta;
2550 skb_zcopy_clear(skb, false);
2552 return skb_tail_pointer(skb);
2554 EXPORT_SYMBOL(__pskb_pull_tail);
2557 * skb_copy_bits - copy bits from skb to kernel buffer
2559 * @offset: offset in source
2560 * @to: destination buffer
2561 * @len: number of bytes to copy
2563 * Copy the specified number of bytes from the source skb to the
2564 * destination buffer.
2567 * If its prototype is ever changed,
2568 * check arch/{*}/net/{*}.S files,
2569 * since it is called from BPF assembly code.
2571 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2573 int start = skb_headlen(skb);
2574 struct sk_buff *frag_iter;
2577 if (offset > (int)skb->len - len)
2581 if ((copy = start - offset) > 0) {
2584 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2585 if ((len -= copy) == 0)
2591 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2593 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2595 WARN_ON(start > offset + len);
2597 end = start + skb_frag_size(f);
2598 if ((copy = end - offset) > 0) {
2599 u32 p_off, p_len, copied;
2606 skb_frag_foreach_page(f,
2607 skb_frag_off(f) + offset - start,
2608 copy, p, p_off, p_len, copied) {
2609 vaddr = kmap_atomic(p);
2610 memcpy(to + copied, vaddr + p_off, p_len);
2611 kunmap_atomic(vaddr);
2614 if ((len -= copy) == 0)
2622 skb_walk_frags(skb, frag_iter) {
2625 WARN_ON(start > offset + len);
2627 end = start + frag_iter->len;
2628 if ((copy = end - offset) > 0) {
2631 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2633 if ((len -= copy) == 0)
2647 EXPORT_SYMBOL(skb_copy_bits);
2650 * Callback from splice_to_pipe(), if we need to release some pages
2651 * at the end of the spd in case we error'ed out in filling the pipe.
2653 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2655 put_page(spd->pages[i]);
2658 static struct page *linear_to_page(struct page *page, unsigned int *len,
2659 unsigned int *offset,
2662 struct page_frag *pfrag = sk_page_frag(sk);
2664 if (!sk_page_frag_refill(sk, pfrag))
2667 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2669 memcpy(page_address(pfrag->page) + pfrag->offset,
2670 page_address(page) + *offset, *len);
2671 *offset = pfrag->offset;
2672 pfrag->offset += *len;
2677 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2679 unsigned int offset)
2681 return spd->nr_pages &&
2682 spd->pages[spd->nr_pages - 1] == page &&
2683 (spd->partial[spd->nr_pages - 1].offset +
2684 spd->partial[spd->nr_pages - 1].len == offset);
2688 * Fill page/offset/length into spd, if it can hold more pages.
2690 static bool spd_fill_page(struct splice_pipe_desc *spd,
2691 struct pipe_inode_info *pipe, struct page *page,
2692 unsigned int *len, unsigned int offset,
2696 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2700 page = linear_to_page(page, len, &offset, sk);
2704 if (spd_can_coalesce(spd, page, offset)) {
2705 spd->partial[spd->nr_pages - 1].len += *len;
2709 spd->pages[spd->nr_pages] = page;
2710 spd->partial[spd->nr_pages].len = *len;
2711 spd->partial[spd->nr_pages].offset = offset;
2717 static bool __splice_segment(struct page *page, unsigned int poff,
2718 unsigned int plen, unsigned int *off,
2720 struct splice_pipe_desc *spd, bool linear,
2722 struct pipe_inode_info *pipe)
2727 /* skip this segment if already processed */
2733 /* ignore any bits we already processed */
2739 unsigned int flen = min(*len, plen);
2741 if (spd_fill_page(spd, pipe, page, &flen, poff,
2747 } while (*len && plen);
2753 * Map linear and fragment data from the skb to spd. It reports true if the
2754 * pipe is full or if we already spliced the requested length.
2756 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2757 unsigned int *offset, unsigned int *len,
2758 struct splice_pipe_desc *spd, struct sock *sk)
2761 struct sk_buff *iter;
2763 /* map the linear part :
2764 * If skb->head_frag is set, this 'linear' part is backed by a
2765 * fragment, and if the head is not shared with any clones then
2766 * we can avoid a copy since we own the head portion of this page.
2768 if (__splice_segment(virt_to_page(skb->data),
2769 (unsigned long) skb->data & (PAGE_SIZE - 1),
2772 skb_head_is_locked(skb),
2777 * then map the fragments
2779 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2780 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2782 if (__splice_segment(skb_frag_page(f),
2783 skb_frag_off(f), skb_frag_size(f),
2784 offset, len, spd, false, sk, pipe))
2788 skb_walk_frags(skb, iter) {
2789 if (*offset >= iter->len) {
2790 *offset -= iter->len;
2793 /* __skb_splice_bits() only fails if the output has no room
2794 * left, so no point in going over the frag_list for the error
2797 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2805 * Map data from the skb to a pipe. Should handle both the linear part,
2806 * the fragments, and the frag list.
2808 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2809 struct pipe_inode_info *pipe, unsigned int tlen,
2812 struct partial_page partial[MAX_SKB_FRAGS];
2813 struct page *pages[MAX_SKB_FRAGS];
2814 struct splice_pipe_desc spd = {
2817 .nr_pages_max = MAX_SKB_FRAGS,
2818 .ops = &nosteal_pipe_buf_ops,
2819 .spd_release = sock_spd_release,
2823 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2826 ret = splice_to_pipe(pipe, &spd);
2830 EXPORT_SYMBOL_GPL(skb_splice_bits);
2832 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2833 struct kvec *vec, size_t num, size_t size)
2835 struct socket *sock = sk->sk_socket;
2839 return kernel_sendmsg(sock, msg, vec, num, size);
2842 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2843 size_t size, int flags)
2845 struct socket *sock = sk->sk_socket;
2849 return kernel_sendpage(sock, page, offset, size, flags);
2852 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2853 struct kvec *vec, size_t num, size_t size);
2854 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2855 size_t size, int flags);
2856 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2857 int len, sendmsg_func sendmsg, sendpage_func sendpage)
2859 unsigned int orig_len = len;
2860 struct sk_buff *head = skb;
2861 unsigned short fragidx;
2866 /* Deal with head data */
2867 while (offset < skb_headlen(skb) && len) {
2871 slen = min_t(int, len, skb_headlen(skb) - offset);
2872 kv.iov_base = skb->data + offset;
2874 memset(&msg, 0, sizeof(msg));
2875 msg.msg_flags = MSG_DONTWAIT;
2877 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2878 sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2886 /* All the data was skb head? */
2890 /* Make offset relative to start of frags */
2891 offset -= skb_headlen(skb);
2893 /* Find where we are in frag list */
2894 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2895 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2897 if (offset < skb_frag_size(frag))
2900 offset -= skb_frag_size(frag);
2903 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2904 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2906 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2909 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2910 sendpage_unlocked, sk,
2911 skb_frag_page(frag),
2912 skb_frag_off(frag) + offset,
2913 slen, MSG_DONTWAIT);
2926 /* Process any frag lists */
2929 if (skb_has_frag_list(skb)) {
2930 skb = skb_shinfo(skb)->frag_list;
2933 } else if (skb->next) {
2940 return orig_len - len;
2943 return orig_len == len ? ret : orig_len - len;
2946 /* Send skb data on a socket. Socket must be locked. */
2947 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2950 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2951 kernel_sendpage_locked);
2953 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2955 /* Send skb data on a socket. Socket must be unlocked. */
2956 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2958 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2963 * skb_store_bits - store bits from kernel buffer to skb
2964 * @skb: destination buffer
2965 * @offset: offset in destination
2966 * @from: source buffer
2967 * @len: number of bytes to copy
2969 * Copy the specified number of bytes from the source buffer to the
2970 * destination skb. This function handles all the messy bits of
2971 * traversing fragment lists and such.
2974 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2976 int start = skb_headlen(skb);
2977 struct sk_buff *frag_iter;
2980 if (offset > (int)skb->len - len)
2983 if ((copy = start - offset) > 0) {
2986 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2987 if ((len -= copy) == 0)
2993 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2994 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2997 WARN_ON(start > offset + len);
2999 end = start + skb_frag_size(frag);
3000 if ((copy = end - offset) > 0) {
3001 u32 p_off, p_len, copied;
3008 skb_frag_foreach_page(frag,
3009 skb_frag_off(frag) + offset - start,
3010 copy, p, p_off, p_len, copied) {
3011 vaddr = kmap_atomic(p);
3012 memcpy(vaddr + p_off, from + copied, p_len);
3013 kunmap_atomic(vaddr);
3016 if ((len -= copy) == 0)
3024 skb_walk_frags(skb, frag_iter) {
3027 WARN_ON(start > offset + len);
3029 end = start + frag_iter->len;
3030 if ((copy = end - offset) > 0) {
3033 if (skb_store_bits(frag_iter, offset - start,
3036 if ((len -= copy) == 0)
3049 EXPORT_SYMBOL(skb_store_bits);
3051 /* Checksum skb data. */
3052 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3053 __wsum csum, const struct skb_checksum_ops *ops)
3055 int start = skb_headlen(skb);
3056 int i, copy = start - offset;
3057 struct sk_buff *frag_iter;
3060 /* Checksum header. */
3064 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3065 skb->data + offset, copy, csum);
3066 if ((len -= copy) == 0)
3072 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3074 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3076 WARN_ON(start > offset + len);
3078 end = start + skb_frag_size(frag);
3079 if ((copy = end - offset) > 0) {
3080 u32 p_off, p_len, copied;
3088 skb_frag_foreach_page(frag,
3089 skb_frag_off(frag) + offset - start,
3090 copy, p, p_off, p_len, copied) {
3091 vaddr = kmap_atomic(p);
3092 csum2 = INDIRECT_CALL_1(ops->update,
3094 vaddr + p_off, p_len, 0);
3095 kunmap_atomic(vaddr);
3096 csum = INDIRECT_CALL_1(ops->combine,
3097 csum_block_add_ext, csum,
3109 skb_walk_frags(skb, frag_iter) {
3112 WARN_ON(start > offset + len);
3114 end = start + frag_iter->len;
3115 if ((copy = end - offset) > 0) {
3119 csum2 = __skb_checksum(frag_iter, offset - start,
3121 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3122 csum, csum2, pos, copy);
3123 if ((len -= copy) == 0)
3134 EXPORT_SYMBOL(__skb_checksum);
3136 __wsum skb_checksum(const struct sk_buff *skb, int offset,
3137 int len, __wsum csum)
3139 const struct skb_checksum_ops ops = {
3140 .update = csum_partial_ext,
3141 .combine = csum_block_add_ext,
3144 return __skb_checksum(skb, offset, len, csum, &ops);
3146 EXPORT_SYMBOL(skb_checksum);
3148 /* Both of above in one bottle. */
3150 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3153 int start = skb_headlen(skb);
3154 int i, copy = start - offset;
3155 struct sk_buff *frag_iter;
3163 csum = csum_partial_copy_nocheck(skb->data + offset, to,
3165 if ((len -= copy) == 0)
3172 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3175 WARN_ON(start > offset + len);
3177 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3178 if ((copy = end - offset) > 0) {
3179 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3180 u32 p_off, p_len, copied;
3188 skb_frag_foreach_page(frag,
3189 skb_frag_off(frag) + offset - start,
3190 copy, p, p_off, p_len, copied) {
3191 vaddr = kmap_atomic(p);
3192 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3195 kunmap_atomic(vaddr);
3196 csum = csum_block_add(csum, csum2, pos);
3208 skb_walk_frags(skb, frag_iter) {
3212 WARN_ON(start > offset + len);
3214 end = start + frag_iter->len;
3215 if ((copy = end - offset) > 0) {
3218 csum2 = skb_copy_and_csum_bits(frag_iter,
3221 csum = csum_block_add(csum, csum2, pos);
3222 if ((len -= copy) == 0)
3233 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3235 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3239 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3240 /* See comments in __skb_checksum_complete(). */
3242 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3243 !skb->csum_complete_sw)
3244 netdev_rx_csum_fault(skb->dev, skb);
3246 if (!skb_shared(skb))
3247 skb->csum_valid = !sum;
3250 EXPORT_SYMBOL(__skb_checksum_complete_head);
3252 /* This function assumes skb->csum already holds pseudo header's checksum,
3253 * which has been changed from the hardware checksum, for example, by
3254 * __skb_checksum_validate_complete(). And, the original skb->csum must
3255 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3257 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3258 * zero. The new checksum is stored back into skb->csum unless the skb is
3261 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3266 csum = skb_checksum(skb, 0, skb->len, 0);
3268 sum = csum_fold(csum_add(skb->csum, csum));
3269 /* This check is inverted, because we already knew the hardware
3270 * checksum is invalid before calling this function. So, if the
3271 * re-computed checksum is valid instead, then we have a mismatch
3272 * between the original skb->csum and skb_checksum(). This means either
3273 * the original hardware checksum is incorrect or we screw up skb->csum
3274 * when moving skb->data around.
