1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Routines having to do with the 'struct sk_buff' memory handlers.
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
9 * Alan Cox : Fixed the worst of the load
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
32 * The functions in this file will not compile correctly with gcc 2.4.x
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
41 #include <linux/interrupt.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
65 #include <net/protocol.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
72 #include <net/mptcp.h>
74 #include <net/page_pool.h>
76 #include <linux/uaccess.h>
77 #include <trace/events/skb.h>
78 #include <linux/highmem.h>
79 #include <linux/capability.h>
80 #include <linux/user_namespace.h>
81 #include <linux/indirect_call_wrapper.h>
84 #include "sock_destructor.h"
86 struct kmem_cache *skbuff_head_cache __ro_after_init;
87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
88 #ifdef CONFIG_SKB_EXTENSIONS
89 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
92 EXPORT_SYMBOL(sysctl_max_skb_frags);
95 * skb_panic - private function for out-of-line support
99 * @msg: skb_over_panic or skb_under_panic
101 * Out-of-line support for skb_put() and skb_push().
102 * Called via the wrapper skb_over_panic() or skb_under_panic().
103 * Keep out of line to prevent kernel bloat.
104 * __builtin_return_address is not used because it is not always reliable.
106 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
109 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
110 msg, addr, skb->len, sz, skb->head, skb->data,
111 (unsigned long)skb->tail, (unsigned long)skb->end,
112 skb->dev ? skb->dev->name : "<NULL>");
116 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
118 skb_panic(skb, sz, addr, __func__);
121 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
123 skb_panic(skb, sz, addr, __func__);
126 #define NAPI_SKB_CACHE_SIZE 64
127 #define NAPI_SKB_CACHE_BULK 16
128 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
130 struct napi_alloc_cache {
131 struct page_frag_cache page;
132 unsigned int skb_count;
133 void *skb_cache[NAPI_SKB_CACHE_SIZE];
136 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
137 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
139 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
141 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
143 fragsz = SKB_DATA_ALIGN(fragsz);
145 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
147 EXPORT_SYMBOL(__napi_alloc_frag_align);
149 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
153 fragsz = SKB_DATA_ALIGN(fragsz);
154 if (in_hardirq() || irqs_disabled()) {
155 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
157 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
159 struct napi_alloc_cache *nc;
162 nc = this_cpu_ptr(&napi_alloc_cache);
163 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
168 EXPORT_SYMBOL(__netdev_alloc_frag_align);
170 static struct sk_buff *napi_skb_cache_get(void)
172 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
175 if (unlikely(!nc->skb_count))
176 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
180 if (unlikely(!nc->skb_count))
183 skb = nc->skb_cache[--nc->skb_count];
184 kasan_unpoison_object_data(skbuff_head_cache, skb);
189 /* Caller must provide SKB that is memset cleared */
190 static void __build_skb_around(struct sk_buff *skb, void *data,
191 unsigned int frag_size)
193 struct skb_shared_info *shinfo;
194 unsigned int size = frag_size ? : ksize(data);
196 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
198 /* Assumes caller memset cleared SKB */
199 skb->truesize = SKB_TRUESIZE(size);
200 refcount_set(&skb->users, 1);
203 skb_reset_tail_pointer(skb);
204 skb->end = skb->tail + size;
205 skb->mac_header = (typeof(skb->mac_header))~0U;
206 skb->transport_header = (typeof(skb->transport_header))~0U;
208 /* make sure we initialize shinfo sequentially */
209 shinfo = skb_shinfo(skb);
210 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
211 atomic_set(&shinfo->dataref, 1);
213 skb_set_kcov_handle(skb, kcov_common_handle());
217 * __build_skb - build a network buffer
218 * @data: data buffer provided by caller
219 * @frag_size: size of data, or 0 if head was kmalloced
221 * Allocate a new &sk_buff. Caller provides space holding head and
222 * skb_shared_info. @data must have been allocated by kmalloc() only if
223 * @frag_size is 0, otherwise data should come from the page allocator
225 * The return is the new skb buffer.
226 * On a failure the return is %NULL, and @data is not freed.
228 * Before IO, driver allocates only data buffer where NIC put incoming frame
229 * Driver should add room at head (NET_SKB_PAD) and
230 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
231 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
232 * before giving packet to stack.
233 * RX rings only contains data buffers, not full skbs.
235 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
239 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
243 memset(skb, 0, offsetof(struct sk_buff, tail));
244 __build_skb_around(skb, data, frag_size);
249 /* build_skb() is wrapper over __build_skb(), that specifically
250 * takes care of skb->head and skb->pfmemalloc
251 * This means that if @frag_size is not zero, then @data must be backed
252 * by a page fragment, not kmalloc() or vmalloc()
254 struct sk_buff *build_skb(void *data, unsigned int frag_size)
256 struct sk_buff *skb = __build_skb(data, frag_size);
258 if (skb && frag_size) {
260 if (page_is_pfmemalloc(virt_to_head_page(data)))
265 EXPORT_SYMBOL(build_skb);
268 * build_skb_around - build a network buffer around provided skb
269 * @skb: sk_buff provide by caller, must be memset cleared
270 * @data: data buffer provided by caller
271 * @frag_size: size of data, or 0 if head was kmalloced
273 struct sk_buff *build_skb_around(struct sk_buff *skb,
274 void *data, unsigned int frag_size)
279 __build_skb_around(skb, data, frag_size);
283 if (page_is_pfmemalloc(virt_to_head_page(data)))
288 EXPORT_SYMBOL(build_skb_around);
291 * __napi_build_skb - build a network buffer
292 * @data: data buffer provided by caller
293 * @frag_size: size of data, or 0 if head was kmalloced
295 * Version of __build_skb() that uses NAPI percpu caches to obtain
296 * skbuff_head instead of inplace allocation.
298 * Returns a new &sk_buff on success, %NULL on allocation failure.
300 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
304 skb = napi_skb_cache_get();
308 memset(skb, 0, offsetof(struct sk_buff, tail));
309 __build_skb_around(skb, data, frag_size);
315 * napi_build_skb - build a network buffer
316 * @data: data buffer provided by caller
317 * @frag_size: size of data, or 0 if head was kmalloced
319 * Version of __napi_build_skb() that takes care of skb->head_frag
320 * and skb->pfmemalloc when the data is a page or page fragment.
322 * Returns a new &sk_buff on success, %NULL on allocation failure.
324 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
326 struct sk_buff *skb = __napi_build_skb(data, frag_size);
328 if (likely(skb) && frag_size) {
330 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
335 EXPORT_SYMBOL(napi_build_skb);
338 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
339 * the caller if emergency pfmemalloc reserves are being used. If it is and
340 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
341 * may be used. Otherwise, the packet data may be discarded until enough
344 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
348 bool ret_pfmemalloc = false;
351 * Try a regular allocation, when that fails and we're not entitled
352 * to the reserves, fail.
354 obj = kmalloc_node_track_caller(size,
355 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
357 if (obj || !(gfp_pfmemalloc_allowed(flags)))
360 /* Try again but now we are using pfmemalloc reserves */
361 ret_pfmemalloc = true;
362 obj = kmalloc_node_track_caller(size, flags, node);
366 *pfmemalloc = ret_pfmemalloc;
371 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
372 * 'private' fields and also do memory statistics to find all the
378 * __alloc_skb - allocate a network buffer
379 * @size: size to allocate
380 * @gfp_mask: allocation mask
381 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
382 * instead of head cache and allocate a cloned (child) skb.
383 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
384 * allocations in case the data is required for writeback
385 * @node: numa node to allocate memory on
387 * Allocate a new &sk_buff. The returned buffer has no headroom and a
388 * tail room of at least size bytes. The object has a reference count
389 * of one. The return is the buffer. On a failure the return is %NULL.
391 * Buffers may only be allocated from interrupts using a @gfp_mask of
394 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
397 struct kmem_cache *cache;
403 cache = (flags & SKB_ALLOC_FCLONE)
404 ? skbuff_fclone_cache : skbuff_head_cache;
406 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
407 gfp_mask |= __GFP_MEMALLOC;
410 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
411 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
412 skb = napi_skb_cache_get();
414 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
419 /* We do our best to align skb_shared_info on a separate cache
420 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
421 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
422 * Both skb->head and skb_shared_info are cache line aligned.
424 size = SKB_DATA_ALIGN(size);
425 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
426 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
429 /* kmalloc(size) might give us more room than requested.
430 * Put skb_shared_info exactly at the end of allocated zone,
431 * to allow max possible filling before reallocation.
434 size = SKB_WITH_OVERHEAD(osize);
435 prefetchw(data + size);
438 * Only clear those fields we need to clear, not those that we will
439 * actually initialise below. Hence, don't put any more fields after
440 * the tail pointer in struct sk_buff!
442 memset(skb, 0, offsetof(struct sk_buff, tail));
443 __build_skb_around(skb, data, osize);
444 skb->pfmemalloc = pfmemalloc;
446 if (flags & SKB_ALLOC_FCLONE) {
447 struct sk_buff_fclones *fclones;
449 fclones = container_of(skb, struct sk_buff_fclones, skb1);
451 skb->fclone = SKB_FCLONE_ORIG;
452 refcount_set(&fclones->fclone_ref, 1);
454 fclones->skb2.fclone = SKB_FCLONE_CLONE;
460 kmem_cache_free(cache, skb);
463 EXPORT_SYMBOL(__alloc_skb);
466 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
467 * @dev: network device to receive on
468 * @len: length to allocate
469 * @gfp_mask: get_free_pages mask, passed to alloc_skb
471 * Allocate a new &sk_buff and assign it a usage count of one. The
472 * buffer has NET_SKB_PAD headroom built in. Users should allocate
473 * the headroom they think they need without accounting for the
474 * built in space. The built in space is used for optimisations.
476 * %NULL is returned if there is no free memory.
478 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
481 struct page_frag_cache *nc;
488 /* If requested length is either too small or too big,
489 * we use kmalloc() for skb->head allocation.
491 if (len <= SKB_WITH_OVERHEAD(1024) ||
492 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
493 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
494 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
500 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
501 len = SKB_DATA_ALIGN(len);
503 if (sk_memalloc_socks())
504 gfp_mask |= __GFP_MEMALLOC;
506 if (in_hardirq() || irqs_disabled()) {
507 nc = this_cpu_ptr(&netdev_alloc_cache);
508 data = page_frag_alloc(nc, len, gfp_mask);
509 pfmemalloc = nc->pfmemalloc;
512 nc = this_cpu_ptr(&napi_alloc_cache.page);
513 data = page_frag_alloc(nc, len, gfp_mask);
514 pfmemalloc = nc->pfmemalloc;
521 skb = __build_skb(data, len);
522 if (unlikely(!skb)) {
532 skb_reserve(skb, NET_SKB_PAD);
538 EXPORT_SYMBOL(__netdev_alloc_skb);
541 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
542 * @napi: napi instance this buffer was allocated for
543 * @len: length to allocate
544 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
546 * Allocate a new sk_buff for use in NAPI receive. This buffer will
547 * attempt to allocate the head from a special reserved region used
548 * only for NAPI Rx allocation. By doing this we can save several
549 * CPU cycles by avoiding having to disable and re-enable IRQs.
551 * %NULL is returned if there is no free memory.
553 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
556 struct napi_alloc_cache *nc;
560 len += NET_SKB_PAD + NET_IP_ALIGN;
562 /* If requested length is either too small or too big,
563 * we use kmalloc() for skb->head allocation.
565 if (len <= SKB_WITH_OVERHEAD(1024) ||
566 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
567 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
568 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
575 nc = this_cpu_ptr(&napi_alloc_cache);
576 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
577 len = SKB_DATA_ALIGN(len);
579 if (sk_memalloc_socks())
580 gfp_mask |= __GFP_MEMALLOC;
582 data = page_frag_alloc(&nc->page, len, gfp_mask);
586 skb = __napi_build_skb(data, len);
587 if (unlikely(!skb)) {
592 if (nc->page.pfmemalloc)
597 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
598 skb->dev = napi->dev;
603 EXPORT_SYMBOL(__napi_alloc_skb);
605 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
606 int size, unsigned int truesize)
608 skb_fill_page_desc(skb, i, page, off, size);
610 skb->data_len += size;
611 skb->truesize += truesize;
613 EXPORT_SYMBOL(skb_add_rx_frag);
615 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
616 unsigned int truesize)
618 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
620 skb_frag_size_add(frag, size);
622 skb->data_len += size;
623 skb->truesize += truesize;
625 EXPORT_SYMBOL(skb_coalesce_rx_frag);
627 static void skb_drop_list(struct sk_buff **listp)
629 kfree_skb_list(*listp);
633 static inline void skb_drop_fraglist(struct sk_buff *skb)
635 skb_drop_list(&skb_shinfo(skb)->frag_list);
638 static void skb_clone_fraglist(struct sk_buff *skb)
640 struct sk_buff *list;
642 skb_walk_frags(skb, list)
646 static void skb_free_head(struct sk_buff *skb)
648 unsigned char *head = skb->head;
650 if (skb->head_frag) {
651 if (skb_pp_recycle(skb, head))
659 static void skb_release_data(struct sk_buff *skb)
661 struct skb_shared_info *shinfo = skb_shinfo(skb);
665 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
669 skb_zcopy_clear(skb, true);
671 for (i = 0; i < shinfo->nr_frags; i++)
672 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
674 if (shinfo->frag_list)
675 kfree_skb_list(shinfo->frag_list);
679 /* When we clone an SKB we copy the reycling bit. The pp_recycle
680 * bit is only set on the head though, so in order to avoid races
681 * while trying to recycle fragments on __skb_frag_unref() we need
682 * to make one SKB responsible for triggering the recycle path.
683 * So disable the recycling bit if an SKB is cloned and we have
684 * additional references to to the fragmented part of the SKB.
685 * Eventually the last SKB will have the recycling bit set and it's
686 * dataref set to 0, which will trigger the recycling
692 * Free an skbuff by memory without cleaning the state.
694 static void kfree_skbmem(struct sk_buff *skb)
696 struct sk_buff_fclones *fclones;
698 switch (skb->fclone) {
699 case SKB_FCLONE_UNAVAILABLE:
700 kmem_cache_free(skbuff_head_cache, skb);
703 case SKB_FCLONE_ORIG:
704 fclones = container_of(skb, struct sk_buff_fclones, skb1);
706 /* We usually free the clone (TX completion) before original skb
707 * This test would have no chance to be true for the clone,
708 * while here, branch prediction will be good.
710 if (refcount_read(&fclones->fclone_ref) == 1)
714 default: /* SKB_FCLONE_CLONE */
715 fclones = container_of(skb, struct sk_buff_fclones, skb2);
718 if (!refcount_dec_and_test(&fclones->fclone_ref))
721 kmem_cache_free(skbuff_fclone_cache, fclones);
724 void skb_release_head_state(struct sk_buff *skb)
727 if (skb->destructor) {
728 WARN_ON(in_hardirq());
729 skb->destructor(skb);
731 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
732 nf_conntrack_put(skb_nfct(skb));
737 /* Free everything but the sk_buff shell. */
738 static void skb_release_all(struct sk_buff *skb)
740 skb_release_head_state(skb);
741 if (likely(skb->head))
742 skb_release_data(skb);
746 * __kfree_skb - private function
749 * Free an sk_buff. Release anything attached to the buffer.
750 * Clean the state. This is an internal helper function. Users should
751 * always call kfree_skb
754 void __kfree_skb(struct sk_buff *skb)
756 skb_release_all(skb);
759 EXPORT_SYMBOL(__kfree_skb);
762 * kfree_skb_reason - free an sk_buff with special reason
763 * @skb: buffer to free
764 * @reason: reason why this skb is dropped
766 * Drop a reference to the buffer and free it if the usage count has
767 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
770 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
775 trace_kfree_skb(skb, __builtin_return_address(0), reason);
778 EXPORT_SYMBOL(kfree_skb_reason);
780 void kfree_skb_list(struct sk_buff *segs)
783 struct sk_buff *next = segs->next;
789 EXPORT_SYMBOL(kfree_skb_list);
791 /* Dump skb information and contents.
793 * Must only be called from net_ratelimit()-ed paths.
795 * Dumps whole packets if full_pkt, only headers otherwise.
