devlink: validate length of region addr/len
[platform/kernel/linux-rpi.git] / net / core / flow_dissector.c
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/dsa.h>
8 #include <net/dst_metadata.h>
9 #include <net/ip.h>
10 #include <net/ipv6.h>
11 #include <net/gre.h>
12 #include <net/pptp.h>
13 #include <net/tipc.h>
14 #include <linux/igmp.h>
15 #include <linux/icmp.h>
16 #include <linux/sctp.h>
17 #include <linux/dccp.h>
18 #include <linux/if_tunnel.h>
19 #include <linux/if_pppox.h>
20 #include <linux/ppp_defs.h>
21 #include <linux/stddef.h>
22 #include <linux/if_ether.h>
23 #include <linux/mpls.h>
24 #include <linux/tcp.h>
25 #include <net/flow_dissector.h>
26 #include <scsi/fc/fc_fcoe.h>
27 #include <uapi/linux/batadv_packet.h>
28
29 static void dissector_set_key(struct flow_dissector *flow_dissector,
30                               enum flow_dissector_key_id key_id)
31 {
32         flow_dissector->used_keys |= (1 << key_id);
33 }
34
35 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
36                              const struct flow_dissector_key *key,
37                              unsigned int key_count)
38 {
39         unsigned int i;
40
41         memset(flow_dissector, 0, sizeof(*flow_dissector));
42
43         for (i = 0; i < key_count; i++, key++) {
44                 /* User should make sure that every key target offset is withing
45                  * boundaries of unsigned short.
46                  */
47                 BUG_ON(key->offset > USHRT_MAX);
48                 BUG_ON(dissector_uses_key(flow_dissector,
49                                           key->key_id));
50
51                 dissector_set_key(flow_dissector, key->key_id);
52                 flow_dissector->offset[key->key_id] = key->offset;
53         }
54
55         /* Ensure that the dissector always includes control and basic key.
56          * That way we are able to avoid handling lack of these in fast path.
57          */
58         BUG_ON(!dissector_uses_key(flow_dissector,
59                                    FLOW_DISSECTOR_KEY_CONTROL));
60         BUG_ON(!dissector_uses_key(flow_dissector,
61                                    FLOW_DISSECTOR_KEY_BASIC));
62 }
63 EXPORT_SYMBOL(skb_flow_dissector_init);
64
65 /**
66  * skb_flow_get_be16 - extract be16 entity
67  * @skb: sk_buff to extract from
68  * @poff: offset to extract at
69  * @data: raw buffer pointer to the packet
70  * @hlen: packet header length
71  *
72  * The function will try to retrieve a be32 entity at
73  * offset poff
74  */
75 static __be16 skb_flow_get_be16(const struct sk_buff *skb, int poff,
76                                 void *data, int hlen)
77 {
78         __be16 *u, _u;
79
80         u = __skb_header_pointer(skb, poff, sizeof(_u), data, hlen, &_u);
81         if (u)
82                 return *u;
83
84         return 0;
85 }
86
87 /**
88  * __skb_flow_get_ports - extract the upper layer ports and return them
89  * @skb: sk_buff to extract the ports from
90  * @thoff: transport header offset
91  * @ip_proto: protocol for which to get port offset
92  * @data: raw buffer pointer to the packet, if NULL use skb->data
93  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
94  *
95  * The function will try to retrieve the ports at offset thoff + poff where poff
96  * is the protocol port offset returned from proto_ports_offset
97  */
98 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
99                             void *data, int hlen)
100 {
101         int poff = proto_ports_offset(ip_proto);
102
103         if (!data) {
104                 data = skb->data;
105                 hlen = skb_headlen(skb);
106         }
107
108         if (poff >= 0) {
109                 __be32 *ports, _ports;
110
111                 ports = __skb_header_pointer(skb, thoff + poff,
112                                              sizeof(_ports), data, hlen, &_ports);
113                 if (ports)
114                         return *ports;
115         }
116
117         return 0;
118 }
119 EXPORT_SYMBOL(__skb_flow_get_ports);
120
121 static void
122 skb_flow_dissect_set_enc_addr_type(enum flow_dissector_key_id type,
123                                    struct flow_dissector *flow_dissector,
124                                    void *target_container)
125 {
126         struct flow_dissector_key_control *ctrl;
127
128         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_CONTROL))
129                 return;
130
131         ctrl = skb_flow_dissector_target(flow_dissector,
132                                          FLOW_DISSECTOR_KEY_ENC_CONTROL,
133                                          target_container);
134         ctrl->addr_type = type;
135 }
136
137 void
138 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
139                              struct flow_dissector *flow_dissector,
140                              void *target_container)
141 {
142         struct ip_tunnel_info *info;
143         struct ip_tunnel_key *key;
144
145         /* A quick check to see if there might be something to do. */
146         if (!dissector_uses_key(flow_dissector,
147                                 FLOW_DISSECTOR_KEY_ENC_KEYID) &&
148             !dissector_uses_key(flow_dissector,
149                                 FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) &&
150             !dissector_uses_key(flow_dissector,
151                                 FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) &&
152             !dissector_uses_key(flow_dissector,
153                                 FLOW_DISSECTOR_KEY_ENC_CONTROL) &&
154             !dissector_uses_key(flow_dissector,
155                                 FLOW_DISSECTOR_KEY_ENC_PORTS) &&
156             !dissector_uses_key(flow_dissector,
157                                 FLOW_DISSECTOR_KEY_ENC_IP) &&
158             !dissector_uses_key(flow_dissector,
159                                 FLOW_DISSECTOR_KEY_ENC_OPTS))
160                 return;
161
162         info = skb_tunnel_info(skb);
163         if (!info)
164                 return;
165
166         key = &info->key;
167
168         switch (ip_tunnel_info_af(info)) {
169         case AF_INET:
170                 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV4_ADDRS,
171                                                    flow_dissector,
172                                                    target_container);
173                 if (dissector_uses_key(flow_dissector,
174                                        FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) {
175                         struct flow_dissector_key_ipv4_addrs *ipv4;
176
177                         ipv4 = skb_flow_dissector_target(flow_dissector,
178                                                          FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS,
179                                                          target_container);
180                         ipv4->src = key->u.ipv4.src;
181                         ipv4->dst = key->u.ipv4.dst;
182                 }
183                 break;
184         case AF_INET6:
185                 skb_flow_dissect_set_enc_addr_type(FLOW_DISSECTOR_KEY_IPV6_ADDRS,
