bb135d456a53aa04b7f283f1def03396a479dd78
[platform/kernel/linux-starfive.git] / net / core / filter.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *      Jay Schulist <jschlst@samba.org>
13  *      Alexei Starovoitov <ast@plumgrid.com>
14  *      Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19
20 #include <linux/atomic.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/mm.h>
24 #include <linux/fcntl.h>
25 #include <linux/socket.h>
26 #include <linux/sock_diag.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/netdevice.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_arp.h>
32 #include <linux/gfp.h>
33 #include <net/inet_common.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <linux/skmsg.h>
39 #include <net/sock.h>
40 #include <net/flow_dissector.h>
41 #include <linux/errno.h>
42 #include <linux/timer.h>
43 #include <linux/uaccess.h>
44 #include <asm/unaligned.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80 #include <net/xdp.h>
81 #include <net/mptcp.h>
82
83 static const struct bpf_func_proto *
84 bpf_sk_base_func_proto(enum bpf_func_id func_id);
85
86 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
87 {
88         if (in_compat_syscall()) {
89                 struct compat_sock_fprog f32;
90
91                 if (len != sizeof(f32))
92                         return -EINVAL;
93                 if (copy_from_sockptr(&f32, src, sizeof(f32)))
94                         return -EFAULT;
95                 memset(dst, 0, sizeof(*dst));
96                 dst->len = f32.len;
97                 dst->filter = compat_ptr(f32.filter);
98         } else {
99                 if (len != sizeof(*dst))
100                         return -EINVAL;
101                 if (copy_from_sockptr(dst, src, sizeof(*dst)))
102                         return -EFAULT;
103         }
104
105         return 0;
106 }
107 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
108
109 /**
110  *      sk_filter_trim_cap - run a packet through a socket filter
111  *      @sk: sock associated with &sk_buff
112  *      @skb: buffer to filter
113  *      @cap: limit on how short the eBPF program may trim the packet
114  *
115  * Run the eBPF program and then cut skb->data to correct size returned by
116  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
117  * than pkt_len we keep whole skb->data. This is the socket level
118  * wrapper to bpf_prog_run. It returns 0 if the packet should
119  * be accepted or -EPERM if the packet should be tossed.
120  *
121  */
122 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
123 {
124         int err;
125         struct sk_filter *filter;
126
127         /*
128          * If the skb was allocated from pfmemalloc reserves, only
129          * allow SOCK_MEMALLOC sockets to use it as this socket is
130          * helping free memory
131          */
132         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
133                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
134                 return -ENOMEM;
135         }
136         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
137         if (err)
138                 return err;
139
140         err = security_sock_rcv_skb(sk, skb);
141         if (err)
142                 return err;
143
144         rcu_read_lock();
145         filter = rcu_dereference(sk->sk_filter);
146         if (filter) {
147                 struct sock *save_sk = skb->sk;
148                 unsigned int pkt_len;
149
150                 skb->sk = sk;
151                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
152                 skb->sk = save_sk;
153                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
154         }
155         rcu_read_unlock();
156
157         return err;
158 }
159 EXPORT_SYMBOL(sk_filter_trim_cap);
160
161 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
162 {
163         return skb_get_poff(skb);
164 }
165
166 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
167 {
168         struct nlattr *nla;
169
170         if (skb_is_nonlinear(skb))
171                 return 0;
172
173         if (skb->len < sizeof(struct nlattr))
174                 return 0;
175
176         if (a > skb->len - sizeof(struct nlattr))
177                 return 0;
178
179         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
180         if (nla)
181                 return (void *) nla - (void *) skb->data;
182
183         return 0;
184 }
185
186 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
187 {
188         struct nlattr *nla;
189
190         if (skb_is_nonlinear(skb))
191                 return 0;
192
193         if (skb->len < sizeof(struct nlattr))
194                 return 0;
195
196         if (a > skb->len - sizeof(struct nlattr))
197                 return 0;
198
199         nla = (struct nlattr *) &skb->data[a];
200         if (nla->nla_len > skb->len - a)
201                 return 0;
202
203         nla = nla_find_nested(nla, x);
204         if (nla)
205                 return (void *) nla - (void *) skb->data;
206
207         return 0;
208 }
209
210 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
211            data, int, headlen, int, offset)
212 {
213         u8 tmp, *ptr;
214         const int len = sizeof(tmp);
215
216         if (offset >= 0) {
217                 if (headlen - offset >= len)
218                         return *(u8 *)(data + offset);
219                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
220                         return tmp;
221         } else {
222                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
223                 if (likely(ptr))
224                         return *(u8 *)ptr;
225         }
226
227         return -EFAULT;
228 }
229
230 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
231            int, offset)
232 {
233         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
234                                          offset);
235 }
236
237 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
238            data, int, headlen, int, offset)
239 {
240         __be16 tmp, *ptr;
241         const int len = sizeof(tmp);
242
243         if (offset >= 0) {
244                 if (headlen - offset >= len)
245                         return get_unaligned_be16(data + offset);
246                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
247                         return be16_to_cpu(tmp);
248         } else {
249                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
250                 if (likely(ptr))
251                         return get_unaligned_be16(ptr);
252         }
253
254         return -EFAULT;
255 }
256
257 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
258            int, offset)
259 {
260         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
261                                           offset);
262 }
263
264 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
265            data, int, headlen, int, offset)
266 {
267         __be32 tmp, *ptr;
268         const int len = sizeof(tmp);
269
270         if (likely(offset >= 0)) {
271                 if (headlen - offset >= len)
272                         return get_unaligned_be32(data + offset);
273                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
274                         return be32_to_cpu(tmp);
275         } else {
276                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
277                 if (likely(ptr))
278                         return get_unaligned_be32(ptr);
279         }
280
281         return -EFAULT;
282 }
283
284 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
285            int, offset)
286 {
287         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
288                                           offset);
289 }
290
291 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
292                               struct bpf_insn *insn_buf)
293 {
294         struct bpf_insn *insn = insn_buf;
295
296         switch (skb_field) {
297         case SKF_AD_MARK:
298                 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
299
300                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
301                                       offsetof(struct sk_buff, mark));
302                 break;
303
304         case SKF_AD_PKTTYPE:
305                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
306                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
307 #ifdef __BIG_ENDIAN_BITFIELD
308                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
309 #endif
310                 break;
311
312         case SKF_AD_QUEUE:
313                 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
314
315                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
316                                       offsetof(struct sk_buff, queue_mapping));
317                 break;
318
319         case SKF_AD_VLAN_TAG:
320                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
321
322                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
323                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
324                                       offsetof(struct sk_buff, vlan_tci));
325                 break;
326         case SKF_AD_VLAN_TAG_PRESENT:
327                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET);
328                 if (PKT_VLAN_PRESENT_BIT)
329                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
330                 if (PKT_VLAN_PRESENT_BIT < 7)
331                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
332                 break;
333         }
334
335         return insn - insn_buf;
336 }
337
338 static bool convert_bpf_extensions(struct sock_filter *fp,
339                                    struct bpf_insn **insnp)
340 {
341         struct bpf_insn *insn = *insnp;
342         u32 cnt;
343
344         switch (fp->k) {
345         case SKF_AD_OFF + SKF_AD_PROTOCOL:
346                 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
347
348                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
349                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
350                                       offsetof(struct sk_buff, protocol));
351                 /* A = ntohs(A) [emitting a nop or swap16] */
352                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
353                 break;
354
355         case SKF_AD_OFF + SKF_AD_PKTTYPE:
356                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
357                 insn += cnt - 1;
358                 break;
359
360         case SKF_AD_OFF + SKF_AD_IFINDEX:
361         case SKF_AD_OFF + SKF_AD_HATYPE:
362                 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
363                 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
364
365                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
366                                       BPF_REG_TMP, BPF_REG_CTX,
367                                       offsetof(struct sk_buff, dev));
368                 /* if (tmp != 0) goto pc + 1 */
369                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
370                 *insn++ = BPF_EXIT_INSN();
371                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
372                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
373                                             offsetof(struct net_device, ifindex));
374                 else
375                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
376                                             offsetof(struct net_device, type));
377                 break;
378
379         case SKF_AD_OFF + SKF_AD_MARK:
380                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
381                 insn += cnt - 1;
382                 break;
383
384         case SKF_AD_OFF + SKF_AD_RXHASH:
385                 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
386
387                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
388                                     offsetof(struct sk_buff, hash));
389                 break;
390
391         case SKF_AD_OFF + SKF_AD_QUEUE:
392                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
393                 insn += cnt - 1;
394                 break;
395
396         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
397                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
398                                          BPF_REG_A, BPF_REG_CTX, insn);
399                 insn += cnt - 1;
400                 break;
401
402         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
403                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
404                                          BPF_REG_A, BPF_REG_CTX, insn);
405                 insn += cnt - 1;
406                 break;
407
408         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
409                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
410
411                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
412                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
413                                       offsetof(struct sk_buff, vlan_proto));
414                 /* A = ntohs(A) [emitting a nop or swap16] */
415                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
416                 break;
417
418         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
419         case SKF_AD_OFF + SKF_AD_NLATTR:
420         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
421         case SKF_AD_OFF + SKF_AD_CPU:
422         case SKF_AD_OFF + SKF_AD_RANDOM:
423                 /* arg1 = CTX */
424                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
425                 /* arg2 = A */
426                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
427                 /* arg3 = X */
428                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
429                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
430                 switch (fp->k) {
431                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
432                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
433                         break;
434                 case SKF_AD_OFF + SKF_AD_NLATTR:
435                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
436                         break;
437                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
438                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
439                         break;
440                 case SKF_AD_OFF + SKF_AD_CPU:
441                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
442                         break;
443                 case SKF_AD_OFF + SKF_AD_RANDOM:
444                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
445                         bpf_user_rnd_init_once();
446                         break;
447                 }
448                 break;
449
450         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
451                 /* A ^= X */
452                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
453                 break;
454
455         default:
456                 /* This is just a dummy call to avoid letting the compiler
457                  * evict __bpf_call_base() as an optimization. Placed here
458                  * where no-one bothers.
459                  */
460                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
461                 return false;
462         }
463
464         *insnp = insn;
465         return true;
466 }
467
468 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
469 {
470         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
471         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
472         bool endian = BPF_SIZE(fp->code) == BPF_H ||
473                       BPF_SIZE(fp->code) == BPF_W;
474         bool indirect = BPF_MODE(fp->code) == BPF_IND;
475         const int ip_align = NET_IP_ALIGN;
476         struct bpf_insn *insn = *insnp;
477         int offset = fp->k;
478
479         if (!indirect &&
480             ((unaligned_ok && offset >= 0) ||
481              (!unaligned_ok && offset >= 0 &&
482               offset + ip_align >= 0 &&
483               offset + ip_align % size == 0))) {
484                 bool ldx_off_ok = offset <= S16_MAX;
485
486                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
487                 if (offset)
488                         *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
489                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
490                                       size, 2 + endian + (!ldx_off_ok * 2));
491                 if (ldx_off_ok) {
492                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
493                                               BPF_REG_D, offset);
494                 } else {
495                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
496                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
497                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
498                                               BPF_REG_TMP, 0);
499                 }
500                 if (endian)
501                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
502                 *insn++ = BPF_JMP_A(8);
503         }
504
505         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
506         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
507         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
508         if (!indirect) {
509                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
510         } else {
511                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
512                 if (fp->k)
513                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
514         }
515
516         switch (BPF_SIZE(fp->code)) {
517         case BPF_B:
518                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
519                 break;
520         case BPF_H:
521                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
522                 break;
523         case BPF_W:
524                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
525                 break;
526         default:
527                 return false;
528         }
529
530         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
531         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
532         *insn   = BPF_EXIT_INSN();
533
534         *insnp = insn;
535         return true;
536 }
537
538 /**
539  *      bpf_convert_filter - convert filter program
540  *      @prog: the user passed filter program
541  *      @len: the length of the user passed filter program
542  *      @new_prog: allocated 'struct bpf_prog' or NULL
543  *      @new_len: pointer to store length of converted program
544  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
545  *
546  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
547  * style extended BPF (eBPF).
548  * Conversion workflow:
549  *
550  * 1) First pass for calculating the new program length:
551  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
552  *
553  * 2) 2nd pass to remap in two passes: 1st pass finds new
554  *    jump offsets, 2nd pass remapping:
555  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
556  */
557 static int bpf_convert_filter(struct sock_filter *prog, int len,
558                               struct bpf_prog *new_prog, int *new_len,
559                               bool *seen_ld_abs)
560 {
561         int new_flen = 0, pass = 0, target, i, stack_off;
562         struct bpf_insn *new_insn, *first_insn = NULL;
563         struct sock_filter *fp;
564         int *addrs = NULL;
565         u8 bpf_src;
566
567         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
568         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
569
570         if (len <= 0 || len > BPF_MAXINSNS)
571                 return -EINVAL;
572
573         if (new_prog) {
574                 first_insn = new_prog->insnsi;
575                 addrs = kcalloc(len, sizeof(*addrs),
576                                 GFP_KERNEL | __GFP_NOWARN);
577                 if (!addrs)
578                         return -ENOMEM;
579         }
580
581 do_pass:
582         new_insn = first_insn;
583         fp = prog;
584
585         /* Classic BPF related prologue emission. */
586         if (new_prog) {
587                 /* Classic BPF expects A and X to be reset first. These need
588                  * to be guaranteed to be the first two instructions.
589                  */
590                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
591                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
592
593                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
594                  * In eBPF case it's done by the compiler, here we need to
595                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
596                  */
597                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
598                 if (*seen_ld_abs) {
599                         /* For packet access in classic BPF, cache skb->data
600                          * in callee-saved BPF R8 and skb->len - skb->data_len
601                          * (headlen) in BPF R9. Since classic BPF is read-only
602                          * on CTX, we only need to cache it once.
603                          */
604                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
605                                                   BPF_REG_D, BPF_REG_CTX,
606                                                   offsetof(struct sk_buff, data));
607                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
608                                                   offsetof(struct sk_buff, len));
609                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
610                                                   offsetof(struct sk_buff, data_len));
611                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
612                 }
613         } else {
614                 new_insn += 3;
615         }
616
617         for (i = 0; i < len; fp++, i++) {
618                 struct bpf_insn tmp_insns[32] = { };
619                 struct bpf_insn *insn = tmp_insns;
620
621                 if (addrs)
622                         addrs[i] = new_insn - first_insn;
623
624                 switch (fp->code) {
625                 /* All arithmetic insns and skb loads map as-is. */
626                 case BPF_ALU | BPF_ADD | BPF_X:
627                 case BPF_ALU | BPF_ADD | BPF_K:
628                 case BPF_ALU | BPF_SUB | BPF_X:
629                 case BPF_ALU | BPF_SUB | BPF_K:
630                 case BPF_ALU | BPF_AND | BPF_X:
631                 case BPF_ALU | BPF_AND | BPF_K:
632                 case BPF_ALU | BPF_OR | BPF_X:
633                 case BPF_ALU | BPF_OR | BPF_K:
634                 case BPF_ALU | BPF_LSH | BPF_X:
635                 case BPF_ALU | BPF_LSH | BPF_K:
636                 case BPF_ALU | BPF_RSH | BPF_X:
637                 case BPF_ALU | BPF_RSH | BPF_K:
638                 case BPF_ALU | BPF_XOR | BPF_X:
639                 case BPF_ALU | BPF_XOR | BPF_K:
640                 case BPF_ALU | BPF_MUL | BPF_X:
641                 case BPF_ALU | BPF_MUL | BPF_K:
642                 case BPF_ALU | BPF_DIV | BPF_X:
643                 case BPF_ALU | BPF_DIV | BPF_K:
644                 case BPF_ALU | BPF_MOD | BPF_X:
645                 case BPF_ALU | BPF_MOD | BPF_K:
646                 case BPF_ALU | BPF_NEG:
647                 case BPF_LD | BPF_ABS | BPF_W:
648                 case BPF_LD | BPF_ABS | BPF_H:
649                 case BPF_LD | BPF_ABS | BPF_B:
650                 case BPF_LD | BPF_IND | BPF_W:
651                 case BPF_LD | BPF_IND | BPF_H:
652                 case BPF_LD | BPF_IND | BPF_B:
653                         /* Check for overloaded BPF extension and
654                          * directly convert it if found, otherwise
655                          * just move on with mapping.
656                          */
657                         if (BPF_CLASS(fp->code) == BPF_LD &&
658                             BPF_MODE(fp->code) == BPF_ABS &&
659                             convert_bpf_extensions(fp, &insn))
660                                 break;
661                         if (BPF_CLASS(fp->code) == BPF_LD &&
662                             convert_bpf_ld_abs(fp, &insn)) {
663                                 *seen_ld_abs = true;
664                                 break;
665                         }
666
667                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
668                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
669                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
670                                 /* Error with exception code on div/mod by 0.
671                                  * For cBPF programs, this was always return 0.
672                                  */
673                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
674                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
675                                 *insn++ = BPF_EXIT_INSN();
676                         }
677
678                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
679                         break;
680
681                 /* Jump transformation cannot use BPF block macros
682                  * everywhere as offset calculation and target updates
683                  * require a bit more work than the rest, i.e. jump
684                  * opcodes map as-is, but offsets need adjustment.
685                  */
686
687 #define BPF_EMIT_JMP                                                    \
688         do {                                                            \
689                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
690                 s32 off;                                                \
691                                                                         \
692                 if (target >= len || target < 0)                        \
693                         goto err;                                       \
694                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
695                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
696                 off -= insn - tmp_insns;                                \
697                 /* Reject anything not fitting into insn->off. */       \
698                 if (off < off_min || off > off_max)                     \
699                         goto err;                                       \
700                 insn->off = off;                                        \
701         } while (0)
702
703                 case BPF_JMP | BPF_JA:
704                         target = i + fp->k + 1;
705                         insn->code = fp->code;
706                         BPF_EMIT_JMP;
707                         break;
708
709                 case BPF_JMP | BPF_JEQ | BPF_K:
710                 case BPF_JMP | BPF_JEQ | BPF_X:
711                 case BPF_JMP | BPF_JSET | BPF_K:
712                 case BPF_JMP | BPF_JSET | BPF_X:
713                 case BPF_JMP | BPF_JGT | BPF_K:
714                 case BPF_JMP | BPF_JGT | BPF_X:
715                 case BPF_JMP | BPF_JGE | BPF_K:
716                 case BPF_JMP | BPF_JGE | BPF_X:
717                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
718                                 /* BPF immediates are signed, zero extend
719                                  * immediate into tmp register and use it
720                                  * in compare insn.
