page_pool: fragment API support for 32-bit arch with 64-bit DMA
[platform/kernel/linux-rpi.git] / net / core / net-sysfs.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net-sysfs.c - network device class and attributes
4  *
5  * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org>
6  */
7
8 #include <linux/capability.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sched/isolation.h>
15 #include <linux/nsproxy.h>
16 #include <net/sock.h>
17 #include <net/net_namespace.h>
18 #include <linux/rtnetlink.h>
19 #include <linux/vmalloc.h>
20 #include <linux/export.h>
21 #include <linux/jiffies.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/of.h>
24 #include <linux/of_net.h>
25 #include <linux/cpu.h>
26 #include <net/netdev_rx_queue.h>
27
28 #include "dev.h"
29 #include "net-sysfs.h"
30
31 #ifdef CONFIG_SYSFS
32 static const char fmt_hex[] = "%#x\n";
33 static const char fmt_dec[] = "%d\n";
34 static const char fmt_ulong[] = "%lu\n";
35 static const char fmt_u64[] = "%llu\n";
36
37 /* Caller holds RTNL or dev_base_lock */
38 static inline int dev_isalive(const struct net_device *dev)
39 {
40         return dev->reg_state <= NETREG_REGISTERED;
41 }
42
43 /* use same locking rules as GIF* ioctl's */
44 static ssize_t netdev_show(const struct device *dev,
45                            struct device_attribute *attr, char *buf,
46                            ssize_t (*format)(const struct net_device *, char *))
47 {
48         struct net_device *ndev = to_net_dev(dev);
49         ssize_t ret = -EINVAL;
50
51         read_lock(&dev_base_lock);
52         if (dev_isalive(ndev))
53                 ret = (*format)(ndev, buf);
54         read_unlock(&dev_base_lock);
55
56         return ret;
57 }
58
59 /* generate a show function for simple field */
60 #define NETDEVICE_SHOW(field, format_string)                            \
61 static ssize_t format_##field(const struct net_device *dev, char *buf)  \
62 {                                                                       \
63         return sysfs_emit(buf, format_string, dev->field);              \
64 }                                                                       \
65 static ssize_t field##_show(struct device *dev,                         \
66                             struct device_attribute *attr, char *buf)   \
67 {                                                                       \
68         return netdev_show(dev, attr, buf, format_##field);             \
69 }                                                                       \
70
71 #define NETDEVICE_SHOW_RO(field, format_string)                         \
72 NETDEVICE_SHOW(field, format_string);                                   \
73 static DEVICE_ATTR_RO(field)
74
75 #define NETDEVICE_SHOW_RW(field, format_string)                         \
76 NETDEVICE_SHOW(field, format_string);                                   \
77 static DEVICE_ATTR_RW(field)
78
79 /* use same locking and permission rules as SIF* ioctl's */
80 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr,
81                             const char *buf, size_t len,
82                             int (*set)(struct net_device *, unsigned long))
83 {
84         struct net_device *netdev = to_net_dev(dev);
85         struct net *net = dev_net(netdev);
86         unsigned long new;
87         int ret;
88
89         if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
90                 return -EPERM;
91
92         ret = kstrtoul(buf, 0, &new);
93         if (ret)
94                 goto err;
95
96         if (!rtnl_trylock())
97                 return restart_syscall();
98
99         if (dev_isalive(netdev)) {
100                 ret = (*set)(netdev, new);
101                 if (ret == 0)
102                         ret = len;
103         }
104         rtnl_unlock();
105  err:
106         return ret;
107 }
108
109 NETDEVICE_SHOW_RO(dev_id, fmt_hex);
110 NETDEVICE_SHOW_RO(dev_port, fmt_dec);
111 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec);
112 NETDEVICE_SHOW_RO(addr_len, fmt_dec);
113 NETDEVICE_SHOW_RO(ifindex, fmt_dec);
114 NETDEVICE_SHOW_RO(type, fmt_dec);
115 NETDEVICE_SHOW_RO(link_mode, fmt_dec);
116
117 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr,
118                            char *buf)
119 {
120         struct net_device *ndev = to_net_dev(dev);
121
122         return sysfs_emit(buf, fmt_dec, dev_get_iflink(ndev));
123 }
124 static DEVICE_ATTR_RO(iflink);
125
126 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf)
127 {
128         return sysfs_emit(buf, fmt_dec, dev->name_assign_type);
129 }
130
131 static ssize_t name_assign_type_show(struct device *dev,
132                                      struct device_attribute *attr,
133                                      char *buf)
134 {
135         struct net_device *ndev = to_net_dev(dev);
136         ssize_t ret = -EINVAL;
137
138         if (ndev->name_assign_type != NET_NAME_UNKNOWN)
139                 ret = netdev_show(dev, attr, buf, format_name_assign_type);
140
141         return ret;
142 }
143 static DEVICE_ATTR_RO(name_assign_type);
144
145 /* use same locking rules as GIFHWADDR ioctl's */
146 static ssize_t address_show(struct device *dev, struct device_attribute *attr,
147                             char *buf)
148 {
149         struct net_device *ndev = to_net_dev(dev);
150         ssize_t ret = -EINVAL;
151
152         read_lock(&dev_base_lock);
153         if (dev_isalive(ndev))
154                 ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len);
155         read_unlock(&dev_base_lock);
156         return ret;
157 }
158 static DEVICE_ATTR_RO(address);
159
160 static ssize_t broadcast_show(struct device *dev,
161                               struct device_attribute *attr, char *buf)
162 {
163         struct net_device *ndev = to_net_dev(dev);
164
165         if (dev_isalive(ndev))
166                 return sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len);
167         return -EINVAL;
168 }
169 static DEVICE_ATTR_RO(broadcast);
170
171 static int change_carrier(struct net_device *dev, unsigned long new_carrier)
172 {
173         if (!netif_running(dev))
174                 return -EINVAL;
175         return dev_change_carrier(dev, (bool)new_carrier);
176 }
177
178 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr,
179                              const char *buf, size_t len)
180 {
181         struct net_device *netdev = to_net_dev(dev);
182
183         /* The check is also done in change_carrier; this helps returning early
184          * without hitting the trylock/restart in netdev_store.
185          */
186         if (!netdev->netdev_ops->ndo_change_carrier)
187                 return -EOPNOTSUPP;
188
189         return netdev_store(dev, attr, buf, len, change_carrier);
190 }
191
192 static ssize_t carrier_show(struct device *dev,
193                             struct device_attribute *attr, char *buf)
194 {
195         struct net_device *netdev = to_net_dev(dev);
196
197         if (netif_running(netdev))
198                 return sysfs_emit(buf, fmt_dec, !!netif_carrier_ok(netdev));
199
200         return -EINVAL;
201 }
202 static DEVICE_ATTR_RW(carrier);
203
204 static ssize_t speed_show(struct device *dev,
205                           struct device_attribute *attr, char *buf)
206 {
207         struct net_device *netdev = to_net_dev(dev);
208         int ret = -EINVAL;
209
210         /* The check is also done in __ethtool_get_link_ksettings; this helps
211          * returning early without hitting the trylock/restart below.
212          */
213         if (!netdev->ethtool_ops->get_link_ksettings)
214                 return ret;
215
216         if (!rtnl_trylock())
217                 return restart_syscall();
218
219         if (netif_running(netdev) && netif_device_present(netdev)) {
220                 struct ethtool_link_ksettings cmd;
221
222                 if (!__ethtool_get_link_ksettings(netdev, &cmd))
223                         ret = sysfs_emit(buf, fmt_dec, cmd.base.speed);
224         }
225         rtnl_unlock();
226         return ret;
227 }
228 static DEVICE_ATTR_RO(speed);
229
230 static ssize_t duplex_show(struct device *dev,
231                            struct device_attribute *attr, char *buf)
232 {
233         struct net_device *netdev = to_net_dev(dev);
234         int ret = -EINVAL;
235
236         /* The check is also done in __ethtool_get_link_ksettings; this helps
237          * returning early without hitting the trylock/restart below.
