net: neigh: don't call kfree_skb() under spin_lock_irqsave()
[platform/kernel/linux-rpi.git] / net / core / filter.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *      Jay Schulist <jschlst@samba.org>
13  *      Alexei Starovoitov <ast@plumgrid.com>
14  *      Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19
20 #include <linux/atomic.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/mm.h>
24 #include <linux/fcntl.h>
25 #include <linux/socket.h>
26 #include <linux/sock_diag.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/netdevice.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_arp.h>
32 #include <linux/gfp.h>
33 #include <net/inet_common.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <linux/skmsg.h>
39 #include <net/sock.h>
40 #include <net/flow_dissector.h>
41 #include <linux/errno.h>
42 #include <linux/timer.h>
43 #include <linux/uaccess.h>
44 #include <asm/unaligned.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80 #include <net/xdp.h>
81
82 static const struct bpf_func_proto *
83 bpf_sk_base_func_proto(enum bpf_func_id func_id);
84
85 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
86 {
87         if (in_compat_syscall()) {
88                 struct compat_sock_fprog f32;
89
90                 if (len != sizeof(f32))
91                         return -EINVAL;
92                 if (copy_from_sockptr(&f32, src, sizeof(f32)))
93                         return -EFAULT;
94                 memset(dst, 0, sizeof(*dst));
95                 dst->len = f32.len;
96                 dst->filter = compat_ptr(f32.filter);
97         } else {
98                 if (len != sizeof(*dst))
99                         return -EINVAL;
100                 if (copy_from_sockptr(dst, src, sizeof(*dst)))
101                         return -EFAULT;
102         }
103
104         return 0;
105 }
106 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
107
108 /**
109  *      sk_filter_trim_cap - run a packet through a socket filter
110  *      @sk: sock associated with &sk_buff
111  *      @skb: buffer to filter
112  *      @cap: limit on how short the eBPF program may trim the packet
113  *
114  * Run the eBPF program and then cut skb->data to correct size returned by
115  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
116  * than pkt_len we keep whole skb->data. This is the socket level
117  * wrapper to bpf_prog_run. It returns 0 if the packet should
118  * be accepted or -EPERM if the packet should be tossed.
119  *
120  */
121 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
122 {
123         int err;
124         struct sk_filter *filter;
125
126         /*
127          * If the skb was allocated from pfmemalloc reserves, only
128          * allow SOCK_MEMALLOC sockets to use it as this socket is
129          * helping free memory
130          */
131         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
132                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
133                 return -ENOMEM;
134         }
135         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
136         if (err)
137                 return err;
138
139         err = security_sock_rcv_skb(sk, skb);
140         if (err)
141                 return err;
142
143         rcu_read_lock();
144         filter = rcu_dereference(sk->sk_filter);
145         if (filter) {
146                 struct sock *save_sk = skb->sk;
147                 unsigned int pkt_len;
148
149                 skb->sk = sk;
150                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
151                 skb->sk = save_sk;
152                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
153         }
154         rcu_read_unlock();
155
156         return err;
157 }
158 EXPORT_SYMBOL(sk_filter_trim_cap);
159
160 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
161 {
162         return skb_get_poff(skb);
163 }
164
165 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
166 {
167         struct nlattr *nla;
168
169         if (skb_is_nonlinear(skb))
170                 return 0;
171
172         if (skb->len < sizeof(struct nlattr))
173                 return 0;
174
175         if (a > skb->len - sizeof(struct nlattr))
176                 return 0;
177
178         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
179         if (nla)
180                 return (void *) nla - (void *) skb->data;
181
182         return 0;
183 }
184
185 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
186 {
187         struct nlattr *nla;
188
189         if (skb_is_nonlinear(skb))
190                 return 0;
191
192         if (skb->len < sizeof(struct nlattr))
193                 return 0;
194
195         if (a > skb->len - sizeof(struct nlattr))
196                 return 0;
197
198         nla = (struct nlattr *) &skb->data[a];
199         if (nla->nla_len > skb->len - a)
200                 return 0;
201
202         nla = nla_find_nested(nla, x);
203         if (nla)
204                 return (void *) nla - (void *) skb->data;
205
206         return 0;
207 }
208
209 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
210            data, int, headlen, int, offset)
211 {
212         u8 tmp, *ptr;
213         const int len = sizeof(tmp);
214
215         if (offset >= 0) {
216                 if (headlen - offset >= len)
217                         return *(u8 *)(data + offset);
218                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
219                         return tmp;
220         } else {
221                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
222                 if (likely(ptr))
223                         return *(u8 *)ptr;
224         }
225
226         return -EFAULT;
227 }
228
229 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
230            int, offset)
231 {
232         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
233                                          offset);
234 }
235
236 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
237            data, int, headlen, int, offset)
238 {
239         u16 tmp, *ptr;
240         const int len = sizeof(tmp);
241
242         if (offset >= 0) {
243                 if (headlen - offset >= len)
244                         return get_unaligned_be16(data + offset);
245                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
246                         return be16_to_cpu(tmp);
247         } else {
248                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
249                 if (likely(ptr))
250                         return get_unaligned_be16(ptr);
251         }
252
253         return -EFAULT;
254 }
255
256 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
257            int, offset)
258 {
259         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
260                                           offset);
261 }
262
263 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
264            data, int, headlen, int, offset)
265 {
266         u32 tmp, *ptr;
267         const int len = sizeof(tmp);
268
269         if (likely(offset >= 0)) {
270                 if (headlen - offset >= len)
271                         return get_unaligned_be32(data + offset);
272                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
273                         return be32_to_cpu(tmp);
274         } else {
275                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
276                 if (likely(ptr))
277                         return get_unaligned_be32(ptr);
278         }
279
280         return -EFAULT;
281 }
282
283 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
284            int, offset)
285 {
286         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
287                                           offset);
288 }
289
290 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
291                               struct bpf_insn *insn_buf)
292 {
293         struct bpf_insn *insn = insn_buf;
294
295         switch (skb_field) {
296         case SKF_AD_MARK:
297                 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
298
299                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
300                                       offsetof(struct sk_buff, mark));
301                 break;
302
303         case SKF_AD_PKTTYPE:
304                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
305                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
306 #ifdef __BIG_ENDIAN_BITFIELD
307                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
308 #endif
309                 break;
310
311         case SKF_AD_QUEUE:
312                 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
313
314                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
315                                       offsetof(struct sk_buff, queue_mapping));
316                 break;
317
318         case SKF_AD_VLAN_TAG:
319                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
320
321                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
322                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
323                                       offsetof(struct sk_buff, vlan_tci));
324                 break;
325         case SKF_AD_VLAN_TAG_PRESENT:
326                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
327                 if (PKT_VLAN_PRESENT_BIT)
328                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
329                 if (PKT_VLAN_PRESENT_BIT < 7)
330                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
331                 break;
332         }
333
334         return insn - insn_buf;
335 }
336
337 static bool convert_bpf_extensions(struct sock_filter *fp,
338                                    struct bpf_insn **insnp)
339 {
340         struct bpf_insn *insn = *insnp;
341         u32 cnt;
342
343         switch (fp->k) {
344         case SKF_AD_OFF + SKF_AD_PROTOCOL:
345                 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
346
347                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
348                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
349                                       offsetof(struct sk_buff, protocol));
350                 /* A = ntohs(A) [emitting a nop or swap16] */
351                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
352                 break;
353
354         case SKF_AD_OFF + SKF_AD_PKTTYPE:
355                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
356                 insn += cnt - 1;
357                 break;
358
359         case SKF_AD_OFF + SKF_AD_IFINDEX:
360         case SKF_AD_OFF + SKF_AD_HATYPE:
361                 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
362                 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
363
364                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
365                                       BPF_REG_TMP, BPF_REG_CTX,
366                                       offsetof(struct sk_buff, dev));
367                 /* if (tmp != 0) goto pc + 1 */
368                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
369                 *insn++ = BPF_EXIT_INSN();
370                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
371                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
372                                             offsetof(struct net_device, ifindex));
373                 else
374                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
375                                             offsetof(struct net_device, type));
376                 break;
377
378         case SKF_AD_OFF + SKF_AD_MARK:
379                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
380                 insn += cnt - 1;
381                 break;
382
383         case SKF_AD_OFF + SKF_AD_RXHASH:
384                 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
385
386                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
387                                     offsetof(struct sk_buff, hash));
388                 break;
389
390         case SKF_AD_OFF + SKF_AD_QUEUE:
391                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
392                 insn += cnt - 1;
393                 break;
394
395         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
396                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
397                                          BPF_REG_A, BPF_REG_CTX, insn);
398                 insn += cnt - 1;
399                 break;
400
401         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
402                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
403                                          BPF_REG_A, BPF_REG_CTX, insn);
404                 insn += cnt - 1;
405                 break;
406
407         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
408                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
409
410                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
411                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
412                                       offsetof(struct sk_buff, vlan_proto));
413                 /* A = ntohs(A) [emitting a nop or swap16] */
414                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
415                 break;
416
417         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
418         case SKF_AD_OFF + SKF_AD_NLATTR:
419         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
420         case SKF_AD_OFF + SKF_AD_CPU:
421         case SKF_AD_OFF + SKF_AD_RANDOM:
422                 /* arg1 = CTX */
423                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
424                 /* arg2 = A */
425                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
426                 /* arg3 = X */
427                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
428                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
429                 switch (fp->k) {
430                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
431                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
432                         break;
433                 case SKF_AD_OFF + SKF_AD_NLATTR:
434                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
435                         break;
436                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
437                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
438                         break;
439                 case SKF_AD_OFF + SKF_AD_CPU:
440                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
441                         break;
442                 case SKF_AD_OFF + SKF_AD_RANDOM:
443                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
444                         bpf_user_rnd_init_once();
445                         break;
446                 }
447                 break;
448
449         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
450                 /* A ^= X */
451                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
452                 break;
453
454         default:
455                 /* This is just a dummy call to avoid letting the compiler
456                  * evict __bpf_call_base() as an optimization. Placed here
457                  * where no-one bothers.
458                  */
459                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
460                 return false;
461         }
462
463         *insnp = insn;
464         return true;
465 }
466
467 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
468 {
469         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
470         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
471         bool endian = BPF_SIZE(fp->code) == BPF_H ||
472                       BPF_SIZE(fp->code) == BPF_W;
473         bool indirect = BPF_MODE(fp->code) == BPF_IND;
474         const int ip_align = NET_IP_ALIGN;
475         struct bpf_insn *insn = *insnp;
476         int offset = fp->k;
477
478         if (!indirect &&
479             ((unaligned_ok && offset >= 0) ||
480              (!unaligned_ok && offset >= 0 &&
481               offset + ip_align >= 0 &&
482               offset + ip_align % size == 0))) {
483                 bool ldx_off_ok = offset <= S16_MAX;
484
485                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
486                 if (offset)
487                         *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
488                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
489                                       size, 2 + endian + (!ldx_off_ok * 2));
490                 if (ldx_off_ok) {
491                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
492                                               BPF_REG_D, offset);
493                 } else {
494                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
495                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
496                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
497                                               BPF_REG_TMP, 0);
498                 }
499                 if (endian)
500                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
501                 *insn++ = BPF_JMP_A(8);
502         }
503
504         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
505         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
506         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
507         if (!indirect) {
508                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
509         } else {
510                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
511                 if (fp->k)
512                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
513         }
514
515         switch (BPF_SIZE(fp->code)) {
516         case BPF_B:
517                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
518                 break;
519         case BPF_H:
520                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
521                 break;
522         case BPF_W:
523                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
524                 break;
525         default:
526                 return false;
527         }
528
529         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
530         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
531         *insn   = BPF_EXIT_INSN();
532
533         *insnp = insn;
534         return true;
535 }
536
537 /**
538  *      bpf_convert_filter - convert filter program
539  *      @prog: the user passed filter program
540  *      @len: the length of the user passed filter program
541  *      @new_prog: allocated 'struct bpf_prog' or NULL
542  *      @new_len: pointer to store length of converted program
543  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
544  *
545  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
546  * style extended BPF (eBPF).
547  * Conversion workflow:
548  *
549  * 1) First pass for calculating the new program length:
550  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
551  *
552  * 2) 2nd pass to remap in two passes: 1st pass finds new
553  *    jump offsets, 2nd pass remapping:
554  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
555  */
556 static int bpf_convert_filter(struct sock_filter *prog, int len,
557                               struct bpf_prog *new_prog, int *new_len,
558                               bool *seen_ld_abs)
559 {
560         int new_flen = 0, pass = 0, target, i, stack_off;
561         struct bpf_insn *new_insn, *first_insn = NULL;
562         struct sock_filter *fp;
563         int *addrs = NULL;
564         u8 bpf_src;
565
566         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
567         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
568
569         if (len <= 0 || len > BPF_MAXINSNS)
570                 return -EINVAL;
571
572         if (new_prog) {
573                 first_insn = new_prog->insnsi;
574                 addrs = kcalloc(len, sizeof(*addrs),
575                                 GFP_KERNEL | __GFP_NOWARN);
576                 if (!addrs)
577                         return -ENOMEM;
578         }
579
580 do_pass:
581         new_insn = first_insn;
582         fp = prog;
583
584         /* Classic BPF related prologue emission. */
585         if (new_prog) {
586                 /* Classic BPF expects A and X to be reset first. These need
587                  * to be guaranteed to be the first two instructions.
588                  */
589                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
590                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
591
592                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
593                  * In eBPF case it's done by the compiler, here we need to
594                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
595                  */
596                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
597                 if (*seen_ld_abs) {
598                         /* For packet access in classic BPF, cache skb->data
599                          * in callee-saved BPF R8 and skb->len - skb->data_len
600                          * (headlen) in BPF R9. Since classic BPF is read-only
601                          * on CTX, we only need to cache it once.
602                          */
603                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
604                                                   BPF_REG_D, BPF_REG_CTX,
605                                                   offsetof(struct sk_buff, data));
606                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
607                                                   offsetof(struct sk_buff, len));
608                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
609                                                   offsetof(struct sk_buff, data_len));
610                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
611                 }
612         } else {
613                 new_insn += 3;
614         }
615
616         for (i = 0; i < len; fp++, i++) {
617                 struct bpf_insn tmp_insns[32] = { };
618                 struct bpf_insn *insn = tmp_insns;
619
620                 if (addrs)
621                         addrs[i] = new_insn - first_insn;
622
623                 switch (fp->code) {
624                 /* All arithmetic insns and skb loads map as-is. */
625                 case BPF_ALU | BPF_ADD | BPF_X:
626                 case BPF_ALU | BPF_ADD | BPF_K:
627                 case BPF_ALU | BPF_SUB | BPF_X:
628                 case BPF_ALU | BPF_SUB | BPF_K:
629                 case BPF_ALU | BPF_AND | BPF_X:
630                 case BPF_ALU | BPF_AND | BPF_K:
631                 case BPF_ALU | BPF_OR | BPF_X:
632                 case BPF_ALU | BPF_OR | BPF_K:
633                 case BPF_ALU | BPF_LSH | BPF_X:
634                 case BPF_ALU | BPF_LSH | BPF_K:
635                 case BPF_ALU | BPF_RSH | BPF_X:
636                 case BPF_ALU | BPF_RSH | BPF_K:
637                 case BPF_ALU | BPF_XOR | BPF_X:
638                 case BPF_ALU | BPF_XOR | BPF_K:
639                 case BPF_ALU | BPF_MUL | BPF_X:
640                 case BPF_ALU | BPF_MUL | BPF_K:
641                 case BPF_ALU | BPF_DIV | BPF_X:
642                 case BPF_ALU | BPF_DIV | BPF_K:
643                 case BPF_ALU | BPF_MOD | BPF_X:
644                 case BPF_ALU | BPF_MOD | BPF_K:
645                 case BPF_ALU | BPF_NEG:
646                 case BPF_LD | BPF_ABS | BPF_W:
647                 case BPF_LD | BPF_ABS | BPF_H:
648                 case BPF_LD | BPF_ABS | BPF_B:
649                 case BPF_LD | BPF_IND | BPF_W:
650                 case BPF_LD | BPF_IND | BPF_H:
651                 case BPF_LD | BPF_IND | BPF_B:
652                         /* Check for overloaded BPF extension and
653                          * directly convert it if found, otherwise
654                          * just move on with mapping.
655                          */
656                         if (BPF_CLASS(fp->code) == BPF_LD &&
657                             BPF_MODE(fp->code) == BPF_ABS &&
658                             convert_bpf_extensions(fp, &insn))
659                                 break;
660                         if (BPF_CLASS(fp->code) == BPF_LD &&
661                             convert_bpf_ld_abs(fp, &insn)) {
662                                 *seen_ld_abs = true;
663                                 break;
664                         }
665
666                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
667                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
668                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
669                                 /* Error with exception code on div/mod by 0.
670                                  * For cBPF programs, this was always return 0.
671                                  */
672                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
673                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
674                                 *insn++ = BPF_EXIT_INSN();
675                         }
676
677                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
678                         break;
679
680                 /* Jump transformation cannot use BPF block macros
681                  * everywhere as offset calculation and target updates
682                  * require a bit more work than the rest, i.e. jump
683                  * opcodes map as-is, but offsets need adjustment.
684                  */
685
686 #define BPF_EMIT_JMP                                                    \
687         do {                                                            \
688                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
689                 s32 off;                                                \
690                                                                         \
691                 if (target >= len || target < 0)                        \
692                         goto err;                                       \
693                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
694                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
695                 off -= insn - tmp_insns;                                \
696                 /* Reject anything not fitting into insn->off. */       \
697                 if (off < off_min || off > off_max)                     \
698                         goto err;                                       \
699                 insn->off = off;                                        \
700         } while (0)
701
702                 case BPF_JMP | BPF_JA:
703                         target = i + fp->k + 1;
704                         insn->code = fp->code;
705                         BPF_EMIT_JMP;
706                         break;
707
708                 case BPF_JMP | BPF_JEQ | BPF_K:
709                 case BPF_JMP | BPF_JEQ | BPF_X:
710                 case BPF_JMP | BPF_JSET | BPF_K:
711                 case BPF_JMP | BPF_JSET | BPF_X:
712                 case BPF_JMP | BPF_JGT | BPF_K:
713                 case BPF_JMP | BPF_JGT | BPF_X:
714                 case BPF_JMP | BPF_JGE | BPF_K:
715                 case BPF_JMP | BPF_JGE | BPF_X:
716                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
717                                 /* BPF immediates are signed, zero extend
718                                  * immediate into tmp register and use it
719                                  * in compare insn.
720                                  */
721                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
722
723                                 insn->dst_reg = BPF_REG_A;
724                                 insn->src_reg = BPF_REG_TMP;
725                                 bpf_src = BPF_X;
726                         } else {
727                                 insn->dst_reg = BPF_REG_A;
728                                 insn->imm = fp->k;
729                                 bpf_src = BPF_SRC(fp->code);
730                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
731                         }
732
733                         /* Common case where 'jump_false' is next insn. */
734                         if (fp->jf == 0) {
735                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
736                                 target = i + fp->jt + 1;
737                                 BPF_EMIT_JMP;
738                                 break;
739                         }
740
741                         /* Convert some jumps when 'jump_true' is next insn. */
742                         if (fp->jt == 0) {
743                                 switch (BPF_OP(fp->code)) {
744                                 case BPF_JEQ:
745                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
746                                         break;
747                                 case BPF_JGT:
748                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
749                                         break;
750                                 case BPF_JGE:
751                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
752                                         break;
753                                 default:
754                                         goto jmp_rest;
755                                 }
756
757                                 target = i + fp->jf + 1;
758                                 BPF_EMIT_JMP;
759                                 break;
760                         }
761 jmp_rest:
762                         /* Other jumps are mapped into two insns: Jxx and JA. */
763                         target = i + fp->jt + 1;
764                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
765                         BPF_EMIT_JMP;
766                         insn++;
767
768                         insn->code = BPF_JMP | BPF_JA;
769                         target = i + fp->jf + 1;
770                         BPF_EMIT_JMP;
771                         break;
772
773                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
774                 case BPF_LDX | BPF_MSH | BPF_B: {
775                         struct sock_filter tmp = {
776                                 .code   = BPF_LD | BPF_ABS | BPF_B,
777                                 .k      = fp->k,
778                         };
779
780                         *seen_ld_abs = true;
781
782                         /* X = A */
783                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
784                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
785                         convert_bpf_ld_abs(&tmp, &insn);
786                         insn++;
787                         /* A &= 0xf */
788                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
789                         /* A <<= 2 */
790                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
791                         /* tmp = X */
792                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
793                         /* X = A */
794                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
795                         /* A = tmp */
796                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
797                         break;
798                 }
799                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
800                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
801                  */
802                 case BPF_RET | BPF_A:
803                 case BPF_RET | BPF_K:
804                         if (BPF_RVAL(fp->code) == BPF_K)
805                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
806                                                         0, fp->k);
807                         *insn = BPF_EXIT_INSN();
808                         break;
809
810                 /* Store to stack. */
811                 case BPF_ST:
812                 case BPF_STX:
813                         stack_off = fp->k * 4  + 4;
814                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
815                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
816                                             -stack_off);
817                         /* check_load_and_stores() verifies that classic BPF can
818                          * load from stack only after write, so tracking
819                          * stack_depth for ST|STX insns is enough
820                          */
821                         if (new_prog && new_prog->aux->stack_depth < stack_off)
822                                 new_prog->aux->stack_depth = stack_off;
823                         break;
824
825                 /* Load from stack. */
826                 case BPF_LD | BPF_MEM:
827                 case BPF_LDX | BPF_MEM:
828                         stack_off = fp->k * 4  + 4;
829                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
830                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
831                                             -stack_off);
832                         break;
833
834                 /* A = K or X = K */
835                 case BPF_LD | BPF_IMM:
836                 case BPF_LDX | BPF_IMM:
837                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
838                                               BPF_REG_A : BPF_REG_X, fp->k);
839                         break;
840
841                 /* X = A */
842                 case BPF_MISC | BPF_TAX:
843                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
844                         break;
845
846                 /* A = X */
847                 case BPF_MISC | BPF_TXA:
848                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
849                         break;
850
851                 /* A = skb->len or X = skb->len */
852                 case BPF_LD | BPF_W | BPF_LEN:
853                 case BPF_LDX | BPF_W | BPF_LEN:
854                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
855                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
856                                             offsetof(struct sk_buff, len));
857                         break;
858
859                 /* Access seccomp_data fields. */
860                 case BPF_LDX | BPF_ABS | BPF_W:
861                         /* A = *(u32 *) (ctx + K) */
862                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
863                         break;
864
865                 /* Unknown instruction. */
866                 default:
867                         goto err;
868                 }
869
870                 insn++;
871                 if (new_prog)
872                         memcpy(new_insn, tmp_insns,
873                                sizeof(*insn) * (insn - tmp_insns));
874                 new_insn += insn - tmp_insns;
875         }
876
877         if (!new_prog) {
878                 /* Only calculating new length. */
879                 *new_len = new_insn - first_insn;
880                 if (*seen_ld_abs)
881                         *new_len += 4; /* Prologue bits. */
882                 return 0;
883         }
884
885         pass++;
886         if (new_flen != new_insn - first_insn) {
887                 new_flen = new_insn - first_insn;
888                 if (pass > 2)
889                         goto err;
890                 goto do_pass;
891         }
892
893         kfree(addrs);
894         BUG_ON(*new_len != new_flen);
895         return 0;
896 err:
897         kfree(addrs);
898         return -EINVAL;
899 }
900
901 /* Security:
902  *
903  * As we dont want to clear mem[] array for each packet going through
904  * __bpf_prog_run(), we check that filter loaded by user never try to read
905  * a cell if not previously written, and we check all branches to be sure
906  * a malicious user doesn't try to abuse us.
907  */
908 static int check_load_and_stores(const struct sock_filter *filter, int flen)
909 {
910         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
911         int pc, ret = 0;
912
913         BUILD_BUG_ON(BPF_MEMWORDS > 16);
914
915         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
916         if (!masks)
917                 return -ENOMEM;
918
919         memset(masks, 0xff, flen * sizeof(*masks));
920
921         for (pc = 0; pc < flen; pc++) {
922                 memvalid &= masks[pc];
923
924                 switch (filter[pc].code) {
925                 case BPF_ST:
926                 case BPF_STX:
927                         memvalid |= (1 << filter[pc].k);
928                         break;
929                 case BPF_LD | BPF_MEM:
930                 case BPF_LDX | BPF_MEM:
931                         if (!(memvalid & (1 << filter[pc].k))) {
932                                 ret = -EINVAL;
933                                 goto error;
934                         }
935                         break;
936                 case BPF_JMP | BPF_JA:
937                         /* A jump must set masks on target */
938                         masks[pc + 1 + filter[pc].k] &= memvalid;
939                         memvalid = ~0;
940                         break;
941                 case BPF_JMP | BPF_JEQ | BPF_K:
942                 case BPF_JMP | BPF_JEQ | BPF_X:
943                 case BPF_JMP | BPF_JGE | BPF_K:
944                 case BPF_JMP | BPF_JGE | BPF_X:
945                 case BPF_JMP | BPF_JGT | BPF_K:
946                 case BPF_JMP | BPF_JGT | BPF_X:
947                 case BPF_JMP | BPF_JSET | BPF_K:
948                 case BPF_JMP | BPF_JSET | BPF_X:
949                         /* A jump must set masks on targets */
950                         masks[pc + 1 + filter[pc].jt] &= memvalid;
951                         masks[pc + 1 + filter[pc].jf] &= memvalid;
952                         memvalid = ~0;
953                         break;
954                 }
955         }
956 error:
957         kfree(masks);
958         return ret;
959 }
960
961 static bool chk_code_allowed(u16 code_to_probe)
962 {
963         static const bool codes[] = {
964                 /* 32 bit ALU operations */
965                 [BPF_ALU | BPF_ADD | BPF_K] = true,
966                 [BPF_ALU | BPF_ADD | BPF_X] = true,
967                 [BPF_ALU | BPF_SUB | BPF_K] = true,
968                 [BPF_ALU | BPF_SUB | BPF_X] = true,
969                 [BPF_ALU | BPF_MUL | BPF_K] = true,
970                 [BPF_ALU | BPF_MUL | BPF_X] = true,
971                 [BPF_ALU | BPF_DIV | BPF_K] = true,
972                 [BPF_ALU | BPF_DIV | BPF_X] = true,
973                 [BPF_ALU | BPF_MOD | BPF_K] = true,
974                 [BPF_ALU | BPF_MOD | BPF_X] = true,
975                 [BPF_ALU | BPF_AND | BPF_K] = true,
976                 [BPF_ALU | BPF_AND | BPF_X] = true,
977                 [BPF_ALU | BPF_OR | BPF_K] = true,
978                 [BPF_ALU | BPF_OR | BPF_X] = true,
979                 [BPF_ALU | BPF_XOR | BPF_K] = true,
980                 [BPF_ALU | BPF_XOR | BPF_X] = true,
981                 [BPF_ALU | BPF_LSH | BPF_K] = true,
982                 [BPF_ALU | BPF_LSH | BPF_X] = true,
983                 [BPF_ALU | BPF_RSH | BPF_K] = true,
984                 [BPF_ALU | BPF_RSH | BPF_X] = true,
985                 [BPF_ALU | BPF_NEG] = true,
986                 /* Load instructions */
987                 [BPF_LD | BPF_W | BPF_ABS] = true,
988                 [BPF_LD | BPF_H | BPF_ABS] = true,
989                 [BPF_LD | BPF_B | BPF_ABS] = true,
990                 [BPF_LD | BPF_W | BPF_LEN] = true,
991                 [BPF_LD | BPF_W | BPF_IND] = true,
992                 [BPF_LD | BPF_H | BPF_IND] = true,
993                 [BPF_LD | BPF_B | BPF_IND] = true,
994                 [BPF_LD | BPF_IMM] = true,
995                 [BPF_LD | BPF_MEM] = true,
996                 [BPF_LDX | BPF_W | BPF_LEN] = true,
997                 [BPF_LDX | BPF_B | BPF_MSH] = true,
998                 [BPF_LDX | BPF_IMM] = true,
999                 [BPF_LDX | BPF_MEM] = true,
1000                 /* Store instructions */
1001                 [BPF_ST] = true,
1002                 [BPF_STX] = true,
1003                 /* Misc instructions */
1004                 [BPF_MISC | BPF_TAX] = true,
1005                 [BPF_MISC | BPF_TXA] = true,
1006                 /* Return instructions */
1007                 [BPF_RET | BPF_K] = true,
1008                 [BPF_RET | BPF_A] = true,
1009                 /* Jump instructions */
1010                 [BPF_JMP | BPF_JA] = true,
1011                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1012                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1013                 [BPF_JMP | BPF_JGE | BPF_K] = true,
1014                 [BPF_JMP | BPF_JGE | BPF_X] = true,
1015                 [BPF_JMP | BPF_JGT | BPF_K] = true,
1016                 [BPF_JMP | BPF_JGT | BPF_X] = true,
1017                 [BPF_JMP | BPF_JSET | BPF_K] = true,
1018                 [BPF_JMP | BPF_JSET | BPF_X] = true,
1019         };
1020
1021         if (code_to_probe >= ARRAY_SIZE(codes))
1022                 return false;
1023
1024         return codes[code_to_probe];
1025 }
1026
1027 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1028                                 unsigned int flen)
1029 {
1030         if (filter == NULL)
1031                 return false;
1032         if (flen == 0 || flen > BPF_MAXINSNS)
1033                 return false;
1034
1035         return true;
1036 }
1037
1038 /**
1039  *      bpf_check_classic - verify socket filter code
1040  *      @filter: filter to verify
1041  *      @flen: length of filter
1042  *
1043  * Check the user's filter code. If we let some ugly
1044  * filter code slip through kaboom! The filter must contain
1045  * no references or jumps that are out of range, no illegal
1046  * instructions, and must end with a RET instruction.
1047  *
1048  * All jumps are forward as they are not signed.
1049  *
1050  * Returns 0 if the rule set is legal or -EINVAL if not.
1051  */
1052 static int bpf_check_classic(const struct sock_filter *filter,
1053                              unsigned int flen)
1054 {
1055         bool anc_found;
1056         int pc;
1057
1058         /* Check the filter code now */
1059         for (pc = 0; pc < flen; pc++) {
1060                 const struct sock_filter *ftest = &filter[pc];
1061
1062                 /* May we actually operate on this code? */
1063                 if (!chk_code_allowed(ftest->code))
1064                         return -EINVAL;
1065
1066                 /* Some instructions need special checks */
1067                 switch (ftest->code) {
1068                 case BPF_ALU | BPF_DIV | BPF_K:
1069                 case BPF_ALU | BPF_MOD | BPF_K:
1070                         /* Check for division by zero */
1071                         if (ftest->k == 0)
1072                                 return -EINVAL;
1073                         break;
1074                 case BPF_ALU | BPF_LSH | BPF_K:
1075                 case BPF_ALU | BPF_RSH | BPF_K:
1076                         if (ftest->k >= 32)
1077                                 return -EINVAL;
1078                         break;
1079                 case BPF_LD | BPF_MEM:
1080                 case BPF_LDX | BPF_MEM:
1081                 case BPF_ST:
1082                 case BPF_STX:
1083                         /* Check for invalid memory addresses */
1084                         if (ftest->k >= BPF_MEMWORDS)
1085                                 return -EINVAL;
1086                         break;
1087                 case BPF_JMP | BPF_JA:
1088                         /* Note, the large ftest->k might cause loops.
1089                          * Compare this with conditional jumps below,
1090                          * where offsets are limited. --ANK (981016)
1091                          */
1092                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1093                                 return -EINVAL;
1094                         break;
1095                 case BPF_JMP | BPF_JEQ | BPF_K:
1096                 case BPF_JMP | BPF_JEQ | BPF_X:
1097                 case BPF_JMP | BPF_JGE | BPF_K:
1098                 case BPF_JMP | BPF_JGE | BPF_X:
1099                 case BPF_JMP | BPF_JGT | BPF_K:
1100                 case BPF_JMP | BPF_JGT | BPF_X:
1101                 case BPF_JMP | BPF_JSET | BPF_K:
1102                 case BPF_JMP | BPF_JSET | BPF_X:
1103                         /* Both conditionals must be safe */
1104                         if (pc + ftest->jt + 1 >= flen ||
1105                             pc + ftest->jf + 1 >= flen)
1106                                 return -EINVAL;
1107                         break;
1108                 case BPF_LD | BPF_W | BPF_ABS:
1109                 case BPF_LD | BPF_H | BPF_ABS:
1110                 case BPF_LD | BPF_B | BPF_ABS:
1111                         anc_found = false;
1112                         if (bpf_anc_helper(ftest) & BPF_ANC)
1113                                 anc_found = true;
1114                         /* Ancillary operation unknown or unsupported */
1115                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1116                                 return -EINVAL;
1117                 }
1118         }
1119
1120         /* Last instruction must be a RET code */
1121         switch (filter[flen - 1].code) {
1122         case BPF_RET | BPF_K:
1123         case BPF_RET | BPF_A:
1124                 return check_load_and_stores(filter, flen);
1125         }
1126
1127         return -EINVAL;
1128 }
1129
1130 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1131                                       const struct sock_fprog *fprog)
1132 {
1133         unsigned int fsize = bpf_classic_proglen(fprog);
1134         struct sock_fprog_kern *fkprog;
1135
1136         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1137         if (!fp->orig_prog)
1138                 return -ENOMEM;
1139
1140         fkprog = fp->orig_prog;
1141         fkprog->len = fprog->len;
1142
1143         fkprog->filter = kmemdup(fp->insns, fsize,
1144                                  GFP_KERNEL | __GFP_NOWARN);
1145         if (!fkprog->filter) {
1146                 kfree(fp->orig_prog);
1147                 return -ENOMEM;
1148         }
1149
1150         return 0;
1151 }
1152
1153 static void bpf_release_orig_filter(struct bpf_prog *fp)
1154 {
1155         struct sock_fprog_kern *fprog = fp->orig_prog;
1156
1157         if (fprog) {
1158                 kfree(fprog->filter);
1159                 kfree(fprog);
1160         }
1161 }
1162
1163 static void __bpf_prog_release(struct bpf_prog *prog)
1164 {
1165         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1166                 bpf_prog_put(prog);
1167         } else {
1168                 bpf_release_orig_filter(prog);
1169                 bpf_prog_free(prog);
1170         }
1171 }
1172
1173 static void __sk_filter_release(struct sk_filter *fp)
1174 {
1175         __bpf_prog_release(fp->prog);
1176         kfree(fp);
1177 }
1178
1179 /**
1180  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1181  *      @rcu: rcu_head that contains the sk_filter to free
1182  */
1183 static void sk_filter_release_rcu(struct rcu_head *rcu)
1184 {
1185         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1186
1187         __sk_filter_release(fp);
1188 }
1189
1190 /**
1191  *      sk_filter_release - release a socket filter
1192  *      @fp: filter to remove
1193  *
1194  *      Remove a filter from a socket and release its resources.
1195  */
1196 static void sk_filter_release(struct sk_filter *fp)
1197 {
1198         if (refcount_dec_and_test(&fp->refcnt))
1199                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1200 }
1201
1202 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1203 {
1204         u32 filter_size = bpf_prog_size(fp->prog->len);
1205
1206         atomic_sub(filter_size, &sk->sk_omem_alloc);
1207         sk_filter_release(fp);
1208 }
1209
1210 /* try to charge the socket memory if there is space available
1211  * return true on success
1212  */
1213 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1214 {
1215         u32 filter_size = bpf_prog_size(fp->prog->len);
1216         int optmem_max = READ_ONCE(sysctl_optmem_max);
1217
1218         /* same check as in sock_kmalloc() */
1219         if (filter_size <= optmem_max &&
1220             atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1221                 atomic_add(filter_size, &sk->sk_omem_alloc);
1222                 return true;
1223         }
1224         return false;
1225 }
1226
1227 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1228 {
1229         if (!refcount_inc_not_zero(&fp->refcnt))
1230                 return false;
1231
1232         if (!__sk_filter_charge(sk, fp)) {
1233                 sk_filter_release(fp);
1234                 return false;
1235         }
1236         return true;
1237 }
1238
1239 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1240 {
1241         struct sock_filter *old_prog;
1242         struct bpf_prog *old_fp;
1243         int err, new_len, old_len = fp->len;
1244         bool seen_ld_abs = false;
1245
1246         /* We are free to overwrite insns et al right here as it
1247          * won't be used at this point in time anymore internally
1248          * after the migration to the internal BPF instruction
1249          * representation.
1250          */
1251         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1252                      sizeof(struct bpf_insn));
1253
1254         /* Conversion cannot happen on overlapping memory areas,
1255          * so we need to keep the user BPF around until the 2nd
1256          * pass. At this time, the user BPF is stored in fp->insns.
1257          */
1258         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1259                            GFP_KERNEL | __GFP_NOWARN);
1260         if (!old_prog) {
1261                 err = -ENOMEM;
1262                 goto out_err;
1263         }
1264
1265         /* 1st pass: calculate the new program length. */
1266         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1267                                  &seen_ld_abs);
1268         if (err)
1269                 goto out_err_free;
1270
1271         /* Expand fp for appending the new filter representation. */
1272         old_fp = fp;
1273         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1274         if (!fp) {
1275                 /* The old_fp is still around in case we couldn't
1276                  * allocate new memory, so uncharge on that one.
1277                  */
1278                 fp = old_fp;
1279                 err = -ENOMEM;
1280                 goto out_err_free;
1281         }
1282
1283         fp->len = new_len;
1284
1285         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1286         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1287                                  &seen_ld_abs);
1288         if (err)
1289                 /* 2nd bpf_convert_filter() can fail only if it fails
1290                  * to allocate memory, remapping must succeed. Note,
1291                  * that at this time old_fp has already been released
1292                  * by krealloc().
1293                  */
1294                 goto out_err_free;
1295
1296         fp = bpf_prog_select_runtime(fp, &err);
1297         if (err)
1298                 goto out_err_free;
1299
1300         kfree(old_prog);
1301         return fp;
1302
1303 out_err_free:
1304         kfree(old_prog);
1305 out_err:
1306         __bpf_prog_release(fp);
1307         return ERR_PTR(err);
1308 }
1309
1310 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1311                                            bpf_aux_classic_check_t trans)
1312 {
1313         int err;
1314
1315         fp->bpf_func = NULL;
1316         fp->jited = 0;
1317
1318         err = bpf_check_classic(fp->insns, fp->len);
1319         if (err) {
1320                 __bpf_prog_release(fp);
1321                 return ERR_PTR(err);
1322         }
1323
1324         /* There might be additional checks and transformations
1325          * needed on classic filters, f.e. in case of seccomp.
1326          */
1327         if (trans) {
1328                 err = trans(fp->insns, fp->len);
1329                 if (err) {
1330                         __bpf_prog_release(fp);
1331                         return ERR_PTR(err);
1332                 }
1333         }
1334
1335         /* Probe if we can JIT compile the filter and if so, do
1336          * the compilation of the filter.
1337          */
1338         bpf_jit_compile(fp);
1339
1340         /* JIT compiler couldn't process this filter, so do the
1341          * internal BPF translation for the optimized interpreter.
1342          */
1343         if (!fp->jited)
1344                 fp = bpf_migrate_filter(fp);
1345
1346         return fp;
1347 }
1348
1349 /**
1350  *      bpf_prog_create - create an unattached filter
1351  *      @pfp: the unattached filter that is created
1352  *      @fprog: the filter program
1353  *
1354  * Create a filter independent of any socket. We first run some
1355  * sanity checks on it to make sure it does not explode on us later.
1356  * If an error occurs or there is insufficient memory for the filter
1357  * a negative errno code is returned. On success the return is zero.
1358  */
1359 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1360 {
1361         unsigned int fsize = bpf_classic_proglen(fprog);
1362         struct bpf_prog *fp;
1363
1364         /* Make sure new filter is there and in the right amounts. */
1365         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1366                 return -EINVAL;
1367
1368         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1369         if (!fp)
1370                 return -ENOMEM;
1371
1372         memcpy(fp->insns, fprog->filter, fsize);
1373
1374         fp->len = fprog->len;
1375         /* Since unattached filters are not copied back to user
1376          * space through sk_get_filter(), we do not need to hold
1377          * a copy here, and can spare us the work.
1378          */
1379         fp->orig_prog = NULL;
1380
1381         /* bpf_prepare_filter() already takes care of freeing
1382          * memory in case something goes wrong.
1383          */
1384         fp = bpf_prepare_filter(fp, NULL);
1385         if (IS_ERR(fp))
1386                 return PTR_ERR(fp);
1387
1388         *pfp = fp;
1389         return 0;
1390 }
1391 EXPORT_SYMBOL_GPL(bpf_prog_create);
1392
1393 /**
1394  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1395  *      @pfp: the unattached filter that is created
1396  *      @fprog: the filter program
1397  *      @trans: post-classic verifier transformation handler
1398  *      @save_orig: save classic BPF program
1399  *
1400  * This function effectively does the same as bpf_prog_create(), only
1401  * that it builds up its insns buffer from user space provided buffer.
1402  * It also allows for passing a bpf_aux_classic_check_t handler.
1403  */
1404 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1405                               bpf_aux_classic_check_t trans, bool save_orig)
1406 {
1407         unsigned int fsize = bpf_classic_proglen(fprog);
1408         struct bpf_prog *fp;
1409         int err;
1410
1411         /* Make sure new filter is there and in the right amounts. */
1412         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1413                 return -EINVAL;
1414
1415         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1416         if (!fp)
1417                 return -ENOMEM;
1418
1419         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1420                 __bpf_prog_free(fp);
1421                 return -EFAULT;
1422         }
1423
1424         fp->len = fprog->len;
1425         fp->orig_prog = NULL;
1426
1427         if (save_orig) {
1428                 err = bpf_prog_store_orig_filter(fp, fprog);
1429                 if (err) {
1430                         __bpf_prog_free(fp);
1431                         return -ENOMEM;
1432                 }
1433         }
1434
1435         /* bpf_prepare_filter() already takes care of freeing
1436          * memory in case something goes wrong.