721                                  */
722                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
723
724                                 insn->dst_reg = BPF_REG_A;
725                                 insn->src_reg = BPF_REG_TMP;
726                                 bpf_src = BPF_X;
727                         } else {
728                                 insn->dst_reg = BPF_REG_A;
729                                 insn->imm = fp->k;
730                                 bpf_src = BPF_SRC(fp->code);
731                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
732                         }
733
734                         /* Common case where 'jump_false' is next insn. */
735                         if (fp->jf == 0) {
736                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
737                                 target = i + fp->jt + 1;
738                                 BPF_EMIT_JMP;
739                                 break;
740                         }
741
742                         /* Convert some jumps when 'jump_true' is next insn. */
743                         if (fp->jt == 0) {
744                                 switch (BPF_OP(fp->code)) {
745                                 case BPF_JEQ:
746                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
747                                         break;
748                                 case BPF_JGT:
749                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
750                                         break;
751                                 case BPF_JGE:
752                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
753                                         break;
754                                 default:
755                                         goto jmp_rest;
756                                 }
757
758                                 target = i + fp->jf + 1;
759                                 BPF_EMIT_JMP;
760                                 break;
761                         }
762 jmp_rest:
763                         /* Other jumps are mapped into two insns: Jxx and JA. */
764                         target = i + fp->jt + 1;
765                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
766                         BPF_EMIT_JMP;
767                         insn++;
768
769                         insn->code = BPF_JMP | BPF_JA;
770                         target = i + fp->jf + 1;
771                         BPF_EMIT_JMP;
772                         break;
773
774                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
775                 case BPF_LDX | BPF_MSH | BPF_B: {
776                         struct sock_filter tmp = {
777                                 .code   = BPF_LD | BPF_ABS | BPF_B,
778                                 .k      = fp->k,
779                         };
780
781                         *seen_ld_abs = true;
782
783                         /* X = A */
784                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
785                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
786                         convert_bpf_ld_abs(&tmp, &insn);
787                         insn++;
788                         /* A &= 0xf */
789                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
790                         /* A <<= 2 */
791                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
792                         /* tmp = X */
793                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
794                         /* X = A */
795                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
796                         /* A = tmp */
797                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
798                         break;
799                 }
800                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
801                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
802                  */
803                 case BPF_RET | BPF_A:
804                 case BPF_RET | BPF_K:
805                         if (BPF_RVAL(fp->code) == BPF_K)
806                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
807                                                         0, fp->k);
808                         *insn = BPF_EXIT_INSN();
809                         break;
810
811                 /* Store to stack. */
812                 case BPF_ST:
813                 case BPF_STX:
814                         stack_off = fp->k * 4  + 4;
815                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
816                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
817                                             -stack_off);
818                         /* check_load_and_stores() verifies that classic BPF can
819                          * load from stack only after write, so tracking
820                          * stack_depth for ST|STX insns is enough
821                          */
822                         if (new_prog && new_prog->aux->stack_depth < stack_off)
823                                 new_prog->aux->stack_depth = stack_off;
824                         break;
825
826                 /* Load from stack. */
827                 case BPF_LD | BPF_MEM:
828                 case BPF_LDX | BPF_MEM:
829                         stack_off = fp->k * 4  + 4;
830                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
831                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
832                                             -stack_off);
833                         break;
834
835                 /* A = K or X = K */
836                 case BPF_LD | BPF_IMM:
837                 case BPF_LDX | BPF_IMM:
838                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
839                                               BPF_REG_A : BPF_REG_X, fp->k);
840                         break;
841
842                 /* X = A */
843                 case BPF_MISC | BPF_TAX:
844                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
845                         break;
846
847                 /* A = X */
848                 case BPF_MISC | BPF_TXA:
849                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
850                         break;
851
852                 /* A = skb->len or X = skb->len */
853                 case BPF_LD | BPF_W | BPF_LEN:
854                 case BPF_LDX | BPF_W | BPF_LEN:
855                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
856                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
857                                             offsetof(struct sk_buff, len));
858                         break;
859
860                 /* Access seccomp_data fields. */
861                 case BPF_LDX | BPF_ABS | BPF_W:
862                         /* A = *(u32 *) (ctx + K) */
863                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
864                         break;
865
866                 /* Unknown instruction. */
867                 default:
868                         goto err;
869                 }
870
871                 insn++;
872                 if (new_prog)
873                         memcpy(new_insn, tmp_insns,
874                                sizeof(*insn) * (insn - tmp_insns));
875                 new_insn += insn - tmp_insns;
876         }
877
878         if (!new_prog) {
879                 /* Only calculating new length. */
880                 *new_len = new_insn - first_insn;
881                 if (*seen_ld_abs)
882                         *new_len += 4; /* Prologue bits. */
883                 return 0;
884         }
885
886         pass++;
887         if (new_flen != new_insn - first_insn) {
888                 new_flen = new_insn - first_insn;
889                 if (pass > 2)
890                         goto err;
891                 goto do_pass;
892         }
893
894         kfree(addrs);
895         BUG_ON(*new_len != new_flen);
896         return 0;
897 err:
898         kfree(addrs);
899         return -EINVAL;
900 }
901
902 /* Security:
903  *
904  * As we dont want to clear mem[] array for each packet going through
905  * __bpf_prog_run(), we check that filter loaded by user never try to read
906  * a cell if not previously written, and we check all branches to be sure
907  * a malicious user doesn't try to abuse us.
908  */
909 static int check_load_and_stores(const struct sock_filter *filter, int flen)
910 {
911         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
912         int pc, ret = 0;
913
914         BUILD_BUG_ON(BPF_MEMWORDS > 16);
915
916         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
917         if (!masks)
918                 return -ENOMEM;
919
920         memset(masks, 0xff, flen * sizeof(*masks));
921
922         for (pc = 0; pc < flen; pc++) {
923                 memvalid &= masks[pc];
924
925                 switch (filter[pc].code) {
926                 case BPF_ST:
927                 case BPF_STX:
928                         memvalid |= (1 << filter[pc].k);
929                         break;
930                 case BPF_LD | BPF_MEM:
931                 case BPF_LDX | BPF_MEM:
932                         if (!(memvalid & (1 << filter[pc].k))) {
933                                 ret = -EINVAL;
934                                 goto error;
935                         }
936                         break;
937                 case BPF_JMP | BPF_JA:
938                         /* A jump must set masks on target */
939                         masks[pc + 1 + filter[pc].k] &= memvalid;
940                         memvalid = ~0;
941                         break;
942                 case BPF_JMP | BPF_JEQ | BPF_K:
943                 case BPF_JMP | BPF_JEQ | BPF_X:
944                 case BPF_JMP | BPF_JGE | BPF_K:
945                 case BPF_JMP | BPF_JGE | BPF_X:
946                 case BPF_JMP | BPF_JGT | BPF_K:
947                 case BPF_JMP | BPF_JGT | BPF_X:
948                 case BPF_JMP | BPF_JSET | BPF_K:
949                 case BPF_JMP | BPF_JSET | BPF_X:
950                         /* A jump must set masks on targets */
951                         masks[pc + 1 + filter[pc].jt] &= memvalid;
952                         masks[pc + 1 + filter[pc].jf] &= memvalid;
953                         memvalid = ~0;
954                         break;
955                 }
956         }
957 error:
958         kfree(masks);
959         return ret;
960 }
961
962 static bool chk_code_allowed(u16 code_to_probe)
963 {
964         static const bool codes[] = {
965                 /* 32 bit ALU operations */
966                 [BPF_ALU | BPF_ADD | BPF_K] = true,
967                 [BPF_ALU | BPF_ADD | BPF_X] = true,
968                 [BPF_ALU | BPF_SUB | BPF_K] = true,
969                 [BPF_ALU | BPF_SUB | BPF_X] = true,
970                 [BPF_ALU | BPF_MUL | BPF_K] = true,
971                 [BPF_ALU | BPF_MUL | BPF_X] = true,
972                 [BPF_ALU | BPF_DIV | BPF_K] = true,
973                 [BPF_ALU | BPF_DIV | BPF_X] = true,
974                 [BPF_ALU | BPF_MOD | BPF_K] = true,
975                 [BPF_ALU | BPF_MOD | BPF_X] = true,
976                 [BPF_ALU | BPF_AND | BPF_K] = true,
977                 [BPF_ALU | BPF_AND | BPF_X] = true,
978                 [BPF_ALU | BPF_OR | BPF_K] = true,
979                 [BPF_ALU | BPF_OR | BPF_X] = true,
980                 [BPF_ALU | BPF_XOR | BPF_K] = true,
981                 [BPF_ALU | BPF_XOR | BPF_X] = true,
982                 [BPF_ALU | BPF_LSH | BPF_K] = true,
983                 [BPF_ALU | BPF_LSH | BPF_X] = true,
984                 [BPF_ALU | BPF_RSH | BPF_K] = true,
985                 [BPF_ALU | BPF_RSH | BPF_X] = true,
986                 [BPF_ALU | BPF_NEG] = true,
987                 /* Load instructions */
988                 [BPF_LD | BPF_W | BPF_ABS] = true,
989                 [BPF_LD | BPF_H | BPF_ABS] = true,
990                 [BPF_LD | BPF_B | BPF_ABS] = true,
991                 [BPF_LD | BPF_W | BPF_LEN] = true,
992                 [BPF_LD | BPF_W | BPF_IND] = true,
993                 [BPF_LD | BPF_H | BPF_IND] = true,
994                 [BPF_LD | BPF_B | BPF_IND] = true,
995                 [BPF_LD | BPF_IMM] = true,
996                 [BPF_LD | BPF_MEM] = true,
997                 [BPF_LDX | BPF_W | BPF_LEN] = true,
998                 [BPF_LDX | BPF_B | BPF_MSH] = true,
999                 [BPF_LDX | BPF_IMM] = true,
1000                 [BPF_LDX | BPF_MEM] = true,
1001                 /* Store instructions */
1002                 [BPF_ST] = true,
1003                 [BPF_STX] = true,
1004                 /* Misc instructions */
1005                 [BPF_MISC | BPF_TAX] = true,
1006                 [BPF_MISC | BPF_TXA] = true,
1007                 /* Return instructions */
1008                 [BPF_RET | BPF_K] = true,
1009                 [BPF_RET | BPF_A] = true,
1010                 /* Jump instructions */
1011                 [BPF_JMP | BPF_JA] = true,
1012                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1013                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1014                 [BPF_JMP | BPF_JGE | BPF_K] = true,
1015                 [BPF_JMP | BPF_JGE | BPF_X] = true,
1016                 [BPF_JMP | BPF_JGT | BPF_K] = true,
1017                 [BPF_JMP | BPF_JGT | BPF_X] = true,
1018                 [BPF_JMP | BPF_JSET | BPF_K] = true,
1019                 [BPF_JMP | BPF_JSET | BPF_X] = true,
1020         };
1021
1022         if (code_to_probe >= ARRAY_SIZE(codes))
1023                 return false;
1024
1025         return codes[code_to_probe];
1026 }
1027
1028 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1029                                 unsigned int flen)
1030 {
1031         if (filter == NULL)
1032                 return false;
1033         if (flen == 0 || flen > BPF_MAXINSNS)
1034                 return false;
1035
1036         return true;
1037 }
1038
1039 /**
1040  *      bpf_check_classic - verify socket filter code
1041  *      @filter: filter to verify
1042  *      @flen: length of filter
1043  *
1044  * Check the user's filter code. If we let some ugly
1045  * filter code slip through kaboom! The filter must contain
1046  * no references or jumps that are out of range, no illegal
1047  * instructions, and must end with a RET instruction.
1048  *
1049  * All jumps are forward as they are not signed.
1050  *
1051  * Returns 0 if the rule set is legal or -EINVAL if not.
1052  */
1053 static int bpf_check_classic(const struct sock_filter *filter,
1054                              unsigned int flen)
1055 {
1056         bool anc_found;
1057         int pc;
1058
1059         /* Check the filter code now */
1060         for (pc = 0; pc < flen; pc++) {
1061                 const struct sock_filter *ftest = &filter[pc];
1062
1063                 /* May we actually operate on this code? */
1064                 if (!chk_code_allowed(ftest->code))
1065                         return -EINVAL;
1066
1067                 /* Some instructions need special checks */
1068                 switch (ftest->code) {
1069                 case BPF_ALU | BPF_DIV | BPF_K:
1070                 case BPF_ALU | BPF_MOD | BPF_K:
1071                         /* Check for division by zero */
1072                         if (ftest->k == 0)
1073                                 return -EINVAL;
1074                         break;
1075                 case BPF_ALU | BPF_LSH | BPF_K:
1076                 case BPF_ALU | BPF_RSH | BPF_K:
1077                         if (ftest->k >= 32)
1078                                 return -EINVAL;
1079                         break;
1080                 case BPF_LD | BPF_MEM:
1081                 case BPF_LDX | BPF_MEM:
1082                 case BPF_ST:
1083                 case BPF_STX:
1084                         /* Check for invalid memory addresses */
1085                         if (ftest->k >= BPF_MEMWORDS)
1086                                 return -EINVAL;
1087                         break;
1088                 case BPF_JMP | BPF_JA:
1089                         /* Note, the large ftest->k might cause loops.
1090                          * Compare this with conditional jumps below,
1091                          * where offsets are limited. --ANK (981016)
1092                          */
1093                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1094                                 return -EINVAL;
1095                         break;
1096                 case BPF_JMP | BPF_JEQ | BPF_K:
1097                 case BPF_JMP | BPF_JEQ | BPF_X:
1098                 case BPF_JMP | BPF_JGE | BPF_K:
1099                 case BPF_JMP | BPF_JGE | BPF_X:
1100                 case BPF_JMP | BPF_JGT | BPF_K:
1101                 case BPF_JMP | BPF_JGT | BPF_X:
1102                 case BPF_JMP | BPF_JSET | BPF_K:
1103                 case BPF_JMP | BPF_JSET | BPF_X:
1104                         /* Both conditionals must be safe */
1105                         if (pc + ftest->jt + 1 >= flen ||
1106                             pc + ftest->jf + 1 >= flen)
1107                                 return -EINVAL;
1108                         break;
1109                 case BPF_LD | BPF_W | BPF_ABS:
1110                 case BPF_LD | BPF_H | BPF_ABS:
1111                 case BPF_LD | BPF_B | BPF_ABS:
1112                         anc_found = false;
1113                         if (bpf_anc_helper(ftest) & BPF_ANC)
1114                                 anc_found = true;
1115                         /* Ancillary operation unknown or unsupported */
1116                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1117                                 return -EINVAL;
1118                 }
1119         }
1120
1121         /* Last instruction must be a RET code */
1122         switch (filter[flen - 1].code) {
1123         case BPF_RET | BPF_K:
1124         case BPF_RET | BPF_A:
1125                 return check_load_and_stores(filter, flen);
1126         }
1127
1128         return -EINVAL;
1129 }
1130
1131 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1132                                       const struct sock_fprog *fprog)
1133 {
1134         unsigned int fsize = bpf_classic_proglen(fprog);
1135         struct sock_fprog_kern *fkprog;
1136
1137         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1138         if (!fp->orig_prog)
1139                 return -ENOMEM;
1140
1141         fkprog = fp->orig_prog;
1142         fkprog->len = fprog->len;
1143
1144         fkprog->filter = kmemdup(fp->insns, fsize,
1145                                  GFP_KERNEL | __GFP_NOWARN);
1146         if (!fkprog->filter) {
1147                 kfree(fp->orig_prog);
1148                 return -ENOMEM;
1149         }
1150
1151         return 0;
1152 }
1153
1154 static void bpf_release_orig_filter(struct bpf_prog *fp)
1155 {
1156         struct sock_fprog_kern *fprog = fp->orig_prog;
1157
1158         if (fprog) {
1159                 kfree(fprog->filter);
1160                 kfree(fprog);
1161         }
1162 }
1163
1164 static void __bpf_prog_release(struct bpf_prog *prog)
1165 {
1166         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1167                 bpf_prog_put(prog);
1168         } else {
1169                 bpf_release_orig_filter(prog);
1170                 bpf_prog_free(prog);
1171         }
1172 }
1173
1174 static void __sk_filter_release(struct sk_filter *fp)
1175 {
1176         __bpf_prog_release(fp->prog);
1177         kfree(fp);
1178 }
1179
1180 /**
1181  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1182  *      @rcu: rcu_head that contains the sk_filter to free
1183  */
1184 static void sk_filter_release_rcu(struct rcu_head *rcu)
1185 {
1186         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1187
1188         __sk_filter_release(fp);
1189 }
1190
1191 /**
1192  *      sk_filter_release - release a socket filter
1193  *      @fp: filter to remove
1194  *
1195  *      Remove a filter from a socket and release its resources.
1196  */
1197 static void sk_filter_release(struct sk_filter *fp)
1198 {
1199         if (refcount_dec_and_test(&fp->refcnt))
1200                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1201 }
1202
1203 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1204 {
1205         u32 filter_size = bpf_prog_size(fp->prog->len);
1206
1207         atomic_sub(filter_size, &sk->sk_omem_alloc);
1208         sk_filter_release(fp);
1209 }
1210
1211 /* try to charge the socket memory if there is space available
1212  * return true on success
1213  */
1214 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1215 {
1216         u32 filter_size = bpf_prog_size(fp->prog->len);
1217
1218         /* same check as in sock_kmalloc() */
1219         if (filter_size <= sysctl_optmem_max &&
1220             atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1221                 atomic_add(filter_size, &sk->sk_omem_alloc);
1222                 return true;
1223         }
1224         return false;
1225 }
1226
1227 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1228 {
1229         if (!refcount_inc_not_zero(&fp->refcnt))
1230                 return false;
1231
1232         if (!__sk_filter_charge(sk, fp)) {
1233                 sk_filter_release(fp);
1234                 return false;
1235         }
1236         return true;
1237 }
1238
1239 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1240 {
1241         struct sock_filter *old_prog;
1242         struct bpf_prog *old_fp;
1243         int err, new_len, old_len = fp->len;
1244         bool seen_ld_abs = false;
1245
1246         /* We are free to overwrite insns et al right here as it won't be used at
1247          * this point in time anymore internally after the migration to the eBPF
1248          * instruction representation.
1249          */
1250         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1251                      sizeof(struct bpf_insn));
1252
1253         /* Conversion cannot happen on overlapping memory areas,
1254          * so we need to keep the user BPF around until the 2nd
1255          * pass. At this time, the user BPF is stored in fp->insns.
1256          */
1257         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1258                            GFP_KERNEL | __GFP_NOWARN);
1259         if (!old_prog) {
1260                 err = -ENOMEM;
1261                 goto out_err;
1262         }
1263
1264         /* 1st pass: calculate the new program length. */
1265         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1266                                  &seen_ld_abs);
1267         if (err)
1268                 goto out_err_free;
1269
1270         /* Expand fp for appending the new filter representation. */
1271         old_fp = fp;
1272         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1273         if (!fp) {
1274                 /* The old_fp is still around in case we couldn't
1275                  * allocate new memory, so uncharge on that one.
1276                  */
1277                 fp = old_fp;
1278                 err = -ENOMEM;
1279                 goto out_err_free;
1280         }
1281
1282         fp->len = new_len;
1283
1284         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1285         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1286                                  &seen_ld_abs);
1287         if (err)
1288                 /* 2nd bpf_convert_filter() can fail only if it fails
1289                  * to allocate memory, remapping must succeed. Note,
1290                  * that at this time old_fp has already been released
1291                  * by krealloc().
1292                  */
1293                 goto out_err_free;
1294
1295         fp = bpf_prog_select_runtime(fp, &err);
1296         if (err)
1297                 goto out_err_free;
1298
1299         kfree(old_prog);
1300         return fp;
1301
1302 out_err_free:
1303         kfree(old_prog);
1304 out_err:
1305         __bpf_prog_release(fp);
1306         return ERR_PTR(err);
1307 }
1308
1309 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1310                                            bpf_aux_classic_check_t trans)
1311 {
1312         int err;
1313
1314         fp->bpf_func = NULL;
1315         fp->jited = 0;
1316
1317         err = bpf_check_classic(fp->insns, fp->len);
1318         if (err) {
1319                 __bpf_prog_release(fp);
1320                 return ERR_PTR(err);
1321         }
1322
1323         /* There might be additional checks and transformations
1324          * needed on classic filters, f.e. in case of seccomp.
1325          */
1326         if (trans) {
1327                 err = trans(fp->insns, fp->len);
1328                 if (err) {
1329                         __bpf_prog_release(fp);
1330                         return ERR_PTR(err);
1331                 }
1332         }
1333
1334         /* Probe if we can JIT compile the filter and if so, do
1335          * the compilation of the filter.
1336          */
1337         bpf_jit_compile(fp);
1338
1339         /* JIT compiler couldn't process this filter, so do the eBPF translation
1340          * for the optimized interpreter.
1341          */
1342         if (!fp->jited)
1343                 fp = bpf_migrate_filter(fp);
1344
1345         return fp;
1346 }
1347
1348 /**
1349  *      bpf_prog_create - create an unattached filter
1350  *      @pfp: the unattached filter that is created
1351  *      @fprog: the filter program
1352  *
1353  * Create a filter independent of any socket. We first run some
1354  * sanity checks on it to make sure it does not explode on us later.
1355  * If an error occurs or there is insufficient memory for the filter
1356  * a negative errno code is returned. On success the return is zero.
1357  */
1358 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1359 {
1360         unsigned int fsize = bpf_classic_proglen(fprog);
1361         struct bpf_prog *fp;
1362
1363         /* Make sure new filter is there and in the right amounts. */
1364         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1365                 return -EINVAL;
1366
1367         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1368         if (!fp)
1369                 return -ENOMEM;
1370
1371         memcpy(fp->insns, fprog->filter, fsize);
1372
1373         fp->len = fprog->len;
1374         /* Since unattached filters are not copied back to user
1375          * space through sk_get_filter(), we do not need to hold
1376          * a copy here, and can spare us the work.
1377          */
1378         fp->orig_prog = NULL;
1379
1380         /* bpf_prepare_filter() already takes care of freeing
1381          * memory in case something goes wrong.