238          */
239         if (!netdev->ethtool_ops->get_link_ksettings)
240                 return ret;
241
242         if (!rtnl_trylock())
243                 return restart_syscall();
244
245         if (netif_running(netdev)) {
246                 struct ethtool_link_ksettings cmd;
247
248                 if (!__ethtool_get_link_ksettings(netdev, &cmd)) {
249                         const char *duplex;
250
251                         switch (cmd.base.duplex) {
252                         case DUPLEX_HALF:
253                                 duplex = "half";
254                                 break;
255                         case DUPLEX_FULL:
256                                 duplex = "full";
257                                 break;
258                         default:
259                                 duplex = "unknown";
260                                 break;
261                         }
262                         ret = sysfs_emit(buf, "%s\n", duplex);
263                 }
264         }
265         rtnl_unlock();
266         return ret;
267 }
268 static DEVICE_ATTR_RO(duplex);
269
270 static ssize_t testing_show(struct device *dev,
271                             struct device_attribute *attr, char *buf)
272 {
273         struct net_device *netdev = to_net_dev(dev);
274
275         if (netif_running(netdev))
276                 return sysfs_emit(buf, fmt_dec, !!netif_testing(netdev));
277
278         return -EINVAL;
279 }
280 static DEVICE_ATTR_RO(testing);
281
282 static ssize_t dormant_show(struct device *dev,
283                             struct device_attribute *attr, char *buf)
284 {
285         struct net_device *netdev = to_net_dev(dev);
286
287         if (netif_running(netdev))
288                 return sysfs_emit(buf, fmt_dec, !!netif_dormant(netdev));
289
290         return -EINVAL;
291 }
292 static DEVICE_ATTR_RO(dormant);
293
294 static const char *const operstates[] = {
295         "unknown",
296         "notpresent", /* currently unused */
297         "down",
298         "lowerlayerdown",
299         "testing",
300         "dormant",
301         "up"
302 };
303
304 static ssize_t operstate_show(struct device *dev,
305                               struct device_attribute *attr, char *buf)
306 {
307         const struct net_device *netdev = to_net_dev(dev);
308         unsigned char operstate;
309
310         read_lock(&dev_base_lock);
311         operstate = netdev->operstate;
312         if (!netif_running(netdev))
313                 operstate = IF_OPER_DOWN;
314         read_unlock(&dev_base_lock);
315
316         if (operstate >= ARRAY_SIZE(operstates))
317                 return -EINVAL; /* should not happen */
318
319         return sysfs_emit(buf, "%s\n", operstates[operstate]);
320 }
321 static DEVICE_ATTR_RO(operstate);
322
323 static ssize_t carrier_changes_show(struct device *dev,
324                                     struct device_attribute *attr,
325                                     char *buf)
326 {
327         struct net_device *netdev = to_net_dev(dev);
328
329         return sysfs_emit(buf, fmt_dec,
330                           atomic_read(&netdev->carrier_up_count) +
331                           atomic_read(&netdev->carrier_down_count));
332 }
333 static DEVICE_ATTR_RO(carrier_changes);
334
335 static ssize_t carrier_up_count_show(struct device *dev,
336                                      struct device_attribute *attr,
337                                      char *buf)
338 {
339         struct net_device *netdev = to_net_dev(dev);
340
341         return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_up_count));
342 }
343 static DEVICE_ATTR_RO(carrier_up_count);
344
345 static ssize_t carrier_down_count_show(struct device *dev,
346                                        struct device_attribute *attr,
347                                        char *buf)
348 {
349         struct net_device *netdev = to_net_dev(dev);
350
351         return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_down_count));
352 }
353 static DEVICE_ATTR_RO(carrier_down_count);
354
355 /* read-write attributes */
356
357 static int change_mtu(struct net_device *dev, unsigned long new_mtu)
358 {
359         return dev_set_mtu(dev, (int)new_mtu);
360 }
361
362 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr,
363                          const char *buf, size_t len)
364 {
365         return netdev_store(dev, attr, buf, len, change_mtu);
366 }
367 NETDEVICE_SHOW_RW(mtu, fmt_dec);
368
369 static int change_flags(struct net_device *dev, unsigned long new_flags)
370 {
371         return dev_change_flags(dev, (unsigned int)new_flags, NULL);
372 }
373
374 static ssize_t flags_store(struct device *dev, struct device_attribute *attr,
375                            const char *buf, size_t len)
376 {
377         return netdev_store(dev, attr, buf, len, change_flags);
378 }
379 NETDEVICE_SHOW_RW(flags, fmt_hex);
380
381 static ssize_t tx_queue_len_store(struct device *dev,
382                                   struct device_attribute *attr,
383                                   const char *buf, size_t len)
384 {
385         if (!capable(CAP_NET_ADMIN))
386                 return -EPERM;
387
388         return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len);
389 }
390 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec);
391
392 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val)
393 {
394         WRITE_ONCE(dev->gro_flush_timeout, val);
395         return 0;
396 }
397
398 static ssize_t gro_flush_timeout_store(struct device *dev,
399                                        struct device_attribute *attr,
400                                        const char *buf, size_t len)
401 {
402         if (!capable(CAP_NET_ADMIN))
403                 return -EPERM;
404
405         return netdev_store(dev, attr, buf, len, change_gro_flush_timeout);
406 }
407 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong);
408
409 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val)
410 {
411         WRITE_ONCE(dev->napi_defer_hard_irqs, val);
412         return 0;
413 }
414
415 static ssize_t napi_defer_hard_irqs_store(struct device *dev,
416                                           struct device_attribute *attr,
417                                           const char *buf, size_t len)
418 {
419         if (!capable(CAP_NET_ADMIN))
420                 return -EPERM;
421
422         return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs);
423 }
424 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_dec);
425
426 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr,
427                              const char *buf, size_t len)
428 {
429         struct net_device *netdev = to_net_dev(dev);
430         struct net *net = dev_net(netdev);
431         size_t count = len;
432         ssize_t ret = 0;
433
434         if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
435                 return -EPERM;
436
437         /* ignore trailing newline */
438         if (len >  0 && buf[len - 1] == '\n')
439                 --count;
440
441         if (!rtnl_trylock())
442                 return restart_syscall();
443
444         if (dev_isalive(netdev)) {
445                 ret = dev_set_alias(netdev, buf, count);
446                 if (ret < 0)
447                         goto err;
448                 ret = len;
449                 netdev_state_change(netdev);
450         }
451 err:
452         rtnl_unlock();
453
454         return ret;
455 }
456
457 static ssize_t ifalias_show(struct device *dev,
458                             struct device_attribute *attr, char *buf)
459 {
460         const struct net_device *netdev = to_net_dev(dev);
461         char tmp[IFALIASZ];
462         ssize_t ret = 0;
463
464         ret = dev_get_alias(netdev, tmp, sizeof(tmp));
465         if (ret > 0)
466                 ret = sysfs_emit(buf, "%s\n", tmp);
467         return ret;
468 }
469 static DEVICE_ATTR_RW(ifalias);
470
471 static int change_group(struct net_device *dev, unsigned long new_group)
472 {
473         dev_set_group(dev, (int)new_group);
474         return 0;
475 }
476
477 static ssize_t group_store(struct device *dev, struct device_attribute *attr,
478                            const char *buf, size_t len)
479 {
480         return netdev_store(dev, attr, buf, len, change_group);
481 }
482 NETDEVICE_SHOW(group, fmt_dec);
483 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store);
484
485 static int change_proto_down(struct net_device *dev, unsigned long proto_down)
486 {
487         return dev_change_proto_down(dev, (bool)proto_down);
488 }
489
490 static ssize_t proto_down_store(struct device *dev,
491                                 struct device_attribute *attr,
492                                 const char *buf, size_t len)
493 {
494         return netdev_store(dev, attr, buf, len, change_proto_down);
495 }
496 NETDEVICE_SHOW_RW(proto_down, fmt_dec);
497
498 static ssize_t phys_port_id_show(struct device *dev,
499                                  struct device_attribute *attr, char *buf)
500 {
501         struct net_device *netdev = to_net_dev(dev);
502         ssize_t ret = -EINVAL;
503
504         /* The check is also done in dev_get_phys_port_id; this helps returning
505          * early without hitting the trylock/restart below.
506          */
507         if (!netdev->netdev_ops->ndo_get_phys_port_id)
508                 return -EOPNOTSUPP;
509
510         if (!rtnl_trylock())
511                 return restart_syscall();
512
513         if (dev_isalive(netdev)) {
514                 struct netdev_phys_item_id ppid;
515
516                 ret = dev_get_phys_port_id(netdev, &ppid);
517                 if (!ret)
518                         ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id);
519         }
520         rtnl_unlock();
521
522         return ret;
523 }
524 static DEVICE_ATTR_RO(phys_port_id);
525
526 static ssize_t phys_port_name_show(struct device *dev,
527                                    struct device_attribute *attr, char *buf)
528 {
529         struct net_device *netdev = to_net_dev(dev);
530         ssize_t ret = -EINVAL;
531
532         /* The checks are also done in dev_get_phys_port_name; this helps
533          * returning early without hitting the trylock/restart below.