1437          */
1438         fp = bpf_prepare_filter(fp, trans);
1439         if (IS_ERR(fp))
1440                 return PTR_ERR(fp);
1441
1442         *pfp = fp;
1443         return 0;
1444 }
1445 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1446
1447 void bpf_prog_destroy(struct bpf_prog *fp)
1448 {
1449         __bpf_prog_release(fp);
1450 }
1451 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1452
1453 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1454 {
1455         struct sk_filter *fp, *old_fp;
1456
1457         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1458         if (!fp)
1459                 return -ENOMEM;
1460
1461         fp->prog = prog;
1462
1463         if (!__sk_filter_charge(sk, fp)) {
1464                 kfree(fp);
1465                 return -ENOMEM;
1466         }
1467         refcount_set(&fp->refcnt, 1);
1468
1469         old_fp = rcu_dereference_protected(sk->sk_filter,
1470                                            lockdep_sock_is_held(sk));
1471         rcu_assign_pointer(sk->sk_filter, fp);
1472
1473         if (old_fp)
1474                 sk_filter_uncharge(sk, old_fp);
1475
1476         return 0;
1477 }
1478
1479 static
1480 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1481 {
1482         unsigned int fsize = bpf_classic_proglen(fprog);
1483         struct bpf_prog *prog;
1484         int err;
1485
1486         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1487                 return ERR_PTR(-EPERM);
1488
1489         /* Make sure new filter is there and in the right amounts. */
1490         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1491                 return ERR_PTR(-EINVAL);
1492
1493         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1494         if (!prog)
1495                 return ERR_PTR(-ENOMEM);
1496
1497         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1498                 __bpf_prog_free(prog);
1499                 return ERR_PTR(-EFAULT);
1500         }
1501
1502         prog->len = fprog->len;
1503
1504         err = bpf_prog_store_orig_filter(prog, fprog);
1505         if (err) {
1506                 __bpf_prog_free(prog);
1507                 return ERR_PTR(-ENOMEM);
1508         }
1509
1510         /* bpf_prepare_filter() already takes care of freeing
1511          * memory in case something goes wrong.
1512          */
1513         return bpf_prepare_filter(prog, NULL);
1514 }
1515
1516 /**
1517  *      sk_attach_filter - attach a socket filter
1518  *      @fprog: the filter program
1519  *      @sk: the socket to use
1520  *
1521  * Attach the user's filter code. We first run some sanity checks on
1522  * it to make sure it does not explode on us later. If an error
1523  * occurs or there is insufficient memory for the filter a negative
1524  * errno code is returned. On success the return is zero.
1525  */
1526 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1527 {
1528         struct bpf_prog *prog = __get_filter(fprog, sk);
1529         int err;
1530
1531         if (IS_ERR(prog))
1532                 return PTR_ERR(prog);
1533
1534         err = __sk_attach_prog(prog, sk);
1535         if (err < 0) {
1536                 __bpf_prog_release(prog);
1537                 return err;
1538         }
1539
1540         return 0;
1541 }
1542 EXPORT_SYMBOL_GPL(sk_attach_filter);
1543
1544 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1545 {
1546         struct bpf_prog *prog = __get_filter(fprog, sk);
1547         int err;
1548
1549         if (IS_ERR(prog))
1550                 return PTR_ERR(prog);
1551
1552         if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1553                 err = -ENOMEM;
1554         else
1555                 err = reuseport_attach_prog(sk, prog);
1556
1557         if (err)
1558                 __bpf_prog_release(prog);
1559
1560         return err;
1561 }
1562
1563 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1564 {
1565         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1566                 return ERR_PTR(-EPERM);
1567
1568         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1569 }
1570
1571 int sk_attach_bpf(u32 ufd, struct sock *sk)
1572 {
1573         struct bpf_prog *prog = __get_bpf(ufd, sk);
1574         int err;
1575
1576         if (IS_ERR(prog))
1577                 return PTR_ERR(prog);
1578
1579         err = __sk_attach_prog(prog, sk);
1580         if (err < 0) {
1581                 bpf_prog_put(prog);
1582                 return err;
1583         }
1584
1585         return 0;
1586 }
1587
1588 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1589 {
1590         struct bpf_prog *prog;
1591         int err;
1592
1593         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1594                 return -EPERM;
1595
1596         prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1597         if (PTR_ERR(prog) == -EINVAL)
1598                 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1599         if (IS_ERR(prog))
1600                 return PTR_ERR(prog);
1601
1602         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1603                 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1604                  * bpf prog (e.g. sockmap).  It depends on the
1605                  * limitation imposed by bpf_prog_load().
1606                  * Hence, sysctl_optmem_max is not checked.
1607                  */
1608                 if ((sk->sk_type != SOCK_STREAM &&
1609                      sk->sk_type != SOCK_DGRAM) ||
1610                     (sk->sk_protocol != IPPROTO_UDP &&
1611                      sk->sk_protocol != IPPROTO_TCP) ||
1612                     (sk->sk_family != AF_INET &&
1613                      sk->sk_family != AF_INET6)) {
1614                         err = -ENOTSUPP;
1615                         goto err_prog_put;
1616                 }
1617         } else {
1618                 /* BPF_PROG_TYPE_SOCKET_FILTER */
1619                 if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1620                         err = -ENOMEM;
1621                         goto err_prog_put;
1622                 }
1623         }
1624
1625         err = reuseport_attach_prog(sk, prog);
1626 err_prog_put:
1627         if (err)
1628                 bpf_prog_put(prog);
1629
1630         return err;
1631 }
1632
1633 void sk_reuseport_prog_free(struct bpf_prog *prog)
1634 {
1635         if (!prog)
1636                 return;
1637
1638         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1639                 bpf_prog_put(prog);
1640         else
1641                 bpf_prog_destroy(prog);
1642 }
1643
1644 struct bpf_scratchpad {
1645         union {
1646                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1647                 u8     buff[MAX_BPF_STACK];
1648         };
1649 };
1650
1651 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1652
1653 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1654                                           unsigned int write_len)
1655 {
1656         return skb_ensure_writable(skb, write_len);
1657 }
1658
1659 static inline int bpf_try_make_writable(struct sk_buff *skb,
1660                                         unsigned int write_len)
1661 {
1662         int err = __bpf_try_make_writable(skb, write_len);
1663
1664         bpf_compute_data_pointers(skb);
1665         return err;
1666 }
1667
1668 static int bpf_try_make_head_writable(struct sk_buff *skb)
1669 {
1670         return bpf_try_make_writable(skb, skb_headlen(skb));
1671 }
1672
1673 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1674 {
1675         if (skb_at_tc_ingress(skb))
1676                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1677 }
1678
1679 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1680 {
1681         if (skb_at_tc_ingress(skb))
1682                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1683 }
1684
1685 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1686            const void *, from, u32, len, u64, flags)
1687 {
1688         void *ptr;
1689
1690         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1691                 return -EINVAL;
1692         if (unlikely(offset > INT_MAX))
1693                 return -EFAULT;
1694         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1695                 return -EFAULT;
1696
1697         ptr = skb->data + offset;
1698         if (flags & BPF_F_RECOMPUTE_CSUM)
1699                 __skb_postpull_rcsum(skb, ptr, len, offset);
1700
1701         memcpy(ptr, from, len);
1702
1703         if (flags & BPF_F_RECOMPUTE_CSUM)
1704                 __skb_postpush_rcsum(skb, ptr, len, offset);
1705         if (flags & BPF_F_INVALIDATE_HASH)
1706                 skb_clear_hash(skb);
1707
1708         return 0;
1709 }
1710
1711 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1712         .func           = bpf_skb_store_bytes,
1713         .gpl_only       = false,
1714         .ret_type       = RET_INTEGER,
1715         .arg1_type      = ARG_PTR_TO_CTX,
1716         .arg2_type      = ARG_ANYTHING,
1717         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
1718         .arg4_type      = ARG_CONST_SIZE,
1719         .arg5_type      = ARG_ANYTHING,
1720 };
1721
1722 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1723            void *, to, u32, len)
1724 {
1725         void *ptr;
1726
1727         if (unlikely(offset > INT_MAX))
1728                 goto err_clear;
1729
1730         ptr = skb_header_pointer(skb, offset, len, to);
1731         if (unlikely(!ptr))
1732                 goto err_clear;
1733         if (ptr != to)
1734                 memcpy(to, ptr, len);
1735
1736         return 0;
1737 err_clear:
1738         memset(to, 0, len);
1739         return -EFAULT;
1740 }
1741
1742 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1743         .func           = bpf_skb_load_bytes,
1744         .gpl_only       = false,
1745         .ret_type       = RET_INTEGER,
1746         .arg1_type      = ARG_PTR_TO_CTX,
1747         .arg2_type      = ARG_ANYTHING,
1748         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1749         .arg4_type      = ARG_CONST_SIZE,
1750 };
1751
1752 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1753            const struct bpf_flow_dissector *, ctx, u32, offset,
1754            void *, to, u32, len)
1755 {
1756         void *ptr;
1757
1758         if (unlikely(offset > 0xffff))
1759                 goto err_clear;
1760
1761         if (unlikely(!ctx->skb))
1762                 goto err_clear;
1763
1764         ptr = skb_header_pointer(ctx->skb, offset, len, to);
1765         if (unlikely(!ptr))
1766                 goto err_clear;
1767         if (ptr != to)
1768                 memcpy(to, ptr, len);
1769
1770         return 0;
1771 err_clear:
1772         memset(to, 0, len);
1773         return -EFAULT;
1774 }
1775
1776 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1777         .func           = bpf_flow_dissector_load_bytes,
1778         .gpl_only       = false,
1779         .ret_type       = RET_INTEGER,
1780         .arg1_type      = ARG_PTR_TO_CTX,
1781         .arg2_type      = ARG_ANYTHING,
1782         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1783         .arg4_type      = ARG_CONST_SIZE,
1784 };
1785
1786 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1787            u32, offset, void *, to, u32, len, u32, start_header)
1788 {
1789         u8 *end = skb_tail_pointer(skb);
1790         u8 *start, *ptr;
1791
1792         if (unlikely(offset > 0xffff))
1793                 goto err_clear;
1794
1795         switch (start_header) {
1796         case BPF_HDR_START_MAC:
1797                 if (unlikely(!skb_mac_header_was_set(skb)))
1798                         goto err_clear;
1799                 start = skb_mac_header(skb);
1800                 break;
1801         case BPF_HDR_START_NET:
1802                 start = skb_network_header(skb);
1803                 break;
1804         default:
1805                 goto err_clear;
1806         }
1807
1808         ptr = start + offset;
1809
1810         if (likely(ptr + len <= end)) {
1811                 memcpy(to, ptr, len);
1812                 return 0;
1813         }
1814
1815 err_clear:
1816         memset(to, 0, len);
1817         return -EFAULT;
1818 }
1819
1820 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1821         .func           = bpf_skb_load_bytes_relative,
1822         .gpl_only       = false,
1823         .ret_type       = RET_INTEGER,
1824         .arg1_type      = ARG_PTR_TO_CTX,
1825         .arg2_type      = ARG_ANYTHING,
1826         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1827         .arg4_type      = ARG_CONST_SIZE,
1828         .arg5_type      = ARG_ANYTHING,
1829 };
1830
1831 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1832 {
1833         /* Idea is the following: should the needed direct read/write
1834          * test fail during runtime, we can pull in more data and redo
1835          * again, since implicitly, we invalidate previous checks here.
1836          *
1837          * Or, since we know how much we need to make read/writeable,
1838          * this can be done once at the program beginning for direct
1839          * access case. By this we overcome limitations of only current
1840          * headroom being accessible.
1841          */
1842         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1843 }
1844
1845 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1846         .func           = bpf_skb_pull_data,
1847         .gpl_only       = false,
1848         .ret_type       = RET_INTEGER,
1849         .arg1_type      = ARG_PTR_TO_CTX,
1850         .arg2_type      = ARG_ANYTHING,
1851 };
1852
1853 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1854 {
1855         return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1856 }
1857
1858 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1859         .func           = bpf_sk_fullsock,
1860         .gpl_only       = false,
1861         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1862         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1863 };
1864
1865 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1866                                            unsigned int write_len)
1867 {
1868         return __bpf_try_make_writable(skb, write_len);
1869 }
1870
1871 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1872 {
1873         /* Idea is the following: should the needed direct read/write
1874          * test fail during runtime, we can pull in more data and redo
1875          * again, since implicitly, we invalidate previous checks here.
1876          *
1877          * Or, since we know how much we need to make read/writeable,
1878          * this can be done once at the program beginning for direct
1879          * access case. By this we overcome limitations of only current
1880          * headroom being accessible.
1881          */
1882         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1883 }
1884
1885 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1886         .func           = sk_skb_pull_data,
1887         .gpl_only       = false,
1888         .ret_type       = RET_INTEGER,
1889         .arg1_type      = ARG_PTR_TO_CTX,
1890         .arg2_type      = ARG_ANYTHING,
1891 };
1892
1893 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1894            u64, from, u64, to, u64, flags)
1895 {
1896         __sum16 *ptr;
1897
1898         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1899                 return -EINVAL;
1900         if (unlikely(offset > 0xffff || offset & 1))
1901                 return -EFAULT;
1902         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1903                 return -EFAULT;
1904
1905         ptr = (__sum16 *)(skb->data + offset);
1906         switch (flags & BPF_F_HDR_FIELD_MASK) {
1907         case 0:
1908                 if (unlikely(from != 0))
1909                         return -EINVAL;
1910
1911                 csum_replace_by_diff(ptr, to);
1912                 break;
1913         case 2:
1914                 csum_replace2(ptr, from, to);
1915                 break;
1916         case 4:
1917                 csum_replace4(ptr, from, to);
1918                 break;
1919         default:
1920                 return -EINVAL;
1921         }
1922
1923         return 0;
1924 }
1925
1926 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1927         .func           = bpf_l3_csum_replace,
1928         .gpl_only       = false,
1929         .ret_type       = RET_INTEGER,
1930         .arg1_type      = ARG_PTR_TO_CTX,
1931         .arg2_type      = ARG_ANYTHING,
1932         .arg3_type      = ARG_ANYTHING,
1933         .arg4_type      = ARG_ANYTHING,
1934         .arg5_type      = ARG_ANYTHING,
1935 };
1936
1937 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1938            u64, from, u64, to, u64, flags)
1939 {
1940         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1941         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1942         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1943         __sum16 *ptr;
1944
1945         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1946                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1947                 return -EINVAL;
1948         if (unlikely(offset > 0xffff || offset & 1))
1949                 return -EFAULT;
1950         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1951                 return -EFAULT;
1952
1953         ptr = (__sum16 *)(skb->data + offset);
1954         if (is_mmzero && !do_mforce && !*ptr)
1955                 return 0;
1956
1957         switch (flags & BPF_F_HDR_FIELD_MASK) {
1958         case 0:
1959                 if (unlikely(from != 0))
1960                         return -EINVAL;
1961
1962                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1963                 break;
1964         case 2:
1965                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1966                 break;
1967         case 4:
1968                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1969                 break;
1970         default:
1971                 return -EINVAL;
1972         }
1973
1974         if (is_mmzero && !*ptr)
1975                 *ptr = CSUM_MANGLED_0;
1976         return 0;
1977 }
1978
1979 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1980         .func           = bpf_l4_csum_replace,
1981         .gpl_only       = false,
1982         .ret_type       = RET_INTEGER,
1983         .arg1_type      = ARG_PTR_TO_CTX,
1984         .arg2_type      = ARG_ANYTHING,
1985         .arg3_type      = ARG_ANYTHING,
1986         .arg4_type      = ARG_ANYTHING,
1987         .arg5_type      = ARG_ANYTHING,
1988 };
1989
1990 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1991            __be32 *, to, u32, to_size, __wsum, seed)
1992 {
1993         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1994         u32 diff_size = from_size + to_size;
1995         int i, j = 0;
1996
1997         /* This is quite flexible, some examples:
1998          *
1999          * from_size == 0, to_size > 0,  seed := csum --> pushing data
2000          * from_size > 0,  to_size == 0, seed := csum --> pulling data
2001          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2002          *
2003          * Even for diffing, from_size and to_size don't need to be equal.
2004          */
2005         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2006                      diff_size > sizeof(sp->diff)))
2007                 return -EINVAL;
2008
2009         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2010                 sp->diff[j] = ~from[i];
2011         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2012                 sp->diff[j] = to[i];
2013
2014         return csum_partial(sp->diff, diff_size, seed);
2015 }
2016
2017 static const struct bpf_func_proto bpf_csum_diff_proto = {
2018         .func           = bpf_csum_diff,
2019         .gpl_only       = false,
2020         .pkt_access     = true,
2021         .ret_type       = RET_INTEGER,
2022         .arg1_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2023         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2024         .arg3_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2025         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2026         .arg5_type      = ARG_ANYTHING,
2027 };
2028
2029 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2030 {
2031         /* The interface is to be used in combination with bpf_csum_diff()
2032          * for direct packet writes. csum rotation for alignment as well
2033          * as emulating csum_sub() can be done from the eBPF program.
2034          */
2035         if (skb->ip_summed == CHECKSUM_COMPLETE)
2036                 return (skb->csum = csum_add(skb->csum, csum));
2037
2038         return -ENOTSUPP;
2039 }
2040
2041 static const struct bpf_func_proto bpf_csum_update_proto = {
2042         .func           = bpf_csum_update,
2043         .gpl_only       = false,
2044         .ret_type       = RET_INTEGER,
2045         .arg1_type      = ARG_PTR_TO_CTX,
2046         .arg2_type      = ARG_ANYTHING,
2047 };
2048
2049 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2050 {
2051         /* The interface is to be used in combination with bpf_skb_adjust_room()
2052          * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2053          * is passed as flags, for example.
2054          */
2055         switch (level) {
2056         case BPF_CSUM_LEVEL_INC:
2057                 __skb_incr_checksum_unnecessary(skb);
2058                 break;
2059         case BPF_CSUM_LEVEL_DEC:
2060                 __skb_decr_checksum_unnecessary(skb);
2061                 break;
2062         case BPF_CSUM_LEVEL_RESET:
2063                 __skb_reset_checksum_unnecessary(skb);
2064                 break;
2065         case BPF_CSUM_LEVEL_QUERY:
2066                 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2067                        skb->csum_level : -EACCES;
2068         default:
2069                 return -EINVAL;
2070         }
2071
2072         return 0;
2073 }
2074
2075 static const struct bpf_func_proto bpf_csum_level_proto = {
2076         .func           = bpf_csum_level,
2077         .gpl_only       = false,
2078         .ret_type       = RET_INTEGER,
2079         .arg1_type      = ARG_PTR_TO_CTX,
2080         .arg2_type      = ARG_ANYTHING,
2081 };
2082
2083 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2084 {
2085         return dev_forward_skb_nomtu(dev, skb);
2086 }
2087
2088 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2089                                       struct sk_buff *skb)
2090 {
2091         int ret = ____dev_forward_skb(dev, skb, false);
2092
2093         if (likely(!ret)) {
2094                 skb->dev = dev;
2095                 ret = netif_rx(skb);
2096         }
2097
2098         return ret;
2099 }
2100
2101 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2102 {
2103         int ret;
2104
2105         if (dev_xmit_recursion()) {
2106                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2107                 kfree_skb(skb);
2108                 return -ENETDOWN;
2109         }
2110
2111         skb->dev = dev;
2112         skb->tstamp = 0;
2113
2114         dev_xmit_recursion_inc();
2115         ret = dev_queue_xmit(skb);
2116         dev_xmit_recursion_dec();
2117
2118         return ret;
2119 }
2120
2121 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2122                                  u32 flags)
2123 {
2124         unsigned int mlen = skb_network_offset(skb);
2125
2126         if (mlen) {
2127                 __skb_pull(skb, mlen);
2128
2129                 /* At ingress, the mac header has already been pulled once.
2130                  * At egress, skb_pospull_rcsum has to be done in case that
2131                  * the skb is originated from ingress (i.e. a forwarded skb)
2132                  * to ensure that rcsum starts at net header.
2133                  */
2134                 if (!skb_at_tc_ingress(skb))
2135                         skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2136         }
2137         skb_pop_mac_header(skb);
2138         skb_reset_mac_len(skb);
2139         return flags & BPF_F_INGRESS ?
2140                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2141 }
2142
2143 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2144                                  u32 flags)
2145 {
2146         /* Verify that a link layer header is carried */
2147         if (unlikely(skb->mac_header >= skb->network_header)) {
2148                 kfree_skb(skb);
2149                 return -ERANGE;
2150         }
2151
2152         bpf_push_mac_rcsum(skb);
2153         return flags & BPF_F_INGRESS ?
2154                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2155 }
2156
2157 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2158                           u32 flags)
2159 {
2160         if (dev_is_mac_header_xmit(dev))
2161                 return __bpf_redirect_common(skb, dev, flags);
2162         else
2163                 return __bpf_redirect_no_mac(skb, dev, flags);
2164 }
2165
2166 #if IS_ENABLED(CONFIG_IPV6)
2167 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2168                             struct net_device *dev, struct bpf_nh_params *nh)
2169 {
2170         u32 hh_len = LL_RESERVED_SPACE(dev);
2171         const struct in6_addr *nexthop;
2172         struct dst_entry *dst = NULL;
2173         struct neighbour *neigh;
2174
2175         if (dev_xmit_recursion()) {
2176                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2177                 goto out_drop;
2178         }
2179
2180         skb->dev = dev;
2181         skb->tstamp = 0;
2182
2183         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2184                 skb = skb_expand_head(skb, hh_len);
2185                 if (!skb)
2186                         return -ENOMEM;
2187         }
2188
2189         rcu_read_lock_bh();
2190         if (!nh) {
2191                 dst = skb_dst(skb);
2192                 nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2193                                       &ipv6_hdr(skb)->daddr);
2194         } else {
2195                 nexthop = &nh->ipv6_nh;
2196         }
2197         neigh = ip_neigh_gw6(dev, nexthop);
2198         if (likely(!IS_ERR(neigh))) {
2199                 int ret;
2200
2201                 sock_confirm_neigh(skb, neigh);
2202                 dev_xmit_recursion_inc();
2203                 ret = neigh_output(neigh, skb, false);
2204                 dev_xmit_recursion_dec();
2205                 rcu_read_unlock_bh();
2206                 return ret;
2207         }
2208         rcu_read_unlock_bh();
2209         if (dst)
2210                 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2211 out_drop:
2212         kfree_skb(skb);
2213         return -ENETDOWN;
2214 }
2215
2216 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2217                                    struct bpf_nh_params *nh)
2218 {
2219         const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2220         struct net *net = dev_net(dev);
2221         int err, ret = NET_XMIT_DROP;
2222
2223         if (!nh) {
2224                 struct dst_entry *dst;
2225                 struct flowi6 fl6 = {
2226                         .flowi6_flags = FLOWI_FLAG_ANYSRC,
2227                         .flowi6_mark  = skb->mark,
2228                         .flowlabel    = ip6_flowinfo(ip6h),
2229                         .flowi6_oif   = dev->ifindex,
2230                         .flowi6_proto = ip6h->nexthdr,
2231                         .daddr        = ip6h->daddr,
2232                         .saddr        = ip6h->saddr,
2233                 };
2234
2235                 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2236                 if (IS_ERR(dst))
2237                         goto out_drop;
2238
2239                 skb_dst_set(skb, dst);
2240         } else if (nh->nh_family != AF_INET6) {
2241                 goto out_drop;
2242         }
2243
2244         err = bpf_out_neigh_v6(net, skb, dev, nh);
2245         if (unlikely(net_xmit_eval(err)))
2246                 dev->stats.tx_errors++;
2247         else
2248                 ret = NET_XMIT_SUCCESS;
2249         goto out_xmit;
2250 out_drop:
2251         dev->stats.tx_errors++;
2252         kfree_skb(skb);
2253 out_xmit:
2254         return ret;
2255 }
2256 #else
2257 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2258                                    struct bpf_nh_params *nh)
2259 {
2260         kfree_skb(skb);
2261         return NET_XMIT_DROP;
2262 }
2263 #endif /* CONFIG_IPV6 */
2264
2265 #if IS_ENABLED(CONFIG_INET)
2266 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2267                             struct net_device *dev, struct bpf_nh_params *nh)
2268 {
2269         u32 hh_len = LL_RESERVED_SPACE(dev);
2270         struct neighbour *neigh;
2271         bool is_v6gw = false;
2272
2273         if (dev_xmit_recursion()) {
2274                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2275                 goto out_drop;
2276         }
2277
2278         skb->dev = dev;
2279         skb->tstamp = 0;
2280
2281         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2282                 skb = skb_expand_head(skb, hh_len);
2283                 if (!skb)
2284                         return -ENOMEM;
2285         }
2286
2287         rcu_read_lock_bh();
2288         if (!nh) {
2289                 struct dst_entry *dst = skb_dst(skb);
2290                 struct rtable *rt = container_of(dst, struct rtable, dst);
2291
2292                 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2293         } else if (nh->nh_family == AF_INET6) {
2294                 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2295                 is_v6gw = true;
2296         } else if (nh->nh_family == AF_INET) {
2297                 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2298         } else {
2299                 rcu_read_unlock_bh();
2300                 goto out_drop;
2301         }
2302
2303         if (likely(!IS_ERR(neigh))) {
2304                 int ret;
2305
2306                 sock_confirm_neigh(skb, neigh);
2307                 dev_xmit_recursion_inc();
2308                 ret = neigh_output(neigh, skb, is_v6gw);
2309                 dev_xmit_recursion_dec();
2310                 rcu_read_unlock_bh();
2311                 return ret;
2312         }
2313         rcu_read_unlock_bh();
2314 out_drop:
2315         kfree_skb(skb);
2316         return -ENETDOWN;
2317 }
2318
2319 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2320                                    struct bpf_nh_params *nh)
2321 {
2322         const struct iphdr *ip4h = ip_hdr(skb);
2323         struct net *net = dev_net(dev);
2324         int err, ret = NET_XMIT_DROP;
2325
2326         if (!nh) {
2327                 struct flowi4 fl4 = {
2328                         .flowi4_flags = FLOWI_FLAG_ANYSRC,
2329                         .flowi4_mark  = skb->mark,
2330                         .flowi4_tos   = RT_TOS(ip4h->tos),
2331                         .flowi4_oif   = dev->ifindex,
2332                         .flowi4_proto = ip4h->protocol,
2333                         .daddr        = ip4h->daddr,
2334                         .saddr        = ip4h->saddr,
2335                 };
2336                 struct rtable *rt;
2337
2338                 rt = ip_route_output_flow(net, &fl4, NULL);
2339                 if (IS_ERR(rt))
2340                         goto out_drop;
2341                 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2342                         ip_rt_put(rt);
2343                         goto out_drop;
2344                 }
2345
2346                 skb_dst_set(skb, &rt->dst);
2347         }
2348
2349         err = bpf_out_neigh_v4(net, skb, dev, nh);
2350         if (unlikely(net_xmit_eval(err)))
2351                 dev->stats.tx_errors++;
2352         else
2353                 ret = NET_XMIT_SUCCESS;
2354         goto out_xmit;
2355 out_drop:
2356         dev->stats.tx_errors++;
2357         kfree_skb(skb);
2358 out_xmit:
2359         return ret;
2360 }
2361 #else
2362 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2363                                    struct bpf_nh_params *nh)
2364 {
2365         kfree_skb(skb);
2366         return NET_XMIT_DROP;
2367 }
2368 #endif /* CONFIG_INET */
2369
2370 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2371                                 struct bpf_nh_params *nh)
2372 {
2373         struct ethhdr *ethh = eth_hdr(skb);
2374
2375         if (unlikely(skb->mac_header >= skb->network_header))
2376                 goto out;
2377         bpf_push_mac_rcsum(skb);
2378         if (is_multicast_ether_addr(ethh->h_dest))
2379                 goto out;
2380
2381         skb_pull(skb, sizeof(*ethh));
2382         skb_unset_mac_header(skb);
2383         skb_reset_network_header(skb);
2384
2385         if (skb->protocol == htons(ETH_P_IP))
2386                 return __bpf_redirect_neigh_v4(skb, dev, nh);
2387         else if (skb->protocol == htons(ETH_P_IPV6))
2388                 return __bpf_redirect_neigh_v6(skb, dev, nh);
2389 out:
2390         kfree_skb(skb);
2391         return -ENOTSUPP;
2392 }
2393
2394 /* Internal, non-exposed redirect flags. */
2395 enum {
2396         BPF_F_NEIGH     = (1ULL << 1),
2397         BPF_F_PEER      = (1ULL << 2),
2398         BPF_F_NEXTHOP   = (1ULL << 3),
2399 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2400 };
2401
2402 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2403 {
2404         struct net_device *dev;
2405         struct sk_buff *clone;
2406         int ret;
2407
2408         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2409                 return -EINVAL;
2410
2411         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2412         if (unlikely(!dev))
2413                 return -EINVAL;
2414
2415         clone = skb_clone(skb, GFP_ATOMIC);
2416         if (unlikely(!clone))
2417                 return -ENOMEM;
2418
2419         /* For direct write, we need to keep the invariant that the skbs
2420          * we're dealing with need to be uncloned. Should uncloning fail
2421          * here, we need to free the just generated clone to unclone once
2422          * again.
2423          */
2424         ret = bpf_try_make_head_writable(skb);
2425         if (unlikely(ret)) {
2426                 kfree_skb(clone);
2427                 return -ENOMEM;
2428         }
2429
2430         return __bpf_redirect(clone, dev, flags);
2431 }
2432
2433 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2434         .func           = bpf_clone_redirect,
2435         .gpl_only       = false,
2436         .ret_type       = RET_INTEGER,
2437         .arg1_type      = ARG_PTR_TO_CTX,
2438         .arg2_type      = ARG_ANYTHING,
2439         .arg3_type      = ARG_ANYTHING,
2440 };
2441
2442 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2443 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2444
2445 int skb_do_redirect(struct sk_buff *skb)
2446 {
2447         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2448         struct net *net = dev_net(skb->dev);
2449         struct net_device *dev;
2450         u32 flags = ri->flags;
2451
2452         dev = dev_get_by_index_rcu(net, ri->tgt_index);
2453         ri->tgt_index = 0;
2454         ri->flags = 0;
2455         if (unlikely(!dev))
2456                 goto out_drop;
2457         if (flags & BPF_F_PEER) {
2458                 const struct net_device_ops *ops = dev->netdev_ops;
2459
2460                 if (unlikely(!ops->ndo_get_peer_dev ||
2461                              !skb_at_tc_ingress(skb)))
2462                         goto out_drop;
2463                 dev = ops->ndo_get_peer_dev(dev);
2464                 if (unlikely(!dev ||
2465                              !(dev->flags & IFF_UP) ||
2466                              net_eq(net, dev_net(dev))))
2467                         goto out_drop;
2468                 skb->dev = dev;
2469                 return -EAGAIN;
2470         }
2471         return flags & BPF_F_NEIGH ?
2472                __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2473                                     &ri->nh : NULL) :
2474                __bpf_redirect(skb, dev, flags);
2475 out_drop:
2476         kfree_skb(skb);
2477         return -EINVAL;
2478 }
2479
2480 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2481 {
2482         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2483
2484         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2485                 return TC_ACT_SHOT;
2486
2487         ri->flags = flags;
2488         ri->tgt_index = ifindex;
2489
2490         return TC_ACT_REDIRECT;
2491 }
2492
2493 static const struct bpf_func_proto bpf_redirect_proto = {
2494         .func           = bpf_redirect,
2495         .gpl_only       = false,
2496         .ret_type       = RET_INTEGER,
2497         .arg1_type      = ARG_ANYTHING,
2498         .arg2_type      = ARG_ANYTHING,
2499 };
2500
2501 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2502 {
2503         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2504
2505         if (unlikely(flags))
2506                 return TC_ACT_SHOT;
2507
2508         ri->flags = BPF_F_PEER;
2509         ri->tgt_index = ifindex;
2510
2511         return TC_ACT_REDIRECT;
2512 }
2513
2514 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2515         .func           = bpf_redirect_peer,
2516         .gpl_only       = false,
2517         .ret_type       = RET_INTEGER,
2518         .arg1_type      = ARG_ANYTHING,
2519         .arg2_type      = ARG_ANYTHING,
2520 };
2521
2522 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2523            int, plen, u64, flags)
2524 {
2525         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2526
2527         if (unlikely((plen && plen < sizeof(*params)) || flags))
2528                 return TC_ACT_SHOT;
2529
2530         ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2531         ri->tgt_index = ifindex;
2532
2533         BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2534         if (plen)
2535                 memcpy(&ri->nh, params, sizeof(ri->nh));
2536
2537         return TC_ACT_REDIRECT;
2538 }
2539
2540 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2541         .func           = bpf_redirect_neigh,
2542         .gpl_only       = false,
2543         .ret_type       = RET_INTEGER,
2544         .arg1_type      = ARG_ANYTHING,
2545         .arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2546         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2547         .arg4_type      = ARG_ANYTHING,
2548 };
2549
2550 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2551 {
2552         msg->apply_bytes = bytes;
2553         return 0;
2554 }
2555
2556 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2557         .func           = bpf_msg_apply_bytes,
2558         .gpl_only       = false,
2559         .ret_type       = RET_INTEGER,
2560         .arg1_type      = ARG_PTR_TO_CTX,
2561         .arg2_type      = ARG_ANYTHING,
2562 };
2563
2564 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2565 {
2566         msg->cork_bytes = bytes;
2567         return 0;
2568 }
2569
2570 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2571         .func           = bpf_msg_cork_bytes,
2572         .gpl_only       = false,
2573         .ret_type       = RET_INTEGER,
2574         .arg1_type      = ARG_PTR_TO_CTX,
2575         .arg2_type      = ARG_ANYTHING,
2576 };
2577
2578 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2579            u32, end, u64, flags)
2580 {
2581         u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2582         u32 first_sge, last_sge, i, shift, bytes_sg_total;
2583         struct scatterlist *sge;
2584         u8 *raw, *to, *from;
2585         struct page *page;
2586
2587         if (unlikely(flags || end <= start))
2588                 return -EINVAL;
2589
2590         /* First find the starting scatterlist element */
2591         i = msg->sg.start;
2592         do {
2593                 offset += len;
2594                 len = sk_msg_elem(msg, i)->length;
2595                 if (start < offset + len)
2596                         break;
2597                 sk_msg_iter_var_next(i);
2598         } while (i != msg->sg.end);
2599
2600         if (unlikely(start >= offset + len))
2601                 return -EINVAL;
2602
2603         first_sge = i;
2604         /* The start may point into the sg element so we need to also
2605          * account for the headroom.
2606          */
2607         bytes_sg_total = start - offset + bytes;
2608         if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2609                 goto out;
2610
2611         /* At this point we need to linearize multiple scatterlist
2612          * elements or a single shared page. Either way we need to
2613          * copy into a linear buffer exclusively owned by BPF. Then
2614          * place the buffer in the scatterlist and fixup the original
2615          * entries by removing the entries now in the linear buffer
2616          * and shifting the remaining entries. For now we do not try
2617          * to copy partial entries to avoid complexity of running out
2618          * of sg_entry slots. The downside is reading a single byte
2619          * will copy the entire sg entry.
2620          */
2621         do {
2622                 copy += sk_msg_elem(msg, i)->length;
2623                 sk_msg_iter_var_next(i);
2624                 if (bytes_sg_total <= copy)
2625                         break;
2626         } while (i != msg->sg.end);
2627         last_sge = i;
2628
2629         if (unlikely(bytes_sg_total > copy))
2630                 return -EINVAL;
2631
2632         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2633                            get_order(copy));
2634         if (unlikely(!page))
2635                 return -ENOMEM;
2636
2637         raw = page_address(page);
2638         i = first_sge;
2639         do {
2640                 sge = sk_msg_elem(msg, i);
2641                 from = sg_virt(sge);
2642                 len = sge->length;
2643                 to = raw + poffset;
2644
2645                 memcpy(to, from, len);
2646                 poffset += len;
2647                 sge->length = 0;
2648                 put_page(sg_page(sge));
2649
2650                 sk_msg_iter_var_next(i);
2651         } while (i != last_sge);
2652
2653         sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2654
2655         /* To repair sg ring we need to shift entries. If we only
2656          * had a single entry though we can just replace it and
2657          * be done. Otherwise walk the ring and shift the entries.
2658          */
2659         WARN_ON_ONCE(last_sge == first_sge);
2660         shift = last_sge > first_sge ?
2661                 last_sge - first_sge - 1 :
2662                 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2663         if (!shift)
2664                 goto out;
2665
2666         i = first_sge;
2667         sk_msg_iter_var_next(i);
2668         do {
2669                 u32 move_from;
2670
2671                 if (i + shift >= NR_MSG_FRAG_IDS)
2672                         move_from = i + shift - NR_MSG_FRAG_IDS;
2673                 else
2674                         move_from = i + shift;
2675                 if (move_from == msg->sg.end)
2676                         break;
2677
2678                 msg->sg.data[i] = msg->sg.data[move_from];
2679                 msg->sg.data[move_from].length = 0;
2680                 msg->sg.data[move_from].page_link = 0;
2681                 msg->sg.data[move_from].offset = 0;
2682                 sk_msg_iter_var_next(i);
2683         } while (1);
2684
2685         msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2686                       msg->sg.end - shift + NR_MSG_FRAG_IDS :
2687                       msg->sg.end - shift;
2688 out:
2689         msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2690         msg->data_end = msg->data + bytes;
2691         return 0;
2692 }
2693
2694 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2695         .func           = bpf_msg_pull_data,
2696         .gpl_only       = false,
2697         .ret_type       = RET_INTEGER,
2698         .arg1_type      = ARG_PTR_TO_CTX,
2699         .arg2_type      = ARG_ANYTHING,
2700         .arg3_type      = ARG_ANYTHING,
2701         .arg4_type      = ARG_ANYTHING,
2702 };
2703
2704 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2705            u32, len, u64, flags)
2706 {
2707         struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2708         u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2709         u8 *raw, *to, *from;
2710         struct page *page;
2711
2712         if (unlikely(flags))
2713                 return -EINVAL;
2714
2715         if (unlikely(len == 0))
2716                 return 0;
2717
2718         /* First find the starting scatterlist element */
2719         i = msg->sg.start;
2720         do {
2721                 offset += l;
2722                 l = sk_msg_elem(msg, i)->length;
2723
2724                 if (start < offset + l)
2725                         break;
2726                 sk_msg_iter_var_next(i);
2727         } while (i != msg->sg.end);
2728
2729         if (start >= offset + l)
2730                 return -EINVAL;
2731
2732         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2733
2734         /* If no space available will fallback to copy, we need at
2735          * least one scatterlist elem available to push data into
2736          * when start aligns to the beginning of an element or two
2737          * when it falls inside an element. We handle the start equals
2738          * offset case because its the common case for inserting a
2739          * header.
2740          */
2741         if (!space || (space == 1 && start != offset))
2742                 copy = msg->sg.data[i].length;
2743
2744         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2745                            get_order(copy + len));
2746         if (unlikely(!page))
2747                 return -ENOMEM;
2748
2749         if (copy) {
2750                 int front, back;
2751
2752                 raw = page_address(page);
2753
2754                 psge = sk_msg_elem(msg, i);
2755                 front = start - offset;
2756                 back = psge->length - front;
2757                 from = sg_virt(psge);
2758
2759                 if (front)
2760                         memcpy(raw, from, front);
2761
2762                 if (back) {
2763                         from += front;
2764                         to = raw + front + len;
2765
2766                         memcpy(to, from, back);
2767                 }
2768
2769                 put_page(sg_page(psge));
2770         } else if (start - offset) {
2771                 psge = sk_msg_elem(msg, i);
2772                 rsge = sk_msg_elem_cpy(msg, i);
2773
2774                 psge->length = start - offset;
2775                 rsge.length -= psge->length;
2776                 rsge.offset += start;
2777
2778                 sk_msg_iter_var_next(i);
2779                 sg_unmark_end(psge);
2780                 sg_unmark_end(&rsge);
2781                 sk_msg_iter_next(msg, end);
2782         }
2783
2784         /* Slot(s) to place newly allocated data */
2785         new = i;
2786
2787         /* Shift one or two slots as needed */
2788         if (!copy) {
2789                 sge = sk_msg_elem_cpy(msg, i);
2790
2791                 sk_msg_iter_var_next(i);
2792                 sg_unmark_end(&sge);
2793                 sk_msg_iter_next(msg, end);
2794
2795                 nsge = sk_msg_elem_cpy(msg, i);
2796                 if (rsge.length) {
2797                         sk_msg_iter_var_next(i);
2798                         nnsge = sk_msg_elem_cpy(msg, i);
2799                 }
2800
2801                 while (i != msg->sg.end) {
2802                         msg->sg.data[i] = sge;
2803                         sge = nsge;
2804                         sk_msg_iter_var_next(i);
2805                         if (rsge.length) {
2806                                 nsge = nnsge;
2807                                 nnsge = sk_msg_elem_cpy(msg, i);
2808                         } else {
2809                                 nsge = sk_msg_elem_cpy(msg, i);
2810                         }
2811                 }
2812         }
2813
2814         /* Place newly allocated data buffer */
2815         sk_mem_charge(msg->sk, len);
2816         msg->sg.size += len;
2817         __clear_bit(new, &msg->sg.copy);
2818         sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2819         if (rsge.length) {
2820                 get_page(sg_page(&rsge));
2821                 sk_msg_iter_var_next(new);
2822                 msg->sg.data[new] = rsge;
2823         }
2824
2825         sk_msg_compute_data_pointers(msg);
2826         return 0;
2827 }
2828
2829 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2830         .func           = bpf_msg_push_data,
2831         .gpl_only       = false,
2832         .ret_type       = RET_INTEGER,
2833         .arg1_type      = ARG_PTR_TO_CTX,
2834         .arg2_type      = ARG_ANYTHING,
2835         .arg3_type      = ARG_ANYTHING,
2836         .arg4_type      = ARG_ANYTHING,
2837 };
2838
2839 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2840 {
2841         int prev;
2842
2843         do {
2844                 prev = i;
2845                 sk_msg_iter_var_next(i);
2846                 msg->sg.data[prev] = msg->sg.data[i];
2847         } while (i != msg->sg.end);
2848
2849         sk_msg_iter_prev(msg, end);
2850 }
2851
2852 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2853 {
2854         struct scatterlist tmp, sge;
2855
2856         sk_msg_iter_next(msg, end);
2857         sge = sk_msg_elem_cpy(msg, i);
2858         sk_msg_iter_var_next(i);
2859         tmp = sk_msg_elem_cpy(msg, i);
2860
2861         while (i != msg->sg.end) {
2862                 msg->sg.data[i] = sge;
2863                 sk_msg_iter_var_next(i);
2864                 sge = tmp;
2865                 tmp = sk_msg_elem_cpy(msg, i);
2866         }
2867 }
2868
2869 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2870            u32, len, u64, flags)
2871 {
2872         u32 i = 0, l = 0, space, offset = 0;
2873         u64 last = start + len;
2874         int pop;
2875
2876         if (unlikely(flags))
2877                 return -EINVAL;
2878
2879         /* First find the starting scatterlist element */
2880         i = msg->sg.start;
2881         do {
2882                 offset += l;
2883                 l = sk_msg_elem(msg, i)->length;
2884
2885                 if (start < offset + l)
2886                         break;
2887                 sk_msg_iter_var_next(i);
2888         } while (i != msg->sg.end);
2889
2890         /* Bounds checks: start and pop must be inside message */
2891         if (start >= offset + l || last >= msg->sg.size)
2892                 return -EINVAL;
2893
2894         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2895
2896         pop = len;
2897         /* --------------| offset
2898          * -| start      |-------- len -------|
2899          *
2900          *  |----- a ----|-------- pop -------|----- b ----|
2901          *  |______________________________________________| length
2902          *
2903          *
2904          * a:   region at front of scatter element to save
2905          * b:   region at back of scatter element to save when length > A + pop
2906          * pop: region to pop from element, same as input 'pop' here will be
2907          *      decremented below per iteration.