3277 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3278 !skb->csum_complete_sw)
3279 netdev_rx_csum_fault(skb->dev, skb);
3282 if (!skb_shared(skb)) {
3283 /* Save full packet checksum */
3285 skb->ip_summed = CHECKSUM_COMPLETE;
3286 skb->csum_complete_sw = 1;
3287 skb->csum_valid = !sum;
3292 EXPORT_SYMBOL(__skb_checksum_complete);
3294 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3296 net_warn_ratelimited(
3297 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3302 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3303 int offset, int len)
3305 net_warn_ratelimited(
3306 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3311 static const struct skb_checksum_ops default_crc32c_ops = {
3312 .update = warn_crc32c_csum_update,
3313 .combine = warn_crc32c_csum_combine,
3316 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3317 &default_crc32c_ops;
3318 EXPORT_SYMBOL(crc32c_csum_stub);
3321 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3322 * @from: source buffer
3324 * Calculates the amount of linear headroom needed in the 'to' skb passed
3325 * into skb_zerocopy().
3328 skb_zerocopy_headlen(const struct sk_buff *from)
3330 unsigned int hlen = 0;
3332 if (!from->head_frag ||
3333 skb_headlen(from) < L1_CACHE_BYTES ||
3334 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3335 hlen = skb_headlen(from);
3340 if (skb_has_frag_list(from))
3345 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3348 * skb_zerocopy - Zero copy skb to skb
3349 * @to: destination buffer
3350 * @from: source buffer
3351 * @len: number of bytes to copy from source buffer
3352 * @hlen: size of linear headroom in destination buffer
3354 * Copies up to `len` bytes from `from` to `to` by creating references
3355 * to the frags in the source buffer.
3357 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3358 * headroom in the `to` buffer.
3361 * 0: everything is OK
3362 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3363 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3366 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3369 int plen = 0; /* length of skb->head fragment */
3372 unsigned int offset;
3374 BUG_ON(!from->head_frag && !hlen);
3376 /* dont bother with small payloads */
3377 if (len <= skb_tailroom(to))
3378 return skb_copy_bits(from, 0, skb_put(to, len), len);
3381 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3386 plen = min_t(int, skb_headlen(from), len);
3388 page = virt_to_head_page(from->head);
3389 offset = from->data - (unsigned char *)page_address(page);
3390 __skb_fill_page_desc(to, 0, page, offset, plen);
3397 skb_len_add(to, len + plen);
3399 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3403 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3405 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3410 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3411 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3413 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3415 skb_frag_ref(to, j);
3418 skb_shinfo(to)->nr_frags = j;
3422 EXPORT_SYMBOL_GPL(skb_zerocopy);
3424 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3429 if (skb->ip_summed == CHECKSUM_PARTIAL)
3430 csstart = skb_checksum_start_offset(skb);
3432 csstart = skb_headlen(skb);
3434 BUG_ON(csstart > skb_headlen(skb));
3436 skb_copy_from_linear_data(skb, to, csstart);
3439 if (csstart != skb->len)
3440 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3441 skb->len - csstart);
3443 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3444 long csstuff = csstart + skb->csum_offset;
3446 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3449 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3452 * skb_dequeue - remove from the head of the queue
3453 * @list: list to dequeue from
3455 * Remove the head of the list. The list lock is taken so the function
3456 * may be used safely with other locking list functions. The head item is
3457 * returned or %NULL if the list is empty.
3460 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3462 unsigned long flags;
3463 struct sk_buff *result;
3465 spin_lock_irqsave(&list->lock, flags);
3466 result = __skb_dequeue(list);
3467 spin_unlock_irqrestore(&list->lock, flags);
3470 EXPORT_SYMBOL(skb_dequeue);
3473 * skb_dequeue_tail - remove from the tail of the queue
3474 * @list: list to dequeue from
3476 * Remove the tail of the list. The list lock is taken so the function
3477 * may be used safely with other locking list functions. The tail item is
3478 * returned or %NULL if the list is empty.
3480 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3482 unsigned long flags;
3483 struct sk_buff *result;
3485 spin_lock_irqsave(&list->lock, flags);
3486 result = __skb_dequeue_tail(list);
3487 spin_unlock_irqrestore(&list->lock, flags);
3490 EXPORT_SYMBOL(skb_dequeue_tail);
3493 * skb_queue_purge - empty a list
3494 * @list: list to empty
3496 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3497 * the list and one reference dropped. This function takes the list
3498 * lock and is atomic with respect to other list locking functions.
3500 void skb_queue_purge(struct sk_buff_head *list)
3502 struct sk_buff *skb;
3503 while ((skb = skb_dequeue(list)) != NULL)
3506 EXPORT_SYMBOL(skb_queue_purge);
3509 * skb_rbtree_purge - empty a skb rbtree
3510 * @root: root of the rbtree to empty
3511 * Return value: the sum of truesizes of all purged skbs.
3513 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3514 * the list and one reference dropped. This function does not take
3515 * any lock. Synchronization should be handled by the caller (e.g., TCP
3516 * out-of-order queue is protected by the socket lock).
3518 unsigned int skb_rbtree_purge(struct rb_root *root)
3520 struct rb_node *p = rb_first(root);
3521 unsigned int sum = 0;
3524 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3527 rb_erase(&skb->rbnode, root);
3528 sum += skb->truesize;
3535 * skb_queue_head - queue a buffer at the list head
3536 * @list: list to use
3537 * @newsk: buffer to queue
3539 * Queue a buffer at the start of the list. This function takes the
3540 * list lock and can be used safely with other locking &sk_buff functions
3543 * A buffer cannot be placed on two lists at the same time.
3545 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3547 unsigned long flags;
3549 spin_lock_irqsave(&list->lock, flags);
3550 __skb_queue_head(list, newsk);
3551 spin_unlock_irqrestore(&list->lock, flags);
3553 EXPORT_SYMBOL(skb_queue_head);
3556 * skb_queue_tail - queue a buffer at the list tail
3557 * @list: list to use
3558 * @newsk: buffer to queue
3560 * Queue a buffer at the tail of the list. This function takes the
3561 * list lock and can be used safely with other locking &sk_buff functions
3564 * A buffer cannot be placed on two lists at the same time.
3566 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3568 unsigned long flags;
3570 spin_lock_irqsave(&list->lock, flags);
3571 __skb_queue_tail(list, newsk);
3572 spin_unlock_irqrestore(&list->lock, flags);
3574 EXPORT_SYMBOL(skb_queue_tail);
3577 * skb_unlink - remove a buffer from a list
3578 * @skb: buffer to remove
3579 * @list: list to use
3581 * Remove a packet from a list. The list locks are taken and this
3582 * function is atomic with respect to other list locked calls
3584 * You must know what list the SKB is on.
3586 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3588 unsigned long flags;
3590 spin_lock_irqsave(&list->lock, flags);
3591 __skb_unlink(skb, list);
3592 spin_unlock_irqrestore(&list->lock, flags);
3594 EXPORT_SYMBOL(skb_unlink);
3597 * skb_append - append a buffer
3598 * @old: buffer to insert after
3599 * @newsk: buffer to insert
3600 * @list: list to use
3602 * Place a packet after a given packet in a list. The list locks are taken
3603 * and this function is atomic with respect to other list locked calls.
3604 * A buffer cannot be placed on two lists at the same time.
3606 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3608 unsigned long flags;
3610 spin_lock_irqsave(&list->lock, flags);
3611 __skb_queue_after(list, old, newsk);
3612 spin_unlock_irqrestore(&list->lock, flags);
3614 EXPORT_SYMBOL(skb_append);
3616 static inline void skb_split_inside_header(struct sk_buff *skb,
3617 struct sk_buff* skb1,
3618 const u32 len, const int pos)
3622 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3624 /* And move data appendix as is. */
3625 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3626 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3628 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3629 skb_shinfo(skb)->nr_frags = 0;
3630 skb1->data_len = skb->data_len;
3631 skb1->len += skb1->data_len;
3634 skb_set_tail_pointer(skb, len);
3637 static inline void skb_split_no_header(struct sk_buff *skb,
3638 struct sk_buff* skb1,
3639 const u32 len, int pos)
3642 const int nfrags = skb_shinfo(skb)->nr_frags;
3644 skb_shinfo(skb)->nr_frags = 0;
3645 skb1->len = skb1->data_len = skb->len - len;
3647 skb->data_len = len - pos;
3649 for (i = 0; i < nfrags; i++) {
3650 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3652 if (pos + size > len) {
3653 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3657 * We have two variants in this case:
3658 * 1. Move all the frag to the second
3659 * part, if it is possible. F.e.