534          */
535         if (!netdev->netdev_ops->ndo_get_phys_port_name &&
536             !netdev->devlink_port)
537                 return -EOPNOTSUPP;
538
539         if (!rtnl_trylock())
540                 return restart_syscall();
541
542         if (dev_isalive(netdev)) {
543                 char name[IFNAMSIZ];
544
545                 ret = dev_get_phys_port_name(netdev, name, sizeof(name));
546                 if (!ret)
547                         ret = sysfs_emit(buf, "%s\n", name);
548         }
549         rtnl_unlock();
550
551         return ret;
552 }
553 static DEVICE_ATTR_RO(phys_port_name);
554
555 static ssize_t phys_switch_id_show(struct device *dev,
556                                    struct device_attribute *attr, char *buf)
557 {
558         struct net_device *netdev = to_net_dev(dev);
559         ssize_t ret = -EINVAL;
560
561         /* The checks are also done in dev_get_phys_port_name; this helps
562          * returning early without hitting the trylock/restart below. This works
563          * because recurse is false when calling dev_get_port_parent_id.
564          */
565         if (!netdev->netdev_ops->ndo_get_port_parent_id &&
566             !netdev->devlink_port)
567                 return -EOPNOTSUPP;
568
569         if (!rtnl_trylock())
570                 return restart_syscall();
571
572         if (dev_isalive(netdev)) {
573                 struct netdev_phys_item_id ppid = { };
574
575                 ret = dev_get_port_parent_id(netdev, &ppid, false);
576                 if (!ret)
577                         ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id);
578         }
579         rtnl_unlock();
580
581         return ret;
582 }
583 static DEVICE_ATTR_RO(phys_switch_id);
584
585 static ssize_t threaded_show(struct device *dev,
586                              struct device_attribute *attr, char *buf)
587 {
588         struct net_device *netdev = to_net_dev(dev);
589         ssize_t ret = -EINVAL;
590
591         if (!rtnl_trylock())
592                 return restart_syscall();
593
594         if (dev_isalive(netdev))
595                 ret = sysfs_emit(buf, fmt_dec, netdev->threaded);
596
597         rtnl_unlock();
598         return ret;
599 }
600
601 static int modify_napi_threaded(struct net_device *dev, unsigned long val)
602 {
603         int ret;
604
605         if (list_empty(&dev->napi_list))
606                 return -EOPNOTSUPP;
607
608         if (val != 0 && val != 1)
609                 return -EOPNOTSUPP;
610
611         ret = dev_set_threaded(dev, val);
612
613         return ret;
614 }
615
616 static ssize_t threaded_store(struct device *dev,
617                               struct device_attribute *attr,
618                               const char *buf, size_t len)
619 {
620         return netdev_store(dev, attr, buf, len, modify_napi_threaded);
621 }
622 static DEVICE_ATTR_RW(threaded);
623
624 static struct attribute *net_class_attrs[] __ro_after_init = {
625         &dev_attr_netdev_group.attr,
626         &dev_attr_type.attr,
627         &dev_attr_dev_id.attr,
628         &dev_attr_dev_port.attr,
629         &dev_attr_iflink.attr,
630         &dev_attr_ifindex.attr,
631         &dev_attr_name_assign_type.attr,
632         &dev_attr_addr_assign_type.attr,
633         &dev_attr_addr_len.attr,
634         &dev_attr_link_mode.attr,
635         &dev_attr_address.attr,
636         &dev_attr_broadcast.attr,
637         &dev_attr_speed.attr,
638         &dev_attr_duplex.attr,
639         &dev_attr_dormant.attr,
640         &dev_attr_testing.attr,
641         &dev_attr_operstate.attr,
642         &dev_attr_carrier_changes.attr,
643         &dev_attr_ifalias.attr,
644         &dev_attr_carrier.attr,
645         &dev_attr_mtu.attr,
646         &dev_attr_flags.attr,
647         &dev_attr_tx_queue_len.attr,
648         &dev_attr_gro_flush_timeout.attr,
649         &dev_attr_napi_defer_hard_irqs.attr,
650         &dev_attr_phys_port_id.attr,
651         &dev_attr_phys_port_name.attr,
652         &dev_attr_phys_switch_id.attr,
653         &dev_attr_proto_down.attr,
654         &dev_attr_carrier_up_count.attr,
655         &dev_attr_carrier_down_count.attr,
656         &dev_attr_threaded.attr,
657         NULL,
658 };
659 ATTRIBUTE_GROUPS(net_class);
660
661 /* Show a given an attribute in the statistics group */
662 static ssize_t netstat_show(const struct device *d,
663                             struct device_attribute *attr, char *buf,
664                             unsigned long offset)
665 {
666         struct net_device *dev = to_net_dev(d);
667         ssize_t ret = -EINVAL;
668
669         WARN_ON(offset > sizeof(struct rtnl_link_stats64) ||
670                 offset % sizeof(u64) != 0);
671
672         read_lock(&dev_base_lock);
673         if (dev_isalive(dev)) {
674                 struct rtnl_link_stats64 temp;
675                 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
676
677                 ret = sysfs_emit(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset));
678         }
679         read_unlock(&dev_base_lock);
680         return ret;
681 }
682
683 /* generate a read-only statistics attribute */
684 #define NETSTAT_ENTRY(name)                                             \
685 static ssize_t name##_show(struct device *d,                            \
686                            struct device_attribute *attr, char *buf)    \
687 {                                                                       \
688         return netstat_show(d, attr, buf,                               \
689                             offsetof(struct rtnl_link_stats64, name));  \
690 }                                                                       \
691 static DEVICE_ATTR_RO(name)
692
693 NETSTAT_ENTRY(rx_packets);
694 NETSTAT_ENTRY(tx_packets);
695 NETSTAT_ENTRY(rx_bytes);
696 NETSTAT_ENTRY(tx_bytes);
697 NETSTAT_ENTRY(rx_errors);
698 NETSTAT_ENTRY(tx_errors);
699 NETSTAT_ENTRY(rx_dropped);
700 NETSTAT_ENTRY(tx_dropped);
701 NETSTAT_ENTRY(multicast);
702 NETSTAT_ENTRY(collisions);
703 NETSTAT_ENTRY(rx_length_errors);
704 NETSTAT_ENTRY(rx_over_errors);
705 NETSTAT_ENTRY(rx_crc_errors);
706 NETSTAT_ENTRY(rx_frame_errors);
707 NETSTAT_ENTRY(rx_fifo_errors);
708 NETSTAT_ENTRY(rx_missed_errors);
709 NETSTAT_ENTRY(tx_aborted_errors);
710 NETSTAT_ENTRY(tx_carrier_errors);
711 NETSTAT_ENTRY(tx_fifo_errors);
712 NETSTAT_ENTRY(tx_heartbeat_errors);
713 NETSTAT_ENTRY(tx_window_errors);
714 NETSTAT_ENTRY(rx_compressed);
715 NETSTAT_ENTRY(tx_compressed);
716 NETSTAT_ENTRY(rx_nohandler);
717
718 static struct attribute *netstat_attrs[] __ro_after_init = {
719         &dev_attr_rx_packets.attr,
720         &dev_attr_tx_packets.attr,
721         &dev_attr_rx_bytes.attr,
722         &dev_attr_tx_bytes.attr,
723         &dev_attr_rx_errors.attr,
724         &dev_attr_tx_errors.attr,
725         &dev_attr_rx_dropped.attr,
726         &dev_attr_tx_dropped.attr,
727         &dev_attr_multicast.attr,
728         &dev_attr_collisions.attr,
729         &dev_attr_rx_length_errors.attr,
730         &dev_attr_rx_over_errors.attr,
731         &dev_attr_rx_crc_errors.attr,
732         &dev_attr_rx_frame_errors.attr,
733         &dev_attr_rx_fifo_errors.attr,