797 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
799 struct skb_shared_info *sh = skb_shinfo(skb);
800 struct net_device *dev = skb->dev;
801 struct sock *sk = skb->sk;
802 struct sk_buff *list_skb;
803 bool has_mac, has_trans;
804 int headroom, tailroom;
810 len = min_t(int, skb->len, MAX_HEADER + 128);
812 headroom = skb_headroom(skb);
813 tailroom = skb_tailroom(skb);
815 has_mac = skb_mac_header_was_set(skb);
816 has_trans = skb_transport_header_was_set(skb);
818 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
819 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
820 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
821 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
822 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
823 level, skb->len, headroom, skb_headlen(skb), tailroom,
824 has_mac ? skb->mac_header : -1,
825 has_mac ? skb_mac_header_len(skb) : -1,
827 has_trans ? skb_network_header_len(skb) : -1,
828 has_trans ? skb->transport_header : -1,
829 sh->tx_flags, sh->nr_frags,
830 sh->gso_size, sh->gso_type, sh->gso_segs,
831 skb->csum, skb->ip_summed, skb->csum_complete_sw,
832 skb->csum_valid, skb->csum_level,
833 skb->hash, skb->sw_hash, skb->l4_hash,
834 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
837 printk("%sdev name=%s feat=%pNF\n",
838 level, dev->name, &dev->features);
840 printk("%ssk family=%hu type=%u proto=%u\n",
841 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
843 if (full_pkt && headroom)
844 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
845 16, 1, skb->head, headroom, false);
847 seg_len = min_t(int, skb_headlen(skb), len);
849 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
850 16, 1, skb->data, seg_len, false);
853 if (full_pkt && tailroom)
854 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
855 16, 1, skb_tail_pointer(skb), tailroom, false);
857 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
858 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
859 u32 p_off, p_len, copied;
863 skb_frag_foreach_page(frag, skb_frag_off(frag),
864 skb_frag_size(frag), p, p_off, p_len,
866 seg_len = min_t(int, p_len, len);
867 vaddr = kmap_atomic(p);
868 print_hex_dump(level, "skb frag: ",
870 16, 1, vaddr + p_off, seg_len, false);
871 kunmap_atomic(vaddr);
878 if (full_pkt && skb_has_frag_list(skb)) {
879 printk("skb fraglist:\n");
880 skb_walk_frags(skb, list_skb)
881 skb_dump(level, list_skb, true);
884 EXPORT_SYMBOL(skb_dump);
887 * skb_tx_error - report an sk_buff xmit error
888 * @skb: buffer that triggered an error
890 * Report xmit error if a device callback is tracking this skb.
891 * skb must be freed afterwards.
893 void skb_tx_error(struct sk_buff *skb)
895 skb_zcopy_clear(skb, true);
897 EXPORT_SYMBOL(skb_tx_error);
899 #ifdef CONFIG_TRACEPOINTS
901 * consume_skb - free an skbuff
902 * @skb: buffer to free
904 * Drop a ref to the buffer and free it if the usage count has hit zero
905 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
906 * is being dropped after a failure and notes that
908 void consume_skb(struct sk_buff *skb)
913 trace_consume_skb(skb);
916 EXPORT_SYMBOL(consume_skb);
920 * __consume_stateless_skb - free an skbuff, assuming it is stateless
921 * @skb: buffer to free
923 * Alike consume_skb(), but this variant assumes that this is the last
924 * skb reference and all the head states have been already dropped
926 void __consume_stateless_skb(struct sk_buff *skb)
928 trace_consume_skb(skb);
929 skb_release_data(skb);
933 static void napi_skb_cache_put(struct sk_buff *skb)
935 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
938 kasan_poison_object_data(skbuff_head_cache, skb);
939 nc->skb_cache[nc->skb_count++] = skb;
941 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
942 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
943 kasan_unpoison_object_data(skbuff_head_cache,
946 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
947 nc->skb_cache + NAPI_SKB_CACHE_HALF);
948 nc->skb_count = NAPI_SKB_CACHE_HALF;
952 void __kfree_skb_defer(struct sk_buff *skb)
954 skb_release_all(skb);
955 napi_skb_cache_put(skb);
958 void napi_skb_free_stolen_head(struct sk_buff *skb)
960 if (unlikely(skb->slow_gro)) {
967 napi_skb_cache_put(skb);
970 void napi_consume_skb(struct sk_buff *skb, int budget)
972 /* Zero budget indicate non-NAPI context called us, like netpoll */
973 if (unlikely(!budget)) {
974 dev_consume_skb_any(skb);
978 lockdep_assert_in_softirq();
983 /* if reaching here SKB is ready to free */
984 trace_consume_skb(skb);
986 /* if SKB is a clone, don't handle this case */
987 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
992 skb_release_all(skb);
993 napi_skb_cache_put(skb);
995 EXPORT_SYMBOL(napi_consume_skb);
997 /* Make sure a field is contained by headers group */
998 #define CHECK_SKB_FIELD(field) \
999 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \
1000 offsetof(struct sk_buff, headers.field)); \
1002 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1004 new->tstamp = old->tstamp;
1005 /* We do not copy old->sk */
1006 new->dev = old->dev;
1007 memcpy(new->cb, old->cb, sizeof(old->cb));
1008 skb_dst_copy(new, old);
1009 __skb_ext_copy(new, old);
1010 __nf_copy(new, old, false);
1012 /* Note : this field could be in the headers group.
1013 * It is not yet because we do not want to have a 16 bit hole
1015 new->queue_mapping = old->queue_mapping;
1017 memcpy(&new->headers, &old->headers, sizeof(new->headers));
1018 CHECK_SKB_FIELD(protocol);
1019 CHECK_SKB_FIELD(csum);
1020 CHECK_SKB_FIELD(hash);
1021 CHECK_SKB_FIELD(priority);
1022 CHECK_SKB_FIELD(skb_iif);
1023 CHECK_SKB_FIELD(vlan_proto);
1024 CHECK_SKB_FIELD(vlan_tci);
1025 CHECK_SKB_FIELD(transport_header);
1026 CHECK_SKB_FIELD(network_header);
1027 CHECK_SKB_FIELD(mac_header);
1028 CHECK_SKB_FIELD(inner_protocol);
1029 CHECK_SKB_FIELD(inner_transport_header);
1030 CHECK_SKB_FIELD(inner_network_header);
1031 CHECK_SKB_FIELD(inner_mac_header);
1032 CHECK_SKB_FIELD(mark);
1033 #ifdef CONFIG_NETWORK_SECMARK
1034 CHECK_SKB_FIELD(secmark);
1036 #ifdef CONFIG_NET_RX_BUSY_POLL
1037 CHECK_SKB_FIELD(napi_id);
1040 CHECK_SKB_FIELD(sender_cpu);
1042 #ifdef CONFIG_NET_SCHED
1043 CHECK_SKB_FIELD(tc_index);
1049 * You should not add any new code to this function. Add it to
1050 * __copy_skb_header above instead.
1052 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1054 #define C(x) n->x = skb->x
1056 n->next = n->prev = NULL;
1058 __copy_skb_header(n, skb);
1063 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1069 n->destructor = NULL;
1076 refcount_set(&n->users, 1);
1078 atomic_inc(&(skb_shinfo(skb)->dataref));
1086 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1087 * @first: first sk_buff of the msg
1089 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1093 n = alloc_skb(0, GFP_ATOMIC);
1097 n->len = first->len;
1098 n->data_len = first->len;
1099 n->truesize = first->truesize;
1101 skb_shinfo(n)->frag_list = first;
1103 __copy_skb_header(n, first);
1104 n->destructor = NULL;
1108 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1111 * skb_morph - morph one skb into another
1112 * @dst: the skb to receive the contents
1113 * @src: the skb to supply the contents
1115 * This is identical to skb_clone except that the target skb is
1116 * supplied by the user.
1118 * The target skb is returned upon exit.
1120 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1122 skb_release_all(dst);
1123 return __skb_clone(dst, src);
1125 EXPORT_SYMBOL_GPL(skb_morph);
1127 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1129 unsigned long max_pg, num_pg, new_pg, old_pg;
1130 struct user_struct *user;
1132 if (capable(CAP_IPC_LOCK) || !size)
1135 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1136 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1137 user = mmp->user ? : current_user();
1140 old_pg = atomic_long_read(&user->locked_vm);
1141 new_pg = old_pg + num_pg;
1142 if (new_pg > max_pg)
1144 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1148 mmp->user = get_uid(user);
1149 mmp->num_pg = num_pg;
1151 mmp->num_pg += num_pg;
1156 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1158 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1161 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1162 free_uid(mmp->user);
1165 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1167 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1169 struct ubuf_info *uarg;
1170 struct sk_buff *skb;
1172 WARN_ON_ONCE(!in_task());
1174 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1178 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1179 uarg = (void *)skb->cb;
1180 uarg->mmp.user = NULL;
1182 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1187 uarg->callback = msg_zerocopy_callback;
1188 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1190 uarg->bytelen = size;
1192 uarg->flags = SKBFL_ZEROCOPY_FRAG;
1193 refcount_set(&uarg->refcnt, 1);
1198 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc);
1200 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1202 return container_of((void *)uarg, struct sk_buff, cb);
1205 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1206 struct ubuf_info *uarg)
1209 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1212 /* realloc only when socket is locked (TCP, UDP cork),
1213 * so uarg->len and sk_zckey access is serialized
1215 if (!sock_owned_by_user(sk)) {
1220 bytelen = uarg->bytelen + size;
1221 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1222 /* TCP can create new skb to attach new uarg */
1223 if (sk->sk_type == SOCK_STREAM)
1228 next = (u32)atomic_read(&sk->sk_zckey);
1229 if ((u32)(uarg->id + uarg->len) == next) {
1230 if (mm_account_pinned_pages(&uarg->mmp, size))
1233 uarg->bytelen = bytelen;
1234 atomic_set(&sk->sk_zckey, ++next);
1236 /* no extra ref when appending to datagram (MSG_MORE) */
1237 if (sk->sk_type == SOCK_STREAM)
1238 net_zcopy_get(uarg);
1245 return msg_zerocopy_alloc(sk, size);
1247 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1249 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1251 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1255 old_lo = serr->ee.ee_info;
1256 old_hi = serr->ee.ee_data;
1257 sum_len = old_hi - old_lo + 1ULL + len;
1259 if (sum_len >= (1ULL << 32))
1262 if (lo != old_hi + 1)
1265 serr->ee.ee_data += len;
1269 static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1271 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1272 struct sock_exterr_skb *serr;
1273 struct sock *sk = skb->sk;
1274 struct sk_buff_head *q;
1275 unsigned long flags;
1280 mm_unaccount_pinned_pages(&uarg->mmp);
1282 /* if !len, there was only 1 call, and it was aborted
1283 * so do not queue a completion notification
1285 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1290 hi = uarg->id + len - 1;
1291 is_zerocopy = uarg->zerocopy;
1293 serr = SKB_EXT_ERR(skb);
1294 memset(serr, 0, sizeof(*serr));
1295 serr->ee.ee_errno = 0;
1296 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1297 serr->ee.ee_data = hi;
1298 serr->ee.ee_info = lo;
1300 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1302 q = &sk->sk_error_queue;
1303 spin_lock_irqsave(&q->lock, flags);
1304 tail = skb_peek_tail(q);
1305 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1306 !skb_zerocopy_notify_extend(tail, lo, len)) {
1307 __skb_queue_tail(q, skb);
1310 spin_unlock_irqrestore(&q->lock, flags);
1312 sk_error_report(sk);
1319 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1322 uarg->zerocopy = uarg->zerocopy & success;
1324 if (refcount_dec_and_test(&uarg->refcnt))
1325 __msg_zerocopy_callback(uarg);
1327 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1329 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1331 struct sock *sk = skb_from_uarg(uarg)->sk;
1333 atomic_dec(&sk->sk_zckey);
1337 msg_zerocopy_callback(NULL, uarg, true);
1339 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1341 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1343 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1345 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1347 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1348 struct msghdr *msg, int len,
1349 struct ubuf_info *uarg)
1351 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1352 struct iov_iter orig_iter = msg->msg_iter;
1353 int err, orig_len = skb->len;
1355 /* An skb can only point to one uarg. This edge case happens when
1356 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1358 if (orig_uarg && uarg != orig_uarg)
1361 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1362 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1363 struct sock *save_sk = skb->sk;
1365 /* Streams do not free skb on error. Reset to prev state. */
1366 msg->msg_iter = orig_iter;
1368 ___pskb_trim(skb, orig_len);
1373 skb_zcopy_set(skb, uarg, NULL);
1374 return skb->len - orig_len;
1376 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1378 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1381 if (skb_zcopy(orig)) {
1382 if (skb_zcopy(nskb)) {
1383 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1388 if (skb_uarg(nskb) == skb_uarg(orig))
1390 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1393 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1399 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1400 * @skb: the skb to modify
1401 * @gfp_mask: allocation priority
1403 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1404 * It will copy all frags into kernel and drop the reference
1405 * to userspace pages.
1407 * If this function is called from an interrupt gfp_mask() must be
1410 * Returns 0 on success or a negative error code on failure
1411 * to allocate kernel memory to copy to.
1413 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1415 int num_frags = skb_shinfo(skb)->nr_frags;
1416 struct page *page, *head = NULL;
1420 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1426 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1427 for (i = 0; i < new_frags; i++) {
1428 page = alloc_page(gfp_mask);
1431 struct page *next = (struct page *)page_private(head);
1437 set_page_private(page, (unsigned long)head);
1443 for (i = 0; i < num_frags; i++) {
1444 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1445 u32 p_off, p_len, copied;
1449 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1450 p, p_off, p_len, copied) {
1452 vaddr = kmap_atomic(p);
1454 while (done < p_len) {
1455 if (d_off == PAGE_SIZE) {
1457 page = (struct page *)page_private(page);
1459 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1460 memcpy(page_address(page) + d_off,
1461 vaddr + p_off + done, copy);
1465 kunmap_atomic(vaddr);
1469 /* skb frags release userspace buffers */
1470 for (i = 0; i < num_frags; i++)
1471 skb_frag_unref(skb, i);
1473 /* skb frags point to kernel buffers */
1474 for (i = 0; i < new_frags - 1; i++) {
1475 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1476 head = (struct page *)page_private(head);
1478 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1479 skb_shinfo(skb)->nr_frags = new_frags;
1482 skb_zcopy_clear(skb, false);
1485 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1488 * skb_clone - duplicate an sk_buff
1489 * @skb: buffer to clone
1490 * @gfp_mask: allocation priority
1492 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1493 * copies share the same packet data but not structure. The new
1494 * buffer has a reference count of 1. If the allocation fails the
1495 * function returns %NULL otherwise the new buffer is returned.
1497 * If this function is called from an interrupt gfp_mask() must be
1501 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1503 struct sk_buff_fclones *fclones = container_of(skb,
1504 struct sk_buff_fclones,
1508 if (skb_orphan_frags(skb, gfp_mask))
1511 if (skb->fclone == SKB_FCLONE_ORIG &&
1512 refcount_read(&fclones->fclone_ref) == 1) {
1514 refcount_set(&fclones->fclone_ref, 2);
1516 if (skb_pfmemalloc(skb))
1517 gfp_mask |= __GFP_MEMALLOC;
1519 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1523 n->fclone = SKB_FCLONE_UNAVAILABLE;
1526 return __skb_clone(n, skb);
1528 EXPORT_SYMBOL(skb_clone);
1530 void skb_headers_offset_update(struct sk_buff *skb, int off)
1532 /* Only adjust this if it actually is csum_start rather than csum */
1533 if (skb->ip_summed == CHECKSUM_PARTIAL)
1534 skb->csum_start += off;
1535 /* {transport,network,mac}_header and tail are relative to skb->head */
1536 skb->transport_header += off;
1537 skb->network_header += off;
1538 if (skb_mac_header_was_set(skb))
1539 skb->mac_header += off;
1540 skb->inner_transport_header += off;
1541 skb->inner_network_header += off;
1542 skb->inner_mac_header += off;
1544 EXPORT_SYMBOL(skb_headers_offset_update);
1546 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1548 __copy_skb_header(new, old);
1550 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1551 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1552 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1554 EXPORT_SYMBOL(skb_copy_header);
1556 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1558 if (skb_pfmemalloc(skb))
1559 return SKB_ALLOC_RX;
1564 * skb_copy - create private copy of an sk_buff
1565 * @skb: buffer to copy
1566 * @gfp_mask: allocation priority
1568 * Make a copy of both an &sk_buff and its data. This is used when the
1569 * caller wishes to modify the data and needs a private copy of the
1570 * data to alter. Returns %NULL on failure or the pointer to the buffer
1571 * on success. The returned buffer has a reference count of 1.
1573 * As by-product this function converts non-linear &sk_buff to linear
1574 * one, so that &sk_buff becomes completely private and caller is allowed
1575 * to modify all the data of returned buffer. This means that this
1576 * function is not recommended for use in circumstances when only
1577 * header is going to be modified. Use pskb_copy() instead.
