e2eaa1ff948d1f592131146ec478b963f2f5cc3d
[platform/kernel/linux-rpi.git] / net / core / flow_dissector.c
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/dsa.h>
8 #include <net/ip.h>
9 #include <net/ipv6.h>
10 #include <net/gre.h>
11 #include <net/pptp.h>
12 #include <linux/igmp.h>
13 #include <linux/icmp.h>
14 #include <linux/sctp.h>
15 #include <linux/dccp.h>
16 #include <linux/if_tunnel.h>
17 #include <linux/if_pppox.h>
18 #include <linux/ppp_defs.h>
19 #include <linux/stddef.h>
20 #include <linux/if_ether.h>
21 #include <linux/mpls.h>
22 #include <linux/tcp.h>
23 #include <net/flow_dissector.h>
24 #include <scsi/fc/fc_fcoe.h>
25
26 static void dissector_set_key(struct flow_dissector *flow_dissector,
27                               enum flow_dissector_key_id key_id)
28 {
29         flow_dissector->used_keys |= (1 << key_id);
30 }
31
32 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
33                              const struct flow_dissector_key *key,
34                              unsigned int key_count)
35 {
36         unsigned int i;
37
38         memset(flow_dissector, 0, sizeof(*flow_dissector));
39
40         for (i = 0; i < key_count; i++, key++) {
41                 /* User should make sure that every key target offset is withing
42                  * boundaries of unsigned short.
43                  */
44                 BUG_ON(key->offset > USHRT_MAX);
45                 BUG_ON(dissector_uses_key(flow_dissector,
46                                           key->key_id));
47
48                 dissector_set_key(flow_dissector, key->key_id);
49                 flow_dissector->offset[key->key_id] = key->offset;
50         }
51
52         /* Ensure that the dissector always includes control and basic key.
53          * That way we are able to avoid handling lack of these in fast path.
54          */
55         BUG_ON(!dissector_uses_key(flow_dissector,
56                                    FLOW_DISSECTOR_KEY_CONTROL));
57         BUG_ON(!dissector_uses_key(flow_dissector,
58                                    FLOW_DISSECTOR_KEY_BASIC));
59 }
60 EXPORT_SYMBOL(skb_flow_dissector_init);
61
62 /**
63  * skb_flow_get_be16 - extract be16 entity
64  * @skb: sk_buff to extract from
65  * @poff: offset to extract at
66  * @data: raw buffer pointer to the packet
67  * @hlen: packet header length
68  *
69  * The function will try to retrieve a be32 entity at
70  * offset poff
71  */
72 static __be16 skb_flow_get_be16(const struct sk_buff *skb, int poff,
73                                 void *data, int hlen)
74 {
75         __be16 *u, _u;
76
77         u = __skb_header_pointer(skb, poff, sizeof(_u), data, hlen, &_u);
78         if (u)
79                 return *u;
80
81         return 0;
82 }
83
84 /**
85  * __skb_flow_get_ports - extract the upper layer ports and return them
86  * @skb: sk_buff to extract the ports from
87  * @thoff: transport header offset
88  * @ip_proto: protocol for which to get port offset
89  * @data: raw buffer pointer to the packet, if NULL use skb->data
90  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
91  *
92  * The function will try to retrieve the ports at offset thoff + poff where poff
93  * is the protocol port offset returned from proto_ports_offset
94  */
95 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
96                             void *data, int hlen)
97 {
98         int poff = proto_ports_offset(ip_proto);
99
100         if (!data) {
101                 data = skb->data;
102                 hlen = skb_headlen(skb);
103         }
104
105         if (poff >= 0) {
106                 __be32 *ports, _ports;
107
108                 ports = __skb_header_pointer(skb, thoff + poff,
109                                              sizeof(_ports), data, hlen, &_ports);
110                 if (ports)
111                         return *ports;
112         }
113
114         return 0;
115 }
116 EXPORT_SYMBOL(__skb_flow_get_ports);
117
118 enum flow_dissect_ret {
119         FLOW_DISSECT_RET_OUT_GOOD,
120         FLOW_DISSECT_RET_OUT_BAD,
121         FLOW_DISSECT_RET_OUT_PROTO_AGAIN,
122 };
123
124 static enum flow_dissect_ret
125 __skb_flow_dissect_mpls(const struct sk_buff *skb,
126                         struct flow_dissector *flow_dissector,
127                         void *target_container, void *data, int nhoff, int hlen)
128 {
129         struct flow_dissector_key_keyid *key_keyid;
130         struct mpls_label *hdr, _hdr[2];
131         u32 entry, label;
132
133         if (!dissector_uses_key(flow_dissector,
134                                 FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
135             !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
136                 return FLOW_DISSECT_RET_OUT_GOOD;
137
138         hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
139                                    hlen, &_hdr);
140         if (!hdr)
141                 return FLOW_DISSECT_RET_OUT_BAD;
142
143         entry = ntohl(hdr[0].entry);
144         label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
145
146         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
147                 struct flow_dissector_key_mpls *key_mpls;
148
149                 key_mpls = skb_flow_dissector_target(flow_dissector,
150                                                      FLOW_DISSECTOR_KEY_MPLS,
151                                                      target_container);
152                 key_mpls->mpls_label = label;
153                 key_mpls->mpls_ttl = (entry & MPLS_LS_TTL_MASK)
154                                         >> MPLS_LS_TTL_SHIFT;
155                 key_mpls->mpls_tc = (entry & MPLS_LS_TC_MASK)
156                                         >> MPLS_LS_TC_SHIFT;
157                 key_mpls->mpls_bos = (entry & MPLS_LS_S_MASK)
158                                         >> MPLS_LS_S_SHIFT;
159         }
160
161         if (label == MPLS_LABEL_ENTROPY) {
162                 key_keyid = skb_flow_dissector_target(flow_dissector,
163                                                       FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
164                                                       target_container);