186                                                    flow_dissector,
187                                                    target_container);
188                 if (dissector_uses_key(flow_dissector,
189                                        FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) {
190                         struct flow_dissector_key_ipv6_addrs *ipv6;
191
192                         ipv6 = skb_flow_dissector_target(flow_dissector,
193                                                          FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS,
194                                                          target_container);
195                         ipv6->src = key->u.ipv6.src;
196                         ipv6->dst = key->u.ipv6.dst;
197                 }
198                 break;
199         }
200
201         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
202                 struct flow_dissector_key_keyid *keyid;
203
204                 keyid = skb_flow_dissector_target(flow_dissector,
205                                                   FLOW_DISSECTOR_KEY_ENC_KEYID,
206                                                   target_container);
207                 keyid->keyid = tunnel_id_to_key32(key->tun_id);
208         }
209
210         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
211                 struct flow_dissector_key_ports *tp;
212
213                 tp = skb_flow_dissector_target(flow_dissector,
214                                                FLOW_DISSECTOR_KEY_ENC_PORTS,
215                                                target_container);
216                 tp->src = key->tp_src;
217                 tp->dst = key->tp_dst;
218         }
219
220         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_IP)) {
221                 struct flow_dissector_key_ip *ip;
222
223                 ip = skb_flow_dissector_target(flow_dissector,
224                                                FLOW_DISSECTOR_KEY_ENC_IP,
225                                                target_container);
226                 ip->tos = key->tos;
227                 ip->ttl = key->ttl;
228         }
229
230         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ENC_OPTS)) {
231                 struct flow_dissector_key_enc_opts *enc_opt;
232
233                 enc_opt = skb_flow_dissector_target(flow_dissector,
234                                                     FLOW_DISSECTOR_KEY_ENC_OPTS,
235                                                     target_container);
236
237                 if (info->options_len) {
238                         enc_opt->len = info->options_len;
239                         ip_tunnel_info_opts_get(enc_opt->data, info);
240                         enc_opt->dst_opt_type = info->key.tun_flags &
241                                                 TUNNEL_OPTIONS_PRESENT;
242                 }
243         }
244 }
245 EXPORT_SYMBOL(skb_flow_dissect_tunnel_info);
246
247 static enum flow_dissect_ret
248 __skb_flow_dissect_mpls(const struct sk_buff *skb,
249                         struct flow_dissector *flow_dissector,
250                         void *target_container, void *data, int nhoff, int hlen)
251 {
252         struct flow_dissector_key_keyid *key_keyid;
253         struct mpls_label *hdr, _hdr[2];
254         u32 entry, label;
255
256         if (!dissector_uses_key(flow_dissector,
257                                 FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
258             !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
259                 return FLOW_DISSECT_RET_OUT_GOOD;
260
261         hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
262                                    hlen, &_hdr);
263         if (!hdr)
264                 return FLOW_DISSECT_RET_OUT_BAD;
265
266         entry = ntohl(hdr[0].entry);
267         label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
268
269         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
270                 struct flow_dissector_key_mpls *key_mpls;
271
272                 key_mpls = skb_flow_dissector_target(flow_dissector,
273                                                      FLOW_DISSECTOR_KEY_MPLS,
274                                                      target_container);
275                 key_mpls->mpls_label = label;
276                 key_mpls->mpls_ttl = (entry & MPLS_LS_TTL_MASK)
277                                         >> MPLS_LS_TTL_SHIFT;
278                 key_mpls->mpls_tc = (entry & MPLS_LS_TC_MASK)
279                                         >> MPLS_LS_TC_SHIFT;
280                 key_mpls->mpls_bos = (entry & MPLS_LS_S_MASK)
281                                         >> MPLS_LS_S_SHIFT;
282         }
283
284         if (label == MPLS_LABEL_ENTROPY) {
285                 key_keyid = skb_flow_dissector_target(flow_dissector,
286                                                       FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
287                                                       target_container);
288                 key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK);
289         }
290         return FLOW_DISSECT_RET_OUT_GOOD;
291 }
292
293 static enum flow_dissect_ret
294 __skb_flow_dissect_arp(const struct sk_buff *skb,
295                        struct flow_dissector *flow_dissector,
296                        void *target_container, void *data, int nhoff, int hlen)
297 {
298         struct flow_dissector_key_arp *key_arp;
299         struct {
300                 unsigned char ar_sha[ETH_ALEN];
301                 unsigned char ar_sip[4];
302                 unsigned char ar_tha[ETH_ALEN];
303                 unsigned char ar_tip[4];
304         } *arp_eth, _arp_eth;
305         const struct arphdr *arp;
306         struct arphdr _arp;
307
308         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
309                 return FLOW_DISSECT_RET_OUT_GOOD;
310
311         arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
312                                    hlen, &_arp);
313         if (!arp)
314                 return FLOW_DISSECT_RET_OUT_BAD;
315
316         if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
317             arp->ar_pro != htons(ETH_P_IP) ||
318             arp->ar_hln != ETH_ALEN ||
319             arp->ar_pln != 4 ||
320             (arp->ar_op != htons(ARPOP_REPLY) &&
321              arp->ar_op != htons(ARPOP_REQUEST)))
322                 return FLOW_DISSECT_RET_OUT_BAD;
323
324         arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
325                                        sizeof(_arp_eth), data,
326                                        hlen, &_arp_eth);
327         if (!arp_eth)
328                 return FLOW_DISSECT_RET_OUT_BAD;
329
330         key_arp = skb_flow_dissector_target(flow_dissector,
331                                             FLOW_DISSECTOR_KEY_ARP,
332                                             target_container);
333
334         memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
335         memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
336
337         /* Only store the lower byte of the opcode;
338          * this covers ARPOP_REPLY and ARPOP_REQUEST.