1580 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1582 int headerlen = skb_headroom(skb);
1583 unsigned int size = skb_end_offset(skb) + skb->data_len;
1584 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1585 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1590 /* Set the data pointer */
1591 skb_reserve(n, headerlen);
1592 /* Set the tail pointer and length */
1593 skb_put(n, skb->len);
1595 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1597 skb_copy_header(n, skb);
1600 EXPORT_SYMBOL(skb_copy);
1603 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1604 * @skb: buffer to copy
1605 * @headroom: headroom of new skb
1606 * @gfp_mask: allocation priority
1607 * @fclone: if true allocate the copy of the skb from the fclone
1608 * cache instead of the head cache; it is recommended to set this
1609 * to true for the cases where the copy will likely be cloned
1611 * Make a copy of both an &sk_buff and part of its data, located
1612 * in header. Fragmented data remain shared. This is used when
1613 * the caller wishes to modify only header of &sk_buff and needs
1614 * private copy of the header to alter. Returns %NULL on failure
1615 * or the pointer to the buffer on success.
1616 * The returned buffer has a reference count of 1.
1619 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1620 gfp_t gfp_mask, bool fclone)
1622 unsigned int size = skb_headlen(skb) + headroom;
1623 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1624 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1629 /* Set the data pointer */
1630 skb_reserve(n, headroom);
1631 /* Set the tail pointer and length */
1632 skb_put(n, skb_headlen(skb));
1633 /* Copy the bytes */
1634 skb_copy_from_linear_data(skb, n->data, n->len);
1636 n->truesize += skb->data_len;
1637 n->data_len = skb->data_len;
1640 if (skb_shinfo(skb)->nr_frags) {
1643 if (skb_orphan_frags(skb, gfp_mask) ||
1644 skb_zerocopy_clone(n, skb, gfp_mask)) {
1649 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1650 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1651 skb_frag_ref(skb, i);
1653 skb_shinfo(n)->nr_frags = i;
1656 if (skb_has_frag_list(skb)) {
1657 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1658 skb_clone_fraglist(n);
1661 skb_copy_header(n, skb);
1665 EXPORT_SYMBOL(__pskb_copy_fclone);
1668 * pskb_expand_head - reallocate header of &sk_buff
1669 * @skb: buffer to reallocate
1670 * @nhead: room to add at head
1671 * @ntail: room to add at tail
1672 * @gfp_mask: allocation priority
1674 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1675 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1676 * reference count of 1. Returns zero in the case of success or error,
1677 * if expansion failed. In the last case, &sk_buff is not changed.
1679 * All the pointers pointing into skb header may change and must be
1680 * reloaded after call to this function.
1683 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1686 int i, osize = skb_end_offset(skb);
1687 int size = osize + nhead + ntail;
1693 BUG_ON(skb_shared(skb));
1695 size = SKB_DATA_ALIGN(size);
1697 if (skb_pfmemalloc(skb))
1698 gfp_mask |= __GFP_MEMALLOC;
1699 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1700 gfp_mask, NUMA_NO_NODE, NULL);
1703 size = SKB_WITH_OVERHEAD(ksize(data));
1705 /* Copy only real data... and, alas, header. This should be
1706 * optimized for the cases when header is void.
1708 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1710 memcpy((struct skb_shared_info *)(data + size),
1712 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1715 * if shinfo is shared we must drop the old head gracefully, but if it
1716 * is not we can just drop the old head and let the existing refcount
1717 * be since all we did is relocate the values
1719 if (skb_cloned(skb)) {
1720 if (skb_orphan_frags(skb, gfp_mask))
1723 refcount_inc(&skb_uarg(skb)->refcnt);
1724 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1725 skb_frag_ref(skb, i);
1727 if (skb_has_frag_list(skb))
1728 skb_clone_fraglist(skb);
1730 skb_release_data(skb);
1734 off = (data + nhead) - skb->head;
1739 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1743 skb->end = skb->head + size;
1746 skb_headers_offset_update(skb, nhead);
1750 atomic_set(&skb_shinfo(skb)->dataref, 1);
1752 skb_metadata_clear(skb);
1754 /* It is not generally safe to change skb->truesize.
1755 * For the moment, we really care of rx path, or
1756 * when skb is orphaned (not attached to a socket).
1758 if (!skb->sk || skb->destructor == sock_edemux)
1759 skb->truesize += size - osize;
1768 EXPORT_SYMBOL(pskb_expand_head);
1770 /* Make private copy of skb with writable head and some headroom */
1772 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1774 struct sk_buff *skb2;
1775 int delta = headroom - skb_headroom(skb);
1778 skb2 = pskb_copy(skb, GFP_ATOMIC);
1780 skb2 = skb_clone(skb, GFP_ATOMIC);
1781 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1789 EXPORT_SYMBOL(skb_realloc_headroom);
1792 * skb_expand_head - reallocate header of &sk_buff
1793 * @skb: buffer to reallocate
1794 * @headroom: needed headroom
1796 * Unlike skb_realloc_headroom, this one does not allocate a new skb
1797 * if possible; copies skb->sk to new skb as needed
1798 * and frees original skb in case of failures.
1800 * It expect increased headroom and generates warning otherwise.
1803 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
1805 int delta = headroom - skb_headroom(skb);
1806 int osize = skb_end_offset(skb);
1807 struct sock *sk = skb->sk;
1809 if (WARN_ONCE(delta <= 0,
1810 "%s is expecting an increase in the headroom", __func__))
1813 delta = SKB_DATA_ALIGN(delta);
1814 /* pskb_expand_head() might crash, if skb is shared. */
1815 if (skb_shared(skb) || !is_skb_wmem(skb)) {
1816 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1818 if (unlikely(!nskb))
1822 skb_set_owner_w(nskb, sk);
1826 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
1829 if (sk && is_skb_wmem(skb)) {
1830 delta = skb_end_offset(skb) - osize;
1831 refcount_add(delta, &sk->sk_wmem_alloc);
1832 skb->truesize += delta;
1840 EXPORT_SYMBOL(skb_expand_head);
1843 * skb_copy_expand - copy and expand sk_buff
1844 * @skb: buffer to copy
1845 * @newheadroom: new free bytes at head
1846 * @newtailroom: new free bytes at tail
1847 * @gfp_mask: allocation priority
1849 * Make a copy of both an &sk_buff and its data and while doing so
1850 * allocate additional space.
1852 * This is used when the caller wishes to modify the data and needs a
1853 * private copy of the data to alter as well as more space for new fields.
1854 * Returns %NULL on failure or the pointer to the buffer
1855 * on success. The returned buffer has a reference count of 1.
1857 * You must pass %GFP_ATOMIC as the allocation priority if this function
1858 * is called from an interrupt.
1860 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1861 int newheadroom, int newtailroom,
1865 * Allocate the copy buffer
1867 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1868 gfp_mask, skb_alloc_rx_flag(skb),
1870 int oldheadroom = skb_headroom(skb);
1871 int head_copy_len, head_copy_off;
1876 skb_reserve(n, newheadroom);
1878 /* Set the tail pointer and length */
1879 skb_put(n, skb->len);
1881 head_copy_len = oldheadroom;
1883 if (newheadroom <= head_copy_len)
1884 head_copy_len = newheadroom;
1886 head_copy_off = newheadroom - head_copy_len;
1888 /* Copy the linear header and data. */
1889 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1890 skb->len + head_copy_len));
1892 skb_copy_header(n, skb);
1894 skb_headers_offset_update(n, newheadroom - oldheadroom);
1898 EXPORT_SYMBOL(skb_copy_expand);
1901 * __skb_pad - zero pad the tail of an skb
1902 * @skb: buffer to pad
1903 * @pad: space to pad
1904 * @free_on_error: free buffer on error
1906 * Ensure that a buffer is followed by a padding area that is zero
1907 * filled. Used by network drivers which may DMA or transfer data
1908 * beyond the buffer end onto the wire.
1910 * May return error in out of memory cases. The skb is freed on error
1911 * if @free_on_error is true.
1914 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1919 /* If the skbuff is non linear tailroom is always zero.. */
1920 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1921 memset(skb->data+skb->len, 0, pad);
1925 ntail = skb->data_len + pad - (skb->end - skb->tail);
1926 if (likely(skb_cloned(skb) || ntail > 0)) {
1927 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1932 /* FIXME: The use of this function with non-linear skb's really needs
1935 err = skb_linearize(skb);
1939 memset(skb->data + skb->len, 0, pad);
1947 EXPORT_SYMBOL(__skb_pad);
1950 * pskb_put - add data to the tail of a potentially fragmented buffer
1951 * @skb: start of the buffer to use
1952 * @tail: tail fragment of the buffer to use
1953 * @len: amount of data to add
1955 * This function extends the used data area of the potentially
1956 * fragmented buffer. @tail must be the last fragment of @skb -- or
1957 * @skb itself. If this would exceed the total buffer size the kernel
1958 * will panic. A pointer to the first byte of the extra data is
1962 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1965 skb->data_len += len;
1968 return skb_put(tail, len);
1970 EXPORT_SYMBOL_GPL(pskb_put);
1973 * skb_put - add data to a buffer
1974 * @skb: buffer to use
1975 * @len: amount of data to add
1977 * This function extends the used data area of the buffer. If this would
1978 * exceed the total buffer size the kernel will panic. A pointer to the
1979 * first byte of the extra data is returned.
1981 void *skb_put(struct sk_buff *skb, unsigned int len)
1983 void *tmp = skb_tail_pointer(skb);
1984 SKB_LINEAR_ASSERT(skb);
1987 if (unlikely(skb->tail > skb->end))
1988 skb_over_panic(skb, len, __builtin_return_address(0));
1991 EXPORT_SYMBOL(skb_put);
1994 * skb_push - add data to the start of a buffer
1995 * @skb: buffer to use
1996 * @len: amount of data to add
1998 * This function extends the used data area of the buffer at the buffer
1999 * start. If this would exceed the total buffer headroom the kernel will
2000 * panic. A pointer to the first byte of the extra data is returned.
2002 void *skb_push(struct sk_buff *skb, unsigned int len)
2006 if (unlikely(skb->data < skb->head))
2007 skb_under_panic(skb, len, __builtin_return_address(0));
2010 EXPORT_SYMBOL(skb_push);
2013 * skb_pull - remove data from the start of a buffer
2014 * @skb: buffer to use
2015 * @len: amount of data to remove
2017 * This function removes data from the start of a buffer, returning
2018 * the memory to the headroom. A pointer to the next data in the buffer
2019 * is returned. Once the data has been pulled future pushes will overwrite
2022 void *skb_pull(struct sk_buff *skb, unsigned int len)
2024 return skb_pull_inline(skb, len);
2026 EXPORT_SYMBOL(skb_pull);
2029 * skb_pull_data - remove data from the start of a buffer returning its
2030 * original position.
2031 * @skb: buffer to use
2032 * @len: amount of data to remove
2034 * This function removes data from the start of a buffer, returning
2035 * the memory to the headroom. A pointer to the original data in the buffer
2036 * is returned after checking if there is enough data to pull. Once the
2037 * data has been pulled future pushes will overwrite the old data.
2039 void *skb_pull_data(struct sk_buff *skb, size_t len)
2041 void *data = skb->data;
2050 EXPORT_SYMBOL(skb_pull_data);
2053 * skb_trim - remove end from a buffer
2054 * @skb: buffer to alter
2057 * Cut the length of a buffer down by removing data from the tail. If
2058 * the buffer is already under the length specified it is not modified.
2059 * The skb must be linear.
2061 void skb_trim(struct sk_buff *skb, unsigned int len)
2064 __skb_trim(skb, len);
2066 EXPORT_SYMBOL(skb_trim);
2068 /* Trims skb to length len. It can change skb pointers.
2071 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2073 struct sk_buff **fragp;
2074 struct sk_buff *frag;
2075 int offset = skb_headlen(skb);
2076 int nfrags = skb_shinfo(skb)->nr_frags;
2080 if (skb_cloned(skb) &&
2081 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2088 for (; i < nfrags; i++) {
2089 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2096 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2099 skb_shinfo(skb)->nr_frags = i;
2101 for (; i < nfrags; i++)
2102 skb_frag_unref(skb, i);
2104 if (skb_has_frag_list(skb))
2105 skb_drop_fraglist(skb);
2109 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2110 fragp = &frag->next) {
2111 int end = offset + frag->len;
2113 if (skb_shared(frag)) {
2114 struct sk_buff *nfrag;
2116 nfrag = skb_clone(frag, GFP_ATOMIC);
2117 if (unlikely(!nfrag))
2120 nfrag->next = frag->next;
2132 unlikely((err = pskb_trim(frag, len - offset))))
2136 skb_drop_list(&frag->next);
2141 if (len > skb_headlen(skb)) {
2142 skb->data_len -= skb->len - len;
2147 skb_set_tail_pointer(skb, len);
2150 if (!skb->sk || skb->destructor == sock_edemux)
2154 EXPORT_SYMBOL(___pskb_trim);
2156 /* Note : use pskb_trim_rcsum() instead of calling this directly
2158 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2160 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2161 int delta = skb->len - len;
2163 skb->csum = csum_block_sub(skb->csum,
2164 skb_checksum(skb, len, delta, 0),
2166 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2167 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2168 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2170 if (offset + sizeof(__sum16) > hdlen)
2173 return __pskb_trim(skb, len);
2175 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2178 * __pskb_pull_tail - advance tail of skb header
2179 * @skb: buffer to reallocate
2180 * @delta: number of bytes to advance tail
2182 * The function makes a sense only on a fragmented &sk_buff,
2183 * it expands header moving its tail forward and copying necessary
2184 * data from fragmented part.
2186 * &sk_buff MUST have reference count of 1.
2188 * Returns %NULL (and &sk_buff does not change) if pull failed
2189 * or value of new tail of skb in the case of success.
2191 * All the pointers pointing into skb header may change and must be
2192 * reloaded after call to this function.
2195 /* Moves tail of skb head forward, copying data from fragmented part,
2196 * when it is necessary.
2197 * 1. It may fail due to malloc failure.
2198 * 2. It may change skb pointers.
2200 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2202 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2204 /* If skb has not enough free space at tail, get new one
2205 * plus 128 bytes for future expansions. If we have enough
2206 * room at tail, reallocate without expansion only if skb is cloned.
2208 int i, k, eat = (skb->tail + delta) - skb->end;
2210 if (eat > 0 || skb_cloned(skb)) {
2211 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2216 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2217 skb_tail_pointer(skb), delta));
2219 /* Optimization: no fragments, no reasons to preestimate
2220 * size of pulled pages. Superb.
2222 if (!skb_has_frag_list(skb))
2225 /* Estimate size of pulled pages. */
2227 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2228 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2235 /* If we need update frag list, we are in troubles.
2236 * Certainly, it is possible to add an offset to skb data,
2237 * but taking into account that pulling is expected to
2238 * be very rare operation, it is worth to fight against
2239 * further bloating skb head and crucify ourselves here instead.
2240 * Pure masohism, indeed. 8)8)
2243 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2244 struct sk_buff *clone = NULL;
2245 struct sk_buff *insp = NULL;
2248 if (list->len <= eat) {
2249 /* Eaten as whole. */
2254 /* Eaten partially. */
2256 if (skb_shared(list)) {
2257 /* Sucks! We need to fork list. :-( */
2258 clone = skb_clone(list, GFP_ATOMIC);
2264 /* This may be pulled without
2268 if (!pskb_pull(list, eat)) {
2276 /* Free pulled out fragments. */
2277 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2278 skb_shinfo(skb)->frag_list = list->next;
2281 /* And insert new clone at head. */
2284 skb_shinfo(skb)->frag_list = clone;
2287 /* Success! Now we may commit changes to skb data. */
2292 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2293 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2296 skb_frag_unref(skb, i);
2299 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2301 *frag = skb_shinfo(skb)->frags[i];
2303 skb_frag_off_add(frag, eat);
2304 skb_frag_size_sub(frag, eat);
2312 skb_shinfo(skb)->nr_frags = k;
2316 skb->data_len -= delta;
2319 skb_zcopy_clear(skb, false);
2321 return skb_tail_pointer(skb);
2323 EXPORT_SYMBOL(__pskb_pull_tail);
2326 * skb_copy_bits - copy bits from skb to kernel buffer
2328 * @offset: offset in source
2329 * @to: destination buffer
2330 * @len: number of bytes to copy
2332 * Copy the specified number of bytes from the source skb to the
2333 * destination buffer.