2908          *
2909          * Two top-level cases to handle when start != offset, first B is non
2910          * zero and second B is zero corresponding to when a pop includes more
2911          * than one element.
2912          *
2913          * Then if B is non-zero AND there is no space allocate space and
2914          * compact A, B regions into page. If there is space shift ring to
2915          * the rigth free'ing the next element in ring to place B, leaving
2916          * A untouched except to reduce length.
2917          */
2918         if (start != offset) {
2919                 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2920                 int a = start;
2921                 int b = sge->length - pop - a;
2922
2923                 sk_msg_iter_var_next(i);
2924
2925                 if (pop < sge->length - a) {
2926                         if (space) {
2927                                 sge->length = a;
2928                                 sk_msg_shift_right(msg, i);
2929                                 nsge = sk_msg_elem(msg, i);
2930                                 get_page(sg_page(sge));
2931                                 sg_set_page(nsge,
2932                                             sg_page(sge),
2933                                             b, sge->offset + pop + a);
2934                         } else {
2935                                 struct page *page, *orig;
2936                                 u8 *to, *from;
2937
2938                                 page = alloc_pages(__GFP_NOWARN |
2939                                                    __GFP_COMP   | GFP_ATOMIC,
2940                                                    get_order(a + b));
2941                                 if (unlikely(!page))
2942                                         return -ENOMEM;
2943
2944                                 sge->length = a;
2945                                 orig = sg_page(sge);
2946                                 from = sg_virt(sge);
2947                                 to = page_address(page);
2948                                 memcpy(to, from, a);
2949                                 memcpy(to + a, from + a + pop, b);
2950                                 sg_set_page(sge, page, a + b, 0);
2951                                 put_page(orig);
2952                         }
2953                         pop = 0;
2954                 } else if (pop >= sge->length - a) {
2955                         pop -= (sge->length - a);
2956                         sge->length = a;
2957                 }
2958         }
2959
2960         /* From above the current layout _must_ be as follows,
2961          *
2962          * -| offset
2963          * -| start
2964          *
2965          *  |---- pop ---|---------------- b ------------|
2966          *  |____________________________________________| length
2967          *
2968          * Offset and start of the current msg elem are equal because in the
2969          * previous case we handled offset != start and either consumed the
2970          * entire element and advanced to the next element OR pop == 0.
2971          *
2972          * Two cases to handle here are first pop is less than the length
2973          * leaving some remainder b above. Simply adjust the element's layout
2974          * in this case. Or pop >= length of the element so that b = 0. In this
2975          * case advance to next element decrementing pop.
2976          */
2977         while (pop) {
2978                 struct scatterlist *sge = sk_msg_elem(msg, i);
2979
2980                 if (pop < sge->length) {
2981                         sge->length -= pop;
2982                         sge->offset += pop;
2983                         pop = 0;
2984                 } else {
2985                         pop -= sge->length;
2986                         sk_msg_shift_left(msg, i);
2987                 }
2988                 sk_msg_iter_var_next(i);
2989         }
2990
2991         sk_mem_uncharge(msg->sk, len - pop);
2992         msg->sg.size -= (len - pop);
2993         sk_msg_compute_data_pointers(msg);
2994         return 0;
2995 }
2996
2997 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2998         .func           = bpf_msg_pop_data,
2999         .gpl_only       = false,
3000         .ret_type       = RET_INTEGER,
3001         .arg1_type      = ARG_PTR_TO_CTX,
3002         .arg2_type      = ARG_ANYTHING,
3003         .arg3_type      = ARG_ANYTHING,
3004         .arg4_type      = ARG_ANYTHING,
3005 };
3006
3007 #ifdef CONFIG_CGROUP_NET_CLASSID
3008 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3009 {
3010         return __task_get_classid(current);
3011 }
3012
3013 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3014         .func           = bpf_get_cgroup_classid_curr,
3015         .gpl_only       = false,
3016         .ret_type       = RET_INTEGER,
3017 };
3018
3019 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3020 {
3021         struct sock *sk = skb_to_full_sk(skb);
3022
3023         if (!sk || !sk_fullsock(sk))
3024                 return 0;
3025
3026         return sock_cgroup_classid(&sk->sk_cgrp_data);
3027 }
3028
3029 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3030         .func           = bpf_skb_cgroup_classid,
3031         .gpl_only       = false,
3032         .ret_type       = RET_INTEGER,
3033         .arg1_type      = ARG_PTR_TO_CTX,
3034 };
3035 #endif
3036
3037 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3038 {
3039         return task_get_classid(skb);
3040 }
3041
3042 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3043         .func           = bpf_get_cgroup_classid,
3044         .gpl_only       = false,
3045         .ret_type       = RET_INTEGER,
3046         .arg1_type      = ARG_PTR_TO_CTX,
3047 };
3048
3049 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3050 {
3051         return dst_tclassid(skb);
3052 }
3053
3054 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3055         .func           = bpf_get_route_realm,
3056         .gpl_only       = false,
3057         .ret_type       = RET_INTEGER,
3058         .arg1_type      = ARG_PTR_TO_CTX,
3059 };
3060
3061 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3062 {
3063         /* If skb_clear_hash() was called due to mangling, we can
3064          * trigger SW recalculation here. Later access to hash
3065          * can then use the inline skb->hash via context directly
3066          * instead of calling this helper again.
3067          */
3068         return skb_get_hash(skb);
3069 }
3070
3071 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3072         .func           = bpf_get_hash_recalc,
3073         .gpl_only       = false,
3074         .ret_type       = RET_INTEGER,
3075         .arg1_type      = ARG_PTR_TO_CTX,
3076 };
3077
3078 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3079 {
3080         /* After all direct packet write, this can be used once for
3081          * triggering a lazy recalc on next skb_get_hash() invocation.
3082          */
3083         skb_clear_hash(skb);
3084         return 0;
3085 }
3086
3087 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3088         .func           = bpf_set_hash_invalid,
3089         .gpl_only       = false,
3090         .ret_type       = RET_INTEGER,
3091         .arg1_type      = ARG_PTR_TO_CTX,
3092 };
3093
3094 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3095 {
3096         /* Set user specified hash as L4(+), so that it gets returned
3097          * on skb_get_hash() call unless BPF prog later on triggers a
3098          * skb_clear_hash().
3099          */
3100         __skb_set_sw_hash(skb, hash, true);
3101         return 0;
3102 }
3103
3104 static const struct bpf_func_proto bpf_set_hash_proto = {
3105         .func           = bpf_set_hash,
3106         .gpl_only       = false,
3107         .ret_type       = RET_INTEGER,
3108         .arg1_type      = ARG_PTR_TO_CTX,
3109         .arg2_type      = ARG_ANYTHING,
3110 };
3111
3112 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3113            u16, vlan_tci)
3114 {
3115         int ret;
3116
3117         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3118                      vlan_proto != htons(ETH_P_8021AD)))
3119                 vlan_proto = htons(ETH_P_8021Q);
3120
3121         bpf_push_mac_rcsum(skb);
3122         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3123         bpf_pull_mac_rcsum(skb);
3124
3125         bpf_compute_data_pointers(skb);
3126         return ret;
3127 }
3128
3129 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3130         .func           = bpf_skb_vlan_push,
3131         .gpl_only       = false,
3132         .ret_type       = RET_INTEGER,
3133         .arg1_type      = ARG_PTR_TO_CTX,
3134         .arg2_type      = ARG_ANYTHING,
3135         .arg3_type      = ARG_ANYTHING,
3136 };
3137
3138 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3139 {
3140         int ret;
3141
3142         bpf_push_mac_rcsum(skb);
3143         ret = skb_vlan_pop(skb);
3144         bpf_pull_mac_rcsum(skb);
3145
3146         bpf_compute_data_pointers(skb);
3147         return ret;
3148 }
3149
3150 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3151         .func           = bpf_skb_vlan_pop,
3152         .gpl_only       = false,
3153         .ret_type       = RET_INTEGER,
3154         .arg1_type      = ARG_PTR_TO_CTX,
3155 };
3156
3157 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3158 {
3159         /* Caller already did skb_cow() with len as headroom,
3160          * so no need to do it here.
3161          */
3162         skb_push(skb, len);
3163         memmove(skb->data, skb->data + len, off);
3164         memset(skb->data + off, 0, len);
3165
3166         /* No skb_postpush_rcsum(skb, skb->data + off, len)
3167          * needed here as it does not change the skb->csum
3168          * result for checksum complete when summing over
3169          * zeroed blocks.
3170          */
3171         return 0;
3172 }
3173
3174 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3175 {
3176         /* skb_ensure_writable() is not needed here, as we're
3177          * already working on an uncloned skb.
3178          */
3179         if (unlikely(!pskb_may_pull(skb, off + len)))
3180                 return -ENOMEM;
3181
3182         skb_postpull_rcsum(skb, skb->data + off, len);
3183         memmove(skb->data + len, skb->data, off);
3184         __skb_pull(skb, len);
3185
3186         return 0;
3187 }
3188
3189 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3190 {
3191         bool trans_same = skb->transport_header == skb->network_header;
3192         int ret;
3193
3194         /* There's no need for __skb_push()/__skb_pull() pair to
3195          * get to the start of the mac header as we're guaranteed
3196          * to always start from here under eBPF.
3197          */
3198         ret = bpf_skb_generic_push(skb, off, len);
3199         if (likely(!ret)) {
3200                 skb->mac_header -= len;
3201                 skb->network_header -= len;
3202                 if (trans_same)
3203                         skb->transport_header = skb->network_header;
3204         }
3205
3206         return ret;
3207 }
3208
3209 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3210 {
3211         bool trans_same = skb->transport_header == skb->network_header;
3212         int ret;
3213
3214         /* Same here, __skb_push()/__skb_pull() pair not needed. */
3215         ret = bpf_skb_generic_pop(skb, off, len);
3216         if (likely(!ret)) {
3217                 skb->mac_header += len;
3218                 skb->network_header += len;
3219                 if (trans_same)
3220                         skb->transport_header = skb->network_header;
3221         }
3222
3223         return ret;
3224 }
3225
3226 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3227 {
3228         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3229         u32 off = skb_mac_header_len(skb);
3230         int ret;
3231
3232         ret = skb_cow(skb, len_diff);
3233         if (unlikely(ret < 0))
3234                 return ret;
3235
3236         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3237         if (unlikely(ret < 0))
3238                 return ret;
3239
3240         if (skb_is_gso(skb)) {
3241                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3242
3243                 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3244                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3245                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
3246                         shinfo->gso_type |=  SKB_GSO_TCPV6;
3247                 }
3248         }
3249
3250         skb->protocol = htons(ETH_P_IPV6);
3251         skb_clear_hash(skb);
3252
3253         return 0;
3254 }
3255
3256 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3257 {
3258         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3259         u32 off = skb_mac_header_len(skb);
3260         int ret;
3261
3262         ret = skb_unclone(skb, GFP_ATOMIC);
3263         if (unlikely(ret < 0))
3264                 return ret;
3265
3266         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3267         if (unlikely(ret < 0))
3268                 return ret;
3269
3270         if (skb_is_gso(skb)) {
3271                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3272
3273                 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3274                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3275                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
3276                         shinfo->gso_type |=  SKB_GSO_TCPV4;
3277                 }
3278         }
3279
3280         skb->protocol = htons(ETH_P_IP);
3281         skb_clear_hash(skb);
3282
3283         return 0;
3284 }
3285
3286 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3287 {
3288         __be16 from_proto = skb->protocol;
3289
3290         if (from_proto == htons(ETH_P_IP) &&
3291               to_proto == htons(ETH_P_IPV6))
3292                 return bpf_skb_proto_4_to_6(skb);
3293
3294         if (from_proto == htons(ETH_P_IPV6) &&
3295               to_proto == htons(ETH_P_IP))
3296                 return bpf_skb_proto_6_to_4(skb);
3297
3298         return -ENOTSUPP;
3299 }
3300
3301 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3302            u64, flags)
3303 {
3304         int ret;
3305
3306         if (unlikely(flags))
3307                 return -EINVAL;
3308
3309         /* General idea is that this helper does the basic groundwork
3310          * needed for changing the protocol, and eBPF program fills the
3311          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3312          * and other helpers, rather than passing a raw buffer here.
3313          *
3314          * The rationale is to keep this minimal and without a need to
3315          * deal with raw packet data. F.e. even if we would pass buffers
3316          * here, the program still needs to call the bpf_lX_csum_replace()
3317          * helpers anyway. Plus, this way we keep also separation of
3318          * concerns, since f.e. bpf_skb_store_bytes() should only take
3319          * care of stores.
3320          *
3321          * Currently, additional options and extension header space are
3322          * not supported, but flags register is reserved so we can adapt
3323          * that. For offloads, we mark packet as dodgy, so that headers
3324          * need to be verified first.
3325          */
3326         ret = bpf_skb_proto_xlat(skb, proto);
3327         bpf_compute_data_pointers(skb);
3328         return ret;
3329 }
3330
3331 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3332         .func           = bpf_skb_change_proto,
3333         .gpl_only       = false,
3334         .ret_type       = RET_INTEGER,
3335         .arg1_type      = ARG_PTR_TO_CTX,
3336         .arg2_type      = ARG_ANYTHING,
3337         .arg3_type      = ARG_ANYTHING,
3338 };
3339
3340 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3341 {
3342         /* We only allow a restricted subset to be changed for now. */
3343         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3344                      !skb_pkt_type_ok(pkt_type)))
3345                 return -EINVAL;
3346
3347         skb->pkt_type = pkt_type;
3348         return 0;
3349 }
3350
3351 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3352         .func           = bpf_skb_change_type,
3353         .gpl_only       = false,
3354         .ret_type       = RET_INTEGER,
3355         .arg1_type      = ARG_PTR_TO_CTX,
3356         .arg2_type      = ARG_ANYTHING,
3357 };
3358
3359 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3360 {
3361         switch (skb->protocol) {
3362         case htons(ETH_P_IP):
3363                 return sizeof(struct iphdr);
3364         case htons(ETH_P_IPV6):
3365                 return sizeof(struct ipv6hdr);
3366         default:
3367                 return ~0U;
3368         }
3369 }
3370
3371 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3372                                          BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3373
3374 #define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3375                                          BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3376                                          BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3377                                          BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3378                                          BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3379                                          BPF_F_ADJ_ROOM_ENCAP_L2( \
3380                                           BPF_ADJ_ROOM_ENCAP_L2_MASK))
3381
3382 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3383                             u64 flags)
3384 {
3385         u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3386         bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3387         u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3388         unsigned int gso_type = SKB_GSO_DODGY;
3389         int ret;
3390
3391         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3392                 /* udp gso_size delineates datagrams, only allow if fixed */
3393                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3394                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3395                         return -ENOTSUPP;
3396         }
3397
3398         ret = skb_cow_head(skb, len_diff);
3399         if (unlikely(ret < 0))
3400                 return ret;
3401
3402         if (encap) {
3403                 if (skb->protocol != htons(ETH_P_IP) &&
3404                     skb->protocol != htons(ETH_P_IPV6))
3405                         return -ENOTSUPP;
3406
3407                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3408                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3409                         return -EINVAL;
3410
3411                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3412                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3413                         return -EINVAL;
3414
3415                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3416                     inner_mac_len < ETH_HLEN)
3417                         return -EINVAL;
3418
3419                 if (skb->encapsulation)
3420                         return -EALREADY;
3421
3422                 mac_len = skb->network_header - skb->mac_header;
3423                 inner_net = skb->network_header;
3424                 if (inner_mac_len > len_diff)
3425                         return -EINVAL;
3426                 inner_trans = skb->transport_header;
3427         }
3428
3429         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3430         if (unlikely(ret < 0))
3431                 return ret;
3432
3433         if (encap) {
3434                 skb->inner_mac_header = inner_net - inner_mac_len;
3435                 skb->inner_network_header = inner_net;
3436                 skb->inner_transport_header = inner_trans;
3437
3438                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3439                         skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3440                 else
3441                         skb_set_inner_protocol(skb, skb->protocol);
3442
3443                 skb->encapsulation = 1;
3444                 skb_set_network_header(skb, mac_len);
3445
3446                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3447                         gso_type |= SKB_GSO_UDP_TUNNEL;
3448                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3449                         gso_type |= SKB_GSO_GRE;
3450                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3451                         gso_type |= SKB_GSO_IPXIP6;
3452                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3453                         gso_type |= SKB_GSO_IPXIP4;
3454
3455                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3456                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3457                         int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3458                                         sizeof(struct ipv6hdr) :
3459                                         sizeof(struct iphdr);
3460
3461                         skb_set_transport_header(skb, mac_len + nh_len);
3462                 }
3463
3464                 /* Match skb->protocol to new outer l3 protocol */
3465                 if (skb->protocol == htons(ETH_P_IP) &&
3466                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3467                         skb->protocol = htons(ETH_P_IPV6);
3468                 else if (skb->protocol == htons(ETH_P_IPV6) &&
3469                          flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3470                         skb->protocol = htons(ETH_P_IP);
3471         }
3472
3473         if (skb_is_gso(skb)) {
3474                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3475
3476                 /* Due to header grow, MSS needs to be downgraded. */
3477                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3478                         skb_decrease_gso_size(shinfo, len_diff);
3479
3480                 /* Header must be checked, and gso_segs recomputed. */
3481                 shinfo->gso_type |= gso_type;
3482                 shinfo->gso_segs = 0;
3483         }
3484
3485         return 0;
3486 }
3487
3488 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3489                               u64 flags)
3490 {
3491         int ret;
3492
3493         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3494                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3495                 return -EINVAL;
3496
3497         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3498                 /* udp gso_size delineates datagrams, only allow if fixed */
3499                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3500                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3501                         return -ENOTSUPP;
3502         }
3503
3504         ret = skb_unclone(skb, GFP_ATOMIC);
3505         if (unlikely(ret < 0))
3506                 return ret;
3507
3508         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3509         if (unlikely(ret < 0))
3510                 return ret;
3511
3512         if (skb_is_gso(skb)) {
3513                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3514
3515                 /* Due to header shrink, MSS can be upgraded. */
3516                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3517                         skb_increase_gso_size(shinfo, len_diff);
3518
3519                 /* Header must be checked, and gso_segs recomputed. */
3520                 shinfo->gso_type |= SKB_GSO_DODGY;
3521                 shinfo->gso_segs = 0;
3522         }
3523
3524         return 0;
3525 }
3526
3527 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3528
3529 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3530            u32, mode, u64, flags)
3531 {
3532         u32 len_diff_abs = abs(len_diff);
3533         bool shrink = len_diff < 0;
3534         int ret = 0;
3535
3536         if (unlikely(flags || mode))
3537                 return -EINVAL;
3538         if (unlikely(len_diff_abs > 0xfffU))
3539                 return -EFAULT;
3540
3541         if (!shrink) {
3542                 ret = skb_cow(skb, len_diff);
3543                 if (unlikely(ret < 0))
3544                         return ret;
3545                 __skb_push(skb, len_diff_abs);
3546                 memset(skb->data, 0, len_diff_abs);
3547         } else {
3548                 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3549                         return -ENOMEM;
3550                 __skb_pull(skb, len_diff_abs);
3551         }
3552         if (tls_sw_has_ctx_rx(skb->sk)) {
3553                 struct strp_msg *rxm = strp_msg(skb);
3554
3555                 rxm->full_len += len_diff;
3556         }
3557         return ret;
3558 }
3559
3560 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3561         .func           = sk_skb_adjust_room,
3562         .gpl_only       = false,
3563         .ret_type       = RET_INTEGER,
3564         .arg1_type      = ARG_PTR_TO_CTX,
3565         .arg2_type      = ARG_ANYTHING,
3566         .arg3_type      = ARG_ANYTHING,
3567         .arg4_type      = ARG_ANYTHING,
3568 };
3569
3570 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3571            u32, mode, u64, flags)
3572 {
3573         u32 len_cur, len_diff_abs = abs(len_diff);
3574         u32 len_min = bpf_skb_net_base_len(skb);
3575         u32 len_max = BPF_SKB_MAX_LEN;
3576         __be16 proto = skb->protocol;
3577         bool shrink = len_diff < 0;
3578         u32 off;
3579         int ret;
3580
3581         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3582                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3583                 return -EINVAL;
3584         if (unlikely(len_diff_abs > 0xfffU))
3585                 return -EFAULT;
3586         if (unlikely(proto != htons(ETH_P_IP) &&
3587                      proto != htons(ETH_P_IPV6)))
3588                 return -ENOTSUPP;
3589
3590         off = skb_mac_header_len(skb);
3591         switch (mode) {
3592         case BPF_ADJ_ROOM_NET:
3593                 off += bpf_skb_net_base_len(skb);
3594                 break;
3595         case BPF_ADJ_ROOM_MAC:
3596                 break;
3597         default:
3598                 return -ENOTSUPP;
3599         }
3600
3601         len_cur = skb->len - skb_network_offset(skb);
3602         if ((shrink && (len_diff_abs >= len_cur ||
3603                         len_cur - len_diff_abs < len_min)) ||
3604             (!shrink && (skb->len + len_diff_abs > len_max &&
3605                          !skb_is_gso(skb))))
3606                 return -ENOTSUPP;
3607
3608         ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3609                        bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3610         if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3611                 __skb_reset_checksum_unnecessary(skb);
3612
3613         bpf_compute_data_pointers(skb);
3614         return ret;
3615 }
3616
3617 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3618         .func           = bpf_skb_adjust_room,
3619         .gpl_only       = false,
3620         .ret_type       = RET_INTEGER,
3621         .arg1_type      = ARG_PTR_TO_CTX,
3622         .arg2_type      = ARG_ANYTHING,
3623         .arg3_type      = ARG_ANYTHING,
3624         .arg4_type      = ARG_ANYTHING,
3625 };
3626
3627 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3628 {
3629         u32 min_len = skb_network_offset(skb);
3630
3631         if (skb_transport_header_was_set(skb))
3632                 min_len = skb_transport_offset(skb);
3633         if (skb->ip_summed == CHECKSUM_PARTIAL)
3634                 min_len = skb_checksum_start_offset(skb) +
3635                           skb->csum_offset + sizeof(__sum16);
3636         return min_len;
3637 }
3638
3639 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3640 {
3641         unsigned int old_len = skb->len;
3642         int ret;
3643
3644         ret = __skb_grow_rcsum(skb, new_len);
3645         if (!ret)
3646                 memset(skb->data + old_len, 0, new_len - old_len);
3647         return ret;
3648 }
3649
3650 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3651 {
3652         return __skb_trim_rcsum(skb, new_len);
3653 }
3654
3655 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3656                                         u64 flags)
3657 {
3658         u32 max_len = BPF_SKB_MAX_LEN;
3659         u32 min_len = __bpf_skb_min_len(skb);
3660         int ret;
3661
3662         if (unlikely(flags || new_len > max_len || new_len < min_len))
3663                 return -EINVAL;
3664         if (skb->encapsulation)
3665                 return -ENOTSUPP;
3666
3667         /* The basic idea of this helper is that it's performing the
3668          * needed work to either grow or trim an skb, and eBPF program
3669          * rewrites the rest via helpers like bpf_skb_store_bytes(),
3670          * bpf_lX_csum_replace() and others rather than passing a raw
3671          * buffer here. This one is a slow path helper and intended
3672          * for replies with control messages.
3673          *
3674          * Like in bpf_skb_change_proto(), we want to keep this rather
3675          * minimal and without protocol specifics so that we are able
3676          * to separate concerns as in bpf_skb_store_bytes() should only
3677          * be the one responsible for writing buffers.
3678          *
3679          * It's really expected to be a slow path operation here for
3680          * control message replies, so we're implicitly linearizing,
3681          * uncloning and drop offloads from the skb by this.
3682          */
3683         ret = __bpf_try_make_writable(skb, skb->len);
3684         if (!ret) {
3685                 if (new_len > skb->len)
3686                         ret = bpf_skb_grow_rcsum(skb, new_len);
3687                 else if (new_len < skb->len)
3688                         ret = bpf_skb_trim_rcsum(skb, new_len);
3689                 if (!ret && skb_is_gso(skb))
3690                         skb_gso_reset(skb);
3691         }
3692         return ret;
3693 }
3694
3695 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3696            u64, flags)
3697 {
3698         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3699
3700         bpf_compute_data_pointers(skb);
3701         return ret;
3702 }
3703
3704 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3705         .func           = bpf_skb_change_tail,
3706         .gpl_only       = false,
3707         .ret_type       = RET_INTEGER,
3708         .arg1_type      = ARG_PTR_TO_CTX,
3709         .arg2_type      = ARG_ANYTHING,
3710         .arg3_type      = ARG_ANYTHING,
3711 };
3712
3713 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3714            u64, flags)
3715 {
3716         return __bpf_skb_change_tail(skb, new_len, flags);
3717 }
3718
3719 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3720         .func           = sk_skb_change_tail,
3721         .gpl_only       = false,
3722         .ret_type       = RET_INTEGER,
3723         .arg1_type      = ARG_PTR_TO_CTX,
3724         .arg2_type      = ARG_ANYTHING,
3725         .arg3_type      = ARG_ANYTHING,
3726 };
3727
3728 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3729                                         u64 flags)
3730 {
3731         u32 max_len = BPF_SKB_MAX_LEN;
3732         u32 new_len = skb->len + head_room;
3733         int ret;
3734
3735         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3736                      new_len < skb->len))
3737                 return -EINVAL;
3738
3739         ret = skb_cow(skb, head_room);
3740         if (likely(!ret)) {
3741                 /* Idea for this helper is that we currently only
3742                  * allow to expand on mac header. This means that
3743                  * skb->protocol network header, etc, stay as is.
3744                  * Compared to bpf_skb_change_tail(), we're more
3745                  * flexible due to not needing to linearize or
3746                  * reset GSO. Intention for this helper is to be
3747                  * used by an L3 skb that needs to push mac header
3748                  * for redirection into L2 device.
3749                  */
3750                 __skb_push(skb, head_room);
3751                 memset(skb->data, 0, head_room);
3752                 skb_reset_mac_header(skb);
3753                 skb_reset_mac_len(skb);
3754         }
3755
3756         return ret;
3757 }
3758
3759 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3760            u64, flags)
3761 {
3762         int ret = __bpf_skb_change_head(skb, head_room, flags);
3763
3764         bpf_compute_data_pointers(skb);
3765         return ret;
3766 }
3767
3768 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3769         .func           = bpf_skb_change_head,
3770         .gpl_only       = false,
3771         .ret_type       = RET_INTEGER,
3772         .arg1_type      = ARG_PTR_TO_CTX,
3773         .arg2_type      = ARG_ANYTHING,
3774         .arg3_type      = ARG_ANYTHING,
3775 };
3776
3777 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3778            u64, flags)
3779 {
3780         return __bpf_skb_change_head(skb, head_room, flags);
3781 }
3782
3783 static const struct bpf_func_proto sk_skb_change_head_proto = {
3784         .func           = sk_skb_change_head,
3785         .gpl_only       = false,
3786         .ret_type       = RET_INTEGER,
3787         .arg1_type      = ARG_PTR_TO_CTX,
3788         .arg2_type      = ARG_ANYTHING,
3789         .arg3_type      = ARG_ANYTHING,
3790 };
3791 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3792 {
3793         return xdp_data_meta_unsupported(xdp) ? 0 :
3794                xdp->data - xdp->data_meta;
3795 }
3796
3797 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3798 {
3799         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3800         unsigned long metalen = xdp_get_metalen(xdp);
3801         void *data_start = xdp_frame_end + metalen;
3802         void *data = xdp->data + offset;
3803
3804         if (unlikely(data < data_start ||
3805                      data > xdp->data_end - ETH_HLEN))
3806                 return -EINVAL;
3807
3808         if (metalen)
3809                 memmove(xdp->data_meta + offset,
3810                         xdp->data_meta, metalen);
3811         xdp->data_meta += offset;
3812         xdp->data = data;
3813
3814         return 0;
3815 }
3816
3817 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3818         .func           = bpf_xdp_adjust_head,
3819         .gpl_only       = false,
3820         .ret_type       = RET_INTEGER,
3821         .arg1_type      = ARG_PTR_TO_CTX,
3822         .arg2_type      = ARG_ANYTHING,
3823 };
3824
3825 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3826 {
3827         void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
3828         void *data_end = xdp->data_end + offset;
3829
3830         /* Notice that xdp_data_hard_end have reserved some tailroom */
3831         if (unlikely(data_end > data_hard_end))
3832                 return -EINVAL;
3833
3834         /* ALL drivers MUST init xdp->frame_sz, chicken check below */
3835         if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
3836                 WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
3837                 return -EINVAL;
3838         }
3839
3840         if (unlikely(data_end < xdp->data + ETH_HLEN))
3841                 return -EINVAL;
3842
3843         /* Clear memory area on grow, can contain uninit kernel memory */
3844         if (offset > 0)
3845                 memset(xdp->data_end, 0, offset);
3846
3847         xdp->data_end = data_end;
3848
3849         return 0;
3850 }
3851
3852 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3853         .func           = bpf_xdp_adjust_tail,
3854         .gpl_only       = false,
3855         .ret_type       = RET_INTEGER,
3856         .arg1_type      = ARG_PTR_TO_CTX,
3857         .arg2_type      = ARG_ANYTHING,
3858 };
3859
3860 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3861 {
3862         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3863         void *meta = xdp->data_meta + offset;
3864         unsigned long metalen = xdp->data - meta;
3865
3866         if (xdp_data_meta_unsupported(xdp))
3867                 return -ENOTSUPP;
3868         if (unlikely(meta < xdp_frame_end ||
3869                      meta > xdp->data))
3870                 return -EINVAL;
3871         if (unlikely(xdp_metalen_invalid(metalen)))
3872                 return -EACCES;
3873
3874         xdp->data_meta = meta;
3875
3876         return 0;
3877 }
3878
3879 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3880         .func           = bpf_xdp_adjust_meta,
3881         .gpl_only       = false,
3882         .ret_type       = RET_INTEGER,
3883         .arg1_type      = ARG_PTR_TO_CTX,
3884         .arg2_type      = ARG_ANYTHING,
3885 };
3886
3887 /* XDP_REDIRECT works by a three-step process, implemented in the functions
3888  * below:
3889  *
3890  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
3891  *    of the redirect and store it (along with some other metadata) in a per-CPU
3892  *    struct bpf_redirect_info.
3893  *
3894  * 2. When the program returns the XDP_REDIRECT return code, the driver will
3895  *    call xdp_do_redirect() which will use the information in struct
3896  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
3897  *    bulk queue structure.
3898  *
3899  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
3900  *    which will flush all the different bulk queues, thus completing the
3901  *    redirect.
3902  *
3903  * Pointers to the map entries will be kept around for this whole sequence of
3904  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
3905  * the core code; instead, the RCU protection relies on everything happening
3906  * inside a single NAPI poll sequence, which means it's between a pair of calls
3907  * to local_bh_disable()/local_bh_enable().
3908  *
3909  * The map entries are marked as __rcu and the map code makes sure to
3910  * dereference those pointers with rcu_dereference_check() in a way that works
3911  * for both sections that to hold an rcu_read_lock() and sections that are
3912  * called from NAPI without a separate rcu_read_lock(). The code below does not
3913  * use RCU annotations, but relies on those in the map code.
3914  */
3915 void xdp_do_flush(void)
3916 {
3917         __dev_flush();
3918         __cpu_map_flush();
3919         __xsk_map_flush();
3920 }
3921 EXPORT_SYMBOL_GPL(xdp_do_flush);
3922
3923 void bpf_clear_redirect_map(struct bpf_map *map)
3924 {
3925         struct bpf_redirect_info *ri;
3926         int cpu;
3927
3928         for_each_possible_cpu(cpu) {
3929                 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3930                 /* Avoid polluting remote cacheline due to writes if
3931                  * not needed. Once we pass this test, we need the
3932                  * cmpxchg() to make sure it hasn't been changed in
3933                  * the meantime by remote CPU.
3934                  */
3935                 if (unlikely(READ_ONCE(ri->map) == map))
3936                         cmpxchg(&ri->map, map, NULL);
3937         }
3938 }
3939
3940 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
3941 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
3942
3943 u32 xdp_master_redirect(struct xdp_buff *xdp)
3944 {
3945         struct net_device *master, *slave;
3946         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3947
3948         master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
3949         slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
3950         if (slave && slave != xdp->rxq->dev) {
3951                 /* The target device is different from the receiving device, so
3952                  * redirect it to the new device.
3953                  * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
3954                  * drivers to unmap the packet from their rx ring.
3955                  */
3956                 ri->tgt_index = slave->ifindex;
3957                 ri->map_id = INT_MAX;
3958                 ri->map_type = BPF_MAP_TYPE_UNSPEC;
3959                 return XDP_REDIRECT;
3960         }
3961         return XDP_TX;
3962 }
3963 EXPORT_SYMBOL_GPL(xdp_master_redirect);
3964
3965 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3966                     struct bpf_prog *xdp_prog)
3967 {
3968         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3969         enum bpf_map_type map_type = ri->map_type;
3970         void *fwd = ri->tgt_value;
3971         u32 map_id = ri->map_id;
3972         struct bpf_map *map;
3973         int err;
3974
3975         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
3976         ri->map_type = BPF_MAP_TYPE_UNSPEC;
3977
3978         switch (map_type) {
3979         case BPF_MAP_TYPE_DEVMAP:
3980                 fallthrough;
3981         case BPF_MAP_TYPE_DEVMAP_HASH:
3982                 map = READ_ONCE(ri->map);
3983                 if (unlikely(map)) {
3984                         WRITE_ONCE(ri->map, NULL);
3985                         err = dev_map_enqueue_multi(xdp, dev, map,
3986                                                     ri->flags & BPF_F_EXCLUDE_INGRESS);
3987                 } else {
3988                         err = dev_map_enqueue(fwd, xdp, dev);
3989                 }
3990                 break;
3991         case BPF_MAP_TYPE_CPUMAP:
3992                 err = cpu_map_enqueue(fwd, xdp, dev);
3993                 break;
3994         case BPF_MAP_TYPE_XSKMAP:
3995                 err = __xsk_map_redirect(fwd, xdp);
3996                 break;
3997         case BPF_MAP_TYPE_UNSPEC:
3998                 if (map_id == INT_MAX) {
3999                         fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4000                         if (unlikely(!fwd)) {
4001                                 err = -EINVAL;
4002                                 break;
4003                         }
4004                         err = dev_xdp_enqueue(fwd, xdp, dev);
4005                         break;
4006                 }
4007                 fallthrough;
4008         default:
4009                 err = -EBADRQC;
4010         }
4011
4012         if (unlikely(err))
4013                 goto err;
4014
4015         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4016         return 0;
4017 err:
4018         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4019         return err;
4020 }
4021 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4022
4023 static int xdp_do_generic_redirect_map(struct net_device *dev,
4024                                        struct sk_buff *skb,
4025                                        struct xdp_buff *xdp,
4026                                        struct bpf_prog *xdp_prog,
4027                                        void *fwd,
4028                                        enum bpf_map_type map_type, u32 map_id)
4029 {
4030         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4031         struct bpf_map *map;
4032         int err;
4033
4034         switch (map_type) {
4035         case BPF_MAP_TYPE_DEVMAP:
4036                 fallthrough;
4037         case BPF_MAP_TYPE_DEVMAP_HASH:
4038                 map = READ_ONCE(ri->map);
4039                 if (unlikely(map)) {
4040                         WRITE_ONCE(ri->map, NULL);
4041                         err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4042                                                      ri->flags & BPF_F_EXCLUDE_INGRESS);
4043                 } else {
4044                         err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4045                 }
4046                 if (unlikely(err))
4047                         goto err;
4048                 break;
4049         case BPF_MAP_TYPE_XSKMAP:
4050                 err = xsk_generic_rcv(fwd, xdp);
4051                 if (err)
4052                         goto err;
4053                 consume_skb(skb);
4054                 break;
4055         case BPF_MAP_TYPE_CPUMAP:
4056                 err = cpu_map_generic_redirect(fwd, skb);
4057                 if (unlikely(err))
4058                         goto err;
4059                 break;
4060         default:
4061                 err = -EBADRQC;
4062                 goto err;
4063         }
4064
4065         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4066         return 0;
4067 err:
4068         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4069         return err;
4070 }
4071
4072 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4073                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4074 {
4075         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4076         enum bpf_map_type map_type = ri->map_type;
4077         void *fwd = ri->tgt_value;
4078         u32 map_id = ri->map_id;
4079         int err;
4080
4081         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4082         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4083
4084         if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4085                 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4086                 if (unlikely(!fwd)) {
4087                         err = -EINVAL;
4088                         goto err;
4089                 }
4090
4091                 err = xdp_ok_fwd_dev(fwd, skb->len);
4092                 if (unlikely(err))
4093                         goto err;
4094
4095                 skb->dev = fwd;
4096                 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4097                 generic_xdp_tx(skb, xdp_prog);
4098                 return 0;
4099         }
4100
4101         return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4102 err:
4103         _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4104         return err;
4105 }
4106
4107 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4108 {
4109         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4110
4111         if (unlikely(flags))
4112                 return XDP_ABORTED;
4113
4114         /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4115          * by map_idr) is used for ifindex based XDP redirect.
4116          */
4117         ri->tgt_index = ifindex;
4118         ri->map_id = INT_MAX;
4119         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4120
4121         return XDP_REDIRECT;
4122 }
4123
4124 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4125         .func           = bpf_xdp_redirect,
4126         .gpl_only       = false,
4127         .ret_type       = RET_INTEGER,
4128         .arg1_type      = ARG_ANYTHING,
4129         .arg2_type      = ARG_ANYTHING,
4130 };
4131
4132 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4133            u64, flags)
4134 {
4135         return map->ops->map_redirect(map, ifindex, flags);
4136 }
4137
4138 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4139         .func           = bpf_xdp_redirect_map,
4140         .gpl_only       = false,
4141         .ret_type       = RET_INTEGER,
4142         .arg1_type      = ARG_CONST_MAP_PTR,
4143         .arg2_type      = ARG_ANYTHING,
4144         .arg3_type      = ARG_ANYTHING,
4145 };
4146
4147 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4148                                   unsigned long off, unsigned long len)
4149 {
4150         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4151
4152         if (unlikely(!ptr))
4153                 return len;
4154         if (ptr != dst_buff)
4155                 memcpy(dst_buff, ptr, len);
4156
4157         return 0;
4158 }
4159
4160 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4161            u64, flags, void *, meta, u64, meta_size)
4162 {
4163         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4164
4165         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4166                 return -EINVAL;
4167         if (unlikely(!skb || skb_size > skb->len))
4168                 return -EFAULT;
4169
4170         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4171                                 bpf_skb_copy);
4172 }
4173
4174 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4175         .func           = bpf_skb_event_output,
4176         .gpl_only       = true,
4177         .ret_type       = RET_INTEGER,
4178         .arg1_type      = ARG_PTR_TO_CTX,
4179         .arg2_type      = ARG_CONST_MAP_PTR,
4180         .arg3_type      = ARG_ANYTHING,
4181         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4182         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4183 };
4184
4185 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4186
4187 const struct bpf_func_proto bpf_skb_output_proto = {
4188         .func           = bpf_skb_event_output,
4189         .gpl_only       = true,
4190         .ret_type       = RET_INTEGER,
4191         .arg1_type      = ARG_PTR_TO_BTF_ID,
4192         .arg1_btf_id    = &bpf_skb_output_btf_ids[0],
4193         .arg2_type      = ARG_CONST_MAP_PTR,
4194         .arg3_type      = ARG_ANYTHING,
4195         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4196         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4197 };
4198
4199 static unsigned short bpf_tunnel_key_af(u64 flags)
4200 {
4201         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4202 }
4203
4204 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4205            u32, size, u64, flags)
4206 {
4207         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4208         u8 compat[sizeof(struct bpf_tunnel_key)];
4209         void *to_orig = to;
4210         int err;
4211
4212         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4213                 err = -EINVAL;
4214                 goto err_clear;
4215         }
4216         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4217                 err = -EPROTO;
4218                 goto err_clear;
4219         }
4220         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4221                 err = -EINVAL;
4222                 switch (size) {
4223                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4224                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4225                         goto set_compat;
4226                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4227                         /* Fixup deprecated structure layouts here, so we have
4228                          * a common path later on.
4229                          */
4230                         if (ip_tunnel_info_af(info) != AF_INET)
4231                                 goto err_clear;
4232 set_compat:
4233                         to = (struct bpf_tunnel_key *)compat;
4234                         break;
4235                 default:
4236                         goto err_clear;
4237                 }
4238         }
4239
4240         to->tunnel_id = be64_to_cpu(info->key.tun_id);
4241         to->tunnel_tos = info->key.tos;
4242         to->tunnel_ttl = info->key.ttl;
4243         to->tunnel_ext = 0;
4244
4245         if (flags & BPF_F_TUNINFO_IPV6) {
4246                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4247                        sizeof(to->remote_ipv6));
4248                 to->tunnel_label = be32_to_cpu(info->key.label);
4249         } else {
4250                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4251                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4252                 to->tunnel_label = 0;
4253         }
4254
4255         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4256                 memcpy(to_orig, to, size);
4257
4258         return 0;
4259 err_clear:
4260         memset(to_orig, 0, size);
4261         return err;
4262 }
4263
4264 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4265         .func           = bpf_skb_get_tunnel_key,
4266         .gpl_only       = false,
4267         .ret_type       = RET_INTEGER,
4268         .arg1_type      = ARG_PTR_TO_CTX,
4269         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4270         .arg3_type      = ARG_CONST_SIZE,
4271         .arg4_type      = ARG_ANYTHING,
4272 };
4273
4274 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4275 {
4276         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4277         int err;
4278
4279         if (unlikely(!info ||
4280                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4281                 err = -ENOENT;
4282                 goto err_clear;
4283         }
4284         if (unlikely(size < info->options_len)) {
4285                 err = -ENOMEM;
4286                 goto err_clear;
4287         }
4288
4289         ip_tunnel_info_opts_get(to, info);
4290         if (size > info->options_len)
4291                 memset(to + info->options_len, 0, size - info->options_len);
4292
4293         return info->options_len;
4294 err_clear:
4295         memset(to, 0, size);
4296         return err;
4297 }
4298
4299 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4300         .func           = bpf_skb_get_tunnel_opt,
4301         .gpl_only       = false,
4302         .ret_type       = RET_INTEGER,
4303         .arg1_type      = ARG_PTR_TO_CTX,
4304         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4305         .arg3_type      = ARG_CONST_SIZE,
4306 };
4307
4308 static struct metadata_dst __percpu *md_dst;
4309
4310 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4311            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4312 {
4313         struct metadata_dst *md = this_cpu_ptr(md_dst);
4314         u8 compat[sizeof(struct bpf_tunnel_key)];
4315         struct ip_tunnel_info *info;
4316
4317         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4318                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4319                 return -EINVAL;
4320         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4321                 switch (size) {
4322                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4323                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4324                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4325                         /* Fixup deprecated structure layouts here, so we have
4326                          * a common path later on.