339          */
340         key_arp->op = ntohs(arp->ar_op) & 0xff;
341
342         ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
343         ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
344
345         return FLOW_DISSECT_RET_OUT_GOOD;
346 }
347
348 static enum flow_dissect_ret
349 __skb_flow_dissect_gre(const struct sk_buff *skb,
350                        struct flow_dissector_key_control *key_control,
351                        struct flow_dissector *flow_dissector,
352                        void *target_container, void *data,
353                        __be16 *p_proto, int *p_nhoff, int *p_hlen,
354                        unsigned int flags)
355 {
356         struct flow_dissector_key_keyid *key_keyid;
357         struct gre_base_hdr *hdr, _hdr;
358         int offset = 0;
359         u16 gre_ver;
360
361         hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
362                                    data, *p_hlen, &_hdr);
363         if (!hdr)
364                 return FLOW_DISSECT_RET_OUT_BAD;
365
366         /* Only look inside GRE without routing */
367         if (hdr->flags & GRE_ROUTING)
368                 return FLOW_DISSECT_RET_OUT_GOOD;
369
370         /* Only look inside GRE for version 0 and 1 */
371         gre_ver = ntohs(hdr->flags & GRE_VERSION);
372         if (gre_ver > 1)
373                 return FLOW_DISSECT_RET_OUT_GOOD;
374
375         *p_proto = hdr->protocol;
376         if (gre_ver) {
377                 /* Version1 must be PPTP, and check the flags */
378                 if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
379                         return FLOW_DISSECT_RET_OUT_GOOD;
380         }
381
382         offset += sizeof(struct gre_base_hdr);
383
384         if (hdr->flags & GRE_CSUM)
385                 offset += sizeof(((struct gre_full_hdr *) 0)->csum) +
386                           sizeof(((struct gre_full_hdr *) 0)->reserved1);
387
388         if (hdr->flags & GRE_KEY) {
389                 const __be32 *keyid;
390                 __be32 _keyid;
391
392                 keyid = __skb_header_pointer(skb, *p_nhoff + offset,
393                                              sizeof(_keyid),
394                                              data, *p_hlen, &_keyid);
395                 if (!keyid)
396                         return FLOW_DISSECT_RET_OUT_BAD;
397
398                 if (dissector_uses_key(flow_dissector,
399                                        FLOW_DISSECTOR_KEY_GRE_KEYID)) {
400                         key_keyid = skb_flow_dissector_target(flow_dissector,
401                                                               FLOW_DISSECTOR_KEY_GRE_KEYID,
402                                                               target_container);
403                         if (gre_ver == 0)
404                                 key_keyid->keyid = *keyid;
405                         else
406                                 key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
407                 }
408                 offset += sizeof(((struct gre_full_hdr *) 0)->key);
409         }
410
411         if (hdr->flags & GRE_SEQ)
412                 offset += sizeof(((struct pptp_gre_header *) 0)->seq);
413
414         if (gre_ver == 0) {
415                 if (*p_proto == htons(ETH_P_TEB)) {
416                         const struct ethhdr *eth;
417                         struct ethhdr _eth;
418
419                         eth = __skb_header_pointer(skb, *p_nhoff + offset,
420                                                    sizeof(_eth),
421                                                    data, *p_hlen, &_eth);
422                         if (!eth)
423                                 return FLOW_DISSECT_RET_OUT_BAD;
424                         *p_proto = eth->h_proto;
425                         offset += sizeof(*eth);
426
427                         /* Cap headers that we access via pointers at the
428                          * end of the Ethernet header as our maximum alignment
429                          * at that point is only 2 bytes.
430                          */
431                         if (NET_IP_ALIGN)
432                                 *p_hlen = *p_nhoff + offset;
433                 }
434         } else { /* version 1, must be PPTP */
435                 u8 _ppp_hdr[PPP_HDRLEN];
436                 u8 *ppp_hdr;
437
438                 if (hdr->flags & GRE_ACK)
439                         offset += sizeof(((struct pptp_gre_header *) 0)->ack);
440
441                 ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
442                                                sizeof(_ppp_hdr),
443                                                data, *p_hlen, _ppp_hdr);
444                 if (!ppp_hdr)
445                         return FLOW_DISSECT_RET_OUT_BAD;
446
447                 switch (PPP_PROTOCOL(ppp_hdr)) {
448                 case PPP_IP:
449                         *p_proto = htons(ETH_P_IP);
450                         break;
451                 case PPP_IPV6:
452                         *p_proto = htons(ETH_P_IPV6);
453                         break;
454                 default:
455                         /* Could probably catch some more like MPLS */
456                         break;
457                 }
458
459                 offset += PPP_HDRLEN;
460         }
461
462         *p_nhoff += offset;
463         key_control->flags |= FLOW_DIS_ENCAPSULATION;
464         if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
465                 return FLOW_DISSECT_RET_OUT_GOOD;
466
467         return FLOW_DISSECT_RET_PROTO_AGAIN;
468 }
469
470 /**
471  * __skb_flow_dissect_batadv() - dissect batman-adv header
472  * @skb: sk_buff to with the batman-adv header
473  * @key_control: flow dissectors control key
474  * @data: raw buffer pointer to the packet, if NULL use skb->data
475  * @p_proto: pointer used to update the protocol to process next
476  * @p_nhoff: pointer used to update inner network header offset
477  * @hlen: packet header length
478  * @flags: any combination of FLOW_DISSECTOR_F_*
479  *
480  * ETH_P_BATMAN packets are tried to be dissected. Only
481  * &struct batadv_unicast packets are actually processed because they contain an
482  * inner ethernet header and are usually followed by actual network header. This
483  * allows the flow dissector to continue processing the packet.