2336 * If its prototype is ever changed,
2337 * check arch/{*}/net/{*}.S files,
2338 * since it is called from BPF assembly code.
2340 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2342 int start = skb_headlen(skb);
2343 struct sk_buff *frag_iter;
2346 if (offset > (int)skb->len - len)
2350 if ((copy = start - offset) > 0) {
2353 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2354 if ((len -= copy) == 0)
2360 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2362 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2364 WARN_ON(start > offset + len);
2366 end = start + skb_frag_size(f);
2367 if ((copy = end - offset) > 0) {
2368 u32 p_off, p_len, copied;
2375 skb_frag_foreach_page(f,
2376 skb_frag_off(f) + offset - start,
2377 copy, p, p_off, p_len, copied) {
2378 vaddr = kmap_atomic(p);
2379 memcpy(to + copied, vaddr + p_off, p_len);
2380 kunmap_atomic(vaddr);
2383 if ((len -= copy) == 0)
2391 skb_walk_frags(skb, frag_iter) {
2394 WARN_ON(start > offset + len);
2396 end = start + frag_iter->len;
2397 if ((copy = end - offset) > 0) {
2400 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2402 if ((len -= copy) == 0)
2416 EXPORT_SYMBOL(skb_copy_bits);
2419 * Callback from splice_to_pipe(), if we need to release some pages
2420 * at the end of the spd in case we error'ed out in filling the pipe.
2422 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2424 put_page(spd->pages[i]);
2427 static struct page *linear_to_page(struct page *page, unsigned int *len,
2428 unsigned int *offset,
2431 struct page_frag *pfrag = sk_page_frag(sk);
2433 if (!sk_page_frag_refill(sk, pfrag))
2436 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2438 memcpy(page_address(pfrag->page) + pfrag->offset,
2439 page_address(page) + *offset, *len);
2440 *offset = pfrag->offset;
2441 pfrag->offset += *len;
2446 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2448 unsigned int offset)
2450 return spd->nr_pages &&
2451 spd->pages[spd->nr_pages - 1] == page &&
2452 (spd->partial[spd->nr_pages - 1].offset +
2453 spd->partial[spd->nr_pages - 1].len == offset);
2457 * Fill page/offset/length into spd, if it can hold more pages.
2459 static bool spd_fill_page(struct splice_pipe_desc *spd,
2460 struct pipe_inode_info *pipe, struct page *page,
2461 unsigned int *len, unsigned int offset,
2465 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2469 page = linear_to_page(page, len, &offset, sk);
2473 if (spd_can_coalesce(spd, page, offset)) {
2474 spd->partial[spd->nr_pages - 1].len += *len;
2478 spd->pages[spd->nr_pages] = page;
2479 spd->partial[spd->nr_pages].len = *len;
2480 spd->partial[spd->nr_pages].offset = offset;
2486 static bool __splice_segment(struct page *page, unsigned int poff,
2487 unsigned int plen, unsigned int *off,
2489 struct splice_pipe_desc *spd, bool linear,
2491 struct pipe_inode_info *pipe)
2496 /* skip this segment if already processed */
2502 /* ignore any bits we already processed */
2508 unsigned int flen = min(*len, plen);
2510 if (spd_fill_page(spd, pipe, page, &flen, poff,
2516 } while (*len && plen);
2522 * Map linear and fragment data from the skb to spd. It reports true if the
2523 * pipe is full or if we already spliced the requested length.
2525 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2526 unsigned int *offset, unsigned int *len,
2527 struct splice_pipe_desc *spd, struct sock *sk)
2530 struct sk_buff *iter;
2532 /* map the linear part :
2533 * If skb->head_frag is set, this 'linear' part is backed by a
2534 * fragment, and if the head is not shared with any clones then
2535 * we can avoid a copy since we own the head portion of this page.
2537 if (__splice_segment(virt_to_page(skb->data),
2538 (unsigned long) skb->data & (PAGE_SIZE - 1),
2541 skb_head_is_locked(skb),
2546 * then map the fragments
2548 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2549 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2551 if (__splice_segment(skb_frag_page(f),
2552 skb_frag_off(f), skb_frag_size(f),
2553 offset, len, spd, false, sk, pipe))
2557 skb_walk_frags(skb, iter) {
2558 if (*offset >= iter->len) {
2559 *offset -= iter->len;
2562 /* __skb_splice_bits() only fails if the output has no room
2563 * left, so no point in going over the frag_list for the error
2566 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2574 * Map data from the skb to a pipe. Should handle both the linear part,
2575 * the fragments, and the frag list.
2577 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2578 struct pipe_inode_info *pipe, unsigned int tlen,
2581 struct partial_page partial[MAX_SKB_FRAGS];
2582 struct page *pages[MAX_SKB_FRAGS];
2583 struct splice_pipe_desc spd = {
2586 .nr_pages_max = MAX_SKB_FRAGS,
2587 .ops = &nosteal_pipe_buf_ops,
2588 .spd_release = sock_spd_release,
2592 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2595 ret = splice_to_pipe(pipe, &spd);
2599 EXPORT_SYMBOL_GPL(skb_splice_bits);
2601 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2602 struct kvec *vec, size_t num, size_t size)
2604 struct socket *sock = sk->sk_socket;
2608 return kernel_sendmsg(sock, msg, vec, num, size);
2611 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2612 size_t size, int flags)
2614 struct socket *sock = sk->sk_socket;
2618 return kernel_sendpage(sock, page, offset, size, flags);
2621 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2622 struct kvec *vec, size_t num, size_t size);
2623 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2624 size_t size, int flags);
2625 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2626 int len, sendmsg_func sendmsg, sendpage_func sendpage)
2628 unsigned int orig_len = len;
2629 struct sk_buff *head = skb;
2630 unsigned short fragidx;
2635 /* Deal with head data */
2636 while (offset < skb_headlen(skb) && len) {
2640 slen = min_t(int, len, skb_headlen(skb) - offset);
2641 kv.iov_base = skb->data + offset;
2643 memset(&msg, 0, sizeof(msg));
2644 msg.msg_flags = MSG_DONTWAIT;
2646 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2647 sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2655 /* All the data was skb head? */
2659 /* Make offset relative to start of frags */
2660 offset -= skb_headlen(skb);
2662 /* Find where we are in frag list */
2663 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2664 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2666 if (offset < skb_frag_size(frag))
2669 offset -= skb_frag_size(frag);
2672 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2673 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2675 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2678 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2679 sendpage_unlocked, sk,
2680 skb_frag_page(frag),
2681 skb_frag_off(frag) + offset,
2682 slen, MSG_DONTWAIT);
2695 /* Process any frag lists */
2698 if (skb_has_frag_list(skb)) {
2699 skb = skb_shinfo(skb)->frag_list;
2702 } else if (skb->next) {
2709 return orig_len - len;
2712 return orig_len == len ? ret : orig_len - len;
2715 /* Send skb data on a socket. Socket must be locked. */
2716 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2719 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2720 kernel_sendpage_locked);
2722 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2724 /* Send skb data on a socket. Socket must be unlocked. */
2725 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2727 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2732 * skb_store_bits - store bits from kernel buffer to skb
2733 * @skb: destination buffer
2734 * @offset: offset in destination
2735 * @from: source buffer
2736 * @len: number of bytes to copy
2738 * Copy the specified number of bytes from the source buffer to the
2739 * destination skb. This function handles all the messy bits of
2740 * traversing fragment lists and such.
2743 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2745 int start = skb_headlen(skb);
2746 struct sk_buff *frag_iter;
2749 if (offset > (int)skb->len - len)
2752 if ((copy = start - offset) > 0) {
2755 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2756 if ((len -= copy) == 0)
2762 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2763 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2766 WARN_ON(start > offset + len);
2768 end = start + skb_frag_size(frag);
2769 if ((copy = end - offset) > 0) {
2770 u32 p_off, p_len, copied;
2777 skb_frag_foreach_page(frag,
2778 skb_frag_off(frag) + offset - start,
2779 copy, p, p_off, p_len, copied) {
2780 vaddr = kmap_atomic(p);
2781 memcpy(vaddr + p_off, from + copied, p_len);
2782 kunmap_atomic(vaddr);
2785 if ((len -= copy) == 0)
2793 skb_walk_frags(skb, frag_iter) {
2796 WARN_ON(start > offset + len);
2798 end = start + frag_iter->len;
2799 if ((copy = end - offset) > 0) {
2802 if (skb_store_bits(frag_iter, offset - start,
2805 if ((len -= copy) == 0)
2818 EXPORT_SYMBOL(skb_store_bits);
2820 /* Checksum skb data. */
2821 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2822 __wsum csum, const struct skb_checksum_ops *ops)
2824 int start = skb_headlen(skb);
2825 int i, copy = start - offset;
2826 struct sk_buff *frag_iter;
2829 /* Checksum header. */
2833 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2834 skb->data + offset, copy, csum);
2835 if ((len -= copy) == 0)
2841 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2843 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2845 WARN_ON(start > offset + len);
2847 end = start + skb_frag_size(frag);
2848 if ((copy = end - offset) > 0) {
2849 u32 p_off, p_len, copied;
2857 skb_frag_foreach_page(frag,
2858 skb_frag_off(frag) + offset - start,
2859 copy, p, p_off, p_len, copied) {
2860 vaddr = kmap_atomic(p);
2861 csum2 = INDIRECT_CALL_1(ops->update,
2863 vaddr + p_off, p_len, 0);
2864 kunmap_atomic(vaddr);
2865 csum = INDIRECT_CALL_1(ops->combine,
2866 csum_block_add_ext, csum,
2878 skb_walk_frags(skb, frag_iter) {
2881 WARN_ON(start > offset + len);
2883 end = start + frag_iter->len;
2884 if ((copy = end - offset) > 0) {
2888 csum2 = __skb_checksum(frag_iter, offset - start,
2890 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2891 csum, csum2, pos, copy);
2892 if ((len -= copy) == 0)
2903 EXPORT_SYMBOL(__skb_checksum);
2905 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2906 int len, __wsum csum)
2908 const struct skb_checksum_ops ops = {
2909 .update = csum_partial_ext,
2910 .combine = csum_block_add_ext,
2913 return __skb_checksum(skb, offset, len, csum, &ops);
2915 EXPORT_SYMBOL(skb_checksum);
2917 /* Both of above in one bottle. */
2919 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2922 int start = skb_headlen(skb);
2923 int i, copy = start - offset;
2924 struct sk_buff *frag_iter;
2932 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2934 if ((len -= copy) == 0)
2941 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2944 WARN_ON(start > offset + len);
2946 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2947 if ((copy = end - offset) > 0) {
2948 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2949 u32 p_off, p_len, copied;
2957 skb_frag_foreach_page(frag,
2958 skb_frag_off(frag) + offset - start,
2959 copy, p, p_off, p_len, copied) {
2960 vaddr = kmap_atomic(p);
2961 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2964 kunmap_atomic(vaddr);
2965 csum = csum_block_add(csum, csum2, pos);
2977 skb_walk_frags(skb, frag_iter) {
2981 WARN_ON(start > offset + len);
2983 end = start + frag_iter->len;
2984 if ((copy = end - offset) > 0) {
2987 csum2 = skb_copy_and_csum_bits(frag_iter,
2990 csum = csum_block_add(csum, csum2, pos);
2991 if ((len -= copy) == 0)
3002 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3004 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3008 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3009 /* See comments in __skb_checksum_complete(). */
3011 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3012 !skb->csum_complete_sw)
3013 netdev_rx_csum_fault(skb->dev, skb);
3015 if (!skb_shared(skb))
3016 skb->csum_valid = !sum;
3019 EXPORT_SYMBOL(__skb_checksum_complete_head);
3021 /* This function assumes skb->csum already holds pseudo header's checksum,
3022 * which has been changed from the hardware checksum, for example, by
3023 * __skb_checksum_validate_complete(). And, the original skb->csum must
3024 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3026 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3027 * zero. The new checksum is stored back into skb->csum unless the skb is
3030 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3035 csum = skb_checksum(skb, 0, skb->len, 0);
3037 sum = csum_fold(csum_add(skb->csum, csum));
3038 /* This check is inverted, because we already knew the hardware
3039 * checksum is invalid before calling this function. So, if the
3040 * re-computed checksum is valid instead, then we have a mismatch
3041 * between the original skb->csum and skb_checksum(). This means either
3042 * the original hardware checksum is incorrect or we screw up skb->csum
3043 * when moving skb->data around.
3046 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3047 !skb->csum_complete_sw)
3048 netdev_rx_csum_fault(skb->dev, skb);
3051 if (!skb_shared(skb)) {
3052 /* Save full packet checksum */
3054 skb->ip_summed = CHECKSUM_COMPLETE;
3055 skb->csum_complete_sw = 1;
3056 skb->csum_valid = !sum;
3061 EXPORT_SYMBOL(__skb_checksum_complete);
3063 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3065 net_warn_ratelimited(
3066 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3071 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3072 int offset, int len)
3074 net_warn_ratelimited(
3075 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3080 static const struct skb_checksum_ops default_crc32c_ops = {
3081 .update = warn_crc32c_csum_update,
3082 .combine = warn_crc32c_csum_combine,
3085 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3086 &default_crc32c_ops;
3087 EXPORT_SYMBOL(crc32c_csum_stub);
3090 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3091 * @from: source buffer
3093 * Calculates the amount of linear headroom needed in the 'to' skb passed
3094 * into skb_zerocopy().
3097 skb_zerocopy_headlen(const struct sk_buff *from)
3099 unsigned int hlen = 0;
3101 if (!from->head_frag ||
3102 skb_headlen(from) < L1_CACHE_BYTES ||
3103 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3104 hlen = skb_headlen(from);
3109 if (skb_has_frag_list(from))
3114 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3117 * skb_zerocopy - Zero copy skb to skb
3118 * @to: destination buffer
3119 * @from: source buffer
3120 * @len: number of bytes to copy from source buffer
3121 * @hlen: size of linear headroom in destination buffer
3123 * Copies up to `len` bytes from `from` to `to` by creating references
3124 * to the frags in the source buffer.
3126 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3127 * headroom in the `to` buffer.
3130 * 0: everything is OK
3131 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3132 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3135 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3138 int plen = 0; /* length of skb->head fragment */
3141 unsigned int offset;
3143 BUG_ON(!from->head_frag && !hlen);
3145 /* dont bother with small payloads */
3146 if (len <= skb_tailroom(to))
3147 return skb_copy_bits(from, 0, skb_put(to, len), len);
3150 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3155 plen = min_t(int, skb_headlen(from), len);
3157 page = virt_to_head_page(from->head);
3158 offset = from->data - (unsigned char *)page_address(page);
3159 __skb_fill_page_desc(to, 0, page, offset, plen);
3166 to->truesize += len + plen;
3167 to->len += len + plen;
3168 to->data_len += len + plen;
3170 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3174 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3176 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3181 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3182 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3184 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3186 skb_frag_ref(to, j);
3189 skb_shinfo(to)->nr_frags = j;
3193 EXPORT_SYMBOL_GPL(skb_zerocopy);
3195 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3200 if (skb->ip_summed == CHECKSUM_PARTIAL)
3201 csstart = skb_checksum_start_offset(skb);
3203 csstart = skb_headlen(skb);
3205 BUG_ON(csstart > skb_headlen(skb));
3207 skb_copy_from_linear_data(skb, to, csstart);
3210 if (csstart != skb->len)
3211 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3212 skb->len - csstart);
3214 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3215 long csstuff = csstart + skb->csum_offset;
3217 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3220 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3223 * skb_dequeue - remove from the head of the queue
3224 * @list: list to dequeue from
3226 * Remove the head of the list. The list lock is taken so the function
3227 * may be used safely with other locking list functions. The head item is
3228 * returned or %NULL if the list is empty.
3231 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3233 unsigned long flags;
3234 struct sk_buff *result;
3236 spin_lock_irqsave(&list->lock, flags);
3237 result = __skb_dequeue(list);
3238 spin_unlock_irqrestore(&list->lock, flags);
3241 EXPORT_SYMBOL(skb_dequeue);
3244 * skb_dequeue_tail - remove from the tail of the queue
3245 * @list: list to dequeue from
3247 * Remove the tail of the list. The list lock is taken so the function
3248 * may be used safely with other locking list functions. The tail item is
3249 * returned or %NULL if the list is empty.
3251 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3253 unsigned long flags;
3254 struct sk_buff *result;
3256 spin_lock_irqsave(&list->lock, flags);
3257 result = __skb_dequeue_tail(list);
3258 spin_unlock_irqrestore(&list->lock, flags);
3261 EXPORT_SYMBOL(skb_dequeue_tail);
3264 * skb_queue_purge - empty a list
3265 * @list: list to empty
3267 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3268 * the list and one reference dropped. This function takes the list
3269 * lock and is atomic with respect to other list locking functions.