1382          */
1383         fp = bpf_prepare_filter(fp, NULL);
1384         if (IS_ERR(fp))
1385                 return PTR_ERR(fp);
1386
1387         *pfp = fp;
1388         return 0;
1389 }
1390 EXPORT_SYMBOL_GPL(bpf_prog_create);
1391
1392 /**
1393  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1394  *      @pfp: the unattached filter that is created
1395  *      @fprog: the filter program
1396  *      @trans: post-classic verifier transformation handler
1397  *      @save_orig: save classic BPF program
1398  *
1399  * This function effectively does the same as bpf_prog_create(), only
1400  * that it builds up its insns buffer from user space provided buffer.
1401  * It also allows for passing a bpf_aux_classic_check_t handler.
1402  */
1403 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1404                               bpf_aux_classic_check_t trans, bool save_orig)
1405 {
1406         unsigned int fsize = bpf_classic_proglen(fprog);
1407         struct bpf_prog *fp;
1408         int err;
1409
1410         /* Make sure new filter is there and in the right amounts. */
1411         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1412                 return -EINVAL;
1413
1414         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1415         if (!fp)
1416                 return -ENOMEM;
1417
1418         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1419                 __bpf_prog_free(fp);
1420                 return -EFAULT;
1421         }
1422
1423         fp->len = fprog->len;
1424         fp->orig_prog = NULL;
1425
1426         if (save_orig) {
1427                 err = bpf_prog_store_orig_filter(fp, fprog);
1428                 if (err) {
1429                         __bpf_prog_free(fp);
1430                         return -ENOMEM;
1431                 }
1432         }
1433
1434         /* bpf_prepare_filter() already takes care of freeing
1435          * memory in case something goes wrong.
1436          */
1437         fp = bpf_prepare_filter(fp, trans);
1438         if (IS_ERR(fp))
1439                 return PTR_ERR(fp);
1440
1441         *pfp = fp;
1442         return 0;
1443 }
1444 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1445
1446 void bpf_prog_destroy(struct bpf_prog *fp)
1447 {
1448         __bpf_prog_release(fp);
1449 }
1450 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1451
1452 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1453 {
1454         struct sk_filter *fp, *old_fp;
1455
1456         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1457         if (!fp)
1458                 return -ENOMEM;
1459
1460         fp->prog = prog;
1461
1462         if (!__sk_filter_charge(sk, fp)) {
1463                 kfree(fp);
1464                 return -ENOMEM;
1465         }
1466         refcount_set(&fp->refcnt, 1);
1467
1468         old_fp = rcu_dereference_protected(sk->sk_filter,
1469                                            lockdep_sock_is_held(sk));
1470         rcu_assign_pointer(sk->sk_filter, fp);
1471
1472         if (old_fp)
1473                 sk_filter_uncharge(sk, old_fp);
1474
1475         return 0;
1476 }
1477
1478 static
1479 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1480 {
1481         unsigned int fsize = bpf_classic_proglen(fprog);
1482         struct bpf_prog *prog;
1483         int err;
1484
1485         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1486                 return ERR_PTR(-EPERM);
1487
1488         /* Make sure new filter is there and in the right amounts. */
1489         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1490                 return ERR_PTR(-EINVAL);
1491
1492         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1493         if (!prog)
1494                 return ERR_PTR(-ENOMEM);
1495
1496         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1497                 __bpf_prog_free(prog);
1498                 return ERR_PTR(-EFAULT);
1499         }
1500
1501         prog->len = fprog->len;
1502
1503         err = bpf_prog_store_orig_filter(prog, fprog);
1504         if (err) {
1505                 __bpf_prog_free(prog);
1506                 return ERR_PTR(-ENOMEM);
1507         }
1508
1509         /* bpf_prepare_filter() already takes care of freeing
1510          * memory in case something goes wrong.
1511          */
1512         return bpf_prepare_filter(prog, NULL);
1513 }
1514
1515 /**
1516  *      sk_attach_filter - attach a socket filter
1517  *      @fprog: the filter program
1518  *      @sk: the socket to use
1519  *
1520  * Attach the user's filter code. We first run some sanity checks on
1521  * it to make sure it does not explode on us later. If an error
1522  * occurs or there is insufficient memory for the filter a negative
1523  * errno code is returned. On success the return is zero.
1524  */
1525 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1526 {
1527         struct bpf_prog *prog = __get_filter(fprog, sk);
1528         int err;
1529
1530         if (IS_ERR(prog))
1531                 return PTR_ERR(prog);
1532
1533         err = __sk_attach_prog(prog, sk);
1534         if (err < 0) {
1535                 __bpf_prog_release(prog);
1536                 return err;
1537         }
1538
1539         return 0;
1540 }
1541 EXPORT_SYMBOL_GPL(sk_attach_filter);
1542
1543 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1544 {
1545         struct bpf_prog *prog = __get_filter(fprog, sk);
1546         int err;
1547
1548         if (IS_ERR(prog))
1549                 return PTR_ERR(prog);
1550
1551         if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1552                 err = -ENOMEM;
1553         else
1554                 err = reuseport_attach_prog(sk, prog);
1555
1556         if (err)
1557                 __bpf_prog_release(prog);
1558
1559         return err;
1560 }
1561
1562 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1563 {
1564         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1565                 return ERR_PTR(-EPERM);
1566
1567         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1568 }
1569
1570 int sk_attach_bpf(u32 ufd, struct sock *sk)
1571 {
1572         struct bpf_prog *prog = __get_bpf(ufd, sk);
1573         int err;
1574
1575         if (IS_ERR(prog))
1576                 return PTR_ERR(prog);
1577
1578         err = __sk_attach_prog(prog, sk);
1579         if (err < 0) {
1580                 bpf_prog_put(prog);
1581                 return err;
1582         }
1583
1584         return 0;
1585 }
1586
1587 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1588 {
1589         struct bpf_prog *prog;
1590         int err;
1591
1592         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1593                 return -EPERM;
1594
1595         prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1596         if (PTR_ERR(prog) == -EINVAL)
1597                 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1598         if (IS_ERR(prog))
1599                 return PTR_ERR(prog);
1600
1601         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1602                 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1603                  * bpf prog (e.g. sockmap).  It depends on the
1604                  * limitation imposed by bpf_prog_load().
1605                  * Hence, sysctl_optmem_max is not checked.
1606                  */
1607                 if ((sk->sk_type != SOCK_STREAM &&
1608                      sk->sk_type != SOCK_DGRAM) ||
1609                     (sk->sk_protocol != IPPROTO_UDP &&
1610                      sk->sk_protocol != IPPROTO_TCP) ||
1611                     (sk->sk_family != AF_INET &&
1612                      sk->sk_family != AF_INET6)) {
1613                         err = -ENOTSUPP;
1614                         goto err_prog_put;
1615                 }
1616         } else {
1617                 /* BPF_PROG_TYPE_SOCKET_FILTER */
1618                 if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1619                         err = -ENOMEM;
1620                         goto err_prog_put;
1621                 }
1622         }
1623
1624         err = reuseport_attach_prog(sk, prog);
1625 err_prog_put:
1626         if (err)
1627                 bpf_prog_put(prog);
1628
1629         return err;
1630 }
1631
1632 void sk_reuseport_prog_free(struct bpf_prog *prog)
1633 {
1634         if (!prog)
1635                 return;
1636
1637         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1638                 bpf_prog_put(prog);
1639         else
1640                 bpf_prog_destroy(prog);
1641 }
1642
1643 struct bpf_scratchpad {
1644         union {
1645                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1646                 u8     buff[MAX_BPF_STACK];
1647         };
1648 };
1649
1650 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1651
1652 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1653                                           unsigned int write_len)
1654 {
1655         return skb_ensure_writable(skb, write_len);
1656 }
1657
1658 static inline int bpf_try_make_writable(struct sk_buff *skb,
1659                                         unsigned int write_len)
1660 {
1661         int err = __bpf_try_make_writable(skb, write_len);
1662
1663         bpf_compute_data_pointers(skb);
1664         return err;
1665 }
1666
1667 static int bpf_try_make_head_writable(struct sk_buff *skb)
1668 {
1669         return bpf_try_make_writable(skb, skb_headlen(skb));
1670 }
1671
1672 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1673 {
1674         if (skb_at_tc_ingress(skb))
1675                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1676 }
1677
1678 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1679 {
1680         if (skb_at_tc_ingress(skb))
1681                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1682 }
1683
1684 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1685            const void *, from, u32, len, u64, flags)
1686 {
1687         void *ptr;
1688
1689         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1690                 return -EINVAL;
1691         if (unlikely(offset > INT_MAX))
1692                 return -EFAULT;
1693         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1694                 return -EFAULT;
1695
1696         ptr = skb->data + offset;
1697         if (flags & BPF_F_RECOMPUTE_CSUM)
1698                 __skb_postpull_rcsum(skb, ptr, len, offset);
1699
1700         memcpy(ptr, from, len);
1701
1702         if (flags & BPF_F_RECOMPUTE_CSUM)
1703                 __skb_postpush_rcsum(skb, ptr, len, offset);
1704         if (flags & BPF_F_INVALIDATE_HASH)
1705                 skb_clear_hash(skb);
1706
1707         return 0;
1708 }
1709
1710 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1711         .func           = bpf_skb_store_bytes,
1712         .gpl_only       = false,
1713         .ret_type       = RET_INTEGER,
1714         .arg1_type      = ARG_PTR_TO_CTX,
1715         .arg2_type      = ARG_ANYTHING,
1716         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
1717         .arg4_type      = ARG_CONST_SIZE,
1718         .arg5_type      = ARG_ANYTHING,
1719 };
1720
1721 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1722            void *, to, u32, len)
1723 {
1724         void *ptr;
1725
1726         if (unlikely(offset > INT_MAX))
1727                 goto err_clear;
1728
1729         ptr = skb_header_pointer(skb, offset, len, to);
1730         if (unlikely(!ptr))
1731                 goto err_clear;
1732         if (ptr != to)
1733                 memcpy(to, ptr, len);
1734
1735         return 0;
1736 err_clear:
1737         memset(to, 0, len);
1738         return -EFAULT;
1739 }
1740
1741 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1742         .func           = bpf_skb_load_bytes,
1743         .gpl_only       = false,
1744         .ret_type       = RET_INTEGER,
1745         .arg1_type      = ARG_PTR_TO_CTX,
1746         .arg2_type      = ARG_ANYTHING,
1747         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1748         .arg4_type      = ARG_CONST_SIZE,
1749 };
1750
1751 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1752            const struct bpf_flow_dissector *, ctx, u32, offset,
1753            void *, to, u32, len)
1754 {
1755         void *ptr;
1756
1757         if (unlikely(offset > 0xffff))
1758                 goto err_clear;
1759
1760         if (unlikely(!ctx->skb))
1761                 goto err_clear;
1762
1763         ptr = skb_header_pointer(ctx->skb, offset, len, to);
1764         if (unlikely(!ptr))
1765                 goto err_clear;
1766         if (ptr != to)
1767                 memcpy(to, ptr, len);
1768
1769         return 0;
1770 err_clear:
1771         memset(to, 0, len);
1772         return -EFAULT;
1773 }
1774
1775 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1776         .func           = bpf_flow_dissector_load_bytes,
1777         .gpl_only       = false,
1778         .ret_type       = RET_INTEGER,
1779         .arg1_type      = ARG_PTR_TO_CTX,
1780         .arg2_type      = ARG_ANYTHING,
1781         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1782         .arg4_type      = ARG_CONST_SIZE,
1783 };
1784
1785 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1786            u32, offset, void *, to, u32, len, u32, start_header)
1787 {
1788         u8 *end = skb_tail_pointer(skb);
1789         u8 *start, *ptr;
1790
1791         if (unlikely(offset > 0xffff))
1792                 goto err_clear;
1793
1794         switch (start_header) {
1795         case BPF_HDR_START_MAC:
1796                 if (unlikely(!skb_mac_header_was_set(skb)))
1797                         goto err_clear;
1798                 start = skb_mac_header(skb);
1799                 break;
1800         case BPF_HDR_START_NET:
1801                 start = skb_network_header(skb);
1802                 break;
1803         default:
1804                 goto err_clear;
1805         }
1806
1807         ptr = start + offset;
1808
1809         if (likely(ptr + len <= end)) {
1810                 memcpy(to, ptr, len);
1811                 return 0;
1812         }
1813
1814 err_clear:
1815         memset(to, 0, len);
1816         return -EFAULT;
1817 }
1818
1819 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1820         .func           = bpf_skb_load_bytes_relative,
1821         .gpl_only       = false,
1822         .ret_type       = RET_INTEGER,
1823         .arg1_type      = ARG_PTR_TO_CTX,
1824         .arg2_type      = ARG_ANYTHING,
1825         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1826         .arg4_type      = ARG_CONST_SIZE,
1827         .arg5_type      = ARG_ANYTHING,
1828 };
1829
1830 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1831 {
1832         /* Idea is the following: should the needed direct read/write
1833          * test fail during runtime, we can pull in more data and redo
1834          * again, since implicitly, we invalidate previous checks here.
1835          *
1836          * Or, since we know how much we need to make read/writeable,
1837          * this can be done once at the program beginning for direct
1838          * access case. By this we overcome limitations of only current
1839          * headroom being accessible.
1840          */
1841         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1842 }
1843
1844 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1845         .func           = bpf_skb_pull_data,
1846         .gpl_only       = false,
1847         .ret_type       = RET_INTEGER,
1848         .arg1_type      = ARG_PTR_TO_CTX,
1849         .arg2_type      = ARG_ANYTHING,
1850 };
1851
1852 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1853 {
1854         return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1855 }
1856
1857 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1858         .func           = bpf_sk_fullsock,
1859         .gpl_only       = false,
1860         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1861         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1862 };
1863
1864 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1865                                            unsigned int write_len)
1866 {
1867         return __bpf_try_make_writable(skb, write_len);
1868 }
1869
1870 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1871 {
1872         /* Idea is the following: should the needed direct read/write
1873          * test fail during runtime, we can pull in more data and redo
1874          * again, since implicitly, we invalidate previous checks here.
1875          *
1876          * Or, since we know how much we need to make read/writeable,
1877          * this can be done once at the program beginning for direct
1878          * access case. By this we overcome limitations of only current
1879          * headroom being accessible.
1880          */
1881         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1882 }
1883
1884 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1885         .func           = sk_skb_pull_data,
1886         .gpl_only       = false,
1887         .ret_type       = RET_INTEGER,
1888         .arg1_type      = ARG_PTR_TO_CTX,
1889         .arg2_type      = ARG_ANYTHING,
1890 };
1891
1892 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1893            u64, from, u64, to, u64, flags)
1894 {
1895         __sum16 *ptr;
1896
1897         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1898                 return -EINVAL;
1899         if (unlikely(offset > 0xffff || offset & 1))
1900                 return -EFAULT;
1901         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1902                 return -EFAULT;
1903
1904         ptr = (__sum16 *)(skb->data + offset);
1905         switch (flags & BPF_F_HDR_FIELD_MASK) {
1906         case 0:
1907                 if (unlikely(from != 0))
1908                         return -EINVAL;
1909
1910                 csum_replace_by_diff(ptr, to);
1911                 break;
1912         case 2:
1913                 csum_replace2(ptr, from, to);
1914                 break;
1915         case 4:
1916                 csum_replace4(ptr, from, to);
1917                 break;
1918         default:
1919                 return -EINVAL;
1920         }
1921
1922         return 0;
1923 }
1924
1925 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1926         .func           = bpf_l3_csum_replace,
1927         .gpl_only       = false,
1928         .ret_type       = RET_INTEGER,
1929         .arg1_type      = ARG_PTR_TO_CTX,
1930         .arg2_type      = ARG_ANYTHING,
1931         .arg3_type      = ARG_ANYTHING,
1932         .arg4_type      = ARG_ANYTHING,
1933         .arg5_type      = ARG_ANYTHING,
1934 };
1935
1936 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1937            u64, from, u64, to, u64, flags)
1938 {
1939         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1940         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1941         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1942         __sum16 *ptr;
1943
1944         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1945                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1946                 return -EINVAL;
1947         if (unlikely(offset > 0xffff || offset & 1))
1948                 return -EFAULT;
1949         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1950                 return -EFAULT;
1951
1952         ptr = (__sum16 *)(skb->data + offset);
1953         if (is_mmzero && !do_mforce && !*ptr)
1954                 return 0;
1955
1956         switch (flags & BPF_F_HDR_FIELD_MASK) {
1957         case 0:
1958                 if (unlikely(from != 0))
1959                         return -EINVAL;
1960
1961                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1962                 break;
1963         case 2:
1964                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1965                 break;
1966         case 4:
1967                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1968                 break;
1969         default:
1970                 return -EINVAL;
1971         }
1972
1973         if (is_mmzero && !*ptr)
1974                 *ptr = CSUM_MANGLED_0;
1975         return 0;
1976 }
1977
1978 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1979         .func           = bpf_l4_csum_replace,
1980         .gpl_only       = false,
1981         .ret_type       = RET_INTEGER,
1982         .arg1_type      = ARG_PTR_TO_CTX,
1983         .arg2_type      = ARG_ANYTHING,
1984         .arg3_type      = ARG_ANYTHING,
1985         .arg4_type      = ARG_ANYTHING,
1986         .arg5_type      = ARG_ANYTHING,
1987 };
1988
1989 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1990            __be32 *, to, u32, to_size, __wsum, seed)
1991 {
1992         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1993         u32 diff_size = from_size + to_size;
1994         int i, j = 0;
1995
1996         /* This is quite flexible, some examples:
1997          *
1998          * from_size == 0, to_size > 0,  seed := csum --> pushing data
1999          * from_size > 0,  to_size == 0, seed := csum --> pulling data
2000          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2001          *
2002          * Even for diffing, from_size and to_size don't need to be equal.
2003          */
2004         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2005                      diff_size > sizeof(sp->diff)))
2006                 return -EINVAL;
2007
2008         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2009                 sp->diff[j] = ~from[i];
2010         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2011                 sp->diff[j] = to[i];
2012
2013         return csum_partial(sp->diff, diff_size, seed);
2014 }
2015
2016 static const struct bpf_func_proto bpf_csum_diff_proto = {
2017         .func           = bpf_csum_diff,
2018         .gpl_only       = false,
2019         .pkt_access     = true,
2020         .ret_type       = RET_INTEGER,
2021         .arg1_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2022         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2023         .arg3_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2024         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2025         .arg5_type      = ARG_ANYTHING,
2026 };
2027
2028 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2029 {
2030         /* The interface is to be used in combination with bpf_csum_diff()
2031          * for direct packet writes. csum rotation for alignment as well
2032          * as emulating csum_sub() can be done from the eBPF program.
2033          */
2034         if (skb->ip_summed == CHECKSUM_COMPLETE)
2035                 return (skb->csum = csum_add(skb->csum, csum));
2036
2037         return -ENOTSUPP;
2038 }
2039
2040 static const struct bpf_func_proto bpf_csum_update_proto = {
2041         .func           = bpf_csum_update,
2042         .gpl_only       = false,
2043         .ret_type       = RET_INTEGER,
2044         .arg1_type      = ARG_PTR_TO_CTX,
2045         .arg2_type      = ARG_ANYTHING,
2046 };
2047
2048 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2049 {
2050         /* The interface is to be used in combination with bpf_skb_adjust_room()
2051          * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2052          * is passed as flags, for example.