165                 key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK);
166         }
167         return FLOW_DISSECT_RET_OUT_GOOD;
168 }
169
170 static enum flow_dissect_ret
171 __skb_flow_dissect_arp(const struct sk_buff *skb,
172                        struct flow_dissector *flow_dissector,
173                        void *target_container, void *data, int nhoff, int hlen)
174 {
175         struct flow_dissector_key_arp *key_arp;
176         struct {
177                 unsigned char ar_sha[ETH_ALEN];
178                 unsigned char ar_sip[4];
179                 unsigned char ar_tha[ETH_ALEN];
180                 unsigned char ar_tip[4];
181         } *arp_eth, _arp_eth;
182         const struct arphdr *arp;
183         struct arphdr _arp;
184
185         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
186                 return FLOW_DISSECT_RET_OUT_GOOD;
187
188         arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
189                                    hlen, &_arp);
190         if (!arp)
191                 return FLOW_DISSECT_RET_OUT_BAD;
192
193         if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
194             arp->ar_pro != htons(ETH_P_IP) ||
195             arp->ar_hln != ETH_ALEN ||
196             arp->ar_pln != 4 ||
197             (arp->ar_op != htons(ARPOP_REPLY) &&
198              arp->ar_op != htons(ARPOP_REQUEST)))
199                 return FLOW_DISSECT_RET_OUT_BAD;
200
201         arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
202                                        sizeof(_arp_eth), data,
203                                        hlen, &_arp_eth);
204         if (!arp_eth)
205                 return FLOW_DISSECT_RET_OUT_BAD;
206
207         key_arp = skb_flow_dissector_target(flow_dissector,
208                                             FLOW_DISSECTOR_KEY_ARP,
209                                             target_container);
210
211         memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
212         memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
213
214         /* Only store the lower byte of the opcode;
215          * this covers ARPOP_REPLY and ARPOP_REQUEST.
216          */
217         key_arp->op = ntohs(arp->ar_op) & 0xff;
218
219         ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
220         ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
221
222         return FLOW_DISSECT_RET_OUT_GOOD;
223 }
224
225 static enum flow_dissect_ret
226 __skb_flow_dissect_gre(const struct sk_buff *skb,
227                        struct flow_dissector_key_control *key_control,
228                        struct flow_dissector *flow_dissector,
229                        void *target_container, void *data,
230                        __be16 *p_proto, int *p_nhoff, int *p_hlen,
231                        unsigned int flags)
232 {
233         struct flow_dissector_key_keyid *key_keyid;
234         struct gre_base_hdr *hdr, _hdr;
235         int offset = 0;
236         u16 gre_ver;
237
238         hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
239                                    data, *p_hlen, &_hdr);
240         if (!hdr)
241                 return FLOW_DISSECT_RET_OUT_BAD;
242
243         /* Only look inside GRE without routing */
244         if (hdr->flags & GRE_ROUTING)
245                 return FLOW_DISSECT_RET_OUT_GOOD;
246
247         /* Only look inside GRE for version 0 and 1 */
248         gre_ver = ntohs(hdr->flags & GRE_VERSION);
249         if (gre_ver > 1)
250                 return FLOW_DISSECT_RET_OUT_GOOD;
251
252         *p_proto = hdr->protocol;
253         if (gre_ver) {
254                 /* Version1 must be PPTP, and check the flags */
255                 if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
256                         return FLOW_DISSECT_RET_OUT_GOOD;
257         }
258
259         offset += sizeof(struct gre_base_hdr);
260
261         if (hdr->flags & GRE_CSUM)
262                 offset += sizeof(((struct gre_full_hdr *) 0)->csum) +
263                           sizeof(((struct gre_full_hdr *) 0)->reserved1);
264
265         if (hdr->flags & GRE_KEY) {
266                 const __be32 *keyid;
267                 __be32 _keyid;
268
269                 keyid = __skb_header_pointer(skb, *p_nhoff + offset,
270                                              sizeof(_keyid),
271                                              data, *p_hlen, &_keyid);
272                 if (!keyid)
273                         return FLOW_DISSECT_RET_OUT_BAD;
274
275                 if (dissector_uses_key(flow_dissector,
276                                        FLOW_DISSECTOR_KEY_GRE_KEYID)) {
277                         key_keyid = skb_flow_dissector_target(flow_dissector,
278                                                               FLOW_DISSECTOR_KEY_GRE_KEYID,
279                                                               target_container);
280                         if (gre_ver == 0)
281                                 key_keyid->keyid = *keyid;
282                         else
283                                 key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
284                 }
285                 offset += sizeof(((struct gre_full_hdr *) 0)->key);
286         }
287
288         if (hdr->flags & GRE_SEQ)
289                 offset += sizeof(((struct pptp_gre_header *) 0)->seq);
290
291         if (gre_ver == 0) {
292                 if (*p_proto == htons(ETH_P_TEB)) {
293                         const struct ethhdr *eth;
294                         struct ethhdr _eth;
295
296                         eth = __skb_header_pointer(skb, *p_nhoff + offset,
297                                                    sizeof(_eth),
298                                                    data, *p_hlen, &_eth);
299                         if (!eth)
300                                 return FLOW_DISSECT_RET_OUT_BAD;
301                         *p_proto = eth->h_proto;
302                         offset += sizeof(*eth);
303
304                         /* Cap headers that we access via pointers at the
305                          * end of the Ethernet header as our maximum alignment
306                          * at that point is only 2 bytes.