4327                          */
4328                         memcpy(compat, from, size);
4329                         memset(compat + size, 0, sizeof(compat) - size);
4330                         from = (const struct bpf_tunnel_key *) compat;
4331                         break;
4332                 default:
4333                         return -EINVAL;
4334                 }
4335         }
4336         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4337                      from->tunnel_ext))
4338                 return -EINVAL;
4339
4340         skb_dst_drop(skb);
4341         dst_hold((struct dst_entry *) md);
4342         skb_dst_set(skb, (struct dst_entry *) md);
4343
4344         info = &md->u.tun_info;
4345         memset(info, 0, sizeof(*info));
4346         info->mode = IP_TUNNEL_INFO_TX;
4347
4348         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4349         if (flags & BPF_F_DONT_FRAGMENT)
4350                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4351         if (flags & BPF_F_ZERO_CSUM_TX)
4352                 info->key.tun_flags &= ~TUNNEL_CSUM;
4353         if (flags & BPF_F_SEQ_NUMBER)
4354                 info->key.tun_flags |= TUNNEL_SEQ;
4355
4356         info->key.tun_id = cpu_to_be64(from->tunnel_id);
4357         info->key.tos = from->tunnel_tos;
4358         info->key.ttl = from->tunnel_ttl;
4359
4360         if (flags & BPF_F_TUNINFO_IPV6) {
4361                 info->mode |= IP_TUNNEL_INFO_IPV6;
4362                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4363                        sizeof(from->remote_ipv6));
4364                 info->key.label = cpu_to_be32(from->tunnel_label) &
4365                                   IPV6_FLOWLABEL_MASK;
4366         } else {
4367                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4368         }
4369
4370         return 0;
4371 }
4372
4373 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4374         .func           = bpf_skb_set_tunnel_key,
4375         .gpl_only       = false,
4376         .ret_type       = RET_INTEGER,
4377         .arg1_type      = ARG_PTR_TO_CTX,
4378         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4379         .arg3_type      = ARG_CONST_SIZE,
4380         .arg4_type      = ARG_ANYTHING,
4381 };
4382
4383 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4384            const u8 *, from, u32, size)
4385 {
4386         struct ip_tunnel_info *info = skb_tunnel_info(skb);
4387         const struct metadata_dst *md = this_cpu_ptr(md_dst);
4388
4389         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4390                 return -EINVAL;
4391         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4392                 return -ENOMEM;
4393
4394         ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4395
4396         return 0;
4397 }
4398
4399 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4400         .func           = bpf_skb_set_tunnel_opt,
4401         .gpl_only       = false,
4402         .ret_type       = RET_INTEGER,
4403         .arg1_type      = ARG_PTR_TO_CTX,
4404         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4405         .arg3_type      = ARG_CONST_SIZE,
4406 };
4407
4408 static const struct bpf_func_proto *
4409 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4410 {
4411         if (!md_dst) {
4412                 struct metadata_dst __percpu *tmp;
4413
4414                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4415                                                 METADATA_IP_TUNNEL,
4416                                                 GFP_KERNEL);
4417                 if (!tmp)
4418                         return NULL;
4419                 if (cmpxchg(&md_dst, NULL, tmp))
4420                         metadata_dst_free_percpu(tmp);
4421         }
4422
4423         switch (which) {
4424         case BPF_FUNC_skb_set_tunnel_key:
4425                 return &bpf_skb_set_tunnel_key_proto;
4426         case BPF_FUNC_skb_set_tunnel_opt:
4427                 return &bpf_skb_set_tunnel_opt_proto;
4428         default:
4429                 return NULL;
4430         }
4431 }
4432
4433 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4434            u32, idx)
4435 {
4436         struct bpf_array *array = container_of(map, struct bpf_array, map);
4437         struct cgroup *cgrp;
4438         struct sock *sk;
4439
4440         sk = skb_to_full_sk(skb);
4441         if (!sk || !sk_fullsock(sk))
4442                 return -ENOENT;
4443         if (unlikely(idx >= array->map.max_entries))
4444                 return -E2BIG;
4445
4446         cgrp = READ_ONCE(array->ptrs[idx]);
4447         if (unlikely(!cgrp))
4448                 return -EAGAIN;
4449
4450         return sk_under_cgroup_hierarchy(sk, cgrp);
4451 }
4452
4453 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4454         .func           = bpf_skb_under_cgroup,
4455         .gpl_only       = false,
4456         .ret_type       = RET_INTEGER,
4457         .arg1_type      = ARG_PTR_TO_CTX,
4458         .arg2_type      = ARG_CONST_MAP_PTR,
4459         .arg3_type      = ARG_ANYTHING,
4460 };
4461
4462 #ifdef CONFIG_SOCK_CGROUP_DATA
4463 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4464 {
4465         struct cgroup *cgrp;
4466
4467         sk = sk_to_full_sk(sk);
4468         if (!sk || !sk_fullsock(sk))
4469                 return 0;
4470
4471         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4472         return cgroup_id(cgrp);
4473 }
4474
4475 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4476 {
4477         return __bpf_sk_cgroup_id(skb->sk);
4478 }
4479
4480 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4481         .func           = bpf_skb_cgroup_id,
4482         .gpl_only       = false,
4483         .ret_type       = RET_INTEGER,
4484         .arg1_type      = ARG_PTR_TO_CTX,
4485 };
4486
4487 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4488                                               int ancestor_level)
4489 {
4490         struct cgroup *ancestor;
4491         struct cgroup *cgrp;
4492
4493         sk = sk_to_full_sk(sk);
4494         if (!sk || !sk_fullsock(sk))
4495                 return 0;
4496
4497         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4498         ancestor = cgroup_ancestor(cgrp, ancestor_level);
4499         if (!ancestor)
4500                 return 0;
4501
4502         return cgroup_id(ancestor);
4503 }
4504
4505 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4506            ancestor_level)
4507 {
4508         return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4509 }
4510
4511 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4512         .func           = bpf_skb_ancestor_cgroup_id,
4513         .gpl_only       = false,
4514         .ret_type       = RET_INTEGER,
4515         .arg1_type      = ARG_PTR_TO_CTX,
4516         .arg2_type      = ARG_ANYTHING,
4517 };
4518
4519 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4520 {
4521         return __bpf_sk_cgroup_id(sk);
4522 }
4523
4524 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4525         .func           = bpf_sk_cgroup_id,
4526         .gpl_only       = false,
4527         .ret_type       = RET_INTEGER,
4528         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4529 };
4530
4531 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4532 {
4533         return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4534 }
4535
4536 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4537         .func           = bpf_sk_ancestor_cgroup_id,
4538         .gpl_only       = false,
4539         .ret_type       = RET_INTEGER,
4540         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4541         .arg2_type      = ARG_ANYTHING,
4542 };
4543 #endif
4544
4545 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4546                                   unsigned long off, unsigned long len)
4547 {
4548         memcpy(dst_buff, src_buff + off, len);
4549         return 0;
4550 }
4551
4552 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4553            u64, flags, void *, meta, u64, meta_size)
4554 {
4555         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4556
4557         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4558                 return -EINVAL;
4559         if (unlikely(!xdp ||
4560                      xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4561                 return -EFAULT;
4562
4563         return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4564                                 xdp_size, bpf_xdp_copy);
4565 }
4566
4567 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4568         .func           = bpf_xdp_event_output,
4569         .gpl_only       = true,
4570         .ret_type       = RET_INTEGER,
4571         .arg1_type      = ARG_PTR_TO_CTX,
4572         .arg2_type      = ARG_CONST_MAP_PTR,
4573         .arg3_type      = ARG_ANYTHING,
4574         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4575         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4576 };
4577
4578 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4579
4580 const struct bpf_func_proto bpf_xdp_output_proto = {
4581         .func           = bpf_xdp_event_output,
4582         .gpl_only       = true,
4583         .ret_type       = RET_INTEGER,
4584         .arg1_type      = ARG_PTR_TO_BTF_ID,
4585         .arg1_btf_id    = &bpf_xdp_output_btf_ids[0],
4586         .arg2_type      = ARG_CONST_MAP_PTR,
4587         .arg3_type      = ARG_ANYTHING,
4588         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4589         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4590 };
4591
4592 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4593 {
4594         return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4595 }
4596
4597 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4598         .func           = bpf_get_socket_cookie,
4599         .gpl_only       = false,
4600         .ret_type       = RET_INTEGER,
4601         .arg1_type      = ARG_PTR_TO_CTX,
4602 };
4603
4604 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4605 {
4606         return __sock_gen_cookie(ctx->sk);
4607 }
4608
4609 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4610         .func           = bpf_get_socket_cookie_sock_addr,
4611         .gpl_only       = false,
4612         .ret_type       = RET_INTEGER,
4613         .arg1_type      = ARG_PTR_TO_CTX,
4614 };
4615
4616 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4617 {
4618         return __sock_gen_cookie(ctx);
4619 }
4620
4621 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4622         .func           = bpf_get_socket_cookie_sock,
4623         .gpl_only       = false,
4624         .ret_type       = RET_INTEGER,
4625         .arg1_type      = ARG_PTR_TO_CTX,
4626 };
4627
4628 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4629 {
4630         return sk ? sock_gen_cookie(sk) : 0;
4631 }
4632
4633 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4634         .func           = bpf_get_socket_ptr_cookie,
4635         .gpl_only       = false,
4636         .ret_type       = RET_INTEGER,
4637         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4638 };
4639
4640 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4641 {
4642         return __sock_gen_cookie(ctx->sk);
4643 }
4644
4645 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4646         .func           = bpf_get_socket_cookie_sock_ops,
4647         .gpl_only       = false,
4648         .ret_type       = RET_INTEGER,
4649         .arg1_type      = ARG_PTR_TO_CTX,
4650 };
4651
4652 static u64 __bpf_get_netns_cookie(struct sock *sk)
4653 {
4654         const struct net *net = sk ? sock_net(sk) : &init_net;
4655
4656         return net->net_cookie;
4657 }
4658
4659 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4660 {
4661         return __bpf_get_netns_cookie(ctx);
4662 }
4663
4664 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4665         .func           = bpf_get_netns_cookie_sock,
4666         .gpl_only       = false,
4667         .ret_type       = RET_INTEGER,
4668         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4669 };
4670
4671 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4672 {
4673         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4674 }
4675
4676 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4677         .func           = bpf_get_netns_cookie_sock_addr,
4678         .gpl_only       = false,
4679         .ret_type       = RET_INTEGER,
4680         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4681 };
4682
4683 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4684 {
4685         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4686 }
4687
4688 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
4689         .func           = bpf_get_netns_cookie_sock_ops,
4690         .gpl_only       = false,
4691         .ret_type       = RET_INTEGER,
4692         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4693 };
4694
4695 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
4696 {
4697         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4698 }
4699
4700 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
4701         .func           = bpf_get_netns_cookie_sk_msg,
4702         .gpl_only       = false,
4703         .ret_type       = RET_INTEGER,
4704         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4705 };
4706
4707 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4708 {
4709         struct sock *sk = sk_to_full_sk(skb->sk);
4710         kuid_t kuid;
4711
4712         if (!sk || !sk_fullsock(sk))
4713                 return overflowuid;
4714         kuid = sock_net_uid(sock_net(sk), sk);
4715         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4716 }
4717
4718 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4719         .func           = bpf_get_socket_uid,
4720         .gpl_only       = false,
4721         .ret_type       = RET_INTEGER,
4722         .arg1_type      = ARG_PTR_TO_CTX,
4723 };
4724
4725 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
4726                            char *optval, int optlen)
4727 {
4728         char devname[IFNAMSIZ];
4729         int val, valbool;
4730         struct net *net;
4731         int ifindex;
4732         int ret = 0;
4733
4734         if (!sk_fullsock(sk))
4735                 return -EINVAL;
4736
4737         sock_owned_by_me(sk);
4738
4739         if (level == SOL_SOCKET) {
4740                 if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
4741                         return -EINVAL;
4742                 val = *((int *)optval);
4743                 valbool = val ? 1 : 0;
4744
4745                 /* Only some socketops are supported */
4746                 switch (optname) {
4747                 case SO_RCVBUF:
4748                         val = min_t(u32, val, READ_ONCE(sysctl_rmem_max));
4749                         val = min_t(int, val, INT_MAX / 2);
4750                         sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4751                         WRITE_ONCE(sk->sk_rcvbuf,
4752                                    max_t(int, val * 2, SOCK_MIN_RCVBUF));
4753                         break;
4754                 case SO_SNDBUF:
4755                         val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
4756                         val = min_t(int, val, INT_MAX / 2);
4757                         sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4758                         WRITE_ONCE(sk->sk_sndbuf,
4759                                    max_t(int, val * 2, SOCK_MIN_SNDBUF));
4760                         break;
4761                 case SO_MAX_PACING_RATE: /* 32bit version */
4762                         if (val != ~0U)
4763                                 cmpxchg(&sk->sk_pacing_status,
4764                                         SK_PACING_NONE,
4765                                         SK_PACING_NEEDED);
4766                         sk->sk_max_pacing_rate = (val == ~0U) ?
4767                                                  ~0UL : (unsigned int)val;
4768                         sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4769                                                  sk->sk_max_pacing_rate);
4770                         break;
4771                 case SO_PRIORITY:
4772                         sk->sk_priority = val;
4773                         break;
4774                 case SO_RCVLOWAT:
4775                         if (val < 0)
4776                                 val = INT_MAX;
4777                         WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4778                         break;
4779                 case SO_MARK:
4780                         if (sk->sk_mark != val) {
4781                                 sk->sk_mark = val;
4782                                 sk_dst_reset(sk);
4783                         }
4784                         break;
4785                 case SO_BINDTODEVICE:
4786                         optlen = min_t(long, optlen, IFNAMSIZ - 1);
4787                         strncpy(devname, optval, optlen);
4788                         devname[optlen] = 0;
4789
4790                         ifindex = 0;
4791                         if (devname[0] != '\0') {
4792                                 struct net_device *dev;
4793
4794                                 ret = -ENODEV;
4795
4796                                 net = sock_net(sk);
4797                                 dev = dev_get_by_name(net, devname);
4798                                 if (!dev)
4799                                         break;
4800                                 ifindex = dev->ifindex;
4801                                 dev_put(dev);
4802                         }
4803                         fallthrough;
4804                 case SO_BINDTOIFINDEX:
4805                         if (optname == SO_BINDTOIFINDEX)
4806                                 ifindex = val;
4807                         ret = sock_bindtoindex(sk, ifindex, false);
4808                         break;
4809                 case SO_KEEPALIVE:
4810                         if (sk->sk_prot->keepalive)
4811                                 sk->sk_prot->keepalive(sk, valbool);
4812                         sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
4813                         break;
4814                 case SO_REUSEPORT:
4815                         sk->sk_reuseport = valbool;
4816                         break;
4817                 default:
4818                         ret = -EINVAL;
4819                 }
4820 #ifdef CONFIG_INET
4821         } else if (level == SOL_IP) {
4822                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4823                         return -EINVAL;
4824
4825                 val = *((int *)optval);
4826                 /* Only some options are supported */
4827                 switch (optname) {
4828                 case IP_TOS:
4829                         if (val < -1 || val > 0xff) {
4830                                 ret = -EINVAL;
4831                         } else {
4832                                 struct inet_sock *inet = inet_sk(sk);
4833
4834                                 if (val == -1)
4835                                         val = 0;
4836                                 inet->tos = val;
4837                         }
4838                         break;
4839                 default:
4840                         ret = -EINVAL;
4841                 }
4842 #if IS_ENABLED(CONFIG_IPV6)
4843         } else if (level == SOL_IPV6) {
4844                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4845                         return -EINVAL;
4846
4847                 val = *((int *)optval);
4848                 /* Only some options are supported */
4849                 switch (optname) {
4850                 case IPV6_TCLASS:
4851                         if (val < -1 || val > 0xff) {
4852                                 ret = -EINVAL;
4853                         } else {
4854                                 struct ipv6_pinfo *np = inet6_sk(sk);
4855
4856                                 if (val == -1)
4857                                         val = 0;
4858                                 np->tclass = val;
4859                         }
4860                         break;
4861                 default:
4862                         ret = -EINVAL;
4863                 }
4864 #endif
4865         } else if (level == SOL_TCP &&
4866                    sk->sk_prot->setsockopt == tcp_setsockopt) {
4867                 if (optname == TCP_CONGESTION) {
4868                         char name[TCP_CA_NAME_MAX];
4869
4870                         strncpy(name, optval, min_t(long, optlen,
4871                                                     TCP_CA_NAME_MAX-1));
4872                         name[TCP_CA_NAME_MAX-1] = 0;
4873                         ret = tcp_set_congestion_control(sk, name, false, true);
4874                 } else {
4875                         struct inet_connection_sock *icsk = inet_csk(sk);
4876                         struct tcp_sock *tp = tcp_sk(sk);
4877                         unsigned long timeout;
4878
4879                         if (optlen != sizeof(int))
4880                                 return -EINVAL;
4881
4882                         val = *((int *)optval);
4883                         /* Only some options are supported */
4884                         switch (optname) {
4885                         case TCP_BPF_IW:
4886                                 if (val <= 0 || tp->data_segs_out > tp->syn_data)
4887                                         ret = -EINVAL;
4888                                 else
4889                                         tcp_snd_cwnd_set(tp, val);
4890                                 break;
4891                         case TCP_BPF_SNDCWND_CLAMP:
4892                                 if (val <= 0) {
4893                                         ret = -EINVAL;
4894                                 } else {
4895                                         tp->snd_cwnd_clamp = val;
4896                                         tp->snd_ssthresh = val;
4897                                 }
4898                                 break;
4899                         case TCP_BPF_DELACK_MAX:
4900                                 timeout = usecs_to_jiffies(val);
4901                                 if (timeout > TCP_DELACK_MAX ||
4902                                     timeout < TCP_TIMEOUT_MIN)
4903                                         return -EINVAL;
4904                                 inet_csk(sk)->icsk_delack_max = timeout;
4905                                 break;
4906                         case TCP_BPF_RTO_MIN:
4907                                 timeout = usecs_to_jiffies(val);
4908                                 if (timeout > TCP_RTO_MIN ||
4909                                     timeout < TCP_TIMEOUT_MIN)
4910                                         return -EINVAL;
4911                                 inet_csk(sk)->icsk_rto_min = timeout;
4912                                 break;
4913                         case TCP_SAVE_SYN:
4914                                 if (val < 0 || val > 1)
4915                                         ret = -EINVAL;
4916                                 else
4917                                         tp->save_syn = val;
4918                                 break;
4919                         case TCP_KEEPIDLE:
4920                                 ret = tcp_sock_set_keepidle_locked(sk, val);
4921                                 break;
4922                         case TCP_KEEPINTVL:
4923                                 if (val < 1 || val > MAX_TCP_KEEPINTVL)
4924                                         ret = -EINVAL;
4925                                 else
4926                                         tp->keepalive_intvl = val * HZ;
4927                                 break;
4928                         case TCP_KEEPCNT:
4929                                 if (val < 1 || val > MAX_TCP_KEEPCNT)
4930                                         ret = -EINVAL;
4931                                 else
4932                                         tp->keepalive_probes = val;
4933                                 break;
4934                         case TCP_SYNCNT:
4935                                 if (val < 1 || val > MAX_TCP_SYNCNT)
4936                                         ret = -EINVAL;
4937                                 else
4938                                         icsk->icsk_syn_retries = val;
4939                                 break;
4940                         case TCP_USER_TIMEOUT:
4941                                 if (val < 0)
4942                                         ret = -EINVAL;
4943                                 else
4944                                         icsk->icsk_user_timeout = val;
4945                                 break;
4946                         case TCP_NOTSENT_LOWAT:
4947                                 tp->notsent_lowat = val;
4948                                 sk->sk_write_space(sk);
4949                                 break;
4950                         case TCP_WINDOW_CLAMP:
4951                                 ret = tcp_set_window_clamp(sk, val);
4952                                 break;
4953                         default:
4954                                 ret = -EINVAL;
4955                         }
4956                 }
4957 #endif
4958         } else {
4959                 ret = -EINVAL;
4960         }
4961         return ret;
4962 }
4963
4964 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
4965                            char *optval, int optlen)
4966 {
4967         if (!sk_fullsock(sk))
4968                 goto err_clear;
4969
4970         sock_owned_by_me(sk);
4971
4972         if (level == SOL_SOCKET) {
4973                 if (optlen != sizeof(int))
4974                         goto err_clear;
4975
4976                 switch (optname) {
4977                 case SO_MARK:
4978                         *((int *)optval) = sk->sk_mark;
4979                         break;
4980                 case SO_PRIORITY:
4981                         *((int *)optval) = sk->sk_priority;
4982                         break;
4983                 case SO_BINDTOIFINDEX:
4984                         *((int *)optval) = sk->sk_bound_dev_if;
4985                         break;
4986                 case SO_REUSEPORT:
4987                         *((int *)optval) = sk->sk_reuseport;
4988                         break;
4989                 default:
4990                         goto err_clear;
4991                 }
4992 #ifdef CONFIG_INET
4993         } else if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4994                 struct inet_connection_sock *icsk;
4995                 struct tcp_sock *tp;
4996
4997                 switch (optname) {
4998                 case TCP_CONGESTION:
4999                         icsk = inet_csk(sk);
5000
5001                         if (!icsk->icsk_ca_ops || optlen <= 1)
5002                                 goto err_clear;
5003                         strncpy(optval, icsk->icsk_ca_ops->name, optlen);
5004                         optval[optlen - 1] = 0;
5005                         break;
5006                 case TCP_SAVED_SYN:
5007                         tp = tcp_sk(sk);
5008
5009                         if (optlen <= 0 || !tp->saved_syn ||
5010                             optlen > tcp_saved_syn_len(tp->saved_syn))
5011                                 goto err_clear;
5012                         memcpy(optval, tp->saved_syn->data, optlen);
5013                         break;
5014                 default:
5015                         goto err_clear;
5016                 }
5017         } else if (level == SOL_IP) {
5018                 struct inet_sock *inet = inet_sk(sk);
5019
5020                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
5021                         goto err_clear;
5022
5023                 /* Only some options are supported */
5024                 switch (optname) {
5025                 case IP_TOS:
5026                         *((int *)optval) = (int)inet->tos;
5027                         break;
5028                 default:
5029                         goto err_clear;
5030                 }
5031 #if IS_ENABLED(CONFIG_IPV6)
5032         } else if (level == SOL_IPV6) {
5033                 struct ipv6_pinfo *np = inet6_sk(sk);
5034
5035                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
5036                         goto err_clear;
5037
5038                 /* Only some options are supported */
5039                 switch (optname) {
5040                 case IPV6_TCLASS:
5041                         *((int *)optval) = (int)np->tclass;
5042                         break;
5043                 default:
5044                         goto err_clear;
5045                 }
5046 #endif
5047 #endif
5048         } else {
5049                 goto err_clear;
5050         }
5051         return 0;
5052 err_clear:
5053         memset(optval, 0, optlen);
5054         return -EINVAL;
5055 }
5056
5057 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5058            int, optname, char *, optval, int, optlen)
5059 {
5060         if (level == SOL_TCP && optname == TCP_CONGESTION) {
5061                 if (optlen >= sizeof("cdg") - 1 &&
5062                     !strncmp("cdg", optval, optlen))
5063                         return -ENOTSUPP;
5064         }
5065
5066         return _bpf_setsockopt(sk, level, optname, optval, optlen);
5067 }
5068
5069 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5070         .func           = bpf_sk_setsockopt,
5071         .gpl_only       = false,
5072         .ret_type       = RET_INTEGER,
5073         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5074         .arg2_type      = ARG_ANYTHING,
5075         .arg3_type      = ARG_ANYTHING,
5076         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5077         .arg5_type      = ARG_CONST_SIZE,
5078 };
5079
5080 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5081            int, optname, char *, optval, int, optlen)
5082 {
5083         return _bpf_getsockopt(sk, level, optname, optval, optlen);
5084 }
5085
5086 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5087         .func           = bpf_sk_getsockopt,
5088         .gpl_only       = false,
5089         .ret_type       = RET_INTEGER,
5090         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5091         .arg2_type      = ARG_ANYTHING,
5092         .arg3_type      = ARG_ANYTHING,
5093         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5094         .arg5_type      = ARG_CONST_SIZE,
5095 };
5096
5097 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5098            int, level, int, optname, char *, optval, int, optlen)
5099 {
5100         return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5101 }
5102
5103 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5104         .func           = bpf_sock_addr_setsockopt,
5105         .gpl_only       = false,
5106         .ret_type       = RET_INTEGER,
5107         .arg1_type      = ARG_PTR_TO_CTX,
5108         .arg2_type      = ARG_ANYTHING,
5109         .arg3_type      = ARG_ANYTHING,
5110         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5111         .arg5_type      = ARG_CONST_SIZE,
5112 };
5113
5114 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5115            int, level, int, optname, char *, optval, int, optlen)
5116 {
5117         return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5118 }
5119
5120 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5121         .func           = bpf_sock_addr_getsockopt,
5122         .gpl_only       = false,
5123         .ret_type       = RET_INTEGER,
5124         .arg1_type      = ARG_PTR_TO_CTX,
5125         .arg2_type      = ARG_ANYTHING,
5126         .arg3_type      = ARG_ANYTHING,
5127         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5128         .arg5_type      = ARG_CONST_SIZE,
5129 };
5130
5131 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5132            int, level, int, optname, char *, optval, int, optlen)
5133 {
5134         return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5135 }
5136
5137 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5138         .func           = bpf_sock_ops_setsockopt,
5139         .gpl_only       = false,
5140         .ret_type       = RET_INTEGER,
5141         .arg1_type      = ARG_PTR_TO_CTX,
5142         .arg2_type      = ARG_ANYTHING,
5143         .arg3_type      = ARG_ANYTHING,
5144         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5145         .arg5_type      = ARG_CONST_SIZE,
5146 };
5147
5148 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5149                                 int optname, const u8 **start)
5150 {
5151         struct sk_buff *syn_skb = bpf_sock->syn_skb;
5152         const u8 *hdr_start;
5153         int ret;
5154
5155         if (syn_skb) {
5156                 /* sk is a request_sock here */
5157
5158                 if (optname == TCP_BPF_SYN) {
5159                         hdr_start = syn_skb->data;
5160                         ret = tcp_hdrlen(syn_skb);
5161                 } else if (optname == TCP_BPF_SYN_IP) {
5162                         hdr_start = skb_network_header(syn_skb);
5163                         ret = skb_network_header_len(syn_skb) +
5164                                 tcp_hdrlen(syn_skb);
5165                 } else {
5166                         /* optname == TCP_BPF_SYN_MAC */
5167                         hdr_start = skb_mac_header(syn_skb);
5168                         ret = skb_mac_header_len(syn_skb) +
5169                                 skb_network_header_len(syn_skb) +
5170                                 tcp_hdrlen(syn_skb);
5171                 }
5172         } else {
5173                 struct sock *sk = bpf_sock->sk;
5174                 struct saved_syn *saved_syn;
5175
5176                 if (sk->sk_state == TCP_NEW_SYN_RECV)
5177                         /* synack retransmit. bpf_sock->syn_skb will
5178                          * not be available.  It has to resort to
5179                          * saved_syn (if it is saved).
5180                          */
5181                         saved_syn = inet_reqsk(sk)->saved_syn;
5182                 else
5183                         saved_syn = tcp_sk(sk)->saved_syn;
5184
5185                 if (!saved_syn)
5186                         return -ENOENT;
5187
5188                 if (optname == TCP_BPF_SYN) {
5189                         hdr_start = saved_syn->data +
5190                                 saved_syn->mac_hdrlen +
5191                                 saved_syn->network_hdrlen;
5192                         ret = saved_syn->tcp_hdrlen;
5193                 } else if (optname == TCP_BPF_SYN_IP) {
5194                         hdr_start = saved_syn->data +
5195                                 saved_syn->mac_hdrlen;
5196                         ret = saved_syn->network_hdrlen +
5197                                 saved_syn->tcp_hdrlen;
5198                 } else {
5199                         /* optname == TCP_BPF_SYN_MAC */
5200
5201                         /* TCP_SAVE_SYN may not have saved the mac hdr */
5202                         if (!saved_syn->mac_hdrlen)
5203                                 return -ENOENT;
5204
5205                         hdr_start = saved_syn->data;
5206                         ret = saved_syn->mac_hdrlen +
5207                                 saved_syn->network_hdrlen +
5208                                 saved_syn->tcp_hdrlen;
5209                 }
5210         }
5211
5212         *start = hdr_start;
5213         return ret;
5214 }
5215
5216 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5217            int, level, int, optname, char *, optval, int, optlen)
5218 {
5219         if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5220             optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5221                 int ret, copy_len = 0;
5222                 const u8 *start;
5223
5224                 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5225                 if (ret > 0) {
5226                         copy_len = ret;
5227                         if (optlen < copy_len) {
5228                                 copy_len = optlen;
5229                                 ret = -ENOSPC;
5230                         }
5231
5232                         memcpy(optval, start, copy_len);
5233                 }
5234
5235                 /* Zero out unused buffer at the end */
5236                 memset(optval + copy_len, 0, optlen - copy_len);
5237
5238                 return ret;
5239         }
5240
5241         return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5242 }
5243
5244 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5245         .func           = bpf_sock_ops_getsockopt,
5246         .gpl_only       = false,
5247         .ret_type       = RET_INTEGER,
5248         .arg1_type      = ARG_PTR_TO_CTX,
5249         .arg2_type      = ARG_ANYTHING,
5250         .arg3_type      = ARG_ANYTHING,
5251         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5252         .arg5_type      = ARG_CONST_SIZE,
5253 };
5254
5255 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5256            int, argval)
5257 {
5258         struct sock *sk = bpf_sock->sk;
5259         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5260
5261         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5262                 return -EINVAL;
5263
5264         tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5265
5266         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5267 }
5268
5269 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5270         .func           = bpf_sock_ops_cb_flags_set,
5271         .gpl_only       = false,
5272         .ret_type       = RET_INTEGER,
5273         .arg1_type      = ARG_PTR_TO_CTX,
5274         .arg2_type      = ARG_ANYTHING,
5275 };
5276
5277 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5278 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5279
5280 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5281            int, addr_len)
5282 {
5283 #ifdef CONFIG_INET
5284         struct sock *sk = ctx->sk;
5285         u32 flags = BIND_FROM_BPF;
5286         int err;
5287
5288         err = -EINVAL;
5289         if (addr_len < offsetofend(struct sockaddr, sa_family))
5290                 return err;
5291         if (addr->sa_family == AF_INET) {
5292                 if (addr_len < sizeof(struct sockaddr_in))
5293                         return err;
5294                 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5295                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5296                 return __inet_bind(sk, addr, addr_len, flags);
5297 #if IS_ENABLED(CONFIG_IPV6)
5298         } else if (addr->sa_family == AF_INET6) {
5299                 if (addr_len < SIN6_LEN_RFC2133)
5300                         return err;
5301                 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5302                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5303                 /* ipv6_bpf_stub cannot be NULL, since it's called from
5304                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5305                  */
5306                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5307 #endif /* CONFIG_IPV6 */
5308         }
5309 #endif /* CONFIG_INET */
5310
5311         return -EAFNOSUPPORT;
5312 }
5313
5314 static const struct bpf_func_proto bpf_bind_proto = {
5315         .func           = bpf_bind,
5316         .gpl_only       = false,
5317         .ret_type       = RET_INTEGER,
5318         .arg1_type      = ARG_PTR_TO_CTX,
5319         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5320         .arg3_type      = ARG_CONST_SIZE,
5321 };
5322
5323 #ifdef CONFIG_XFRM
5324 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5325            struct bpf_xfrm_state *, to, u32, size, u64, flags)
5326 {
5327         const struct sec_path *sp = skb_sec_path(skb);
5328         const struct xfrm_state *x;
5329
5330         if (!sp || unlikely(index >= sp->len || flags))
5331                 goto err_clear;
5332
5333         x = sp->xvec[index];
5334
5335         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5336                 goto err_clear;
5337
5338         to->reqid = x->props.reqid;
5339         to->spi = x->id.spi;
5340         to->family = x->props.family;
5341         to->ext = 0;
5342
5343         if (to->family == AF_INET6) {
5344                 memcpy(to->remote_ipv6, x->props.saddr.a6,
5345                        sizeof(to->remote_ipv6));
5346         } else {
5347                 to->remote_ipv4 = x->props.saddr.a4;
5348                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5349         }
5350
5351         return 0;
5352 err_clear:
5353         memset(to, 0, size);
5354         return -EINVAL;
5355 }
5356
5357 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5358         .func           = bpf_skb_get_xfrm_state,
5359         .gpl_only       = false,
5360         .ret_type       = RET_INTEGER,
5361         .arg1_type      = ARG_PTR_TO_CTX,
5362         .arg2_type      = ARG_ANYTHING,
5363         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
5364         .arg4_type      = ARG_CONST_SIZE,
5365         .arg5_type      = ARG_ANYTHING,
5366 };
5367 #endif
5368
5369 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5370 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5371                                   const struct neighbour *neigh,
5372                                   const struct net_device *dev, u32 mtu)
5373 {
5374         memcpy(params->dmac, neigh->ha, ETH_ALEN);
5375         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5376         params->h_vlan_TCI = 0;
5377         params->h_vlan_proto = 0;
5378         if (mtu)
5379                 params->mtu_result = mtu; /* union with tot_len */
5380
5381         return 0;
5382 }
5383 #endif
5384
5385 #if IS_ENABLED(CONFIG_INET)
5386 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5387                                u32 flags, bool check_mtu)
5388 {
5389         struct fib_nh_common *nhc;
5390         struct in_device *in_dev;
5391         struct neighbour *neigh;
5392         struct net_device *dev;
5393         struct fib_result res;
5394         struct flowi4 fl4;
5395         u32 mtu = 0;
5396         int err;
5397
5398         dev = dev_get_by_index_rcu(net, params->ifindex);
5399         if (unlikely(!dev))
5400                 return -ENODEV;
5401
5402         /* verify forwarding is enabled on this interface */
5403         in_dev = __in_dev_get_rcu(dev);
5404         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5405                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5406
5407         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5408                 fl4.flowi4_iif = 1;
5409                 fl4.flowi4_oif = params->ifindex;
5410         } else {
5411                 fl4.flowi4_iif = params->ifindex;
5412                 fl4.flowi4_oif = 0;
5413         }
5414         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5415         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5416         fl4.flowi4_flags = 0;
5417
5418         fl4.flowi4_proto = params->l4_protocol;
5419         fl4.daddr = params->ipv4_dst;
5420         fl4.saddr = params->ipv4_src;
5421         fl4.fl4_sport = params->sport;
5422         fl4.fl4_dport = params->dport;
5423         fl4.flowi4_multipath_hash = 0;
5424
5425         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5426                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5427                 struct fib_table *tb;
5428
5429                 tb = fib_get_table(net, tbid);
5430                 if (unlikely(!tb))
5431                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5432
5433                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5434         } else {
5435                 fl4.flowi4_mark = 0;
5436                 fl4.flowi4_secid = 0;
5437                 fl4.flowi4_tun_key.tun_id = 0;
5438                 fl4.flowi4_uid = sock_net_uid(net, NULL);
5439
5440                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5441         }
5442
5443         if (err) {
5444                 /* map fib lookup errors to RTN_ type */
5445                 if (err == -EINVAL)
5446                         return BPF_FIB_LKUP_RET_BLACKHOLE;
5447                 if (err == -EHOSTUNREACH)
5448                         return BPF_FIB_LKUP_RET_UNREACHABLE;
5449                 if (err == -EACCES)
5450                         return BPF_FIB_LKUP_RET_PROHIBIT;
5451
5452                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5453         }
5454
5455         if (res.type != RTN_UNICAST)
5456                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5457
5458         if (fib_info_num_path(res.fi) > 1)
5459                 fib_select_path(net, &res, &fl4, NULL);
5460
5461         if (check_mtu) {
5462                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5463                 if (params->tot_len > mtu) {
5464                         params->mtu_result = mtu; /* union with tot_len */
5465                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5466                 }
5467         }
5468
5469         nhc = res.nhc;
5470
5471         /* do not handle lwt encaps right now */
5472         if (nhc->nhc_lwtstate)
5473                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5474
5475         dev = nhc->nhc_dev;
5476
5477         params->rt_metric = res.fi->fib_priority;
5478         params->ifindex = dev->ifindex;
5479
5480         /* xdp and cls_bpf programs are run in RCU-bh so
5481          * rcu_read_lock_bh is not needed here
5482          */
5483         if (likely(nhc->nhc_gw_family != AF_INET6)) {
5484                 if (nhc->nhc_gw_family)
5485                         params->ipv4_dst = nhc->nhc_gw.ipv4;
5486
5487                 neigh = __ipv4_neigh_lookup_noref(dev,
5488                                                  (__force u32)params->ipv4_dst);
5489         } else {
5490                 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5491
5492                 params->family = AF_INET6;
5493                 *dst = nhc->nhc_gw.ipv6;
5494                 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5495         }
5496
5497         if (!neigh)
5498                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5499
5500         return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5501 }
5502 #endif
5503
5504 #if IS_ENABLED(CONFIG_IPV6)
5505 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5506                                u32 flags, bool check_mtu)
5507 {
5508         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5509         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5510         struct fib6_result res = {};
5511         struct neighbour *neigh;
5512         struct net_device *dev;
5513         struct inet6_dev *idev;
5514         struct flowi6 fl6;
5515         int strict = 0;
5516         int oif, err;
5517         u32 mtu = 0;
5518
5519         /* link local addresses are never forwarded */
5520         if (rt6_need_strict(dst) || rt6_need_strict(src))
5521                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5522
5523         dev = dev_get_by_index_rcu(net, params->ifindex);
5524         if (unlikely(!dev))
5525                 return -ENODEV;
5526
5527         idev = __in6_dev_get_safely(dev);
5528         if (unlikely(!idev || !idev->cnf.forwarding))
5529                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5530
5531         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5532                 fl6.flowi6_iif = 1;
5533                 oif = fl6.flowi6_oif = params->ifindex;
5534         } else {
5535                 oif = fl6.flowi6_iif = params->ifindex;
5536                 fl6.flowi6_oif = 0;
5537                 strict = RT6_LOOKUP_F_HAS_SADDR;
5538         }
5539         fl6.flowlabel = params->flowinfo;
5540         fl6.flowi6_scope = 0;
5541         fl6.flowi6_flags = 0;
5542         fl6.mp_hash = 0;
5543
5544         fl6.flowi6_proto = params->l4_protocol;
5545         fl6.daddr = *dst;
5546         fl6.saddr = *src;
5547         fl6.fl6_sport = params->sport;
5548         fl6.fl6_dport = params->dport;
5549
5550         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5551                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5552                 struct fib6_table *tb;
5553
5554                 tb = ipv6_stub->fib6_get_table(net, tbid);
5555                 if (unlikely(!tb))
5556                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5557
5558                 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5559                                                    strict);
5560         } else {
5561                 fl6.flowi6_mark = 0;
5562                 fl6.flowi6_secid = 0;
5563                 fl6.flowi6_tun_key.tun_id = 0;
5564                 fl6.flowi6_uid = sock_net_uid(net, NULL);
5565
5566                 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5567         }
5568
5569         if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5570                      res.f6i == net->ipv6.fib6_null_entry))
5571                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5572
5573         switch (res.fib6_type) {
5574         /* only unicast is forwarded */
5575         case RTN_UNICAST:
5576                 break;
5577         case RTN_BLACKHOLE:
5578                 return BPF_FIB_LKUP_RET_BLACKHOLE;
5579         case RTN_UNREACHABLE:
5580                 return BPF_FIB_LKUP_RET_UNREACHABLE;
5581         case RTN_PROHIBIT:
5582                 return BPF_FIB_LKUP_RET_PROHIBIT;
5583         default:
5584                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5585         }
5586
5587         ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5588                                     fl6.flowi6_oif != 0, NULL, strict);
5589
5590         if (check_mtu) {
5591                 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5592                 if (params->tot_len > mtu) {
5593                         params->mtu_result = mtu; /* union with tot_len */
5594                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5595                 }
5596         }
5597
5598         if (res.nh->fib_nh_lws)
5599                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5600
5601         if (res.nh->fib_nh_gw_family)
5602                 *dst = res.nh->fib_nh_gw6;
5603
5604         dev = res.nh->fib_nh_dev;
5605         params->rt_metric = res.f6i->fib6_metric;
5606         params->ifindex = dev->ifindex;
5607
5608         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5609          * not needed here.
5610          */
5611         neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5612         if (!neigh)
5613                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5614
5615         return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5616 }
5617 #endif
5618
5619 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5620            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5621 {
5622         if (plen < sizeof(*params))
5623                 return -EINVAL;
5624
5625         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5626                 return -EINVAL;
5627
5628         switch (params->family) {
5629 #if IS_ENABLED(CONFIG_INET)
5630         case AF_INET:
5631                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5632                                            flags, true);
5633 #endif
5634 #if IS_ENABLED(CONFIG_IPV6)
5635         case AF_INET6:
5636                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5637                                            flags, true);
5638 #endif
5639         }
5640         return -EAFNOSUPPORT;
5641 }
5642
5643 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5644         .func           = bpf_xdp_fib_lookup,
5645         .gpl_only       = true,
5646         .ret_type       = RET_INTEGER,
5647         .arg1_type      = ARG_PTR_TO_CTX,
5648         .arg2_type      = ARG_PTR_TO_MEM,
5649         .arg3_type      = ARG_CONST_SIZE,
5650         .arg4_type      = ARG_ANYTHING,
5651 };
5652
5653 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5654            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5655 {
5656         struct net *net = dev_net(skb->dev);
5657         int rc = -EAFNOSUPPORT;
5658         bool check_mtu = false;
5659
5660         if (plen < sizeof(*params))
5661                 return -EINVAL;
5662
5663         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5664                 return -EINVAL;
5665
5666         if (params->tot_len)
5667                 check_mtu = true;
5668
5669         switch (params->family) {
5670 #if IS_ENABLED(CONFIG_INET)
5671         case AF_INET:
5672                 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5673                 break;
5674 #endif
5675 #if IS_ENABLED(CONFIG_IPV6)
5676         case AF_INET6:
5677                 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5678                 break;
5679 #endif
5680         }
5681
5682         if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
5683                 struct net_device *dev;
5684
5685                 /* When tot_len isn't provided by user, check skb
5686                  * against MTU of FIB lookup resulting net_device
5687                  */
5688                 dev = dev_get_by_index_rcu(net, params->ifindex);
5689                 if (!is_skb_forwardable(dev, skb))
5690                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5691
5692                 params->mtu_result = dev->mtu; /* union with tot_len */
5693         }
5694
5695         return rc;
5696 }
5697
5698 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5699         .func           = bpf_skb_fib_lookup,
5700         .gpl_only       = true,
5701         .ret_type       = RET_INTEGER,
5702         .arg1_type      = ARG_PTR_TO_CTX,
5703         .arg2_type      = ARG_PTR_TO_MEM,
5704         .arg3_type      = ARG_CONST_SIZE,
5705         .arg4_type      = ARG_ANYTHING,
5706 };
5707
5708 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
5709                                             u32 ifindex)
5710 {
5711         struct net *netns = dev_net(dev_curr);
5712
5713         /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
5714         if (ifindex == 0)
5715                 return dev_curr;
5716
5717         return dev_get_by_index_rcu(netns, ifindex);
5718 }
5719
5720 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
5721            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5722 {
5723         int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5724         struct net_device *dev = skb->dev;
5725         int skb_len, dev_len;
5726         int mtu;
5727
5728         if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
5729                 return -EINVAL;
5730
5731         if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
5732                 return -EINVAL;
5733
5734         dev = __dev_via_ifindex(dev, ifindex);
5735         if (unlikely(!dev))
5736                 return -ENODEV;
5737
5738         mtu = READ_ONCE(dev->mtu);
5739
5740         dev_len = mtu + dev->hard_header_len;
5741
5742         /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
5743         skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
5744
5745         skb_len += len_diff; /* minus result pass check */
5746         if (skb_len <= dev_len) {
5747                 ret = BPF_MTU_CHK_RET_SUCCESS;
5748                 goto out;
5749         }
5750         /* At this point, skb->len exceed MTU, but as it include length of all
5751          * segments, it can still be below MTU.  The SKB can possibly get
5752          * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
5753          * must choose if segs are to be MTU checked.