484  *
485  * Return: FLOW_DISSECT_RET_PROTO_AGAIN when &struct batadv_unicast was found,
486  *  FLOW_DISSECT_RET_OUT_GOOD when dissector should stop after encapsulation,
487  *  otherwise FLOW_DISSECT_RET_OUT_BAD
488  */
489 static enum flow_dissect_ret
490 __skb_flow_dissect_batadv(const struct sk_buff *skb,
491                           struct flow_dissector_key_control *key_control,
492                           void *data, __be16 *p_proto, int *p_nhoff, int hlen,
493                           unsigned int flags)
494 {
495         struct {
496                 struct batadv_unicast_packet batadv_unicast;
497                 struct ethhdr eth;
498         } *hdr, _hdr;
499
500         hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr), data, hlen,
501                                    &_hdr);
502         if (!hdr)
503                 return FLOW_DISSECT_RET_OUT_BAD;
504
505         if (hdr->batadv_unicast.version != BATADV_COMPAT_VERSION)
506                 return FLOW_DISSECT_RET_OUT_BAD;
507
508         if (hdr->batadv_unicast.packet_type != BATADV_UNICAST)
509                 return FLOW_DISSECT_RET_OUT_BAD;
510
511         *p_proto = hdr->eth.h_proto;
512         *p_nhoff += sizeof(*hdr);
513
514         key_control->flags |= FLOW_DIS_ENCAPSULATION;
515         if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
516                 return FLOW_DISSECT_RET_OUT_GOOD;
517
518         return FLOW_DISSECT_RET_PROTO_AGAIN;
519 }
520
521 static void
522 __skb_flow_dissect_tcp(const struct sk_buff *skb,
523                        struct flow_dissector *flow_dissector,
524                        void *target_container, void *data, int thoff, int hlen)
525 {
526         struct flow_dissector_key_tcp *key_tcp;
527         struct tcphdr *th, _th;
528
529         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
530                 return;
531
532         th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
533         if (!th)
534                 return;
535
536         if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
537                 return;
538
539         key_tcp = skb_flow_dissector_target(flow_dissector,
540                                             FLOW_DISSECTOR_KEY_TCP,
541                                             target_container);
542         key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
543 }
544
545 static void
546 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
547                         struct flow_dissector *flow_dissector,
548                         void *target_container, void *data, const struct iphdr *iph)
549 {
550         struct flow_dissector_key_ip *key_ip;
551
552         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
553                 return;
554
555         key_ip = skb_flow_dissector_target(flow_dissector,
556                                            FLOW_DISSECTOR_KEY_IP,
557                                            target_container);
558         key_ip->tos = iph->tos;
559         key_ip->ttl = iph->ttl;
560 }
561
562 static void
563 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
564                         struct flow_dissector *flow_dissector,
565                         void *target_container, void *data, const struct ipv6hdr *iph)
566 {
567         struct flow_dissector_key_ip *key_ip;
568
569         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
570                 return;
571
572         key_ip = skb_flow_dissector_target(flow_dissector,
573                                            FLOW_DISSECTOR_KEY_IP,
574                                            target_container);
575         key_ip->tos = ipv6_get_dsfield(iph);
576         key_ip->ttl = iph->hop_limit;
577 }
578
579 /* Maximum number of protocol headers that can be parsed in
580  * __skb_flow_dissect
581  */
582 #define MAX_FLOW_DISSECT_HDRS   15
583
584 static bool skb_flow_dissect_allowed(int *num_hdrs)
585 {
586         ++*num_hdrs;
587
588         return (*num_hdrs <= MAX_FLOW_DISSECT_HDRS);
589 }
590
591 /**
592  * __skb_flow_dissect - extract the flow_keys struct and return it
593  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
594  * @flow_dissector: list of keys to dissect
595  * @target_container: target structure to put dissected values into
596  * @data: raw buffer pointer to the packet, if NULL use skb->data
597  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
598  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
599  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
600  *
601  * The function will try to retrieve individual keys into target specified
602  * by flow_dissector from either the skbuff or a raw buffer specified by the
603  * rest parameters.
604  *
605  * Caller must take care of zeroing target container memory.
606  */
607 bool __skb_flow_dissect(const struct sk_buff *skb,
608                         struct flow_dissector *flow_dissector,
609                         void *target_container,
610                         void *data, __be16 proto, int nhoff, int hlen,
611                         unsigned int flags)
612 {
613         struct flow_dissector_key_control *key_control;
614         struct flow_dissector_key_basic *key_basic;
615         struct flow_dissector_key_addrs *key_addrs;
616         struct flow_dissector_key_ports *key_ports;
617         struct flow_dissector_key_icmp *key_icmp;
618         struct flow_dissector_key_tags *key_tags;
619         struct flow_dissector_key_vlan *key_vlan;
620         enum flow_dissect_ret fdret;
621         enum flow_dissector_key_id dissector_vlan = FLOW_DISSECTOR_KEY_MAX;
622         int num_hdrs = 0;
623         u8 ip_proto = 0;
624         bool ret;
625
626         if (!data) {
627                 data = skb->data;
628                 proto = skb_vlan_tag_present(skb) ?
629                          skb->vlan_proto : skb->protocol;
630                 nhoff = skb_network_offset(skb);
631                 hlen = skb_headlen(skb);
632 #if IS_ENABLED(CONFIG_NET_DSA)
633                 if (unlikely(skb->dev && netdev_uses_dsa(skb->dev) &&
634                              proto == htons(ETH_P_XDSA))) {
635                         const struct dsa_device_ops *ops;
636                         int offset = 0;
637
638                         ops = skb->dev->dsa_ptr->tag_ops;
639                         if (ops->flow_dissect &&
640                             !ops->flow_dissect(skb, &proto, &offset)) {
641                                 hlen -= offset;
642                                 nhoff += offset;
643                         }
644                 }
645 #endif
646         }
647
648         /* It is ensured by skb_flow_dissector_init() that control key will
649          * be always present.
650          */
651         key_control = skb_flow_dissector_target(flow_dissector,
652                                                 FLOW_DISSECTOR_KEY_CONTROL,
653                                                 target_container);
654
655         /* It is ensured by skb_flow_dissector_init() that basic key will
656          * be always present.