307                          */
308                         if (NET_IP_ALIGN)
309                                 *p_hlen = *p_nhoff + offset;
310                 }
311         } else { /* version 1, must be PPTP */
312                 u8 _ppp_hdr[PPP_HDRLEN];
313                 u8 *ppp_hdr;
314
315                 if (hdr->flags & GRE_ACK)
316                         offset += sizeof(((struct pptp_gre_header *) 0)->ack);
317
318                 ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
319                                                sizeof(_ppp_hdr),
320                                                data, *p_hlen, _ppp_hdr);
321                 if (!ppp_hdr)
322                         return FLOW_DISSECT_RET_OUT_BAD;
323
324                 switch (PPP_PROTOCOL(ppp_hdr)) {
325                 case PPP_IP:
326                         *p_proto = htons(ETH_P_IP);
327                         break;
328                 case PPP_IPV6:
329                         *p_proto = htons(ETH_P_IPV6);
330                         break;
331                 default:
332                         /* Could probably catch some more like MPLS */
333                         break;
334                 }
335
336                 offset += PPP_HDRLEN;
337         }
338
339         *p_nhoff += offset;
340         key_control->flags |= FLOW_DIS_ENCAPSULATION;
341         if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
342                 return FLOW_DISSECT_RET_OUT_GOOD;
343
344         return FLOW_DISSECT_RET_OUT_PROTO_AGAIN;
345 }
346
347 static void
348 __skb_flow_dissect_tcp(const struct sk_buff *skb,
349                        struct flow_dissector *flow_dissector,
350                        void *target_container, void *data, int thoff, int hlen)
351 {
352         struct flow_dissector_key_tcp *key_tcp;
353         struct tcphdr *th, _th;
354
355         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
356                 return;
357
358         th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
359         if (!th)
360                 return;
361
362         if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
363                 return;
364
365         key_tcp = skb_flow_dissector_target(flow_dissector,
366                                             FLOW_DISSECTOR_KEY_TCP,
367                                             target_container);
368         key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
369 }
370
371 static void
372 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
373                         struct flow_dissector *flow_dissector,
374                         void *target_container, void *data, const struct iphdr *iph)
375 {
376         struct flow_dissector_key_ip *key_ip;
377
378         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
379                 return;
380
381         key_ip = skb_flow_dissector_target(flow_dissector,
382                                            FLOW_DISSECTOR_KEY_IP,
383                                            target_container);
384         key_ip->tos = iph->tos;
385         key_ip->ttl = iph->ttl;
386 }
387
388 static void
389 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
390                         struct flow_dissector *flow_dissector,
391                         void *target_container, void *data, const struct ipv6hdr *iph)
392 {
393         struct flow_dissector_key_ip *key_ip;
394
395         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
396                 return;
397
398         key_ip = skb_flow_dissector_target(flow_dissector,
399                                            FLOW_DISSECTOR_KEY_IP,
400                                            target_container);
401         key_ip->tos = ipv6_get_dsfield(iph);
402         key_ip->ttl = iph->hop_limit;
403 }
404
405 /**
406  * __skb_flow_dissect - extract the flow_keys struct and return it
407  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
408  * @flow_dissector: list of keys to dissect
409  * @target_container: target structure to put dissected values into
410  * @data: raw buffer pointer to the packet, if NULL use skb->data
411  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
412  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
413  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
414  *
415  * The function will try to retrieve individual keys into target specified
416  * by flow_dissector from either the skbuff or a raw buffer specified by the
417  * rest parameters.
418  *
419  * Caller must take care of zeroing target container memory.