3660 * this approach is mandatory for TUX,
3661 * where splitting is expensive.
3662 * 2. Split is accurately. We make this.
3664 skb_frag_ref(skb, i);
3665 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3666 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3667 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3668 skb_shinfo(skb)->nr_frags++;
3672 skb_shinfo(skb)->nr_frags++;
3675 skb_shinfo(skb1)->nr_frags = k;
3679 * skb_split - Split fragmented skb to two parts at length len.
3680 * @skb: the buffer to split
3681 * @skb1: the buffer to receive the second part
3682 * @len: new length for skb
3684 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3686 int pos = skb_headlen(skb);
3687 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3689 skb_zcopy_downgrade_managed(skb);
3691 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3692 skb_zerocopy_clone(skb1, skb, 0);
3693 if (len < pos) /* Split line is inside header. */
3694 skb_split_inside_header(skb, skb1, len, pos);
3695 else /* Second chunk has no header, nothing to copy. */
3696 skb_split_no_header(skb, skb1, len, pos);
3698 EXPORT_SYMBOL(skb_split);
3700 /* Shifting from/to a cloned skb is a no-go.
3702 * Caller cannot keep skb_shinfo related pointers past calling here!
3704 static int skb_prepare_for_shift(struct sk_buff *skb)
3706 return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3710 * skb_shift - Shifts paged data partially from skb to another
3711 * @tgt: buffer into which tail data gets added
3712 * @skb: buffer from which the paged data comes from
3713 * @shiftlen: shift up to this many bytes
3715 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3716 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3717 * It's up to caller to free skb if everything was shifted.
3719 * If @tgt runs out of frags, the whole operation is aborted.
3721 * Skb cannot include anything else but paged data while tgt is allowed
3722 * to have non-paged data as well.
3724 * TODO: full sized shift could be optimized but that would need
3725 * specialized skb free'er to handle frags without up-to-date nr_frags.
3727 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3729 int from, to, merge, todo;
3730 skb_frag_t *fragfrom, *fragto;
3732 BUG_ON(shiftlen > skb->len);
3734 if (skb_headlen(skb))
3736 if (skb_zcopy(tgt) || skb_zcopy(skb))
3741 to = skb_shinfo(tgt)->nr_frags;
3742 fragfrom = &skb_shinfo(skb)->frags[from];
3744 /* Actual merge is delayed until the point when we know we can
3745 * commit all, so that we don't have to undo partial changes
3748 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3749 skb_frag_off(fragfrom))) {
3754 todo -= skb_frag_size(fragfrom);
3756 if (skb_prepare_for_shift(skb) ||
3757 skb_prepare_for_shift(tgt))
3760 /* All previous frag pointers might be stale! */
3761 fragfrom = &skb_shinfo(skb)->frags[from];
3762 fragto = &skb_shinfo(tgt)->frags[merge];
3764 skb_frag_size_add(fragto, shiftlen);
3765 skb_frag_size_sub(fragfrom, shiftlen);
3766 skb_frag_off_add(fragfrom, shiftlen);
3774 /* Skip full, not-fitting skb to avoid expensive operations */
3775 if ((shiftlen == skb->len) &&
3776 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3779 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3782 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3783 if (to == MAX_SKB_FRAGS)
3786 fragfrom = &skb_shinfo(skb)->frags[from];
3787 fragto = &skb_shinfo(tgt)->frags[to];
3789 if (todo >= skb_frag_size(fragfrom)) {
3790 *fragto = *fragfrom;
3791 todo -= skb_frag_size(fragfrom);
3796 __skb_frag_ref(fragfrom);
3797 skb_frag_page_copy(fragto, fragfrom);
3798 skb_frag_off_copy(fragto, fragfrom);
3799 skb_frag_size_set(fragto, todo);
3801 skb_frag_off_add(fragfrom, todo);
3802 skb_frag_size_sub(fragfrom, todo);
3810 /* Ready to "commit" this state change to tgt */
3811 skb_shinfo(tgt)->nr_frags = to;
3814 fragfrom = &skb_shinfo(skb)->frags[0];
3815 fragto = &skb_shinfo(tgt)->frags[merge];
3817 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3818 __skb_frag_unref(fragfrom, skb->pp_recycle);
3821 /* Reposition in the original skb */
3823 while (from < skb_shinfo(skb)->nr_frags)
3824 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3825 skb_shinfo(skb)->nr_frags = to;
3827 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3830 /* Most likely the tgt won't ever need its checksum anymore, skb on
3831 * the other hand might need it if it needs to be resent
3833 tgt->ip_summed = CHECKSUM_PARTIAL;
3834 skb->ip_summed = CHECKSUM_PARTIAL;
3836 skb_len_add(skb, -shiftlen);
3837 skb_len_add(tgt, shiftlen);
3843 * skb_prepare_seq_read - Prepare a sequential read of skb data
3844 * @skb: the buffer to read
3845 * @from: lower offset of data to be read
3846 * @to: upper offset of data to be read
3847 * @st: state variable
3849 * Initializes the specified state variable. Must be called before
3850 * invoking skb_seq_read() for the first time.
3852 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3853 unsigned int to, struct skb_seq_state *st)
3855 st->lower_offset = from;
3856 st->upper_offset = to;
3857 st->root_skb = st->cur_skb = skb;
3858 st->frag_idx = st->stepped_offset = 0;
3859 st->frag_data = NULL;
3862 EXPORT_SYMBOL(skb_prepare_seq_read);
3865 * skb_seq_read - Sequentially read skb data
3866 * @consumed: number of bytes consumed by the caller so far
3867 * @data: destination pointer for data to be returned
3868 * @st: state variable
3870 * Reads a block of skb data at @consumed relative to the
3871 * lower offset specified to skb_prepare_seq_read(). Assigns
3872 * the head of the data block to @data and returns the length
3873 * of the block or 0 if the end of the skb data or the upper
3874 * offset has been reached.
3876 * The caller is not required to consume all of the data
3877 * returned, i.e. @consumed is typically set to the number
3878 * of bytes already consumed and the next call to
3879 * skb_seq_read() will return the remaining part of the block.
3881 * Note 1: The size of each block of data returned can be arbitrary,
3882 * this limitation is the cost for zerocopy sequential
3883 * reads of potentially non linear data.
3885 * Note 2: Fragment lists within fragments are not implemented
3886 * at the moment, state->root_skb could be replaced with
3887 * a stack for this purpose.
3889 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3890 struct skb_seq_state *st)
3892 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3895 if (unlikely(abs_offset >= st->upper_offset)) {
3896 if (st->frag_data) {
3897 kunmap_atomic(st->frag_data);
3898 st->frag_data = NULL;
3904 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3906 if (abs_offset < block_limit && !st->frag_data) {
3907 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3908 return block_limit - abs_offset;
3911 if (st->frag_idx == 0 && !st->frag_data)
3912 st->stepped_offset += skb_headlen(st->cur_skb);
3914 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3915 unsigned int pg_idx, pg_off, pg_sz;
3917 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3920 pg_off = skb_frag_off(frag);
3921 pg_sz = skb_frag_size(frag);
3923 if (skb_frag_must_loop(skb_frag_page(frag))) {
3924 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3925 pg_off = offset_in_page(pg_off + st->frag_off);
3926 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3927 PAGE_SIZE - pg_off);
3930 block_limit = pg_sz + st->stepped_offset;
3931 if (abs_offset < block_limit) {
3933 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3935 *data = (u8 *)st->frag_data + pg_off +
3936 (abs_offset - st->stepped_offset);
3938 return block_limit - abs_offset;
3941 if (st->frag_data) {
3942 kunmap_atomic(st->frag_data);
3943 st->frag_data = NULL;
3946 st->stepped_offset += pg_sz;
3947 st->frag_off += pg_sz;
3948 if (st->frag_off == skb_frag_size(frag)) {
3954 if (st->frag_data) {
3955 kunmap_atomic(st->frag_data);
3956 st->frag_data = NULL;
3959 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3960 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3963 } else if (st->cur_skb->next) {
3964 st->cur_skb = st->cur_skb->next;
3971 EXPORT_SYMBOL(skb_seq_read);
3974 * skb_abort_seq_read - Abort a sequential read of skb data
3975 * @st: state variable
3977 * Must be called if skb_seq_read() was not called until it
3980 void skb_abort_seq_read(struct skb_seq_state *st)
3983 kunmap_atomic(st->frag_data);
3985 EXPORT_SYMBOL(skb_abort_seq_read);
3987 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3989 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3990 struct ts_config *conf,
3991 struct ts_state *state)
3993 return skb_seq_read(offset, text, TS_SKB_CB(state));
3996 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3998 skb_abort_seq_read(TS_SKB_CB(state));
4002 * skb_find_text - Find a text pattern in skb data
4003 * @skb: the buffer to look in
4004 * @from: search offset
4006 * @config: textsearch configuration
4008 * Finds a pattern in the skb data according to the specified
4009 * textsearch configuration. Use textsearch_next() to retrieve
4010 * subsequent occurrences of the pattern. Returns the offset
4011 * to the first occurrence or UINT_MAX if no match was found.
4013 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4014 unsigned int to, struct ts_config *config)
4016 struct ts_state state;
4019 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4021 config->get_next_block = skb_ts_get_next_block;
4022 config->finish = skb_ts_finish;
4024 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4026 ret = textsearch_find(config, &state);
4027 return (ret <= to - from ? ret : UINT_MAX);
4029 EXPORT_SYMBOL(skb_find_text);
4031 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4032 int offset, size_t size)
4034 int i = skb_shinfo(skb)->nr_frags;
4036 if (skb_can_coalesce(skb, i, page, offset)) {
4037 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4038 } else if (i < MAX_SKB_FRAGS) {
4039 skb_zcopy_downgrade_managed(skb);
4041 skb_fill_page_desc_noacc(skb, i, page, offset, size);
4048 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4051 * skb_pull_rcsum - pull skb and update receive checksum
4052 * @skb: buffer to update
4053 * @len: length of data pulled
4055 * This function performs an skb_pull on the packet and updates
4056 * the CHECKSUM_COMPLETE checksum. It should be used on
4057 * receive path processing instead of skb_pull unless you know
4058 * that the checksum difference is zero (e.g., a valid IP header)
4059 * or you are setting ip_summed to CHECKSUM_NONE.