734         &dev_attr_rx_missed_errors.attr,
735         &dev_attr_tx_aborted_errors.attr,
736         &dev_attr_tx_carrier_errors.attr,
737         &dev_attr_tx_fifo_errors.attr,
738         &dev_attr_tx_heartbeat_errors.attr,
739         &dev_attr_tx_window_errors.attr,
740         &dev_attr_rx_compressed.attr,
741         &dev_attr_tx_compressed.attr,
742         &dev_attr_rx_nohandler.attr,
743         NULL
744 };
745
746 static const struct attribute_group netstat_group = {
747         .name  = "statistics",
748         .attrs  = netstat_attrs,
749 };
750
751 static struct attribute *wireless_attrs[] = {
752         NULL
753 };
754
755 static const struct attribute_group wireless_group = {
756         .name = "wireless",
757         .attrs = wireless_attrs,
758 };
759
760 static bool wireless_group_needed(struct net_device *ndev)
761 {
762 #if IS_ENABLED(CONFIG_CFG80211)
763         if (ndev->ieee80211_ptr)
764                 return true;
765 #endif
766 #if IS_ENABLED(CONFIG_WIRELESS_EXT)
767         if (ndev->wireless_handlers)
768                 return true;
769 #endif
770         return false;
771 }
772
773 #else /* CONFIG_SYSFS */
774 #define net_class_groups        NULL
775 #endif /* CONFIG_SYSFS */
776
777 #ifdef CONFIG_SYSFS
778 #define to_rx_queue_attr(_attr) \
779         container_of(_attr, struct rx_queue_attribute, attr)
780
781 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj)
782
783 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr,
784                                   char *buf)
785 {
786         const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
787         struct netdev_rx_queue *queue = to_rx_queue(kobj);
788
789         if (!attribute->show)
790                 return -EIO;
791
792         return attribute->show(queue, buf);
793 }
794
795 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr,
796                                    const char *buf, size_t count)
797 {
798         const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
799         struct netdev_rx_queue *queue = to_rx_queue(kobj);
800
801         if (!attribute->store)
802                 return -EIO;
803
804         return attribute->store(queue, buf, count);
805 }
806
807 static const struct sysfs_ops rx_queue_sysfs_ops = {
808         .show = rx_queue_attr_show,
809         .store = rx_queue_attr_store,
810 };
811
812 #ifdef CONFIG_RPS
813 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf)
814 {
815         struct rps_map *map;
816         cpumask_var_t mask;
817         int i, len;
818
819         if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
820                 return -ENOMEM;
821
822         rcu_read_lock();
823         map = rcu_dereference(queue->rps_map);
824         if (map)
825                 for (i = 0; i < map->len; i++)
826                         cpumask_set_cpu(map->cpus[i], mask);
827
828         len = sysfs_emit(buf, "%*pb\n", cpumask_pr_args(mask));
829         rcu_read_unlock();
830         free_cpumask_var(mask);
831
832         return len < PAGE_SIZE ? len : -EINVAL;
833 }
834
835 static int netdev_rx_queue_set_rps_mask(struct netdev_rx_queue *queue,
836                                         cpumask_var_t mask)
837 {
838         static DEFINE_MUTEX(rps_map_mutex);
839         struct rps_map *old_map, *map;
840         int cpu, i;
841
842         map = kzalloc(max_t(unsigned int,
843                             RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES),
844                       GFP_KERNEL);
845         if (!map)
846                 return -ENOMEM;
847
848         i = 0;
849         for_each_cpu_and(cpu, mask, cpu_online_mask)
850                 map->cpus[i++] = cpu;
851
852         if (i) {
853                 map->len = i;
854         } else {
855                 kfree(map);
856                 map = NULL;
857         }
858
859         mutex_lock(&rps_map_mutex);
860         old_map = rcu_dereference_protected(queue->rps_map,
861                                             mutex_is_locked(&rps_map_mutex));
862         rcu_assign_pointer(queue->rps_map, map);
863
864         if (map)
865                 static_branch_inc(&rps_needed);
866         if (old_map)
867                 static_branch_dec(&rps_needed);
868
869         mutex_unlock(&rps_map_mutex);
870
871         if (old_map)
872                 kfree_rcu(old_map, rcu);
873         return 0;
874 }
875
876 int rps_cpumask_housekeeping(struct cpumask *mask)
877 {
878         if (!cpumask_empty(mask)) {
879                 cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_DOMAIN));
880                 cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_WQ));
881                 if (cpumask_empty(mask))
882                         return -EINVAL;
883         }
884         return 0;
885 }
886
887 static ssize_t store_rps_map(struct netdev_rx_queue *queue,
888                              const char *buf, size_t len)
889 {
890         cpumask_var_t mask;
891         int err;
892
893         if (!capable(CAP_NET_ADMIN))
894                 return -EPERM;
895
896         if (!alloc_cpumask_var(&mask, GFP_KERNEL))
897                 return -ENOMEM;
898
899         err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
900         if (err)
901                 goto out;
902
903         err = rps_cpumask_housekeeping(mask);
904         if (err)
905                 goto out;
906
907         err = netdev_rx_queue_set_rps_mask(queue, mask);
908
909 out:
910         free_cpumask_var(mask);
911         return err ? : len;
912 }
913
914 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
915                                            char *buf)
916 {
917         struct rps_dev_flow_table *flow_table;
918         unsigned long val = 0;
919
920         rcu_read_lock();
921         flow_table = rcu_dereference(queue->rps_flow_table);
922         if (flow_table)
923                 val = (unsigned long)flow_table->mask + 1;
924         rcu_read_unlock();
925
926         return sysfs_emit(buf, "%lu\n", val);
927 }
928
929 static void rps_dev_flow_table_release(struct rcu_head *rcu)
930 {
931         struct rps_dev_flow_table *table = container_of(rcu,
932             struct rps_dev_flow_table, rcu);
933         vfree(table);
934 }
935
936 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
937                                             const char *buf, size_t len)
938 {
939         unsigned long mask, count;
940         struct rps_dev_flow_table *table, *old_table;
941         static DEFINE_SPINLOCK(rps_dev_flow_lock);
942         int rc;
943
944         if (!capable(CAP_NET_ADMIN))
945                 return -EPERM;
946
947         rc = kstrtoul(buf, 0, &count);
948         if (rc < 0)
949                 return rc;
950
951         if (count) {
952                 mask = count - 1;
953                 /* mask = roundup_pow_of_two(count) - 1;
954                  * without overflows...
955                  */
956                 while ((mask | (mask >> 1)) != mask)
957                         mask |= (mask >> 1);
958                 /* On 64 bit arches, must check mask fits in table->mask (u32),
959                  * and on 32bit arches, must check
960                  * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow.