420  */
421 bool __skb_flow_dissect(const struct sk_buff *skb,
422                         struct flow_dissector *flow_dissector,
423                         void *target_container,
424                         void *data, __be16 proto, int nhoff, int hlen,
425                         unsigned int flags)
426 {
427         struct flow_dissector_key_control *key_control;
428         struct flow_dissector_key_basic *key_basic;
429         struct flow_dissector_key_addrs *key_addrs;
430         struct flow_dissector_key_ports *key_ports;
431         struct flow_dissector_key_icmp *key_icmp;
432         struct flow_dissector_key_tags *key_tags;
433         struct flow_dissector_key_vlan *key_vlan;
434         bool skip_vlan = false;
435         u8 ip_proto = 0;
436         bool ret;
437
438         if (!data) {
439                 data = skb->data;
440                 proto = skb_vlan_tag_present(skb) ?
441                          skb->vlan_proto : skb->protocol;
442                 nhoff = skb_network_offset(skb);
443                 hlen = skb_headlen(skb);
444 #if IS_ENABLED(CONFIG_NET_DSA)
445                 if (unlikely(skb->dev && netdev_uses_dsa(skb->dev))) {
446                         const struct dsa_device_ops *ops;
447                         int offset;
448
449                         ops = skb->dev->dsa_ptr->tag_ops;
450                         if (ops->flow_dissect &&
451                             !ops->flow_dissect(skb, &proto, &offset)) {
452                                 hlen -= offset;
453                                 nhoff += offset;
454                         }
455                 }
456 #endif
457         }
458
459         /* It is ensured by skb_flow_dissector_init() that control key will
460          * be always present.
461          */
462         key_control = skb_flow_dissector_target(flow_dissector,
463                                                 FLOW_DISSECTOR_KEY_CONTROL,
464                                                 target_container);
465
466         /* It is ensured by skb_flow_dissector_init() that basic key will
467          * be always present.
468          */
469         key_basic = skb_flow_dissector_target(flow_dissector,
470                                               FLOW_DISSECTOR_KEY_BASIC,
471                                               target_container);
472
473         if (dissector_uses_key(flow_dissector,
474                                FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
475                 struct ethhdr *eth = eth_hdr(skb);
476                 struct flow_dissector_key_eth_addrs *key_eth_addrs;
477
478                 key_eth_addrs = skb_flow_dissector_target(flow_dissector,
479                                                           FLOW_DISSECTOR_KEY_ETH_ADDRS,
480                                                           target_container);
481                 memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
482         }
483
484 proto_again:
485         switch (proto) {
486         case htons(ETH_P_IP): {
487                 const struct iphdr *iph;
488                 struct iphdr _iph;
489 ip:
490                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
491                 if (!iph || iph->ihl < 5)
492                         goto out_bad;
493                 nhoff += iph->ihl * 4;
494
495                 ip_proto = iph->protocol;
496
497                 if (dissector_uses_key(flow_dissector,
498                                        FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
499                         key_addrs = skb_flow_dissector_target(flow_dissector,
500                                                               FLOW_DISSECTOR_KEY_IPV4_ADDRS,
501                                                               target_container);
502
503                         memcpy(&key_addrs->v4addrs, &iph->saddr,
504                                sizeof(key_addrs->v4addrs));
505                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
506                 }
507
508                 if (ip_is_fragment(iph)) {
509                         key_control->flags |= FLOW_DIS_IS_FRAGMENT;
510
511                         if (iph->frag_off & htons(IP_OFFSET)) {
512                                 goto out_good;
513                         } else {
514                                 key_control->flags |= FLOW_DIS_FIRST_FRAG;
515                                 if (!(flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG))
516                                         goto out_good;
517                         }
518                 }
519
520                 __skb_flow_dissect_ipv4(skb, flow_dissector,
521                                         target_container, data, iph);
522
523                 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
524                         goto out_good;
525
526                 break;
527         }
528         case htons(ETH_P_IPV6): {
529                 const struct ipv6hdr *iph;
530                 struct ipv6hdr _iph;
531
532 ipv6:
533                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
534                 if (!iph)
535                         goto out_bad;
536
537                 ip_proto = iph->nexthdr;
538                 nhoff += sizeof(struct ipv6hdr);
539
540                 if (dissector_uses_key(flow_dissector,
541                                        FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
542                         key_addrs = skb_flow_dissector_target(flow_dissector,
543                                                               FLOW_DISSECTOR_KEY_IPV6_ADDRS,
544                                                               target_container);
545
546                         memcpy(&key_addrs->v6addrs, &iph->saddr,
547                                sizeof(key_addrs->v6addrs));
548                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
549                 }
550
551                 if ((dissector_uses_key(flow_dissector,
552                                         FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
553                      (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
554                     ip6_flowlabel(iph)) {
555                         __be32 flow_label = ip6_flowlabel(iph);
556
557                         if (dissector_uses_key(flow_dissector,
558                                                FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