4061 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4063 unsigned char *data = skb->data;
4065 BUG_ON(len > skb->len);
4066 __skb_pull(skb, len);
4067 skb_postpull_rcsum(skb, data, len);
4070 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4072 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4074 skb_frag_t head_frag;
4077 page = virt_to_head_page(frag_skb->head);
4078 __skb_frag_set_page(&head_frag, page);
4079 skb_frag_off_set(&head_frag, frag_skb->data -
4080 (unsigned char *)page_address(page));
4081 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
4085 struct sk_buff *skb_segment_list(struct sk_buff *skb,
4086 netdev_features_t features,
4087 unsigned int offset)
4089 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4090 unsigned int tnl_hlen = skb_tnl_header_len(skb);
4091 unsigned int delta_truesize = 0;
4092 unsigned int delta_len = 0;
4093 struct sk_buff *tail = NULL;
4094 struct sk_buff *nskb, *tmp;
4097 skb_push(skb, -skb_network_offset(skb) + offset);
4099 skb_shinfo(skb)->frag_list = NULL;
4103 list_skb = list_skb->next;
4106 delta_truesize += nskb->truesize;
4107 if (skb_shared(nskb)) {
4108 tmp = skb_clone(nskb, GFP_ATOMIC);
4112 err = skb_unclone(nskb, GFP_ATOMIC);
4123 if (unlikely(err)) {
4124 nskb->next = list_skb;
4130 delta_len += nskb->len;
4132 skb_push(nskb, -skb_network_offset(nskb) + offset);
4134 skb_release_head_state(nskb);
4135 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4136 __copy_skb_header(nskb, skb);
4138 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4139 nskb->transport_header += len_diff;
4140 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4141 nskb->data - tnl_hlen,
4144 if (skb_needs_linearize(nskb, features) &&
4145 __skb_linearize(nskb))
4150 skb->truesize = skb->truesize - delta_truesize;
4151 skb->data_len = skb->data_len - delta_len;
4152 skb->len = skb->len - delta_len;
4158 if (skb_needs_linearize(skb, features) &&
4159 __skb_linearize(skb))
4167 kfree_skb_list(skb->next);
4169 return ERR_PTR(-ENOMEM);
4171 EXPORT_SYMBOL_GPL(skb_segment_list);
4174 * skb_segment - Perform protocol segmentation on skb.
4175 * @head_skb: buffer to segment
4176 * @features: features for the output path (see dev->features)
4178 * This function performs segmentation on the given skb. It returns
4179 * a pointer to the first in a list of new skbs for the segments.
4180 * In case of error it returns ERR_PTR(err).
4182 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4183 netdev_features_t features)
4185 struct sk_buff *segs = NULL;
4186 struct sk_buff *tail = NULL;
4187 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4188 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
4189 unsigned int mss = skb_shinfo(head_skb)->gso_size;
4190 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4191 struct sk_buff *frag_skb = head_skb;
4192 unsigned int offset = doffset;
4193 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4194 unsigned int partial_segs = 0;
4195 unsigned int headroom;
4196 unsigned int len = head_skb->len;
4199 int nfrags = skb_shinfo(head_skb)->nr_frags;
4204 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4205 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4206 struct sk_buff *check_skb;
4208 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4209 if (skb_headlen(check_skb) && !check_skb->head_frag) {
4210 /* gso_size is untrusted, and we have a frag_list with
4211 * a linear non head_frag item.
4213 * If head_skb's headlen does not fit requested gso_size,
4214 * it means that the frag_list members do NOT terminate
4215 * on exact gso_size boundaries. Hence we cannot perform
4216 * skb_frag_t page sharing. Therefore we must fallback to
4217 * copying the frag_list skbs; we do so by disabling SG.
4219 features &= ~NETIF_F_SG;
4225 __skb_push(head_skb, doffset);
4226 proto = skb_network_protocol(head_skb, NULL);
4227 if (unlikely(!proto))
4228 return ERR_PTR(-EINVAL);
4230 sg = !!(features & NETIF_F_SG);
4231 csum = !!can_checksum_protocol(features, proto);
4233 if (sg && csum && (mss != GSO_BY_FRAGS)) {
4234 if (!(features & NETIF_F_GSO_PARTIAL)) {
4235 struct sk_buff *iter;
4236 unsigned int frag_len;
4239 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4242 /* If we get here then all the required
4243 * GSO features except frag_list are supported.
4244 * Try to split the SKB to multiple GSO SKBs
4245 * with no frag_list.
4246 * Currently we can do that only when the buffers don't
4247 * have a linear part and all the buffers except
4248 * the last are of the same length.
4250 frag_len = list_skb->len;
4251 skb_walk_frags(head_skb, iter) {
4252 if (frag_len != iter->len && iter->next)
4254 if (skb_headlen(iter) && !iter->head_frag)
4260 if (len != frag_len)
4264 /* GSO partial only requires that we trim off any excess that
4265 * doesn't fit into an MSS sized block, so take care of that
4268 partial_segs = len / mss;
4269 if (partial_segs > 1)
4270 mss *= partial_segs;
4276 headroom = skb_headroom(head_skb);
4277 pos = skb_headlen(head_skb);
4280 struct sk_buff *nskb;
4281 skb_frag_t *nskb_frag;
4285 if (unlikely(mss == GSO_BY_FRAGS)) {
4286 len = list_skb->len;
4288 len = head_skb->len - offset;
4293 hsize = skb_headlen(head_skb) - offset;
4295 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4296 (skb_headlen(list_skb) == len || sg)) {
4297 BUG_ON(skb_headlen(list_skb) > len);
4300 nfrags = skb_shinfo(list_skb)->nr_frags;
4301 frag = skb_shinfo(list_skb)->frags;
4302 frag_skb = list_skb;
4303 pos += skb_headlen(list_skb);
4305 while (pos < offset + len) {
4306 BUG_ON(i >= nfrags);
4308 size = skb_frag_size(frag);
4309 if (pos + size > offset + len)
4317 nskb = skb_clone(list_skb, GFP_ATOMIC);
4318 list_skb = list_skb->next;
4320 if (unlikely(!nskb))
4323 if (unlikely(pskb_trim(nskb, len))) {
4328 hsize = skb_end_offset(nskb);
4329 if (skb_cow_head(nskb, doffset + headroom)) {
4334 nskb->truesize += skb_end_offset(nskb) - hsize;
4335 skb_release_head_state(nskb);
4336 __skb_push(nskb, doffset);
4340 if (hsize > len || !sg)
4343 nskb = __alloc_skb(hsize + doffset + headroom,
4344 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4347 if (unlikely(!nskb))
4350 skb_reserve(nskb, headroom);
4351 __skb_put(nskb, doffset);
4360 __copy_skb_header(nskb, head_skb);
4362 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4363 skb_reset_mac_len(nskb);
4365 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4366 nskb->data - tnl_hlen,
4367 doffset + tnl_hlen);
4369 if (nskb->len == len + doffset)
4370 goto perform_csum_check;
4374 if (!nskb->remcsum_offload)
4375 nskb->ip_summed = CHECKSUM_NONE;
4376 SKB_GSO_CB(nskb)->csum =
4377 skb_copy_and_csum_bits(head_skb, offset,
4381 SKB_GSO_CB(nskb)->csum_start =
4382 skb_headroom(nskb) + doffset;
4384 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4390 nskb_frag = skb_shinfo(nskb)->frags;
4392 skb_copy_from_linear_data_offset(head_skb, offset,
4393 skb_put(nskb, hsize), hsize);
4395 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4398 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4399 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4402 while (pos < offset + len) {
4405 nfrags = skb_shinfo(list_skb)->nr_frags;
4406 frag = skb_shinfo(list_skb)->frags;
4407 frag_skb = list_skb;
4408 if (!skb_headlen(list_skb)) {
4411 BUG_ON(!list_skb->head_frag);
4413 /* to make room for head_frag. */
4417 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4418 skb_zerocopy_clone(nskb, frag_skb,
4422 list_skb = list_skb->next;
4425 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4427 net_warn_ratelimited(
4428 "skb_segment: too many frags: %u %u\n",
4434 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4435 __skb_frag_ref(nskb_frag);
4436 size = skb_frag_size(nskb_frag);
4439 skb_frag_off_add(nskb_frag, offset - pos);
4440 skb_frag_size_sub(nskb_frag, offset - pos);
4443 skb_shinfo(nskb)->nr_frags++;
4445 if (pos + size <= offset + len) {
4450 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4458 nskb->data_len = len - hsize;
4459 nskb->len += nskb->data_len;
4460 nskb->truesize += nskb->data_len;
4464 if (skb_has_shared_frag(nskb) &&
4465 __skb_linearize(nskb))
4468 if (!nskb->remcsum_offload)
4469 nskb->ip_summed = CHECKSUM_NONE;
4470 SKB_GSO_CB(nskb)->csum =
4471 skb_checksum(nskb, doffset,
4472 nskb->len - doffset, 0);
4473 SKB_GSO_CB(nskb)->csum_start =
4474 skb_headroom(nskb) + doffset;
4476 } while ((offset += len) < head_skb->len);
4478 /* Some callers want to get the end of the list.
4479 * Put it in segs->prev to avoid walking the list.
4480 * (see validate_xmit_skb_list() for example)
4485 struct sk_buff *iter;
4486 int type = skb_shinfo(head_skb)->gso_type;
4487 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4489 /* Update type to add partial and then remove dodgy if set */
4490 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4491 type &= ~SKB_GSO_DODGY;
4493 /* Update GSO info and prepare to start updating headers on
4494 * our way back down the stack of protocols.
4496 for (iter = segs; iter; iter = iter->next) {
4497 skb_shinfo(iter)->gso_size = gso_size;
4498 skb_shinfo(iter)->gso_segs = partial_segs;
4499 skb_shinfo(iter)->gso_type = type;
4500 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4503 if (tail->len - doffset <= gso_size)
4504 skb_shinfo(tail)->gso_size = 0;
4505 else if (tail != segs)
4506 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4509 /* Following permits correct backpressure, for protocols
4510 * using skb_set_owner_w().
4511 * Idea is to tranfert ownership from head_skb to last segment.