5754          */
5755         if (skb_is_gso(skb)) {
5756                 ret = BPF_MTU_CHK_RET_SUCCESS;
5757
5758                 if (flags & BPF_MTU_CHK_SEGS &&
5759                     !skb_gso_validate_network_len(skb, mtu))
5760                         ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
5761         }
5762 out:
5763         /* BPF verifier guarantees valid pointer */
5764         *mtu_len = mtu;
5765
5766         return ret;
5767 }
5768
5769 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
5770            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5771 {
5772         struct net_device *dev = xdp->rxq->dev;
5773         int xdp_len = xdp->data_end - xdp->data;
5774         int ret = BPF_MTU_CHK_RET_SUCCESS;
5775         int mtu, dev_len;
5776
5777         /* XDP variant doesn't support multi-buffer segment check (yet) */
5778         if (unlikely(flags))
5779                 return -EINVAL;
5780
5781         dev = __dev_via_ifindex(dev, ifindex);
5782         if (unlikely(!dev))
5783                 return -ENODEV;
5784
5785         mtu = READ_ONCE(dev->mtu);
5786
5787         /* Add L2-header as dev MTU is L3 size */
5788         dev_len = mtu + dev->hard_header_len;
5789
5790         /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
5791         if (*mtu_len)
5792                 xdp_len = *mtu_len + dev->hard_header_len;
5793
5794         xdp_len += len_diff; /* minus result pass check */
5795         if (xdp_len > dev_len)
5796                 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5797
5798         /* BPF verifier guarantees valid pointer */
5799         *mtu_len = mtu;
5800
5801         return ret;
5802 }
5803
5804 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
5805         .func           = bpf_skb_check_mtu,
5806         .gpl_only       = true,
5807         .ret_type       = RET_INTEGER,
5808         .arg1_type      = ARG_PTR_TO_CTX,
5809         .arg2_type      = ARG_ANYTHING,
5810         .arg3_type      = ARG_PTR_TO_INT,
5811         .arg4_type      = ARG_ANYTHING,
5812         .arg5_type      = ARG_ANYTHING,
5813 };
5814
5815 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
5816         .func           = bpf_xdp_check_mtu,
5817         .gpl_only       = true,
5818         .ret_type       = RET_INTEGER,
5819         .arg1_type      = ARG_PTR_TO_CTX,
5820         .arg2_type      = ARG_ANYTHING,
5821         .arg3_type      = ARG_PTR_TO_INT,
5822         .arg4_type      = ARG_ANYTHING,
5823         .arg5_type      = ARG_ANYTHING,
5824 };
5825
5826 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5827 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
5828 {
5829         int err;
5830         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
5831
5832         if (!seg6_validate_srh(srh, len, false))
5833                 return -EINVAL;
5834
5835         switch (type) {
5836         case BPF_LWT_ENCAP_SEG6_INLINE:
5837                 if (skb->protocol != htons(ETH_P_IPV6))
5838                         return -EBADMSG;
5839
5840                 err = seg6_do_srh_inline(skb, srh);
5841                 break;
5842         case BPF_LWT_ENCAP_SEG6:
5843                 skb_reset_inner_headers(skb);
5844                 skb->encapsulation = 1;
5845                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
5846                 break;
5847         default:
5848                 return -EINVAL;
5849         }
5850
5851         bpf_compute_data_pointers(skb);
5852         if (err)
5853                 return err;
5854
5855         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
5856
5857         return seg6_lookup_nexthop(skb, NULL, 0);
5858 }
5859 #endif /* CONFIG_IPV6_SEG6_BPF */
5860
5861 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5862 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
5863                              bool ingress)
5864 {
5865         return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
5866 }
5867 #endif
5868
5869 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
5870            u32, len)
5871 {
5872         switch (type) {
5873 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5874         case BPF_LWT_ENCAP_SEG6:
5875         case BPF_LWT_ENCAP_SEG6_INLINE:
5876                 return bpf_push_seg6_encap(skb, type, hdr, len);
5877 #endif
5878 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5879         case BPF_LWT_ENCAP_IP:
5880                 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
5881 #endif
5882         default:
5883                 return -EINVAL;
5884         }
5885 }
5886
5887 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
5888            void *, hdr, u32, len)
5889 {
5890         switch (type) {
5891 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5892         case BPF_LWT_ENCAP_IP:
5893                 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5894 #endif
5895         default:
5896                 return -EINVAL;
5897         }
5898 }
5899
5900 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5901         .func           = bpf_lwt_in_push_encap,
5902         .gpl_only       = false,
5903         .ret_type       = RET_INTEGER,
5904         .arg1_type      = ARG_PTR_TO_CTX,
5905         .arg2_type      = ARG_ANYTHING,
5906         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5907         .arg4_type      = ARG_CONST_SIZE
5908 };
5909
5910 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5911         .func           = bpf_lwt_xmit_push_encap,
5912         .gpl_only       = false,
5913         .ret_type       = RET_INTEGER,
5914         .arg1_type      = ARG_PTR_TO_CTX,
5915         .arg2_type      = ARG_ANYTHING,
5916         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5917         .arg4_type      = ARG_CONST_SIZE
5918 };
5919
5920 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5921 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5922            const void *, from, u32, len)
5923 {
5924         struct seg6_bpf_srh_state *srh_state =
5925                 this_cpu_ptr(&seg6_bpf_srh_states);
5926         struct ipv6_sr_hdr *srh = srh_state->srh;
5927         void *srh_tlvs, *srh_end, *ptr;
5928         int srhoff = 0;
5929
5930         if (srh == NULL)
5931                 return -EINVAL;
5932
5933         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5934         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5935
5936         ptr = skb->data + offset;
5937         if (ptr >= srh_tlvs && ptr + len <= srh_end)
5938                 srh_state->valid = false;
5939         else if (ptr < (void *)&srh->flags ||
5940                  ptr + len > (void *)&srh->segments)
5941                 return -EFAULT;
5942
5943         if (unlikely(bpf_try_make_writable(skb, offset + len)))
5944                 return -EFAULT;
5945         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5946                 return -EINVAL;
5947         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5948
5949         memcpy(skb->data + offset, from, len);
5950         return 0;
5951 }
5952
5953 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5954         .func           = bpf_lwt_seg6_store_bytes,
5955         .gpl_only       = false,
5956         .ret_type       = RET_INTEGER,
5957         .arg1_type      = ARG_PTR_TO_CTX,
5958         .arg2_type      = ARG_ANYTHING,
5959         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5960         .arg4_type      = ARG_CONST_SIZE
5961 };
5962
5963 static void bpf_update_srh_state(struct sk_buff *skb)
5964 {
5965         struct seg6_bpf_srh_state *srh_state =
5966                 this_cpu_ptr(&seg6_bpf_srh_states);
5967         int srhoff = 0;
5968
5969         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5970                 srh_state->srh = NULL;
5971         } else {
5972                 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5973                 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5974                 srh_state->valid = true;
5975         }
5976 }
5977
5978 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5979            u32, action, void *, param, u32, param_len)
5980 {
5981         struct seg6_bpf_srh_state *srh_state =
5982                 this_cpu_ptr(&seg6_bpf_srh_states);
5983         int hdroff = 0;
5984         int err;
5985
5986         switch (action) {
5987         case SEG6_LOCAL_ACTION_END_X:
5988                 if (!seg6_bpf_has_valid_srh(skb))
5989                         return -EBADMSG;
5990                 if (param_len != sizeof(struct in6_addr))
5991                         return -EINVAL;
5992                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5993         case SEG6_LOCAL_ACTION_END_T:
5994                 if (!seg6_bpf_has_valid_srh(skb))
5995                         return -EBADMSG;
5996                 if (param_len != sizeof(int))
5997                         return -EINVAL;
5998                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5999         case SEG6_LOCAL_ACTION_END_DT6:
6000                 if (!seg6_bpf_has_valid_srh(skb))
6001                         return -EBADMSG;
6002                 if (param_len != sizeof(int))
6003                         return -EINVAL;
6004
6005                 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6006                         return -EBADMSG;
6007                 if (!pskb_pull(skb, hdroff))
6008                         return -EBADMSG;
6009
6010                 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6011                 skb_reset_network_header(skb);
6012                 skb_reset_transport_header(skb);
6013                 skb->encapsulation = 0;
6014
6015                 bpf_compute_data_pointers(skb);
6016                 bpf_update_srh_state(skb);
6017                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6018         case SEG6_LOCAL_ACTION_END_B6:
6019                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6020                         return -EBADMSG;
6021                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6022                                           param, param_len);
6023                 if (!err)
6024                         bpf_update_srh_state(skb);
6025
6026                 return err;
6027         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6028                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6029                         return -EBADMSG;
6030                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6031                                           param, param_len);
6032                 if (!err)
6033                         bpf_update_srh_state(skb);
6034
6035                 return err;
6036         default:
6037                 return -EINVAL;
6038         }
6039 }
6040
6041 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6042         .func           = bpf_lwt_seg6_action,
6043         .gpl_only       = false,
6044         .ret_type       = RET_INTEGER,
6045         .arg1_type      = ARG_PTR_TO_CTX,
6046         .arg2_type      = ARG_ANYTHING,
6047         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6048         .arg4_type      = ARG_CONST_SIZE
6049 };
6050
6051 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6052            s32, len)
6053 {
6054         struct seg6_bpf_srh_state *srh_state =
6055                 this_cpu_ptr(&seg6_bpf_srh_states);
6056         struct ipv6_sr_hdr *srh = srh_state->srh;
6057         void *srh_end, *srh_tlvs, *ptr;
6058         struct ipv6hdr *hdr;
6059         int srhoff = 0;
6060         int ret;
6061
6062         if (unlikely(srh == NULL))
6063                 return -EINVAL;
6064
6065         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6066                         ((srh->first_segment + 1) << 4));
6067         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6068                         srh_state->hdrlen);
6069         ptr = skb->data + offset;
6070
6071         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6072                 return -EFAULT;
6073         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6074                 return -EFAULT;
6075
6076         if (len > 0) {
6077                 ret = skb_cow_head(skb, len);
6078                 if (unlikely(ret < 0))
6079                         return ret;
6080
6081                 ret = bpf_skb_net_hdr_push(skb, offset, len);
6082         } else {
6083                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6084         }
6085
6086         bpf_compute_data_pointers(skb);
6087         if (unlikely(ret < 0))
6088                 return ret;
6089
6090         hdr = (struct ipv6hdr *)skb->data;
6091         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6092
6093         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6094                 return -EINVAL;
6095         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6096         srh_state->hdrlen += len;
6097         srh_state->valid = false;
6098         return 0;
6099 }
6100
6101 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6102         .func           = bpf_lwt_seg6_adjust_srh,
6103         .gpl_only       = false,
6104         .ret_type       = RET_INTEGER,
6105         .arg1_type      = ARG_PTR_TO_CTX,
6106         .arg2_type      = ARG_ANYTHING,
6107         .arg3_type      = ARG_ANYTHING,
6108 };
6109 #endif /* CONFIG_IPV6_SEG6_BPF */
6110
6111 #ifdef CONFIG_INET
6112 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6113                               int dif, int sdif, u8 family, u8 proto)
6114 {
6115         bool refcounted = false;
6116         struct sock *sk = NULL;
6117
6118         if (family == AF_INET) {
6119                 __be32 src4 = tuple->ipv4.saddr;
6120                 __be32 dst4 = tuple->ipv4.daddr;
6121
6122                 if (proto == IPPROTO_TCP)
6123                         sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
6124                                            src4, tuple->ipv4.sport,
6125                                            dst4, tuple->ipv4.dport,
6126                                            dif, sdif, &refcounted);
6127                 else
6128                         sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6129                                                dst4, tuple->ipv4.dport,
6130                                                dif, sdif, &udp_table, NULL);
6131 #if IS_ENABLED(CONFIG_IPV6)
6132         } else {
6133                 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6134                 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6135
6136                 if (proto == IPPROTO_TCP)
6137                         sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
6138                                             src6, tuple->ipv6.sport,
6139                                             dst6, ntohs(tuple->ipv6.dport),
6140                                             dif, sdif, &refcounted);
6141                 else if (likely(ipv6_bpf_stub))
6142                         sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6143                                                             src6, tuple->ipv6.sport,
6144                                                             dst6, tuple->ipv6.dport,
6145                                                             dif, sdif,
6146                                                             &udp_table, NULL);
6147 #endif
6148         }
6149
6150         if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6151                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6152                 sk = NULL;
6153         }
6154         return sk;
6155 }
6156
6157 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6158  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6159  * Returns the socket as an 'unsigned long' to simplify the casting in the
6160  * callers to satisfy BPF_CALL declarations.
6161  */
6162 static struct sock *
6163 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6164                  struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6165                  u64 flags)
6166 {
6167         struct sock *sk = NULL;
6168         u8 family = AF_UNSPEC;
6169         struct net *net;
6170         int sdif;
6171
6172         if (len == sizeof(tuple->ipv4))
6173                 family = AF_INET;
6174         else if (len == sizeof(tuple->ipv6))
6175                 family = AF_INET6;
6176         else
6177                 return NULL;
6178
6179         if (unlikely(family == AF_UNSPEC || flags ||
6180                      !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6181                 goto out;
6182
6183         if (family == AF_INET)
6184                 sdif = inet_sdif(skb);
6185         else
6186                 sdif = inet6_sdif(skb);
6187
6188         if ((s32)netns_id < 0) {
6189                 net = caller_net;
6190                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6191         } else {
6192                 net = get_net_ns_by_id(caller_net, netns_id);
6193                 if (unlikely(!net))
6194                         goto out;
6195                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6196                 put_net(net);
6197         }
6198
6199 out:
6200         return sk;
6201 }
6202
6203 static struct sock *
6204 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6205                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6206                 u64 flags)
6207 {
6208         struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6209                                            ifindex, proto, netns_id, flags);
6210
6211         if (sk) {
6212                 struct sock *sk2 = sk_to_full_sk(sk);
6213
6214                 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6215                  * sock refcnt is decremented to prevent a request_sock leak.
6216                  */
6217                 if (!sk_fullsock(sk2))
6218                         sk2 = NULL;
6219                 if (sk2 != sk) {
6220                         sock_gen_put(sk);
6221                         /* Ensure there is no need to bump sk2 refcnt */
6222                         if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6223                                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6224                                 return NULL;
6225                         }
6226                         sk = sk2;
6227                 }
6228         }
6229
6230         return sk;
6231 }
6232
6233 static struct sock *
6234 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6235                u8 proto, u64 netns_id, u64 flags)
6236 {
6237         struct net *caller_net;
6238         int ifindex;
6239
6240         if (skb->dev) {
6241                 caller_net = dev_net(skb->dev);
6242                 ifindex = skb->dev->ifindex;
6243         } else {
6244                 caller_net = sock_net(skb->sk);
6245                 ifindex = 0;
6246         }
6247
6248         return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6249                                 netns_id, flags);
6250 }
6251
6252 static struct sock *
6253 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6254               u8 proto, u64 netns_id, u64 flags)
6255 {
6256         struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6257                                          flags);
6258
6259         if (sk) {
6260                 struct sock *sk2 = sk_to_full_sk(sk);
6261
6262                 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6263                  * sock refcnt is decremented to prevent a request_sock leak.
6264                  */
6265                 if (!sk_fullsock(sk2))
6266                         sk2 = NULL;
6267                 if (sk2 != sk) {
6268                         sock_gen_put(sk);
6269                         /* Ensure there is no need to bump sk2 refcnt */
6270                         if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6271                                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6272                                 return NULL;
6273                         }
6274                         sk = sk2;
6275                 }
6276         }
6277
6278         return sk;
6279 }
6280
6281 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6282            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6283 {
6284         return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6285                                              netns_id, flags);
6286 }
6287
6288 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6289         .func           = bpf_skc_lookup_tcp,
6290         .gpl_only       = false,
6291         .pkt_access     = true,
6292         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6293         .arg1_type      = ARG_PTR_TO_CTX,
6294         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6295         .arg3_type      = ARG_CONST_SIZE,
6296         .arg4_type      = ARG_ANYTHING,
6297         .arg5_type      = ARG_ANYTHING,
6298 };
6299
6300 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6301            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6302 {
6303         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6304                                             netns_id, flags);
6305 }
6306
6307 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6308         .func           = bpf_sk_lookup_tcp,
6309         .gpl_only       = false,
6310         .pkt_access     = true,
6311         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6312         .arg1_type      = ARG_PTR_TO_CTX,
6313         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6314         .arg3_type      = ARG_CONST_SIZE,
6315         .arg4_type      = ARG_ANYTHING,
6316         .arg5_type      = ARG_ANYTHING,
6317 };
6318
6319 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6320            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6321 {
6322         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6323                                             netns_id, flags);
6324 }
6325
6326 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6327         .func           = bpf_sk_lookup_udp,
6328         .gpl_only       = false,
6329         .pkt_access     = true,
6330         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6331         .arg1_type      = ARG_PTR_TO_CTX,
6332         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6333         .arg3_type      = ARG_CONST_SIZE,
6334         .arg4_type      = ARG_ANYTHING,
6335         .arg5_type      = ARG_ANYTHING,
6336 };
6337
6338 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6339 {
6340         if (sk && sk_is_refcounted(sk))
6341                 sock_gen_put(sk);
6342         return 0;
6343 }
6344
6345 static const struct bpf_func_proto bpf_sk_release_proto = {
6346         .func           = bpf_sk_release,
6347         .gpl_only       = false,
6348         .ret_type       = RET_INTEGER,
6349         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6350 };
6351
6352 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6353            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6354 {
6355         struct net *caller_net = dev_net(ctx->rxq->dev);
6356         int ifindex = ctx->rxq->dev->ifindex;
6357
6358         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6359                                               ifindex, IPPROTO_UDP, netns_id,
6360                                               flags);
6361 }
6362
6363 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6364         .func           = bpf_xdp_sk_lookup_udp,
6365         .gpl_only       = false,
6366         .pkt_access     = true,
6367         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6368         .arg1_type      = ARG_PTR_TO_CTX,
6369         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6370         .arg3_type      = ARG_CONST_SIZE,
6371         .arg4_type      = ARG_ANYTHING,
6372         .arg5_type      = ARG_ANYTHING,
6373 };
6374
6375 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6376            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6377 {
6378         struct net *caller_net = dev_net(ctx->rxq->dev);
6379         int ifindex = ctx->rxq->dev->ifindex;
6380
6381         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6382                                                ifindex, IPPROTO_TCP, netns_id,
6383                                                flags);
6384 }
6385
6386 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6387         .func           = bpf_xdp_skc_lookup_tcp,
6388         .gpl_only       = false,
6389         .pkt_access     = true,
6390         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6391         .arg1_type      = ARG_PTR_TO_CTX,
6392         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6393         .arg3_type      = ARG_CONST_SIZE,
6394         .arg4_type      = ARG_ANYTHING,
6395         .arg5_type      = ARG_ANYTHING,
6396 };
6397
6398 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6399            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6400 {
6401         struct net *caller_net = dev_net(ctx->rxq->dev);
6402         int ifindex = ctx->rxq->dev->ifindex;
6403
6404         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6405                                               ifindex, IPPROTO_TCP, netns_id,
6406                                               flags);
6407 }
6408
6409 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6410         .func           = bpf_xdp_sk_lookup_tcp,
6411         .gpl_only       = false,
6412         .pkt_access     = true,
6413         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6414         .arg1_type      = ARG_PTR_TO_CTX,
6415         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6416         .arg3_type      = ARG_CONST_SIZE,
6417         .arg4_type      = ARG_ANYTHING,
6418         .arg5_type      = ARG_ANYTHING,
6419 };
6420
6421 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6422            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6423 {
6424         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6425                                                sock_net(ctx->sk), 0,
6426                                                IPPROTO_TCP, netns_id, flags);
6427 }
6428
6429 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6430         .func           = bpf_sock_addr_skc_lookup_tcp,
6431         .gpl_only       = false,
6432         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6433         .arg1_type      = ARG_PTR_TO_CTX,
6434         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6435         .arg3_type      = ARG_CONST_SIZE,
6436         .arg4_type      = ARG_ANYTHING,
6437         .arg5_type      = ARG_ANYTHING,
6438 };
6439
6440 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6441            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6442 {
6443         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6444                                               sock_net(ctx->sk), 0, IPPROTO_TCP,
6445                                               netns_id, flags);
6446 }
6447
6448 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6449         .func           = bpf_sock_addr_sk_lookup_tcp,
6450         .gpl_only       = false,
6451         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6452         .arg1_type      = ARG_PTR_TO_CTX,
6453         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6454         .arg3_type      = ARG_CONST_SIZE,
6455         .arg4_type      = ARG_ANYTHING,
6456         .arg5_type      = ARG_ANYTHING,
6457 };
6458
6459 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6460            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6461 {
6462         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6463                                               sock_net(ctx->sk), 0, IPPROTO_UDP,
6464                                               netns_id, flags);
6465 }
6466
6467 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6468         .func           = bpf_sock_addr_sk_lookup_udp,
6469         .gpl_only       = false,
6470         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6471         .arg1_type      = ARG_PTR_TO_CTX,
6472         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6473         .arg3_type      = ARG_CONST_SIZE,
6474         .arg4_type      = ARG_ANYTHING,
6475         .arg5_type      = ARG_ANYTHING,
6476 };
6477
6478 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6479                                   struct bpf_insn_access_aux *info)
6480 {
6481         if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6482                                           icsk_retransmits))
6483                 return false;
6484
6485         if (off % size != 0)
6486                 return false;
6487
6488         switch (off) {
6489         case offsetof(struct bpf_tcp_sock, bytes_received):
6490         case offsetof(struct bpf_tcp_sock, bytes_acked):
6491                 return size == sizeof(__u64);
6492         default:
6493                 return size == sizeof(__u32);
6494         }
6495 }
6496
6497 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6498                                     const struct bpf_insn *si,
6499                                     struct bpf_insn *insn_buf,
6500                                     struct bpf_prog *prog, u32 *target_size)
6501 {
6502         struct bpf_insn *insn = insn_buf;
6503
6504 #define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
6505         do {                                                            \
6506                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >     \
6507                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6508                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6509                                       si->dst_reg, si->src_reg,         \
6510                                       offsetof(struct tcp_sock, FIELD)); \
6511         } while (0)
6512
6513 #define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
6514         do {                                                            \
6515                 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,  \
6516                                           FIELD) >                      \
6517                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6518                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
6519                                         struct inet_connection_sock,    \
6520                                         FIELD),                         \
6521                                       si->dst_reg, si->src_reg,         \
6522                                       offsetof(                         \
6523                                         struct inet_connection_sock,    \
6524                                         FIELD));                        \
6525         } while (0)
6526
6527         if (insn > insn_buf)
6528                 return insn - insn_buf;
6529
6530         switch (si->off) {
6531         case offsetof(struct bpf_tcp_sock, rtt_min):
6532                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6533                              sizeof(struct minmax));
6534                 BUILD_BUG_ON(sizeof(struct minmax) <
6535                              sizeof(struct minmax_sample));
6536
6537                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6538                                       offsetof(struct tcp_sock, rtt_min) +
6539                                       offsetof(struct minmax_sample, v));
6540                 break;
6541         case offsetof(struct bpf_tcp_sock, snd_cwnd):
6542                 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6543                 break;
6544         case offsetof(struct bpf_tcp_sock, srtt_us):
6545                 BPF_TCP_SOCK_GET_COMMON(srtt_us);
6546                 break;
6547         case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6548                 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6549                 break;
6550         case offsetof(struct bpf_tcp_sock, rcv_nxt):
6551                 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6552                 break;
6553         case offsetof(struct bpf_tcp_sock, snd_nxt):
6554                 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6555                 break;
6556         case offsetof(struct bpf_tcp_sock, snd_una):
6557                 BPF_TCP_SOCK_GET_COMMON(snd_una);
6558                 break;
6559         case offsetof(struct bpf_tcp_sock, mss_cache):
6560                 BPF_TCP_SOCK_GET_COMMON(mss_cache);
6561                 break;
6562         case offsetof(struct bpf_tcp_sock, ecn_flags):
6563                 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6564                 break;
6565         case offsetof(struct bpf_tcp_sock, rate_delivered):
6566                 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6567                 break;
6568         case offsetof(struct bpf_tcp_sock, rate_interval_us):
6569                 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6570                 break;
6571         case offsetof(struct bpf_tcp_sock, packets_out):
6572                 BPF_TCP_SOCK_GET_COMMON(packets_out);
6573                 break;
6574         case offsetof(struct bpf_tcp_sock, retrans_out):
6575                 BPF_TCP_SOCK_GET_COMMON(retrans_out);
6576                 break;
6577         case offsetof(struct bpf_tcp_sock, total_retrans):
6578                 BPF_TCP_SOCK_GET_COMMON(total_retrans);
6579                 break;
6580         case offsetof(struct bpf_tcp_sock, segs_in):
6581                 BPF_TCP_SOCK_GET_COMMON(segs_in);
6582                 break;
6583         case offsetof(struct bpf_tcp_sock, data_segs_in):
6584                 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6585                 break;
6586         case offsetof(struct bpf_tcp_sock, segs_out):
6587                 BPF_TCP_SOCK_GET_COMMON(segs_out);
6588                 break;
6589         case offsetof(struct bpf_tcp_sock, data_segs_out):
6590                 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6591                 break;
6592         case offsetof(struct bpf_tcp_sock, lost_out):
6593                 BPF_TCP_SOCK_GET_COMMON(lost_out);
6594                 break;
6595         case offsetof(struct bpf_tcp_sock, sacked_out):
6596                 BPF_TCP_SOCK_GET_COMMON(sacked_out);
6597                 break;
6598         case offsetof(struct bpf_tcp_sock, bytes_received):
6599                 BPF_TCP_SOCK_GET_COMMON(bytes_received);
6600                 break;
6601         case offsetof(struct bpf_tcp_sock, bytes_acked):
6602                 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6603                 break;
6604         case offsetof(struct bpf_tcp_sock, dsack_dups):
6605                 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6606                 break;
6607         case offsetof(struct bpf_tcp_sock, delivered):
6608                 BPF_TCP_SOCK_GET_COMMON(delivered);
6609                 break;
6610         case offsetof(struct bpf_tcp_sock, delivered_ce):
6611                 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6612                 break;
6613         case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6614                 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6615                 break;
6616         }
6617
6618         return insn - insn_buf;
6619 }
6620
6621 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6622 {
6623         if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6624                 return (unsigned long)sk;
6625
6626         return (unsigned long)NULL;
6627 }
6628
6629 const struct bpf_func_proto bpf_tcp_sock_proto = {
6630         .func           = bpf_tcp_sock,
6631         .gpl_only       = false,
6632         .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
6633         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6634 };
6635
6636 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6637 {
6638         sk = sk_to_full_sk(sk);
6639
6640         if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6641                 return (unsigned long)sk;
6642
6643         return (unsigned long)NULL;
6644 }
6645
6646 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6647         .func           = bpf_get_listener_sock,
6648         .gpl_only       = false,
6649         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6650         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6651 };
6652
6653 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6654 {
6655         unsigned int iphdr_len;
6656
6657         switch (skb_protocol(skb, true)) {
6658         case cpu_to_be16(ETH_P_IP):
6659                 iphdr_len = sizeof(struct iphdr);
6660                 break;
6661         case cpu_to_be16(ETH_P_IPV6):
6662                 iphdr_len = sizeof(struct ipv6hdr);
6663                 break;
6664         default:
6665                 return 0;
6666         }
6667
6668         if (skb_headlen(skb) < iphdr_len)
6669                 return 0;
6670
6671         if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6672                 return 0;
6673
6674         return INET_ECN_set_ce(skb);
6675 }
6676
6677 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6678                                   struct bpf_insn_access_aux *info)
6679 {
6680         if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6681                 return false;
6682
6683         if (off % size != 0)
6684                 return false;
6685
6686         switch (off) {
6687         default:
6688                 return size == sizeof(__u32);
6689         }
6690 }
6691
6692 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6693                                     const struct bpf_insn *si,
6694                                     struct bpf_insn *insn_buf,
6695                                     struct bpf_prog *prog, u32 *target_size)
6696 {
6697         struct bpf_insn *insn = insn_buf;
6698
6699 #define BPF_XDP_SOCK_GET(FIELD)                                         \
6700         do {                                                            \
6701                 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >     \
6702                              sizeof_field(struct bpf_xdp_sock, FIELD)); \
6703                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6704                                       si->dst_reg, si->src_reg,         \
6705                                       offsetof(struct xdp_sock, FIELD)); \
6706         } while (0)
6707
6708         switch (si->off) {
6709         case offsetof(struct bpf_xdp_sock, queue_id):
6710                 BPF_XDP_SOCK_GET(queue_id);
6711                 break;
6712         }
6713
6714         return insn - insn_buf;
6715 }
6716
6717 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
6718         .func           = bpf_skb_ecn_set_ce,
6719         .gpl_only       = false,
6720         .ret_type       = RET_INTEGER,
6721         .arg1_type      = ARG_PTR_TO_CTX,
6722 };
6723
6724 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6725            struct tcphdr *, th, u32, th_len)
6726 {
6727 #ifdef CONFIG_SYN_COOKIES
6728         u32 cookie;
6729         int ret;
6730
6731         if (unlikely(!sk || th_len < sizeof(*th)))
6732                 return -EINVAL;
6733
6734         /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
6735         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6736                 return -EINVAL;
6737
6738         if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
6739                 return -EINVAL;
6740
6741         if (!th->ack || th->rst || th->syn)
6742                 return -ENOENT;
6743
6744         if (unlikely(iph_len < sizeof(struct iphdr)))
6745                 return -EINVAL;
6746
6747         if (tcp_synq_no_recent_overflow(sk))
6748                 return -ENOENT;
6749
6750         cookie = ntohl(th->ack_seq) - 1;
6751
6752         /* Both struct iphdr and struct ipv6hdr have the version field at the
6753          * same offset so we can cast to the shorter header (struct iphdr).
6754          */
6755         switch (((struct iphdr *)iph)->version) {
6756         case 4:
6757                 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
6758                         return -EINVAL;
6759
6760                 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
6761                 break;
6762
6763 #if IS_BUILTIN(CONFIG_IPV6)
6764         case 6:
6765                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6766                         return -EINVAL;
6767
6768                 if (sk->sk_family != AF_INET6)
6769                         return -EINVAL;
6770
6771                 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
6772                 break;
6773 #endif /* CONFIG_IPV6 */
6774
6775         default:
6776                 return -EPROTONOSUPPORT;
6777         }
6778
6779         if (ret > 0)
6780                 return 0;
6781
6782         return -ENOENT;
6783 #else
6784         return -ENOTSUPP;
6785 #endif
6786 }
6787
6788 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
6789         .func           = bpf_tcp_check_syncookie,
6790         .gpl_only       = true,
6791         .pkt_access     = true,
6792         .ret_type       = RET_INTEGER,
6793         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6794         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6795         .arg3_type      = ARG_CONST_SIZE,
6796         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6797         .arg5_type      = ARG_CONST_SIZE,
6798 };
6799
6800 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6801            struct tcphdr *, th, u32, th_len)
6802 {
6803 #ifdef CONFIG_SYN_COOKIES
6804         u32 cookie;
6805         u16 mss;
6806
6807         if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
6808                 return -EINVAL;
6809
6810         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6811                 return -EINVAL;
6812
6813         if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
6814                 return -ENOENT;
6815
6816         if (!th->syn || th->ack || th->fin || th->rst)
6817                 return -EINVAL;
6818
6819         if (unlikely(iph_len < sizeof(struct iphdr)))
6820                 return -EINVAL;
6821
6822         /* Both struct iphdr and struct ipv6hdr have the version field at the
6823          * same offset so we can cast to the shorter header (struct iphdr).
6824          */
6825         switch (((struct iphdr *)iph)->version) {
6826         case 4:
6827                 if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
6828                         return -EINVAL;
6829
6830                 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
6831                 break;
6832
6833 #if IS_BUILTIN(CONFIG_IPV6)
6834         case 6:
6835                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6836                         return -EINVAL;
6837
6838                 if (sk->sk_family != AF_INET6)
6839                         return -EINVAL;
6840
6841                 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
6842                 break;
6843 #endif /* CONFIG_IPV6 */
6844
6845         default:
6846                 return -EPROTONOSUPPORT;
6847         }
6848         if (mss == 0)
6849                 return -ENOENT;
6850
6851         return cookie | ((u64)mss << 32);
6852 #else
6853         return -EOPNOTSUPP;
6854 #endif /* CONFIG_SYN_COOKIES */
6855 }
6856
6857 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
6858         .func           = bpf_tcp_gen_syncookie,
6859         .gpl_only       = true, /* __cookie_v*_init_sequence() is GPL */
6860         .pkt_access     = true,
6861         .ret_type       = RET_INTEGER,
6862         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6863         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6864         .arg3_type      = ARG_CONST_SIZE,
6865         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6866         .arg5_type      = ARG_CONST_SIZE,
6867 };
6868
6869 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
6870 {
6871         if (!sk || flags != 0)
6872                 return -EINVAL;
6873         if (!skb_at_tc_ingress(skb))
6874                 return -EOPNOTSUPP;
6875         if (unlikely(dev_net(skb->dev) != sock_net(sk)))
6876                 return -ENETUNREACH;
6877         if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
6878                 return -ESOCKTNOSUPPORT;
6879         if (sk_is_refcounted(sk) &&
6880             unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
6881                 return -ENOENT;
6882
6883         skb_orphan(skb);
6884         skb->sk = sk;
6885         skb->destructor = sock_pfree;
6886
6887         return 0;
6888 }
6889
6890 static const struct bpf_func_proto bpf_sk_assign_proto = {
6891         .func           = bpf_sk_assign,
6892         .gpl_only       = false,
6893         .ret_type       = RET_INTEGER,
6894         .arg1_type      = ARG_PTR_TO_CTX,
6895         .arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6896         .arg3_type      = ARG_ANYTHING,
6897 };
6898
6899 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
6900                                     u8 search_kind, const u8 *magic,
6901                                     u8 magic_len, bool *eol)
6902 {
6903         u8 kind, kind_len;
6904
6905         *eol = false;
6906
6907         while (op < opend) {
6908                 kind = op[0];
6909
6910                 if (kind == TCPOPT_EOL) {
6911                         *eol = true;
6912                         return ERR_PTR(-ENOMSG);
6913                 } else if (kind == TCPOPT_NOP) {
6914                         op++;
6915                         continue;
6916                 }
6917
6918                 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
6919                         /* Something is wrong in the received header.
6920                          * Follow the TCP stack's tcp_parse_options()
6921                          * and just bail here.
6922                          */
6923                         return ERR_PTR(-EFAULT);
6924
6925                 kind_len = op[1];
6926                 if (search_kind == kind) {
6927                         if (!magic_len)
6928                                 return op;
6929
6930                         if (magic_len > kind_len - 2)
6931                                 return ERR_PTR(-ENOMSG);
6932
6933                         if (!memcmp(&op[2], magic, magic_len))
6934                                 return op;
6935                 }
6936
6937                 op += kind_len;
6938         }
6939
6940         return ERR_PTR(-ENOMSG);
6941 }
6942
6943 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6944            void *, search_res, u32, len, u64, flags)
6945 {
6946         bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
6947         const u8 *op, *opend, *magic, *search = search_res;
6948         u8 search_kind, search_len, copy_len, magic_len;
6949         int ret;
6950
6951         /* 2 byte is the minimal option len except TCPOPT_NOP and
6952          * TCPOPT_EOL which are useless for the bpf prog to learn
6953          * and this helper disallow loading them also.
6954          */
6955         if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
6956                 return -EINVAL;
6957
6958         search_kind = search[0];
6959         search_len = search[1];
6960
6961         if (search_len > len || search_kind == TCPOPT_NOP ||
6962             search_kind == TCPOPT_EOL)
6963                 return -EINVAL;
6964
6965         if (search_kind == TCPOPT_EXP || search_kind == 253) {
6966                 /* 16 or 32 bit magic.  +2 for kind and kind length */
6967                 if (search_len != 4 && search_len != 6)
6968                         return -EINVAL;
6969                 magic = &search[2];
6970                 magic_len = search_len - 2;
6971         } else {
6972                 if (search_len)
6973                         return -EINVAL;
6974                 magic = NULL;
6975                 magic_len = 0;
6976         }
6977
6978         if (load_syn) {
6979                 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
6980                 if (ret < 0)
6981                         return ret;
6982
6983                 opend = op + ret;
6984                 op += sizeof(struct tcphdr);
6985         } else {
6986                 if (!bpf_sock->skb ||
6987                     bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6988                         /* This bpf_sock->op cannot call this helper */
6989                         return -EPERM;
6990
6991                 opend = bpf_sock->skb_data_end;
6992                 op = bpf_sock->skb->data + sizeof(struct tcphdr);
6993         }
6994
6995         op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
6996                                 &eol);
6997         if (IS_ERR(op))
6998                 return PTR_ERR(op);
6999
7000         copy_len = op[1];
7001         ret = copy_len;
7002         if (copy_len > len) {
7003                 ret = -ENOSPC;
7004                 copy_len = len;
7005         }
7006
7007         memcpy(search_res, op, copy_len);
7008         return ret;
7009 }
7010
7011 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7012         .func           = bpf_sock_ops_load_hdr_opt,
7013         .gpl_only       = false,
7014         .ret_type       = RET_INTEGER,
7015         .arg1_type      = ARG_PTR_TO_CTX,
7016         .arg2_type      = ARG_PTR_TO_MEM,
7017         .arg3_type      = ARG_CONST_SIZE,
7018         .arg4_type      = ARG_ANYTHING,
7019 };
7020
7021 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7022            const void *, from, u32, len, u64, flags)
7023 {
7024         u8 new_kind, new_kind_len, magic_len = 0, *opend;
7025         const u8 *op, *new_op, *magic = NULL;
7026         struct sk_buff *skb;
7027         bool eol;
7028
7029         if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7030                 return -EPERM;
7031
7032         if (len < 2 || flags)
7033                 return -EINVAL;
7034
7035         new_op = from;
7036         new_kind = new_op[0];
7037         new_kind_len = new_op[1];
7038
7039         if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7040             new_kind == TCPOPT_EOL)
7041                 return -EINVAL;
7042
7043         if (new_kind_len > bpf_sock->remaining_opt_len)
7044                 return -ENOSPC;
7045
7046         /* 253 is another experimental kind */
7047         if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7048                 if (new_kind_len < 4)
7049                         return -EINVAL;
7050                 /* Match for the 2 byte magic also.
7051                  * RFC 6994: the magic could be 2 or 4 bytes.
7052                  * Hence, matching by 2 byte only is on the
7053                  * conservative side but it is the right
7054                  * thing to do for the 'search-for-duplication'
7055                  * purpose.
7056                  */
7057                 magic = &new_op[2];
7058                 magic_len = 2;
7059         }
7060
7061         /* Check for duplication */
7062         skb = bpf_sock->skb;
7063         op = skb->data + sizeof(struct tcphdr);
7064         opend = bpf_sock->skb_data_end;
7065
7066         op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7067                                 &eol);
7068         if (!IS_ERR(op))
7069                 return -EEXIST;
7070
7071         if (PTR_ERR(op) != -ENOMSG)
7072                 return PTR_ERR(op);
7073
7074         if (eol)
7075                 /* The option has been ended.  Treat it as no more
7076                  * header option can be written.