559                                 key_tags = skb_flow_dissector_target(flow_dissector,
560                                                                      FLOW_DISSECTOR_KEY_FLOW_LABEL,
561                                                                      target_container);
562                                 key_tags->flow_label = ntohl(flow_label);
563                         }
564                         if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)
565                                 goto out_good;
566                 }
567
568                 __skb_flow_dissect_ipv6(skb, flow_dissector,
569                                         target_container, data, iph);
570
571                 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
572                         goto out_good;
573
574                 break;
575         }
576         case htons(ETH_P_8021AD):
577         case htons(ETH_P_8021Q): {
578                 const struct vlan_hdr *vlan;
579                 struct vlan_hdr _vlan;
580                 bool vlan_tag_present = skb && skb_vlan_tag_present(skb);
581
582                 if (vlan_tag_present)
583                         proto = skb->protocol;
584
585                 if (!vlan_tag_present || eth_type_vlan(skb->protocol)) {
586                         vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
587                                                     data, hlen, &_vlan);
588                         if (!vlan)
589                                 goto out_bad;
590                         proto = vlan->h_vlan_encapsulated_proto;
591                         nhoff += sizeof(*vlan);
592                         if (skip_vlan)
593                                 goto proto_again;
594                 }
595
596                 skip_vlan = true;
597                 if (dissector_uses_key(flow_dissector,
598                                        FLOW_DISSECTOR_KEY_VLAN)) {
599                         key_vlan = skb_flow_dissector_target(flow_dissector,
600                                                              FLOW_DISSECTOR_KEY_VLAN,
601                                                              target_container);
602
603                         if (vlan_tag_present) {
604                                 key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
605                                 key_vlan->vlan_priority =
606                                         (skb_vlan_tag_get_prio(skb) >> VLAN_PRIO_SHIFT);
607                         } else {
608                                 key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
609                                         VLAN_VID_MASK;
610                                 key_vlan->vlan_priority =
611                                         (ntohs(vlan->h_vlan_TCI) &
612                                          VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
613                         }
614                 }
615
616                 goto proto_again;
617         }
618         case htons(ETH_P_PPP_SES): {
619                 struct {
620                         struct pppoe_hdr hdr;
621                         __be16 proto;
622                 } *hdr, _hdr;
623                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
624                 if (!hdr)
625                         goto out_bad;
626                 proto = hdr->proto;
627                 nhoff += PPPOE_SES_HLEN;
628                 switch (proto) {
629                 case htons(PPP_IP):
630                         goto ip;
631                 case htons(PPP_IPV6):
632                         goto ipv6;
633                 default:
634                         goto out_bad;
635                 }
636         }
637         case htons(ETH_P_TIPC): {
638                 struct {
639                         __be32 pre[3];
640                         __be32 srcnode;
641                 } *hdr, _hdr;
642                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
643                 if (!hdr)
644                         goto out_bad;
645
646                 if (dissector_uses_key(flow_dissector,
647                                        FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
648                         key_addrs = skb_flow_dissector_target(flow_dissector,
649                                                               FLOW_DISSECTOR_KEY_TIPC_ADDRS,
650                                                               target_container);
651                         key_addrs->tipcaddrs.srcnode = hdr->srcnode;
652                         key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
653                 }
654                 goto out_good;
655         }
656
657         case htons(ETH_P_MPLS_UC):
658         case htons(ETH_P_MPLS_MC):
659 mpls:
660                 switch (__skb_flow_dissect_mpls(skb, flow_dissector,
661                                                 target_container, data,
662                                                 nhoff, hlen)) {
663                 case FLOW_DISSECT_RET_OUT_GOOD:
664                         goto out_good;
665                 case FLOW_DISSECT_RET_OUT_BAD:
666                 default:
667                         goto out_bad;
668                 }
669         case htons(ETH_P_FCOE):
670                 if ((hlen - nhoff) < FCOE_HEADER_LEN)
671                         goto out_bad;
672
673                 nhoff += FCOE_HEADER_LEN;
674                 goto out_good;
675
676         case htons(ETH_P_ARP):
677         case htons(ETH_P_RARP):
678                 switch (__skb_flow_dissect_arp(skb, flow_dissector,
679                                                target_container, data,
680                                                nhoff, hlen)) {
681                 case FLOW_DISSECT_RET_OUT_GOOD:
682                         goto out_good;
683                 case FLOW_DISSECT_RET_OUT_BAD:
684                 default:
685                         goto out_bad;
686                 }
687         default:
688                 goto out_bad;
689         }
690
691 ip_proto_again:
692         switch (ip_proto) {
693         case IPPROTO_GRE:
694                 switch (__skb_flow_dissect_gre(skb, key_control, flow_dissector,
695                                                target_container, data,
696                                                &proto, &nhoff, &hlen, flags)) {
697                 case FLOW_DISSECT_RET_OUT_GOOD:
698                         goto out_good;
699                 case FLOW_DISSECT_RET_OUT_BAD:
700                         goto out_bad;
701                 case FLOW_DISSECT_RET_OUT_PROTO_AGAIN:
702                         goto proto_again;
703                 }
704         case NEXTHDR_HOP:
705         case NEXTHDR_ROUTING:
706         case NEXTHDR_DEST: {
707                 u8 _opthdr[2], *opthdr;
708
709                 if (proto != htons(ETH_P_IPV6))
710                         break;
711
712                 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
713                                               data, hlen, &_opthdr);
714                 if (!opthdr)
715                         goto out_bad;
716
717                 ip_proto = opthdr[0];
718                 nhoff += (opthdr[1] + 1) << 3;
719
720                 goto ip_proto_again;
721         }
722         case NEXTHDR_FRAGMENT: {
723                 struct frag_hdr _fh, *fh;
724
725                 if (proto != htons(ETH_P_IPV6))
726                         break;
727
728                 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
729                                           data, hlen, &_fh);
730
731                 if (!fh)
732                         goto out_bad;
733
734                 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
735
736                 nhoff += sizeof(_fh);
737                 ip_proto = fh->nexthdr;
738
739                 if (!(fh->frag_off & htons(IP6_OFFSET))) {
740                         key_control->flags |= FLOW_DIS_FIRST_FRAG;
741                         if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG)
742                                 goto ip_proto_again;
743                 }
744                 goto out_good;
745         }
746         case IPPROTO_IPIP:
747                 proto = htons(ETH_P_IP);
748
749                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
750                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
751                         goto out_good;
752
753                 goto ip;
754         case IPPROTO_IPV6:
755                 proto = htons(ETH_P_IPV6);
756
757                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
758                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
759                         goto out_good;
760
761                 goto ipv6;
762         case IPPROTO_MPLS:
763                 proto = htons(ETH_P_MPLS_UC);
764                 goto mpls;
765         case IPPROTO_TCP:
766                 __skb_flow_dissect_tcp(skb, flow_dissector, target_container,
767                                        data, nhoff, hlen);
768                 break;
769         default:
770                 break;
771         }
772
773         if (dissector_uses_key(flow_dissector,
774                                FLOW_DISSECTOR_KEY_PORTS)) {
775                 key_ports = skb_flow_dissector_target(flow_dissector,
776                                                       FLOW_DISSECTOR_KEY_PORTS,
777                                                       target_container);
778                 key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
779                                                         data, hlen);
780         }
781
782         if (dissector_uses_key(flow_dissector,
783                                FLOW_DISSECTOR_KEY_ICMP)) {
784                 key_icmp = skb_flow_dissector_target(flow_dissector,
785                                                      FLOW_DISSECTOR_KEY_ICMP,
786                                                      target_container);
787                 key_icmp->icmp = skb_flow_get_be16(skb, nhoff, data, hlen);
788         }
789
790 out_good:
791         ret = true;
792
793         key_control->thoff = (u16)nhoff;
794 out:
795         key_basic->n_proto = proto;
796         key_basic->ip_proto = ip_proto;
797
798         return ret;
799
800 out_bad:
801         ret = false;
802         key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
803         goto out;
804 }
805 EXPORT_SYMBOL(__skb_flow_dissect);
806
807 static u32 hashrnd __read_mostly;
808 static __always_inline void __flow_hash_secret_init(void)
809 {
810         net_get_random_once(&hashrnd, sizeof(hashrnd));
811 }
812
813 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
814                                              u32 keyval)
815 {
816         return jhash2(words, length, keyval);
817 }
818
819 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
820 {
821         const void *p = flow;
822
823         BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
824         return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
825 }
826
827 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
828 {
829         size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
830         BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
831         BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
832                      sizeof(*flow) - sizeof(flow->addrs));
833
834         switch (flow->control.addr_type) {
835         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
836                 diff -= sizeof(flow->addrs.v4addrs);
837                 break;
838         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
839                 diff -= sizeof(flow->addrs.v6addrs);
840                 break;
841         case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
842                 diff -= sizeof(flow->addrs.tipcaddrs);
843                 break;
844         }
845         return (sizeof(*flow) - diff) / sizeof(u32);
846 }
847
848 __be32 flow_get_u32_src(const struct flow_keys *flow)
849 {
850         switch (flow->control.addr_type) {
851         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
852                 return flow->addrs.v4addrs.src;
853         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
854                 return (__force __be32)ipv6_addr_hash(
855                         &flow->addrs.v6addrs.src);
856         case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
857                 return flow->addrs.tipcaddrs.srcnode;
858         default:
859                 return 0;
860         }
861 }
862 EXPORT_SYMBOL(flow_get_u32_src);
863
864 __be32 flow_get_u32_dst(const struct flow_keys *flow)
865 {
866         switch (flow->control.addr_type) {
867         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