4513 if (head_skb->destructor == sock_wfree) {
4514 swap(tail->truesize, head_skb->truesize);
4515 swap(tail->destructor, head_skb->destructor);
4516 swap(tail->sk, head_skb->sk);
4521 kfree_skb_list(segs);
4522 return ERR_PTR(err);
4524 EXPORT_SYMBOL_GPL(skb_segment);
4526 #ifdef CONFIG_SKB_EXTENSIONS
4527 #define SKB_EXT_ALIGN_VALUE 8
4528 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4530 static const u8 skb_ext_type_len[] = {
4531 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4532 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4535 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4537 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4538 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4540 #if IS_ENABLED(CONFIG_MPTCP)
4541 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4543 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4544 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4548 static __always_inline unsigned int skb_ext_total_length(void)
4550 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4551 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4552 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4555 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4557 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4558 skb_ext_type_len[TC_SKB_EXT] +
4560 #if IS_ENABLED(CONFIG_MPTCP)
4561 skb_ext_type_len[SKB_EXT_MPTCP] +
4563 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4564 skb_ext_type_len[SKB_EXT_MCTP] +
4569 static void skb_extensions_init(void)
4571 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4572 BUILD_BUG_ON(skb_ext_total_length() > 255);
4574 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4575 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4577 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4581 static void skb_extensions_init(void) {}
4584 void __init skb_init(void)
4586 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4587 sizeof(struct sk_buff),
4589 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4590 offsetof(struct sk_buff, cb),
4591 sizeof_field(struct sk_buff, cb),
4593 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4594 sizeof(struct sk_buff_fclones),
4596 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4598 skb_extensions_init();
4602 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4603 unsigned int recursion_level)
4605 int start = skb_headlen(skb);
4606 int i, copy = start - offset;
4607 struct sk_buff *frag_iter;
4610 if (unlikely(recursion_level >= 24))
4616 sg_set_buf(sg, skb->data + offset, copy);
4618 if ((len -= copy) == 0)
4623 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4626 WARN_ON(start > offset + len);
4628 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4629 if ((copy = end - offset) > 0) {
4630 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4631 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4636 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4637 skb_frag_off(frag) + offset - start);
4646 skb_walk_frags(skb, frag_iter) {
4649 WARN_ON(start > offset + len);
4651 end = start + frag_iter->len;
4652 if ((copy = end - offset) > 0) {
4653 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4658 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4659 copy, recursion_level + 1);
4660 if (unlikely(ret < 0))
4663 if ((len -= copy) == 0)
4674 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4675 * @skb: Socket buffer containing the buffers to be mapped
4676 * @sg: The scatter-gather list to map into
4677 * @offset: The offset into the buffer's contents to start mapping
4678 * @len: Length of buffer space to be mapped
4680 * Fill the specified scatter-gather list with mappings/pointers into a
4681 * region of the buffer space attached to a socket buffer. Returns either
4682 * the number of scatterlist items used, or -EMSGSIZE if the contents
4685 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4687 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4692 sg_mark_end(&sg[nsg - 1]);
4696 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4698 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4699 * sglist without mark the sg which contain last skb data as the end.
4700 * So the caller can mannipulate sg list as will when padding new data after
4701 * the first call without calling sg_unmark_end to expend sg list.
4703 * Scenario to use skb_to_sgvec_nomark:
4705 * 2. skb_to_sgvec_nomark(payload1)
4706 * 3. skb_to_sgvec_nomark(payload2)
4708 * This is equivalent to:
4710 * 2. skb_to_sgvec(payload1)
4712 * 4. skb_to_sgvec(payload2)
4714 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4715 * is more preferable.
4717 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4718 int offset, int len)
4720 return __skb_to_sgvec(skb, sg, offset, len, 0);
4722 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4727 * skb_cow_data - Check that a socket buffer's data buffers are writable
4728 * @skb: The socket buffer to check.
4729 * @tailbits: Amount of trailing space to be added
4730 * @trailer: Returned pointer to the skb where the @tailbits space begins
4732 * Make sure that the data buffers attached to a socket buffer are
4733 * writable. If they are not, private copies are made of the data buffers
4734 * and the socket buffer is set to use these instead.
4736 * If @tailbits is given, make sure that there is space to write @tailbits
4737 * bytes of data beyond current end of socket buffer. @trailer will be
4738 * set to point to the skb in which this space begins.
4740 * The number of scatterlist elements required to completely map the
4741 * COW'd and extended socket buffer will be returned.
4743 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4747 struct sk_buff *skb1, **skb_p;
4749 /* If skb is cloned or its head is paged, reallocate
4750 * head pulling out all the pages (pages are considered not writable
4751 * at the moment even if they are anonymous).
4753 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4754 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4757 /* Easy case. Most of packets will go this way. */
4758 if (!skb_has_frag_list(skb)) {
4759 /* A little of trouble, not enough of space for trailer.
4760 * This should not happen, when stack is tuned to generate
4761 * good frames. OK, on miss we reallocate and reserve even more
4762 * space, 128 bytes is fair. */
4764 if (skb_tailroom(skb) < tailbits &&
4765 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4773 /* Misery. We are in troubles, going to mincer fragments... */
4776 skb_p = &skb_shinfo(skb)->frag_list;
4779 while ((skb1 = *skb_p) != NULL) {
4782 /* The fragment is partially pulled by someone,
4783 * this can happen on input. Copy it and everything
4786 if (skb_shared(skb1))
4789 /* If the skb is the last, worry about trailer. */
4791 if (skb1->next == NULL && tailbits) {
4792 if (skb_shinfo(skb1)->nr_frags ||
4793 skb_has_frag_list(skb1) ||
4794 skb_tailroom(skb1) < tailbits)
4795 ntail = tailbits + 128;
4801 skb_shinfo(skb1)->nr_frags ||
4802 skb_has_frag_list(skb1)) {
4803 struct sk_buff *skb2;
4805 /* Fuck, we are miserable poor guys... */
4807 skb2 = skb_copy(skb1, GFP_ATOMIC);
4809 skb2 = skb_copy_expand(skb1,
4813 if (unlikely(skb2 == NULL))
4817 skb_set_owner_w(skb2, skb1->sk);
4819 /* Looking around. Are we still alive?
4820 * OK, link new skb, drop old one */
4822 skb2->next = skb1->next;
4829 skb_p = &skb1->next;
4834 EXPORT_SYMBOL_GPL(skb_cow_data);
4836 static void sock_rmem_free(struct sk_buff *skb)
4838 struct sock *sk = skb->sk;
4840 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4843 static void skb_set_err_queue(struct sk_buff *skb)
4845 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4846 * So, it is safe to (mis)use it to mark skbs on the error queue.
4848 skb->pkt_type = PACKET_OUTGOING;
4849 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4853 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4855 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4857 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4858 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4863 skb->destructor = sock_rmem_free;
4864 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4865 skb_set_err_queue(skb);
4867 /* before exiting rcu section, make sure dst is refcounted */
4870 skb_queue_tail(&sk->sk_error_queue, skb);
4871 if (!sock_flag(sk, SOCK_DEAD))
4872 sk_error_report(sk);
4875 EXPORT_SYMBOL(sock_queue_err_skb);
4877 static bool is_icmp_err_skb(const struct sk_buff *skb)
4879 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4880 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4883 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4885 struct sk_buff_head *q = &sk->sk_error_queue;
4886 struct sk_buff *skb, *skb_next = NULL;
4887 bool icmp_next = false;
4888 unsigned long flags;
4890 spin_lock_irqsave(&q->lock, flags);
4891 skb = __skb_dequeue(q);
4892 if (skb && (skb_next = skb_peek(q))) {
4893 icmp_next = is_icmp_err_skb(skb_next);
4895 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4897 spin_unlock_irqrestore(&q->lock, flags);
4899 if (is_icmp_err_skb(skb) && !icmp_next)
4903 sk_error_report(sk);
4907 EXPORT_SYMBOL(sock_dequeue_err_skb);
4910 * skb_clone_sk - create clone of skb, and take reference to socket
4911 * @skb: the skb to clone
4913 * This function creates a clone of a buffer that holds a reference on
4914 * sk_refcnt. Buffers created via this function are meant to be
4915 * returned using sock_queue_err_skb, or free via kfree_skb.
4917 * When passing buffers allocated with this function to sock_queue_err_skb
4918 * it is necessary to wrap the call with sock_hold/sock_put in order to
4919 * prevent the socket from being released prior to being enqueued on
4920 * the sk_error_queue.
4922 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4924 struct sock *sk = skb->sk;
4925 struct sk_buff *clone;
4927 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4930 clone = skb_clone(skb, GFP_ATOMIC);
4937 clone->destructor = sock_efree;
4941 EXPORT_SYMBOL(skb_clone_sk);
4943 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4948 struct sock_exterr_skb *serr;
4951 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4953 serr = SKB_EXT_ERR(skb);
4954 memset(serr, 0, sizeof(*serr));
4955 serr->ee.ee_errno = ENOMSG;
4956 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4957 serr->ee.ee_info = tstype;
4958 serr->opt_stats = opt_stats;
4959 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4960 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4961 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4963 serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
4966 err = sock_queue_err_skb(sk, skb);
4972 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4976 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
4979 read_lock_bh(&sk->sk_callback_lock);
4980 ret = sk->sk_socket && sk->sk_socket->file &&
4981 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4982 read_unlock_bh(&sk->sk_callback_lock);
4986 void skb_complete_tx_timestamp(struct sk_buff *skb,
4987 struct skb_shared_hwtstamps *hwtstamps)
4989 struct sock *sk = skb->sk;
4991 if (!skb_may_tx_timestamp(sk, false))
4994 /* Take a reference to prevent skb_orphan() from freeing the socket,
4995 * but only if the socket refcount is not zero.
4997 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4998 *skb_hwtstamps(skb) = *hwtstamps;
4999 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5007 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5009 void __skb_tstamp_tx(struct sk_buff *orig_skb,
5010 const struct sk_buff *ack_skb,
5011 struct skb_shared_hwtstamps *hwtstamps,
5012 struct sock *sk, int tstype)
5014 struct sk_buff *skb;
5015 bool tsonly, opt_stats = false;
5020 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5021 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5024 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5025 if (!skb_may_tx_timestamp(sk, tsonly))
5030 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5032 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5037 skb = alloc_skb(0, GFP_ATOMIC);
5039 skb = skb_clone(orig_skb, GFP_ATOMIC);
5045 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5047 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5051 *skb_hwtstamps(skb) = *hwtstamps;
5053 __net_timestamp(skb);
5055 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5057 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5059 void skb_tstamp_tx(struct sk_buff *orig_skb,
5060 struct skb_shared_hwtstamps *hwtstamps)
5062 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5065 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5067 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5069 struct sock *sk = skb->sk;
5070 struct sock_exterr_skb *serr;
5073 skb->wifi_acked_valid = 1;
5074 skb->wifi_acked = acked;
5076 serr = SKB_EXT_ERR(skb);
5077 memset(serr, 0, sizeof(*serr));
5078 serr->ee.ee_errno = ENOMSG;
5079 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5081 /* Take a reference to prevent skb_orphan() from freeing the socket,
5082 * but only if the socket refcount is not zero.
5084 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5085 err = sock_queue_err_skb(sk, skb);
5091 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5094 * skb_partial_csum_set - set up and verify partial csum values for packet
5095 * @skb: the skb to set
5096 * @start: the number of bytes after skb->data to start checksumming.
5097 * @off: the offset from start to place the checksum.
5099 * For untrusted partially-checksummed packets, we need to make sure the values
5100 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5102 * This function checks and sets those values and skb->ip_summed: if this
5103 * returns false you should drop the packet.