961                  */
962 #if BITS_PER_LONG > 32
963                 if (mask > (unsigned long)(u32)mask)
964                         return -EINVAL;
965 #else
966                 if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1))
967                                 / sizeof(struct rps_dev_flow)) {
968                         /* Enforce a limit to prevent overflow */
969                         return -EINVAL;
970                 }
971 #endif
972                 table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1));
973                 if (!table)
974                         return -ENOMEM;
975
976                 table->mask = mask;
977                 for (count = 0; count <= mask; count++)
978                         table->flows[count].cpu = RPS_NO_CPU;
979         } else {
980                 table = NULL;
981         }
982
983         spin_lock(&rps_dev_flow_lock);
984         old_table = rcu_dereference_protected(queue->rps_flow_table,
985                                               lockdep_is_held(&rps_dev_flow_lock));
986         rcu_assign_pointer(queue->rps_flow_table, table);
987         spin_unlock(&rps_dev_flow_lock);
988
989         if (old_table)
990                 call_rcu(&old_table->rcu, rps_dev_flow_table_release);
991
992         return len;
993 }
994
995 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init
996         = __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map);
997
998 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init
999         = __ATTR(rps_flow_cnt, 0644,
1000                  show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt);
1001 #endif /* CONFIG_RPS */
1002
1003 static struct attribute *rx_queue_default_attrs[] __ro_after_init = {
1004 #ifdef CONFIG_RPS
1005         &rps_cpus_attribute.attr,
1006         &rps_dev_flow_table_cnt_attribute.attr,
1007 #endif
1008         NULL
1009 };
1010 ATTRIBUTE_GROUPS(rx_queue_default);
1011
1012 static void rx_queue_release(struct kobject *kobj)
1013 {
1014         struct netdev_rx_queue *queue = to_rx_queue(kobj);
1015 #ifdef CONFIG_RPS
1016         struct rps_map *map;
1017         struct rps_dev_flow_table *flow_table;
1018
1019         map = rcu_dereference_protected(queue->rps_map, 1);
1020         if (map) {
1021                 RCU_INIT_POINTER(queue->rps_map, NULL);
1022                 kfree_rcu(map, rcu);
1023         }
1024
1025         flow_table = rcu_dereference_protected(queue->rps_flow_table, 1);
1026         if (flow_table) {
1027                 RCU_INIT_POINTER(queue->rps_flow_table, NULL);
1028                 call_rcu(&flow_table->rcu, rps_dev_flow_table_release);
1029         }
1030 #endif
1031
1032         memset(kobj, 0, sizeof(*kobj));
1033         netdev_put(queue->dev, &queue->dev_tracker);
1034 }
1035
1036 static const void *rx_queue_namespace(const struct kobject *kobj)
1037 {
1038         struct netdev_rx_queue *queue = to_rx_queue(kobj);
1039         struct device *dev = &queue->dev->dev;
1040         const void *ns = NULL;
1041
1042         if (dev->class && dev->class->ns_type)
1043                 ns = dev->class->namespace(dev);
1044
1045         return ns;
1046 }
1047
1048 static void rx_queue_get_ownership(const struct kobject *kobj,
1049                                    kuid_t *uid, kgid_t *gid)
1050 {
1051         const struct net *net = rx_queue_namespace(kobj);
1052
1053         net_ns_get_ownership(net, uid, gid);
1054 }
1055
1056 static const struct kobj_type rx_queue_ktype = {
1057         .sysfs_ops = &rx_queue_sysfs_ops,
1058         .release = rx_queue_release,
1059         .default_groups = rx_queue_default_groups,
1060         .namespace = rx_queue_namespace,
1061         .get_ownership = rx_queue_get_ownership,
1062 };
1063
1064 static int rx_queue_default_mask(struct net_device *dev,
1065                                  struct netdev_rx_queue *queue)
1066 {
1067 #if IS_ENABLED(CONFIG_RPS) && IS_ENABLED(CONFIG_SYSCTL)
1068         struct cpumask *rps_default_mask = READ_ONCE(dev_net(dev)->core.rps_default_mask);
1069
1070         if (rps_default_mask && !cpumask_empty(rps_default_mask))
1071                 return netdev_rx_queue_set_rps_mask(queue, rps_default_mask);
1072 #endif
1073         return 0;
1074 }
1075
1076 static int rx_queue_add_kobject(struct net_device *dev, int index)
1077 {
1078         struct netdev_rx_queue *queue = dev->_rx + index;
1079         struct kobject *kobj = &queue->kobj;
1080         int error = 0;
1081
1082         /* Kobject_put later will trigger rx_queue_release call which
1083          * decreases dev refcount: Take that reference here
1084          */
1085         netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1086
1087         kobj->kset = dev->queues_kset;
1088         error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL,
1089                                      "rx-%u", index);
1090         if (error)
1091                 goto err;
1092
1093         if (dev->sysfs_rx_queue_group) {
1094                 error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group);
1095                 if (error)
1096                         goto err;
1097         }
1098
1099         error = rx_queue_default_mask(dev, queue);
1100         if (error)
1101                 goto err;
1102
1103         kobject_uevent(kobj, KOBJ_ADD);
1104
1105         return error;
1106
1107 err:
1108         kobject_put(kobj);
1109         return error;
1110 }
1111
1112 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid,
1113                                  kgid_t kgid)
1114 {
1115         struct netdev_rx_queue *queue = dev->_rx + index;
1116         struct kobject *kobj = &queue->kobj;
1117         int error;
1118
1119         error = sysfs_change_owner(kobj, kuid, kgid);
1120         if (error)
1121                 return error;
1122
1123         if (dev->sysfs_rx_queue_group)
1124                 error = sysfs_group_change_owner(
1125                         kobj, dev->sysfs_rx_queue_group, kuid, kgid);
1126
1127         return error;
1128 }
1129 #endif /* CONFIG_SYSFS */
1130
1131 int
1132 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1133 {
1134 #ifdef CONFIG_SYSFS
1135         int i;
1136         int error = 0;
1137
1138 #ifndef CONFIG_RPS
1139         if (!dev->sysfs_rx_queue_group)
1140                 return 0;
1141 #endif
1142         for (i = old_num; i < new_num; i++) {
1143                 error = rx_queue_add_kobject(dev, i);
1144                 if (error) {
1145                         new_num = old_num;
1146                         break;
1147                 }
1148         }
1149
1150         while (--i >= new_num) {
1151                 struct kobject *kobj = &dev->_rx[i].kobj;
1152
1153                 if (!refcount_read(&dev_net(dev)->ns.count))
1154                         kobj->uevent_suppress = 1;
1155                 if (dev->sysfs_rx_queue_group)
1156                         sysfs_remove_group(kobj, dev->sysfs_rx_queue_group);
1157                 kobject_put(kobj);
1158         }
1159
1160         return error;
1161 #else
1162         return 0;
1163 #endif
1164 }
1165
1166 static int net_rx_queue_change_owner(struct net_device *dev, int num,
1167                                      kuid_t kuid, kgid_t kgid)
1168 {
1169 #ifdef CONFIG_SYSFS
1170         int error = 0;
1171         int i;
1172
1173 #ifndef CONFIG_RPS
1174         if (!dev->sysfs_rx_queue_group)
1175                 return 0;
1176 #endif
1177         for (i = 0; i < num; i++) {
1178                 error = rx_queue_change_owner(dev, i, kuid, kgid);
1179                 if (error)
1180                         break;
1181         }
1182
1183         return error;
1184 #else
1185         return 0;
1186 #endif
1187 }
1188
1189 #ifdef CONFIG_SYSFS
1190 /*
1191  * netdev_queue sysfs structures and functions.
1192  */
1193 struct netdev_queue_attribute {
1194         struct attribute attr;
1195         ssize_t (*show)(struct netdev_queue *queue, char *buf);
1196         ssize_t (*store)(struct netdev_queue *queue,
1197                          const char *buf, size_t len);
1198 };
1199 #define to_netdev_queue_attr(_attr) \
1200         container_of(_attr, struct netdev_queue_attribute, attr)
1201
1202 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj)
1203
1204 static ssize_t netdev_queue_attr_show(struct kobject *kobj,
1205                                       struct attribute *attr, char *buf)
1206 {
1207         const struct netdev_queue_attribute *attribute
1208                 = to_netdev_queue_attr(attr);
1209         struct netdev_queue *queue = to_netdev_queue(kobj);
1210
1211         if (!attribute->show)
1212                 return -EIO;
1213
1214         return attribute->show(queue, buf);
1215 }
1216
1217 static ssize_t netdev_queue_attr_store(struct kobject *kobj,
1218                                        struct attribute *attr,
1219                                        const char *buf, size_t count)
1220 {
1221         const struct netdev_queue_attribute *attribute
1222                 = to_netdev_queue_attr(attr);
1223         struct netdev_queue *queue = to_netdev_queue(kobj);
1224
1225         if (!attribute->store)
1226                 return -EIO;
1227
1228         return attribute->store(queue, buf, count);
1229 }
1230
1231 static const struct sysfs_ops netdev_queue_sysfs_ops = {
1232         .show = netdev_queue_attr_show,
1233         .store = netdev_queue_attr_store,
1234 };
1235
1236 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf)
1237 {
1238         unsigned long trans_timeout = atomic_long_read(&queue->trans_timeout);
1239
1240         return sysfs_emit(buf, fmt_ulong, trans_timeout);
1241 }
1242
1243 static unsigned int get_netdev_queue_index(struct netdev_queue *queue)
1244 {
1245         struct net_device *dev = queue->dev;
1246         unsigned int i;
1247
1248         i = queue - dev->_tx;
1249         BUG_ON(i >= dev->num_tx_queues);
1250
1251         return i;
1252 }
1253
1254 static ssize_t traffic_class_show(struct netdev_queue *queue,
1255                                   char *buf)
1256 {
1257         struct net_device *dev = queue->dev;
1258         int num_tc, tc;
1259         int index;
1260
1261         if (!netif_is_multiqueue(dev))
1262                 return -ENOENT;
1263
1264         if (!rtnl_trylock())
1265                 return restart_syscall();
1266
1267         index = get_netdev_queue_index(queue);
1268
1269         /* If queue belongs to subordinate dev use its TC mapping */
1270         dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1271
1272         num_tc = dev->num_tc;
1273         tc = netdev_txq_to_tc(dev, index);
1274
1275         rtnl_unlock();
1276
1277         if (tc < 0)
1278                 return -EINVAL;
1279
1280         /* We can report the traffic class one of two ways:
1281          * Subordinate device traffic classes are reported with the traffic
1282          * class first, and then the subordinate class so for example TC0 on
1283          * subordinate device 2 will be reported as "0-2". If the queue
1284          * belongs to the root device it will be reported with just the
1285          * traffic class, so just "0" for TC 0 for example.