3271 void skb_queue_purge(struct sk_buff_head *list)
3273 struct sk_buff *skb;
3274 while ((skb = skb_dequeue(list)) != NULL)
3277 EXPORT_SYMBOL(skb_queue_purge);
3280 * skb_rbtree_purge - empty a skb rbtree
3281 * @root: root of the rbtree to empty
3282 * Return value: the sum of truesizes of all purged skbs.
3284 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3285 * the list and one reference dropped. This function does not take
3286 * any lock. Synchronization should be handled by the caller (e.g., TCP
3287 * out-of-order queue is protected by the socket lock).
3289 unsigned int skb_rbtree_purge(struct rb_root *root)
3291 struct rb_node *p = rb_first(root);
3292 unsigned int sum = 0;
3295 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3298 rb_erase(&skb->rbnode, root);
3299 sum += skb->truesize;
3306 * skb_queue_head - queue a buffer at the list head
3307 * @list: list to use
3308 * @newsk: buffer to queue
3310 * Queue a buffer at the start of the list. This function takes the
3311 * list lock and can be used safely with other locking &sk_buff functions
3314 * A buffer cannot be placed on two lists at the same time.
3316 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3318 unsigned long flags;
3320 spin_lock_irqsave(&list->lock, flags);
3321 __skb_queue_head(list, newsk);
3322 spin_unlock_irqrestore(&list->lock, flags);
3324 EXPORT_SYMBOL(skb_queue_head);
3327 * skb_queue_tail - queue a buffer at the list tail
3328 * @list: list to use
3329 * @newsk: buffer to queue
3331 * Queue a buffer at the tail of the list. This function takes the
3332 * list lock and can be used safely with other locking &sk_buff functions
3335 * A buffer cannot be placed on two lists at the same time.
3337 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3339 unsigned long flags;
3341 spin_lock_irqsave(&list->lock, flags);
3342 __skb_queue_tail(list, newsk);
3343 spin_unlock_irqrestore(&list->lock, flags);
3345 EXPORT_SYMBOL(skb_queue_tail);
3348 * skb_unlink - remove a buffer from a list
3349 * @skb: buffer to remove
3350 * @list: list to use
3352 * Remove a packet from a list. The list locks are taken and this
3353 * function is atomic with respect to other list locked calls
3355 * You must know what list the SKB is on.
3357 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3359 unsigned long flags;
3361 spin_lock_irqsave(&list->lock, flags);
3362 __skb_unlink(skb, list);
3363 spin_unlock_irqrestore(&list->lock, flags);
3365 EXPORT_SYMBOL(skb_unlink);
3368 * skb_append - append a buffer
3369 * @old: buffer to insert after
3370 * @newsk: buffer to insert
3371 * @list: list to use
3373 * Place a packet after a given packet in a list. The list locks are taken
3374 * and this function is atomic with respect to other list locked calls.
3375 * A buffer cannot be placed on two lists at the same time.
3377 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3379 unsigned long flags;
3381 spin_lock_irqsave(&list->lock, flags);
3382 __skb_queue_after(list, old, newsk);
3383 spin_unlock_irqrestore(&list->lock, flags);
3385 EXPORT_SYMBOL(skb_append);
3387 static inline void skb_split_inside_header(struct sk_buff *skb,
3388 struct sk_buff* skb1,
3389 const u32 len, const int pos)
3393 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3395 /* And move data appendix as is. */
3396 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3397 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3399 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3400 skb_shinfo(skb)->nr_frags = 0;
3401 skb1->data_len = skb->data_len;
3402 skb1->len += skb1->data_len;
3405 skb_set_tail_pointer(skb, len);
3408 static inline void skb_split_no_header(struct sk_buff *skb,
3409 struct sk_buff* skb1,
3410 const u32 len, int pos)
3413 const int nfrags = skb_shinfo(skb)->nr_frags;
3415 skb_shinfo(skb)->nr_frags = 0;
3416 skb1->len = skb1->data_len = skb->len - len;
3418 skb->data_len = len - pos;
3420 for (i = 0; i < nfrags; i++) {
3421 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3423 if (pos + size > len) {
3424 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3428 * We have two variants in this case:
3429 * 1. Move all the frag to the second
3430 * part, if it is possible. F.e.
3431 * this approach is mandatory for TUX,
3432 * where splitting is expensive.
3433 * 2. Split is accurately. We make this.
3435 skb_frag_ref(skb, i);
3436 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3437 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3438 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3439 skb_shinfo(skb)->nr_frags++;
3443 skb_shinfo(skb)->nr_frags++;
3446 skb_shinfo(skb1)->nr_frags = k;
3450 * skb_split - Split fragmented skb to two parts at length len.
3451 * @skb: the buffer to split
3452 * @skb1: the buffer to receive the second part
3453 * @len: new length for skb
3455 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3457 int pos = skb_headlen(skb);
3458 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3460 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3461 skb_zerocopy_clone(skb1, skb, 0);
3462 if (len < pos) /* Split line is inside header. */
3463 skb_split_inside_header(skb, skb1, len, pos);
3464 else /* Second chunk has no header, nothing to copy. */
3465 skb_split_no_header(skb, skb1, len, pos);
3467 EXPORT_SYMBOL(skb_split);
3469 /* Shifting from/to a cloned skb is a no-go.
3471 * Caller cannot keep skb_shinfo related pointers past calling here!
3473 static int skb_prepare_for_shift(struct sk_buff *skb)
3475 return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3479 * skb_shift - Shifts paged data partially from skb to another
3480 * @tgt: buffer into which tail data gets added
3481 * @skb: buffer from which the paged data comes from
3482 * @shiftlen: shift up to this many bytes
3484 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3485 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3486 * It's up to caller to free skb if everything was shifted.
3488 * If @tgt runs out of frags, the whole operation is aborted.
3490 * Skb cannot include anything else but paged data while tgt is allowed
3491 * to have non-paged data as well.
3493 * TODO: full sized shift could be optimized but that would need
3494 * specialized skb free'er to handle frags without up-to-date nr_frags.
3496 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3498 int from, to, merge, todo;
3499 skb_frag_t *fragfrom, *fragto;
3501 BUG_ON(shiftlen > skb->len);
3503 if (skb_headlen(skb))
3505 if (skb_zcopy(tgt) || skb_zcopy(skb))
3510 to = skb_shinfo(tgt)->nr_frags;
3511 fragfrom = &skb_shinfo(skb)->frags[from];
3513 /* Actual merge is delayed until the point when we know we can
3514 * commit all, so that we don't have to undo partial changes
3517 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3518 skb_frag_off(fragfrom))) {
3523 todo -= skb_frag_size(fragfrom);
3525 if (skb_prepare_for_shift(skb) ||
3526 skb_prepare_for_shift(tgt))
3529 /* All previous frag pointers might be stale! */
3530 fragfrom = &skb_shinfo(skb)->frags[from];
3531 fragto = &skb_shinfo(tgt)->frags[merge];
3533 skb_frag_size_add(fragto, shiftlen);
3534 skb_frag_size_sub(fragfrom, shiftlen);
3535 skb_frag_off_add(fragfrom, shiftlen);
3543 /* Skip full, not-fitting skb to avoid expensive operations */
3544 if ((shiftlen == skb->len) &&
3545 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3548 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3551 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3552 if (to == MAX_SKB_FRAGS)
3555 fragfrom = &skb_shinfo(skb)->frags[from];
3556 fragto = &skb_shinfo(tgt)->frags[to];
3558 if (todo >= skb_frag_size(fragfrom)) {
3559 *fragto = *fragfrom;
3560 todo -= skb_frag_size(fragfrom);
3565 __skb_frag_ref(fragfrom);
3566 skb_frag_page_copy(fragto, fragfrom);
3567 skb_frag_off_copy(fragto, fragfrom);
3568 skb_frag_size_set(fragto, todo);
3570 skb_frag_off_add(fragfrom, todo);
3571 skb_frag_size_sub(fragfrom, todo);
3579 /* Ready to "commit" this state change to tgt */
3580 skb_shinfo(tgt)->nr_frags = to;
3583 fragfrom = &skb_shinfo(skb)->frags[0];
3584 fragto = &skb_shinfo(tgt)->frags[merge];
3586 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3587 __skb_frag_unref(fragfrom, skb->pp_recycle);
3590 /* Reposition in the original skb */
3592 while (from < skb_shinfo(skb)->nr_frags)
3593 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3594 skb_shinfo(skb)->nr_frags = to;
3596 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3599 /* Most likely the tgt won't ever need its checksum anymore, skb on
3600 * the other hand might need it if it needs to be resent
3602 tgt->ip_summed = CHECKSUM_PARTIAL;
3603 skb->ip_summed = CHECKSUM_PARTIAL;
3605 /* Yak, is it really working this way? Some helper please? */
3606 skb->len -= shiftlen;
3607 skb->data_len -= shiftlen;
3608 skb->truesize -= shiftlen;
3609 tgt->len += shiftlen;
3610 tgt->data_len += shiftlen;
3611 tgt->truesize += shiftlen;
3617 * skb_prepare_seq_read - Prepare a sequential read of skb data
3618 * @skb: the buffer to read
3619 * @from: lower offset of data to be read
3620 * @to: upper offset of data to be read
3621 * @st: state variable
3623 * Initializes the specified state variable. Must be called before
3624 * invoking skb_seq_read() for the first time.
3626 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3627 unsigned int to, struct skb_seq_state *st)
3629 st->lower_offset = from;
3630 st->upper_offset = to;
3631 st->root_skb = st->cur_skb = skb;
3632 st->frag_idx = st->stepped_offset = 0;
3633 st->frag_data = NULL;
3636 EXPORT_SYMBOL(skb_prepare_seq_read);
3639 * skb_seq_read - Sequentially read skb data
3640 * @consumed: number of bytes consumed by the caller so far
3641 * @data: destination pointer for data to be returned
3642 * @st: state variable
3644 * Reads a block of skb data at @consumed relative to the
3645 * lower offset specified to skb_prepare_seq_read(). Assigns
3646 * the head of the data block to @data and returns the length
3647 * of the block or 0 if the end of the skb data or the upper
3648 * offset has been reached.
3650 * The caller is not required to consume all of the data
3651 * returned, i.e. @consumed is typically set to the number
3652 * of bytes already consumed and the next call to
3653 * skb_seq_read() will return the remaining part of the block.
3655 * Note 1: The size of each block of data returned can be arbitrary,
3656 * this limitation is the cost for zerocopy sequential
3657 * reads of potentially non linear data.
3659 * Note 2: Fragment lists within fragments are not implemented
3660 * at the moment, state->root_skb could be replaced with
3661 * a stack for this purpose.
3663 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3664 struct skb_seq_state *st)
3666 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3669 if (unlikely(abs_offset >= st->upper_offset)) {
3670 if (st->frag_data) {
3671 kunmap_atomic(st->frag_data);
3672 st->frag_data = NULL;
3678 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3680 if (abs_offset < block_limit && !st->frag_data) {
3681 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3682 return block_limit - abs_offset;
3685 if (st->frag_idx == 0 && !st->frag_data)
3686 st->stepped_offset += skb_headlen(st->cur_skb);
3688 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3689 unsigned int pg_idx, pg_off, pg_sz;
3691 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3694 pg_off = skb_frag_off(frag);
3695 pg_sz = skb_frag_size(frag);
3697 if (skb_frag_must_loop(skb_frag_page(frag))) {
3698 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3699 pg_off = offset_in_page(pg_off + st->frag_off);
3700 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3701 PAGE_SIZE - pg_off);
3704 block_limit = pg_sz + st->stepped_offset;
3705 if (abs_offset < block_limit) {
3707 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3709 *data = (u8 *)st->frag_data + pg_off +
3710 (abs_offset - st->stepped_offset);
3712 return block_limit - abs_offset;
3715 if (st->frag_data) {
3716 kunmap_atomic(st->frag_data);
3717 st->frag_data = NULL;
3720 st->stepped_offset += pg_sz;
3721 st->frag_off += pg_sz;
3722 if (st->frag_off == skb_frag_size(frag)) {
3728 if (st->frag_data) {
3729 kunmap_atomic(st->frag_data);
3730 st->frag_data = NULL;
3733 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3734 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3737 } else if (st->cur_skb->next) {
3738 st->cur_skb = st->cur_skb->next;
3745 EXPORT_SYMBOL(skb_seq_read);
3748 * skb_abort_seq_read - Abort a sequential read of skb data
3749 * @st: state variable
3751 * Must be called if skb_seq_read() was not called until it
3754 void skb_abort_seq_read(struct skb_seq_state *st)
3757 kunmap_atomic(st->frag_data);
3759 EXPORT_SYMBOL(skb_abort_seq_read);
3761 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3763 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3764 struct ts_config *conf,
3765 struct ts_state *state)
3767 return skb_seq_read(offset, text, TS_SKB_CB(state));
3770 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3772 skb_abort_seq_read(TS_SKB_CB(state));
3776 * skb_find_text - Find a text pattern in skb data
3777 * @skb: the buffer to look in
3778 * @from: search offset
3780 * @config: textsearch configuration
3782 * Finds a pattern in the skb data according to the specified
3783 * textsearch configuration. Use textsearch_next() to retrieve
3784 * subsequent occurrences of the pattern. Returns the offset
3785 * to the first occurrence or UINT_MAX if no match was found.
3787 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3788 unsigned int to, struct ts_config *config)
3790 struct ts_state state;
3793 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3795 config->get_next_block = skb_ts_get_next_block;
3796 config->finish = skb_ts_finish;
3798 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3800 ret = textsearch_find(config, &state);
3801 return (ret <= to - from ? ret : UINT_MAX);
3803 EXPORT_SYMBOL(skb_find_text);
3805 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3806 int offset, size_t size)
3808 int i = skb_shinfo(skb)->nr_frags;
3810 if (skb_can_coalesce(skb, i, page, offset)) {
3811 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3812 } else if (i < MAX_SKB_FRAGS) {
3814 skb_fill_page_desc(skb, i, page, offset, size);
3821 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3824 * skb_pull_rcsum - pull skb and update receive checksum
3825 * @skb: buffer to update
3826 * @len: length of data pulled
3828 * This function performs an skb_pull on the packet and updates
3829 * the CHECKSUM_COMPLETE checksum. It should be used on
3830 * receive path processing instead of skb_pull unless you know
3831 * that the checksum difference is zero (e.g., a valid IP header)
3832 * or you are setting ip_summed to CHECKSUM_NONE.
3834 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3836 unsigned char *data = skb->data;
3838 BUG_ON(len > skb->len);
3839 __skb_pull(skb, len);
3840 skb_postpull_rcsum(skb, data, len);
3843 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3845 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3847 skb_frag_t head_frag;
3850 page = virt_to_head_page(frag_skb->head);
3851 __skb_frag_set_page(&head_frag, page);
3852 skb_frag_off_set(&head_frag, frag_skb->data -
3853 (unsigned char *)page_address(page));
3854 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3858 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3859 netdev_features_t features,
3860 unsigned int offset)
3862 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3863 unsigned int tnl_hlen = skb_tnl_header_len(skb);
3864 unsigned int delta_truesize = 0;
3865 unsigned int delta_len = 0;
3866 struct sk_buff *tail = NULL;
3867 struct sk_buff *nskb, *tmp;
3870 skb_push(skb, -skb_network_offset(skb) + offset);
3872 skb_shinfo(skb)->frag_list = NULL;
3876 list_skb = list_skb->next;
3879 if (skb_shared(nskb)) {
3880 tmp = skb_clone(nskb, GFP_ATOMIC);
3884 err = skb_unclone(nskb, GFP_ATOMIC);
3895 if (unlikely(err)) {
3896 nskb->next = list_skb;
3902 delta_len += nskb->len;
3903 delta_truesize += nskb->truesize;
3905 skb_push(nskb, -skb_network_offset(nskb) + offset);
3907 skb_release_head_state(nskb);
3908 __copy_skb_header(nskb, skb);
3910 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3911 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3912 nskb->data - tnl_hlen,
3915 if (skb_needs_linearize(nskb, features) &&
3916 __skb_linearize(nskb))
3921 skb->truesize = skb->truesize - delta_truesize;
3922 skb->data_len = skb->data_len - delta_len;
3923 skb->len = skb->len - delta_len;
3929 if (skb_needs_linearize(skb, features) &&
3930 __skb_linearize(skb))
3938 kfree_skb_list(skb->next);
3940 return ERR_PTR(-ENOMEM);
3942 EXPORT_SYMBOL_GPL(skb_segment_list);
3945 * skb_segment - Perform protocol segmentation on skb.