7077                  */
7078                 return -ENOSPC;
7079
7080         /* No duplication found.  Store the header option. */
7081         memcpy(opend, from, new_kind_len);
7082
7083         bpf_sock->remaining_opt_len -= new_kind_len;
7084         bpf_sock->skb_data_end += new_kind_len;
7085
7086         return 0;
7087 }
7088
7089 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7090         .func           = bpf_sock_ops_store_hdr_opt,
7091         .gpl_only       = false,
7092         .ret_type       = RET_INTEGER,
7093         .arg1_type      = ARG_PTR_TO_CTX,
7094         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7095         .arg3_type      = ARG_CONST_SIZE,
7096         .arg4_type      = ARG_ANYTHING,
7097 };
7098
7099 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7100            u32, len, u64, flags)
7101 {
7102         if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7103                 return -EPERM;
7104
7105         if (flags || len < 2)
7106                 return -EINVAL;
7107
7108         if (len > bpf_sock->remaining_opt_len)
7109                 return -ENOSPC;
7110
7111         bpf_sock->remaining_opt_len -= len;
7112
7113         return 0;
7114 }
7115
7116 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7117         .func           = bpf_sock_ops_reserve_hdr_opt,
7118         .gpl_only       = false,
7119         .ret_type       = RET_INTEGER,
7120         .arg1_type      = ARG_PTR_TO_CTX,
7121         .arg2_type      = ARG_ANYTHING,
7122         .arg3_type      = ARG_ANYTHING,
7123 };
7124
7125 #endif /* CONFIG_INET */
7126
7127 bool bpf_helper_changes_pkt_data(void *func)
7128 {
7129         if (func == bpf_skb_vlan_push ||
7130             func == bpf_skb_vlan_pop ||
7131             func == bpf_skb_store_bytes ||
7132             func == bpf_skb_change_proto ||
7133             func == bpf_skb_change_head ||
7134             func == sk_skb_change_head ||
7135             func == bpf_skb_change_tail ||
7136             func == sk_skb_change_tail ||
7137             func == bpf_skb_adjust_room ||
7138             func == sk_skb_adjust_room ||
7139             func == bpf_skb_pull_data ||
7140             func == sk_skb_pull_data ||
7141             func == bpf_clone_redirect ||
7142             func == bpf_l3_csum_replace ||
7143             func == bpf_l4_csum_replace ||
7144             func == bpf_xdp_adjust_head ||
7145             func == bpf_xdp_adjust_meta ||
7146             func == bpf_msg_pull_data ||
7147             func == bpf_msg_push_data ||
7148             func == bpf_msg_pop_data ||
7149             func == bpf_xdp_adjust_tail ||
7150 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7151             func == bpf_lwt_seg6_store_bytes ||
7152             func == bpf_lwt_seg6_adjust_srh ||
7153             func == bpf_lwt_seg6_action ||
7154 #endif
7155 #ifdef CONFIG_INET
7156             func == bpf_sock_ops_store_hdr_opt ||
7157 #endif
7158             func == bpf_lwt_in_push_encap ||
7159             func == bpf_lwt_xmit_push_encap)
7160                 return true;
7161
7162         return false;
7163 }
7164
7165 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7166 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7167
7168 static const struct bpf_func_proto *
7169 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7170 {
7171         switch (func_id) {
7172         /* inet and inet6 sockets are created in a process
7173          * context so there is always a valid uid/gid
7174          */
7175         case BPF_FUNC_get_current_uid_gid:
7176                 return &bpf_get_current_uid_gid_proto;
7177         case BPF_FUNC_get_local_storage:
7178                 return &bpf_get_local_storage_proto;
7179         case BPF_FUNC_get_socket_cookie:
7180                 return &bpf_get_socket_cookie_sock_proto;
7181         case BPF_FUNC_get_netns_cookie:
7182                 return &bpf_get_netns_cookie_sock_proto;
7183         case BPF_FUNC_perf_event_output:
7184                 return &bpf_event_output_data_proto;
7185         case BPF_FUNC_get_current_pid_tgid:
7186                 return &bpf_get_current_pid_tgid_proto;
7187         case BPF_FUNC_get_current_comm:
7188                 return &bpf_get_current_comm_proto;
7189 #ifdef CONFIG_CGROUPS
7190         case BPF_FUNC_get_current_cgroup_id:
7191                 return &bpf_get_current_cgroup_id_proto;
7192         case BPF_FUNC_get_current_ancestor_cgroup_id:
7193                 return &bpf_get_current_ancestor_cgroup_id_proto;
7194 #endif
7195 #ifdef CONFIG_CGROUP_NET_CLASSID
7196         case BPF_FUNC_get_cgroup_classid:
7197                 return &bpf_get_cgroup_classid_curr_proto;
7198 #endif
7199         case BPF_FUNC_sk_storage_get:
7200                 return &bpf_sk_storage_get_cg_sock_proto;
7201         case BPF_FUNC_ktime_get_coarse_ns:
7202                 return &bpf_ktime_get_coarse_ns_proto;
7203         default:
7204                 return bpf_base_func_proto(func_id);
7205         }
7206 }
7207
7208 static const struct bpf_func_proto *
7209 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7210 {
7211         switch (func_id) {
7212         /* inet and inet6 sockets are created in a process
7213          * context so there is always a valid uid/gid
7214          */
7215         case BPF_FUNC_get_current_uid_gid:
7216                 return &bpf_get_current_uid_gid_proto;
7217         case BPF_FUNC_bind:
7218                 switch (prog->expected_attach_type) {
7219                 case BPF_CGROUP_INET4_CONNECT:
7220                 case BPF_CGROUP_INET6_CONNECT:
7221                         return &bpf_bind_proto;
7222                 default:
7223                         return NULL;
7224                 }
7225         case BPF_FUNC_get_socket_cookie:
7226                 return &bpf_get_socket_cookie_sock_addr_proto;
7227         case BPF_FUNC_get_netns_cookie:
7228                 return &bpf_get_netns_cookie_sock_addr_proto;
7229         case BPF_FUNC_get_local_storage:
7230                 return &bpf_get_local_storage_proto;
7231         case BPF_FUNC_perf_event_output:
7232                 return &bpf_event_output_data_proto;
7233         case BPF_FUNC_get_current_pid_tgid:
7234                 return &bpf_get_current_pid_tgid_proto;
7235         case BPF_FUNC_get_current_comm:
7236                 return &bpf_get_current_comm_proto;
7237 #ifdef CONFIG_CGROUPS
7238         case BPF_FUNC_get_current_cgroup_id:
7239                 return &bpf_get_current_cgroup_id_proto;
7240         case BPF_FUNC_get_current_ancestor_cgroup_id:
7241                 return &bpf_get_current_ancestor_cgroup_id_proto;
7242 #endif
7243 #ifdef CONFIG_CGROUP_NET_CLASSID
7244         case BPF_FUNC_get_cgroup_classid:
7245                 return &bpf_get_cgroup_classid_curr_proto;
7246 #endif
7247 #ifdef CONFIG_INET
7248         case BPF_FUNC_sk_lookup_tcp:
7249                 return &bpf_sock_addr_sk_lookup_tcp_proto;
7250         case BPF_FUNC_sk_lookup_udp:
7251                 return &bpf_sock_addr_sk_lookup_udp_proto;
7252         case BPF_FUNC_sk_release:
7253                 return &bpf_sk_release_proto;
7254         case BPF_FUNC_skc_lookup_tcp:
7255                 return &bpf_sock_addr_skc_lookup_tcp_proto;
7256 #endif /* CONFIG_INET */
7257         case BPF_FUNC_sk_storage_get:
7258                 return &bpf_sk_storage_get_proto;
7259         case BPF_FUNC_sk_storage_delete:
7260                 return &bpf_sk_storage_delete_proto;
7261         case BPF_FUNC_setsockopt:
7262                 switch (prog->expected_attach_type) {
7263                 case BPF_CGROUP_INET4_BIND:
7264                 case BPF_CGROUP_INET6_BIND:
7265                 case BPF_CGROUP_INET4_CONNECT:
7266                 case BPF_CGROUP_INET6_CONNECT:
7267                 case BPF_CGROUP_UDP4_RECVMSG:
7268                 case BPF_CGROUP_UDP6_RECVMSG:
7269                 case BPF_CGROUP_UDP4_SENDMSG:
7270                 case BPF_CGROUP_UDP6_SENDMSG:
7271                 case BPF_CGROUP_INET4_GETPEERNAME:
7272                 case BPF_CGROUP_INET6_GETPEERNAME:
7273                 case BPF_CGROUP_INET4_GETSOCKNAME:
7274                 case BPF_CGROUP_INET6_GETSOCKNAME:
7275                         return &bpf_sock_addr_setsockopt_proto;
7276                 default:
7277                         return NULL;
7278                 }
7279         case BPF_FUNC_getsockopt:
7280                 switch (prog->expected_attach_type) {
7281                 case BPF_CGROUP_INET4_BIND:
7282                 case BPF_CGROUP_INET6_BIND:
7283                 case BPF_CGROUP_INET4_CONNECT:
7284                 case BPF_CGROUP_INET6_CONNECT:
7285                 case BPF_CGROUP_UDP4_RECVMSG:
7286                 case BPF_CGROUP_UDP6_RECVMSG:
7287                 case BPF_CGROUP_UDP4_SENDMSG:
7288                 case BPF_CGROUP_UDP6_SENDMSG:
7289                 case BPF_CGROUP_INET4_GETPEERNAME:
7290                 case BPF_CGROUP_INET6_GETPEERNAME:
7291                 case BPF_CGROUP_INET4_GETSOCKNAME:
7292                 case BPF_CGROUP_INET6_GETSOCKNAME:
7293                         return &bpf_sock_addr_getsockopt_proto;
7294                 default:
7295                         return NULL;
7296                 }
7297         default:
7298                 return bpf_sk_base_func_proto(func_id);
7299         }
7300 }
7301
7302 static const struct bpf_func_proto *
7303 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7304 {
7305         switch (func_id) {
7306         case BPF_FUNC_skb_load_bytes:
7307                 return &bpf_skb_load_bytes_proto;
7308         case BPF_FUNC_skb_load_bytes_relative:
7309                 return &bpf_skb_load_bytes_relative_proto;
7310         case BPF_FUNC_get_socket_cookie:
7311                 return &bpf_get_socket_cookie_proto;
7312         case BPF_FUNC_get_socket_uid:
7313                 return &bpf_get_socket_uid_proto;
7314         case BPF_FUNC_perf_event_output:
7315                 return &bpf_skb_event_output_proto;
7316         default:
7317                 return bpf_sk_base_func_proto(func_id);
7318         }
7319 }
7320
7321 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7322 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7323
7324 static const struct bpf_func_proto *
7325 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7326 {
7327         switch (func_id) {
7328         case BPF_FUNC_get_local_storage:
7329                 return &bpf_get_local_storage_proto;
7330         case BPF_FUNC_sk_fullsock:
7331                 return &bpf_sk_fullsock_proto;
7332         case BPF_FUNC_sk_storage_get:
7333                 return &bpf_sk_storage_get_proto;
7334         case BPF_FUNC_sk_storage_delete:
7335                 return &bpf_sk_storage_delete_proto;
7336         case BPF_FUNC_perf_event_output:
7337                 return &bpf_skb_event_output_proto;
7338 #ifdef CONFIG_SOCK_CGROUP_DATA
7339         case BPF_FUNC_skb_cgroup_id:
7340                 return &bpf_skb_cgroup_id_proto;
7341         case BPF_FUNC_skb_ancestor_cgroup_id:
7342                 return &bpf_skb_ancestor_cgroup_id_proto;
7343         case BPF_FUNC_sk_cgroup_id:
7344                 return &bpf_sk_cgroup_id_proto;
7345         case BPF_FUNC_sk_ancestor_cgroup_id:
7346                 return &bpf_sk_ancestor_cgroup_id_proto;
7347 #endif
7348 #ifdef CONFIG_INET
7349         case BPF_FUNC_sk_lookup_tcp:
7350                 return &bpf_sk_lookup_tcp_proto;
7351         case BPF_FUNC_sk_lookup_udp:
7352                 return &bpf_sk_lookup_udp_proto;
7353         case BPF_FUNC_sk_release:
7354                 return &bpf_sk_release_proto;
7355         case BPF_FUNC_skc_lookup_tcp:
7356                 return &bpf_skc_lookup_tcp_proto;
7357         case BPF_FUNC_tcp_sock:
7358                 return &bpf_tcp_sock_proto;
7359         case BPF_FUNC_get_listener_sock:
7360                 return &bpf_get_listener_sock_proto;
7361         case BPF_FUNC_skb_ecn_set_ce:
7362                 return &bpf_skb_ecn_set_ce_proto;
7363 #endif
7364         default:
7365                 return sk_filter_func_proto(func_id, prog);
7366         }
7367 }
7368
7369 static const struct bpf_func_proto *
7370 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7371 {
7372         switch (func_id) {
7373         case BPF_FUNC_skb_store_bytes:
7374                 return &bpf_skb_store_bytes_proto;
7375         case BPF_FUNC_skb_load_bytes:
7376                 return &bpf_skb_load_bytes_proto;
7377         case BPF_FUNC_skb_load_bytes_relative:
7378                 return &bpf_skb_load_bytes_relative_proto;
7379         case BPF_FUNC_skb_pull_data:
7380                 return &bpf_skb_pull_data_proto;
7381         case BPF_FUNC_csum_diff:
7382                 return &bpf_csum_diff_proto;
7383         case BPF_FUNC_csum_update:
7384                 return &bpf_csum_update_proto;
7385         case BPF_FUNC_csum_level:
7386                 return &bpf_csum_level_proto;
7387         case BPF_FUNC_l3_csum_replace:
7388                 return &bpf_l3_csum_replace_proto;
7389         case BPF_FUNC_l4_csum_replace:
7390                 return &bpf_l4_csum_replace_proto;
7391         case BPF_FUNC_clone_redirect:
7392                 return &bpf_clone_redirect_proto;
7393         case BPF_FUNC_get_cgroup_classid:
7394                 return &bpf_get_cgroup_classid_proto;
7395         case BPF_FUNC_skb_vlan_push:
7396                 return &bpf_skb_vlan_push_proto;
7397         case BPF_FUNC_skb_vlan_pop:
7398                 return &bpf_skb_vlan_pop_proto;
7399         case BPF_FUNC_skb_change_proto:
7400                 return &bpf_skb_change_proto_proto;
7401         case BPF_FUNC_skb_change_type:
7402                 return &bpf_skb_change_type_proto;
7403         case BPF_FUNC_skb_adjust_room:
7404                 return &bpf_skb_adjust_room_proto;
7405         case BPF_FUNC_skb_change_tail:
7406                 return &bpf_skb_change_tail_proto;
7407         case BPF_FUNC_skb_change_head:
7408                 return &bpf_skb_change_head_proto;
7409         case BPF_FUNC_skb_get_tunnel_key:
7410                 return &bpf_skb_get_tunnel_key_proto;
7411         case BPF_FUNC_skb_set_tunnel_key:
7412                 return bpf_get_skb_set_tunnel_proto(func_id);
7413         case BPF_FUNC_skb_get_tunnel_opt:
7414                 return &bpf_skb_get_tunnel_opt_proto;
7415         case BPF_FUNC_skb_set_tunnel_opt:
7416                 return bpf_get_skb_set_tunnel_proto(func_id);
7417         case BPF_FUNC_redirect:
7418                 return &bpf_redirect_proto;
7419         case BPF_FUNC_redirect_neigh:
7420                 return &bpf_redirect_neigh_proto;
7421         case BPF_FUNC_redirect_peer:
7422                 return &bpf_redirect_peer_proto;
7423         case BPF_FUNC_get_route_realm:
7424                 return &bpf_get_route_realm_proto;
7425         case BPF_FUNC_get_hash_recalc:
7426                 return &bpf_get_hash_recalc_proto;
7427         case BPF_FUNC_set_hash_invalid:
7428                 return &bpf_set_hash_invalid_proto;
7429         case BPF_FUNC_set_hash:
7430                 return &bpf_set_hash_proto;
7431         case BPF_FUNC_perf_event_output:
7432                 return &bpf_skb_event_output_proto;
7433         case BPF_FUNC_get_smp_processor_id:
7434                 return &bpf_get_smp_processor_id_proto;
7435         case BPF_FUNC_skb_under_cgroup:
7436                 return &bpf_skb_under_cgroup_proto;
7437         case BPF_FUNC_get_socket_cookie:
7438                 return &bpf_get_socket_cookie_proto;
7439         case BPF_FUNC_get_socket_uid:
7440                 return &bpf_get_socket_uid_proto;
7441         case BPF_FUNC_fib_lookup:
7442                 return &bpf_skb_fib_lookup_proto;
7443         case BPF_FUNC_check_mtu:
7444                 return &bpf_skb_check_mtu_proto;
7445         case BPF_FUNC_sk_fullsock:
7446                 return &bpf_sk_fullsock_proto;
7447         case BPF_FUNC_sk_storage_get:
7448                 return &bpf_sk_storage_get_proto;
7449         case BPF_FUNC_sk_storage_delete:
7450                 return &bpf_sk_storage_delete_proto;
7451 #ifdef CONFIG_XFRM
7452         case BPF_FUNC_skb_get_xfrm_state:
7453                 return &bpf_skb_get_xfrm_state_proto;
7454 #endif
7455 #ifdef CONFIG_CGROUP_NET_CLASSID
7456         case BPF_FUNC_skb_cgroup_classid:
7457                 return &bpf_skb_cgroup_classid_proto;
7458 #endif
7459 #ifdef CONFIG_SOCK_CGROUP_DATA
7460         case BPF_FUNC_skb_cgroup_id:
7461                 return &bpf_skb_cgroup_id_proto;
7462         case BPF_FUNC_skb_ancestor_cgroup_id:
7463                 return &bpf_skb_ancestor_cgroup_id_proto;
7464 #endif
7465 #ifdef CONFIG_INET
7466         case BPF_FUNC_sk_lookup_tcp:
7467                 return &bpf_sk_lookup_tcp_proto;
7468         case BPF_FUNC_sk_lookup_udp:
7469                 return &bpf_sk_lookup_udp_proto;
7470         case BPF_FUNC_sk_release:
7471                 return &bpf_sk_release_proto;
7472         case BPF_FUNC_tcp_sock:
7473                 return &bpf_tcp_sock_proto;
7474         case BPF_FUNC_get_listener_sock:
7475                 return &bpf_get_listener_sock_proto;
7476         case BPF_FUNC_skc_lookup_tcp:
7477                 return &bpf_skc_lookup_tcp_proto;
7478         case BPF_FUNC_tcp_check_syncookie:
7479                 return &bpf_tcp_check_syncookie_proto;
7480         case BPF_FUNC_skb_ecn_set_ce:
7481                 return &bpf_skb_ecn_set_ce_proto;
7482         case BPF_FUNC_tcp_gen_syncookie:
7483                 return &bpf_tcp_gen_syncookie_proto;
7484         case BPF_FUNC_sk_assign:
7485                 return &bpf_sk_assign_proto;
7486 #endif
7487         default:
7488                 return bpf_sk_base_func_proto(func_id);
7489         }
7490 }
7491
7492 static const struct bpf_func_proto *
7493 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7494 {
7495         switch (func_id) {
7496         case BPF_FUNC_perf_event_output:
7497                 return &bpf_xdp_event_output_proto;
7498         case BPF_FUNC_get_smp_processor_id:
7499                 return &bpf_get_smp_processor_id_proto;
7500         case BPF_FUNC_csum_diff:
7501                 return &bpf_csum_diff_proto;
7502         case BPF_FUNC_xdp_adjust_head:
7503                 return &bpf_xdp_adjust_head_proto;
7504         case BPF_FUNC_xdp_adjust_meta:
7505                 return &bpf_xdp_adjust_meta_proto;
7506         case BPF_FUNC_redirect:
7507                 return &bpf_xdp_redirect_proto;
7508         case BPF_FUNC_redirect_map:
7509                 return &bpf_xdp_redirect_map_proto;
7510         case BPF_FUNC_xdp_adjust_tail:
7511                 return &bpf_xdp_adjust_tail_proto;
7512         case BPF_FUNC_fib_lookup:
7513                 return &bpf_xdp_fib_lookup_proto;
7514         case BPF_FUNC_check_mtu:
7515                 return &bpf_xdp_check_mtu_proto;
7516 #ifdef CONFIG_INET
7517         case BPF_FUNC_sk_lookup_udp:
7518                 return &bpf_xdp_sk_lookup_udp_proto;
7519         case BPF_FUNC_sk_lookup_tcp:
7520                 return &bpf_xdp_sk_lookup_tcp_proto;
7521         case BPF_FUNC_sk_release:
7522                 return &bpf_sk_release_proto;
7523         case BPF_FUNC_skc_lookup_tcp:
7524                 return &bpf_xdp_skc_lookup_tcp_proto;
7525         case BPF_FUNC_tcp_check_syncookie:
7526                 return &bpf_tcp_check_syncookie_proto;
7527         case BPF_FUNC_tcp_gen_syncookie:
7528                 return &bpf_tcp_gen_syncookie_proto;
7529 #endif
7530         default:
7531                 return bpf_sk_base_func_proto(func_id);
7532         }
7533 }
7534
7535 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7536 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7537
7538 static const struct bpf_func_proto *
7539 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7540 {
7541         switch (func_id) {
7542         case BPF_FUNC_setsockopt:
7543                 return &bpf_sock_ops_setsockopt_proto;
7544         case BPF_FUNC_getsockopt:
7545                 return &bpf_sock_ops_getsockopt_proto;
7546         case BPF_FUNC_sock_ops_cb_flags_set:
7547                 return &bpf_sock_ops_cb_flags_set_proto;
7548         case BPF_FUNC_sock_map_update:
7549                 return &bpf_sock_map_update_proto;
7550         case BPF_FUNC_sock_hash_update:
7551                 return &bpf_sock_hash_update_proto;
7552         case BPF_FUNC_get_socket_cookie:
7553                 return &bpf_get_socket_cookie_sock_ops_proto;
7554         case BPF_FUNC_get_local_storage:
7555                 return &bpf_get_local_storage_proto;
7556         case BPF_FUNC_perf_event_output:
7557                 return &bpf_event_output_data_proto;
7558         case BPF_FUNC_sk_storage_get:
7559                 return &bpf_sk_storage_get_proto;
7560         case BPF_FUNC_sk_storage_delete:
7561                 return &bpf_sk_storage_delete_proto;
7562         case BPF_FUNC_get_netns_cookie:
7563                 return &bpf_get_netns_cookie_sock_ops_proto;
7564 #ifdef CONFIG_INET
7565         case BPF_FUNC_load_hdr_opt:
7566                 return &bpf_sock_ops_load_hdr_opt_proto;
7567         case BPF_FUNC_store_hdr_opt:
7568                 return &bpf_sock_ops_store_hdr_opt_proto;
7569         case BPF_FUNC_reserve_hdr_opt:
7570                 return &bpf_sock_ops_reserve_hdr_opt_proto;
7571         case BPF_FUNC_tcp_sock:
7572                 return &bpf_tcp_sock_proto;
7573 #endif /* CONFIG_INET */
7574         default:
7575                 return bpf_sk_base_func_proto(func_id);
7576         }
7577 }
7578
7579 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7580 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7581
7582 static const struct bpf_func_proto *
7583 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7584 {
7585         switch (func_id) {
7586         case BPF_FUNC_msg_redirect_map:
7587                 return &bpf_msg_redirect_map_proto;
7588         case BPF_FUNC_msg_redirect_hash:
7589                 return &bpf_msg_redirect_hash_proto;
7590         case BPF_FUNC_msg_apply_bytes:
7591                 return &bpf_msg_apply_bytes_proto;
7592         case BPF_FUNC_msg_cork_bytes:
7593                 return &bpf_msg_cork_bytes_proto;
7594         case BPF_FUNC_msg_pull_data:
7595                 return &bpf_msg_pull_data_proto;
7596         case BPF_FUNC_msg_push_data:
7597                 return &bpf_msg_push_data_proto;
7598         case BPF_FUNC_msg_pop_data:
7599                 return &bpf_msg_pop_data_proto;
7600         case BPF_FUNC_perf_event_output:
7601                 return &bpf_event_output_data_proto;
7602         case BPF_FUNC_get_current_uid_gid:
7603                 return &bpf_get_current_uid_gid_proto;
7604         case BPF_FUNC_get_current_pid_tgid:
7605                 return &bpf_get_current_pid_tgid_proto;
7606         case BPF_FUNC_sk_storage_get:
7607                 return &bpf_sk_storage_get_proto;
7608         case BPF_FUNC_sk_storage_delete:
7609                 return &bpf_sk_storage_delete_proto;
7610         case BPF_FUNC_get_netns_cookie:
7611                 return &bpf_get_netns_cookie_sk_msg_proto;
7612 #ifdef CONFIG_CGROUPS
7613         case BPF_FUNC_get_current_cgroup_id:
7614                 return &bpf_get_current_cgroup_id_proto;
7615         case BPF_FUNC_get_current_ancestor_cgroup_id:
7616                 return &bpf_get_current_ancestor_cgroup_id_proto;
7617 #endif
7618 #ifdef CONFIG_CGROUP_NET_CLASSID
7619         case BPF_FUNC_get_cgroup_classid:
7620                 return &bpf_get_cgroup_classid_curr_proto;
7621 #endif
7622         default:
7623                 return bpf_sk_base_func_proto(func_id);
7624         }
7625 }
7626
7627 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
7628 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
7629
7630 static const struct bpf_func_proto *
7631 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7632 {
7633         switch (func_id) {
7634         case BPF_FUNC_skb_store_bytes:
7635                 return &bpf_skb_store_bytes_proto;
7636         case BPF_FUNC_skb_load_bytes:
7637                 return &bpf_skb_load_bytes_proto;
7638         case BPF_FUNC_skb_pull_data:
7639                 return &sk_skb_pull_data_proto;
7640         case BPF_FUNC_skb_change_tail:
7641                 return &sk_skb_change_tail_proto;
7642         case BPF_FUNC_skb_change_head:
7643                 return &sk_skb_change_head_proto;
7644         case BPF_FUNC_skb_adjust_room:
7645                 return &sk_skb_adjust_room_proto;
7646         case BPF_FUNC_get_socket_cookie:
7647                 return &bpf_get_socket_cookie_proto;
7648         case BPF_FUNC_get_socket_uid:
7649                 return &bpf_get_socket_uid_proto;
7650         case BPF_FUNC_sk_redirect_map:
7651                 return &bpf_sk_redirect_map_proto;
7652         case BPF_FUNC_sk_redirect_hash:
7653                 return &bpf_sk_redirect_hash_proto;
7654         case BPF_FUNC_perf_event_output:
7655                 return &bpf_skb_event_output_proto;
7656 #ifdef CONFIG_INET
7657         case BPF_FUNC_sk_lookup_tcp:
7658                 return &bpf_sk_lookup_tcp_proto;
7659         case BPF_FUNC_sk_lookup_udp:
7660                 return &bpf_sk_lookup_udp_proto;
7661         case BPF_FUNC_sk_release:
7662                 return &bpf_sk_release_proto;
7663         case BPF_FUNC_skc_lookup_tcp:
7664                 return &bpf_skc_lookup_tcp_proto;
7665 #endif
7666         default:
7667                 return bpf_sk_base_func_proto(func_id);
7668         }
7669 }
7670
7671 static const struct bpf_func_proto *
7672 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7673 {
7674         switch (func_id) {
7675         case BPF_FUNC_skb_load_bytes:
7676                 return &bpf_flow_dissector_load_bytes_proto;
7677         default:
7678                 return bpf_sk_base_func_proto(func_id);
7679         }
7680 }
7681
7682 static const struct bpf_func_proto *
7683 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7684 {
7685         switch (func_id) {
7686         case BPF_FUNC_skb_load_bytes:
7687                 return &bpf_skb_load_bytes_proto;
7688         case BPF_FUNC_skb_pull_data:
7689                 return &bpf_skb_pull_data_proto;
7690         case BPF_FUNC_csum_diff:
7691                 return &bpf_csum_diff_proto;
7692         case BPF_FUNC_get_cgroup_classid:
7693                 return &bpf_get_cgroup_classid_proto;
7694         case BPF_FUNC_get_route_realm:
7695                 return &bpf_get_route_realm_proto;
7696         case BPF_FUNC_get_hash_recalc:
7697                 return &bpf_get_hash_recalc_proto;
7698         case BPF_FUNC_perf_event_output:
7699                 return &bpf_skb_event_output_proto;
7700         case BPF_FUNC_get_smp_processor_id:
7701                 return &bpf_get_smp_processor_id_proto;
7702         case BPF_FUNC_skb_under_cgroup:
7703                 return &bpf_skb_under_cgroup_proto;
7704         default:
7705                 return bpf_sk_base_func_proto(func_id);
7706         }
7707 }
7708
7709 static const struct bpf_func_proto *
7710 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7711 {
7712         switch (func_id) {
7713         case BPF_FUNC_lwt_push_encap:
7714                 return &bpf_lwt_in_push_encap_proto;
7715         default:
7716                 return lwt_out_func_proto(func_id, prog);
7717         }
7718 }
7719
7720 static const struct bpf_func_proto *
7721 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7722 {
7723         switch (func_id) {
7724         case BPF_FUNC_skb_get_tunnel_key:
7725                 return &bpf_skb_get_tunnel_key_proto;
7726         case BPF_FUNC_skb_set_tunnel_key:
7727                 return bpf_get_skb_set_tunnel_proto(func_id);
7728         case BPF_FUNC_skb_get_tunnel_opt:
7729                 return &bpf_skb_get_tunnel_opt_proto;
7730         case BPF_FUNC_skb_set_tunnel_opt:
7731                 return bpf_get_skb_set_tunnel_proto(func_id);
7732         case BPF_FUNC_redirect:
7733                 return &bpf_redirect_proto;
7734         case BPF_FUNC_clone_redirect:
7735                 return &bpf_clone_redirect_proto;
7736         case BPF_FUNC_skb_change_tail:
7737                 return &bpf_skb_change_tail_proto;
7738         case BPF_FUNC_skb_change_head:
7739                 return &bpf_skb_change_head_proto;
7740         case BPF_FUNC_skb_store_bytes:
7741                 return &bpf_skb_store_bytes_proto;
7742         case BPF_FUNC_csum_update:
7743                 return &bpf_csum_update_proto;
7744         case BPF_FUNC_csum_level:
7745                 return &bpf_csum_level_proto;
7746         case BPF_FUNC_l3_csum_replace:
7747                 return &bpf_l3_csum_replace_proto;
7748         case BPF_FUNC_l4_csum_replace:
7749                 return &bpf_l4_csum_replace_proto;
7750         case BPF_FUNC_set_hash_invalid:
7751                 return &bpf_set_hash_invalid_proto;
7752         case BPF_FUNC_lwt_push_encap:
7753                 return &bpf_lwt_xmit_push_encap_proto;
7754         default:
7755                 return lwt_out_func_proto(func_id, prog);
7756         }
7757 }
7758
7759 static const struct bpf_func_proto *
7760 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7761 {
7762         switch (func_id) {
7763 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7764         case BPF_FUNC_lwt_seg6_store_bytes:
7765                 return &bpf_lwt_seg6_store_bytes_proto;
7766         case BPF_FUNC_lwt_seg6_action:
7767                 return &bpf_lwt_seg6_action_proto;
7768         case BPF_FUNC_lwt_seg6_adjust_srh:
7769                 return &bpf_lwt_seg6_adjust_srh_proto;
7770 #endif
7771         default:
7772                 return lwt_out_func_proto(func_id, prog);
7773         }
7774 }
7775
7776 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
7777                                     const struct bpf_prog *prog,
7778                                     struct bpf_insn_access_aux *info)
7779 {
7780         const int size_default = sizeof(__u32);
7781
7782         if (off < 0 || off >= sizeof(struct __sk_buff))
7783                 return false;
7784
7785         /* The verifier guarantees that size > 0. */
7786         if (off % size != 0)
7787                 return false;
7788
7789         switch (off) {
7790         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7791                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
7792                         return false;
7793                 break;
7794         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
7795         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
7796         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
7797         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
7798         case bpf_ctx_range(struct __sk_buff, data):
7799         case bpf_ctx_range(struct __sk_buff, data_meta):
7800         case bpf_ctx_range(struct __sk_buff, data_end):
7801                 if (size != size_default)
7802                         return false;
7803                 break;
7804         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7805                 return false;
7806         case bpf_ctx_range(struct __sk_buff, tstamp):
7807                 if (size != sizeof(__u64))
7808                         return false;
7809                 break;
7810         case offsetof(struct __sk_buff, sk):
7811                 if (type == BPF_WRITE || size != sizeof(__u64))
7812                         return false;
7813                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
7814                 break;
7815         default:
7816                 /* Only narrow read access allowed for now. */
7817                 if (type == BPF_WRITE) {
7818                         if (size != size_default)
7819                                 return false;
7820                 } else {
7821                         bpf_ctx_record_field_size(info, size_default);
7822                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7823                                 return false;
7824                 }
7825         }
7826
7827         return true;
7828 }
7829
7830 static bool sk_filter_is_valid_access(int off, int size,
7831                                       enum bpf_access_type type,
7832                                       const struct bpf_prog *prog,
7833                                       struct bpf_insn_access_aux *info)
7834 {
7835         switch (off) {
7836         case bpf_ctx_range(struct __sk_buff, tc_classid):
7837         case bpf_ctx_range(struct __sk_buff, data):
7838         case bpf_ctx_range(struct __sk_buff, data_meta):
7839         case bpf_ctx_range(struct __sk_buff, data_end):
7840         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7841         case bpf_ctx_range(struct __sk_buff, tstamp):
7842         case bpf_ctx_range(struct __sk_buff, wire_len):
7843                 return false;
7844         }
7845
7846         if (type == BPF_WRITE) {
7847                 switch (off) {
7848                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7849                         break;
7850                 default:
7851                         return false;
7852                 }
7853         }
7854
7855         return bpf_skb_is_valid_access(off, size, type, prog, info);
7856 }
7857
7858 static bool cg_skb_is_valid_access(int off, int size,
7859                                    enum bpf_access_type type,
7860                                    const struct bpf_prog *prog,
7861                                    struct bpf_insn_access_aux *info)
7862 {
7863         switch (off) {
7864         case bpf_ctx_range(struct __sk_buff, tc_classid):
7865         case bpf_ctx_range(struct __sk_buff, data_meta):
7866         case bpf_ctx_range(struct __sk_buff, wire_len):
7867                 return false;
7868         case bpf_ctx_range(struct __sk_buff, data):
7869         case bpf_ctx_range(struct __sk_buff, data_end):
7870                 if (!bpf_capable())
7871                         return false;
7872                 break;
7873         }
7874
7875         if (type == BPF_WRITE) {
7876                 switch (off) {
7877                 case bpf_ctx_range(struct __sk_buff, mark):
7878                 case bpf_ctx_range(struct __sk_buff, priority):
7879                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7880                         break;
7881                 case bpf_ctx_range(struct __sk_buff, tstamp):
7882                         if (!bpf_capable())
7883                                 return false;
7884                         break;
7885                 default:
7886                         return false;
7887                 }
7888         }
7889
7890         switch (off) {
7891         case bpf_ctx_range(struct __sk_buff, data):
7892                 info->reg_type = PTR_TO_PACKET;
7893                 break;
7894         case bpf_ctx_range(struct __sk_buff, data_end):
7895                 info->reg_type = PTR_TO_PACKET_END;
7896                 break;
7897         }
7898
7899         return bpf_skb_is_valid_access(off, size, type, prog, info);
7900 }
7901
7902 static bool lwt_is_valid_access(int off, int size,
7903                                 enum bpf_access_type type,
7904                                 const struct bpf_prog *prog,
7905                                 struct bpf_insn_access_aux *info)
7906 {
7907         switch (off) {
7908         case bpf_ctx_range(struct __sk_buff, tc_classid):
7909         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7910         case bpf_ctx_range(struct __sk_buff, data_meta):
7911         case bpf_ctx_range(struct __sk_buff, tstamp):
7912         case bpf_ctx_range(struct __sk_buff, wire_len):
7913                 return false;
7914         }
7915
7916         if (type == BPF_WRITE) {
7917                 switch (off) {
7918                 case bpf_ctx_range(struct __sk_buff, mark):
7919                 case bpf_ctx_range(struct __sk_buff, priority):
7920                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7921                         break;
7922                 default:
7923                         return false;
7924                 }
7925         }
7926
7927         switch (off) {
7928         case bpf_ctx_range(struct __sk_buff, data):
7929                 info->reg_type = PTR_TO_PACKET;
7930                 break;
7931         case bpf_ctx_range(struct __sk_buff, data_end):
7932                 info->reg_type = PTR_TO_PACKET_END;
7933                 break;
7934         }
7935
7936         return bpf_skb_is_valid_access(off, size, type, prog, info);
7937 }
7938
7939 /* Attach type specific accesses */
7940 static bool __sock_filter_check_attach_type(int off,
7941                                             enum bpf_access_type access_type,
7942                                             enum bpf_attach_type attach_type)
7943 {
7944         switch (off) {
7945         case offsetof(struct bpf_sock, bound_dev_if):
7946         case offsetof(struct bpf_sock, mark):
7947         case offsetof(struct bpf_sock, priority):
7948                 switch (attach_type) {
7949                 case BPF_CGROUP_INET_SOCK_CREATE:
7950                 case BPF_CGROUP_INET_SOCK_RELEASE:
7951                         goto full_access;
7952                 default:
7953                         return false;
7954                 }
7955         case bpf_ctx_range(struct bpf_sock, src_ip4):
7956                 switch (attach_type) {
7957                 case BPF_CGROUP_INET4_POST_BIND:
7958                         goto read_only;
7959                 default:
7960                         return false;
7961                 }
7962         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7963                 switch (attach_type) {
7964                 case BPF_CGROUP_INET6_POST_BIND:
7965                         goto read_only;
7966                 default:
7967                         return false;
7968                 }
7969         case bpf_ctx_range(struct bpf_sock, src_port):
7970                 switch (attach_type) {
7971                 case BPF_CGROUP_INET4_POST_BIND:
7972                 case BPF_CGROUP_INET6_POST_BIND:
7973                         goto read_only;
7974                 default:
7975                         return false;
7976                 }
7977         }
7978 read_only:
7979         return access_type == BPF_READ;
7980 full_access:
7981         return true;
7982 }
7983
7984 bool bpf_sock_common_is_valid_access(int off, int size,
7985                                      enum bpf_access_type type,
7986                                      struct bpf_insn_access_aux *info)
7987 {
7988         switch (off) {
7989         case bpf_ctx_range_till(struct bpf_sock, type, priority):
7990                 return false;
7991         default:
7992                 return bpf_sock_is_valid_access(off, size, type, info);
7993         }
7994 }
7995
7996 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7997                               struct bpf_insn_access_aux *info)
7998 {
7999         const int size_default = sizeof(__u32);
8000         int field_size;
8001
8002         if (off < 0 || off >= sizeof(struct bpf_sock))
8003                 return false;
8004         if (off % size != 0)
8005                 return false;
8006
8007         switch (off) {
8008         case offsetof(struct bpf_sock, state):
8009         case offsetof(struct bpf_sock, family):
8010         case offsetof(struct bpf_sock, type):
8011         case offsetof(struct bpf_sock, protocol):
8012         case offsetof(struct bpf_sock, src_port):
8013         case offsetof(struct bpf_sock, rx_queue_mapping):
8014         case bpf_ctx_range(struct bpf_sock, src_ip4):
8015         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8016         case bpf_ctx_range(struct bpf_sock, dst_ip4):
8017         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8018                 bpf_ctx_record_field_size(info, size_default);
8019                 return bpf_ctx_narrow_access_ok(off, size, size_default);
8020         case bpf_ctx_range(struct bpf_sock, dst_port):
8021                 field_size = size == size_default ?
8022                         size_default : sizeof_field(struct bpf_sock, dst_port);
8023                 bpf_ctx_record_field_size(info, field_size);
8024                 return bpf_ctx_narrow_access_ok(off, size, field_size);
8025         case offsetofend(struct bpf_sock, dst_port) ...
8026              offsetof(struct bpf_sock, dst_ip4) - 1:
8027                 return false;
8028         }
8029
8030         return size == size_default;
8031 }
8032
8033 static bool sock_filter_is_valid_access(int off, int size,
8034                                         enum bpf_access_type type,
8035                                         const struct bpf_prog *prog,
8036                                         struct bpf_insn_access_aux *info)
8037 {
8038         if (!bpf_sock_is_valid_access(off, size, type, info))
8039                 return false;
8040         return __sock_filter_check_attach_type(off, type,
8041                                                prog->expected_attach_type);
8042 }
8043
8044 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8045                              const struct bpf_prog *prog)
8046 {
8047         /* Neither direct read nor direct write requires any preliminary
8048          * action.
8049          */
8050         return 0;
8051 }
8052
8053 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8054                                 const struct bpf_prog *prog, int drop_verdict)
8055 {
8056         struct bpf_insn *insn = insn_buf;
8057
8058         if (!direct_write)
8059                 return 0;
8060
8061         /* if (!skb->cloned)
8062          *       goto start;
8063          *
8064          * (Fast-path, otherwise approximation that we might be
8065          *  a clone, do the rest in helper.)
8066          */
8067         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
8068         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8069         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8070
8071         /* ret = bpf_skb_pull_data(skb, 0); */
8072         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8073         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8074         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8075                                BPF_FUNC_skb_pull_data);
8076         /* if (!ret)
8077          *      goto restore;
8078          * return TC_ACT_SHOT;
8079          */
8080         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8081         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8082         *insn++ = BPF_EXIT_INSN();
8083
8084         /* restore: */
8085         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8086         /* start: */
8087         *insn++ = prog->insnsi[0];
8088
8089         return insn - insn_buf;
8090 }
8091
8092 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8093                           struct bpf_insn *insn_buf)
8094 {
8095         bool indirect = BPF_MODE(orig->code) == BPF_IND;
8096         struct bpf_insn *insn = insn_buf;
8097
8098         if (!indirect) {
8099                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8100         } else {
8101                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8102                 if (orig->imm)
8103                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8104         }
8105         /* We're guaranteed here that CTX is in R6. */
8106         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8107
8108         switch (BPF_SIZE(orig->code)) {
8109         case BPF_B:
8110                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8111                 break;
8112         case BPF_H:
8113                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8114                 break;
8115         case BPF_W:
8116                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8117                 break;
8118         }
8119
8120         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8121         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8122         *insn++ = BPF_EXIT_INSN();
8123
8124         return insn - insn_buf;
8125 }
8126
8127 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8128                                const struct bpf_prog *prog)
8129 {
8130         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8131 }
8132
8133 static bool tc_cls_act_is_valid_access(int off, int size,
8134                                        enum bpf_access_type type,
8135                                        const struct bpf_prog *prog,
8136                                        struct bpf_insn_access_aux *info)
8137 {
8138         if (type == BPF_WRITE) {
8139                 switch (off) {
8140                 case bpf_ctx_range(struct __sk_buff, mark):
8141                 case bpf_ctx_range(struct __sk_buff, tc_index):
8142                 case bpf_ctx_range(struct __sk_buff, priority):
8143                 case bpf_ctx_range(struct __sk_buff, tc_classid):
8144                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8145                 case bpf_ctx_range(struct __sk_buff, tstamp):
8146                 case bpf_ctx_range(struct __sk_buff, queue_mapping):
8147                         break;
8148                 default:
8149                         return false;
8150                 }
8151         }
8152
8153         switch (off) {
8154         case bpf_ctx_range(struct __sk_buff, data):
8155                 info->reg_type = PTR_TO_PACKET;
8156                 break;
8157         case bpf_ctx_range(struct __sk_buff, data_meta):
8158                 info->reg_type = PTR_TO_PACKET_META;
8159                 break;
8160         case bpf_ctx_range(struct __sk_buff, data_end):
8161                 info->reg_type = PTR_TO_PACKET_END;
8162                 break;
8163         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8164                 return false;
8165         }
8166
8167         return bpf_skb_is_valid_access(off, size, type, prog, info);
8168 }
8169
8170 static bool __is_valid_xdp_access(int off, int size)
8171 {
8172         if (off < 0 || off >= sizeof(struct xdp_md))
8173                 return false;
8174         if (off % size != 0)
8175                 return false;
8176         if (size != sizeof(__u32))
8177                 return false;
8178
8179         return true;
8180 }
8181
8182 static bool xdp_is_valid_access(int off, int size,
8183                                 enum bpf_access_type type,
8184                                 const struct bpf_prog *prog,
8185                                 struct bpf_insn_access_aux *info)
8186 {
8187         if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8188                 switch (off) {
8189                 case offsetof(struct xdp_md, egress_ifindex):
8190                         return false;
8191                 }
8192         }
8193
8194         if (type == BPF_WRITE) {
8195                 if (bpf_prog_is_dev_bound(prog->aux)) {
8196                         switch (off) {
8197                         case offsetof(struct xdp_md, rx_queue_index):
8198                                 return __is_valid_xdp_access(off, size);
8199                         }
8200                 }
8201                 return false;
8202         }
8203
8204         switch (off) {
8205         case offsetof(struct xdp_md, data):
8206                 info->reg_type = PTR_TO_PACKET;
8207                 break;
8208         case offsetof(struct xdp_md, data_meta):
8209                 info->reg_type = PTR_TO_PACKET_META;
8210                 break;
8211         case offsetof(struct xdp_md, data_end):
8212                 info->reg_type = PTR_TO_PACKET_END;
8213                 break;
8214         }
8215
8216         return __is_valid_xdp_access(off, size);
8217 }
8218
8219 void bpf_warn_invalid_xdp_action(u32 act)
8220 {
8221         const u32 act_max = XDP_REDIRECT;
8222
8223         pr_warn_once("%s XDP return value %u, expect packet loss!\n",
8224                      act > act_max ? "Illegal" : "Driver unsupported",
8225                      act);
8226 }
8227 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8228
8229 static bool sock_addr_is_valid_access(int off, int size,
8230                                       enum bpf_access_type type,
8231                                       const struct bpf_prog *prog,
8232                                       struct bpf_insn_access_aux *info)
8233 {
8234         const int size_default = sizeof(__u32);
8235
8236         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8237                 return false;
8238         if (off % size != 0)
8239                 return false;
8240
8241         /* Disallow access to IPv6 fields from IPv4 contex and vise
8242          * versa.