1286          */
1287         return num_tc < 0 ? sysfs_emit(buf, "%d%d\n", tc, num_tc) :
1288                             sysfs_emit(buf, "%d\n", tc);
1289 }
1290
1291 #ifdef CONFIG_XPS
1292 static ssize_t tx_maxrate_show(struct netdev_queue *queue,
1293                                char *buf)
1294 {
1295         return sysfs_emit(buf, "%lu\n", queue->tx_maxrate);
1296 }
1297
1298 static ssize_t tx_maxrate_store(struct netdev_queue *queue,
1299                                 const char *buf, size_t len)
1300 {
1301         struct net_device *dev = queue->dev;
1302         int err, index = get_netdev_queue_index(queue);
1303         u32 rate = 0;
1304
1305         if (!capable(CAP_NET_ADMIN))
1306                 return -EPERM;
1307
1308         /* The check is also done later; this helps returning early without
1309          * hitting the trylock/restart below.
1310          */
1311         if (!dev->netdev_ops->ndo_set_tx_maxrate)
1312                 return -EOPNOTSUPP;
1313
1314         err = kstrtou32(buf, 10, &rate);
1315         if (err < 0)
1316                 return err;
1317
1318         if (!rtnl_trylock())
1319                 return restart_syscall();
1320
1321         err = -EOPNOTSUPP;
1322         if (dev->netdev_ops->ndo_set_tx_maxrate)
1323                 err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate);
1324
1325         rtnl_unlock();
1326         if (!err) {
1327                 queue->tx_maxrate = rate;
1328                 return len;
1329         }
1330         return err;
1331 }
1332
1333 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init
1334         = __ATTR_RW(tx_maxrate);
1335 #endif
1336
1337 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init
1338         = __ATTR_RO(tx_timeout);
1339
1340 static struct netdev_queue_attribute queue_traffic_class __ro_after_init
1341         = __ATTR_RO(traffic_class);
1342
1343 #ifdef CONFIG_BQL
1344 /*
1345  * Byte queue limits sysfs structures and functions.
1346  */
1347 static ssize_t bql_show(char *buf, unsigned int value)
1348 {
1349         return sysfs_emit(buf, "%u\n", value);
1350 }
1351
1352 static ssize_t bql_set(const char *buf, const size_t count,
1353                        unsigned int *pvalue)
1354 {
1355         unsigned int value;
1356         int err;
1357
1358         if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) {
1359                 value = DQL_MAX_LIMIT;
1360         } else {
1361                 err = kstrtouint(buf, 10, &value);
1362                 if (err < 0)
1363                         return err;
1364                 if (value > DQL_MAX_LIMIT)
1365                         return -EINVAL;
1366         }
1367
1368         *pvalue = value;
1369
1370         return count;
1371 }
1372
1373 static ssize_t bql_show_hold_time(struct netdev_queue *queue,
1374                                   char *buf)
1375 {
1376         struct dql *dql = &queue->dql;
1377
1378         return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time));
1379 }
1380
1381 static ssize_t bql_set_hold_time(struct netdev_queue *queue,
1382                                  const char *buf, size_t len)
1383 {
1384         struct dql *dql = &queue->dql;
1385         unsigned int value;
1386         int err;
1387
1388         err = kstrtouint(buf, 10, &value);
1389         if (err < 0)
1390                 return err;
1391
1392         dql->slack_hold_time = msecs_to_jiffies(value);
1393
1394         return len;
1395 }
1396
1397 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init
1398         = __ATTR(hold_time, 0644,
1399                  bql_show_hold_time, bql_set_hold_time);
1400
1401 static ssize_t bql_show_inflight(struct netdev_queue *queue,
1402                                  char *buf)
1403 {
1404         struct dql *dql = &queue->dql;
1405
1406         return sysfs_emit(buf, "%u\n", dql->num_queued - dql->num_completed);
1407 }
1408
1409 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init =
1410         __ATTR(inflight, 0444, bql_show_inflight, NULL);
1411
1412 #define BQL_ATTR(NAME, FIELD)                                           \
1413 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue,            \
1414                                  char *buf)                             \
1415 {                                                                       \
1416         return bql_show(buf, queue->dql.FIELD);                         \
1417 }                                                                       \
1418                                                                         \
1419 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue,             \
1420                                 const char *buf, size_t len)            \
1421 {                                                                       \
1422         return bql_set(buf, len, &queue->dql.FIELD);                    \
1423 }                                                                       \
1424                                                                         \
1425 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \
1426         = __ATTR(NAME, 0644,                            \
1427                  bql_show_ ## NAME, bql_set_ ## NAME)
1428
1429 BQL_ATTR(limit, limit);
1430 BQL_ATTR(limit_max, max_limit);
1431 BQL_ATTR(limit_min, min_limit);
1432
1433 static struct attribute *dql_attrs[] __ro_after_init = {
1434         &bql_limit_attribute.attr,
1435         &bql_limit_max_attribute.attr,
1436         &bql_limit_min_attribute.attr,
1437         &bql_hold_time_attribute.attr,
1438         &bql_inflight_attribute.attr,
1439         NULL
1440 };
1441
1442 static const struct attribute_group dql_group = {
1443         .name  = "byte_queue_limits",
1444         .attrs  = dql_attrs,
1445 };
1446 #endif /* CONFIG_BQL */
1447
1448 #ifdef CONFIG_XPS
1449 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index,
1450                               int tc, char *buf, enum xps_map_type type)
1451 {
1452         struct xps_dev_maps *dev_maps;
1453         unsigned long *mask;
1454         unsigned int nr_ids;
1455         int j, len;
1456
1457         rcu_read_lock();
1458         dev_maps = rcu_dereference(dev->xps_maps[type]);
1459
1460         /* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0
1461          * when dev_maps hasn't been allocated yet, to be backward compatible.
1462          */
1463         nr_ids = dev_maps ? dev_maps->nr_ids :
1464                  (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues);
1465
1466         mask = bitmap_zalloc(nr_ids, GFP_NOWAIT);
1467         if (!mask) {
1468                 rcu_read_unlock();
1469                 return -ENOMEM;
1470         }
1471
1472         if (!dev_maps || tc >= dev_maps->num_tc)
1473                 goto out_no_maps;
1474
1475         for (j = 0; j < nr_ids; j++) {
1476                 int i, tci = j * dev_maps->num_tc + tc;
1477                 struct xps_map *map;
1478
1479                 map = rcu_dereference(dev_maps->attr_map[tci]);
1480                 if (!map)
1481                         continue;
1482
1483                 for (i = map->len; i--;) {
1484                         if (map->queues[i] == index) {
1485                                 __set_bit(j, mask);
1486                                 break;
1487                         }
1488                 }
1489         }
1490 out_no_maps:
1491         rcu_read_unlock();
1492
1493         len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids);
1494         bitmap_free(mask);
1495
1496         return len < PAGE_SIZE ? len : -EINVAL;
1497 }
1498
1499 static ssize_t xps_cpus_show(struct netdev_queue *queue, char *buf)
1500 {
1501         struct net_device *dev = queue->dev;
1502         unsigned int index;
1503         int len, tc;
1504
1505         if (!netif_is_multiqueue(dev))
1506                 return -ENOENT;
1507
1508         index = get_netdev_queue_index(queue);
1509
1510         if (!rtnl_trylock())
1511                 return restart_syscall();
1512
1513         /* If queue belongs to subordinate dev use its map */
1514         dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1515
1516         tc = netdev_txq_to_tc(dev, index);
1517         if (tc < 0) {
1518                 rtnl_unlock();
1519                 return -EINVAL;
1520         }
1521
1522         /* Make sure the subordinate device can't be freed */
1523         get_device(&dev->dev);
1524         rtnl_unlock();
1525
1526         len = xps_queue_show(dev, index, tc, buf, XPS_CPUS);
1527
1528         put_device(&dev->dev);
1529         return len;
1530 }
1531
1532 static ssize_t xps_cpus_store(struct netdev_queue *queue,
1533                               const char *buf, size_t len)
1534 {
1535         struct net_device *dev = queue->dev;
1536         unsigned int index;
1537         cpumask_var_t mask;
1538         int err;
1539
1540         if (!netif_is_multiqueue(dev))
1541                 return -ENOENT;
1542
1543         if (!capable(CAP_NET_ADMIN))
1544                 return -EPERM;
1545
1546         if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1547                 return -ENOMEM;
1548
1549         index = get_netdev_queue_index(queue);
1550
1551         err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1552         if (err) {
1553                 free_cpumask_var(mask);
1554                 return err;
1555         }
1556
1557         if (!rtnl_trylock()) {
1558                 free_cpumask_var(mask);
1559                 return restart_syscall();
1560         }
1561
1562         err = netif_set_xps_queue(dev, mask, index);
1563         rtnl_unlock();
1564
1565         free_cpumask_var(mask);
1566
1567         return err ? : len;
1568 }
1569
1570 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init
1571         = __ATTR_RW(xps_cpus);
1572
1573 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf)
1574 {
1575         struct net_device *dev = queue->dev;
1576         unsigned int index;
1577         int tc;
1578
1579         index = get_netdev_queue_index(queue);
1580
1581         if (!rtnl_trylock())
1582                 return restart_syscall();
1583
1584         tc = netdev_txq_to_tc(dev, index);
1585         rtnl_unlock();
1586         if (tc < 0)
1587                 return -EINVAL;
1588