657          */
658         key_basic = skb_flow_dissector_target(flow_dissector,
659                                               FLOW_DISSECTOR_KEY_BASIC,
660                                               target_container);
661
662         if (dissector_uses_key(flow_dissector,
663                                FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
664                 struct ethhdr *eth = eth_hdr(skb);
665                 struct flow_dissector_key_eth_addrs *key_eth_addrs;
666
667                 key_eth_addrs = skb_flow_dissector_target(flow_dissector,
668                                                           FLOW_DISSECTOR_KEY_ETH_ADDRS,
669                                                           target_container);
670                 memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
671         }
672
673 proto_again:
674         fdret = FLOW_DISSECT_RET_CONTINUE;
675
676         switch (proto) {
677         case htons(ETH_P_IP): {
678                 const struct iphdr *iph;
679                 struct iphdr _iph;
680
681                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
682                 if (!iph || iph->ihl < 5) {
683                         fdret = FLOW_DISSECT_RET_OUT_BAD;
684                         break;
685                 }
686
687                 nhoff += iph->ihl * 4;
688
689                 ip_proto = iph->protocol;
690
691                 if (dissector_uses_key(flow_dissector,
692                                        FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
693                         key_addrs = skb_flow_dissector_target(flow_dissector,
694                                                               FLOW_DISSECTOR_KEY_IPV4_ADDRS,
695                                                               target_container);
696
697                         memcpy(&key_addrs->v4addrs, &iph->saddr,
698                                sizeof(key_addrs->v4addrs));
699                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
700                 }
701
702                 if (ip_is_fragment(iph)) {
703                         key_control->flags |= FLOW_DIS_IS_FRAGMENT;
704
705                         if (iph->frag_off & htons(IP_OFFSET)) {
706                                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
707                                 break;
708                         } else {
709                                 key_control->flags |= FLOW_DIS_FIRST_FRAG;
710                                 if (!(flags &
711                                       FLOW_DISSECTOR_F_PARSE_1ST_FRAG)) {
712                                         fdret = FLOW_DISSECT_RET_OUT_GOOD;
713                                         break;
714                                 }
715                         }
716                 }
717
718                 __skb_flow_dissect_ipv4(skb, flow_dissector,
719                                         target_container, data, iph);
720
721                 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3) {
722                         fdret = FLOW_DISSECT_RET_OUT_GOOD;
723                         break;
724                 }
725
726                 break;
727         }
728         case htons(ETH_P_IPV6): {
729                 const struct ipv6hdr *iph;
730                 struct ipv6hdr _iph;
731
732                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
733                 if (!iph) {
734                         fdret = FLOW_DISSECT_RET_OUT_BAD;
735                         break;
736                 }
737
738                 ip_proto = iph->nexthdr;
739                 nhoff += sizeof(struct ipv6hdr);
740
741                 if (dissector_uses_key(flow_dissector,
742                                        FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
743                         key_addrs = skb_flow_dissector_target(flow_dissector,
744                                                               FLOW_DISSECTOR_KEY_IPV6_ADDRS,
745                                                               target_container);
746
747                         memcpy(&key_addrs->v6addrs, &iph->saddr,
748                                sizeof(key_addrs->v6addrs));
749                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
750                 }
751
752                 if ((dissector_uses_key(flow_dissector,
753                                         FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
754                      (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
755                     ip6_flowlabel(iph)) {
756                         __be32 flow_label = ip6_flowlabel(iph);
757
758                         if (dissector_uses_key(flow_dissector,
759                                                FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
760                                 key_tags = skb_flow_dissector_target(flow_dissector,
761                                                                      FLOW_DISSECTOR_KEY_FLOW_LABEL,
762                                                                      target_container);
763                                 key_tags->flow_label = ntohl(flow_label);
764                         }
765                         if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL) {
766                                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
767                                 break;
768                         }
769                 }
770
771                 __skb_flow_dissect_ipv6(skb, flow_dissector,
772                                         target_container, data, iph);
773
774                 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
775                         fdret = FLOW_DISSECT_RET_OUT_GOOD;
776
777                 break;
778         }
779         case htons(ETH_P_8021AD):
780         case htons(ETH_P_8021Q): {
781                 const struct vlan_hdr *vlan = NULL;
782                 struct vlan_hdr _vlan;
783                 __be16 saved_vlan_tpid = proto;
784
785                 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX &&
786                     skb && skb_vlan_tag_present(skb)) {
787                         proto = skb->protocol;
788                 } else {
789                         vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
790                                                     data, hlen, &_vlan);
791                         if (!vlan) {
792                                 fdret = FLOW_DISSECT_RET_OUT_BAD;
793                                 break;
794                         }
795
796                         proto = vlan->h_vlan_encapsulated_proto;
797                         nhoff += sizeof(*vlan);
798                 }
799
800                 if (dissector_vlan == FLOW_DISSECTOR_KEY_MAX) {
801                         dissector_vlan = FLOW_DISSECTOR_KEY_VLAN;
802                 } else if (dissector_vlan == FLOW_DISSECTOR_KEY_VLAN) {
803                         dissector_vlan = FLOW_DISSECTOR_KEY_CVLAN;
804                 } else {
805                         fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
806                         break;
807                 }
808
809                 if (dissector_uses_key(flow_dissector, dissector_vlan)) {
810                         key_vlan = skb_flow_dissector_target(flow_dissector,
811                                                              dissector_vlan,
812                                                              target_container);
813
814                         if (!vlan) {
815                                 key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
816                                 key_vlan->vlan_priority =
817                                         (skb_vlan_tag_get_prio(skb) >> VLAN_PRIO_SHIFT);
818                         } else {
819                                 key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
820                                         VLAN_VID_MASK;
821                                 key_vlan->vlan_priority =
822                                         (ntohs(vlan->h_vlan_TCI) &
823                                          VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
824                         }
825                         key_vlan->vlan_tpid = saved_vlan_tpid;
826                 }
827
828                 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