5105 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5107 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5108 u32 csum_start = skb_headroom(skb) + (u32)start;
5110 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
5111 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5112 start, off, skb_headroom(skb), skb_headlen(skb));
5115 skb->ip_summed = CHECKSUM_PARTIAL;
5116 skb->csum_start = csum_start;
5117 skb->csum_offset = off;
5118 skb_set_transport_header(skb, start);
5121 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5123 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5126 if (skb_headlen(skb) >= len)
5129 /* If we need to pullup then pullup to the max, so we
5130 * won't need to do it again.
5135 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5138 if (skb_headlen(skb) < len)
5144 #define MAX_TCP_HDR_LEN (15 * 4)
5146 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5147 typeof(IPPROTO_IP) proto,
5154 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5155 off + MAX_TCP_HDR_LEN);
5156 if (!err && !skb_partial_csum_set(skb, off,
5157 offsetof(struct tcphdr,
5160 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5163 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5164 off + sizeof(struct udphdr));
5165 if (!err && !skb_partial_csum_set(skb, off,
5166 offsetof(struct udphdr,
5169 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5172 return ERR_PTR(-EPROTO);
5175 /* This value should be large enough to cover a tagged ethernet header plus
5176 * maximally sized IP and TCP or UDP headers.
5178 #define MAX_IP_HDR_LEN 128
5180 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5189 err = skb_maybe_pull_tail(skb,
5190 sizeof(struct iphdr),
5195 if (ip_is_fragment(ip_hdr(skb)))
5198 off = ip_hdrlen(skb);
5205 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5207 return PTR_ERR(csum);
5210 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5213 ip_hdr(skb)->protocol, 0);
5220 /* This value should be large enough to cover a tagged ethernet header plus
5221 * an IPv6 header, all options, and a maximal TCP or UDP header.
5223 #define MAX_IPV6_HDR_LEN 256
5225 #define OPT_HDR(type, skb, off) \
5226 (type *)(skb_network_header(skb) + (off))
5228 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5241 off = sizeof(struct ipv6hdr);
5243 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5247 nexthdr = ipv6_hdr(skb)->nexthdr;
5249 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5250 while (off <= len && !done) {
5252 case IPPROTO_DSTOPTS:
5253 case IPPROTO_HOPOPTS:
5254 case IPPROTO_ROUTING: {
5255 struct ipv6_opt_hdr *hp;
5257 err = skb_maybe_pull_tail(skb,
5259 sizeof(struct ipv6_opt_hdr),
5264 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5265 nexthdr = hp->nexthdr;
5266 off += ipv6_optlen(hp);
5270 struct ip_auth_hdr *hp;
5272 err = skb_maybe_pull_tail(skb,
5274 sizeof(struct ip_auth_hdr),
5279 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5280 nexthdr = hp->nexthdr;
5281 off += ipv6_authlen(hp);
5284 case IPPROTO_FRAGMENT: {
5285 struct frag_hdr *hp;
5287 err = skb_maybe_pull_tail(skb,
5289 sizeof(struct frag_hdr),
5294 hp = OPT_HDR(struct frag_hdr, skb, off);
5296 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5299 nexthdr = hp->nexthdr;
5300 off += sizeof(struct frag_hdr);
5311 if (!done || fragment)
5314 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5316 return PTR_ERR(csum);
5319 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5320 &ipv6_hdr(skb)->daddr,
5321 skb->len - off, nexthdr, 0);
5329 * skb_checksum_setup - set up partial checksum offset
5330 * @skb: the skb to set up
5331 * @recalculate: if true the pseudo-header checksum will be recalculated
5333 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5337 switch (skb->protocol) {
5338 case htons(ETH_P_IP):
5339 err = skb_checksum_setup_ipv4(skb, recalculate);
5342 case htons(ETH_P_IPV6):
5343 err = skb_checksum_setup_ipv6(skb, recalculate);
5353 EXPORT_SYMBOL(skb_checksum_setup);
5356 * skb_checksum_maybe_trim - maybe trims the given skb
5357 * @skb: the skb to check
5358 * @transport_len: the data length beyond the network header
5360 * Checks whether the given skb has data beyond the given transport length.
5361 * If so, returns a cloned skb trimmed to this transport length.
5362 * Otherwise returns the provided skb. Returns NULL in error cases
5363 * (e.g. transport_len exceeds skb length or out-of-memory).
5365 * Caller needs to set the skb transport header and free any returned skb if it
5366 * differs from the provided skb.
5368 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5369 unsigned int transport_len)
5371 struct sk_buff *skb_chk;
5372 unsigned int len = skb_transport_offset(skb) + transport_len;
5377 else if (skb->len == len)
5380 skb_chk = skb_clone(skb, GFP_ATOMIC);
5384 ret = pskb_trim_rcsum(skb_chk, len);
5394 * skb_checksum_trimmed - validate checksum of an skb
5395 * @skb: the skb to check
5396 * @transport_len: the data length beyond the network header
5397 * @skb_chkf: checksum function to use
5399 * Applies the given checksum function skb_chkf to the provided skb.
5400 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5402 * If the skb has data beyond the given transport length, then a
5403 * trimmed & cloned skb is checked and returned.
5405 * Caller needs to set the skb transport header and free any returned skb if it
5406 * differs from the provided skb.
5408 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5409 unsigned int transport_len,
5410 __sum16(*skb_chkf)(struct sk_buff *skb))
5412 struct sk_buff *skb_chk;
5413 unsigned int offset = skb_transport_offset(skb);
5416 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5420 if (!pskb_may_pull(skb_chk, offset))
5423 skb_pull_rcsum(skb_chk, offset);
5424 ret = skb_chkf(skb_chk);
5425 skb_push_rcsum(skb_chk, offset);
5433 if (skb_chk && skb_chk != skb)
5439 EXPORT_SYMBOL(skb_checksum_trimmed);
5441 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5443 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5446 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5448 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5451 skb_release_head_state(skb);
5452 kmem_cache_free(skbuff_head_cache, skb);
5457 EXPORT_SYMBOL(kfree_skb_partial);
5460 * skb_try_coalesce - try to merge skb to prior one
5462 * @from: buffer to add
5463 * @fragstolen: pointer to boolean
5464 * @delta_truesize: how much more was allocated than was requested
5466 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5467 bool *fragstolen, int *delta_truesize)
5469 struct skb_shared_info *to_shinfo, *from_shinfo;
5470 int i, delta, len = from->len;
5472 *fragstolen = false;
5477 /* In general, avoid mixing slab allocated and page_pool allocated
5478 * pages within the same SKB. However when @to is not pp_recycle and
5479 * @from is cloned, we can transition frag pages from page_pool to
5480 * reference counted.
5482 * On the other hand, don't allow coalescing two pp_recycle SKBs if
5483 * @from is cloned, in case the SKB is using page_pool fragment
5484 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5485 * references for cloned SKBs at the moment that would result in
5486 * inconsistent reference counts.
5488 if (to->pp_recycle != (from->pp_recycle && !skb_cloned(from)))
5491 if (len <= skb_tailroom(to)) {
5493 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5494 *delta_truesize = 0;
5498 to_shinfo = skb_shinfo(to);
5499 from_shinfo = skb_shinfo(from);
5500 if (to_shinfo->frag_list || from_shinfo->frag_list)
5502 if (skb_zcopy(to) || skb_zcopy(from))
5505 if (skb_headlen(from) != 0) {
5507 unsigned int offset;
5509 if (to_shinfo->nr_frags +
5510 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5513 if (skb_head_is_locked(from))
5516 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5518 page = virt_to_head_page(from->head);
5519 offset = from->data - (unsigned char *)page_address(page);
5521 skb_fill_page_desc(to, to_shinfo->nr_frags,
5522 page, offset, skb_headlen(from));
5525 if (to_shinfo->nr_frags +
5526 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5529 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5532 WARN_ON_ONCE(delta < len);
5534 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5536 from_shinfo->nr_frags * sizeof(skb_frag_t));
5537 to_shinfo->nr_frags += from_shinfo->nr_frags;
5539 if (!skb_cloned(from))
5540 from_shinfo->nr_frags = 0;
5542 /* if the skb is not cloned this does nothing
5543 * since we set nr_frags to 0.
5545 for (i = 0; i < from_shinfo->nr_frags; i++)
5546 __skb_frag_ref(&from_shinfo->frags[i]);
5548 to->truesize += delta;
5550 to->data_len += len;
5552 *delta_truesize = delta;
5555 EXPORT_SYMBOL(skb_try_coalesce);
5558 * skb_scrub_packet - scrub an skb
5560 * @skb: buffer to clean
5561 * @xnet: packet is crossing netns
5563 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5564 * into/from a tunnel. Some information have to be cleared during these
5566 * skb_scrub_packet can also be used to clean a skb before injecting it in
5567 * another namespace (@xnet == true). We have to clear all information in the
5568 * skb that could impact namespace isolation.
5570 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5572 skb->pkt_type = PACKET_HOST;
5578 nf_reset_trace(skb);
5580 #ifdef CONFIG_NET_SWITCHDEV
5581 skb->offload_fwd_mark = 0;
5582 skb->offload_l3_fwd_mark = 0;
5590 skb_clear_tstamp(skb);
5592 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5595 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5599 * skb_gso_transport_seglen is used to determine the real size of the
5600 * individual segments, including Layer4 headers (TCP/UDP).
5602 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5604 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5606 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5607 unsigned int thlen = 0;
5609 if (skb->encapsulation) {
5610 thlen = skb_inner_transport_header(skb) -
5611 skb_transport_header(skb);
5613 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5614 thlen += inner_tcp_hdrlen(skb);
5615 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5616 thlen = tcp_hdrlen(skb);
5617 } else if (unlikely(skb_is_gso_sctp(skb))) {
5618 thlen = sizeof(struct sctphdr);
5619 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5620 thlen = sizeof(struct udphdr);
5622 /* UFO sets gso_size to the size of the fragmentation
5623 * payload, i.e. the size of the L4 (UDP) header is already
5626 return thlen + shinfo->gso_size;
5630 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5634 * skb_gso_network_seglen is used to determine the real size of the
5635 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5637 * The MAC/L2 header is not accounted for.
5639 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5641 unsigned int hdr_len = skb_transport_header(skb) -
5642 skb_network_header(skb);
5644 return hdr_len + skb_gso_transport_seglen(skb);
5648 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5652 * skb_gso_mac_seglen is used to determine the real size of the
5653 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5654 * headers (TCP/UDP).
5656 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5658 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5660 return hdr_len + skb_gso_transport_seglen(skb);
5664 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5666 * There are a couple of instances where we have a GSO skb, and we
5667 * want to determine what size it would be after it is segmented.
5669 * We might want to check:
5670 * - L3+L4+payload size (e.g. IP forwarding)
5671 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5673 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5677 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5678 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5680 * @max_len: The maximum permissible length.