868                 return flow->addrs.v4addrs.dst;
869         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
870                 return (__force __be32)ipv6_addr_hash(
871                         &flow->addrs.v6addrs.dst);
872         default:
873                 return 0;
874         }
875 }
876 EXPORT_SYMBOL(flow_get_u32_dst);
877
878 static inline void __flow_hash_consistentify(struct flow_keys *keys)
879 {
880         int addr_diff, i;
881
882         switch (keys->control.addr_type) {
883         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
884                 addr_diff = (__force u32)keys->addrs.v4addrs.dst -
885                             (__force u32)keys->addrs.v4addrs.src;
886                 if ((addr_diff < 0) ||
887                     (addr_diff == 0 &&
888                      ((__force u16)keys->ports.dst <
889                       (__force u16)keys->ports.src))) {
890                         swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
891                         swap(keys->ports.src, keys->ports.dst);
892                 }
893                 break;
894         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
895                 addr_diff = memcmp(&keys->addrs.v6addrs.dst,
896                                    &keys->addrs.v6addrs.src,
897                                    sizeof(keys->addrs.v6addrs.dst));
898                 if ((addr_diff < 0) ||
899                     (addr_diff == 0 &&
900                      ((__force u16)keys->ports.dst <
901                       (__force u16)keys->ports.src))) {
902                         for (i = 0; i < 4; i++)
903                                 swap(keys->addrs.v6addrs.src.s6_addr32[i],
904                                      keys->addrs.v6addrs.dst.s6_addr32[i]);
905                         swap(keys->ports.src, keys->ports.dst);
906                 }
907                 break;
908         }
909 }
910
911 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
912 {
913         u32 hash;
914
915         __flow_hash_consistentify(keys);
916
917         hash = __flow_hash_words(flow_keys_hash_start(keys),
918                                  flow_keys_hash_length(keys), keyval);
919         if (!hash)
920                 hash = 1;
921
922         return hash;
923 }
924
925 u32 flow_hash_from_keys(struct flow_keys *keys)
926 {
927         __flow_hash_secret_init();
928         return __flow_hash_from_keys(keys, hashrnd);
929 }
930 EXPORT_SYMBOL(flow_hash_from_keys);
931
932 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
933                                   struct flow_keys *keys, u32 keyval)
934 {
935         skb_flow_dissect_flow_keys(skb, keys,
936                                    FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
937
938         return __flow_hash_from_keys(keys, keyval);
939 }
940
941 struct _flow_keys_digest_data {
942         __be16  n_proto;
943         u8      ip_proto;
944         u8      padding;
945         __be32  ports;
946         __be32  src;
947         __be32  dst;
948 };
949
950 void make_flow_keys_digest(struct flow_keys_digest *digest,
951                            const struct flow_keys *flow)
952 {
953         struct _flow_keys_digest_data *data =
954             (struct _flow_keys_digest_data *)digest;
955
956         BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
957
958         memset(digest, 0, sizeof(*digest));
959
960         data->n_proto = flow->basic.n_proto;
961         data->ip_proto = flow->basic.ip_proto;
962         data->ports = flow->ports.ports;
963         data->src = flow->addrs.v4addrs.src;
964         data->dst = flow->addrs.v4addrs.dst;
965 }
966 EXPORT_SYMBOL(make_flow_keys_digest);
967
968 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
969
970 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
971 {
972         struct flow_keys keys;
973
974         __flow_hash_secret_init();
975
976         memset(&keys, 0, sizeof(keys));
977         __skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
978                            NULL, 0, 0, 0,
979                            FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
980
981         return __flow_hash_from_keys(&keys, hashrnd);
982 }
983 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
984
985 /**
986  * __skb_get_hash: calculate a flow hash
987  * @skb: sk_buff to calculate flow hash from
988  *
989  * This function calculates a flow hash based on src/dst addresses
990  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
991  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
992  * if hash is a canonical 4-tuple hash over transport ports.
993  */
994 void __skb_get_hash(struct sk_buff *skb)
995 {
996         struct flow_keys keys;
997         u32 hash;
998
999         __flow_hash_secret_init();
1000
1001         hash = ___skb_get_hash(skb, &keys, hashrnd);
1002
1003         __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1004 }
1005 EXPORT_SYMBOL(__skb_get_hash);
1006
1007 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
1008 {
1009         struct flow_keys keys;
1010
1011         return ___skb_get_hash(skb, &keys, perturb);
1012 }
1013 EXPORT_SYMBOL(skb_get_hash_perturb);
1014
1015 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1016                    const struct flow_keys *keys, int hlen)
1017 {
1018         u32 poff = keys->control.thoff;
1019
1020         /* skip L4 headers for fragments after the first */
1021         if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1022             !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1023                 return poff;
1024
1025         switch (keys->basic.ip_proto) {
1026         case IPPROTO_TCP: {
1027                 /* access doff as u8 to avoid unaligned access */
1028                 const u8 *doff;
1029                 u8 _doff;
1030
1031                 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1032                                             data, hlen, &_doff);
1033                 if (!doff)
1034                         return poff;
1035
1036                 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1037                 break;
1038         }
1039         case IPPROTO_UDP:
1040         case IPPROTO_UDPLITE:
1041                 poff += sizeof(struct udphdr);
1042                 break;
1043         /* For the rest, we do not really care about header
1044          * extensions at this point for now.