3946 * @head_skb: buffer to segment
3947 * @features: features for the output path (see dev->features)
3949 * This function performs segmentation on the given skb. It returns
3950 * a pointer to the first in a list of new skbs for the segments.
3951 * In case of error it returns ERR_PTR(err).
3953 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3954 netdev_features_t features)
3956 struct sk_buff *segs = NULL;
3957 struct sk_buff *tail = NULL;
3958 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3959 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3960 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3961 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3962 struct sk_buff *frag_skb = head_skb;
3963 unsigned int offset = doffset;
3964 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3965 unsigned int partial_segs = 0;
3966 unsigned int headroom;
3967 unsigned int len = head_skb->len;
3970 int nfrags = skb_shinfo(head_skb)->nr_frags;
3975 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3976 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3977 /* gso_size is untrusted, and we have a frag_list with a linear
3978 * non head_frag head.
3980 * (we assume checking the first list_skb member suffices;
3981 * i.e if either of the list_skb members have non head_frag
3982 * head, then the first one has too).
3984 * If head_skb's headlen does not fit requested gso_size, it
3985 * means that the frag_list members do NOT terminate on exact
3986 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3987 * sharing. Therefore we must fallback to copying the frag_list
3988 * skbs; we do so by disabling SG.
3990 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3991 features &= ~NETIF_F_SG;
3994 __skb_push(head_skb, doffset);
3995 proto = skb_network_protocol(head_skb, NULL);
3996 if (unlikely(!proto))
3997 return ERR_PTR(-EINVAL);
3999 sg = !!(features & NETIF_F_SG);
4000 csum = !!can_checksum_protocol(features, proto);
4002 if (sg && csum && (mss != GSO_BY_FRAGS)) {
4003 if (!(features & NETIF_F_GSO_PARTIAL)) {
4004 struct sk_buff *iter;
4005 unsigned int frag_len;
4008 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4011 /* If we get here then all the required
4012 * GSO features except frag_list are supported.
4013 * Try to split the SKB to multiple GSO SKBs
4014 * with no frag_list.
4015 * Currently we can do that only when the buffers don't
4016 * have a linear part and all the buffers except
4017 * the last are of the same length.
4019 frag_len = list_skb->len;
4020 skb_walk_frags(head_skb, iter) {
4021 if (frag_len != iter->len && iter->next)
4023 if (skb_headlen(iter) && !iter->head_frag)
4029 if (len != frag_len)
4033 /* GSO partial only requires that we trim off any excess that
4034 * doesn't fit into an MSS sized block, so take care of that
4037 partial_segs = len / mss;
4038 if (partial_segs > 1)
4039 mss *= partial_segs;
4045 headroom = skb_headroom(head_skb);
4046 pos = skb_headlen(head_skb);
4049 struct sk_buff *nskb;
4050 skb_frag_t *nskb_frag;
4054 if (unlikely(mss == GSO_BY_FRAGS)) {
4055 len = list_skb->len;
4057 len = head_skb->len - offset;
4062 hsize = skb_headlen(head_skb) - offset;
4064 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4065 (skb_headlen(list_skb) == len || sg)) {
4066 BUG_ON(skb_headlen(list_skb) > len);
4069 nfrags = skb_shinfo(list_skb)->nr_frags;
4070 frag = skb_shinfo(list_skb)->frags;
4071 frag_skb = list_skb;
4072 pos += skb_headlen(list_skb);
4074 while (pos < offset + len) {
4075 BUG_ON(i >= nfrags);
4077 size = skb_frag_size(frag);
4078 if (pos + size > offset + len)
4086 nskb = skb_clone(list_skb, GFP_ATOMIC);
4087 list_skb = list_skb->next;
4089 if (unlikely(!nskb))
4092 if (unlikely(pskb_trim(nskb, len))) {
4097 hsize = skb_end_offset(nskb);
4098 if (skb_cow_head(nskb, doffset + headroom)) {
4103 nskb->truesize += skb_end_offset(nskb) - hsize;
4104 skb_release_head_state(nskb);
4105 __skb_push(nskb, doffset);
4109 if (hsize > len || !sg)
4112 nskb = __alloc_skb(hsize + doffset + headroom,
4113 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4116 if (unlikely(!nskb))
4119 skb_reserve(nskb, headroom);
4120 __skb_put(nskb, doffset);
4129 __copy_skb_header(nskb, head_skb);
4131 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4132 skb_reset_mac_len(nskb);
4134 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4135 nskb->data - tnl_hlen,
4136 doffset + tnl_hlen);
4138 if (nskb->len == len + doffset)
4139 goto perform_csum_check;
4143 if (!nskb->remcsum_offload)
4144 nskb->ip_summed = CHECKSUM_NONE;
4145 SKB_GSO_CB(nskb)->csum =
4146 skb_copy_and_csum_bits(head_skb, offset,
4150 SKB_GSO_CB(nskb)->csum_start =
4151 skb_headroom(nskb) + doffset;
4153 skb_copy_bits(head_skb, offset,
4160 nskb_frag = skb_shinfo(nskb)->frags;
4162 skb_copy_from_linear_data_offset(head_skb, offset,
4163 skb_put(nskb, hsize), hsize);
4165 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4168 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4169 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4172 while (pos < offset + len) {
4175 nfrags = skb_shinfo(list_skb)->nr_frags;
4176 frag = skb_shinfo(list_skb)->frags;
4177 frag_skb = list_skb;
4178 if (!skb_headlen(list_skb)) {
4181 BUG_ON(!list_skb->head_frag);
4183 /* to make room for head_frag. */
4187 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4188 skb_zerocopy_clone(nskb, frag_skb,
4192 list_skb = list_skb->next;
4195 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4197 net_warn_ratelimited(
4198 "skb_segment: too many frags: %u %u\n",
4204 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4205 __skb_frag_ref(nskb_frag);
4206 size = skb_frag_size(nskb_frag);
4209 skb_frag_off_add(nskb_frag, offset - pos);
4210 skb_frag_size_sub(nskb_frag, offset - pos);
4213 skb_shinfo(nskb)->nr_frags++;
4215 if (pos + size <= offset + len) {
4220 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4228 nskb->data_len = len - hsize;
4229 nskb->len += nskb->data_len;
4230 nskb->truesize += nskb->data_len;
4234 if (skb_has_shared_frag(nskb) &&
4235 __skb_linearize(nskb))
4238 if (!nskb->remcsum_offload)
4239 nskb->ip_summed = CHECKSUM_NONE;
4240 SKB_GSO_CB(nskb)->csum =
4241 skb_checksum(nskb, doffset,
4242 nskb->len - doffset, 0);
4243 SKB_GSO_CB(nskb)->csum_start =
4244 skb_headroom(nskb) + doffset;
4246 } while ((offset += len) < head_skb->len);
4248 /* Some callers want to get the end of the list.
4249 * Put it in segs->prev to avoid walking the list.
4250 * (see validate_xmit_skb_list() for example)
4255 struct sk_buff *iter;
4256 int type = skb_shinfo(head_skb)->gso_type;
4257 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4259 /* Update type to add partial and then remove dodgy if set */
4260 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4261 type &= ~SKB_GSO_DODGY;
4263 /* Update GSO info and prepare to start updating headers on
4264 * our way back down the stack of protocols.
4266 for (iter = segs; iter; iter = iter->next) {
4267 skb_shinfo(iter)->gso_size = gso_size;
4268 skb_shinfo(iter)->gso_segs = partial_segs;
4269 skb_shinfo(iter)->gso_type = type;
4270 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4273 if (tail->len - doffset <= gso_size)
4274 skb_shinfo(tail)->gso_size = 0;
4275 else if (tail != segs)
4276 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4279 /* Following permits correct backpressure, for protocols
4280 * using skb_set_owner_w().
4281 * Idea is to tranfert ownership from head_skb to last segment.
4283 if (head_skb->destructor == sock_wfree) {
4284 swap(tail->truesize, head_skb->truesize);
4285 swap(tail->destructor, head_skb->destructor);
4286 swap(tail->sk, head_skb->sk);
4291 kfree_skb_list(segs);
4292 return ERR_PTR(err);
4294 EXPORT_SYMBOL_GPL(skb_segment);
4296 #ifdef CONFIG_SKB_EXTENSIONS
4297 #define SKB_EXT_ALIGN_VALUE 8
4298 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4300 static const u8 skb_ext_type_len[] = {
4301 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4302 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4305 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4307 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4308 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4310 #if IS_ENABLED(CONFIG_MPTCP)
4311 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4313 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4314 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4318 static __always_inline unsigned int skb_ext_total_length(void)
4320 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4321 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4322 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4325 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4327 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4328 skb_ext_type_len[TC_SKB_EXT] +
4330 #if IS_ENABLED(CONFIG_MPTCP)
4331 skb_ext_type_len[SKB_EXT_MPTCP] +
4333 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4334 skb_ext_type_len[SKB_EXT_MCTP] +
4339 static void skb_extensions_init(void)
4341 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4342 BUILD_BUG_ON(skb_ext_total_length() > 255);
4344 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4345 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4347 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4351 static void skb_extensions_init(void) {}
4354 void __init skb_init(void)
4356 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4357 sizeof(struct sk_buff),
4359 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4360 offsetof(struct sk_buff, cb),
4361 sizeof_field(struct sk_buff, cb),
4363 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4364 sizeof(struct sk_buff_fclones),
4366 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4368 skb_extensions_init();
4372 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4373 unsigned int recursion_level)
4375 int start = skb_headlen(skb);
4376 int i, copy = start - offset;
4377 struct sk_buff *frag_iter;
4380 if (unlikely(recursion_level >= 24))
4386 sg_set_buf(sg, skb->data + offset, copy);
4388 if ((len -= copy) == 0)
4393 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4396 WARN_ON(start > offset + len);
4398 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4399 if ((copy = end - offset) > 0) {
4400 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4401 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4406 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4407 skb_frag_off(frag) + offset - start);
4416 skb_walk_frags(skb, frag_iter) {
4419 WARN_ON(start > offset + len);
4421 end = start + frag_iter->len;
4422 if ((copy = end - offset) > 0) {
4423 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4428 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4429 copy, recursion_level + 1);
4430 if (unlikely(ret < 0))
4433 if ((len -= copy) == 0)
4444 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4445 * @skb: Socket buffer containing the buffers to be mapped
4446 * @sg: The scatter-gather list to map into
4447 * @offset: The offset into the buffer's contents to start mapping
4448 * @len: Length of buffer space to be mapped
4450 * Fill the specified scatter-gather list with mappings/pointers into a
4451 * region of the buffer space attached to a socket buffer. Returns either
4452 * the number of scatterlist items used, or -EMSGSIZE if the contents
4455 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4457 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4462 sg_mark_end(&sg[nsg - 1]);
4466 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4468 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4469 * sglist without mark the sg which contain last skb data as the end.
4470 * So the caller can mannipulate sg list as will when padding new data after
4471 * the first call without calling sg_unmark_end to expend sg list.
4473 * Scenario to use skb_to_sgvec_nomark:
4475 * 2. skb_to_sgvec_nomark(payload1)
4476 * 3. skb_to_sgvec_nomark(payload2)
4478 * This is equivalent to:
4480 * 2. skb_to_sgvec(payload1)
4482 * 4. skb_to_sgvec(payload2)
4484 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4485 * is more preferable.
4487 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4488 int offset, int len)
4490 return __skb_to_sgvec(skb, sg, offset, len, 0);
4492 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4497 * skb_cow_data - Check that a socket buffer's data buffers are writable
4498 * @skb: The socket buffer to check.
4499 * @tailbits: Amount of trailing space to be added
4500 * @trailer: Returned pointer to the skb where the @tailbits space begins
4502 * Make sure that the data buffers attached to a socket buffer are
4503 * writable. If they are not, private copies are made of the data buffers
4504 * and the socket buffer is set to use these instead.
4506 * If @tailbits is given, make sure that there is space to write @tailbits
4507 * bytes of data beyond current end of socket buffer. @trailer will be
4508 * set to point to the skb in which this space begins.
4510 * The number of scatterlist elements required to completely map the
4511 * COW'd and extended socket buffer will be returned.
4513 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4517 struct sk_buff *skb1, **skb_p;
4519 /* If skb is cloned or its head is paged, reallocate
4520 * head pulling out all the pages (pages are considered not writable
4521 * at the moment even if they are anonymous).
4523 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4524 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4527 /* Easy case. Most of packets will go this way. */
4528 if (!skb_has_frag_list(skb)) {
4529 /* A little of trouble, not enough of space for trailer.
4530 * This should not happen, when stack is tuned to generate
4531 * good frames. OK, on miss we reallocate and reserve even more
4532 * space, 128 bytes is fair. */
4534 if (skb_tailroom(skb) < tailbits &&
4535 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4543 /* Misery. We are in troubles, going to mincer fragments... */
4546 skb_p = &skb_shinfo(skb)->frag_list;
4549 while ((skb1 = *skb_p) != NULL) {
4552 /* The fragment is partially pulled by someone,
4553 * this can happen on input. Copy it and everything
4556 if (skb_shared(skb1))
4559 /* If the skb is the last, worry about trailer. */
4561 if (skb1->next == NULL && tailbits) {
4562 if (skb_shinfo(skb1)->nr_frags ||
4563 skb_has_frag_list(skb1) ||
4564 skb_tailroom(skb1) < tailbits)
4565 ntail = tailbits + 128;
4571 skb_shinfo(skb1)->nr_frags ||
4572 skb_has_frag_list(skb1)) {
4573 struct sk_buff *skb2;
4575 /* Fuck, we are miserable poor guys... */
4577 skb2 = skb_copy(skb1, GFP_ATOMIC);
4579 skb2 = skb_copy_expand(skb1,
4583 if (unlikely(skb2 == NULL))
4587 skb_set_owner_w(skb2, skb1->sk);
4589 /* Looking around. Are we still alive?
4590 * OK, link new skb, drop old one */
4592 skb2->next = skb1->next;
4599 skb_p = &skb1->next;
4604 EXPORT_SYMBOL_GPL(skb_cow_data);
4606 static void sock_rmem_free(struct sk_buff *skb)
4608 struct sock *sk = skb->sk;
4610 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4613 static void skb_set_err_queue(struct sk_buff *skb)
4615 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4616 * So, it is safe to (mis)use it to mark skbs on the error queue.
4618 skb->pkt_type = PACKET_OUTGOING;
4619 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4623 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4625 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4627 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4628 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4633 skb->destructor = sock_rmem_free;
4634 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4635 skb_set_err_queue(skb);
4637 /* before exiting rcu section, make sure dst is refcounted */
4640 skb_queue_tail(&sk->sk_error_queue, skb);
4641 if (!sock_flag(sk, SOCK_DEAD))
4642 sk_error_report(sk);
4645 EXPORT_SYMBOL(sock_queue_err_skb);
4647 static bool is_icmp_err_skb(const struct sk_buff *skb)
4649 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4650 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4653 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4655 struct sk_buff_head *q = &sk->sk_error_queue;
4656 struct sk_buff *skb, *skb_next = NULL;
4657 bool icmp_next = false;
4658 unsigned long flags;
4660 spin_lock_irqsave(&q->lock, flags);
4661 skb = __skb_dequeue(q);
4662 if (skb && (skb_next = skb_peek(q))) {
4663 icmp_next = is_icmp_err_skb(skb_next);
4665 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4667 spin_unlock_irqrestore(&q->lock, flags);
4669 if (is_icmp_err_skb(skb) && !icmp_next)
4673 sk_error_report(sk);
4677 EXPORT_SYMBOL(sock_dequeue_err_skb);
4680 * skb_clone_sk - create clone of skb, and take reference to socket
4681 * @skb: the skb to clone
4683 * This function creates a clone of a buffer that holds a reference on
4684 * sk_refcnt. Buffers created via this function are meant to be
4685 * returned using sock_queue_err_skb, or free via kfree_skb.
4687 * When passing buffers allocated with this function to sock_queue_err_skb
4688 * it is necessary to wrap the call with sock_hold/sock_put in order to
4689 * prevent the socket from being released prior to being enqueued on
4690 * the sk_error_queue.