2053          */
2054         switch (level) {
2055         case BPF_CSUM_LEVEL_INC:
2056                 __skb_incr_checksum_unnecessary(skb);
2057                 break;
2058         case BPF_CSUM_LEVEL_DEC:
2059                 __skb_decr_checksum_unnecessary(skb);
2060                 break;
2061         case BPF_CSUM_LEVEL_RESET:
2062                 __skb_reset_checksum_unnecessary(skb);
2063                 break;
2064         case BPF_CSUM_LEVEL_QUERY:
2065                 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2066                        skb->csum_level : -EACCES;
2067         default:
2068                 return -EINVAL;
2069         }
2070
2071         return 0;
2072 }
2073
2074 static const struct bpf_func_proto bpf_csum_level_proto = {
2075         .func           = bpf_csum_level,
2076         .gpl_only       = false,
2077         .ret_type       = RET_INTEGER,
2078         .arg1_type      = ARG_PTR_TO_CTX,
2079         .arg2_type      = ARG_ANYTHING,
2080 };
2081
2082 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2083 {
2084         return dev_forward_skb_nomtu(dev, skb);
2085 }
2086
2087 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2088                                       struct sk_buff *skb)
2089 {
2090         int ret = ____dev_forward_skb(dev, skb, false);
2091
2092         if (likely(!ret)) {
2093                 skb->dev = dev;
2094                 ret = netif_rx(skb);
2095         }
2096
2097         return ret;
2098 }
2099
2100 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2101 {
2102         int ret;
2103
2104         if (dev_xmit_recursion()) {
2105                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2106                 kfree_skb(skb);
2107                 return -ENETDOWN;
2108         }
2109
2110         skb->dev = dev;
2111         skb_clear_tstamp(skb);
2112
2113         dev_xmit_recursion_inc();
2114         ret = dev_queue_xmit(skb);
2115         dev_xmit_recursion_dec();
2116
2117         return ret;
2118 }
2119
2120 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2121                                  u32 flags)
2122 {
2123         unsigned int mlen = skb_network_offset(skb);
2124
2125         if (mlen) {
2126                 __skb_pull(skb, mlen);
2127
2128                 /* At ingress, the mac header has already been pulled once.
2129                  * At egress, skb_pospull_rcsum has to be done in case that
2130                  * the skb is originated from ingress (i.e. a forwarded skb)
2131                  * to ensure that rcsum starts at net header.
2132                  */
2133                 if (!skb_at_tc_ingress(skb))
2134                         skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2135         }
2136         skb_pop_mac_header(skb);
2137         skb_reset_mac_len(skb);
2138         return flags & BPF_F_INGRESS ?
2139                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2140 }
2141
2142 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2143                                  u32 flags)
2144 {
2145         /* Verify that a link layer header is carried */
2146         if (unlikely(skb->mac_header >= skb->network_header)) {
2147                 kfree_skb(skb);
2148                 return -ERANGE;
2149         }
2150
2151         bpf_push_mac_rcsum(skb);
2152         return flags & BPF_F_INGRESS ?
2153                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2154 }
2155
2156 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2157                           u32 flags)
2158 {
2159         if (dev_is_mac_header_xmit(dev))
2160                 return __bpf_redirect_common(skb, dev, flags);
2161         else
2162                 return __bpf_redirect_no_mac(skb, dev, flags);
2163 }
2164
2165 #if IS_ENABLED(CONFIG_IPV6)
2166 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2167                             struct net_device *dev, struct bpf_nh_params *nh)
2168 {
2169         u32 hh_len = LL_RESERVED_SPACE(dev);
2170         const struct in6_addr *nexthop;
2171         struct dst_entry *dst = NULL;
2172         struct neighbour *neigh;
2173
2174         if (dev_xmit_recursion()) {
2175                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2176                 goto out_drop;
2177         }
2178
2179         skb->dev = dev;
2180         skb_clear_tstamp(skb);
2181
2182         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2183                 skb = skb_expand_head(skb, hh_len);
2184                 if (!skb)
2185                         return -ENOMEM;
2186         }
2187
2188         rcu_read_lock_bh();
2189         if (!nh) {
2190                 dst = skb_dst(skb);
2191                 nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2192                                       &ipv6_hdr(skb)->daddr);
2193         } else {
2194                 nexthop = &nh->ipv6_nh;
2195         }
2196         neigh = ip_neigh_gw6(dev, nexthop);
2197         if (likely(!IS_ERR(neigh))) {
2198                 int ret;
2199
2200                 sock_confirm_neigh(skb, neigh);
2201                 dev_xmit_recursion_inc();
2202                 ret = neigh_output(neigh, skb, false);
2203                 dev_xmit_recursion_dec();
2204                 rcu_read_unlock_bh();
2205                 return ret;
2206         }
2207         rcu_read_unlock_bh();
2208         if (dst)
2209                 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2210 out_drop:
2211         kfree_skb(skb);
2212         return -ENETDOWN;
2213 }
2214
2215 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2216                                    struct bpf_nh_params *nh)
2217 {
2218         const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2219         struct net *net = dev_net(dev);
2220         int err, ret = NET_XMIT_DROP;
2221
2222         if (!nh) {
2223                 struct dst_entry *dst;
2224                 struct flowi6 fl6 = {
2225                         .flowi6_flags = FLOWI_FLAG_ANYSRC,
2226                         .flowi6_mark  = skb->mark,
2227                         .flowlabel    = ip6_flowinfo(ip6h),
2228                         .flowi6_oif   = dev->ifindex,
2229                         .flowi6_proto = ip6h->nexthdr,
2230                         .daddr        = ip6h->daddr,
2231                         .saddr        = ip6h->saddr,
2232                 };
2233
2234                 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2235                 if (IS_ERR(dst))
2236                         goto out_drop;
2237
2238                 skb_dst_set(skb, dst);
2239         } else if (nh->nh_family != AF_INET6) {
2240                 goto out_drop;
2241         }
2242
2243         err = bpf_out_neigh_v6(net, skb, dev, nh);
2244         if (unlikely(net_xmit_eval(err)))
2245                 dev->stats.tx_errors++;
2246         else
2247                 ret = NET_XMIT_SUCCESS;
2248         goto out_xmit;
2249 out_drop:
2250         dev->stats.tx_errors++;
2251         kfree_skb(skb);
2252 out_xmit:
2253         return ret;
2254 }
2255 #else
2256 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2257                                    struct bpf_nh_params *nh)
2258 {
2259         kfree_skb(skb);
2260         return NET_XMIT_DROP;
2261 }
2262 #endif /* CONFIG_IPV6 */
2263
2264 #if IS_ENABLED(CONFIG_INET)
2265 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2266                             struct net_device *dev, struct bpf_nh_params *nh)
2267 {
2268         u32 hh_len = LL_RESERVED_SPACE(dev);
2269         struct neighbour *neigh;
2270         bool is_v6gw = false;
2271
2272         if (dev_xmit_recursion()) {
2273                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2274                 goto out_drop;
2275         }
2276
2277         skb->dev = dev;
2278         skb_clear_tstamp(skb);
2279
2280         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2281                 skb = skb_expand_head(skb, hh_len);
2282                 if (!skb)
2283                         return -ENOMEM;
2284         }
2285
2286         rcu_read_lock_bh();
2287         if (!nh) {
2288                 struct dst_entry *dst = skb_dst(skb);
2289                 struct rtable *rt = container_of(dst, struct rtable, dst);
2290
2291                 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2292         } else if (nh->nh_family == AF_INET6) {
2293                 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2294                 is_v6gw = true;
2295         } else if (nh->nh_family == AF_INET) {
2296                 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2297         } else {
2298                 rcu_read_unlock_bh();
2299                 goto out_drop;
2300         }
2301
2302         if (likely(!IS_ERR(neigh))) {
2303                 int ret;
2304
2305                 sock_confirm_neigh(skb, neigh);
2306                 dev_xmit_recursion_inc();
2307                 ret = neigh_output(neigh, skb, is_v6gw);
2308                 dev_xmit_recursion_dec();
2309                 rcu_read_unlock_bh();
2310                 return ret;
2311         }
2312         rcu_read_unlock_bh();
2313 out_drop:
2314         kfree_skb(skb);
2315         return -ENETDOWN;
2316 }
2317
2318 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2319                                    struct bpf_nh_params *nh)
2320 {
2321         const struct iphdr *ip4h = ip_hdr(skb);
2322         struct net *net = dev_net(dev);
2323         int err, ret = NET_XMIT_DROP;
2324
2325         if (!nh) {
2326                 struct flowi4 fl4 = {
2327                         .flowi4_flags = FLOWI_FLAG_ANYSRC,
2328                         .flowi4_mark  = skb->mark,
2329                         .flowi4_tos   = RT_TOS(ip4h->tos),
2330                         .flowi4_oif   = dev->ifindex,
2331                         .flowi4_proto = ip4h->protocol,
2332                         .daddr        = ip4h->daddr,
2333                         .saddr        = ip4h->saddr,
2334                 };
2335                 struct rtable *rt;
2336
2337                 rt = ip_route_output_flow(net, &fl4, NULL);
2338                 if (IS_ERR(rt))
2339                         goto out_drop;
2340                 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2341                         ip_rt_put(rt);
2342                         goto out_drop;
2343                 }
2344
2345                 skb_dst_set(skb, &rt->dst);
2346         }
2347
2348         err = bpf_out_neigh_v4(net, skb, dev, nh);
2349         if (unlikely(net_xmit_eval(err)))
2350                 dev->stats.tx_errors++;
2351         else
2352                 ret = NET_XMIT_SUCCESS;
2353         goto out_xmit;
2354 out_drop:
2355         dev->stats.tx_errors++;
2356         kfree_skb(skb);
2357 out_xmit:
2358         return ret;
2359 }
2360 #else
2361 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2362                                    struct bpf_nh_params *nh)
2363 {
2364         kfree_skb(skb);
2365         return NET_XMIT_DROP;
2366 }
2367 #endif /* CONFIG_INET */
2368
2369 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2370                                 struct bpf_nh_params *nh)
2371 {
2372         struct ethhdr *ethh = eth_hdr(skb);
2373
2374         if (unlikely(skb->mac_header >= skb->network_header))
2375                 goto out;
2376         bpf_push_mac_rcsum(skb);
2377         if (is_multicast_ether_addr(ethh->h_dest))
2378                 goto out;
2379
2380         skb_pull(skb, sizeof(*ethh));
2381         skb_unset_mac_header(skb);
2382         skb_reset_network_header(skb);
2383
2384         if (skb->protocol == htons(ETH_P_IP))
2385                 return __bpf_redirect_neigh_v4(skb, dev, nh);
2386         else if (skb->protocol == htons(ETH_P_IPV6))
2387                 return __bpf_redirect_neigh_v6(skb, dev, nh);
2388 out:
2389         kfree_skb(skb);
2390         return -ENOTSUPP;
2391 }
2392
2393 /* Internal, non-exposed redirect flags. */
2394 enum {
2395         BPF_F_NEIGH     = (1ULL << 1),
2396         BPF_F_PEER      = (1ULL << 2),
2397         BPF_F_NEXTHOP   = (1ULL << 3),
2398 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2399 };
2400
2401 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2402 {
2403         struct net_device *dev;
2404         struct sk_buff *clone;
2405         int ret;
2406
2407         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2408                 return -EINVAL;
2409
2410         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2411         if (unlikely(!dev))
2412                 return -EINVAL;
2413
2414         clone = skb_clone(skb, GFP_ATOMIC);
2415         if (unlikely(!clone))
2416                 return -ENOMEM;
2417
2418         /* For direct write, we need to keep the invariant that the skbs
2419          * we're dealing with need to be uncloned. Should uncloning fail
2420          * here, we need to free the just generated clone to unclone once
2421          * again.
2422          */
2423         ret = bpf_try_make_head_writable(skb);
2424         if (unlikely(ret)) {
2425                 kfree_skb(clone);
2426                 return -ENOMEM;
2427         }
2428
2429         return __bpf_redirect(clone, dev, flags);
2430 }
2431
2432 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2433         .func           = bpf_clone_redirect,
2434         .gpl_only       = false,
2435         .ret_type       = RET_INTEGER,
2436         .arg1_type      = ARG_PTR_TO_CTX,
2437         .arg2_type      = ARG_ANYTHING,
2438         .arg3_type      = ARG_ANYTHING,
2439 };
2440
2441 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2442 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2443
2444 int skb_do_redirect(struct sk_buff *skb)
2445 {
2446         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2447         struct net *net = dev_net(skb->dev);
2448         struct net_device *dev;
2449         u32 flags = ri->flags;
2450
2451         dev = dev_get_by_index_rcu(net, ri->tgt_index);
2452         ri->tgt_index = 0;
2453         ri->flags = 0;
2454         if (unlikely(!dev))
2455                 goto out_drop;
2456         if (flags & BPF_F_PEER) {
2457                 const struct net_device_ops *ops = dev->netdev_ops;
2458
2459                 if (unlikely(!ops->ndo_get_peer_dev ||
2460                              !skb_at_tc_ingress(skb)))
2461                         goto out_drop;
2462                 dev = ops->ndo_get_peer_dev(dev);
2463                 if (unlikely(!dev ||
2464                              !(dev->flags & IFF_UP) ||
2465                              net_eq(net, dev_net(dev))))
2466                         goto out_drop;
2467                 skb->dev = dev;
2468                 return -EAGAIN;
2469         }
2470         return flags & BPF_F_NEIGH ?
2471                __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2472                                     &ri->nh : NULL) :
2473                __bpf_redirect(skb, dev, flags);
2474 out_drop:
2475         kfree_skb(skb);
2476         return -EINVAL;
2477 }
2478
2479 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2480 {
2481         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2482
2483         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2484                 return TC_ACT_SHOT;
2485
2486         ri->flags = flags;
2487         ri->tgt_index = ifindex;
2488
2489         return TC_ACT_REDIRECT;
2490 }
2491
2492 static const struct bpf_func_proto bpf_redirect_proto = {
2493         .func           = bpf_redirect,
2494         .gpl_only       = false,
2495         .ret_type       = RET_INTEGER,
2496         .arg1_type      = ARG_ANYTHING,
2497         .arg2_type      = ARG_ANYTHING,
2498 };
2499
2500 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2501 {
2502         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2503
2504         if (unlikely(flags))
2505                 return TC_ACT_SHOT;
2506
2507         ri->flags = BPF_F_PEER;
2508         ri->tgt_index = ifindex;
2509
2510         return TC_ACT_REDIRECT;
2511 }
2512
2513 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2514         .func           = bpf_redirect_peer,
2515         .gpl_only       = false,
2516         .ret_type       = RET_INTEGER,
2517         .arg1_type      = ARG_ANYTHING,
2518         .arg2_type      = ARG_ANYTHING,
2519 };
2520
2521 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2522            int, plen, u64, flags)
2523 {
2524         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2525
2526         if (unlikely((plen && plen < sizeof(*params)) || flags))
2527                 return TC_ACT_SHOT;
2528
2529         ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2530         ri->tgt_index = ifindex;
2531
2532         BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2533         if (plen)
2534                 memcpy(&ri->nh, params, sizeof(ri->nh));
2535
2536         return TC_ACT_REDIRECT;
2537 }
2538
2539 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2540         .func           = bpf_redirect_neigh,
2541         .gpl_only       = false,
2542         .ret_type       = RET_INTEGER,
2543         .arg1_type      = ARG_ANYTHING,
2544         .arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2545         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2546         .arg4_type      = ARG_ANYTHING,
2547 };
2548
2549 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2550 {
2551         msg->apply_bytes = bytes;
2552         return 0;
2553 }
2554
2555 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2556         .func           = bpf_msg_apply_bytes,
2557         .gpl_only       = false,
2558         .ret_type       = RET_INTEGER,
2559         .arg1_type      = ARG_PTR_TO_CTX,
2560         .arg2_type      = ARG_ANYTHING,
2561 };
2562
2563 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2564 {
2565         msg->cork_bytes = bytes;
2566         return 0;
2567 }
2568
2569 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2570         .func           = bpf_msg_cork_bytes,
2571         .gpl_only       = false,
2572         .ret_type       = RET_INTEGER,
2573         .arg1_type      = ARG_PTR_TO_CTX,
2574         .arg2_type      = ARG_ANYTHING,
2575 };
2576
2577 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2578            u32, end, u64, flags)
2579 {
2580         u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2581         u32 first_sge, last_sge, i, shift, bytes_sg_total;
2582         struct scatterlist *sge;
2583         u8 *raw, *to, *from;
2584         struct page *page;
2585
2586         if (unlikely(flags || end <= start))
2587                 return -EINVAL;
2588
2589         /* First find the starting scatterlist element */
2590         i = msg->sg.start;
2591         do {
2592                 offset += len;
2593                 len = sk_msg_elem(msg, i)->length;
2594                 if (start < offset + len)
2595                         break;
2596                 sk_msg_iter_var_next(i);
2597         } while (i != msg->sg.end);
2598
2599         if (unlikely(start >= offset + len))
2600                 return -EINVAL;
2601
2602         first_sge = i;
2603         /* The start may point into the sg element so we need to also
2604          * account for the headroom.
2605          */
2606         bytes_sg_total = start - offset + bytes;
2607         if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2608                 goto out;
2609
2610         /* At this point we need to linearize multiple scatterlist
2611          * elements or a single shared page. Either way we need to
2612          * copy into a linear buffer exclusively owned by BPF. Then
2613          * place the buffer in the scatterlist and fixup the original
2614          * entries by removing the entries now in the linear buffer
2615          * and shifting the remaining entries. For now we do not try
2616          * to copy partial entries to avoid complexity of running out
2617          * of sg_entry slots. The downside is reading a single byte
2618          * will copy the entire sg entry.
2619          */
2620         do {
2621                 copy += sk_msg_elem(msg, i)->length;
2622                 sk_msg_iter_var_next(i);
2623                 if (bytes_sg_total <= copy)
2624                         break;
2625         } while (i != msg->sg.end);
2626         last_sge = i;
2627
2628         if (unlikely(bytes_sg_total > copy))
2629                 return -EINVAL;
2630
2631         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2632                            get_order(copy));
2633         if (unlikely(!page))
2634                 return -ENOMEM;
2635
2636         raw = page_address(page);
2637         i = first_sge;
2638         do {
2639                 sge = sk_msg_elem(msg, i);
2640                 from = sg_virt(sge);
2641                 len = sge->length;
2642                 to = raw + poffset;
2643
2644                 memcpy(to, from, len);
2645                 poffset += len;
2646                 sge->length = 0;
2647                 put_page(sg_page(sge));
2648
2649                 sk_msg_iter_var_next(i);
2650         } while (i != last_sge);
2651
2652         sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2653
2654         /* To repair sg ring we need to shift entries. If we only
2655          * had a single entry though we can just replace it and
2656          * be done. Otherwise walk the ring and shift the entries.
2657          */
2658         WARN_ON_ONCE(last_sge == first_sge);
2659         shift = last_sge > first_sge ?
2660                 last_sge - first_sge - 1 :
2661                 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2662         if (!shift)
2663                 goto out;
2664
2665         i = first_sge;
2666         sk_msg_iter_var_next(i);
2667         do {
2668                 u32 move_from;
2669
2670                 if (i + shift >= NR_MSG_FRAG_IDS)
2671                         move_from = i + shift - NR_MSG_FRAG_IDS;
2672                 else
2673                         move_from = i + shift;
2674                 if (move_from == msg->sg.end)
2675                         break;
2676
2677                 msg->sg.data[i] = msg->sg.data[move_from];
2678                 msg->sg.data[move_from].length = 0;
2679                 msg->sg.data[move_from].page_link = 0;
2680                 msg->sg.data[move_from].offset = 0;
2681                 sk_msg_iter_var_next(i);
2682         } while (1);
2683
2684         msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2685                       msg->sg.end - shift + NR_MSG_FRAG_IDS :
2686                       msg->sg.end - shift;
2687 out:
2688         msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2689         msg->data_end = msg->data + bytes;
2690         return 0;
2691 }
2692
2693 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2694         .func           = bpf_msg_pull_data,
2695         .gpl_only       = false,
2696         .ret_type       = RET_INTEGER,
2697         .arg1_type      = ARG_PTR_TO_CTX,
2698         .arg2_type      = ARG_ANYTHING,
2699         .arg3_type      = ARG_ANYTHING,
2700         .arg4_type      = ARG_ANYTHING,
2701 };
2702
2703 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2704            u32, len, u64, flags)
2705 {
2706         struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2707         u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2708         u8 *raw, *to, *from;
2709         struct page *page;
2710
2711         if (unlikely(flags))
2712                 return -EINVAL;
2713
2714         if (unlikely(len == 0))
2715                 return 0;
2716
2717         /* First find the starting scatterlist element */
2718         i = msg->sg.start;
2719         do {
2720                 offset += l;
2721                 l = sk_msg_elem(msg, i)->length;
2722
2723                 if (start < offset + l)
2724                         break;
2725                 sk_msg_iter_var_next(i);
2726         } while (i != msg->sg.end);
2727
2728         if (start >= offset + l)
2729                 return -EINVAL;
2730
2731         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2732
2733         /* If no space available will fallback to copy, we need at
2734          * least one scatterlist elem available to push data into
2735          * when start aligns to the beginning of an element or two
2736          * when it falls inside an element. We handle the start equals
2737          * offset case because its the common case for inserting a
2738          * header.