5682 * Returns true if the segmented length <= max length.
5684 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5685 unsigned int seg_len,
5686 unsigned int max_len) {
5687 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5688 const struct sk_buff *iter;
5690 if (shinfo->gso_size != GSO_BY_FRAGS)
5691 return seg_len <= max_len;
5693 /* Undo this so we can re-use header sizes */
5694 seg_len -= GSO_BY_FRAGS;
5696 skb_walk_frags(skb, iter) {
5697 if (seg_len + skb_headlen(iter) > max_len)
5705 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5708 * @mtu: MTU to validate against
5710 * skb_gso_validate_network_len validates if a given skb will fit a
5711 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5714 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5716 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5718 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5721 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5724 * @len: length to validate against
5726 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5727 * length once split, including L2, L3 and L4 headers and the payload.
5729 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5731 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5733 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5735 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5737 int mac_len, meta_len;
5740 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5745 mac_len = skb->data - skb_mac_header(skb);
5746 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5747 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5748 mac_len - VLAN_HLEN - ETH_TLEN);
5751 meta_len = skb_metadata_len(skb);
5753 meta = skb_metadata_end(skb) - meta_len;
5754 memmove(meta + VLAN_HLEN, meta, meta_len);
5757 skb->mac_header += VLAN_HLEN;
5761 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5763 struct vlan_hdr *vhdr;
5766 if (unlikely(skb_vlan_tag_present(skb))) {
5767 /* vlan_tci is already set-up so leave this for another time */
5771 skb = skb_share_check(skb, GFP_ATOMIC);
5774 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5775 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5778 vhdr = (struct vlan_hdr *)skb->data;
5779 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5780 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5782 skb_pull_rcsum(skb, VLAN_HLEN);
5783 vlan_set_encap_proto(skb, vhdr);
5785 skb = skb_reorder_vlan_header(skb);
5789 skb_reset_network_header(skb);
5790 if (!skb_transport_header_was_set(skb))
5791 skb_reset_transport_header(skb);
5792 skb_reset_mac_len(skb);
5800 EXPORT_SYMBOL(skb_vlan_untag);
5802 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5804 if (!pskb_may_pull(skb, write_len))
5807 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5810 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5812 EXPORT_SYMBOL(skb_ensure_writable);
5814 /* remove VLAN header from packet and update csum accordingly.
5815 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5817 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5819 struct vlan_hdr *vhdr;
5820 int offset = skb->data - skb_mac_header(skb);
5823 if (WARN_ONCE(offset,
5824 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5829 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5833 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5835 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5836 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5838 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5839 __skb_pull(skb, VLAN_HLEN);
5841 vlan_set_encap_proto(skb, vhdr);
5842 skb->mac_header += VLAN_HLEN;
5844 if (skb_network_offset(skb) < ETH_HLEN)
5845 skb_set_network_header(skb, ETH_HLEN);
5847 skb_reset_mac_len(skb);
5851 EXPORT_SYMBOL(__skb_vlan_pop);
5853 /* Pop a vlan tag either from hwaccel or from payload.
5854 * Expects skb->data at mac header.
5856 int skb_vlan_pop(struct sk_buff *skb)
5862 if (likely(skb_vlan_tag_present(skb))) {
5863 __vlan_hwaccel_clear_tag(skb);
5865 if (unlikely(!eth_type_vlan(skb->protocol)))
5868 err = __skb_vlan_pop(skb, &vlan_tci);
5872 /* move next vlan tag to hw accel tag */
5873 if (likely(!eth_type_vlan(skb->protocol)))
5876 vlan_proto = skb->protocol;
5877 err = __skb_vlan_pop(skb, &vlan_tci);
5881 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5884 EXPORT_SYMBOL(skb_vlan_pop);
5886 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5887 * Expects skb->data at mac header.
5889 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5891 if (skb_vlan_tag_present(skb)) {
5892 int offset = skb->data - skb_mac_header(skb);
5895 if (WARN_ONCE(offset,
5896 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5901 err = __vlan_insert_tag(skb, skb->vlan_proto,
5902 skb_vlan_tag_get(skb));
5906 skb->protocol = skb->vlan_proto;
5907 skb->mac_len += VLAN_HLEN;
5909 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5911 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5914 EXPORT_SYMBOL(skb_vlan_push);
5917 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5919 * @skb: Socket buffer to modify
5921 * Drop the Ethernet header of @skb.
5923 * Expects that skb->data points to the mac header and that no VLAN tags are
5926 * Returns 0 on success, -errno otherwise.
5928 int skb_eth_pop(struct sk_buff *skb)
5930 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5931 skb_network_offset(skb) < ETH_HLEN)
5934 skb_pull_rcsum(skb, ETH_HLEN);
5935 skb_reset_mac_header(skb);
5936 skb_reset_mac_len(skb);
5940 EXPORT_SYMBOL(skb_eth_pop);
5943 * skb_eth_push() - Add a new Ethernet header at the head of a packet
5945 * @skb: Socket buffer to modify
5946 * @dst: Destination MAC address of the new header
5947 * @src: Source MAC address of the new header
5949 * Prepend @skb with a new Ethernet header.
5951 * Expects that skb->data points to the mac header, which must be empty.
5953 * Returns 0 on success, -errno otherwise.
5955 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5956 const unsigned char *src)
5961 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5964 err = skb_cow_head(skb, sizeof(*eth));
5968 skb_push(skb, sizeof(*eth));
5969 skb_reset_mac_header(skb);
5970 skb_reset_mac_len(skb);
5973 ether_addr_copy(eth->h_dest, dst);
5974 ether_addr_copy(eth->h_source, src);
5975 eth->h_proto = skb->protocol;
5977 skb_postpush_rcsum(skb, eth, sizeof(*eth));
5981 EXPORT_SYMBOL(skb_eth_push);
5983 /* Update the ethertype of hdr and the skb csum value if required. */
5984 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5987 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5988 __be16 diff[] = { ~hdr->h_proto, ethertype };
5990 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5993 hdr->h_proto = ethertype;
5997 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6001 * @mpls_lse: MPLS label stack entry to push
6002 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6003 * @mac_len: length of the MAC header
6004 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6007 * Expects skb->data at mac header.
6009 * Returns 0 on success, -errno otherwise.
6011 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6012 int mac_len, bool ethernet)
6014 struct mpls_shim_hdr *lse;
6017 if (unlikely(!eth_p_mpls(mpls_proto)))
6020 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6021 if (skb->encapsulation)
6024 err = skb_cow_head(skb, MPLS_HLEN);
6028 if (!skb->inner_protocol) {
6029 skb_set_inner_network_header(skb, skb_network_offset(skb));
6030 skb_set_inner_protocol(skb, skb->protocol);
6033 skb_push(skb, MPLS_HLEN);
6034 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6036 skb_reset_mac_header(skb);
6037 skb_set_network_header(skb, mac_len);
6038 skb_reset_mac_len(skb);
6040 lse = mpls_hdr(skb);
6041 lse->label_stack_entry = mpls_lse;
6042 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6044 if (ethernet && mac_len >= ETH_HLEN)
6045 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6046 skb->protocol = mpls_proto;
6050 EXPORT_SYMBOL_GPL(skb_mpls_push);
6053 * skb_mpls_pop() - pop the outermost MPLS header
6056 * @next_proto: ethertype of header after popped MPLS header
6057 * @mac_len: length of the MAC header
6058 * @ethernet: flag to indicate if the packet is ethernet
6060 * Expects skb->data at mac header.
6062 * Returns 0 on success, -errno otherwise.
6064 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6069 if (unlikely(!eth_p_mpls(skb->protocol)))
6072 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6076 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6077 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6080 __skb_pull(skb, MPLS_HLEN);
6081 skb_reset_mac_header(skb);
6082 skb_set_network_header(skb, mac_len);
6084 if (ethernet && mac_len >= ETH_HLEN) {
6087 /* use mpls_hdr() to get ethertype to account for VLANs. */
6088 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6089 skb_mod_eth_type(skb, hdr, next_proto);
6091 skb->protocol = next_proto;
6095 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6098 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6101 * @mpls_lse: new MPLS label stack entry to update to
6103 * Expects skb->data at mac header.
6105 * Returns 0 on success, -errno otherwise.
6107 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6111 if (unlikely(!eth_p_mpls(skb->protocol)))
6114 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6118 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6119 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6121 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6124 mpls_hdr(skb)->label_stack_entry = mpls_lse;
6128 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6131 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6135 * Expects skb->data at mac header.
6137 * Returns 0 on success, -errno otherwise.
6139 int skb_mpls_dec_ttl(struct sk_buff *skb)
6144 if (unlikely(!eth_p_mpls(skb->protocol)))
6147 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6150 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6151 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6155 lse &= ~MPLS_LS_TTL_MASK;
6156 lse |= ttl << MPLS_LS_TTL_SHIFT;
6158 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6160 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6163 * alloc_skb_with_frags - allocate skb with page frags
6165 * @header_len: size of linear part
6166 * @data_len: needed length in frags
6167 * @max_page_order: max page order desired.
6168 * @errcode: pointer to error code if any
6169 * @gfp_mask: allocation mask
6171 * This can be used to allocate a paged skb, given a maximal order for frags.
6173 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6174 unsigned long data_len,
6179 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6180 unsigned long chunk;
6181 struct sk_buff *skb;
6185 *errcode = -EMSGSIZE;
6186 /* Note this test could be relaxed, if we succeed to allocate
6187 * high order pages...