4692 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4694 struct sock *sk = skb->sk;
4695 struct sk_buff *clone;
4697 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4700 clone = skb_clone(skb, GFP_ATOMIC);
4707 clone->destructor = sock_efree;
4711 EXPORT_SYMBOL(skb_clone_sk);
4713 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4718 struct sock_exterr_skb *serr;
4721 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4723 serr = SKB_EXT_ERR(skb);
4724 memset(serr, 0, sizeof(*serr));
4725 serr->ee.ee_errno = ENOMSG;
4726 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4727 serr->ee.ee_info = tstype;
4728 serr->opt_stats = opt_stats;
4729 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4730 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4731 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4733 serr->ee.ee_data -= sk->sk_tskey;
4736 err = sock_queue_err_skb(sk, skb);
4742 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4746 if (likely(sysctl_tstamp_allow_data || tsonly))
4749 read_lock_bh(&sk->sk_callback_lock);
4750 ret = sk->sk_socket && sk->sk_socket->file &&
4751 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4752 read_unlock_bh(&sk->sk_callback_lock);
4756 void skb_complete_tx_timestamp(struct sk_buff *skb,
4757 struct skb_shared_hwtstamps *hwtstamps)
4759 struct sock *sk = skb->sk;
4761 if (!skb_may_tx_timestamp(sk, false))
4764 /* Take a reference to prevent skb_orphan() from freeing the socket,
4765 * but only if the socket refcount is not zero.
4767 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4768 *skb_hwtstamps(skb) = *hwtstamps;
4769 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4777 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4779 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4780 const struct sk_buff *ack_skb,
4781 struct skb_shared_hwtstamps *hwtstamps,
4782 struct sock *sk, int tstype)
4784 struct sk_buff *skb;
4785 bool tsonly, opt_stats = false;
4790 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4791 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4794 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4795 if (!skb_may_tx_timestamp(sk, tsonly))
4800 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4802 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4807 skb = alloc_skb(0, GFP_ATOMIC);
4809 skb = skb_clone(orig_skb, GFP_ATOMIC);
4815 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4817 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4821 *skb_hwtstamps(skb) = *hwtstamps;
4823 skb->tstamp = ktime_get_real();
4825 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4827 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4829 void skb_tstamp_tx(struct sk_buff *orig_skb,
4830 struct skb_shared_hwtstamps *hwtstamps)
4832 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4835 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4837 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4839 struct sock *sk = skb->sk;
4840 struct sock_exterr_skb *serr;
4843 skb->wifi_acked_valid = 1;
4844 skb->wifi_acked = acked;
4846 serr = SKB_EXT_ERR(skb);
4847 memset(serr, 0, sizeof(*serr));
4848 serr->ee.ee_errno = ENOMSG;
4849 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4851 /* Take a reference to prevent skb_orphan() from freeing the socket,
4852 * but only if the socket refcount is not zero.
4854 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4855 err = sock_queue_err_skb(sk, skb);
4861 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4864 * skb_partial_csum_set - set up and verify partial csum values for packet
4865 * @skb: the skb to set
4866 * @start: the number of bytes after skb->data to start checksumming.
4867 * @off: the offset from start to place the checksum.
4869 * For untrusted partially-checksummed packets, we need to make sure the values
4870 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4872 * This function checks and sets those values and skb->ip_summed: if this
4873 * returns false you should drop the packet.
4875 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4877 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4878 u32 csum_start = skb_headroom(skb) + (u32)start;
4880 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4881 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4882 start, off, skb_headroom(skb), skb_headlen(skb));
4885 skb->ip_summed = CHECKSUM_PARTIAL;
4886 skb->csum_start = csum_start;
4887 skb->csum_offset = off;
4888 skb_set_transport_header(skb, start);
4891 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4893 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4896 if (skb_headlen(skb) >= len)
4899 /* If we need to pullup then pullup to the max, so we
4900 * won't need to do it again.
4905 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4908 if (skb_headlen(skb) < len)
4914 #define MAX_TCP_HDR_LEN (15 * 4)
4916 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4917 typeof(IPPROTO_IP) proto,
4924 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4925 off + MAX_TCP_HDR_LEN);
4926 if (!err && !skb_partial_csum_set(skb, off,
4927 offsetof(struct tcphdr,
4930 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4933 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4934 off + sizeof(struct udphdr));
4935 if (!err && !skb_partial_csum_set(skb, off,
4936 offsetof(struct udphdr,
4939 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4942 return ERR_PTR(-EPROTO);
4945 /* This value should be large enough to cover a tagged ethernet header plus
4946 * maximally sized IP and TCP or UDP headers.
4948 #define MAX_IP_HDR_LEN 128
4950 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4959 err = skb_maybe_pull_tail(skb,
4960 sizeof(struct iphdr),
4965 if (ip_is_fragment(ip_hdr(skb)))
4968 off = ip_hdrlen(skb);
4975 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4977 return PTR_ERR(csum);
4980 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4983 ip_hdr(skb)->protocol, 0);
4990 /* This value should be large enough to cover a tagged ethernet header plus
4991 * an IPv6 header, all options, and a maximal TCP or UDP header.
4993 #define MAX_IPV6_HDR_LEN 256
4995 #define OPT_HDR(type, skb, off) \
4996 (type *)(skb_network_header(skb) + (off))
4998 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5011 off = sizeof(struct ipv6hdr);
5013 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5017 nexthdr = ipv6_hdr(skb)->nexthdr;
5019 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5020 while (off <= len && !done) {
5022 case IPPROTO_DSTOPTS:
5023 case IPPROTO_HOPOPTS:
5024 case IPPROTO_ROUTING: {
5025 struct ipv6_opt_hdr *hp;
5027 err = skb_maybe_pull_tail(skb,
5029 sizeof(struct ipv6_opt_hdr),
5034 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5035 nexthdr = hp->nexthdr;
5036 off += ipv6_optlen(hp);
5040 struct ip_auth_hdr *hp;
5042 err = skb_maybe_pull_tail(skb,
5044 sizeof(struct ip_auth_hdr),
5049 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5050 nexthdr = hp->nexthdr;
5051 off += ipv6_authlen(hp);
5054 case IPPROTO_FRAGMENT: {
5055 struct frag_hdr *hp;
5057 err = skb_maybe_pull_tail(skb,
5059 sizeof(struct frag_hdr),
5064 hp = OPT_HDR(struct frag_hdr, skb, off);
5066 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5069 nexthdr = hp->nexthdr;
5070 off += sizeof(struct frag_hdr);
5081 if (!done || fragment)
5084 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5086 return PTR_ERR(csum);
5089 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5090 &ipv6_hdr(skb)->daddr,
5091 skb->len - off, nexthdr, 0);
5099 * skb_checksum_setup - set up partial checksum offset
5100 * @skb: the skb to set up
5101 * @recalculate: if true the pseudo-header checksum will be recalculated
5103 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5107 switch (skb->protocol) {
5108 case htons(ETH_P_IP):
5109 err = skb_checksum_setup_ipv4(skb, recalculate);
5112 case htons(ETH_P_IPV6):
5113 err = skb_checksum_setup_ipv6(skb, recalculate);
5123 EXPORT_SYMBOL(skb_checksum_setup);
5126 * skb_checksum_maybe_trim - maybe trims the given skb
5127 * @skb: the skb to check
5128 * @transport_len: the data length beyond the network header
5130 * Checks whether the given skb has data beyond the given transport length.
5131 * If so, returns a cloned skb trimmed to this transport length.
5132 * Otherwise returns the provided skb. Returns NULL in error cases
5133 * (e.g. transport_len exceeds skb length or out-of-memory).
5135 * Caller needs to set the skb transport header and free any returned skb if it
5136 * differs from the provided skb.
5138 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5139 unsigned int transport_len)
5141 struct sk_buff *skb_chk;
5142 unsigned int len = skb_transport_offset(skb) + transport_len;
5147 else if (skb->len == len)
5150 skb_chk = skb_clone(skb, GFP_ATOMIC);
5154 ret = pskb_trim_rcsum(skb_chk, len);
5164 * skb_checksum_trimmed - validate checksum of an skb
5165 * @skb: the skb to check
5166 * @transport_len: the data length beyond the network header
5167 * @skb_chkf: checksum function to use
5169 * Applies the given checksum function skb_chkf to the provided skb.
5170 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5172 * If the skb has data beyond the given transport length, then a
5173 * trimmed & cloned skb is checked and returned.
5175 * Caller needs to set the skb transport header and free any returned skb if it
5176 * differs from the provided skb.
5178 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5179 unsigned int transport_len,
5180 __sum16(*skb_chkf)(struct sk_buff *skb))
5182 struct sk_buff *skb_chk;
5183 unsigned int offset = skb_transport_offset(skb);
5186 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5190 if (!pskb_may_pull(skb_chk, offset))
5193 skb_pull_rcsum(skb_chk, offset);
5194 ret = skb_chkf(skb_chk);
5195 skb_push_rcsum(skb_chk, offset);
5203 if (skb_chk && skb_chk != skb)
5209 EXPORT_SYMBOL(skb_checksum_trimmed);
5211 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5213 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5216 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5218 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5221 skb_release_head_state(skb);
5222 kmem_cache_free(skbuff_head_cache, skb);
5227 EXPORT_SYMBOL(kfree_skb_partial);
5230 * skb_try_coalesce - try to merge skb to prior one
5232 * @from: buffer to add
5233 * @fragstolen: pointer to boolean
5234 * @delta_truesize: how much more was allocated than was requested
5236 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5237 bool *fragstolen, int *delta_truesize)
5239 struct skb_shared_info *to_shinfo, *from_shinfo;
5240 int i, delta, len = from->len;
5242 *fragstolen = false;
5247 /* The page pool signature of struct page will eventually figure out
5248 * which pages can be recycled or not but for now let's prohibit slab
5249 * allocated and page_pool allocated SKBs from being coalesced.
5251 if (to->pp_recycle != from->pp_recycle)
5254 if (len <= skb_tailroom(to)) {
5256 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5257 *delta_truesize = 0;
5261 to_shinfo = skb_shinfo(to);
5262 from_shinfo = skb_shinfo(from);
5263 if (to_shinfo->frag_list || from_shinfo->frag_list)
5265 if (skb_zcopy(to) || skb_zcopy(from))
5268 if (skb_headlen(from) != 0) {
5270 unsigned int offset;
5272 if (to_shinfo->nr_frags +
5273 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5276 if (skb_head_is_locked(from))
5279 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5281 page = virt_to_head_page(from->head);
5282 offset = from->data - (unsigned char *)page_address(page);
5284 skb_fill_page_desc(to, to_shinfo->nr_frags,
5285 page, offset, skb_headlen(from));
5288 if (to_shinfo->nr_frags +
5289 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5292 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5295 WARN_ON_ONCE(delta < len);
5297 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5299 from_shinfo->nr_frags * sizeof(skb_frag_t));
5300 to_shinfo->nr_frags += from_shinfo->nr_frags;
5302 if (!skb_cloned(from))
5303 from_shinfo->nr_frags = 0;
5305 /* if the skb is not cloned this does nothing
5306 * since we set nr_frags to 0.
5308 for (i = 0; i < from_shinfo->nr_frags; i++)
5309 __skb_frag_ref(&from_shinfo->frags[i]);
5311 to->truesize += delta;
5313 to->data_len += len;
5315 *delta_truesize = delta;
5318 EXPORT_SYMBOL(skb_try_coalesce);
5321 * skb_scrub_packet - scrub an skb
5323 * @skb: buffer to clean
5324 * @xnet: packet is crossing netns
5326 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5327 * into/from a tunnel. Some information have to be cleared during these
5329 * skb_scrub_packet can also be used to clean a skb before injecting it in
5330 * another namespace (@xnet == true). We have to clear all information in the
5331 * skb that could impact namespace isolation.
5333 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5335 skb->pkt_type = PACKET_HOST;
5341 nf_reset_trace(skb);
5343 #ifdef CONFIG_NET_SWITCHDEV
5344 skb->offload_fwd_mark = 0;
5345 skb->offload_l3_fwd_mark = 0;
5355 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5358 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5362 * skb_gso_transport_seglen is used to determine the real size of the
5363 * individual segments, including Layer4 headers (TCP/UDP).
5365 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5367 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5369 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5370 unsigned int thlen = 0;
5372 if (skb->encapsulation) {
5373 thlen = skb_inner_transport_header(skb) -
5374 skb_transport_header(skb);
5376 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5377 thlen += inner_tcp_hdrlen(skb);
5378 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5379 thlen = tcp_hdrlen(skb);
5380 } else if (unlikely(skb_is_gso_sctp(skb))) {
5381 thlen = sizeof(struct sctphdr);
5382 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5383 thlen = sizeof(struct udphdr);
5385 /* UFO sets gso_size to the size of the fragmentation
5386 * payload, i.e. the size of the L4 (UDP) header is already
5389 return thlen + shinfo->gso_size;
5393 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5397 * skb_gso_network_seglen is used to determine the real size of the
5398 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5400 * The MAC/L2 header is not accounted for.
5402 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5404 unsigned int hdr_len = skb_transport_header(skb) -
5405 skb_network_header(skb);
5407 return hdr_len + skb_gso_transport_seglen(skb);
5411 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5415 * skb_gso_mac_seglen is used to determine the real size of the
5416 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5417 * headers (TCP/UDP).
5419 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5421 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5423 return hdr_len + skb_gso_transport_seglen(skb);
5427 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5429 * There are a couple of instances where we have a GSO skb, and we
5430 * want to determine what size it would be after it is segmented.
5432 * We might want to check:
5433 * - L3+L4+payload size (e.g. IP forwarding)
5434 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5436 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5440 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5441 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5443 * @max_len: The maximum permissible length.
5445 * Returns true if the segmented length <= max length.
5447 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5448 unsigned int seg_len,
5449 unsigned int max_len) {
5450 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5451 const struct sk_buff *iter;
5453 if (shinfo->gso_size != GSO_BY_FRAGS)
5454 return seg_len <= max_len;
5456 /* Undo this so we can re-use header sizes */
5457 seg_len -= GSO_BY_FRAGS;
5459 skb_walk_frags(skb, iter) {
5460 if (seg_len + skb_headlen(iter) > max_len)
5468 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5471 * @mtu: MTU to validate against
5473 * skb_gso_validate_network_len validates if a given skb will fit a
5474 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5477 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5479 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5481 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5484 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5487 * @len: length to validate against
5489 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5490 * length once split, including L2, L3 and L4 headers and the payload.
5492 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5494 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5496 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5498 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5500 int mac_len, meta_len;
5503 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5508 mac_len = skb->data - skb_mac_header(skb);
5509 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5510 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5511 mac_len - VLAN_HLEN - ETH_TLEN);
5514 meta_len = skb_metadata_len(skb);
5516 meta = skb_metadata_end(skb) - meta_len;
5517 memmove(meta + VLAN_HLEN, meta, meta_len);
5520 skb->mac_header += VLAN_HLEN;
5524 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5526 struct vlan_hdr *vhdr;
5529 if (unlikely(skb_vlan_tag_present(skb))) {
5530 /* vlan_tci is already set-up so leave this for another time */
5534 skb = skb_share_check(skb, GFP_ATOMIC);
5537 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5538 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5541 vhdr = (struct vlan_hdr *)skb->data;
5542 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5543 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5545 skb_pull_rcsum(skb, VLAN_HLEN);
5546 vlan_set_encap_proto(skb, vhdr);
5548 skb = skb_reorder_vlan_header(skb);
5552 skb_reset_network_header(skb);
5553 if (!skb_transport_header_was_set(skb))
5554 skb_reset_transport_header(skb);
5555 skb_reset_mac_len(skb);
5563 EXPORT_SYMBOL(skb_vlan_untag);
5565 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5567 if (!pskb_may_pull(skb, write_len))
5570 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5573 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5575 EXPORT_SYMBOL(skb_ensure_writable);
5577 /* remove VLAN header from packet and update csum accordingly.
5578 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5580 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5582 struct vlan_hdr *vhdr;
5583 int offset = skb->data - skb_mac_header(skb);
5586 if (WARN_ONCE(offset,
5587 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5592 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5596 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5598 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5599 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5601 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5602 __skb_pull(skb, VLAN_HLEN);
5604 vlan_set_encap_proto(skb, vhdr);
5605 skb->mac_header += VLAN_HLEN;
5607 if (skb_network_offset(skb) < ETH_HLEN)
5608 skb_set_network_header(skb, ETH_HLEN);
5610 skb_reset_mac_len(skb);
5614 EXPORT_SYMBOL(__skb_vlan_pop);
5616 /* Pop a vlan tag either from hwaccel or from payload.
5617 * Expects skb->data at mac header.