829                 break;
830         }
831         case htons(ETH_P_PPP_SES): {
832                 struct {
833                         struct pppoe_hdr hdr;
834                         __be16 proto;
835                 } *hdr, _hdr;
836                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
837                 if (!hdr) {
838                         fdret = FLOW_DISSECT_RET_OUT_BAD;
839                         break;
840                 }
841
842                 proto = hdr->proto;
843                 nhoff += PPPOE_SES_HLEN;
844                 switch (proto) {
845                 case htons(PPP_IP):
846                         proto = htons(ETH_P_IP);
847                         fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
848                         break;
849                 case htons(PPP_IPV6):
850                         proto = htons(ETH_P_IPV6);
851                         fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
852                         break;
853                 default:
854                         fdret = FLOW_DISSECT_RET_OUT_BAD;
855                         break;
856                 }
857                 break;
858         }
859         case htons(ETH_P_TIPC): {
860                 struct tipc_basic_hdr *hdr, _hdr;
861
862                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr),
863                                            data, hlen, &_hdr);
864                 if (!hdr) {
865                         fdret = FLOW_DISSECT_RET_OUT_BAD;
866                         break;
867                 }
868
869                 if (dissector_uses_key(flow_dissector,
870                                        FLOW_DISSECTOR_KEY_TIPC)) {
871                         key_addrs = skb_flow_dissector_target(flow_dissector,
872                                                               FLOW_DISSECTOR_KEY_TIPC,
873                                                               target_container);
874                         key_addrs->tipckey.key = tipc_hdr_rps_key(hdr);
875                         key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC;
876                 }
877                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
878                 break;
879         }
880
881         case htons(ETH_P_MPLS_UC):
882         case htons(ETH_P_MPLS_MC):
883                 fdret = __skb_flow_dissect_mpls(skb, flow_dissector,
884                                                 target_container, data,
885                                                 nhoff, hlen);
886                 break;
887         case htons(ETH_P_FCOE):
888                 if ((hlen - nhoff) < FCOE_HEADER_LEN) {
889                         fdret = FLOW_DISSECT_RET_OUT_BAD;
890                         break;
891                 }
892
893                 nhoff += FCOE_HEADER_LEN;
894                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
895                 break;
896
897         case htons(ETH_P_ARP):
898         case htons(ETH_P_RARP):
899                 fdret = __skb_flow_dissect_arp(skb, flow_dissector,
900                                                target_container, data,
901                                                nhoff, hlen);
902                 break;
903
904         case htons(ETH_P_BATMAN):
905                 fdret = __skb_flow_dissect_batadv(skb, key_control, data,
906                                                   &proto, &nhoff, hlen, flags);
907                 break;
908
909         default:
910                 fdret = FLOW_DISSECT_RET_OUT_BAD;
911                 break;
912         }
913
914         /* Process result of proto processing */
915         switch (fdret) {
916         case FLOW_DISSECT_RET_OUT_GOOD:
917                 goto out_good;
918         case FLOW_DISSECT_RET_PROTO_AGAIN:
919                 if (skb_flow_dissect_allowed(&num_hdrs))
920                         goto proto_again;
921                 goto out_good;
922         case FLOW_DISSECT_RET_CONTINUE:
923         case FLOW_DISSECT_RET_IPPROTO_AGAIN:
924                 break;
925         case FLOW_DISSECT_RET_OUT_BAD:
926         default:
927                 goto out_bad;
928         }
929
930 ip_proto_again:
931         fdret = FLOW_DISSECT_RET_CONTINUE;
932
933         switch (ip_proto) {
934         case IPPROTO_GRE:
935                 fdret = __skb_flow_dissect_gre(skb, key_control, flow_dissector,
936                                                target_container, data,
937                                                &proto, &nhoff, &hlen, flags);
938                 break;
939
940         case NEXTHDR_HOP:
941         case NEXTHDR_ROUTING:
942         case NEXTHDR_DEST: {
943                 u8 _opthdr[2], *opthdr;
944
945                 if (proto != htons(ETH_P_IPV6))
946                         break;
947
948                 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
949                                               data, hlen, &_opthdr);
950                 if (!opthdr) {
951                         fdret = FLOW_DISSECT_RET_OUT_BAD;
952                         break;
953                 }
954
955                 ip_proto = opthdr[0];
956                 nhoff += (opthdr[1] + 1) << 3;
957
958                 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
959                 break;
960         }
961         case NEXTHDR_FRAGMENT: {
962                 struct frag_hdr _fh, *fh;
963
964                 if (proto != htons(ETH_P_IPV6))
965                         break;
966
967                 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
968                                           data, hlen, &_fh);
969
970                 if (!fh) {
971                         fdret = FLOW_DISSECT_RET_OUT_BAD;
972                         break;
973                 }
974
975                 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
976
977                 nhoff += sizeof(_fh);
978                 ip_proto = fh->nexthdr;
979
980                 if (!(fh->frag_off & htons(IP6_OFFSET))) {
981                         key_control->flags |= FLOW_DIS_FIRST_FRAG;
982                         if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG) {
983                                 fdret = FLOW_DISSECT_RET_IPPROTO_AGAIN;
984                                 break;
985                         }
986                 }
987
988                 fdret = FLOW_DISSECT_RET_OUT_GOOD;
989                 break;
990         }
991         case IPPROTO_IPIP:
992                 proto = htons(ETH_P_IP);
993
994                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
995                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
996                         fdret = FLOW_DISSECT_RET_OUT_GOOD;
997                         break;
998                 }
999
1000                 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1001                 break;
1002
1003         case IPPROTO_IPV6:
1004                 proto = htons(ETH_P_IPV6);
1005
1006                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
1007                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP) {
1008                         fdret = FLOW_DISSECT_RET_OUT_GOOD;
1009                         break;
1010                 }
1011
1012                 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1013                 break;
1014
1015
1016         case IPPROTO_MPLS:
1017                 proto = htons(ETH_P_MPLS_UC);
1018                 fdret = FLOW_DISSECT_RET_PROTO_AGAIN;
1019                 break;
1020
1021         case IPPROTO_TCP:
1022                 __skb_flow_dissect_tcp(skb, flow_dissector, target_container,
1023                                        data, nhoff, hlen);
1024                 break;
1025
1026         default:
1027                 break;
1028         }
1029
1030         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_PORTS) &&
1031             !(key_control->flags & FLOW_DIS_IS_FRAGMENT)) {
1032                 key_ports = skb_flow_dissector_target(flow_dissector,
1033                                                       FLOW_DISSECTOR_KEY_PORTS,
1034                                                       target_container);
1035                 key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
1036                                                         data, hlen);
1037         }
1038