1045          */
1046         case IPPROTO_ICMP:
1047                 poff += sizeof(struct icmphdr);
1048                 break;
1049         case IPPROTO_ICMPV6:
1050                 poff += sizeof(struct icmp6hdr);
1051                 break;
1052         case IPPROTO_IGMP:
1053                 poff += sizeof(struct igmphdr);
1054                 break;
1055         case IPPROTO_DCCP:
1056                 poff += sizeof(struct dccp_hdr);
1057                 break;
1058         case IPPROTO_SCTP:
1059                 poff += sizeof(struct sctphdr);
1060                 break;
1061         }
1062
1063         return poff;
1064 }
1065
1066 /**
1067  * skb_get_poff - get the offset to the payload
1068  * @skb: sk_buff to get the payload offset from
1069  *
1070  * The function will get the offset to the payload as far as it could
1071  * be dissected.  The main user is currently BPF, so that we can dynamically
1072  * truncate packets without needing to push actual payload to the user
1073  * space and can analyze headers only, instead.
1074  */
1075 u32 skb_get_poff(const struct sk_buff *skb)
1076 {
1077         struct flow_keys keys;
1078
1079         if (!skb_flow_dissect_flow_keys(skb, &keys, 0))
1080                 return 0;
1081
1082         return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1083 }
1084
1085 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1086 {
1087         memset(keys, 0, sizeof(*keys));
1088
1089         memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1090             sizeof(keys->addrs.v6addrs.src));
1091         memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1092             sizeof(keys->addrs.v6addrs.dst));
1093         keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1094         keys->ports.src = fl6->fl6_sport;
1095         keys->ports.dst = fl6->fl6_dport;
1096         keys->keyid.keyid = fl6->fl6_gre_key;
1097         keys->tags.flow_label = (__force u32)fl6->flowlabel;
1098         keys->basic.ip_proto = fl6->flowi6_proto;
1099
1100         return flow_hash_from_keys(keys);
1101 }
1102 EXPORT_SYMBOL(__get_hash_from_flowi6);
1103
1104 __u32 __get_hash_from_flowi4(const struct flowi4 *fl4, struct flow_keys *keys)
1105 {
1106         memset(keys, 0, sizeof(*keys));
1107
1108         keys->addrs.v4addrs.src = fl4->saddr;
1109         keys->addrs.v4addrs.dst = fl4->daddr;
1110         keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
1111         keys->ports.src = fl4->fl4_sport;
1112         keys->ports.dst = fl4->fl4_dport;
1113         keys->keyid.keyid = fl4->fl4_gre_key;
1114         keys->basic.ip_proto = fl4->flowi4_proto;
1115
1116         return flow_hash_from_keys(keys);
1117 }
1118 EXPORT_SYMBOL(__get_hash_from_flowi4);
1119
1120 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1121         {
1122                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1123                 .offset = offsetof(struct flow_keys, control),
1124         },
1125         {
1126                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1127                 .offset = offsetof(struct flow_keys, basic),
1128         },
1129         {
1130                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1131                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1132         },
1133         {
1134                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1135                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1136         },
1137         {
1138                 .key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
1139                 .offset = offsetof(struct flow_keys, addrs.tipcaddrs),
1140         },
1141         {
1142                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1143                 .offset = offsetof(struct flow_keys, ports),
1144         },
1145         {
1146                 .key_id = FLOW_DISSECTOR_KEY_VLAN,
1147                 .offset = offsetof(struct flow_keys, vlan),
1148         },
1149         {
1150                 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1151                 .offset = offsetof(struct flow_keys, tags),
1152         },
1153         {
1154                 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1155                 .offset = offsetof(struct flow_keys, keyid),
1156         },
1157 };
1158
1159 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1160         {
1161                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1162                 .offset = offsetof(struct flow_keys, control),
1163         },
1164         {
1165                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1166                 .offset = offsetof(struct flow_keys, basic),
1167         },
1168         {
1169                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1170                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1171         },
1172         {
1173                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1174                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1175         },
1176         {
1177                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1178                 .offset = offsetof(struct flow_keys, ports),
1179         },
1180 };
1181
1182 static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
1183         {
1184                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1185                 .offset = offsetof(struct flow_keys, control),
1186         },
1187         {
1188                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1189                 .offset = offsetof(struct flow_keys, basic),
1190         },
1191 };
1192
1193 struct flow_dissector flow_keys_dissector __read_mostly;
1194 EXPORT_SYMBOL(flow_keys_dissector);
1195
1196 struct flow_dissector flow_keys_buf_dissector __read_mostly;
1197
1198 static int __init init_default_flow_dissectors(void)
1199 {
1200         skb_flow_dissector_init(&flow_keys_dissector,
1201                                 flow_keys_dissector_keys,
1202                                 ARRAY_SIZE(flow_keys_dissector_keys));
1203         skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1204                                 flow_keys_dissector_symmetric_keys,
1205                                 ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1206         skb_flow_dissector_init(&flow_keys_buf_dissector,
1207                                 flow_keys_buf_dissector_keys,
1208                                 ARRAY_SIZE(flow_keys_buf_dissector_keys));
1209         return 0;
1210 }
1211
1212 core_initcall(init_default_flow_dissectors);