6189 if (npages > MAX_SKB_FRAGS)
6192 *errcode = -ENOBUFS;
6193 skb = alloc_skb(header_len, gfp_mask);
6197 skb->truesize += npages << PAGE_SHIFT;
6199 for (i = 0; npages > 0; i++) {
6200 int order = max_page_order;
6203 if (npages >= 1 << order) {
6204 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6210 /* Do not retry other high order allocations */
6216 page = alloc_page(gfp_mask);
6220 chunk = min_t(unsigned long, data_len,
6221 PAGE_SIZE << order);
6222 skb_fill_page_desc(skb, i, page, 0, chunk);
6224 npages -= 1 << order;
6232 EXPORT_SYMBOL(alloc_skb_with_frags);
6234 /* carve out the first off bytes from skb when off < headlen */
6235 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6236 const int headlen, gfp_t gfp_mask)
6239 unsigned int size = skb_end_offset(skb);
6240 int new_hlen = headlen - off;
6243 if (skb_pfmemalloc(skb))
6244 gfp_mask |= __GFP_MEMALLOC;
6246 size = SKB_DATA_ALIGN(size);
6247 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
6248 size = kmalloc_size_roundup(size);
6249 data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
6252 size = SKB_WITH_OVERHEAD(size);
6254 /* Copy real data, and all frags */
6255 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6258 memcpy((struct skb_shared_info *)(data + size),
6260 offsetof(struct skb_shared_info,
6261 frags[skb_shinfo(skb)->nr_frags]));
6262 if (skb_cloned(skb)) {
6263 /* drop the old head gracefully */
6264 if (skb_orphan_frags(skb, gfp_mask)) {
6268 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6269 skb_frag_ref(skb, i);
6270 if (skb_has_frag_list(skb))
6271 skb_clone_fraglist(skb);
6272 skb_release_data(skb, SKB_CONSUMED);
6274 /* we can reuse existing recount- all we did was
6283 skb_set_end_offset(skb, size);
6284 skb_set_tail_pointer(skb, skb_headlen(skb));
6285 skb_headers_offset_update(skb, 0);
6289 atomic_set(&skb_shinfo(skb)->dataref, 1);
6294 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6296 /* carve out the first eat bytes from skb's frag_list. May recurse into
6299 static int pskb_carve_frag_list(struct sk_buff *skb,
6300 struct skb_shared_info *shinfo, int eat,
6303 struct sk_buff *list = shinfo->frag_list;
6304 struct sk_buff *clone = NULL;
6305 struct sk_buff *insp = NULL;
6309 pr_err("Not enough bytes to eat. Want %d\n", eat);
6312 if (list->len <= eat) {
6313 /* Eaten as whole. */
6318 /* Eaten partially. */
6319 if (skb_shared(list)) {
6320 clone = skb_clone(list, gfp_mask);
6326 /* This may be pulled without problems. */
6329 if (pskb_carve(list, eat, gfp_mask) < 0) {
6337 /* Free pulled out fragments. */
6338 while ((list = shinfo->frag_list) != insp) {
6339 shinfo->frag_list = list->next;
6342 /* And insert new clone at head. */
6345 shinfo->frag_list = clone;
6350 /* carve off first len bytes from skb. Split line (off) is in the
6351 * non-linear part of skb
6353 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6354 int pos, gfp_t gfp_mask)
6357 unsigned int size = skb_end_offset(skb);
6359 const int nfrags = skb_shinfo(skb)->nr_frags;
6360 struct skb_shared_info *shinfo;
6362 if (skb_pfmemalloc(skb))
6363 gfp_mask |= __GFP_MEMALLOC;
6365 size = SKB_DATA_ALIGN(size);
6366 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
6367 size = kmalloc_size_roundup(size);
6368 data = kmalloc_reserve(size, gfp_mask, NUMA_NO_NODE, NULL);
6371 size = SKB_WITH_OVERHEAD(size);
6373 memcpy((struct skb_shared_info *)(data + size),
6374 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6375 if (skb_orphan_frags(skb, gfp_mask)) {
6379 shinfo = (struct skb_shared_info *)(data + size);
6380 for (i = 0; i < nfrags; i++) {
6381 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6383 if (pos + fsize > off) {
6384 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6388 * We have two variants in this case:
6389 * 1. Move all the frag to the second
6390 * part, if it is possible. F.e.
6391 * this approach is mandatory for TUX,
6392 * where splitting is expensive.
6393 * 2. Split is accurately. We make this.
6395 skb_frag_off_add(&shinfo->frags[0], off - pos);
6396 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6398 skb_frag_ref(skb, i);
6403 shinfo->nr_frags = k;
6404 if (skb_has_frag_list(skb))
6405 skb_clone_fraglist(skb);
6407 /* split line is in frag list */
6408 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6409 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6410 if (skb_has_frag_list(skb))
6411 kfree_skb_list(skb_shinfo(skb)->frag_list);
6415 skb_release_data(skb, SKB_CONSUMED);
6420 skb_set_end_offset(skb, size);
6421 skb_reset_tail_pointer(skb);
6422 skb_headers_offset_update(skb, 0);
6427 skb->data_len = skb->len;
6428 atomic_set(&skb_shinfo(skb)->dataref, 1);
6432 /* remove len bytes from the beginning of the skb */
6433 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6435 int headlen = skb_headlen(skb);
6438 return pskb_carve_inside_header(skb, len, headlen, gfp);
6440 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6443 /* Extract to_copy bytes starting at off from skb, and return this in
6446 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6447 int to_copy, gfp_t gfp)
6449 struct sk_buff *clone = skb_clone(skb, gfp);
6454 if (pskb_carve(clone, off, gfp) < 0 ||
6455 pskb_trim(clone, to_copy)) {
6461 EXPORT_SYMBOL(pskb_extract);
6464 * skb_condense - try to get rid of fragments/frag_list if possible
6467 * Can be used to save memory before skb is added to a busy queue.
6468 * If packet has bytes in frags and enough tail room in skb->head,
6469 * pull all of them, so that we can free the frags right now and adjust
6472 * We do not reallocate skb->head thus can not fail.
6473 * Caller must re-evaluate skb->truesize if needed.
6475 void skb_condense(struct sk_buff *skb)
6477 if (skb->data_len) {
6478 if (skb->data_len > skb->end - skb->tail ||
6482 /* Nice, we can free page frag(s) right now */
6483 __pskb_pull_tail(skb, skb->data_len);
6485 /* At this point, skb->truesize might be over estimated,
6486 * because skb had a fragment, and fragments do not tell
6488 * When we pulled its content into skb->head, fragment
6489 * was freed, but __pskb_pull_tail() could not possibly
6490 * adjust skb->truesize, not knowing the frag truesize.
6492 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6494 EXPORT_SYMBOL(skb_condense);
6496 #ifdef CONFIG_SKB_EXTENSIONS
6497 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6499 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6503 * __skb_ext_alloc - allocate a new skb extensions storage
6505 * @flags: See kmalloc().
6507 * Returns the newly allocated pointer. The pointer can later attached to a
6508 * skb via __skb_ext_set().
6509 * Note: caller must handle the skb_ext as an opaque data.
6511 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6513 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6516 memset(new->offset, 0, sizeof(new->offset));
6517 refcount_set(&new->refcnt, 1);
6523 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6524 unsigned int old_active)
6526 struct skb_ext *new;
6528 if (refcount_read(&old->refcnt) == 1)
6531 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6535 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6536 refcount_set(&new->refcnt, 1);
6539 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6540 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6543 for (i = 0; i < sp->len; i++)
6544 xfrm_state_hold(sp->xvec[i]);
6552 * __skb_ext_set - attach the specified extension storage to this skb
6555 * @ext: extension storage previously allocated via __skb_ext_alloc()
6557 * Existing extensions, if any, are cleared.
6559 * Returns the pointer to the extension.
6561 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6562 struct skb_ext *ext)
6564 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6567 newlen = newoff + skb_ext_type_len[id];
6568 ext->chunks = newlen;
6569 ext->offset[id] = newoff;
6570 skb->extensions = ext;
6571 skb->active_extensions = 1 << id;
6572 return skb_ext_get_ptr(ext, id);
6576 * skb_ext_add - allocate space for given extension, COW if needed
6578 * @id: extension to allocate space for
6580 * Allocates enough space for the given extension.
6581 * If the extension is already present, a pointer to that extension
6584 * If the skb was cloned, COW applies and the returned memory can be
6585 * modified without changing the extension space of clones buffers.
6587 * Returns pointer to the extension or NULL on allocation failure.
6589 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6591 struct skb_ext *new, *old = NULL;
6592 unsigned int newlen, newoff;
6594 if (skb->active_extensions) {
6595 old = skb->extensions;
6597 new = skb_ext_maybe_cow(old, skb->active_extensions);
6601 if (__skb_ext_exist(new, id))
6604 newoff = new->chunks;
6606 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6608 new = __skb_ext_alloc(GFP_ATOMIC);
6613 newlen = newoff + skb_ext_type_len[id];
6614 new->chunks = newlen;
6615 new->offset[id] = newoff;
6618 skb->extensions = new;
6619 skb->active_extensions |= 1 << id;
6620 return skb_ext_get_ptr(new, id);
6622 EXPORT_SYMBOL(skb_ext_add);
6625 static void skb_ext_put_sp(struct sec_path *sp)
6629 for (i = 0; i < sp->len; i++)
6630 xfrm_state_put(sp->xvec[i]);
6634 #ifdef CONFIG_MCTP_FLOWS
6635 static void skb_ext_put_mctp(struct mctp_flow *flow)
6638 mctp_key_unref(flow->key);
6642 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6644 struct skb_ext *ext = skb->extensions;
6646 skb->active_extensions &= ~(1 << id);
6647 if (skb->active_extensions == 0) {
6648 skb->extensions = NULL;
6651 } else if (id == SKB_EXT_SEC_PATH &&
6652 refcount_read(&ext->refcnt) == 1) {
6653 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6660 EXPORT_SYMBOL(__skb_ext_del);
6662 void __skb_ext_put(struct skb_ext *ext)
6664 /* If this is last clone, nothing can increment
6665 * it after check passes. Avoids one atomic op.
6667 if (refcount_read(&ext->refcnt) == 1)
6670 if (!refcount_dec_and_test(&ext->refcnt))
6674 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6675 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6677 #ifdef CONFIG_MCTP_FLOWS
6678 if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6679 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6682 kmem_cache_free(skbuff_ext_cache, ext);
6684 EXPORT_SYMBOL(__skb_ext_put);
6685 #endif /* CONFIG_SKB_EXTENSIONS */
6688 * skb_attempt_defer_free - queue skb for remote freeing
6691 * Put @skb in a per-cpu list, using the cpu which
6692 * allocated the skb/pages to reduce false sharing
6693 * and memory zone spinlock contention.
6695 void skb_attempt_defer_free(struct sk_buff *skb)
6697 int cpu = skb->alloc_cpu;
6698 struct softnet_data *sd;
6699 unsigned long flags;
6700 unsigned int defer_max;
6703 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6705 cpu == raw_smp_processor_id()) {
6706 nodefer: __kfree_skb(skb);
6710 sd = &per_cpu(softnet_data, cpu);
6711 defer_max = READ_ONCE(sysctl_skb_defer_max);
6712 if (READ_ONCE(sd->defer_count) >= defer_max)
6715 spin_lock_irqsave(&sd->defer_lock, flags);
6716 /* Send an IPI every time queue reaches half capacity. */
6717 kick = sd->defer_count == (defer_max >> 1);
6718 /* Paired with the READ_ONCE() few lines above */
6719 WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6721 skb->next = sd->defer_list;
6722 /* Paired with READ_ONCE() in skb_defer_free_flush() */
6723 WRITE_ONCE(sd->defer_list, skb);
6724 spin_unlock_irqrestore(&sd->defer_lock, flags);
6726 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6727 * if we are unlucky enough (this seems very unlikely).
6729 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6730 smp_call_function_single_async(cpu, &sd->defer_csd);