1039         if (dissector_uses_key(flow_dissector,
1040                                FLOW_DISSECTOR_KEY_ICMP)) {
1041                 key_icmp = skb_flow_dissector_target(flow_dissector,
1042                                                      FLOW_DISSECTOR_KEY_ICMP,
1043                                                      target_container);
1044                 key_icmp->icmp = skb_flow_get_be16(skb, nhoff, data, hlen);
1045         }
1046
1047         /* Process result of IP proto processing */
1048         switch (fdret) {
1049         case FLOW_DISSECT_RET_PROTO_AGAIN:
1050                 if (skb_flow_dissect_allowed(&num_hdrs))
1051                         goto proto_again;
1052                 break;
1053         case FLOW_DISSECT_RET_IPPROTO_AGAIN:
1054                 if (skb_flow_dissect_allowed(&num_hdrs))
1055                         goto ip_proto_again;
1056                 break;
1057         case FLOW_DISSECT_RET_OUT_GOOD:
1058         case FLOW_DISSECT_RET_CONTINUE:
1059                 break;
1060         case FLOW_DISSECT_RET_OUT_BAD:
1061         default:
1062                 goto out_bad;
1063         }
1064
1065 out_good:
1066         ret = true;
1067
1068 out:
1069         key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
1070         key_basic->n_proto = proto;
1071         key_basic->ip_proto = ip_proto;
1072
1073         return ret;
1074
1075 out_bad:
1076         ret = false;
1077         goto out;
1078 }
1079 EXPORT_SYMBOL(__skb_flow_dissect);
1080
1081 static siphash_key_t hashrnd __read_mostly;
1082 static __always_inline void __flow_hash_secret_init(void)
1083 {
1084         net_get_random_once(&hashrnd, sizeof(hashrnd));
1085 }
1086
1087 static const void *flow_keys_hash_start(const struct flow_keys *flow)
1088 {
1089         BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % SIPHASH_ALIGNMENT);
1090         return &flow->FLOW_KEYS_HASH_START_FIELD;
1091 }
1092
1093 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
1094 {
1095         size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
1096         BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
1097                      sizeof(*flow) - sizeof(flow->addrs));
1098
1099         switch (flow->control.addr_type) {
1100         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1101                 diff -= sizeof(flow->addrs.v4addrs);
1102                 break;
1103         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1104                 diff -= sizeof(flow->addrs.v6addrs);
1105                 break;
1106         case FLOW_DISSECTOR_KEY_TIPC:
1107                 diff -= sizeof(flow->addrs.tipckey);
1108                 break;
1109         }
1110         return sizeof(*flow) - diff;
1111 }
1112
1113 __be32 flow_get_u32_src(const struct flow_keys *flow)
1114 {
1115         switch (flow->control.addr_type) {
1116         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1117                 return flow->addrs.v4addrs.src;
1118         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1119                 return (__force __be32)ipv6_addr_hash(
1120                         &flow->addrs.v6addrs.src);
1121         case FLOW_DISSECTOR_KEY_TIPC:
1122                 return flow->addrs.tipckey.key;
1123         default:
1124                 return 0;
1125         }
1126 }
1127 EXPORT_SYMBOL(flow_get_u32_src);
1128
1129 __be32 flow_get_u32_dst(const struct flow_keys *flow)
1130 {
1131         switch (flow->control.addr_type) {
1132         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1133                 return flow->addrs.v4addrs.dst;
1134         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1135                 return (__force __be32)ipv6_addr_hash(
1136                         &flow->addrs.v6addrs.dst);
1137         default:
1138                 return 0;
1139         }
1140 }
1141 EXPORT_SYMBOL(flow_get_u32_dst);
1142
1143 static inline void __flow_hash_consistentify(struct flow_keys *keys)
1144 {
1145         int addr_diff, i;
1146
1147         switch (keys->control.addr_type) {
1148         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
1149                 addr_diff = (__force u32)keys->addrs.v4addrs.dst -
1150                             (__force u32)keys->addrs.v4addrs.src;
1151                 if ((addr_diff < 0) ||
1152                     (addr_diff == 0 &&
1153                      ((__force u16)keys->ports.dst <
1154                       (__force u16)keys->ports.src))) {
1155                         swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
1156                         swap(keys->ports.src, keys->ports.dst);
1157                 }
1158                 break;
1159         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
1160                 addr_diff = memcmp(&keys->addrs.v6addrs.dst,
1161                                    &keys->addrs.v6addrs.src,
1162                                    sizeof(keys->addrs.v6addrs.dst));
1163                 if ((addr_diff < 0) ||
1164                     (addr_diff == 0 &&
1165                      ((__force u16)keys->ports.dst <
1166                       (__force u16)keys->ports.src))) {
1167                         for (i = 0; i < 4; i++)
1168                                 swap(keys->addrs.v6addrs.src.s6_addr32[i],
1169                                      keys->addrs.v6addrs.dst.s6_addr32[i]);
1170                         swap(keys->ports.src, keys->ports.dst);
1171                 }
1172                 break;
1173         }
1174 }
1175
1176 static inline u32 __flow_hash_from_keys(struct flow_keys *keys,
1177                                         const siphash_key_t *keyval)
1178 {
1179         u32 hash;
1180
1181         __flow_hash_consistentify(keys);
1182
1183         hash = siphash(flow_keys_hash_start(keys),
1184                        flow_keys_hash_length(keys), keyval);
1185         if (!hash)
1186                 hash = 1;
1187
1188         return hash;
1189 }
1190
1191 u32 flow_hash_from_keys(struct flow_keys *keys)
1192 {
1193         __flow_hash_secret_init();
1194         return __flow_hash_from_keys(keys, &hashrnd);
1195 }
1196 EXPORT_SYMBOL(flow_hash_from_keys);
1197
1198 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
1199                                   struct flow_keys *keys,
1200                                   const siphash_key_t *keyval)
1201 {
1202         skb_flow_dissect_flow_keys(skb, keys,
1203                                    FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1204
1205         return __flow_hash_from_keys(keys, keyval);
1206 }
1207
1208 struct _flow_keys_digest_data {
1209         __be16  n_proto;
1210         u8      ip_proto;
1211         u8      padding;
1212         __be32  ports;
1213         __be32  src;
1214         __be32  dst;
1215 };
1216
1217 void make_flow_keys_digest(struct flow_keys_digest *digest,
1218                            const struct flow_keys *flow)
1219 {
1220         struct _flow_keys_digest_data *data =
1221             (struct _flow_keys_digest_data *)digest;
1222
1223         BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
1224
1225         memset(digest, 0, sizeof(*digest));
1226
1227         data->n_proto = flow->basic.n_proto;
1228         data->ip_proto = flow->basic.ip_proto;
1229         data->ports = flow->ports.ports;
1230         data->src = flow->addrs.v4addrs.src;
1231         data->dst = flow->addrs.v4addrs.dst;
1232 }
1233 EXPORT_SYMBOL(make_flow_keys_digest);
1234
1235 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
1236
1237 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1238 {
1239         struct flow_keys keys;
1240
1241         __flow_hash_secret_init();
1242
1243         memset(&keys, 0, sizeof(keys));
1244         __skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
1245                            NULL, 0, 0, 0,
1246                            FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
1247
1248         return __flow_hash_from_keys(&keys, &hashrnd);
1249 }
1250 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
1251
1252 /**
1253  * __skb_get_hash: calculate a flow hash
1254  * @skb: sk_buff to calculate flow hash from
1255  *
1256  * This function calculates a flow hash based on src/dst addresses
1257  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
1258  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
1259  * if hash is a canonical 4-tuple hash over transport ports.