8243          */
8244         switch (off) {
8245         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8246                 switch (prog->expected_attach_type) {
8247                 case BPF_CGROUP_INET4_BIND:
8248                 case BPF_CGROUP_INET4_CONNECT:
8249                 case BPF_CGROUP_INET4_GETPEERNAME:
8250                 case BPF_CGROUP_INET4_GETSOCKNAME:
8251                 case BPF_CGROUP_UDP4_SENDMSG:
8252                 case BPF_CGROUP_UDP4_RECVMSG:
8253                         break;
8254                 default:
8255                         return false;
8256                 }
8257                 break;
8258         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8259                 switch (prog->expected_attach_type) {
8260                 case BPF_CGROUP_INET6_BIND:
8261                 case BPF_CGROUP_INET6_CONNECT:
8262                 case BPF_CGROUP_INET6_GETPEERNAME:
8263                 case BPF_CGROUP_INET6_GETSOCKNAME:
8264                 case BPF_CGROUP_UDP6_SENDMSG:
8265                 case BPF_CGROUP_UDP6_RECVMSG:
8266                         break;
8267                 default:
8268                         return false;
8269                 }
8270                 break;
8271         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8272                 switch (prog->expected_attach_type) {
8273                 case BPF_CGROUP_UDP4_SENDMSG:
8274                         break;
8275                 default:
8276                         return false;
8277                 }
8278                 break;
8279         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8280                                 msg_src_ip6[3]):
8281                 switch (prog->expected_attach_type) {
8282                 case BPF_CGROUP_UDP6_SENDMSG:
8283                         break;
8284                 default:
8285                         return false;
8286                 }
8287                 break;
8288         }
8289
8290         switch (off) {
8291         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8292         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8293         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8294         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8295                                 msg_src_ip6[3]):
8296         case bpf_ctx_range(struct bpf_sock_addr, user_port):
8297                 if (type == BPF_READ) {
8298                         bpf_ctx_record_field_size(info, size_default);
8299
8300                         if (bpf_ctx_wide_access_ok(off, size,
8301                                                    struct bpf_sock_addr,
8302                                                    user_ip6))
8303                                 return true;
8304
8305                         if (bpf_ctx_wide_access_ok(off, size,
8306                                                    struct bpf_sock_addr,
8307                                                    msg_src_ip6))
8308                                 return true;
8309
8310                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8311                                 return false;
8312                 } else {
8313                         if (bpf_ctx_wide_access_ok(off, size,
8314                                                    struct bpf_sock_addr,
8315                                                    user_ip6))
8316                                 return true;
8317
8318                         if (bpf_ctx_wide_access_ok(off, size,
8319                                                    struct bpf_sock_addr,
8320                                                    msg_src_ip6))
8321                                 return true;
8322
8323                         if (size != size_default)
8324                                 return false;
8325                 }
8326                 break;
8327         case offsetof(struct bpf_sock_addr, sk):
8328                 if (type != BPF_READ)
8329                         return false;
8330                 if (size != sizeof(__u64))
8331                         return false;
8332                 info->reg_type = PTR_TO_SOCKET;
8333                 break;
8334         default:
8335                 if (type == BPF_READ) {
8336                         if (size != size_default)
8337                                 return false;
8338                 } else {
8339                         return false;
8340                 }
8341         }
8342
8343         return true;
8344 }
8345
8346 static bool sock_ops_is_valid_access(int off, int size,
8347                                      enum bpf_access_type type,
8348                                      const struct bpf_prog *prog,
8349                                      struct bpf_insn_access_aux *info)
8350 {
8351         const int size_default = sizeof(__u32);
8352
8353         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8354                 return false;
8355
8356         /* The verifier guarantees that size > 0. */
8357         if (off % size != 0)
8358                 return false;
8359
8360         if (type == BPF_WRITE) {
8361                 switch (off) {
8362                 case offsetof(struct bpf_sock_ops, reply):
8363                 case offsetof(struct bpf_sock_ops, sk_txhash):
8364                         if (size != size_default)
8365                                 return false;
8366                         break;
8367                 default:
8368                         return false;
8369                 }
8370         } else {
8371                 switch (off) {
8372                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8373                                         bytes_acked):
8374                         if (size != sizeof(__u64))
8375                                 return false;
8376                         break;
8377                 case offsetof(struct bpf_sock_ops, sk):
8378                         if (size != sizeof(__u64))
8379                                 return false;
8380                         info->reg_type = PTR_TO_SOCKET_OR_NULL;
8381                         break;
8382                 case offsetof(struct bpf_sock_ops, skb_data):
8383                         if (size != sizeof(__u64))
8384                                 return false;
8385                         info->reg_type = PTR_TO_PACKET;
8386                         break;
8387                 case offsetof(struct bpf_sock_ops, skb_data_end):
8388                         if (size != sizeof(__u64))
8389                                 return false;
8390                         info->reg_type = PTR_TO_PACKET_END;
8391                         break;
8392                 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8393                         bpf_ctx_record_field_size(info, size_default);
8394                         return bpf_ctx_narrow_access_ok(off, size,
8395                                                         size_default);
8396                 default:
8397                         if (size != size_default)
8398                                 return false;
8399                         break;
8400                 }
8401         }
8402
8403         return true;
8404 }
8405
8406 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8407                            const struct bpf_prog *prog)
8408 {
8409         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8410 }
8411
8412 static bool sk_skb_is_valid_access(int off, int size,
8413                                    enum bpf_access_type type,
8414                                    const struct bpf_prog *prog,
8415                                    struct bpf_insn_access_aux *info)
8416 {
8417         switch (off) {
8418         case bpf_ctx_range(struct __sk_buff, tc_classid):
8419         case bpf_ctx_range(struct __sk_buff, data_meta):
8420         case bpf_ctx_range(struct __sk_buff, tstamp):
8421         case bpf_ctx_range(struct __sk_buff, wire_len):
8422                 return false;
8423         }
8424
8425         if (type == BPF_WRITE) {
8426                 switch (off) {
8427                 case bpf_ctx_range(struct __sk_buff, tc_index):
8428                 case bpf_ctx_range(struct __sk_buff, priority):
8429                         break;
8430                 default:
8431                         return false;
8432                 }
8433         }
8434
8435         switch (off) {
8436         case bpf_ctx_range(struct __sk_buff, mark):
8437                 return false;
8438         case bpf_ctx_range(struct __sk_buff, data):
8439                 info->reg_type = PTR_TO_PACKET;
8440                 break;
8441         case bpf_ctx_range(struct __sk_buff, data_end):
8442                 info->reg_type = PTR_TO_PACKET_END;
8443                 break;
8444         }
8445
8446         return bpf_skb_is_valid_access(off, size, type, prog, info);
8447 }
8448
8449 static bool sk_msg_is_valid_access(int off, int size,
8450                                    enum bpf_access_type type,
8451                                    const struct bpf_prog *prog,
8452                                    struct bpf_insn_access_aux *info)
8453 {
8454         if (type == BPF_WRITE)
8455                 return false;
8456
8457         if (off % size != 0)
8458                 return false;
8459
8460         switch (off) {
8461         case offsetof(struct sk_msg_md, data):
8462                 info->reg_type = PTR_TO_PACKET;
8463                 if (size != sizeof(__u64))
8464                         return false;
8465                 break;
8466         case offsetof(struct sk_msg_md, data_end):
8467                 info->reg_type = PTR_TO_PACKET_END;
8468                 if (size != sizeof(__u64))
8469                         return false;
8470                 break;
8471         case offsetof(struct sk_msg_md, sk):
8472                 if (size != sizeof(__u64))
8473                         return false;
8474                 info->reg_type = PTR_TO_SOCKET;
8475                 break;
8476         case bpf_ctx_range(struct sk_msg_md, family):
8477         case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8478         case bpf_ctx_range(struct sk_msg_md, local_ip4):
8479         case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8480         case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8481         case bpf_ctx_range(struct sk_msg_md, remote_port):
8482         case bpf_ctx_range(struct sk_msg_md, local_port):
8483         case bpf_ctx_range(struct sk_msg_md, size):
8484                 if (size != sizeof(__u32))
8485                         return false;
8486                 break;
8487         default:
8488                 return false;
8489         }
8490         return true;
8491 }
8492
8493 static bool flow_dissector_is_valid_access(int off, int size,
8494                                            enum bpf_access_type type,
8495                                            const struct bpf_prog *prog,
8496                                            struct bpf_insn_access_aux *info)
8497 {
8498         const int size_default = sizeof(__u32);
8499
8500         if (off < 0 || off >= sizeof(struct __sk_buff))
8501                 return false;
8502
8503         if (type == BPF_WRITE)
8504                 return false;
8505
8506         switch (off) {
8507         case bpf_ctx_range(struct __sk_buff, data):
8508                 if (size != size_default)
8509                         return false;
8510                 info->reg_type = PTR_TO_PACKET;
8511                 return true;
8512         case bpf_ctx_range(struct __sk_buff, data_end):
8513                 if (size != size_default)
8514                         return false;
8515                 info->reg_type = PTR_TO_PACKET_END;
8516                 return true;
8517         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8518                 if (size != sizeof(__u64))
8519                         return false;
8520                 info->reg_type = PTR_TO_FLOW_KEYS;
8521                 return true;
8522         default:
8523                 return false;
8524         }
8525 }
8526
8527 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8528                                              const struct bpf_insn *si,
8529                                              struct bpf_insn *insn_buf,
8530                                              struct bpf_prog *prog,
8531                                              u32 *target_size)
8532
8533 {
8534         struct bpf_insn *insn = insn_buf;
8535
8536         switch (si->off) {
8537         case offsetof(struct __sk_buff, data):
8538                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8539                                       si->dst_reg, si->src_reg,
8540                                       offsetof(struct bpf_flow_dissector, data));
8541                 break;
8542
8543         case offsetof(struct __sk_buff, data_end):
8544                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8545                                       si->dst_reg, si->src_reg,
8546                                       offsetof(struct bpf_flow_dissector, data_end));
8547                 break;
8548
8549         case offsetof(struct __sk_buff, flow_keys):
8550                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8551                                       si->dst_reg, si->src_reg,
8552                                       offsetof(struct bpf_flow_dissector, flow_keys));
8553                 break;
8554         }
8555
8556         return insn - insn_buf;
8557 }
8558
8559 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
8560                                                   struct bpf_insn *insn)
8561 {
8562         /* si->dst_reg = skb_shinfo(SKB); */
8563 #ifdef NET_SKBUFF_DATA_USES_OFFSET
8564         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8565                               BPF_REG_AX, si->src_reg,
8566                               offsetof(struct sk_buff, end));
8567         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
8568                               si->dst_reg, si->src_reg,
8569                               offsetof(struct sk_buff, head));
8570         *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
8571 #else
8572         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8573                               si->dst_reg, si->src_reg,
8574                               offsetof(struct sk_buff, end));
8575 #endif
8576
8577         return insn;
8578 }
8579
8580 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
8581                                   const struct bpf_insn *si,
8582                                   struct bpf_insn *insn_buf,
8583                                   struct bpf_prog *prog, u32 *target_size)
8584 {
8585         struct bpf_insn *insn = insn_buf;
8586         int off;
8587
8588         switch (si->off) {
8589         case offsetof(struct __sk_buff, len):
8590                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8591                                       bpf_target_off(struct sk_buff, len, 4,
8592                                                      target_size));
8593                 break;
8594
8595         case offsetof(struct __sk_buff, protocol):
8596                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8597                                       bpf_target_off(struct sk_buff, protocol, 2,
8598                                                      target_size));
8599                 break;
8600
8601         case offsetof(struct __sk_buff, vlan_proto):
8602                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8603                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
8604                                                      target_size));
8605                 break;
8606
8607         case offsetof(struct __sk_buff, priority):
8608                 if (type == BPF_WRITE)
8609                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8610                                               bpf_target_off(struct sk_buff, priority, 4,
8611                                                              target_size));
8612                 else
8613                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8614                                               bpf_target_off(struct sk_buff, priority, 4,
8615                                                              target_size));
8616                 break;
8617
8618         case offsetof(struct __sk_buff, ingress_ifindex):
8619                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8620                                       bpf_target_off(struct sk_buff, skb_iif, 4,
8621                                                      target_size));
8622                 break;
8623
8624         case offsetof(struct __sk_buff, ifindex):
8625                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8626                                       si->dst_reg, si->src_reg,
8627                                       offsetof(struct sk_buff, dev));
8628                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8629                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8630                                       bpf_target_off(struct net_device, ifindex, 4,
8631                                                      target_size));
8632                 break;
8633
8634         case offsetof(struct __sk_buff, hash):
8635                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8636                                       bpf_target_off(struct sk_buff, hash, 4,
8637                                                      target_size));
8638                 break;
8639
8640         case offsetof(struct __sk_buff, mark):
8641                 if (type == BPF_WRITE)
8642                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8643                                               bpf_target_off(struct sk_buff, mark, 4,
8644                                                              target_size));
8645                 else
8646                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8647                                               bpf_target_off(struct sk_buff, mark, 4,
8648                                                              target_size));
8649                 break;
8650
8651         case offsetof(struct __sk_buff, pkt_type):
8652                 *target_size = 1;
8653                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8654                                       PKT_TYPE_OFFSET());
8655                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
8656 #ifdef __BIG_ENDIAN_BITFIELD
8657                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
8658 #endif
8659                 break;
8660
8661         case offsetof(struct __sk_buff, queue_mapping):
8662                 if (type == BPF_WRITE) {
8663                         *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
8664                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8665                                               bpf_target_off(struct sk_buff,
8666                                                              queue_mapping,
8667                                                              2, target_size));
8668                 } else {
8669                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8670                                               bpf_target_off(struct sk_buff,
8671                                                              queue_mapping,
8672                                                              2, target_size));
8673                 }
8674                 break;
8675
8676         case offsetof(struct __sk_buff, vlan_present):
8677                 *target_size = 1;
8678                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8679                                       PKT_VLAN_PRESENT_OFFSET());
8680                 if (PKT_VLAN_PRESENT_BIT)
8681                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
8682                 if (PKT_VLAN_PRESENT_BIT < 7)
8683                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
8684                 break;
8685
8686         case offsetof(struct __sk_buff, vlan_tci):
8687                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8688                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
8689                                                      target_size));
8690                 break;
8691
8692         case offsetof(struct __sk_buff, cb[0]) ...
8693              offsetofend(struct __sk_buff, cb[4]) - 1:
8694                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
8695                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
8696                               offsetof(struct qdisc_skb_cb, data)) %
8697                              sizeof(__u64));
8698
8699                 prog->cb_access = 1;
8700                 off  = si->off;
8701                 off -= offsetof(struct __sk_buff, cb[0]);
8702                 off += offsetof(struct sk_buff, cb);
8703                 off += offsetof(struct qdisc_skb_cb, data);
8704                 if (type == BPF_WRITE)
8705                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
8706                                               si->src_reg, off);
8707                 else
8708                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
8709                                               si->src_reg, off);
8710                 break;
8711
8712         case offsetof(struct __sk_buff, tc_classid):
8713                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
8714
8715                 off  = si->off;
8716                 off -= offsetof(struct __sk_buff, tc_classid);
8717                 off += offsetof(struct sk_buff, cb);
8718                 off += offsetof(struct qdisc_skb_cb, tc_classid);
8719                 *target_size = 2;
8720                 if (type == BPF_WRITE)
8721                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
8722                                               si->src_reg, off);
8723                 else
8724                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
8725                                               si->src_reg, off);
8726                 break;
8727
8728         case offsetof(struct __sk_buff, data):
8729                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
8730                                       si->dst_reg, si->src_reg,
8731                                       offsetof(struct sk_buff, data));
8732                 break;
8733
8734         case offsetof(struct __sk_buff, data_meta):
8735                 off  = si->off;
8736                 off -= offsetof(struct __sk_buff, data_meta);
8737                 off += offsetof(struct sk_buff, cb);
8738                 off += offsetof(struct bpf_skb_data_end, data_meta);
8739                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8740                                       si->src_reg, off);
8741                 break;
8742
8743         case offsetof(struct __sk_buff, data_end):
8744                 off  = si->off;
8745                 off -= offsetof(struct __sk_buff, data_end);
8746                 off += offsetof(struct sk_buff, cb);
8747                 off += offsetof(struct bpf_skb_data_end, data_end);
8748                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8749                                       si->src_reg, off);
8750                 break;
8751
8752         case offsetof(struct __sk_buff, tc_index):
8753 #ifdef CONFIG_NET_SCHED
8754                 if (type == BPF_WRITE)
8755                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8756                                               bpf_target_off(struct sk_buff, tc_index, 2,
8757                                                              target_size));
8758                 else
8759                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8760                                               bpf_target_off(struct sk_buff, tc_index, 2,
8761                                                              target_size));
8762 #else
8763                 *target_size = 2;
8764                 if (type == BPF_WRITE)
8765                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
8766                 else
8767                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8768 #endif
8769                 break;
8770
8771         case offsetof(struct __sk_buff, napi_id):
8772 #if defined(CONFIG_NET_RX_BUSY_POLL)
8773                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8774                                       bpf_target_off(struct sk_buff, napi_id, 4,
8775                                                      target_size));
8776                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
8777                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8778 #else
8779                 *target_size = 4;
8780                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8781 #endif
8782                 break;
8783         case offsetof(struct __sk_buff, family):
8784                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8785
8786                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8787                                       si->dst_reg, si->src_reg,
8788                                       offsetof(struct sk_buff, sk));
8789                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8790                                       bpf_target_off(struct sock_common,
8791                                                      skc_family,
8792                                                      2, target_size));
8793                 break;
8794         case offsetof(struct __sk_buff, remote_ip4):
8795                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8796
8797                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8798                                       si->dst_reg, si->src_reg,
8799                                       offsetof(struct sk_buff, sk));
8800                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8801                                       bpf_target_off(struct sock_common,
8802                                                      skc_daddr,
8803                                                      4, target_size));
8804                 break;
8805         case offsetof(struct __sk_buff, local_ip4):
8806                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8807                                           skc_rcv_saddr) != 4);
8808
8809                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8810                                       si->dst_reg, si->src_reg,
8811                                       offsetof(struct sk_buff, sk));
8812                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8813                                       bpf_target_off(struct sock_common,
8814                                                      skc_rcv_saddr,
8815                                                      4, target_size));
8816                 break;
8817         case offsetof(struct __sk_buff, remote_ip6[0]) ...
8818              offsetof(struct __sk_buff, remote_ip6[3]):
8819 #if IS_ENABLED(CONFIG_IPV6)
8820                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8821                                           skc_v6_daddr.s6_addr32[0]) != 4);
8822
8823                 off = si->off;
8824                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
8825
8826                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8827                                       si->dst_reg, si->src_reg,
8828                                       offsetof(struct sk_buff, sk));
8829                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8830                                       offsetof(struct sock_common,
8831                                                skc_v6_daddr.s6_addr32[0]) +
8832                                       off);
8833 #else
8834                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8835 #endif
8836                 break;
8837         case offsetof(struct __sk_buff, local_ip6[0]) ...
8838              offsetof(struct __sk_buff, local_ip6[3]):
8839 #if IS_ENABLED(CONFIG_IPV6)
8840                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8841                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8842
8843                 off = si->off;
8844                 off -= offsetof(struct __sk_buff, local_ip6[0]);
8845
8846                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8847                                       si->dst_reg, si->src_reg,
8848                                       offsetof(struct sk_buff, sk));
8849                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8850                                       offsetof(struct sock_common,
8851                                                skc_v6_rcv_saddr.s6_addr32[0]) +
8852                                       off);
8853 #else
8854                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8855 #endif
8856                 break;
8857
8858         case offsetof(struct __sk_buff, remote_port):
8859                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8860
8861                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8862                                       si->dst_reg, si->src_reg,
8863                                       offsetof(struct sk_buff, sk));
8864                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8865                                       bpf_target_off(struct sock_common,
8866                                                      skc_dport,
8867                                                      2, target_size));
8868 #ifndef __BIG_ENDIAN_BITFIELD
8869                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8870 #endif
8871                 break;
8872
8873         case offsetof(struct __sk_buff, local_port):
8874                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8875
8876                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8877                                       si->dst_reg, si->src_reg,
8878                                       offsetof(struct sk_buff, sk));
8879                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8880                                       bpf_target_off(struct sock_common,
8881                                                      skc_num, 2, target_size));
8882                 break;
8883
8884         case offsetof(struct __sk_buff, tstamp):
8885                 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
8886
8887                 if (type == BPF_WRITE)
8888                         *insn++ = BPF_STX_MEM(BPF_DW,
8889                                               si->dst_reg, si->src_reg,
8890                                               bpf_target_off(struct sk_buff,
8891                                                              tstamp, 8,
8892                                                              target_size));
8893                 else
8894                         *insn++ = BPF_LDX_MEM(BPF_DW,
8895                                               si->dst_reg, si->src_reg,
8896                                               bpf_target_off(struct sk_buff,
8897                                                              tstamp, 8,
8898                                                              target_size));
8899                 break;
8900
8901         case offsetof(struct __sk_buff, gso_segs):
8902                 insn = bpf_convert_shinfo_access(si, insn);
8903                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
8904                                       si->dst_reg, si->dst_reg,
8905                                       bpf_target_off(struct skb_shared_info,
8906                                                      gso_segs, 2,
8907                                                      target_size));
8908                 break;
8909         case offsetof(struct __sk_buff, gso_size):
8910                 insn = bpf_convert_shinfo_access(si, insn);
8911                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
8912                                       si->dst_reg, si->dst_reg,
8913                                       bpf_target_off(struct skb_shared_info,
8914                                                      gso_size, 2,
8915                                                      target_size));
8916                 break;
8917         case offsetof(struct __sk_buff, wire_len):
8918                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
8919
8920                 off = si->off;
8921                 off -= offsetof(struct __sk_buff, wire_len);
8922                 off += offsetof(struct sk_buff, cb);
8923                 off += offsetof(struct qdisc_skb_cb, pkt_len);
8924                 *target_size = 4;
8925                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
8926                 break;
8927
8928         case offsetof(struct __sk_buff, sk):
8929                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8930                                       si->dst_reg, si->src_reg,
8931                                       offsetof(struct sk_buff, sk));
8932                 break;
8933         }
8934
8935         return insn - insn_buf;
8936 }
8937
8938 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
8939                                 const struct bpf_insn *si,
8940                                 struct bpf_insn *insn_buf,
8941                                 struct bpf_prog *prog, u32 *target_size)
8942 {
8943         struct bpf_insn *insn = insn_buf;
8944         int off;
8945
8946         switch (si->off) {
8947         case offsetof(struct bpf_sock, bound_dev_if):
8948                 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
8949
8950                 if (type == BPF_WRITE)
8951                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8952                                         offsetof(struct sock, sk_bound_dev_if));
8953                 else
8954                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8955                                       offsetof(struct sock, sk_bound_dev_if));
8956                 break;
8957
8958         case offsetof(struct bpf_sock, mark):
8959                 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
8960
8961                 if (type == BPF_WRITE)
8962                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8963                                         offsetof(struct sock, sk_mark));
8964                 else
8965                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8966                                       offsetof(struct sock, sk_mark));
8967                 break;
8968
8969         case offsetof(struct bpf_sock, priority):
8970                 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
8971
8972                 if (type == BPF_WRITE)
8973                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8974                                         offsetof(struct sock, sk_priority));
8975                 else
8976                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8977                                       offsetof(struct sock, sk_priority));
8978                 break;
8979
8980         case offsetof(struct bpf_sock, family):
8981                 *insn++ = BPF_LDX_MEM(
8982                         BPF_FIELD_SIZEOF(struct sock_common, skc_family),
8983                         si->dst_reg, si->src_reg,
8984                         bpf_target_off(struct sock_common,
8985                                        skc_family,
8986                                        sizeof_field(struct sock_common,
8987                                                     skc_family),
8988                                        target_size));
8989                 break;
8990
8991         case offsetof(struct bpf_sock, type):
8992                 *insn++ = BPF_LDX_MEM(
8993                         BPF_FIELD_SIZEOF(struct sock, sk_type),
8994                         si->dst_reg, si->src_reg,
8995                         bpf_target_off(struct sock, sk_type,
8996                                        sizeof_field(struct sock, sk_type),
8997                                        target_size));
8998                 break;
8999
9000         case offsetof(struct bpf_sock, protocol):
9001                 *insn++ = BPF_LDX_MEM(
9002                         BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9003                         si->dst_reg, si->src_reg,
9004                         bpf_target_off(struct sock, sk_protocol,
9005                                        sizeof_field(struct sock, sk_protocol),
9006                                        target_size));
9007                 break;
9008
9009         case offsetof(struct bpf_sock, src_ip4):
9010                 *insn++ = BPF_LDX_MEM(
9011                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9012                         bpf_target_off(struct sock_common, skc_rcv_saddr,
9013                                        sizeof_field(struct sock_common,
9014                                                     skc_rcv_saddr),
9015                                        target_size));
9016                 break;
9017
9018         case offsetof(struct bpf_sock, dst_ip4):
9019                 *insn++ = BPF_LDX_MEM(
9020                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9021                         bpf_target_off(struct sock_common, skc_daddr,
9022                                        sizeof_field(struct sock_common,
9023                                                     skc_daddr),
9024                                        target_size));
9025                 break;
9026
9027         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9028 #if IS_ENABLED(CONFIG_IPV6)
9029                 off = si->off;
9030                 off -= offsetof(struct bpf_sock, src_ip6[0]);
9031                 *insn++ = BPF_LDX_MEM(
9032                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9033                         bpf_target_off(
9034                                 struct sock_common,
9035                                 skc_v6_rcv_saddr.s6_addr32[0],
9036                                 sizeof_field(struct sock_common,
9037                                              skc_v6_rcv_saddr.s6_addr32[0]),
9038                                 target_size) + off);
9039 #else
9040                 (void)off;
9041                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9042 #endif
9043                 break;
9044
9045         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9046 #if IS_ENABLED(CONFIG_IPV6)
9047                 off = si->off;
9048                 off -= offsetof(struct bpf_sock, dst_ip6[0]);
9049                 *insn++ = BPF_LDX_MEM(
9050                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9051                         bpf_target_off(struct sock_common,
9052                                        skc_v6_daddr.s6_addr32[0],
9053                                        sizeof_field(struct sock_common,
9054                                                     skc_v6_daddr.s6_addr32[0]),
9055                                        target_size) + off);
9056 #else
9057                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9058                 *target_size = 4;
9059 #endif
9060                 break;
9061
9062         case offsetof(struct bpf_sock, src_port):
9063                 *insn++ = BPF_LDX_MEM(
9064                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9065                         si->dst_reg, si->src_reg,
9066                         bpf_target_off(struct sock_common, skc_num,
9067                                        sizeof_field(struct sock_common,
9068                                                     skc_num),
9069                                        target_size));
9070                 break;
9071
9072         case offsetof(struct bpf_sock, dst_port):
9073                 *insn++ = BPF_LDX_MEM(
9074                         BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9075                         si->dst_reg, si->src_reg,
9076                         bpf_target_off(struct sock_common, skc_dport,
9077                                        sizeof_field(struct sock_common,
9078                                                     skc_dport),
9079                                        target_size));
9080                 break;
9081
9082         case offsetof(struct bpf_sock, state):
9083                 *insn++ = BPF_LDX_MEM(
9084                         BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9085                         si->dst_reg, si->src_reg,
9086                         bpf_target_off(struct sock_common, skc_state,
9087                                        sizeof_field(struct sock_common,
9088                                                     skc_state),
9089                                        target_size));
9090                 break;
9091         case offsetof(struct bpf_sock, rx_queue_mapping):
9092 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9093                 *insn++ = BPF_LDX_MEM(
9094                         BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9095                         si->dst_reg, si->src_reg,
9096                         bpf_target_off(struct sock, sk_rx_queue_mapping,
9097                                        sizeof_field(struct sock,
9098                                                     sk_rx_queue_mapping),
9099                                        target_size));
9100                 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9101                                       1);
9102                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9103 #else
9104                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9105                 *target_size = 2;
9106 #endif
9107                 break;
9108         }
9109
9110         return insn - insn_buf;
9111 }
9112
9113 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9114                                          const struct bpf_insn *si,
9115                                          struct bpf_insn *insn_buf,
9116                                          struct bpf_prog *prog, u32 *target_size)
9117 {
9118         struct bpf_insn *insn = insn_buf;
9119
9120         switch (si->off) {
9121         case offsetof(struct __sk_buff, ifindex):
9122                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9123                                       si->dst_reg, si->src_reg,
9124                                       offsetof(struct sk_buff, dev));
9125                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9126                                       bpf_target_off(struct net_device, ifindex, 4,
9127                                                      target_size));
9128                 break;
9129         default:
9130                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9131                                               target_size);
9132         }
9133
9134         return insn - insn_buf;
9135 }
9136
9137 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9138                                   const struct bpf_insn *si,
9139                                   struct bpf_insn *insn_buf,
9140                                   struct bpf_prog *prog, u32 *target_size)
9141 {
9142         struct bpf_insn *insn = insn_buf;
9143
9144         switch (si->off) {
9145         case offsetof(struct xdp_md, data):
9146                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9147                                       si->dst_reg, si->src_reg,
9148                                       offsetof(struct xdp_buff, data));
9149                 break;
9150         case offsetof(struct xdp_md, data_meta):
9151                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9152                                       si->dst_reg, si->src_reg,
9153                                       offsetof(struct xdp_buff, data_meta));
9154                 break;
9155         case offsetof(struct xdp_md, data_end):
9156                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9157                                       si->dst_reg, si->src_reg,
9158                                       offsetof(struct xdp_buff, data_end));
9159                 break;
9160         case offsetof(struct xdp_md, ingress_ifindex):
9161                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9162                                       si->dst_reg, si->src_reg,
9163                                       offsetof(struct xdp_buff, rxq));
9164                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9165                                       si->dst_reg, si->dst_reg,
9166                                       offsetof(struct xdp_rxq_info, dev));
9167                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9168                                       offsetof(struct net_device, ifindex));
9169                 break;
9170         case offsetof(struct xdp_md, rx_queue_index):
9171                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9172                                       si->dst_reg, si->src_reg,
9173                                       offsetof(struct xdp_buff, rxq));
9174                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9175                                       offsetof(struct xdp_rxq_info,
9176                                                queue_index));
9177                 break;
9178         case offsetof(struct xdp_md, egress_ifindex):
9179                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9180                                       si->dst_reg, si->src_reg,
9181                                       offsetof(struct xdp_buff, txq));
9182                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9183                                       si->dst_reg, si->dst_reg,
9184                                       offsetof(struct xdp_txq_info, dev));
9185                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9186                                       offsetof(struct net_device, ifindex));
9187                 break;
9188         }
9189
9190         return insn - insn_buf;
9191 }
9192
9193 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9194  * context Structure, F is Field in context structure that contains a pointer
9195  * to Nested Structure of type NS that has the field NF.
9196  *
9197  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9198  * sure that SIZE is not greater than actual size of S.F.NF.
9199  *
9200  * If offset OFF is provided, the load happens from that offset relative to
9201  * offset of NF.
9202  */
9203 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
9204         do {                                                                   \
9205                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9206                                       si->src_reg, offsetof(S, F));            \
9207                 *insn++ = BPF_LDX_MEM(                                         \
9208                         SIZE, si->dst_reg, si->dst_reg,                        \
9209                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9210                                        target_size)                            \
9211                                 + OFF);                                        \
9212         } while (0)
9213
9214 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
9215         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
9216                                              BPF_FIELD_SIZEOF(NS, NF), 0)
9217
9218 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9219  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9220  *
9221  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9222  * "register" since two registers available in convert_ctx_access are not
9223  * enough: we can't override neither SRC, since it contains value to store, nor
9224  * DST since it contains pointer to context that may be used by later
9225  * instructions. But we need a temporary place to save pointer to nested
9226  * structure whose field we want to store to.
9227  */
9228 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
9229         do {                                                                   \
9230                 int tmp_reg = BPF_REG_9;                                       \
9231                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9232                         --tmp_reg;                                             \
9233                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9234                         --tmp_reg;                                             \
9235                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
9236                                       offsetof(S, TF));                        \
9237                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
9238                                       si->dst_reg, offsetof(S, F));            \
9239                 *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,              \
9240                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9241                                        target_size)                            \
9242                                 + OFF);                                        \
9243                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
9244                                       offsetof(S, TF));                        \
9245         } while (0)
9246
9247 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9248                                                       TF)                      \
9249         do {                                                                   \
9250                 if (type == BPF_WRITE) {                                       \
9251                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9252                                                          OFF, TF);             \
9253                 } else {                                                       \
9254                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
9255                                 S, NS, F, NF, SIZE, OFF);  \
9256                 }                                                              \
9257         } while (0)
9258
9259 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
9260         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
9261                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9262
9263 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9264                                         const struct bpf_insn *si,
9265                                         struct bpf_insn *insn_buf,
9266                                         struct bpf_prog *prog, u32 *target_size)
9267 {
9268         int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9269         struct bpf_insn *insn = insn_buf;
9270
9271         switch (si->off) {
9272         case offsetof(struct bpf_sock_addr, user_family):
9273                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9274                                             struct sockaddr, uaddr, sa_family);
9275                 break;
9276
9277         case offsetof(struct bpf_sock_addr, user_ip4):
9278                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9279                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9280                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9281                 break;
9282
9283         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9284                 off = si->off;
9285                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9286                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9287                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9288                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9289                         tmp_reg);
9290                 break;
9291
9292         case offsetof(struct bpf_sock_addr, user_port):
9293                 /* To get port we need to know sa_family first and then treat
9294                  * sockaddr as either sockaddr_in or sockaddr_in6.
9295                  * Though we can simplify since port field has same offset and
9296                  * size in both structures.
9297                  * Here we check this invariant and use just one of the
9298                  * structures if it's true.
9299                  */
9300                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9301                              offsetof(struct sockaddr_in6, sin6_port));
9302                 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9303                              sizeof_field(struct sockaddr_in6, sin6_port));
9304                 /* Account for sin6_port being smaller than user_port. */
9305                 port_size = min(port_size, BPF_LDST_BYTES(si));
9306                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9307                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9308                         sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9309                 break;
9310
9311         case offsetof(struct bpf_sock_addr, family):
9312                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9313                                             struct sock, sk, sk_family);
9314                 break;
9315
9316         case offsetof(struct bpf_sock_addr, type):
9317                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9318                                             struct sock, sk, sk_type);
9319                 break;
9320
9321         case offsetof(struct bpf_sock_addr, protocol):
9322                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9323                                             struct sock, sk, sk_protocol);
9324                 break;
9325
9326         case offsetof(struct bpf_sock_addr, msg_src_ip4):
9327                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
9328                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9329                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9330                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9331                 break;
9332
9333         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9334                                 msg_src_ip6[3]):
9335                 off = si->off;
9336                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9337                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9338                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9339                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9340                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9341                 break;
9342         case offsetof(struct bpf_sock_addr, sk):
9343                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9344                                       si->dst_reg, si->src_reg,
9345                                       offsetof(struct bpf_sock_addr_kern, sk));
9346                 break;
9347         }
9348
9349         return insn - insn_buf;
9350 }
9351
9352 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9353                                        const struct bpf_insn *si,
9354                                        struct bpf_insn *insn_buf,
9355                                        struct bpf_prog *prog,
9356                                        u32 *target_size)
9357 {
9358         struct bpf_insn *insn = insn_buf;
9359         int off;
9360
9361 /* Helper macro for adding read access to tcp_sock or sock fields. */
9362 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
9363         do {                                                                  \
9364                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9365                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
9366                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9367                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9368                         reg--;                                                \
9369                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9370                         reg--;                                                \
9371                 if (si->dst_reg == si->src_reg) {                             \
9372                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
9373                                           offsetof(struct bpf_sock_ops_kern,  \
9374                                           temp));                             \
9375                         fullsock_reg = reg;                                   \
9376                         jmp += 2;                                             \
9377                 }                                                             \
9378                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9379                                                 struct bpf_sock_ops_kern,     \
9380                                                 is_fullsock),                 \
9381                                       fullsock_reg, si->src_reg,              \
9382                                       offsetof(struct bpf_sock_ops_kern,      \
9383                                                is_fullsock));                 \
9384                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
9385                 if (si->dst_reg == si->src_reg)                               \
9386                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9387                                       offsetof(struct bpf_sock_ops_kern,      \
9388                                       temp));                                 \
9389                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9390                                                 struct bpf_sock_ops_kern, sk),\
9391                                       si->dst_reg, si->src_reg,               \
9392                                       offsetof(struct bpf_sock_ops_kern, sk));\
9393                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
9394                                                        OBJ_FIELD),            \
9395                                       si->dst_reg, si->dst_reg,               \
9396                                       offsetof(OBJ, OBJ_FIELD));              \
9397                 if (si->dst_reg == si->src_reg) {                             \
9398                         *insn++ = BPF_JMP_A(1);                               \
9399                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9400                                       offsetof(struct bpf_sock_ops_kern,      \
9401                                       temp));                                 \
9402                 }                                                             \
9403         } while (0)
9404
9405 #define SOCK_OPS_GET_SK()                                                             \
9406         do {                                                                  \
9407                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
9408                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9409                         reg--;                                                \
9410                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9411                         reg--;                                                \
9412                 if (si->dst_reg == si->src_reg) {                             \
9413                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
9414                                           offsetof(struct bpf_sock_ops_kern,  \
9415                                           temp));                             \
9416                         fullsock_reg = reg;                                   \
9417                         jmp += 2;                                             \
9418                 }                                                             \
9419                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9420                                                 struct bpf_sock_ops_kern,     \
9421                                                 is_fullsock),                 \
9422                                       fullsock_reg, si->src_reg,              \
9423                                       offsetof(struct bpf_sock_ops_kern,      \
9424                                                is_fullsock));                 \
9425                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
9426                 if (si->dst_reg == si->src_reg)                               \
9427                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9428                                       offsetof(struct bpf_sock_ops_kern,      \
9429                                       temp));                                 \
9430                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9431                                                 struct bpf_sock_ops_kern, sk),\
9432                                       si->dst_reg, si->src_reg,               \
9433                                       offsetof(struct bpf_sock_ops_kern, sk));\
9434                 if (si->dst_reg == si->src_reg) {                             \
9435                         *insn++ = BPF_JMP_A(1);                               \
9436                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9437                                       offsetof(struct bpf_sock_ops_kern,      \
9438                                       temp));                                 \
9439                 }                                                             \
9440         } while (0)
9441
9442 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9443                 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9444
9445 /* Helper macro for adding write access to tcp_sock or sock fields.
9446  * The macro is called with two registers, dst_reg which contains a pointer
9447  * to ctx (context) and src_reg which contains the value that should be
9448  * stored. However, we need an additional register since we cannot overwrite
9449  * dst_reg because it may be used later in the program.
9450  * Instead we "borrow" one of the other register. We first save its value
9451  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9452  * it at the end of the macro.
9453  */
9454 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
9455         do {                                                                  \
9456                 int reg = BPF_REG_9;                                          \
9457                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
9458                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9459                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9460                         reg--;                                                \
9461                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9462                         reg--;                                                \
9463                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
9464                                       offsetof(struct bpf_sock_ops_kern,      \
9465                                                temp));                        \
9466                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9467                                                 struct bpf_sock_ops_kern,     \
9468                                                 is_fullsock),                 \
9469                                       reg, si->dst_reg,                       \
9470                                       offsetof(struct bpf_sock_ops_kern,      \
9471                                                is_fullsock));                 \
9472                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
9473                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9474                                                 struct bpf_sock_ops_kern, sk),\
9475                                       reg, si->dst_reg,                       \
9476                                       offsetof(struct bpf_sock_ops_kern, sk));\
9477                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
9478                                       reg, si->src_reg,                       \
9479                                       offsetof(OBJ, OBJ_FIELD));              \
9480                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
9481                                       offsetof(struct bpf_sock_ops_kern,      \
9482                                                temp));                        \
9483         } while (0)
9484
9485 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
9486         do {                                                                  \
9487                 if (TYPE == BPF_WRITE)                                        \
9488                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
9489                 else                                                          \
9490                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
9491         } while (0)
9492
9493         if (insn > insn_buf)
9494                 return insn - insn_buf;
9495
9496         switch (si->off) {
9497         case offsetof(struct bpf_sock_ops, op):
9498                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9499                                                        op),
9500                                       si->dst_reg, si->src_reg,
9501                                       offsetof(struct bpf_sock_ops_kern, op));
9502                 break;
9503
9504         case offsetof(struct bpf_sock_ops, replylong[0]) ...