2739          */
2740         if (!space || (space == 1 && start != offset))
2741                 copy = msg->sg.data[i].length;
2742
2743         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2744                            get_order(copy + len));
2745         if (unlikely(!page))
2746                 return -ENOMEM;
2747
2748         if (copy) {
2749                 int front, back;
2750
2751                 raw = page_address(page);
2752
2753                 psge = sk_msg_elem(msg, i);
2754                 front = start - offset;
2755                 back = psge->length - front;
2756                 from = sg_virt(psge);
2757
2758                 if (front)
2759                         memcpy(raw, from, front);
2760
2761                 if (back) {
2762                         from += front;
2763                         to = raw + front + len;
2764
2765                         memcpy(to, from, back);
2766                 }
2767
2768                 put_page(sg_page(psge));
2769         } else if (start - offset) {
2770                 psge = sk_msg_elem(msg, i);
2771                 rsge = sk_msg_elem_cpy(msg, i);
2772
2773                 psge->length = start - offset;
2774                 rsge.length -= psge->length;
2775                 rsge.offset += start;
2776
2777                 sk_msg_iter_var_next(i);
2778                 sg_unmark_end(psge);
2779                 sg_unmark_end(&rsge);
2780                 sk_msg_iter_next(msg, end);
2781         }
2782
2783         /* Slot(s) to place newly allocated data */
2784         new = i;
2785
2786         /* Shift one or two slots as needed */
2787         if (!copy) {
2788                 sge = sk_msg_elem_cpy(msg, i);
2789
2790                 sk_msg_iter_var_next(i);
2791                 sg_unmark_end(&sge);
2792                 sk_msg_iter_next(msg, end);
2793
2794                 nsge = sk_msg_elem_cpy(msg, i);
2795                 if (rsge.length) {
2796                         sk_msg_iter_var_next(i);
2797                         nnsge = sk_msg_elem_cpy(msg, i);
2798                 }
2799
2800                 while (i != msg->sg.end) {
2801                         msg->sg.data[i] = sge;
2802                         sge = nsge;
2803                         sk_msg_iter_var_next(i);
2804                         if (rsge.length) {
2805                                 nsge = nnsge;
2806                                 nnsge = sk_msg_elem_cpy(msg, i);
2807                         } else {
2808                                 nsge = sk_msg_elem_cpy(msg, i);
2809                         }
2810                 }
2811         }
2812
2813         /* Place newly allocated data buffer */
2814         sk_mem_charge(msg->sk, len);
2815         msg->sg.size += len;
2816         __clear_bit(new, msg->sg.copy);
2817         sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2818         if (rsge.length) {
2819                 get_page(sg_page(&rsge));
2820                 sk_msg_iter_var_next(new);
2821                 msg->sg.data[new] = rsge;
2822         }
2823
2824         sk_msg_compute_data_pointers(msg);
2825         return 0;
2826 }
2827
2828 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2829         .func           = bpf_msg_push_data,
2830         .gpl_only       = false,
2831         .ret_type       = RET_INTEGER,
2832         .arg1_type      = ARG_PTR_TO_CTX,
2833         .arg2_type      = ARG_ANYTHING,
2834         .arg3_type      = ARG_ANYTHING,
2835         .arg4_type      = ARG_ANYTHING,
2836 };
2837
2838 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2839 {
2840         int prev;
2841
2842         do {
2843                 prev = i;
2844                 sk_msg_iter_var_next(i);
2845                 msg->sg.data[prev] = msg->sg.data[i];
2846         } while (i != msg->sg.end);
2847
2848         sk_msg_iter_prev(msg, end);
2849 }
2850
2851 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2852 {
2853         struct scatterlist tmp, sge;
2854
2855         sk_msg_iter_next(msg, end);
2856         sge = sk_msg_elem_cpy(msg, i);
2857         sk_msg_iter_var_next(i);
2858         tmp = sk_msg_elem_cpy(msg, i);
2859
2860         while (i != msg->sg.end) {
2861                 msg->sg.data[i] = sge;
2862                 sk_msg_iter_var_next(i);
2863                 sge = tmp;
2864                 tmp = sk_msg_elem_cpy(msg, i);
2865         }
2866 }
2867
2868 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2869            u32, len, u64, flags)
2870 {
2871         u32 i = 0, l = 0, space, offset = 0;
2872         u64 last = start + len;
2873         int pop;
2874
2875         if (unlikely(flags))
2876                 return -EINVAL;
2877
2878         /* First find the starting scatterlist element */
2879         i = msg->sg.start;
2880         do {
2881                 offset += l;
2882                 l = sk_msg_elem(msg, i)->length;
2883
2884                 if (start < offset + l)
2885                         break;
2886                 sk_msg_iter_var_next(i);
2887         } while (i != msg->sg.end);
2888
2889         /* Bounds checks: start and pop must be inside message */
2890         if (start >= offset + l || last >= msg->sg.size)
2891                 return -EINVAL;
2892
2893         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2894
2895         pop = len;
2896         /* --------------| offset
2897          * -| start      |-------- len -------|
2898          *
2899          *  |----- a ----|-------- pop -------|----- b ----|
2900          *  |______________________________________________| length
2901          *
2902          *
2903          * a:   region at front of scatter element to save
2904          * b:   region at back of scatter element to save when length > A + pop
2905          * pop: region to pop from element, same as input 'pop' here will be
2906          *      decremented below per iteration.
2907          *
2908          * Two top-level cases to handle when start != offset, first B is non
2909          * zero and second B is zero corresponding to when a pop includes more
2910          * than one element.
2911          *
2912          * Then if B is non-zero AND there is no space allocate space and
2913          * compact A, B regions into page. If there is space shift ring to
2914          * the rigth free'ing the next element in ring to place B, leaving
2915          * A untouched except to reduce length.
2916          */
2917         if (start != offset) {
2918                 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2919                 int a = start;
2920                 int b = sge->length - pop - a;
2921
2922                 sk_msg_iter_var_next(i);
2923
2924                 if (pop < sge->length - a) {
2925                         if (space) {
2926                                 sge->length = a;
2927                                 sk_msg_shift_right(msg, i);
2928                                 nsge = sk_msg_elem(msg, i);
2929                                 get_page(sg_page(sge));
2930                                 sg_set_page(nsge,
2931                                             sg_page(sge),
2932                                             b, sge->offset + pop + a);
2933                         } else {
2934                                 struct page *page, *orig;
2935                                 u8 *to, *from;
2936
2937                                 page = alloc_pages(__GFP_NOWARN |
2938                                                    __GFP_COMP   | GFP_ATOMIC,
2939                                                    get_order(a + b));
2940                                 if (unlikely(!page))
2941                                         return -ENOMEM;
2942
2943                                 sge->length = a;
2944                                 orig = sg_page(sge);
2945                                 from = sg_virt(sge);
2946                                 to = page_address(page);
2947                                 memcpy(to, from, a);
2948                                 memcpy(to + a, from + a + pop, b);
2949                                 sg_set_page(sge, page, a + b, 0);
2950                                 put_page(orig);
2951                         }
2952                         pop = 0;
2953                 } else if (pop >= sge->length - a) {
2954                         pop -= (sge->length - a);
2955                         sge->length = a;
2956                 }
2957         }
2958
2959         /* From above the current layout _must_ be as follows,
2960          *
2961          * -| offset
2962          * -| start
2963          *
2964          *  |---- pop ---|---------------- b ------------|
2965          *  |____________________________________________| length
2966          *
2967          * Offset and start of the current msg elem are equal because in the
2968          * previous case we handled offset != start and either consumed the
2969          * entire element and advanced to the next element OR pop == 0.
2970          *
2971          * Two cases to handle here are first pop is less than the length
2972          * leaving some remainder b above. Simply adjust the element's layout
2973          * in this case. Or pop >= length of the element so that b = 0. In this
2974          * case advance to next element decrementing pop.
2975          */
2976         while (pop) {
2977                 struct scatterlist *sge = sk_msg_elem(msg, i);
2978
2979                 if (pop < sge->length) {
2980                         sge->length -= pop;
2981                         sge->offset += pop;
2982                         pop = 0;
2983                 } else {
2984                         pop -= sge->length;
2985                         sk_msg_shift_left(msg, i);
2986                 }
2987                 sk_msg_iter_var_next(i);
2988         }
2989
2990         sk_mem_uncharge(msg->sk, len - pop);
2991         msg->sg.size -= (len - pop);
2992         sk_msg_compute_data_pointers(msg);
2993         return 0;
2994 }
2995
2996 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2997         .func           = bpf_msg_pop_data,
2998         .gpl_only       = false,
2999         .ret_type       = RET_INTEGER,
3000         .arg1_type      = ARG_PTR_TO_CTX,
3001         .arg2_type      = ARG_ANYTHING,
3002         .arg3_type      = ARG_ANYTHING,
3003         .arg4_type      = ARG_ANYTHING,
3004 };
3005
3006 #ifdef CONFIG_CGROUP_NET_CLASSID
3007 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3008 {
3009         return __task_get_classid(current);
3010 }
3011
3012 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3013         .func           = bpf_get_cgroup_classid_curr,
3014         .gpl_only       = false,
3015         .ret_type       = RET_INTEGER,
3016 };
3017
3018 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3019 {
3020         struct sock *sk = skb_to_full_sk(skb);
3021
3022         if (!sk || !sk_fullsock(sk))
3023                 return 0;
3024
3025         return sock_cgroup_classid(&sk->sk_cgrp_data);
3026 }
3027
3028 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3029         .func           = bpf_skb_cgroup_classid,
3030         .gpl_only       = false,
3031         .ret_type       = RET_INTEGER,
3032         .arg1_type      = ARG_PTR_TO_CTX,
3033 };
3034 #endif
3035
3036 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3037 {
3038         return task_get_classid(skb);
3039 }
3040
3041 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3042         .func           = bpf_get_cgroup_classid,
3043         .gpl_only       = false,
3044         .ret_type       = RET_INTEGER,
3045         .arg1_type      = ARG_PTR_TO_CTX,
3046 };
3047
3048 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3049 {
3050         return dst_tclassid(skb);
3051 }
3052
3053 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3054         .func           = bpf_get_route_realm,
3055         .gpl_only       = false,
3056         .ret_type       = RET_INTEGER,
3057         .arg1_type      = ARG_PTR_TO_CTX,
3058 };
3059
3060 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3061 {
3062         /* If skb_clear_hash() was called due to mangling, we can
3063          * trigger SW recalculation here. Later access to hash
3064          * can then use the inline skb->hash via context directly
3065          * instead of calling this helper again.
3066          */
3067         return skb_get_hash(skb);
3068 }
3069
3070 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3071         .func           = bpf_get_hash_recalc,
3072         .gpl_only       = false,
3073         .ret_type       = RET_INTEGER,
3074         .arg1_type      = ARG_PTR_TO_CTX,
3075 };
3076
3077 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3078 {
3079         /* After all direct packet write, this can be used once for
3080          * triggering a lazy recalc on next skb_get_hash() invocation.
3081          */
3082         skb_clear_hash(skb);
3083         return 0;
3084 }
3085
3086 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3087         .func           = bpf_set_hash_invalid,
3088         .gpl_only       = false,
3089         .ret_type       = RET_INTEGER,
3090         .arg1_type      = ARG_PTR_TO_CTX,
3091 };
3092
3093 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3094 {
3095         /* Set user specified hash as L4(+), so that it gets returned
3096          * on skb_get_hash() call unless BPF prog later on triggers a
3097          * skb_clear_hash().
3098          */
3099         __skb_set_sw_hash(skb, hash, true);
3100         return 0;
3101 }
3102
3103 static const struct bpf_func_proto bpf_set_hash_proto = {
3104         .func           = bpf_set_hash,
3105         .gpl_only       = false,
3106         .ret_type       = RET_INTEGER,
3107         .arg1_type      = ARG_PTR_TO_CTX,
3108         .arg2_type      = ARG_ANYTHING,
3109 };
3110
3111 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3112            u16, vlan_tci)
3113 {
3114         int ret;
3115
3116         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3117                      vlan_proto != htons(ETH_P_8021AD)))
3118                 vlan_proto = htons(ETH_P_8021Q);
3119
3120         bpf_push_mac_rcsum(skb);
3121         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3122         bpf_pull_mac_rcsum(skb);
3123
3124         bpf_compute_data_pointers(skb);
3125         return ret;
3126 }
3127
3128 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3129         .func           = bpf_skb_vlan_push,
3130         .gpl_only       = false,
3131         .ret_type       = RET_INTEGER,
3132         .arg1_type      = ARG_PTR_TO_CTX,
3133         .arg2_type      = ARG_ANYTHING,
3134         .arg3_type      = ARG_ANYTHING,
3135 };
3136
3137 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3138 {
3139         int ret;
3140
3141         bpf_push_mac_rcsum(skb);
3142         ret = skb_vlan_pop(skb);
3143         bpf_pull_mac_rcsum(skb);
3144
3145         bpf_compute_data_pointers(skb);
3146         return ret;
3147 }
3148
3149 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3150         .func           = bpf_skb_vlan_pop,
3151         .gpl_only       = false,
3152         .ret_type       = RET_INTEGER,
3153         .arg1_type      = ARG_PTR_TO_CTX,
3154 };
3155
3156 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3157 {
3158         /* Caller already did skb_cow() with len as headroom,
3159          * so no need to do it here.
3160          */
3161         skb_push(skb, len);
3162         memmove(skb->data, skb->data + len, off);
3163         memset(skb->data + off, 0, len);
3164
3165         /* No skb_postpush_rcsum(skb, skb->data + off, len)
3166          * needed here as it does not change the skb->csum
3167          * result for checksum complete when summing over
3168          * zeroed blocks.
3169          */
3170         return 0;
3171 }
3172
3173 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3174 {
3175         /* skb_ensure_writable() is not needed here, as we're
3176          * already working on an uncloned skb.
3177          */
3178         if (unlikely(!pskb_may_pull(skb, off + len)))
3179                 return -ENOMEM;
3180
3181         skb_postpull_rcsum(skb, skb->data + off, len);
3182         memmove(skb->data + len, skb->data, off);
3183         __skb_pull(skb, len);
3184
3185         return 0;
3186 }
3187
3188 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3189 {
3190         bool trans_same = skb->transport_header == skb->network_header;
3191         int ret;
3192
3193         /* There's no need for __skb_push()/__skb_pull() pair to
3194          * get to the start of the mac header as we're guaranteed
3195          * to always start from here under eBPF.
3196          */
3197         ret = bpf_skb_generic_push(skb, off, len);
3198         if (likely(!ret)) {
3199                 skb->mac_header -= len;
3200                 skb->network_header -= len;
3201                 if (trans_same)
3202                         skb->transport_header = skb->network_header;
3203         }
3204
3205         return ret;
3206 }
3207
3208 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3209 {
3210         bool trans_same = skb->transport_header == skb->network_header;
3211         int ret;
3212
3213         /* Same here, __skb_push()/__skb_pull() pair not needed. */
3214         ret = bpf_skb_generic_pop(skb, off, len);
3215         if (likely(!ret)) {
3216                 skb->mac_header += len;
3217                 skb->network_header += len;
3218                 if (trans_same)
3219                         skb->transport_header = skb->network_header;
3220         }
3221
3222         return ret;
3223 }
3224
3225 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3226 {
3227         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3228         u32 off = skb_mac_header_len(skb);
3229         int ret;
3230
3231         ret = skb_cow(skb, len_diff);
3232         if (unlikely(ret < 0))
3233                 return ret;
3234
3235         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3236         if (unlikely(ret < 0))
3237                 return ret;
3238
3239         if (skb_is_gso(skb)) {
3240                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3241
3242                 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3243                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3244                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
3245                         shinfo->gso_type |=  SKB_GSO_TCPV6;
3246                 }
3247         }
3248
3249         skb->protocol = htons(ETH_P_IPV6);
3250         skb_clear_hash(skb);
3251
3252         return 0;
3253 }
3254
3255 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3256 {
3257         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3258         u32 off = skb_mac_header_len(skb);
3259         int ret;
3260
3261         ret = skb_unclone(skb, GFP_ATOMIC);
3262         if (unlikely(ret < 0))
3263                 return ret;
3264
3265         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3266         if (unlikely(ret < 0))
3267                 return ret;
3268
3269         if (skb_is_gso(skb)) {
3270                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3271
3272                 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3273                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3274                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
3275                         shinfo->gso_type |=  SKB_GSO_TCPV4;
3276                 }
3277         }
3278
3279         skb->protocol = htons(ETH_P_IP);
3280         skb_clear_hash(skb);
3281
3282         return 0;
3283 }
3284
3285 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3286 {
3287         __be16 from_proto = skb->protocol;
3288
3289         if (from_proto == htons(ETH_P_IP) &&
3290               to_proto == htons(ETH_P_IPV6))
3291                 return bpf_skb_proto_4_to_6(skb);
3292
3293         if (from_proto == htons(ETH_P_IPV6) &&
3294               to_proto == htons(ETH_P_IP))
3295                 return bpf_skb_proto_6_to_4(skb);
3296
3297         return -ENOTSUPP;
3298 }
3299
3300 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3301            u64, flags)
3302 {
3303         int ret;
3304
3305         if (unlikely(flags))
3306                 return -EINVAL;
3307
3308         /* General idea is that this helper does the basic groundwork
3309          * needed for changing the protocol, and eBPF program fills the
3310          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3311          * and other helpers, rather than passing a raw buffer here.
3312          *
3313          * The rationale is to keep this minimal and without a need to
3314          * deal with raw packet data. F.e. even if we would pass buffers
3315          * here, the program still needs to call the bpf_lX_csum_replace()
3316          * helpers anyway. Plus, this way we keep also separation of
3317          * concerns, since f.e. bpf_skb_store_bytes() should only take
3318          * care of stores.
3319          *
3320          * Currently, additional options and extension header space are
3321          * not supported, but flags register is reserved so we can adapt
3322          * that. For offloads, we mark packet as dodgy, so that headers
3323          * need to be verified first.