1589         return xps_queue_show(dev, index, tc, buf, XPS_RXQS);
1590 }
1591
1592 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf,
1593                               size_t len)
1594 {
1595         struct net_device *dev = queue->dev;
1596         struct net *net = dev_net(dev);
1597         unsigned long *mask;
1598         unsigned int index;
1599         int err;
1600
1601         if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1602                 return -EPERM;
1603
1604         mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL);
1605         if (!mask)
1606                 return -ENOMEM;
1607
1608         index = get_netdev_queue_index(queue);
1609
1610         err = bitmap_parse(buf, len, mask, dev->num_rx_queues);
1611         if (err) {
1612                 bitmap_free(mask);
1613                 return err;
1614         }
1615
1616         if (!rtnl_trylock()) {
1617                 bitmap_free(mask);
1618                 return restart_syscall();
1619         }
1620
1621         cpus_read_lock();
1622         err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS);
1623         cpus_read_unlock();
1624
1625         rtnl_unlock();
1626
1627         bitmap_free(mask);
1628         return err ? : len;
1629 }
1630
1631 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init
1632         = __ATTR_RW(xps_rxqs);
1633 #endif /* CONFIG_XPS */
1634
1635 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = {
1636         &queue_trans_timeout.attr,
1637         &queue_traffic_class.attr,
1638 #ifdef CONFIG_XPS
1639         &xps_cpus_attribute.attr,
1640         &xps_rxqs_attribute.attr,
1641         &queue_tx_maxrate.attr,
1642 #endif
1643         NULL
1644 };
1645 ATTRIBUTE_GROUPS(netdev_queue_default);
1646
1647 static void netdev_queue_release(struct kobject *kobj)
1648 {
1649         struct netdev_queue *queue = to_netdev_queue(kobj);
1650
1651         memset(kobj, 0, sizeof(*kobj));
1652         netdev_put(queue->dev, &queue->dev_tracker);
1653 }
1654
1655 static const void *netdev_queue_namespace(const struct kobject *kobj)
1656 {
1657         struct netdev_queue *queue = to_netdev_queue(kobj);
1658         struct device *dev = &queue->dev->dev;
1659         const void *ns = NULL;
1660
1661         if (dev->class && dev->class->ns_type)
1662                 ns = dev->class->namespace(dev);
1663
1664         return ns;
1665 }
1666
1667 static void netdev_queue_get_ownership(const struct kobject *kobj,
1668                                        kuid_t *uid, kgid_t *gid)
1669 {
1670         const struct net *net = netdev_queue_namespace(kobj);
1671
1672         net_ns_get_ownership(net, uid, gid);
1673 }
1674
1675 static const struct kobj_type netdev_queue_ktype = {
1676         .sysfs_ops = &netdev_queue_sysfs_ops,
1677         .release = netdev_queue_release,
1678         .default_groups = netdev_queue_default_groups,
1679         .namespace = netdev_queue_namespace,
1680         .get_ownership = netdev_queue_get_ownership,
1681 };
1682
1683 static int netdev_queue_add_kobject(struct net_device *dev, int index)
1684 {
1685         struct netdev_queue *queue = dev->_tx + index;
1686         struct kobject *kobj = &queue->kobj;
1687         int error = 0;
1688
1689         /* Kobject_put later will trigger netdev_queue_release call
1690          * which decreases dev refcount: Take that reference here
1691          */
1692         netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1693
1694         kobj->kset = dev->queues_kset;
1695         error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL,
1696                                      "tx-%u", index);
1697         if (error)
1698                 goto err;
1699
1700 #ifdef CONFIG_BQL
1701         error = sysfs_create_group(kobj, &dql_group);
1702         if (error)
1703                 goto err;
1704 #endif
1705
1706         kobject_uevent(kobj, KOBJ_ADD);
1707         return 0;
1708
1709 err:
1710         kobject_put(kobj);
1711         return error;
1712 }
1713
1714 static int tx_queue_change_owner(struct net_device *ndev, int index,
1715                                  kuid_t kuid, kgid_t kgid)
1716 {
1717         struct netdev_queue *queue = ndev->_tx + index;
1718         struct kobject *kobj = &queue->kobj;
1719         int error;
1720
1721         error = sysfs_change_owner(kobj, kuid, kgid);
1722         if (error)
1723                 return error;
1724
1725 #ifdef CONFIG_BQL
1726         error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid);
1727 #endif
1728         return error;
1729 }
1730 #endif /* CONFIG_SYSFS */
1731
1732 int
1733 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1734 {
1735 #ifdef CONFIG_SYSFS
1736         int i;
1737         int error = 0;
1738
1739         /* Tx queue kobjects are allowed to be updated when a device is being
1740          * unregistered, but solely to remove queues from qdiscs. Any path
1741          * adding queues should be fixed.
1742          */
1743         WARN(dev->reg_state == NETREG_UNREGISTERING && new_num > old_num,
1744              "New queues can't be registered after device unregistration.");
1745
1746         for (i = old_num; i < new_num; i++) {
1747                 error = netdev_queue_add_kobject(dev, i);
1748                 if (error) {
1749                         new_num = old_num;
1750                         break;
1751                 }
1752         }
1753
1754         while (--i >= new_num) {
1755                 struct netdev_queue *queue = dev->_tx + i;
1756
1757                 if (!refcount_read(&dev_net(dev)->ns.count))
1758                         queue->kobj.uevent_suppress = 1;
1759 #ifdef CONFIG_BQL
1760                 sysfs_remove_group(&queue->kobj, &dql_group);
1761 #endif
1762                 kobject_put(&queue->kobj);
1763         }
1764
1765         return error;
1766 #else
1767         return 0;
1768 #endif /* CONFIG_SYSFS */
1769 }
1770
1771 static int net_tx_queue_change_owner(struct net_device *dev, int num,
1772                                      kuid_t kuid, kgid_t kgid)
1773 {
1774 #ifdef CONFIG_SYSFS
1775         int error = 0;
1776         int i;
1777
1778         for (i = 0; i < num; i++) {
1779                 error = tx_queue_change_owner(dev, i, kuid, kgid);
1780                 if (error)
1781                         break;
1782         }
1783
1784         return error;
1785 #else
1786         return 0;
1787 #endif /* CONFIG_SYSFS */
1788 }
1789
1790 static int register_queue_kobjects(struct net_device *dev)
1791 {
1792         int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0;
1793
1794 #ifdef CONFIG_SYSFS
1795         dev->queues_kset = kset_create_and_add("queues",
1796                                                NULL, &dev->dev.kobj);
1797         if (!dev->queues_kset)
1798                 return -ENOMEM;
1799         real_rx = dev->real_num_rx_queues;
1800 #endif
1801         real_tx = dev->real_num_tx_queues;
1802
1803         error = net_rx_queue_update_kobjects(dev, 0, real_rx);
1804         if (error)
1805                 goto error;
1806         rxq = real_rx;
1807
1808         error = netdev_queue_update_kobjects(dev, 0, real_tx);
1809         if (error)
1810                 goto error;
1811         txq = real_tx;
1812
1813         return 0;
1814
1815 error:
1816         netdev_queue_update_kobjects(dev, txq, 0);
1817         net_rx_queue_update_kobjects(dev, rxq, 0);
1818 #ifdef CONFIG_SYSFS
1819         kset_unregister(dev->queues_kset);
1820 #endif
1821         return error;
1822 }
1823
1824 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid)
1825 {
1826         int error = 0, real_rx = 0, real_tx = 0;
1827
1828 #ifdef CONFIG_SYSFS
1829         if (ndev->queues_kset) {
1830                 error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid);
1831                 if (error)
1832                         return error;
1833         }
1834         real_rx = ndev->real_num_rx_queues;
1835 #endif
1836         real_tx = ndev->real_num_tx_queues;
1837
1838         error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid);
1839         if (error)
1840                 return error;
1841
1842         error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid);
1843         if (error)
1844                 return error;
1845
1846         return 0;
1847 }
1848
1849 static void remove_queue_kobjects(struct net_device *dev)
1850 {
1851         int real_rx = 0, real_tx = 0;
1852
1853 #ifdef CONFIG_SYSFS
1854         real_rx = dev->real_num_rx_queues;
1855 #endif
1856         real_tx = dev->real_num_tx_queues;
1857
1858         net_rx_queue_update_kobjects(dev, real_rx, 0);
1859         netdev_queue_update_kobjects(dev, real_tx, 0);
1860
1861         dev->real_num_rx_queues = 0;
1862         dev->real_num_tx_queues = 0;
1863 #ifdef CONFIG_SYSFS
1864         kset_unregister(dev->queues_kset);
1865 #endif
1866 }
1867
1868 static bool net_current_may_mount(void)
1869 {
1870         struct net *net = current->nsproxy->net_ns;
1871
1872         return ns_capable(net->user_ns, CAP_SYS_ADMIN);
1873 }
1874
1875 static void *net_grab_current_ns(void)
1876 {
1877         struct net *ns = current->nsproxy->net_ns;
1878 #ifdef CONFIG_NET_NS
1879         if (ns)
1880                 refcount_inc(&ns->passive);
1881 #endif
1882         return ns;
1883 }
1884
1885 static const void *net_initial_ns(void)
1886 {
1887         return &init_net;
1888 }
1889
1890 static const void *net_netlink_ns(struct sock *sk)
1891 {
1892         return sock_net(sk);
1893 }
1894
1895 const struct kobj_ns_type_operations net_ns_type_operations = {
1896         .type = KOBJ_NS_TYPE_NET,
1897         .current_may_mount = net_current_may_mount,
1898         .grab_current_ns = net_grab_current_ns,
1899         .netlink_ns = net_netlink_ns,
1900         .initial_ns = net_initial_ns,
1901         .drop_ns = net_drop_ns,
1902 };
1903 EXPORT_SYMBOL_GPL(net_ns_type_operations);
1904
1905 static int netdev_uevent(const struct device *d, struct kobj_uevent_env *env)
1906 {
1907         const struct net_device *dev = to_net_dev(d);
1908         int retval;
1909
1910         /* pass interface to uevent. */
1911         retval = add_uevent_var(env, "INTERFACE=%s", dev->name);
1912         if (retval)
1913                 goto exit;
1914
1915         /* pass ifindex to uevent.