5619 int skb_vlan_pop(struct sk_buff *skb)
5625 if (likely(skb_vlan_tag_present(skb))) {
5626 __vlan_hwaccel_clear_tag(skb);
5628 if (unlikely(!eth_type_vlan(skb->protocol)))
5631 err = __skb_vlan_pop(skb, &vlan_tci);
5635 /* move next vlan tag to hw accel tag */
5636 if (likely(!eth_type_vlan(skb->protocol)))
5639 vlan_proto = skb->protocol;
5640 err = __skb_vlan_pop(skb, &vlan_tci);
5644 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5647 EXPORT_SYMBOL(skb_vlan_pop);
5649 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5650 * Expects skb->data at mac header.
5652 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5654 if (skb_vlan_tag_present(skb)) {
5655 int offset = skb->data - skb_mac_header(skb);
5658 if (WARN_ONCE(offset,
5659 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5664 err = __vlan_insert_tag(skb, skb->vlan_proto,
5665 skb_vlan_tag_get(skb));
5669 skb->protocol = skb->vlan_proto;
5670 skb->mac_len += VLAN_HLEN;
5672 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5674 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5677 EXPORT_SYMBOL(skb_vlan_push);
5680 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5682 * @skb: Socket buffer to modify
5684 * Drop the Ethernet header of @skb.
5686 * Expects that skb->data points to the mac header and that no VLAN tags are
5689 * Returns 0 on success, -errno otherwise.
5691 int skb_eth_pop(struct sk_buff *skb)
5693 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5694 skb_network_offset(skb) < ETH_HLEN)
5697 skb_pull_rcsum(skb, ETH_HLEN);
5698 skb_reset_mac_header(skb);
5699 skb_reset_mac_len(skb);
5703 EXPORT_SYMBOL(skb_eth_pop);
5706 * skb_eth_push() - Add a new Ethernet header at the head of a packet
5708 * @skb: Socket buffer to modify
5709 * @dst: Destination MAC address of the new header
5710 * @src: Source MAC address of the new header
5712 * Prepend @skb with a new Ethernet header.
5714 * Expects that skb->data points to the mac header, which must be empty.
5716 * Returns 0 on success, -errno otherwise.
5718 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5719 const unsigned char *src)
5724 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5727 err = skb_cow_head(skb, sizeof(*eth));
5731 skb_push(skb, sizeof(*eth));
5732 skb_reset_mac_header(skb);
5733 skb_reset_mac_len(skb);
5736 ether_addr_copy(eth->h_dest, dst);
5737 ether_addr_copy(eth->h_source, src);
5738 eth->h_proto = skb->protocol;
5740 skb_postpush_rcsum(skb, eth, sizeof(*eth));
5744 EXPORT_SYMBOL(skb_eth_push);
5746 /* Update the ethertype of hdr and the skb csum value if required. */
5747 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5750 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5751 __be16 diff[] = { ~hdr->h_proto, ethertype };
5753 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5756 hdr->h_proto = ethertype;
5760 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5764 * @mpls_lse: MPLS label stack entry to push
5765 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5766 * @mac_len: length of the MAC header
5767 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5770 * Expects skb->data at mac header.
5772 * Returns 0 on success, -errno otherwise.
5774 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5775 int mac_len, bool ethernet)
5777 struct mpls_shim_hdr *lse;
5780 if (unlikely(!eth_p_mpls(mpls_proto)))
5783 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5784 if (skb->encapsulation)
5787 err = skb_cow_head(skb, MPLS_HLEN);
5791 if (!skb->inner_protocol) {
5792 skb_set_inner_network_header(skb, skb_network_offset(skb));
5793 skb_set_inner_protocol(skb, skb->protocol);
5796 skb_push(skb, MPLS_HLEN);
5797 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5799 skb_reset_mac_header(skb);
5800 skb_set_network_header(skb, mac_len);
5801 skb_reset_mac_len(skb);
5803 lse = mpls_hdr(skb);
5804 lse->label_stack_entry = mpls_lse;
5805 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5807 if (ethernet && mac_len >= ETH_HLEN)
5808 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5809 skb->protocol = mpls_proto;
5813 EXPORT_SYMBOL_GPL(skb_mpls_push);
5816 * skb_mpls_pop() - pop the outermost MPLS header
5819 * @next_proto: ethertype of header after popped MPLS header
5820 * @mac_len: length of the MAC header
5821 * @ethernet: flag to indicate if the packet is ethernet
5823 * Expects skb->data at mac header.
5825 * Returns 0 on success, -errno otherwise.
5827 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5832 if (unlikely(!eth_p_mpls(skb->protocol)))
5835 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5839 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5840 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5843 __skb_pull(skb, MPLS_HLEN);
5844 skb_reset_mac_header(skb);
5845 skb_set_network_header(skb, mac_len);
5847 if (ethernet && mac_len >= ETH_HLEN) {
5850 /* use mpls_hdr() to get ethertype to account for VLANs. */
5851 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5852 skb_mod_eth_type(skb, hdr, next_proto);
5854 skb->protocol = next_proto;
5858 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5861 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5864 * @mpls_lse: new MPLS label stack entry to update to
5866 * Expects skb->data at mac header.
5868 * Returns 0 on success, -errno otherwise.
5870 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5874 if (unlikely(!eth_p_mpls(skb->protocol)))
5877 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5881 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5882 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5884 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5887 mpls_hdr(skb)->label_stack_entry = mpls_lse;
5891 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5894 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5898 * Expects skb->data at mac header.
5900 * Returns 0 on success, -errno otherwise.
5902 int skb_mpls_dec_ttl(struct sk_buff *skb)
5907 if (unlikely(!eth_p_mpls(skb->protocol)))
5910 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5913 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5914 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5918 lse &= ~MPLS_LS_TTL_MASK;
5919 lse |= ttl << MPLS_LS_TTL_SHIFT;
5921 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5923 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5926 * alloc_skb_with_frags - allocate skb with page frags
5928 * @header_len: size of linear part
5929 * @data_len: needed length in frags
5930 * @max_page_order: max page order desired.
5931 * @errcode: pointer to error code if any
5932 * @gfp_mask: allocation mask
5934 * This can be used to allocate a paged skb, given a maximal order for frags.
5936 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5937 unsigned long data_len,
5942 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5943 unsigned long chunk;
5944 struct sk_buff *skb;
5948 *errcode = -EMSGSIZE;
5949 /* Note this test could be relaxed, if we succeed to allocate
5950 * high order pages...
5952 if (npages > MAX_SKB_FRAGS)
5955 *errcode = -ENOBUFS;
5956 skb = alloc_skb(header_len, gfp_mask);
5960 skb->truesize += npages << PAGE_SHIFT;
5962 for (i = 0; npages > 0; i++) {
5963 int order = max_page_order;
5966 if (npages >= 1 << order) {
5967 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5973 /* Do not retry other high order allocations */
5979 page = alloc_page(gfp_mask);
5983 chunk = min_t(unsigned long, data_len,
5984 PAGE_SIZE << order);
5985 skb_fill_page_desc(skb, i, page, 0, chunk);
5987 npages -= 1 << order;
5995 EXPORT_SYMBOL(alloc_skb_with_frags);
5997 /* carve out the first off bytes from skb when off < headlen */
5998 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5999 const int headlen, gfp_t gfp_mask)
6002 int size = skb_end_offset(skb);
6003 int new_hlen = headlen - off;
6006 size = SKB_DATA_ALIGN(size);
6008 if (skb_pfmemalloc(skb))
6009 gfp_mask |= __GFP_MEMALLOC;
6010 data = kmalloc_reserve(size +
6011 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6012 gfp_mask, NUMA_NO_NODE, NULL);
6016 size = SKB_WITH_OVERHEAD(ksize(data));
6018 /* Copy real data, and all frags */
6019 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6022 memcpy((struct skb_shared_info *)(data + size),
6024 offsetof(struct skb_shared_info,
6025 frags[skb_shinfo(skb)->nr_frags]));
6026 if (skb_cloned(skb)) {
6027 /* drop the old head gracefully */
6028 if (skb_orphan_frags(skb, gfp_mask)) {
6032 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6033 skb_frag_ref(skb, i);
6034 if (skb_has_frag_list(skb))
6035 skb_clone_fraglist(skb);
6036 skb_release_data(skb);
6038 /* we can reuse existing recount- all we did was
6047 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6050 skb->end = skb->head + size;
6052 skb_set_tail_pointer(skb, skb_headlen(skb));
6053 skb_headers_offset_update(skb, 0);
6057 atomic_set(&skb_shinfo(skb)->dataref, 1);
6062 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6064 /* carve out the first eat bytes from skb's frag_list. May recurse into
6067 static int pskb_carve_frag_list(struct sk_buff *skb,
6068 struct skb_shared_info *shinfo, int eat,
6071 struct sk_buff *list = shinfo->frag_list;
6072 struct sk_buff *clone = NULL;
6073 struct sk_buff *insp = NULL;
6077 pr_err("Not enough bytes to eat. Want %d\n", eat);
6080 if (list->len <= eat) {
6081 /* Eaten as whole. */
6086 /* Eaten partially. */
6087 if (skb_shared(list)) {
6088 clone = skb_clone(list, gfp_mask);
6094 /* This may be pulled without problems. */
6097 if (pskb_carve(list, eat, gfp_mask) < 0) {
6105 /* Free pulled out fragments. */
6106 while ((list = shinfo->frag_list) != insp) {
6107 shinfo->frag_list = list->next;
6110 /* And insert new clone at head. */
6113 shinfo->frag_list = clone;
6118 /* carve off first len bytes from skb. Split line (off) is in the
6119 * non-linear part of skb
6121 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6122 int pos, gfp_t gfp_mask)
6125 int size = skb_end_offset(skb);
6127 const int nfrags = skb_shinfo(skb)->nr_frags;
6128 struct skb_shared_info *shinfo;
6130 size = SKB_DATA_ALIGN(size);
6132 if (skb_pfmemalloc(skb))
6133 gfp_mask |= __GFP_MEMALLOC;
6134 data = kmalloc_reserve(size +
6135 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6136 gfp_mask, NUMA_NO_NODE, NULL);
6140 size = SKB_WITH_OVERHEAD(ksize(data));
6142 memcpy((struct skb_shared_info *)(data + size),
6143 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6144 if (skb_orphan_frags(skb, gfp_mask)) {
6148 shinfo = (struct skb_shared_info *)(data + size);
6149 for (i = 0; i < nfrags; i++) {
6150 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6152 if (pos + fsize > off) {
6153 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6157 * We have two variants in this case:
6158 * 1. Move all the frag to the second
6159 * part, if it is possible. F.e.
6160 * this approach is mandatory for TUX,
6161 * where splitting is expensive.
6162 * 2. Split is accurately. We make this.
6164 skb_frag_off_add(&shinfo->frags[0], off - pos);
6165 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6167 skb_frag_ref(skb, i);
6172 shinfo->nr_frags = k;
6173 if (skb_has_frag_list(skb))
6174 skb_clone_fraglist(skb);
6176 /* split line is in frag list */
6177 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6178 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6179 if (skb_has_frag_list(skb))
6180 kfree_skb_list(skb_shinfo(skb)->frag_list);
6184 skb_release_data(skb);
6189 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6192 skb->end = skb->head + size;
6194 skb_reset_tail_pointer(skb);
6195 skb_headers_offset_update(skb, 0);
6200 skb->data_len = skb->len;
6201 atomic_set(&skb_shinfo(skb)->dataref, 1);
6205 /* remove len bytes from the beginning of the skb */
6206 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6208 int headlen = skb_headlen(skb);
6211 return pskb_carve_inside_header(skb, len, headlen, gfp);
6213 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6216 /* Extract to_copy bytes starting at off from skb, and return this in
6219 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6220 int to_copy, gfp_t gfp)
6222 struct sk_buff *clone = skb_clone(skb, gfp);
6227 if (pskb_carve(clone, off, gfp) < 0 ||
6228 pskb_trim(clone, to_copy)) {
6234 EXPORT_SYMBOL(pskb_extract);
6237 * skb_condense - try to get rid of fragments/frag_list if possible
6240 * Can be used to save memory before skb is added to a busy queue.
6241 * If packet has bytes in frags and enough tail room in skb->head,
6242 * pull all of them, so that we can free the frags right now and adjust
6245 * We do not reallocate skb->head thus can not fail.
6246 * Caller must re-evaluate skb->truesize if needed.
6248 void skb_condense(struct sk_buff *skb)
6250 if (skb->data_len) {
6251 if (skb->data_len > skb->end - skb->tail ||
6255 /* Nice, we can free page frag(s) right now */
6256 __pskb_pull_tail(skb, skb->data_len);
6258 /* At this point, skb->truesize might be over estimated,
6259 * because skb had a fragment, and fragments do not tell
6261 * When we pulled its content into skb->head, fragment
6262 * was freed, but __pskb_pull_tail() could not possibly
6263 * adjust skb->truesize, not knowing the frag truesize.
6265 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6268 #ifdef CONFIG_SKB_EXTENSIONS
6269 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6271 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6275 * __skb_ext_alloc - allocate a new skb extensions storage
6277 * @flags: See kmalloc().
6279 * Returns the newly allocated pointer. The pointer can later attached to a
6280 * skb via __skb_ext_set().
6281 * Note: caller must handle the skb_ext as an opaque data.
6283 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6285 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6288 memset(new->offset, 0, sizeof(new->offset));
6289 refcount_set(&new->refcnt, 1);
6295 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6296 unsigned int old_active)
6298 struct skb_ext *new;
6300 if (refcount_read(&old->refcnt) == 1)
6303 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6307 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6308 refcount_set(&new->refcnt, 1);
6311 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6312 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6315 for (i = 0; i < sp->len; i++)
6316 xfrm_state_hold(sp->xvec[i]);
6324 * __skb_ext_set - attach the specified extension storage to this skb
6327 * @ext: extension storage previously allocated via __skb_ext_alloc()
6329 * Existing extensions, if any, are cleared.
6331 * Returns the pointer to the extension.
6333 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6334 struct skb_ext *ext)
6336 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6339 newlen = newoff + skb_ext_type_len[id];
6340 ext->chunks = newlen;
6341 ext->offset[id] = newoff;
6342 skb->extensions = ext;
6343 skb->active_extensions = 1 << id;
6344 return skb_ext_get_ptr(ext, id);
6348 * skb_ext_add - allocate space for given extension, COW if needed
6350 * @id: extension to allocate space for
6352 * Allocates enough space for the given extension.
6353 * If the extension is already present, a pointer to that extension
6356 * If the skb was cloned, COW applies and the returned memory can be
6357 * modified without changing the extension space of clones buffers.
6359 * Returns pointer to the extension or NULL on allocation failure.
6361 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6363 struct skb_ext *new, *old = NULL;
6364 unsigned int newlen, newoff;
6366 if (skb->active_extensions) {
6367 old = skb->extensions;
6369 new = skb_ext_maybe_cow(old, skb->active_extensions);
6373 if (__skb_ext_exist(new, id))
6376 newoff = new->chunks;
6378 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6380 new = __skb_ext_alloc(GFP_ATOMIC);
6385 newlen = newoff + skb_ext_type_len[id];
6386 new->chunks = newlen;
6387 new->offset[id] = newoff;
6390 skb->extensions = new;
6391 skb->active_extensions |= 1 << id;
6392 return skb_ext_get_ptr(new, id);
6394 EXPORT_SYMBOL(skb_ext_add);
6397 static void skb_ext_put_sp(struct sec_path *sp)
6401 for (i = 0; i < sp->len; i++)
6402 xfrm_state_put(sp->xvec[i]);
6406 #ifdef CONFIG_MCTP_FLOWS
6407 static void skb_ext_put_mctp(struct mctp_flow *flow)
6410 mctp_key_unref(flow->key);
6414 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6416 struct skb_ext *ext = skb->extensions;
6418 skb->active_extensions &= ~(1 << id);
6419 if (skb->active_extensions == 0) {
6420 skb->extensions = NULL;
6423 } else if (id == SKB_EXT_SEC_PATH &&
6424 refcount_read(&ext->refcnt) == 1) {
6425 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6432 EXPORT_SYMBOL(__skb_ext_del);
6434 void __skb_ext_put(struct skb_ext *ext)
6436 /* If this is last clone, nothing can increment
6437 * it after check passes. Avoids one atomic op.
6439 if (refcount_read(&ext->refcnt) == 1)
6442 if (!refcount_dec_and_test(&ext->refcnt))
6446 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6447 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6449 #ifdef CONFIG_MCTP_FLOWS
6450 if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6451 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6454 kmem_cache_free(skbuff_ext_cache, ext);
6456 EXPORT_SYMBOL(__skb_ext_put);
6457 #endif /* CONFIG_SKB_EXTENSIONS */