3324          */
3325         ret = bpf_skb_proto_xlat(skb, proto);
3326         bpf_compute_data_pointers(skb);
3327         return ret;
3328 }
3329
3330 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3331         .func           = bpf_skb_change_proto,
3332         .gpl_only       = false,
3333         .ret_type       = RET_INTEGER,
3334         .arg1_type      = ARG_PTR_TO_CTX,
3335         .arg2_type      = ARG_ANYTHING,
3336         .arg3_type      = ARG_ANYTHING,
3337 };
3338
3339 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3340 {
3341         /* We only allow a restricted subset to be changed for now. */
3342         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3343                      !skb_pkt_type_ok(pkt_type)))
3344                 return -EINVAL;
3345
3346         skb->pkt_type = pkt_type;
3347         return 0;
3348 }
3349
3350 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3351         .func           = bpf_skb_change_type,
3352         .gpl_only       = false,
3353         .ret_type       = RET_INTEGER,
3354         .arg1_type      = ARG_PTR_TO_CTX,
3355         .arg2_type      = ARG_ANYTHING,
3356 };
3357
3358 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3359 {
3360         switch (skb->protocol) {
3361         case htons(ETH_P_IP):
3362                 return sizeof(struct iphdr);
3363         case htons(ETH_P_IPV6):
3364                 return sizeof(struct ipv6hdr);
3365         default:
3366                 return ~0U;
3367         }
3368 }
3369
3370 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3371                                          BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3372
3373 #define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3374                                          BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3375                                          BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3376                                          BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3377                                          BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3378                                          BPF_F_ADJ_ROOM_ENCAP_L2( \
3379                                           BPF_ADJ_ROOM_ENCAP_L2_MASK))
3380
3381 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3382                             u64 flags)
3383 {
3384         u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3385         bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3386         u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3387         unsigned int gso_type = SKB_GSO_DODGY;
3388         int ret;
3389
3390         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3391                 /* udp gso_size delineates datagrams, only allow if fixed */
3392                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3393                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3394                         return -ENOTSUPP;
3395         }
3396
3397         ret = skb_cow_head(skb, len_diff);
3398         if (unlikely(ret < 0))
3399                 return ret;
3400
3401         if (encap) {
3402                 if (skb->protocol != htons(ETH_P_IP) &&
3403                     skb->protocol != htons(ETH_P_IPV6))
3404                         return -ENOTSUPP;
3405
3406                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3407                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3408                         return -EINVAL;
3409
3410                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3411                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3412                         return -EINVAL;
3413
3414                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3415                     inner_mac_len < ETH_HLEN)
3416                         return -EINVAL;
3417
3418                 if (skb->encapsulation)
3419                         return -EALREADY;
3420
3421                 mac_len = skb->network_header - skb->mac_header;
3422                 inner_net = skb->network_header;
3423                 if (inner_mac_len > len_diff)
3424                         return -EINVAL;
3425                 inner_trans = skb->transport_header;
3426         }
3427
3428         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3429         if (unlikely(ret < 0))
3430                 return ret;
3431
3432         if (encap) {
3433                 skb->inner_mac_header = inner_net - inner_mac_len;
3434                 skb->inner_network_header = inner_net;
3435                 skb->inner_transport_header = inner_trans;
3436
3437                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3438                         skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3439                 else
3440                         skb_set_inner_protocol(skb, skb->protocol);
3441
3442                 skb->encapsulation = 1;
3443                 skb_set_network_header(skb, mac_len);
3444
3445                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3446                         gso_type |= SKB_GSO_UDP_TUNNEL;
3447                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3448                         gso_type |= SKB_GSO_GRE;
3449                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3450                         gso_type |= SKB_GSO_IPXIP6;
3451                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3452                         gso_type |= SKB_GSO_IPXIP4;
3453
3454                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3455                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3456                         int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3457                                         sizeof(struct ipv6hdr) :
3458                                         sizeof(struct iphdr);
3459
3460                         skb_set_transport_header(skb, mac_len + nh_len);
3461                 }
3462
3463                 /* Match skb->protocol to new outer l3 protocol */
3464                 if (skb->protocol == htons(ETH_P_IP) &&
3465                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3466                         skb->protocol = htons(ETH_P_IPV6);
3467                 else if (skb->protocol == htons(ETH_P_IPV6) &&
3468                          flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3469                         skb->protocol = htons(ETH_P_IP);
3470         }
3471
3472         if (skb_is_gso(skb)) {
3473                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3474
3475                 /* Due to header grow, MSS needs to be downgraded. */
3476                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3477                         skb_decrease_gso_size(shinfo, len_diff);
3478
3479                 /* Header must be checked, and gso_segs recomputed. */
3480                 shinfo->gso_type |= gso_type;
3481                 shinfo->gso_segs = 0;
3482         }
3483
3484         return 0;
3485 }
3486
3487 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3488                               u64 flags)
3489 {
3490         int ret;
3491
3492         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3493                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3494                 return -EINVAL;
3495
3496         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3497                 /* udp gso_size delineates datagrams, only allow if fixed */
3498                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3499                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3500                         return -ENOTSUPP;
3501         }
3502
3503         ret = skb_unclone(skb, GFP_ATOMIC);
3504         if (unlikely(ret < 0))
3505                 return ret;
3506
3507         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3508         if (unlikely(ret < 0))
3509                 return ret;
3510
3511         if (skb_is_gso(skb)) {
3512                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3513
3514                 /* Due to header shrink, MSS can be upgraded. */
3515                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3516                         skb_increase_gso_size(shinfo, len_diff);
3517
3518                 /* Header must be checked, and gso_segs recomputed. */
3519                 shinfo->gso_type |= SKB_GSO_DODGY;
3520                 shinfo->gso_segs = 0;
3521         }
3522
3523         return 0;
3524 }
3525
3526 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3527
3528 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3529            u32, mode, u64, flags)
3530 {
3531         u32 len_diff_abs = abs(len_diff);
3532         bool shrink = len_diff < 0;
3533         int ret = 0;
3534
3535         if (unlikely(flags || mode))
3536                 return -EINVAL;
3537         if (unlikely(len_diff_abs > 0xfffU))
3538                 return -EFAULT;
3539
3540         if (!shrink) {
3541                 ret = skb_cow(skb, len_diff);
3542                 if (unlikely(ret < 0))
3543                         return ret;
3544                 __skb_push(skb, len_diff_abs);
3545                 memset(skb->data, 0, len_diff_abs);
3546         } else {
3547                 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3548                         return -ENOMEM;
3549                 __skb_pull(skb, len_diff_abs);
3550         }
3551         if (tls_sw_has_ctx_rx(skb->sk)) {
3552                 struct strp_msg *rxm = strp_msg(skb);
3553
3554                 rxm->full_len += len_diff;
3555         }
3556         return ret;
3557 }
3558
3559 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3560         .func           = sk_skb_adjust_room,
3561         .gpl_only       = false,
3562         .ret_type       = RET_INTEGER,
3563         .arg1_type      = ARG_PTR_TO_CTX,
3564         .arg2_type      = ARG_ANYTHING,
3565         .arg3_type      = ARG_ANYTHING,
3566         .arg4_type      = ARG_ANYTHING,
3567 };
3568
3569 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3570            u32, mode, u64, flags)
3571 {
3572         u32 len_cur, len_diff_abs = abs(len_diff);
3573         u32 len_min = bpf_skb_net_base_len(skb);
3574         u32 len_max = BPF_SKB_MAX_LEN;
3575         __be16 proto = skb->protocol;
3576         bool shrink = len_diff < 0;
3577         u32 off;
3578         int ret;
3579
3580         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3581                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3582                 return -EINVAL;
3583         if (unlikely(len_diff_abs > 0xfffU))
3584                 return -EFAULT;
3585         if (unlikely(proto != htons(ETH_P_IP) &&
3586                      proto != htons(ETH_P_IPV6)))
3587                 return -ENOTSUPP;
3588
3589         off = skb_mac_header_len(skb);
3590         switch (mode) {
3591         case BPF_ADJ_ROOM_NET:
3592                 off += bpf_skb_net_base_len(skb);
3593                 break;
3594         case BPF_ADJ_ROOM_MAC:
3595                 break;
3596         default:
3597                 return -ENOTSUPP;
3598         }
3599
3600         len_cur = skb->len - skb_network_offset(skb);
3601         if ((shrink && (len_diff_abs >= len_cur ||
3602                         len_cur - len_diff_abs < len_min)) ||
3603             (!shrink && (skb->len + len_diff_abs > len_max &&
3604                          !skb_is_gso(skb))))
3605                 return -ENOTSUPP;
3606
3607         ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3608                        bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3609         if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3610                 __skb_reset_checksum_unnecessary(skb);
3611
3612         bpf_compute_data_pointers(skb);
3613         return ret;
3614 }
3615
3616 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3617         .func           = bpf_skb_adjust_room,
3618         .gpl_only       = false,
3619         .ret_type       = RET_INTEGER,
3620         .arg1_type      = ARG_PTR_TO_CTX,
3621         .arg2_type      = ARG_ANYTHING,
3622         .arg3_type      = ARG_ANYTHING,
3623         .arg4_type      = ARG_ANYTHING,
3624 };
3625
3626 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3627 {
3628         u32 min_len = skb_network_offset(skb);
3629
3630         if (skb_transport_header_was_set(skb))
3631                 min_len = skb_transport_offset(skb);
3632         if (skb->ip_summed == CHECKSUM_PARTIAL)
3633                 min_len = skb_checksum_start_offset(skb) +
3634                           skb->csum_offset + sizeof(__sum16);
3635         return min_len;
3636 }
3637
3638 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3639 {
3640         unsigned int old_len = skb->len;
3641         int ret;
3642
3643         ret = __skb_grow_rcsum(skb, new_len);
3644         if (!ret)
3645                 memset(skb->data + old_len, 0, new_len - old_len);
3646         return ret;
3647 }
3648
3649 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3650 {
3651         return __skb_trim_rcsum(skb, new_len);
3652 }
3653
3654 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3655                                         u64 flags)
3656 {
3657         u32 max_len = BPF_SKB_MAX_LEN;
3658         u32 min_len = __bpf_skb_min_len(skb);
3659         int ret;
3660
3661         if (unlikely(flags || new_len > max_len || new_len < min_len))
3662                 return -EINVAL;
3663         if (skb->encapsulation)
3664                 return -ENOTSUPP;
3665
3666         /* The basic idea of this helper is that it's performing the
3667          * needed work to either grow or trim an skb, and eBPF program
3668          * rewrites the rest via helpers like bpf_skb_store_bytes(),
3669          * bpf_lX_csum_replace() and others rather than passing a raw
3670          * buffer here. This one is a slow path helper and intended
3671          * for replies with control messages.
3672          *
3673          * Like in bpf_skb_change_proto(), we want to keep this rather
3674          * minimal and without protocol specifics so that we are able
3675          * to separate concerns as in bpf_skb_store_bytes() should only
3676          * be the one responsible for writing buffers.
3677          *
3678          * It's really expected to be a slow path operation here for
3679          * control message replies, so we're implicitly linearizing,
3680          * uncloning and drop offloads from the skb by this.
3681          */
3682         ret = __bpf_try_make_writable(skb, skb->len);
3683         if (!ret) {
3684                 if (new_len > skb->len)
3685                         ret = bpf_skb_grow_rcsum(skb, new_len);
3686                 else if (new_len < skb->len)
3687                         ret = bpf_skb_trim_rcsum(skb, new_len);
3688                 if (!ret && skb_is_gso(skb))
3689                         skb_gso_reset(skb);
3690         }
3691         return ret;
3692 }
3693
3694 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3695            u64, flags)
3696 {
3697         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3698
3699         bpf_compute_data_pointers(skb);
3700         return ret;
3701 }
3702
3703 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3704         .func           = bpf_skb_change_tail,
3705         .gpl_only       = false,
3706         .ret_type       = RET_INTEGER,
3707         .arg1_type      = ARG_PTR_TO_CTX,
3708         .arg2_type      = ARG_ANYTHING,
3709         .arg3_type      = ARG_ANYTHING,
3710 };
3711
3712 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3713            u64, flags)
3714 {
3715         return __bpf_skb_change_tail(skb, new_len, flags);
3716 }
3717
3718 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3719         .func           = sk_skb_change_tail,
3720         .gpl_only       = false,
3721         .ret_type       = RET_INTEGER,
3722         .arg1_type      = ARG_PTR_TO_CTX,
3723         .arg2_type      = ARG_ANYTHING,
3724         .arg3_type      = ARG_ANYTHING,
3725 };
3726
3727 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3728                                         u64 flags)
3729 {
3730         u32 max_len = BPF_SKB_MAX_LEN;
3731         u32 new_len = skb->len + head_room;
3732         int ret;
3733
3734         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3735                      new_len < skb->len))
3736                 return -EINVAL;
3737
3738         ret = skb_cow(skb, head_room);
3739         if (likely(!ret)) {
3740                 /* Idea for this helper is that we currently only
3741                  * allow to expand on mac header. This means that
3742                  * skb->protocol network header, etc, stay as is.
3743                  * Compared to bpf_skb_change_tail(), we're more
3744                  * flexible due to not needing to linearize or
3745                  * reset GSO. Intention for this helper is to be
3746                  * used by an L3 skb that needs to push mac header
3747                  * for redirection into L2 device.
3748                  */
3749                 __skb_push(skb, head_room);
3750                 memset(skb->data, 0, head_room);
3751                 skb_reset_mac_header(skb);
3752                 skb_reset_mac_len(skb);
3753         }
3754
3755         return ret;
3756 }
3757
3758 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3759            u64, flags)
3760 {
3761         int ret = __bpf_skb_change_head(skb, head_room, flags);
3762
3763         bpf_compute_data_pointers(skb);
3764         return ret;
3765 }
3766
3767 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3768         .func           = bpf_skb_change_head,
3769         .gpl_only       = false,
3770         .ret_type       = RET_INTEGER,
3771         .arg1_type      = ARG_PTR_TO_CTX,
3772         .arg2_type      = ARG_ANYTHING,
3773         .arg3_type      = ARG_ANYTHING,
3774 };
3775
3776 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3777            u64, flags)
3778 {
3779         return __bpf_skb_change_head(skb, head_room, flags);
3780 }
3781
3782 static const struct bpf_func_proto sk_skb_change_head_proto = {
3783         .func           = sk_skb_change_head,
3784         .gpl_only       = false,
3785         .ret_type       = RET_INTEGER,
3786         .arg1_type      = ARG_PTR_TO_CTX,
3787         .arg2_type      = ARG_ANYTHING,
3788         .arg3_type      = ARG_ANYTHING,
3789 };
3790
3791 BPF_CALL_1(bpf_xdp_get_buff_len, struct  xdp_buff*, xdp)
3792 {
3793         return xdp_get_buff_len(xdp);
3794 }
3795
3796 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3797         .func           = bpf_xdp_get_buff_len,
3798         .gpl_only       = false,
3799         .ret_type       = RET_INTEGER,
3800         .arg1_type      = ARG_PTR_TO_CTX,
3801 };
3802
3803 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3804
3805 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3806         .func           = bpf_xdp_get_buff_len,
3807         .gpl_only       = false,
3808         .arg1_type      = ARG_PTR_TO_BTF_ID,
3809         .arg1_btf_id    = &bpf_xdp_get_buff_len_bpf_ids[0],
3810 };
3811
3812 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3813 {
3814         return xdp_data_meta_unsupported(xdp) ? 0 :
3815                xdp->data - xdp->data_meta;
3816 }
3817
3818 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3819 {
3820         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3821         unsigned long metalen = xdp_get_metalen(xdp);
3822         void *data_start = xdp_frame_end + metalen;
3823         void *data = xdp->data + offset;
3824
3825         if (unlikely(data < data_start ||
3826                      data > xdp->data_end - ETH_HLEN))
3827                 return -EINVAL;
3828
3829         if (metalen)
3830                 memmove(xdp->data_meta + offset,
3831                         xdp->data_meta, metalen);
3832         xdp->data_meta += offset;
3833         xdp->data = data;
3834
3835         return 0;
3836 }
3837
3838 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3839         .func           = bpf_xdp_adjust_head,
3840         .gpl_only       = false,
3841         .ret_type       = RET_INTEGER,
3842         .arg1_type      = ARG_PTR_TO_CTX,
3843         .arg2_type      = ARG_ANYTHING,
3844 };
3845
3846 static void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3847                              void *buf, unsigned long len, bool flush)
3848 {
3849         unsigned long ptr_len, ptr_off = 0;
3850         skb_frag_t *next_frag, *end_frag;
3851         struct skb_shared_info *sinfo;
3852         void *src, *dst;
3853         u8 *ptr_buf;
3854
3855         if (likely(xdp->data_end - xdp->data >= off + len)) {
3856                 src = flush ? buf : xdp->data + off;
3857                 dst = flush ? xdp->data + off : buf;
3858                 memcpy(dst, src, len);
3859                 return;
3860         }
3861
3862         sinfo = xdp_get_shared_info_from_buff(xdp);
3863         end_frag = &sinfo->frags[sinfo->nr_frags];
3864         next_frag = &sinfo->frags[0];
3865
3866         ptr_len = xdp->data_end - xdp->data;
3867         ptr_buf = xdp->data;
3868
3869         while (true) {
3870                 if (off < ptr_off + ptr_len) {
3871                         unsigned long copy_off = off - ptr_off;
3872                         unsigned long copy_len = min(len, ptr_len - copy_off);
3873
3874                         src = flush ? buf : ptr_buf + copy_off;
3875                         dst = flush ? ptr_buf + copy_off : buf;
3876                         memcpy(dst, src, copy_len);
3877
3878                         off += copy_len;
3879                         len -= copy_len;
3880                         buf += copy_len;
3881                 }
3882
3883                 if (!len || next_frag == end_frag)
3884                         break;
3885
3886                 ptr_off += ptr_len;
3887                 ptr_buf = skb_frag_address(next_frag);
3888                 ptr_len = skb_frag_size(next_frag);
3889                 next_frag++;
3890         }
3891 }
3892
3893 static void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3894 {
3895         struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3896         u32 size = xdp->data_end - xdp->data;
3897         void *addr = xdp->data;
3898         int i;
3899
3900         if (unlikely(offset > 0xffff || len > 0xffff))
3901                 return ERR_PTR(-EFAULT);
3902
3903         if (offset + len > xdp_get_buff_len(xdp))
3904                 return ERR_PTR(-EINVAL);
3905
3906         if (offset < size) /* linear area */
3907                 goto out;
3908
3909         offset -= size;
3910         for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
3911                 u32 frag_size = skb_frag_size(&sinfo->frags[i]);
3912
3913                 if  (offset < frag_size) {
3914                         addr = skb_frag_address(&sinfo->frags[i]);
3915                         size = frag_size;
3916                         break;
3917                 }
3918                 offset -= frag_size;
3919         }
3920 out:
3921         return offset + len <= size ? addr + offset : NULL;
3922 }
3923
3924 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
3925            void *, buf, u32, len)
3926 {
3927         void *ptr;
3928
3929         ptr = bpf_xdp_pointer(xdp, offset, len);
3930         if (IS_ERR(ptr))
3931                 return PTR_ERR(ptr);
3932
3933         if (!ptr)
3934                 bpf_xdp_copy_buf(xdp, offset, buf, len, false);
3935         else
3936                 memcpy(buf, ptr, len);
3937
3938         return 0;
3939 }
3940
3941 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
3942         .func           = bpf_xdp_load_bytes,
3943         .gpl_only       = false,
3944         .ret_type       = RET_INTEGER,
3945         .arg1_type      = ARG_PTR_TO_CTX,
3946         .arg2_type      = ARG_ANYTHING,
3947         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
3948         .arg4_type      = ARG_CONST_SIZE,
3949 };
3950
3951 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
3952            void *, buf, u32, len)
3953 {
3954         void *ptr;
3955
3956         ptr = bpf_xdp_pointer(xdp, offset, len);
3957         if (IS_ERR(ptr))
3958                 return PTR_ERR(ptr);
3959
3960         if (!ptr)
3961                 bpf_xdp_copy_buf(xdp, offset, buf, len, true);
3962         else
3963                 memcpy(ptr, buf, len);
3964
3965         return 0;
3966 }
3967
3968 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
3969         .func           = bpf_xdp_store_bytes,
3970         .gpl_only       = false,
3971         .ret_type       = RET_INTEGER,
3972         .arg1_type      = ARG_PTR_TO_CTX,
3973         .arg2_type      = ARG_ANYTHING,
3974         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
3975         .arg4_type      = ARG_CONST_SIZE,
3976 };
3977
3978 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
3979 {
3980         struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3981         skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
3982         struct xdp_rxq_info *rxq = xdp->rxq;
3983         unsigned int tailroom;
3984
3985         if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
3986                 return -EOPNOTSUPP;
3987
3988         tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
3989         if (unlikely(offset > tailroom))
3990                 return -EINVAL;
3991
3992         memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
3993         skb_frag_size_add(frag, offset);
3994         sinfo->xdp_frags_size += offset;
3995
3996         return 0;
3997 }
3998
3999 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4000 {
4001         struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4002         int i, n_frags_free = 0, len_free = 0;
4003
4004         if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4005                 return -EINVAL;
4006
4007         for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4008                 skb_frag_t *frag = &sinfo->frags[i];
4009                 int shrink = min_t(int, offset, skb_frag_size(frag));
4010
4011                 len_free += shrink;
4012                 offset -= shrink;
4013
4014                 if (skb_frag_size(frag) == shrink) {
4015                         struct page *page = skb_frag_page(frag);
4016
4017                         __xdp_return(page_address(page), &xdp->rxq->mem,
4018                                      false, NULL);
4019                         n_frags_free++;
4020                 } else {
4021                         skb_frag_size_sub(frag, shrink);
4022                         break;
4023                 }
4024         }
4025         sinfo->nr_frags -= n_frags_free;
4026         sinfo->xdp_frags_size -= len_free;
4027
4028         if (unlikely(!sinfo->nr_frags)) {
4029                 xdp_buff_clear_frags_flag(xdp);
4030                 xdp->data_end -= offset;
4031         }
4032
4033         return 0;
4034 }
4035
4036 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4037 {
4038         void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4039         void *data_end = xdp->data_end + offset;
4040
4041         if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4042                 if (offset < 0)
4043                         return bpf_xdp_frags_shrink_tail(xdp, -offset);
4044
4045                 return bpf_xdp_frags_increase_tail(xdp, offset);
4046         }
4047
4048         /* Notice that xdp_data_hard_end have reserved some tailroom */
4049         if (unlikely(data_end > data_hard_end))
4050                 return -EINVAL;
4051
4052         /* ALL drivers MUST init xdp->frame_sz, chicken check below */
4053         if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
4054                 WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
4055                 return -EINVAL;
4056         }
4057
4058         if (unlikely(data_end < xdp->data + ETH_HLEN))
4059                 return -EINVAL;
4060
4061         /* Clear memory area on grow, can contain uninit kernel memory */
4062         if (offset > 0)
4063                 memset(xdp->data_end, 0, offset);
4064
4065         xdp->data_end = data_end;
4066
4067         return 0;
4068 }
4069
4070 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4071         .func           = bpf_xdp_adjust_tail,
4072         .gpl_only       = false,
4073         .ret_type       = RET_INTEGER,
4074         .arg1_type      = ARG_PTR_TO_CTX,
4075         .arg2_type      = ARG_ANYTHING,
4076 };
4077
4078 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4079 {
4080         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4081         void *meta = xdp->data_meta + offset;
4082         unsigned long metalen = xdp->data - meta;
4083
4084         if (xdp_data_meta_unsupported(xdp))
4085                 return -ENOTSUPP;
4086         if (unlikely(meta < xdp_frame_end ||
4087                      meta > xdp->data))
4088                 return -EINVAL;
4089         if (unlikely(xdp_metalen_invalid(metalen)))
4090                 return -EACCES;
4091
4092         xdp->data_meta = meta;
4093
4094         return 0;
4095 }
4096
4097 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4098         .func           = bpf_xdp_adjust_meta,
4099         .gpl_only       = false,
4100         .ret_type       = RET_INTEGER,
4101         .arg1_type      = ARG_PTR_TO_CTX,
4102         .arg2_type      = ARG_ANYTHING,
4103 };
4104
4105 /* XDP_REDIRECT works by a three-step process, implemented in the functions
4106  * below:
4107  *
4108  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4109  *    of the redirect and store it (along with some other metadata) in a per-CPU
4110  *    struct bpf_redirect_info.