9505              offsetof(struct bpf_sock_ops, replylong[3]):
9506                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
9507                              sizeof_field(struct bpf_sock_ops_kern, reply));
9508                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
9509                              sizeof_field(struct bpf_sock_ops_kern, replylong));
9510                 off = si->off;
9511                 off -= offsetof(struct bpf_sock_ops, replylong[0]);
9512                 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
9513                 if (type == BPF_WRITE)
9514                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9515                                               off);
9516                 else
9517                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9518                                               off);
9519                 break;
9520
9521         case offsetof(struct bpf_sock_ops, family):
9522                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9523
9524                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9525                                               struct bpf_sock_ops_kern, sk),
9526                                       si->dst_reg, si->src_reg,
9527                                       offsetof(struct bpf_sock_ops_kern, sk));
9528                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9529                                       offsetof(struct sock_common, skc_family));
9530                 break;
9531
9532         case offsetof(struct bpf_sock_ops, remote_ip4):
9533                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9534
9535                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9536                                                 struct bpf_sock_ops_kern, sk),
9537                                       si->dst_reg, si->src_reg,
9538                                       offsetof(struct bpf_sock_ops_kern, sk));
9539                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9540                                       offsetof(struct sock_common, skc_daddr));
9541                 break;
9542
9543         case offsetof(struct bpf_sock_ops, local_ip4):
9544                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9545                                           skc_rcv_saddr) != 4);
9546
9547                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9548                                               struct bpf_sock_ops_kern, sk),
9549                                       si->dst_reg, si->src_reg,
9550                                       offsetof(struct bpf_sock_ops_kern, sk));
9551                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9552                                       offsetof(struct sock_common,
9553                                                skc_rcv_saddr));
9554                 break;
9555
9556         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
9557              offsetof(struct bpf_sock_ops, remote_ip6[3]):
9558 #if IS_ENABLED(CONFIG_IPV6)
9559                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9560                                           skc_v6_daddr.s6_addr32[0]) != 4);
9561
9562                 off = si->off;
9563                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
9564                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9565                                                 struct bpf_sock_ops_kern, sk),
9566                                       si->dst_reg, si->src_reg,
9567                                       offsetof(struct bpf_sock_ops_kern, sk));
9568                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9569                                       offsetof(struct sock_common,
9570                                                skc_v6_daddr.s6_addr32[0]) +
9571                                       off);
9572 #else
9573                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9574 #endif
9575                 break;
9576
9577         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
9578              offsetof(struct bpf_sock_ops, local_ip6[3]):
9579 #if IS_ENABLED(CONFIG_IPV6)
9580                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9581                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9582
9583                 off = si->off;
9584                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
9585                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9586                                                 struct bpf_sock_ops_kern, sk),
9587                                       si->dst_reg, si->src_reg,
9588                                       offsetof(struct bpf_sock_ops_kern, sk));
9589                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9590                                       offsetof(struct sock_common,
9591                                                skc_v6_rcv_saddr.s6_addr32[0]) +
9592                                       off);
9593 #else
9594                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9595 #endif
9596                 break;
9597
9598         case offsetof(struct bpf_sock_ops, remote_port):
9599                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9600
9601                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9602                                                 struct bpf_sock_ops_kern, sk),
9603                                       si->dst_reg, si->src_reg,
9604                                       offsetof(struct bpf_sock_ops_kern, sk));
9605                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9606                                       offsetof(struct sock_common, skc_dport));
9607 #ifndef __BIG_ENDIAN_BITFIELD
9608                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9609 #endif
9610                 break;
9611
9612         case offsetof(struct bpf_sock_ops, local_port):
9613                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9614
9615                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9616                                                 struct bpf_sock_ops_kern, sk),
9617                                       si->dst_reg, si->src_reg,
9618                                       offsetof(struct bpf_sock_ops_kern, sk));
9619                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9620                                       offsetof(struct sock_common, skc_num));
9621                 break;
9622
9623         case offsetof(struct bpf_sock_ops, is_fullsock):
9624                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9625                                                 struct bpf_sock_ops_kern,
9626                                                 is_fullsock),
9627                                       si->dst_reg, si->src_reg,
9628                                       offsetof(struct bpf_sock_ops_kern,
9629                                                is_fullsock));
9630                 break;
9631
9632         case offsetof(struct bpf_sock_ops, state):
9633                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
9634
9635                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9636                                                 struct bpf_sock_ops_kern, sk),
9637                                       si->dst_reg, si->src_reg,
9638                                       offsetof(struct bpf_sock_ops_kern, sk));
9639                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
9640                                       offsetof(struct sock_common, skc_state));
9641                 break;
9642
9643         case offsetof(struct bpf_sock_ops, rtt_min):
9644                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
9645                              sizeof(struct minmax));
9646                 BUILD_BUG_ON(sizeof(struct minmax) <
9647                              sizeof(struct minmax_sample));
9648
9649                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9650                                                 struct bpf_sock_ops_kern, sk),
9651                                       si->dst_reg, si->src_reg,
9652                                       offsetof(struct bpf_sock_ops_kern, sk));
9653                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9654                                       offsetof(struct tcp_sock, rtt_min) +
9655                                       sizeof_field(struct minmax_sample, t));
9656                 break;
9657
9658         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
9659                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
9660                                    struct tcp_sock);
9661                 break;
9662
9663         case offsetof(struct bpf_sock_ops, sk_txhash):
9664                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
9665                                           struct sock, type);
9666                 break;
9667         case offsetof(struct bpf_sock_ops, snd_cwnd):
9668                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
9669                 break;
9670         case offsetof(struct bpf_sock_ops, srtt_us):
9671                 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
9672                 break;
9673         case offsetof(struct bpf_sock_ops, snd_ssthresh):
9674                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
9675                 break;
9676         case offsetof(struct bpf_sock_ops, rcv_nxt):
9677                 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
9678                 break;
9679         case offsetof(struct bpf_sock_ops, snd_nxt):
9680                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
9681                 break;
9682         case offsetof(struct bpf_sock_ops, snd_una):
9683                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
9684                 break;
9685         case offsetof(struct bpf_sock_ops, mss_cache):
9686                 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
9687                 break;
9688         case offsetof(struct bpf_sock_ops, ecn_flags):
9689                 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
9690                 break;
9691         case offsetof(struct bpf_sock_ops, rate_delivered):
9692                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
9693                 break;
9694         case offsetof(struct bpf_sock_ops, rate_interval_us):
9695                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
9696                 break;
9697         case offsetof(struct bpf_sock_ops, packets_out):
9698                 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
9699                 break;
9700         case offsetof(struct bpf_sock_ops, retrans_out):
9701                 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
9702                 break;
9703         case offsetof(struct bpf_sock_ops, total_retrans):
9704                 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
9705                 break;
9706         case offsetof(struct bpf_sock_ops, segs_in):
9707                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
9708                 break;
9709         case offsetof(struct bpf_sock_ops, data_segs_in):
9710                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
9711                 break;
9712         case offsetof(struct bpf_sock_ops, segs_out):
9713                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
9714                 break;
9715         case offsetof(struct bpf_sock_ops, data_segs_out):
9716                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
9717                 break;
9718         case offsetof(struct bpf_sock_ops, lost_out):
9719                 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
9720                 break;
9721         case offsetof(struct bpf_sock_ops, sacked_out):
9722                 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
9723                 break;
9724         case offsetof(struct bpf_sock_ops, bytes_received):
9725                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
9726                 break;
9727         case offsetof(struct bpf_sock_ops, bytes_acked):
9728                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
9729                 break;
9730         case offsetof(struct bpf_sock_ops, sk):
9731                 SOCK_OPS_GET_SK();
9732                 break;
9733         case offsetof(struct bpf_sock_ops, skb_data_end):
9734                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9735                                                        skb_data_end),
9736                                       si->dst_reg, si->src_reg,
9737                                       offsetof(struct bpf_sock_ops_kern,
9738                                                skb_data_end));
9739                 break;
9740         case offsetof(struct bpf_sock_ops, skb_data):
9741                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9742                                                        skb),
9743                                       si->dst_reg, si->src_reg,
9744                                       offsetof(struct bpf_sock_ops_kern,
9745                                                skb));
9746                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9747                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9748                                       si->dst_reg, si->dst_reg,
9749                                       offsetof(struct sk_buff, data));
9750                 break;
9751         case offsetof(struct bpf_sock_ops, skb_len):
9752                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9753                                                        skb),
9754                                       si->dst_reg, si->src_reg,
9755                                       offsetof(struct bpf_sock_ops_kern,
9756                                                skb));
9757                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9758                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9759                                       si->dst_reg, si->dst_reg,
9760                                       offsetof(struct sk_buff, len));
9761                 break;
9762         case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9763                 off = offsetof(struct sk_buff, cb);
9764                 off += offsetof(struct tcp_skb_cb, tcp_flags);
9765                 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
9766                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9767                                                        skb),
9768                                       si->dst_reg, si->src_reg,
9769                                       offsetof(struct bpf_sock_ops_kern,
9770                                                skb));
9771                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9772                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
9773                                                        tcp_flags),
9774                                       si->dst_reg, si->dst_reg, off);
9775                 break;
9776         }
9777         return insn - insn_buf;
9778 }
9779
9780 /* data_end = skb->data + skb_headlen() */
9781 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
9782                                                     struct bpf_insn *insn)
9783 {
9784         int reg;
9785         int temp_reg_off = offsetof(struct sk_buff, cb) +
9786                            offsetof(struct sk_skb_cb, temp_reg);
9787
9788         if (si->src_reg == si->dst_reg) {
9789                 /* We need an extra register, choose and save a register. */
9790                 reg = BPF_REG_9;
9791                 if (si->src_reg == reg || si->dst_reg == reg)
9792                         reg--;
9793                 if (si->src_reg == reg || si->dst_reg == reg)
9794                         reg--;
9795                 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
9796         } else {
9797                 reg = si->dst_reg;
9798         }
9799
9800         /* reg = skb->data */
9801         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9802                               reg, si->src_reg,
9803                               offsetof(struct sk_buff, data));
9804         /* AX = skb->len */
9805         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9806                               BPF_REG_AX, si->src_reg,
9807                               offsetof(struct sk_buff, len));
9808         /* reg = skb->data + skb->len */
9809         *insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
9810         /* AX = skb->data_len */
9811         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
9812                               BPF_REG_AX, si->src_reg,
9813                               offsetof(struct sk_buff, data_len));
9814
9815         /* reg = skb->data + skb->len - skb->data_len */
9816         *insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
9817
9818         if (si->src_reg == si->dst_reg) {
9819                 /* Restore the saved register */
9820                 *insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
9821                 *insn++ = BPF_MOV64_REG(si->dst_reg, reg);
9822                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
9823         }
9824
9825         return insn;
9826 }
9827
9828 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
9829                                      const struct bpf_insn *si,
9830                                      struct bpf_insn *insn_buf,
9831                                      struct bpf_prog *prog, u32 *target_size)
9832 {
9833         struct bpf_insn *insn = insn_buf;
9834         int off;
9835
9836         switch (si->off) {
9837         case offsetof(struct __sk_buff, data_end):
9838                 insn = bpf_convert_data_end_access(si, insn);
9839                 break;
9840         case offsetof(struct __sk_buff, cb[0]) ...
9841              offsetofend(struct __sk_buff, cb[4]) - 1:
9842                 BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
9843                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9844                               offsetof(struct sk_skb_cb, data)) %
9845                              sizeof(__u64));
9846
9847                 prog->cb_access = 1;
9848                 off  = si->off;
9849                 off -= offsetof(struct __sk_buff, cb[0]);
9850                 off += offsetof(struct sk_buff, cb);
9851                 off += offsetof(struct sk_skb_cb, data);
9852                 if (type == BPF_WRITE)
9853                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9854                                               si->src_reg, off);
9855                 else
9856                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9857                                               si->src_reg, off);
9858                 break;
9859
9860
9861         default:
9862                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9863                                               target_size);
9864         }
9865
9866         return insn - insn_buf;
9867 }
9868
9869 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
9870                                      const struct bpf_insn *si,
9871                                      struct bpf_insn *insn_buf,
9872                                      struct bpf_prog *prog, u32 *target_size)
9873 {
9874         struct bpf_insn *insn = insn_buf;
9875 #if IS_ENABLED(CONFIG_IPV6)
9876         int off;
9877 #endif
9878
9879         /* convert ctx uses the fact sg element is first in struct */
9880         BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
9881
9882         switch (si->off) {
9883         case offsetof(struct sk_msg_md, data):
9884                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
9885                                       si->dst_reg, si->src_reg,
9886                                       offsetof(struct sk_msg, data));
9887                 break;
9888         case offsetof(struct sk_msg_md, data_end):
9889                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
9890                                       si->dst_reg, si->src_reg,
9891                                       offsetof(struct sk_msg, data_end));
9892                 break;
9893         case offsetof(struct sk_msg_md, family):
9894                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9895
9896                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9897                                               struct sk_msg, sk),
9898                                       si->dst_reg, si->src_reg,
9899                                       offsetof(struct sk_msg, sk));
9900                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9901                                       offsetof(struct sock_common, skc_family));
9902                 break;
9903
9904         case offsetof(struct sk_msg_md, remote_ip4):
9905                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9906
9907                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9908                                                 struct sk_msg, sk),
9909                                       si->dst_reg, si->src_reg,
9910                                       offsetof(struct sk_msg, sk));
9911                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9912                                       offsetof(struct sock_common, skc_daddr));
9913                 break;
9914
9915         case offsetof(struct sk_msg_md, local_ip4):
9916                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9917                                           skc_rcv_saddr) != 4);
9918
9919                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9920                                               struct sk_msg, sk),
9921                                       si->dst_reg, si->src_reg,
9922                                       offsetof(struct sk_msg, sk));
9923                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9924                                       offsetof(struct sock_common,
9925                                                skc_rcv_saddr));
9926                 break;
9927
9928         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
9929              offsetof(struct sk_msg_md, remote_ip6[3]):
9930 #if IS_ENABLED(CONFIG_IPV6)
9931                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9932                                           skc_v6_daddr.s6_addr32[0]) != 4);
9933
9934                 off = si->off;
9935                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
9936                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9937                                                 struct sk_msg, sk),
9938                                       si->dst_reg, si->src_reg,
9939                                       offsetof(struct sk_msg, sk));
9940                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9941                                       offsetof(struct sock_common,
9942                                                skc_v6_daddr.s6_addr32[0]) +
9943                                       off);
9944 #else
9945                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9946 #endif
9947                 break;
9948
9949         case offsetof(struct sk_msg_md, local_ip6[0]) ...
9950              offsetof(struct sk_msg_md, local_ip6[3]):
9951 #if IS_ENABLED(CONFIG_IPV6)
9952                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9953                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9954
9955                 off = si->off;
9956                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
9957                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9958                                                 struct sk_msg, sk),
9959                                       si->dst_reg, si->src_reg,
9960                                       offsetof(struct sk_msg, sk));
9961                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9962                                       offsetof(struct sock_common,
9963                                                skc_v6_rcv_saddr.s6_addr32[0]) +
9964                                       off);
9965 #else
9966                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9967 #endif
9968                 break;
9969
9970         case offsetof(struct sk_msg_md, remote_port):
9971                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9972
9973                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9974                                                 struct sk_msg, sk),
9975                                       si->dst_reg, si->src_reg,
9976                                       offsetof(struct sk_msg, sk));
9977                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9978                                       offsetof(struct sock_common, skc_dport));
9979 #ifndef __BIG_ENDIAN_BITFIELD
9980                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9981 #endif
9982                 break;
9983
9984         case offsetof(struct sk_msg_md, local_port):
9985                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9986
9987                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9988                                                 struct sk_msg, sk),
9989                                       si->dst_reg, si->src_reg,
9990                                       offsetof(struct sk_msg, sk));
9991                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9992                                       offsetof(struct sock_common, skc_num));
9993                 break;
9994
9995         case offsetof(struct sk_msg_md, size):
9996                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
9997                                       si->dst_reg, si->src_reg,
9998                                       offsetof(struct sk_msg_sg, size));
9999                 break;
10000
10001         case offsetof(struct sk_msg_md, sk):
10002                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10003                                       si->dst_reg, si->src_reg,
10004                                       offsetof(struct sk_msg, sk));
10005                 break;
10006         }
10007
10008         return insn - insn_buf;
10009 }
10010
10011 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10012         .get_func_proto         = sk_filter_func_proto,
10013         .is_valid_access        = sk_filter_is_valid_access,
10014         .convert_ctx_access     = bpf_convert_ctx_access,
10015         .gen_ld_abs             = bpf_gen_ld_abs,
10016 };
10017
10018 const struct bpf_prog_ops sk_filter_prog_ops = {
10019         .test_run               = bpf_prog_test_run_skb,
10020 };
10021
10022 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10023         .get_func_proto         = tc_cls_act_func_proto,
10024         .is_valid_access        = tc_cls_act_is_valid_access,
10025         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
10026         .gen_prologue           = tc_cls_act_prologue,
10027         .gen_ld_abs             = bpf_gen_ld_abs,
10028         .check_kfunc_call       = bpf_prog_test_check_kfunc_call,
10029 };
10030
10031 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10032         .test_run               = bpf_prog_test_run_skb,
10033 };
10034
10035 const struct bpf_verifier_ops xdp_verifier_ops = {
10036         .get_func_proto         = xdp_func_proto,
10037         .is_valid_access        = xdp_is_valid_access,
10038         .convert_ctx_access     = xdp_convert_ctx_access,
10039         .gen_prologue           = bpf_noop_prologue,
10040 };
10041
10042 const struct bpf_prog_ops xdp_prog_ops = {
10043         .test_run               = bpf_prog_test_run_xdp,
10044 };
10045
10046 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10047         .get_func_proto         = cg_skb_func_proto,
10048         .is_valid_access        = cg_skb_is_valid_access,
10049         .convert_ctx_access     = bpf_convert_ctx_access,
10050 };
10051
10052 const struct bpf_prog_ops cg_skb_prog_ops = {
10053         .test_run               = bpf_prog_test_run_skb,
10054 };
10055
10056 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10057         .get_func_proto         = lwt_in_func_proto,
10058         .is_valid_access        = lwt_is_valid_access,
10059         .convert_ctx_access     = bpf_convert_ctx_access,
10060 };
10061
10062 const struct bpf_prog_ops lwt_in_prog_ops = {
10063         .test_run               = bpf_prog_test_run_skb,
10064 };
10065
10066 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10067         .get_func_proto         = lwt_out_func_proto,
10068         .is_valid_access        = lwt_is_valid_access,
10069         .convert_ctx_access     = bpf_convert_ctx_access,
10070 };
10071
10072 const struct bpf_prog_ops lwt_out_prog_ops = {
10073         .test_run               = bpf_prog_test_run_skb,
10074 };
10075
10076 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10077         .get_func_proto         = lwt_xmit_func_proto,
10078         .is_valid_access        = lwt_is_valid_access,
10079         .convert_ctx_access     = bpf_convert_ctx_access,
10080         .gen_prologue           = tc_cls_act_prologue,
10081 };
10082
10083 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10084         .test_run               = bpf_prog_test_run_skb,
10085 };
10086
10087 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10088         .get_func_proto         = lwt_seg6local_func_proto,
10089         .is_valid_access        = lwt_is_valid_access,
10090         .convert_ctx_access     = bpf_convert_ctx_access,
10091 };
10092
10093 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10094         .test_run               = bpf_prog_test_run_skb,
10095 };
10096
10097 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10098         .get_func_proto         = sock_filter_func_proto,
10099         .is_valid_access        = sock_filter_is_valid_access,
10100         .convert_ctx_access     = bpf_sock_convert_ctx_access,
10101 };
10102
10103 const struct bpf_prog_ops cg_sock_prog_ops = {
10104 };
10105
10106 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10107         .get_func_proto         = sock_addr_func_proto,
10108         .is_valid_access        = sock_addr_is_valid_access,
10109         .convert_ctx_access     = sock_addr_convert_ctx_access,
10110 };
10111
10112 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10113 };
10114
10115 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10116         .get_func_proto         = sock_ops_func_proto,
10117         .is_valid_access        = sock_ops_is_valid_access,
10118         .convert_ctx_access     = sock_ops_convert_ctx_access,
10119 };
10120
10121 const struct bpf_prog_ops sock_ops_prog_ops = {
10122 };
10123
10124 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10125         .get_func_proto         = sk_skb_func_proto,
10126         .is_valid_access        = sk_skb_is_valid_access,
10127         .convert_ctx_access     = sk_skb_convert_ctx_access,
10128         .gen_prologue           = sk_skb_prologue,
10129 };
10130
10131 const struct bpf_prog_ops sk_skb_prog_ops = {
10132 };
10133
10134 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10135         .get_func_proto         = sk_msg_func_proto,
10136         .is_valid_access        = sk_msg_is_valid_access,
10137         .convert_ctx_access     = sk_msg_convert_ctx_access,
10138         .gen_prologue           = bpf_noop_prologue,
10139 };
10140
10141 const struct bpf_prog_ops sk_msg_prog_ops = {
10142 };
10143
10144 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10145         .get_func_proto         = flow_dissector_func_proto,
10146         .is_valid_access        = flow_dissector_is_valid_access,
10147         .convert_ctx_access     = flow_dissector_convert_ctx_access,
10148 };
10149
10150 const struct bpf_prog_ops flow_dissector_prog_ops = {
10151         .test_run               = bpf_prog_test_run_flow_dissector,
10152 };
10153
10154 int sk_detach_filter(struct sock *sk)
10155 {
10156         int ret = -ENOENT;
10157         struct sk_filter *filter;
10158
10159         if (sock_flag(sk, SOCK_FILTER_LOCKED))
10160                 return -EPERM;
10161
10162         filter = rcu_dereference_protected(sk->sk_filter,
10163                                            lockdep_sock_is_held(sk));
10164         if (filter) {
10165                 RCU_INIT_POINTER(sk->sk_filter, NULL);
10166                 sk_filter_uncharge(sk, filter);
10167                 ret = 0;
10168         }
10169
10170         return ret;
10171 }
10172 EXPORT_SYMBOL_GPL(sk_detach_filter);
10173
10174 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
10175                   unsigned int len)
10176 {
10177         struct sock_fprog_kern *fprog;
10178         struct sk_filter *filter;
10179         int ret = 0;
10180
10181         lock_sock(sk);
10182         filter = rcu_dereference_protected(sk->sk_filter,
10183                                            lockdep_sock_is_held(sk));
10184         if (!filter)
10185                 goto out;
10186
10187         /* We're copying the filter that has been originally attached,
10188          * so no conversion/decode needed anymore. eBPF programs that
10189          * have no original program cannot be dumped through this.
10190          */
10191         ret = -EACCES;
10192         fprog = filter->prog->orig_prog;
10193         if (!fprog)
10194                 goto out;
10195
10196         ret = fprog->len;
10197         if (!len)
10198                 /* User space only enquires number of filter blocks. */
10199                 goto out;
10200
10201         ret = -EINVAL;
10202         if (len < fprog->len)
10203                 goto out;
10204
10205         ret = -EFAULT;
10206         if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
10207                 goto out;
10208
10209         /* Instead of bytes, the API requests to return the number
10210          * of filter blocks.
10211          */
10212         ret = fprog->len;
10213 out:
10214         release_sock(sk);
10215         return ret;
10216 }
10217
10218 #ifdef CONFIG_INET
10219 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10220                                     struct sock_reuseport *reuse,
10221                                     struct sock *sk, struct sk_buff *skb,
10222                                     struct sock *migrating_sk,
10223                                     u32 hash)
10224 {
10225         reuse_kern->skb = skb;
10226         reuse_kern->sk = sk;
10227         reuse_kern->selected_sk = NULL;
10228         reuse_kern->migrating_sk = migrating_sk;
10229         reuse_kern->data_end = skb->data + skb_headlen(skb);
10230         reuse_kern->hash = hash;
10231         reuse_kern->reuseport_id = reuse->reuseport_id;
10232         reuse_kern->bind_inany = reuse->bind_inany;
10233 }
10234
10235 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10236                                   struct bpf_prog *prog, struct sk_buff *skb,
10237                                   struct sock *migrating_sk,
10238                                   u32 hash)
10239 {
10240         struct sk_reuseport_kern reuse_kern;
10241         enum sk_action action;
10242
10243         bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10244         action = bpf_prog_run(prog, &reuse_kern);
10245
10246         if (action == SK_PASS)
10247                 return reuse_kern.selected_sk;
10248         else
10249                 return ERR_PTR(-ECONNREFUSED);
10250 }
10251
10252 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10253            struct bpf_map *, map, void *, key, u32, flags)
10254 {
10255         bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10256         struct sock_reuseport *reuse;
10257         struct sock *selected_sk;
10258
10259         selected_sk = map->ops->map_lookup_elem(map, key);
10260         if (!selected_sk)
10261                 return -ENOENT;
10262
10263         reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10264         if (!reuse) {
10265                 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10266                 if (sk_is_refcounted(selected_sk))
10267                         sock_put(selected_sk);
10268
10269                 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
10270                  * The only (!reuse) case here is - the sk has already been
10271                  * unhashed (e.g. by close()), so treat it as -ENOENT.
10272                  *
10273                  * Other maps (e.g. sock_map) do not provide this guarantee and
10274                  * the sk may never be in the reuseport group to begin with.
10275                  */
10276                 return is_sockarray ? -ENOENT : -EINVAL;
10277         }
10278
10279         if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10280                 struct sock *sk = reuse_kern->sk;
10281
10282                 if (sk->sk_protocol != selected_sk->sk_protocol)
10283                         return -EPROTOTYPE;
10284                 else if (sk->sk_family != selected_sk->sk_family)
10285                         return -EAFNOSUPPORT;
10286
10287                 /* Catch all. Likely bound to a different sockaddr. */
10288                 return -EBADFD;
10289         }
10290
10291         reuse_kern->selected_sk = selected_sk;
10292
10293         return 0;
10294 }
10295
10296 static const struct bpf_func_proto sk_select_reuseport_proto = {
10297         .func           = sk_select_reuseport,
10298         .gpl_only       = false,
10299         .ret_type       = RET_INTEGER,
10300         .arg1_type      = ARG_PTR_TO_CTX,
10301         .arg2_type      = ARG_CONST_MAP_PTR,
10302         .arg3_type      = ARG_PTR_TO_MAP_KEY,
10303         .arg4_type      = ARG_ANYTHING,
10304 };
10305
10306 BPF_CALL_4(sk_reuseport_load_bytes,
10307            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10308            void *, to, u32, len)
10309 {
10310         return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10311 }
10312
10313 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10314         .func           = sk_reuseport_load_bytes,
10315         .gpl_only       = false,
10316         .ret_type       = RET_INTEGER,
10317         .arg1_type      = ARG_PTR_TO_CTX,
10318         .arg2_type      = ARG_ANYTHING,
10319         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
10320         .arg4_type      = ARG_CONST_SIZE,
10321 };
10322
10323 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10324            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10325            void *, to, u32, len, u32, start_header)
10326 {
10327         return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10328                                                len, start_header);
10329 }
10330
10331 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10332         .func           = sk_reuseport_load_bytes_relative,
10333         .gpl_only       = false,
10334         .ret_type       = RET_INTEGER,
10335         .arg1_type      = ARG_PTR_TO_CTX,
10336         .arg2_type      = ARG_ANYTHING,
10337         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
10338         .arg4_type      = ARG_CONST_SIZE,
10339         .arg5_type      = ARG_ANYTHING,
10340 };
10341
10342 static const struct bpf_func_proto *
10343 sk_reuseport_func_proto(enum bpf_func_id func_id,
10344                         const struct bpf_prog *prog)
10345 {
10346         switch (func_id) {
10347         case BPF_FUNC_sk_select_reuseport:
10348                 return &sk_select_reuseport_proto;
10349         case BPF_FUNC_skb_load_bytes:
10350                 return &sk_reuseport_load_bytes_proto;
10351         case BPF_FUNC_skb_load_bytes_relative:
10352                 return &sk_reuseport_load_bytes_relative_proto;
10353         case BPF_FUNC_get_socket_cookie:
10354                 return &bpf_get_socket_ptr_cookie_proto;
10355         case BPF_FUNC_ktime_get_coarse_ns:
10356                 return &bpf_ktime_get_coarse_ns_proto;
10357         default:
10358                 return bpf_base_func_proto(func_id);
10359         }
10360 }
10361
10362 static bool
10363 sk_reuseport_is_valid_access(int off, int size,
10364                              enum bpf_access_type type,
10365                              const struct bpf_prog *prog,
10366                              struct bpf_insn_access_aux *info)
10367 {
10368         const u32 size_default = sizeof(__u32);
10369
10370         if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
10371             off % size || type != BPF_READ)
10372                 return false;
10373
10374         switch (off) {
10375         case offsetof(struct sk_reuseport_md, data):
10376                 info->reg_type = PTR_TO_PACKET;
10377                 return size == sizeof(__u64);
10378
10379         case offsetof(struct sk_reuseport_md, data_end):
10380                 info->reg_type = PTR_TO_PACKET_END;
10381                 return size == sizeof(__u64);
10382
10383         case offsetof(struct sk_reuseport_md, hash):
10384                 return size == size_default;
10385
10386         case offsetof(struct sk_reuseport_md, sk):
10387                 info->reg_type = PTR_TO_SOCKET;
10388                 return size == sizeof(__u64);
10389
10390         case offsetof(struct sk_reuseport_md, migrating_sk):
10391                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
10392                 return size == sizeof(__u64);
10393
10394         /* Fields that allow narrowing */
10395         case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
10396                 if (size < sizeof_field(struct sk_buff, protocol))
10397                         return false;
10398                 fallthrough;
10399         case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
10400         case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
10401         case bpf_ctx_range(struct sk_reuseport_md, len):
10402                 bpf_ctx_record_field_size(info, size_default);
10403                 return bpf_ctx_narrow_access_ok(off, size, size_default);
10404
10405         default:
10406                 return false;
10407         }
10408 }
10409
10410 #define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
10411         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
10412                               si->dst_reg, si->src_reg,                 \
10413                               bpf_target_off(struct sk_reuseport_kern, F, \
10414                                              sizeof_field(struct sk_reuseport_kern, F), \
10415                                              target_size));             \
10416         })
10417
10418 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
10419         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
10420                                     struct sk_buff,                     \
10421                                     skb,                                \
10422                                     SKB_FIELD)
10423
10424 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)                            \
10425         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
10426                                     struct sock,                        \
10427                                     sk,                                 \
10428                                     SK_FIELD)
10429
10430 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
10431                                            const struct bpf_insn *si,
10432                                            struct bpf_insn *insn_buf,
10433                                            struct bpf_prog *prog,
10434                                            u32 *target_size)
10435 {
10436         struct bpf_insn *insn = insn_buf;
10437
10438         switch (si->off) {
10439         case offsetof(struct sk_reuseport_md, data):
10440                 SK_REUSEPORT_LOAD_SKB_FIELD(data);
10441                 break;
10442
10443         case offsetof(struct sk_reuseport_md, len):
10444                 SK_REUSEPORT_LOAD_SKB_FIELD(len);
10445                 break;
10446
10447         case offsetof(struct sk_reuseport_md, eth_protocol):
10448                 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
10449                 break;
10450
10451         case offsetof(struct sk_reuseport_md, ip_protocol):
10452                 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
10453                 break;
10454
10455         case offsetof(struct sk_reuseport_md, data_end):
10456                 SK_REUSEPORT_LOAD_FIELD(data_end);
10457                 break;
10458
10459         case offsetof(struct sk_reuseport_md, hash):
10460                 SK_REUSEPORT_LOAD_FIELD(hash);
10461                 break;
10462
10463         case offsetof(struct sk_reuseport_md, bind_inany):
10464                 SK_REUSEPORT_LOAD_FIELD(bind_inany);
10465                 break;
10466
10467         case offsetof(struct sk_reuseport_md, sk):
10468                 SK_REUSEPORT_LOAD_FIELD(sk);
10469                 break;
10470
10471         case offsetof(struct sk_reuseport_md, migrating_sk):
10472                 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
10473                 break;
10474         }
10475
10476         return insn - insn_buf;
10477 }
10478
10479 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
10480         .get_func_proto         = sk_reuseport_func_proto,
10481         .is_valid_access        = sk_reuseport_is_valid_access,
10482         .convert_ctx_access     = sk_reuseport_convert_ctx_access,
10483 };
10484
10485 const struct bpf_prog_ops sk_reuseport_prog_ops = {
10486 };
10487
10488 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
10489 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
10490
10491 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
10492            struct sock *, sk, u64, flags)
10493 {
10494         if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
10495                                BPF_SK_LOOKUP_F_NO_REUSEPORT)))
10496                 return -EINVAL;
10497         if (unlikely(sk && sk_is_refcounted(sk)))
10498                 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
10499         if (unlikely(sk && sk->sk_state == TCP_ESTABLISHED))
10500                 return -ESOCKTNOSUPPORT; /* reject connected sockets */
10501
10502         /* Check if socket is suitable for packet L3/L4 protocol */
10503         if (sk && sk->sk_protocol != ctx->protocol)
10504                 return -EPROTOTYPE;
10505         if (sk && sk->sk_family != ctx->family &&
10506             (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
10507                 return -EAFNOSUPPORT;
10508
10509         if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
10510                 return -EEXIST;
10511
10512         /* Select socket as lookup result */
10513         ctx->selected_sk = sk;
10514         ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
10515         return 0;
10516 }
10517
10518 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
10519         .func           = bpf_sk_lookup_assign,
10520         .gpl_only       = false,
10521         .ret_type       = RET_INTEGER,
10522         .arg1_type      = ARG_PTR_TO_CTX,
10523         .arg2_type      = ARG_PTR_TO_SOCKET_OR_NULL,
10524         .arg3_type      = ARG_ANYTHING,
10525 };
10526
10527 static const struct bpf_func_proto *
10528 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
10529 {
10530         switch (func_id) {
10531         case BPF_FUNC_perf_event_output:
10532                 return &bpf_event_output_data_proto;
10533         case BPF_FUNC_sk_assign:
10534                 return &bpf_sk_lookup_assign_proto;
10535         case BPF_FUNC_sk_release:
10536                 return &bpf_sk_release_proto;
10537         default:
10538                 return bpf_sk_base_func_proto(func_id);
10539         }
10540 }
10541
10542 static bool sk_lookup_is_valid_access(int off, int size,
10543                                       enum bpf_access_type type,
10544                                       const struct bpf_prog *prog,
10545                                       struct bpf_insn_access_aux *info)
10546 {
10547         if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
10548                 return false;
10549         if (off % size != 0)
10550                 return false;
10551         if (type != BPF_READ)
10552                 return false;
10553
10554         switch (off) {
10555         case offsetof(struct bpf_sk_lookup, sk):
10556                 info->reg_type = PTR_TO_SOCKET_OR_NULL;
10557                 return size == sizeof(__u64);
10558
10559         case bpf_ctx_range(struct bpf_sk_lookup, family):
10560         case bpf_ctx_range(struct bpf_sk_lookup, protocol):
10561         case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
10562         case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
10563         case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
10564         case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
10565         case offsetof(struct bpf_sk_lookup, remote_port) ...
10566              offsetof(struct bpf_sk_lookup, local_ip4) - 1:
10567         case bpf_ctx_range(struct bpf_sk_lookup, local_port):
10568                 bpf_ctx_record_field_size(info, sizeof(__u32));
10569                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
10570
10571         default:
10572                 return false;
10573         }
10574 }
10575
10576 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
10577                                         const struct bpf_insn *si,
10578                                         struct bpf_insn *insn_buf,
10579                                         struct bpf_prog *prog,
10580                                         u32 *target_size)
10581 {
10582         struct bpf_insn *insn = insn_buf;
10583
10584         switch (si->off) {
10585         case offsetof(struct bpf_sk_lookup, sk):
10586                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10587                                       offsetof(struct bpf_sk_lookup_kern, selected_sk));
10588                 break;
10589
10590         case offsetof(struct bpf_sk_lookup, family):
10591                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10592                                       bpf_target_off(struct bpf_sk_lookup_kern,
10593                                                      family, 2, target_size));
10594                 break;
10595
10596         case offsetof(struct bpf_sk_lookup, protocol):
10597                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10598                                       bpf_target_off(struct bpf_sk_lookup_kern,
10599                                                      protocol, 2, target_size));
10600                 break;
10601
10602         case offsetof(struct bpf_sk_lookup, remote_ip4):
10603                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10604                                       bpf_target_off(struct bpf_sk_lookup_kern,
10605                                                      v4.saddr, 4, target_size));
10606                 break;
10607
10608         case offsetof(struct bpf_sk_lookup, local_ip4):
10609                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10610                                       bpf_target_off(struct bpf_sk_lookup_kern,
10611                                                      v4.daddr, 4, target_size));
10612                 break;
10613
10614         case bpf_ctx_range_till(struct bpf_sk_lookup,
10615                                 remote_ip6[0], remote_ip6[3]): {
10616 #if IS_ENABLED(CONFIG_IPV6)
10617                 int off = si->off;
10618
10619                 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
10620                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10621                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10622                                       offsetof(struct bpf_sk_lookup_kern, v6.saddr));
10623                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10624                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10625 #else
10626                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10627 #endif
10628                 break;
10629         }
10630         case bpf_ctx_range_till(struct bpf_sk_lookup,
10631                                 local_ip6[0], local_ip6[3]): {
10632 #if IS_ENABLED(CONFIG_IPV6)
10633                 int off = si->off;
10634
10635                 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
10636                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10637                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10638                                       offsetof(struct bpf_sk_lookup_kern, v6.daddr));
10639                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10640                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10641 #else
10642                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10643 #endif
10644                 break;
10645         }
10646         case offsetof(struct bpf_sk_lookup, remote_port):
10647                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10648                                       bpf_target_off(struct bpf_sk_lookup_kern,
10649                                                      sport, 2, target_size));
10650                 break;
10651
10652         case offsetof(struct bpf_sk_lookup, local_port):
10653                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10654                                       bpf_target_off(struct bpf_sk_lookup_kern,
10655                                                      dport, 2, target_size));
10656                 break;
10657         }
10658
10659         return insn - insn_buf;
10660 }
10661
10662 const struct bpf_prog_ops sk_lookup_prog_ops = {
10663         .test_run = bpf_prog_test_run_sk_lookup,
10664 };
10665
10666 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
10667         .get_func_proto         = sk_lookup_func_proto,
10668         .is_valid_access        = sk_lookup_is_valid_access,
10669         .convert_ctx_access     = sk_lookup_convert_ctx_access,
10670 };
10671
10672 #endif /* CONFIG_INET */
10673
10674 DEFINE_BPF_DISPATCHER(xdp)
10675
10676 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
10677 {
10678         bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
10679 }
10680
10681 #ifdef CONFIG_DEBUG_INFO_BTF
10682 BTF_ID_LIST_GLOBAL(btf_sock_ids)
10683 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
10684 BTF_SOCK_TYPE_xxx
10685 #undef BTF_SOCK_TYPE
10686 #else
10687 u32 btf_sock_ids[MAX_BTF_SOCK_TYPE];
10688 #endif
10689
10690 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
10691 {
10692         /* tcp6_sock type is not generated in dwarf and hence btf,
10693          * trigger an explicit type generation here.
10694          */
10695         BTF_TYPE_EMIT(struct tcp6_sock);
10696         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
10697             sk->sk_family == AF_INET6)
10698                 return (unsigned long)sk;
10699
10700         return (unsigned long)NULL;
10701 }
10702
10703 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
10704         .func                   = bpf_skc_to_tcp6_sock,
10705         .gpl_only               = false,
10706         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10707         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10708         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
10709 };
10710
10711 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
10712 {
10713         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
10714                 return (unsigned long)sk;
10715
10716         return (unsigned long)NULL;
10717 }
10718
10719 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
10720         .func                   = bpf_skc_to_tcp_sock,
10721         .gpl_only               = false,
10722         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10723         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10724         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
10725 };
10726
10727 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
10728 {
10729         /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
10730          * generated if CONFIG_INET=n. Trigger an explicit generation here.
10731          */
10732         BTF_TYPE_EMIT(struct inet_timewait_sock);
10733         BTF_TYPE_EMIT(struct tcp_timewait_sock);
10734
10735 #ifdef CONFIG_INET
10736         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
10737                 return (unsigned long)sk;
10738 #endif
10739
10740 #if IS_BUILTIN(CONFIG_IPV6)
10741         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
10742                 return (unsigned long)sk;
10743 #endif
10744
10745         return (unsigned long)NULL;
10746 }
10747
10748 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
10749         .func                   = bpf_skc_to_tcp_timewait_sock,
10750         .gpl_only               = false,
10751         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10752         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10753         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
10754 };
10755
10756 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
10757 {
10758 #ifdef CONFIG_INET
10759         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10760                 return (unsigned long)sk;
10761 #endif
10762
10763 #if IS_BUILTIN(CONFIG_IPV6)
10764         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10765                 return (unsigned long)sk;
10766 #endif
10767
10768         return (unsigned long)NULL;
10769 }
10770
10771 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
10772         .func                   = bpf_skc_to_tcp_request_sock,
10773         .gpl_only               = false,
10774         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10775         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10776         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
10777 };
10778
10779 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
10780 {
10781         /* udp6_sock type is not generated in dwarf and hence btf,
10782          * trigger an explicit type generation here.
10783          */
10784         BTF_TYPE_EMIT(struct udp6_sock);
10785         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
10786             sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
10787                 return (unsigned long)sk;
10788
10789         return (unsigned long)NULL;
10790 }
10791
10792 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
10793         .func                   = bpf_skc_to_udp6_sock,
10794         .gpl_only               = false,
10795         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10796         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10797         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
10798 };
10799
10800 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
10801 {
10802         return (unsigned long)sock_from_file(file);
10803 }
10804
10805 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
10806 BTF_ID(struct, socket)
10807 BTF_ID(struct, file)
10808
10809 const struct bpf_func_proto bpf_sock_from_file_proto = {
10810         .func           = bpf_sock_from_file,
10811         .gpl_only       = false,
10812         .ret_type       = RET_PTR_TO_BTF_ID_OR_NULL,
10813         .ret_btf_id     = &bpf_sock_from_file_btf_ids[0],
10814         .arg1_type      = ARG_PTR_TO_BTF_ID,
10815         .arg1_btf_id    = &bpf_sock_from_file_btf_ids[1],
10816 };
10817
10818 static const struct bpf_func_proto *
10819 bpf_sk_base_func_proto(enum bpf_func_id func_id)
10820 {
10821         const struct bpf_func_proto *func;
10822
10823         switch (func_id) {
10824         case BPF_FUNC_skc_to_tcp6_sock:
10825                 func = &bpf_skc_to_tcp6_sock_proto;
10826                 break;
10827         case BPF_FUNC_skc_to_tcp_sock:
10828                 func = &bpf_skc_to_tcp_sock_proto;
10829                 break;
10830         case BPF_FUNC_skc_to_tcp_timewait_sock:
10831                 func = &bpf_skc_to_tcp_timewait_sock_proto;
10832                 break;
10833         case BPF_FUNC_skc_to_tcp_request_sock:
10834                 func = &bpf_skc_to_tcp_request_sock_proto;
10835                 break;
10836         case BPF_FUNC_skc_to_udp6_sock:
10837                 func = &bpf_skc_to_udp6_sock_proto;
10838                 break;
10839         case BPF_FUNC_ktime_get_coarse_ns:
10840                 return &bpf_ktime_get_coarse_ns_proto;
10841         default:
10842                 return bpf_base_func_proto(func_id);
10843         }
10844
10845         if (!perfmon_capable())
10846                 return NULL;
10847
10848         return func;
10849 }