1260  */
1261 void __skb_get_hash(struct sk_buff *skb)
1262 {
1263         struct flow_keys keys;
1264         u32 hash;
1265
1266         __flow_hash_secret_init();
1267
1268         hash = ___skb_get_hash(skb, &keys, &hashrnd);
1269
1270         __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1271 }
1272 EXPORT_SYMBOL(__skb_get_hash);
1273
1274 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1275                            const siphash_key_t *perturb)
1276 {
1277         struct flow_keys keys;
1278
1279         return ___skb_get_hash(skb, &keys, perturb);
1280 }
1281 EXPORT_SYMBOL(skb_get_hash_perturb);
1282
1283 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1284                    const struct flow_keys_basic *keys, int hlen)
1285 {
1286         u32 poff = keys->control.thoff;
1287
1288         /* skip L4 headers for fragments after the first */
1289         if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1290             !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1291                 return poff;
1292
1293         switch (keys->basic.ip_proto) {
1294         case IPPROTO_TCP: {
1295                 /* access doff as u8 to avoid unaligned access */
1296                 const u8 *doff;
1297                 u8 _doff;
1298
1299                 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1300                                             data, hlen, &_doff);
1301                 if (!doff)
1302                         return poff;
1303
1304                 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1305                 break;
1306         }
1307         case IPPROTO_UDP:
1308         case IPPROTO_UDPLITE:
1309                 poff += sizeof(struct udphdr);
1310                 break;
1311         /* For the rest, we do not really care about header
1312          * extensions at this point for now.
1313          */
1314         case IPPROTO_ICMP:
1315                 poff += sizeof(struct icmphdr);
1316                 break;
1317         case IPPROTO_ICMPV6:
1318                 poff += sizeof(struct icmp6hdr);
1319                 break;
1320         case IPPROTO_IGMP:
1321                 poff += sizeof(struct igmphdr);
1322                 break;
1323         case IPPROTO_DCCP:
1324                 poff += sizeof(struct dccp_hdr);
1325                 break;
1326         case IPPROTO_SCTP:
1327                 poff += sizeof(struct sctphdr);
1328                 break;
1329         }
1330
1331         return poff;
1332 }
1333
1334 /**
1335  * skb_get_poff - get the offset to the payload
1336  * @skb: sk_buff to get the payload offset from
1337  *
1338  * The function will get the offset to the payload as far as it could
1339  * be dissected.  The main user is currently BPF, so that we can dynamically
1340  * truncate packets without needing to push actual payload to the user
1341  * space and can analyze headers only, instead.
1342  */
1343 u32 skb_get_poff(const struct sk_buff *skb)
1344 {
1345         struct flow_keys_basic keys;
1346
1347         if (!skb_flow_dissect_flow_keys_basic(skb, &keys, NULL, 0, 0, 0, 0))
1348                 return 0;
1349
1350         return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1351 }
1352
1353 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1354 {
1355         memset(keys, 0, sizeof(*keys));
1356
1357         memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1358             sizeof(keys->addrs.v6addrs.src));
1359         memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1360             sizeof(keys->addrs.v6addrs.dst));
1361         keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1362         keys->ports.src = fl6->fl6_sport;
1363         keys->ports.dst = fl6->fl6_dport;
1364         keys->keyid.keyid = fl6->fl6_gre_key;
1365         keys->tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6);
1366         keys->basic.ip_proto = fl6->flowi6_proto;
1367
1368         return flow_hash_from_keys(keys);
1369 }
1370 EXPORT_SYMBOL(__get_hash_from_flowi6);
1371
1372 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1373         {
1374                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1375                 .offset = offsetof(struct flow_keys, control),
1376         },
1377         {
1378                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1379                 .offset = offsetof(struct flow_keys, basic),
1380         },
1381         {
1382                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1383                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1384         },
1385         {
1386                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1387                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1388         },
1389         {
1390                 .key_id = FLOW_DISSECTOR_KEY_TIPC,
1391                 .offset = offsetof(struct flow_keys, addrs.tipckey),
1392         },
1393         {
1394                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1395                 .offset = offsetof(struct flow_keys, ports),
1396         },
1397         {
1398                 .key_id = FLOW_DISSECTOR_KEY_VLAN,
1399                 .offset = offsetof(struct flow_keys, vlan),
1400         },
1401         {
1402                 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1403                 .offset = offsetof(struct flow_keys, tags),
1404         },
1405         {
1406                 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1407                 .offset = offsetof(struct flow_keys, keyid),
1408         },
1409 };
1410
1411 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1412         {
1413                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1414                 .offset = offsetof(struct flow_keys, control),
1415         },
1416         {
1417                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1418                 .offset = offsetof(struct flow_keys, basic),
1419         },
1420         {
1421                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1422                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1423         },
1424         {
1425                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1426                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1427         },
1428         {
1429                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1430                 .offset = offsetof(struct flow_keys, ports),
1431         },
1432 };
1433
1434 static const struct flow_dissector_key flow_keys_basic_dissector_keys[] = {
1435         {
1436                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1437                 .offset = offsetof(struct flow_keys, control),
1438         },
1439         {
1440                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1441                 .offset = offsetof(struct flow_keys, basic),
1442         },
1443 };
1444
1445 struct flow_dissector flow_keys_dissector __read_mostly;
1446 EXPORT_SYMBOL(flow_keys_dissector);
1447
1448 struct flow_dissector flow_keys_basic_dissector __read_mostly;
1449 EXPORT_SYMBOL(flow_keys_basic_dissector);
1450
1451 static int __init init_default_flow_dissectors(void)
1452 {
1453         skb_flow_dissector_init(&flow_keys_dissector,
1454                                 flow_keys_dissector_keys,
1455                                 ARRAY_SIZE(flow_keys_dissector_keys));
1456         skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1457                                 flow_keys_dissector_symmetric_keys,
1458                                 ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1459         skb_flow_dissector_init(&flow_keys_basic_dissector,
1460                                 flow_keys_basic_dissector_keys,
1461                                 ARRAY_SIZE(flow_keys_basic_dissector_keys));
1462         return 0;
1463 }
1464
1465 core_initcall(init_default_flow_dissectors);