4111  *
4112  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4113  *    call xdp_do_redirect() which will use the information in struct
4114  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4115  *    bulk queue structure.
4116  *
4117  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
4118  *    which will flush all the different bulk queues, thus completing the
4119  *    redirect.
4120  *
4121  * Pointers to the map entries will be kept around for this whole sequence of
4122  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4123  * the core code; instead, the RCU protection relies on everything happening
4124  * inside a single NAPI poll sequence, which means it's between a pair of calls
4125  * to local_bh_disable()/local_bh_enable().
4126  *
4127  * The map entries are marked as __rcu and the map code makes sure to
4128  * dereference those pointers with rcu_dereference_check() in a way that works
4129  * for both sections that to hold an rcu_read_lock() and sections that are
4130  * called from NAPI without a separate rcu_read_lock(). The code below does not
4131  * use RCU annotations, but relies on those in the map code.
4132  */
4133 void xdp_do_flush(void)
4134 {
4135         __dev_flush();
4136         __cpu_map_flush();
4137         __xsk_map_flush();
4138 }
4139 EXPORT_SYMBOL_GPL(xdp_do_flush);
4140
4141 void bpf_clear_redirect_map(struct bpf_map *map)
4142 {
4143         struct bpf_redirect_info *ri;
4144         int cpu;
4145
4146         for_each_possible_cpu(cpu) {
4147                 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4148                 /* Avoid polluting remote cacheline due to writes if
4149                  * not needed. Once we pass this test, we need the
4150                  * cmpxchg() to make sure it hasn't been changed in
4151                  * the meantime by remote CPU.
4152                  */
4153                 if (unlikely(READ_ONCE(ri->map) == map))
4154                         cmpxchg(&ri->map, map, NULL);
4155         }
4156 }
4157
4158 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4159 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4160
4161 u32 xdp_master_redirect(struct xdp_buff *xdp)
4162 {
4163         struct net_device *master, *slave;
4164         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4165
4166         master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4167         slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4168         if (slave && slave != xdp->rxq->dev) {
4169                 /* The target device is different from the receiving device, so
4170                  * redirect it to the new device.
4171                  * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4172                  * drivers to unmap the packet from their rx ring.
4173                  */
4174                 ri->tgt_index = slave->ifindex;
4175                 ri->map_id = INT_MAX;
4176                 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4177                 return XDP_REDIRECT;
4178         }
4179         return XDP_TX;
4180 }
4181 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4182
4183 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4184                                         struct net_device *dev,
4185                                         struct xdp_buff *xdp,
4186                                         struct bpf_prog *xdp_prog)
4187 {
4188         enum bpf_map_type map_type = ri->map_type;
4189         void *fwd = ri->tgt_value;
4190         u32 map_id = ri->map_id;
4191         int err;
4192
4193         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4194         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4195
4196         err = __xsk_map_redirect(fwd, xdp);
4197         if (unlikely(err))
4198                 goto err;
4199
4200         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4201         return 0;
4202 err:
4203         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4204         return err;
4205 }
4206
4207 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4208                                                    struct net_device *dev,
4209                                                    struct xdp_frame *xdpf,
4210                                                    struct bpf_prog *xdp_prog)
4211 {
4212         enum bpf_map_type map_type = ri->map_type;
4213         void *fwd = ri->tgt_value;
4214         u32 map_id = ri->map_id;
4215         struct bpf_map *map;
4216         int err;
4217
4218         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4219         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4220
4221         if (unlikely(!xdpf)) {
4222                 err = -EOVERFLOW;
4223                 goto err;
4224         }
4225
4226         switch (map_type) {
4227         case BPF_MAP_TYPE_DEVMAP:
4228                 fallthrough;
4229         case BPF_MAP_TYPE_DEVMAP_HASH:
4230                 map = READ_ONCE(ri->map);
4231                 if (unlikely(map)) {
4232                         WRITE_ONCE(ri->map, NULL);
4233                         err = dev_map_enqueue_multi(xdpf, dev, map,
4234                                                     ri->flags & BPF_F_EXCLUDE_INGRESS);
4235                 } else {
4236                         err = dev_map_enqueue(fwd, xdpf, dev);
4237                 }
4238                 break;
4239         case BPF_MAP_TYPE_CPUMAP:
4240                 err = cpu_map_enqueue(fwd, xdpf, dev);
4241                 break;
4242         case BPF_MAP_TYPE_UNSPEC:
4243                 if (map_id == INT_MAX) {
4244                         fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4245                         if (unlikely(!fwd)) {
4246                                 err = -EINVAL;
4247                                 break;
4248                         }
4249                         err = dev_xdp_enqueue(fwd, xdpf, dev);
4250                         break;
4251                 }
4252                 fallthrough;
4253         default:
4254                 err = -EBADRQC;
4255         }
4256
4257         if (unlikely(err))
4258                 goto err;
4259
4260         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4261         return 0;
4262 err:
4263         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4264         return err;
4265 }
4266
4267 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4268                     struct bpf_prog *xdp_prog)
4269 {
4270         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4271         enum bpf_map_type map_type = ri->map_type;
4272
4273         /* XDP_REDIRECT is not fully supported yet for xdp frags since
4274          * not all XDP capable drivers can map non-linear xdp_frame in
4275          * ndo_xdp_xmit.
4276          */
4277         if (unlikely(xdp_buff_has_frags(xdp) &&
4278                      map_type != BPF_MAP_TYPE_CPUMAP))
4279                 return -EOPNOTSUPP;
4280
4281         if (map_type == BPF_MAP_TYPE_XSKMAP)
4282                 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4283
4284         return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4285                                        xdp_prog);
4286 }
4287 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4288
4289 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4290                           struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4291 {
4292         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4293         enum bpf_map_type map_type = ri->map_type;
4294
4295         if (map_type == BPF_MAP_TYPE_XSKMAP)
4296                 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4297
4298         return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4299 }
4300 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4301
4302 static int xdp_do_generic_redirect_map(struct net_device *dev,
4303                                        struct sk_buff *skb,
4304                                        struct xdp_buff *xdp,
4305                                        struct bpf_prog *xdp_prog,
4306                                        void *fwd,
4307                                        enum bpf_map_type map_type, u32 map_id)
4308 {
4309         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4310         struct bpf_map *map;
4311         int err;
4312
4313         switch (map_type) {
4314         case BPF_MAP_TYPE_DEVMAP:
4315                 fallthrough;
4316         case BPF_MAP_TYPE_DEVMAP_HASH:
4317                 map = READ_ONCE(ri->map);
4318                 if (unlikely(map)) {
4319                         WRITE_ONCE(ri->map, NULL);
4320                         err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4321                                                      ri->flags & BPF_F_EXCLUDE_INGRESS);
4322                 } else {
4323                         err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4324                 }
4325                 if (unlikely(err))
4326                         goto err;
4327                 break;
4328         case BPF_MAP_TYPE_XSKMAP:
4329                 err = xsk_generic_rcv(fwd, xdp);
4330                 if (err)
4331                         goto err;
4332                 consume_skb(skb);
4333                 break;
4334         case BPF_MAP_TYPE_CPUMAP:
4335                 err = cpu_map_generic_redirect(fwd, skb);
4336                 if (unlikely(err))
4337                         goto err;
4338                 break;
4339         default:
4340                 err = -EBADRQC;
4341                 goto err;
4342         }
4343
4344         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4345         return 0;
4346 err:
4347         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4348         return err;
4349 }
4350
4351 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4352                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4353 {
4354         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4355         enum bpf_map_type map_type = ri->map_type;
4356         void *fwd = ri->tgt_value;
4357         u32 map_id = ri->map_id;
4358         int err;
4359
4360         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4361         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4362
4363         if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4364                 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4365                 if (unlikely(!fwd)) {
4366                         err = -EINVAL;
4367                         goto err;
4368                 }
4369
4370                 err = xdp_ok_fwd_dev(fwd, skb->len);
4371                 if (unlikely(err))
4372                         goto err;
4373
4374                 skb->dev = fwd;
4375                 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4376                 generic_xdp_tx(skb, xdp_prog);
4377                 return 0;
4378         }
4379
4380         return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4381 err:
4382         _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4383         return err;
4384 }
4385
4386 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4387 {
4388         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4389
4390         if (unlikely(flags))
4391                 return XDP_ABORTED;
4392
4393         /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4394          * by map_idr) is used for ifindex based XDP redirect.
4395          */
4396         ri->tgt_index = ifindex;
4397         ri->map_id = INT_MAX;
4398         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4399
4400         return XDP_REDIRECT;
4401 }
4402
4403 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4404         .func           = bpf_xdp_redirect,
4405         .gpl_only       = false,
4406         .ret_type       = RET_INTEGER,
4407         .arg1_type      = ARG_ANYTHING,
4408         .arg2_type      = ARG_ANYTHING,
4409 };
4410
4411 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4412            u64, flags)
4413 {
4414         return map->ops->map_redirect(map, ifindex, flags);
4415 }
4416
4417 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4418         .func           = bpf_xdp_redirect_map,
4419         .gpl_only       = false,
4420         .ret_type       = RET_INTEGER,
4421         .arg1_type      = ARG_CONST_MAP_PTR,
4422         .arg2_type      = ARG_ANYTHING,
4423         .arg3_type      = ARG_ANYTHING,
4424 };
4425
4426 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4427                                   unsigned long off, unsigned long len)
4428 {
4429         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4430
4431         if (unlikely(!ptr))
4432                 return len;
4433         if (ptr != dst_buff)
4434                 memcpy(dst_buff, ptr, len);
4435
4436         return 0;
4437 }
4438
4439 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4440            u64, flags, void *, meta, u64, meta_size)
4441 {
4442         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4443
4444         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4445                 return -EINVAL;
4446         if (unlikely(!skb || skb_size > skb->len))
4447                 return -EFAULT;
4448
4449         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4450                                 bpf_skb_copy);
4451 }
4452
4453 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4454         .func           = bpf_skb_event_output,
4455         .gpl_only       = true,
4456         .ret_type       = RET_INTEGER,
4457         .arg1_type      = ARG_PTR_TO_CTX,
4458         .arg2_type      = ARG_CONST_MAP_PTR,
4459         .arg3_type      = ARG_ANYTHING,
4460         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4461         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4462 };
4463
4464 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4465
4466 const struct bpf_func_proto bpf_skb_output_proto = {
4467         .func           = bpf_skb_event_output,
4468         .gpl_only       = true,
4469         .ret_type       = RET_INTEGER,
4470         .arg1_type      = ARG_PTR_TO_BTF_ID,
4471         .arg1_btf_id    = &bpf_skb_output_btf_ids[0],
4472         .arg2_type      = ARG_CONST_MAP_PTR,
4473         .arg3_type      = ARG_ANYTHING,
4474         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4475         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4476 };
4477
4478 static unsigned short bpf_tunnel_key_af(u64 flags)
4479 {
4480         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4481 }
4482
4483 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4484            u32, size, u64, flags)
4485 {
4486         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4487         u8 compat[sizeof(struct bpf_tunnel_key)];
4488         void *to_orig = to;
4489         int err;
4490
4491         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4492                 err = -EINVAL;
4493                 goto err_clear;
4494         }
4495         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4496                 err = -EPROTO;
4497                 goto err_clear;
4498         }
4499         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4500                 err = -EINVAL;
4501                 switch (size) {
4502                 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4503                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4504                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4505                         goto set_compat;
4506                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4507                         /* Fixup deprecated structure layouts here, so we have
4508                          * a common path later on.
4509                          */
4510                         if (ip_tunnel_info_af(info) != AF_INET)
4511                                 goto err_clear;
4512 set_compat:
4513                         to = (struct bpf_tunnel_key *)compat;
4514                         break;
4515                 default:
4516                         goto err_clear;
4517                 }
4518         }
4519
4520         to->tunnel_id = be64_to_cpu(info->key.tun_id);
4521         to->tunnel_tos = info->key.tos;
4522         to->tunnel_ttl = info->key.ttl;
4523         to->tunnel_ext = 0;
4524
4525         if (flags & BPF_F_TUNINFO_IPV6) {
4526                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4527                        sizeof(to->remote_ipv6));
4528                 memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4529                        sizeof(to->local_ipv6));
4530                 to->tunnel_label = be32_to_cpu(info->key.label);
4531         } else {
4532                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4533                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4534                 to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4535                 memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4536                 to->tunnel_label = 0;
4537         }
4538
4539         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4540                 memcpy(to_orig, to, size);
4541
4542         return 0;
4543 err_clear:
4544         memset(to_orig, 0, size);
4545         return err;
4546 }
4547
4548 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4549         .func           = bpf_skb_get_tunnel_key,
4550         .gpl_only       = false,
4551         .ret_type       = RET_INTEGER,
4552         .arg1_type      = ARG_PTR_TO_CTX,
4553         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4554         .arg3_type      = ARG_CONST_SIZE,
4555         .arg4_type      = ARG_ANYTHING,
4556 };
4557
4558 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4559 {
4560         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4561         int err;
4562
4563         if (unlikely(!info ||
4564                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4565                 err = -ENOENT;
4566                 goto err_clear;
4567         }
4568         if (unlikely(size < info->options_len)) {
4569                 err = -ENOMEM;
4570                 goto err_clear;
4571         }
4572
4573         ip_tunnel_info_opts_get(to, info);
4574         if (size > info->options_len)
4575                 memset(to + info->options_len, 0, size - info->options_len);
4576
4577         return info->options_len;
4578 err_clear:
4579         memset(to, 0, size);
4580         return err;
4581 }
4582
4583 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4584         .func           = bpf_skb_get_tunnel_opt,
4585         .gpl_only       = false,
4586         .ret_type       = RET_INTEGER,
4587         .arg1_type      = ARG_PTR_TO_CTX,
4588         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4589         .arg3_type      = ARG_CONST_SIZE,
4590 };
4591
4592 static struct metadata_dst __percpu *md_dst;
4593
4594 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4595            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4596 {
4597         struct metadata_dst *md = this_cpu_ptr(md_dst);
4598         u8 compat[sizeof(struct bpf_tunnel_key)];
4599         struct ip_tunnel_info *info;
4600
4601         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4602                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4603                 return -EINVAL;
4604         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4605                 switch (size) {
4606                 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4607                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4608                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4609                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4610                         /* Fixup deprecated structure layouts here, so we have
4611                          * a common path later on.