1916          * ifindex is useful as it won't change (interface name may change)
1917          * and is what RtNetlink uses natively.
1918          */
1919         retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex);
1920
1921 exit:
1922         return retval;
1923 }
1924
1925 /*
1926  *      netdev_release -- destroy and free a dead device.
1927  *      Called when last reference to device kobject is gone.
1928  */
1929 static void netdev_release(struct device *d)
1930 {
1931         struct net_device *dev = to_net_dev(d);
1932
1933         BUG_ON(dev->reg_state != NETREG_RELEASED);
1934
1935         /* no need to wait for rcu grace period:
1936          * device is dead and about to be freed.
1937          */
1938         kfree(rcu_access_pointer(dev->ifalias));
1939         netdev_freemem(dev);
1940 }
1941
1942 static const void *net_namespace(const struct device *d)
1943 {
1944         const struct net_device *dev = to_net_dev(d);
1945
1946         return dev_net(dev);
1947 }
1948
1949 static void net_get_ownership(const struct device *d, kuid_t *uid, kgid_t *gid)
1950 {
1951         const struct net_device *dev = to_net_dev(d);
1952         const struct net *net = dev_net(dev);
1953
1954         net_ns_get_ownership(net, uid, gid);
1955 }
1956
1957 static struct class net_class __ro_after_init = {
1958         .name = "net",
1959         .dev_release = netdev_release,
1960         .dev_groups = net_class_groups,
1961         .dev_uevent = netdev_uevent,
1962         .ns_type = &net_ns_type_operations,
1963         .namespace = net_namespace,
1964         .get_ownership = net_get_ownership,
1965 };
1966
1967 #ifdef CONFIG_OF
1968 static int of_dev_node_match(struct device *dev, const void *data)
1969 {
1970         for (; dev; dev = dev->parent) {
1971                 if (dev->of_node == data)
1972                         return 1;
1973         }
1974
1975         return 0;
1976 }
1977
1978 /*
1979  * of_find_net_device_by_node - lookup the net device for the device node
1980  * @np: OF device node
1981  *
1982  * Looks up the net_device structure corresponding with the device node.
1983  * If successful, returns a pointer to the net_device with the embedded
1984  * struct device refcount incremented by one, or NULL on failure. The
1985  * refcount must be dropped when done with the net_device.
1986  */
1987 struct net_device *of_find_net_device_by_node(struct device_node *np)
1988 {
1989         struct device *dev;
1990
1991         dev = class_find_device(&net_class, NULL, np, of_dev_node_match);
1992         if (!dev)
1993                 return NULL;
1994
1995         return to_net_dev(dev);
1996 }
1997 EXPORT_SYMBOL(of_find_net_device_by_node);
1998 #endif
1999
2000 /* Delete sysfs entries but hold kobject reference until after all
2001  * netdev references are gone.
2002  */
2003 void netdev_unregister_kobject(struct net_device *ndev)
2004 {
2005         struct device *dev = &ndev->dev;
2006
2007         if (!refcount_read(&dev_net(ndev)->ns.count))
2008                 dev_set_uevent_suppress(dev, 1);
2009
2010         kobject_get(&dev->kobj);
2011
2012         remove_queue_kobjects(ndev);
2013
2014         pm_runtime_set_memalloc_noio(dev, false);
2015
2016         device_del(dev);
2017 }
2018
2019 /* Create sysfs entries for network device. */
2020 int netdev_register_kobject(struct net_device *ndev)
2021 {
2022         struct device *dev = &ndev->dev;
2023         const struct attribute_group **groups = ndev->sysfs_groups;
2024         int error = 0;
2025
2026         device_initialize(dev);
2027         dev->class = &net_class;
2028         dev->platform_data = ndev;
2029         dev->groups = groups;
2030
2031         dev_set_name(dev, "%s", ndev->name);
2032
2033 #ifdef CONFIG_SYSFS
2034         /* Allow for a device specific group */
2035         if (*groups)
2036                 groups++;
2037
2038         *groups++ = &netstat_group;
2039
2040         if (wireless_group_needed(ndev))
2041                 *groups++ = &wireless_group;
2042 #endif /* CONFIG_SYSFS */
2043
2044         error = device_add(dev);
2045         if (error)
2046                 return error;
2047
2048         error = register_queue_kobjects(ndev);
2049         if (error) {
2050                 device_del(dev);
2051                 return error;
2052         }
2053
2054         pm_runtime_set_memalloc_noio(dev, true);
2055
2056         return error;
2057 }
2058
2059 /* Change owner for sysfs entries when moving network devices across network
2060  * namespaces owned by different user namespaces.
2061  */
2062 int netdev_change_owner(struct net_device *ndev, const struct net *net_old,
2063                         const struct net *net_new)
2064 {
2065         kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID;
2066         kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID;
2067         struct device *dev = &ndev->dev;
2068         int error;
2069
2070         net_ns_get_ownership(net_old, &old_uid, &old_gid);
2071         net_ns_get_ownership(net_new, &new_uid, &new_gid);
2072
2073         /* The network namespace was changed but the owning user namespace is
2074          * identical so there's no need to change the owner of sysfs entries.
2075          */
2076         if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid))
2077                 return 0;
2078
2079         error = device_change_owner(dev, new_uid, new_gid);
2080         if (error)
2081                 return error;
2082
2083         error = queue_change_owner(ndev, new_uid, new_gid);
2084         if (error)
2085                 return error;
2086
2087         return 0;
2088 }
2089
2090 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
2091                                 const void *ns)
2092 {
2093         return class_create_file_ns(&net_class, class_attr, ns);
2094 }
2095 EXPORT_SYMBOL(netdev_class_create_file_ns);
2096
2097 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
2098                                  const void *ns)
2099 {
2100         class_remove_file_ns(&net_class, class_attr, ns);
2101 }
2102 EXPORT_SYMBOL(netdev_class_remove_file_ns);
2103
2104 int __init netdev_kobject_init(void)
2105 {
2106         kobj_ns_type_register(&net_ns_type_operations);
2107         return class_register(&net_class);
2108 }