4612                          */
4613                         memcpy(compat, from, size);
4614                         memset(compat + size, 0, sizeof(compat) - size);
4615                         from = (const struct bpf_tunnel_key *) compat;
4616                         break;
4617                 default:
4618                         return -EINVAL;
4619                 }
4620         }
4621         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4622                      from->tunnel_ext))
4623                 return -EINVAL;
4624
4625         skb_dst_drop(skb);
4626         dst_hold((struct dst_entry *) md);
4627         skb_dst_set(skb, (struct dst_entry *) md);
4628
4629         info = &md->u.tun_info;
4630         memset(info, 0, sizeof(*info));
4631         info->mode = IP_TUNNEL_INFO_TX;
4632
4633         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4634         if (flags & BPF_F_DONT_FRAGMENT)
4635                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4636         if (flags & BPF_F_ZERO_CSUM_TX)
4637                 info->key.tun_flags &= ~TUNNEL_CSUM;
4638         if (flags & BPF_F_SEQ_NUMBER)
4639                 info->key.tun_flags |= TUNNEL_SEQ;
4640
4641         info->key.tun_id = cpu_to_be64(from->tunnel_id);
4642         info->key.tos = from->tunnel_tos;
4643         info->key.ttl = from->tunnel_ttl;
4644
4645         if (flags & BPF_F_TUNINFO_IPV6) {
4646                 info->mode |= IP_TUNNEL_INFO_IPV6;
4647                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4648                        sizeof(from->remote_ipv6));
4649                 memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4650                        sizeof(from->local_ipv6));
4651                 info->key.label = cpu_to_be32(from->tunnel_label) &
4652                                   IPV6_FLOWLABEL_MASK;
4653         } else {
4654                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4655                 info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4656                 info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4657         }
4658
4659         return 0;
4660 }
4661
4662 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4663         .func           = bpf_skb_set_tunnel_key,
4664         .gpl_only       = false,
4665         .ret_type       = RET_INTEGER,
4666         .arg1_type      = ARG_PTR_TO_CTX,
4667         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4668         .arg3_type      = ARG_CONST_SIZE,
4669         .arg4_type      = ARG_ANYTHING,
4670 };
4671
4672 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4673            const u8 *, from, u32, size)
4674 {
4675         struct ip_tunnel_info *info = skb_tunnel_info(skb);
4676         const struct metadata_dst *md = this_cpu_ptr(md_dst);
4677
4678         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4679                 return -EINVAL;
4680         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4681                 return -ENOMEM;
4682
4683         ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4684
4685         return 0;
4686 }
4687
4688 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4689         .func           = bpf_skb_set_tunnel_opt,
4690         .gpl_only       = false,
4691         .ret_type       = RET_INTEGER,
4692         .arg1_type      = ARG_PTR_TO_CTX,
4693         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4694         .arg3_type      = ARG_CONST_SIZE,
4695 };
4696
4697 static const struct bpf_func_proto *
4698 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4699 {
4700         if (!md_dst) {
4701                 struct metadata_dst __percpu *tmp;
4702
4703                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4704                                                 METADATA_IP_TUNNEL,
4705                                                 GFP_KERNEL);
4706                 if (!tmp)
4707                         return NULL;
4708                 if (cmpxchg(&md_dst, NULL, tmp))
4709                         metadata_dst_free_percpu(tmp);
4710         }
4711
4712         switch (which) {
4713         case BPF_FUNC_skb_set_tunnel_key:
4714                 return &bpf_skb_set_tunnel_key_proto;
4715         case BPF_FUNC_skb_set_tunnel_opt:
4716                 return &bpf_skb_set_tunnel_opt_proto;
4717         default:
4718                 return NULL;
4719         }
4720 }
4721
4722 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4723            u32, idx)
4724 {
4725         struct bpf_array *array = container_of(map, struct bpf_array, map);
4726         struct cgroup *cgrp;
4727         struct sock *sk;
4728
4729         sk = skb_to_full_sk(skb);
4730         if (!sk || !sk_fullsock(sk))
4731                 return -ENOENT;
4732         if (unlikely(idx >= array->map.max_entries))
4733                 return -E2BIG;
4734
4735         cgrp = READ_ONCE(array->ptrs[idx]);
4736         if (unlikely(!cgrp))
4737                 return -EAGAIN;
4738
4739         return sk_under_cgroup_hierarchy(sk, cgrp);
4740 }
4741
4742 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4743         .func           = bpf_skb_under_cgroup,
4744         .gpl_only       = false,
4745         .ret_type       = RET_INTEGER,
4746         .arg1_type      = ARG_PTR_TO_CTX,
4747         .arg2_type      = ARG_CONST_MAP_PTR,
4748         .arg3_type      = ARG_ANYTHING,
4749 };
4750
4751 #ifdef CONFIG_SOCK_CGROUP_DATA
4752 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4753 {
4754         struct cgroup *cgrp;
4755
4756         sk = sk_to_full_sk(sk);
4757         if (!sk || !sk_fullsock(sk))
4758                 return 0;
4759
4760         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4761         return cgroup_id(cgrp);
4762 }
4763
4764 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4765 {
4766         return __bpf_sk_cgroup_id(skb->sk);
4767 }
4768
4769 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4770         .func           = bpf_skb_cgroup_id,
4771         .gpl_only       = false,
4772         .ret_type       = RET_INTEGER,
4773         .arg1_type      = ARG_PTR_TO_CTX,
4774 };
4775
4776 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4777                                               int ancestor_level)
4778 {
4779         struct cgroup *ancestor;
4780         struct cgroup *cgrp;
4781
4782         sk = sk_to_full_sk(sk);
4783         if (!sk || !sk_fullsock(sk))
4784                 return 0;
4785
4786         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4787         ancestor = cgroup_ancestor(cgrp, ancestor_level);
4788         if (!ancestor)
4789                 return 0;
4790
4791         return cgroup_id(ancestor);
4792 }
4793
4794 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4795            ancestor_level)
4796 {
4797         return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4798 }
4799
4800 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4801         .func           = bpf_skb_ancestor_cgroup_id,
4802         .gpl_only       = false,
4803         .ret_type       = RET_INTEGER,
4804         .arg1_type      = ARG_PTR_TO_CTX,
4805         .arg2_type      = ARG_ANYTHING,
4806 };
4807
4808 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4809 {
4810         return __bpf_sk_cgroup_id(sk);
4811 }
4812
4813 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4814         .func           = bpf_sk_cgroup_id,
4815         .gpl_only       = false,
4816         .ret_type       = RET_INTEGER,
4817         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4818 };
4819
4820 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4821 {
4822         return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4823 }
4824
4825 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4826         .func           = bpf_sk_ancestor_cgroup_id,
4827         .gpl_only       = false,
4828         .ret_type       = RET_INTEGER,
4829         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4830         .arg2_type      = ARG_ANYTHING,
4831 };
4832 #endif
4833
4834 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4835                                   unsigned long off, unsigned long len)
4836 {
4837         struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4838
4839         bpf_xdp_copy_buf(xdp, off, dst, len, false);
4840         return 0;
4841 }
4842
4843 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4844            u64, flags, void *, meta, u64, meta_size)
4845 {
4846         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4847
4848         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4849                 return -EINVAL;
4850
4851         if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4852                 return -EFAULT;
4853
4854         return bpf_event_output(map, flags, meta, meta_size, xdp,
4855                                 xdp_size, bpf_xdp_copy);
4856 }
4857
4858 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4859         .func           = bpf_xdp_event_output,
4860         .gpl_only       = true,
4861         .ret_type       = RET_INTEGER,
4862         .arg1_type      = ARG_PTR_TO_CTX,
4863         .arg2_type      = ARG_CONST_MAP_PTR,
4864         .arg3_type      = ARG_ANYTHING,
4865         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4866         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4867 };
4868
4869 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4870
4871 const struct bpf_func_proto bpf_xdp_output_proto = {
4872         .func           = bpf_xdp_event_output,
4873         .gpl_only       = true,
4874         .ret_type       = RET_INTEGER,
4875         .arg1_type      = ARG_PTR_TO_BTF_ID,
4876         .arg1_btf_id    = &bpf_xdp_output_btf_ids[0],
4877         .arg2_type      = ARG_CONST_MAP_PTR,
4878         .arg3_type      = ARG_ANYTHING,
4879         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4880         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4881 };
4882
4883 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4884 {
4885         return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4886 }
4887
4888 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4889         .func           = bpf_get_socket_cookie,
4890         .gpl_only       = false,
4891         .ret_type       = RET_INTEGER,
4892         .arg1_type      = ARG_PTR_TO_CTX,
4893 };
4894
4895 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4896 {
4897         return __sock_gen_cookie(ctx->sk);
4898 }
4899
4900 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4901         .func           = bpf_get_socket_cookie_sock_addr,
4902         .gpl_only       = false,
4903         .ret_type       = RET_INTEGER,
4904         .arg1_type      = ARG_PTR_TO_CTX,
4905 };
4906
4907 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4908 {
4909         return __sock_gen_cookie(ctx);
4910 }
4911
4912 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4913         .func           = bpf_get_socket_cookie_sock,
4914         .gpl_only       = false,
4915         .ret_type       = RET_INTEGER,
4916         .arg1_type      = ARG_PTR_TO_CTX,
4917 };
4918
4919 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4920 {
4921         return sk ? sock_gen_cookie(sk) : 0;
4922 }
4923
4924 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4925         .func           = bpf_get_socket_ptr_cookie,
4926         .gpl_only       = false,
4927         .ret_type       = RET_INTEGER,
4928         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4929 };
4930
4931 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4932 {
4933         return __sock_gen_cookie(ctx->sk);
4934 }
4935
4936 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4937         .func           = bpf_get_socket_cookie_sock_ops,
4938         .gpl_only       = false,
4939         .ret_type       = RET_INTEGER,
4940         .arg1_type      = ARG_PTR_TO_CTX,
4941 };
4942
4943 static u64 __bpf_get_netns_cookie(struct sock *sk)
4944 {
4945         const struct net *net = sk ? sock_net(sk) : &init_net;
4946
4947         return net->net_cookie;
4948 }
4949
4950 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4951 {
4952         return __bpf_get_netns_cookie(ctx);
4953 }
4954
4955 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4956         .func           = bpf_get_netns_cookie_sock,
4957         .gpl_only       = false,
4958         .ret_type       = RET_INTEGER,
4959         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4960 };
4961
4962 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4963 {
4964         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4965 }
4966
4967 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4968         .func           = bpf_get_netns_cookie_sock_addr,
4969         .gpl_only       = false,
4970         .ret_type       = RET_INTEGER,
4971         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4972 };
4973
4974 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4975 {
4976         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4977 }
4978
4979 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
4980         .func           = bpf_get_netns_cookie_sock_ops,
4981         .gpl_only       = false,
4982         .ret_type       = RET_INTEGER,
4983         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4984 };
4985
4986 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
4987 {
4988         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4989 }
4990
4991 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
4992         .func           = bpf_get_netns_cookie_sk_msg,
4993         .gpl_only       = false,
4994         .ret_type       = RET_INTEGER,
4995         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4996 };
4997
4998 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4999 {
5000         struct sock *sk = sk_to_full_sk(skb->sk);
5001         kuid_t kuid;
5002
5003         if (!sk || !sk_fullsock(sk))
5004                 return overflowuid;
5005         kuid = sock_net_uid(sock_net(sk), sk);
5006         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5007 }
5008
5009 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5010         .func           = bpf_get_socket_uid,
5011         .gpl_only       = false,
5012         .ret_type       = RET_INTEGER,
5013         .arg1_type      = ARG_PTR_TO_CTX,
5014 };
5015
5016 static int sol_socket_setsockopt(struct sock *sk, int optname,
5017                                  char *optval, int optlen)
5018 {
5019         switch (optname) {
5020         case SO_SNDBUF:
5021         case SO_RCVBUF:
5022         case SO_KEEPALIVE:
5023         case SO_PRIORITY:
5024         case SO_REUSEPORT:
5025         case SO_RCVLOWAT:
5026         case SO_MARK:
5027         case SO_MAX_PACING_RATE:
5028         case SO_BINDTOIFINDEX:
5029         case SO_TXREHASH:
5030                 if (optlen != sizeof(int))
5031                         return -EINVAL;
5032                 break;
5033         case SO_BINDTODEVICE:
5034                 break;
5035         default:
5036                 return -EINVAL;
5037         }
5038
5039         return sk_setsockopt(sk, SOL_SOCKET, optname,
5040                              KERNEL_SOCKPTR(optval), optlen);
5041 }
5042
5043 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5044                                   char *optval, int optlen)
5045 {
5046         struct tcp_sock *tp = tcp_sk(sk);
5047         unsigned long timeout;
5048         int val;
5049
5050         if (optlen != sizeof(int))
5051                 return -EINVAL;
5052
5053         val = *(int *)optval;
5054
5055         /* Only some options are supported */
5056         switch (optname) {
5057         case TCP_BPF_IW:
5058                 if (val <= 0 || tp->data_segs_out > tp->syn_data)
5059                         return -EINVAL;
5060                 tcp_snd_cwnd_set(tp, val);
5061                 break;
5062         case TCP_BPF_SNDCWND_CLAMP:
5063                 if (val <= 0)
5064                         return -EINVAL;
5065                 tp->snd_cwnd_clamp = val;
5066                 tp->snd_ssthresh = val;
5067                 break;
5068         case TCP_BPF_DELACK_MAX:
5069                 timeout = usecs_to_jiffies(val);
5070                 if (timeout > TCP_DELACK_MAX ||
5071                     timeout < TCP_TIMEOUT_MIN)
5072                         return -EINVAL;
5073                 inet_csk(sk)->icsk_delack_max = timeout;
5074                 break;
5075         case TCP_BPF_RTO_MIN:
5076                 timeout = usecs_to_jiffies(val);
5077                 if (timeout > TCP_RTO_MIN ||
5078                     timeout < TCP_TIMEOUT_MIN)
5079                         return -EINVAL;
5080                 inet_csk(sk)->icsk_rto_min = timeout;
5081                 break;
5082         default:
5083                 return -EINVAL;
5084         }
5085
5086         return 0;
5087 }
5088
5089 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5090                             char *optval, int optlen)
5091 {
5092         int val, ret = 0;
5093
5094         if (!sk_fullsock(sk))
5095                 return -EINVAL;
5096
5097         if (level == SOL_SOCKET) {
5098                 return sol_socket_setsockopt(sk, optname, optval, optlen);
5099         } else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP) {
5100                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
5101                         return -EINVAL;
5102
5103                 val = *((int *)optval);
5104                 /* Only some options are supported */
5105                 switch (optname) {
5106                 case IP_TOS:
5107                         if (val < -1 || val > 0xff) {
5108                                 ret = -EINVAL;
5109                         } else {
5110                                 struct inet_sock *inet = inet_sk(sk);
5111
5112                                 if (val == -1)
5113                                         val = 0;
5114                                 inet->tos = val;
5115                         }
5116                         break;
5117                 default:
5118                         ret = -EINVAL;
5119                 }
5120         } else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6) {
5121                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
5122                         return -EINVAL;
5123
5124                 val = *((int *)optval);
5125                 /* Only some options are supported */
5126                 switch (optname) {
5127                 case IPV6_TCLASS:
5128                         if (val < -1 || val > 0xff) {
5129                                 ret = -EINVAL;
5130                         } else {
5131                                 struct ipv6_pinfo *np = inet6_sk(sk);
5132
5133                                 if (val == -1)
5134                                         val = 0;
5135                                 np->tclass = val;
5136                         }
5137                         break;
5138                 default:
5139                         ret = -EINVAL;
5140                 }
5141         } else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5142                    sk->sk_prot->setsockopt == tcp_setsockopt) {
5143                 if (optname >= TCP_BPF_IW)
5144                         return bpf_sol_tcp_setsockopt(sk, optname,
5145                                                       optval, optlen);
5146
5147                 if (optname == TCP_CONGESTION) {
5148                         char name[TCP_CA_NAME_MAX];
5149
5150                         strncpy(name, optval, min_t(long, optlen,
5151                                                     TCP_CA_NAME_MAX-1));
5152                         name[TCP_CA_NAME_MAX-1] = 0;
5153                         ret = tcp_set_congestion_control(sk, name, false, true);
5154                 } else {
5155                         struct inet_connection_sock *icsk = inet_csk(sk);
5156                         struct tcp_sock *tp = tcp_sk(sk);
5157
5158                         if (optlen != sizeof(int))
5159                                 return -EINVAL;
5160
5161                         val = *((int *)optval);
5162                         /* Only some options are supported */
5163                         switch (optname) {
5164                         case TCP_SAVE_SYN:
5165                                 if (val < 0 || val > 1)
5166                                         ret = -EINVAL;
5167                                 else
5168                                         tp->save_syn = val;
5169                                 break;
5170                         case TCP_KEEPIDLE:
5171                                 ret = tcp_sock_set_keepidle_locked(sk, val);
5172                                 break;
5173                         case TCP_KEEPINTVL:
5174                                 if (val < 1 || val > MAX_TCP_KEEPINTVL)
5175                                         ret = -EINVAL;
5176                                 else
5177                                         tp->keepalive_intvl = val * HZ;
5178                                 break;
5179                         case TCP_KEEPCNT:
5180                                 if (val < 1 || val > MAX_TCP_KEEPCNT)
5181                                         ret = -EINVAL;
5182                                 else
5183                                         tp->keepalive_probes = val;
5184                                 break;
5185                         case TCP_SYNCNT:
5186                                 if (val < 1 || val > MAX_TCP_SYNCNT)
5187                                         ret = -EINVAL;
5188                                 else
5189                                         icsk->icsk_syn_retries = val;
5190                                 break;
5191                         case TCP_USER_TIMEOUT:
5192                                 if (val < 0)
5193                                         ret = -EINVAL;
5194                                 else
5195                                         icsk->icsk_user_timeout = val;
5196                                 break;
5197                         case TCP_NOTSENT_LOWAT:
5198                                 tp->notsent_lowat = val;
5199                                 sk->sk_write_space(sk);
5200                                 break;
5201                         case TCP_WINDOW_CLAMP:
5202                                 ret = tcp_set_window_clamp(sk, val);
5203                                 break;
5204                         default:
5205                                 ret = -EINVAL;
5206                         }
5207                 }
5208         } else {
5209                 ret = -EINVAL;
5210         }
5211         return ret;
5212 }
5213
5214 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5215                            char *optval, int optlen)
5216 {
5217         if (sk_fullsock(sk))
5218                 sock_owned_by_me(sk);
5219         return __bpf_setsockopt(sk, level, optname, optval, optlen);
5220 }
5221
5222 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5223                             char *optval, int optlen)
5224 {
5225         if (!sk_fullsock(sk))
5226                 goto err_clear;
5227
5228         if (level == SOL_SOCKET) {
5229                 if (optlen != sizeof(int))
5230                         goto err_clear;
5231
5232                 switch (optname) {
5233                 case SO_RCVBUF:
5234                         *((int *)optval) = sk->sk_rcvbuf;
5235                         break;
5236                 case SO_SNDBUF:
5237                         *((int *)optval) = sk->sk_sndbuf;
5238                         break;
5239                 case SO_MARK:
5240                         *((int *)optval) = sk->sk_mark;
5241                         break;
5242                 case SO_PRIORITY:
5243                         *((int *)optval) = sk->sk_priority;
5244                         break;
5245                 case SO_BINDTOIFINDEX:
5246                         *((int *)optval) = sk->sk_bound_dev_if;
5247                         break;
5248                 case SO_REUSEPORT:
5249                         *((int *)optval) = sk->sk_reuseport;
5250                         break;
5251                 case SO_TXREHASH:
5252                         *((int *)optval) = sk->sk_txrehash;
5253                         break;
5254                 default:
5255                         goto err_clear;
5256                 }
5257 #ifdef CONFIG_INET
5258         } else if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
5259                 struct inet_connection_sock *icsk;
5260                 struct tcp_sock *tp;
5261
5262                 switch (optname) {
5263                 case TCP_CONGESTION:
5264                         icsk = inet_csk(sk);
5265
5266                         if (!icsk->icsk_ca_ops || optlen <= 1)
5267                                 goto err_clear;
5268                         strncpy(optval, icsk->icsk_ca_ops->name, optlen);
5269                         optval[optlen - 1] = 0;
5270                         break;
5271                 case TCP_SAVED_SYN:
5272                         tp = tcp_sk(sk);
5273
5274                         if (optlen <= 0 || !tp->saved_syn ||
5275                             optlen > tcp_saved_syn_len(tp->saved_syn))
5276                                 goto err_clear;
5277                         memcpy(optval, tp->saved_syn->data, optlen);
5278                         break;
5279                 default:
5280                         goto err_clear;
5281                 }
5282         } else if (level == SOL_IP) {
5283                 struct inet_sock *inet = inet_sk(sk);
5284
5285                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
5286                         goto err_clear;
5287
5288                 /* Only some options are supported */
5289                 switch (optname) {
5290                 case IP_TOS:
5291                         *((int *)optval) = (int)inet->tos;
5292                         break;
5293                 default:
5294                         goto err_clear;
5295                 }
5296 #if IS_ENABLED(CONFIG_IPV6)
5297         } else if (level == SOL_IPV6) {
5298                 struct ipv6_pinfo *np = inet6_sk(sk);
5299
5300                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
5301                         goto err_clear;
5302
5303                 /* Only some options are supported */
5304                 switch (optname) {
5305                 case IPV6_TCLASS:
5306                         *((int *)optval) = (int)np->tclass;
5307                         break;
5308                 default:
5309                         goto err_clear;
5310                 }
5311 #endif
5312 #endif
5313         } else {
5314                 goto err_clear;
5315         }
5316         return 0;
5317 err_clear:
5318         memset(optval, 0, optlen);
5319         return -EINVAL;
5320 }
5321
5322 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5323                            char *optval, int optlen)
5324 {
5325         if (sk_fullsock(sk))
5326                 sock_owned_by_me(sk);
5327         return __bpf_getsockopt(sk, level, optname, optval, optlen);
5328 }
5329
5330 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5331            int, optname, char *, optval, int, optlen)
5332 {
5333         if (level == SOL_TCP && optname == TCP_CONGESTION) {
5334                 if (optlen >= sizeof("cdg") - 1 &&
5335                     !strncmp("cdg", optval, optlen))
5336                         return -ENOTSUPP;
5337         }
5338
5339         return _bpf_setsockopt(sk, level, optname, optval, optlen);
5340 }
5341
5342 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5343         .func           = bpf_sk_setsockopt,
5344         .gpl_only       = false,
5345         .ret_type       = RET_INTEGER,
5346         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5347         .arg2_type      = ARG_ANYTHING,
5348         .arg3_type      = ARG_ANYTHING,
5349         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5350         .arg5_type      = ARG_CONST_SIZE,
5351 };
5352
5353 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5354            int, optname, char *, optval, int, optlen)
5355 {
5356         return _bpf_getsockopt(sk, level, optname, optval, optlen);
5357 }
5358
5359 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5360         .func           = bpf_sk_getsockopt,
5361         .gpl_only       = false,
5362         .ret_type       = RET_INTEGER,
5363         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5364         .arg2_type      = ARG_ANYTHING,
5365         .arg3_type      = ARG_ANYTHING,
5366         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5367         .arg5_type      = ARG_CONST_SIZE,
5368 };
5369
5370 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5371            int, optname, char *, optval, int, optlen)
5372 {
5373         return __bpf_setsockopt(sk, level, optname, optval, optlen);
5374 }
5375
5376 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5377         .func           = bpf_unlocked_sk_setsockopt,
5378         .gpl_only       = false,
5379         .ret_type       = RET_INTEGER,
5380         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5381         .arg2_type      = ARG_ANYTHING,
5382         .arg3_type      = ARG_ANYTHING,
5383         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5384         .arg5_type      = ARG_CONST_SIZE,
5385 };
5386
5387 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5388            int, optname, char *, optval, int, optlen)
5389 {
5390         return __bpf_getsockopt(sk, level, optname, optval, optlen);
5391 }
5392
5393 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5394         .func           = bpf_unlocked_sk_getsockopt,
5395         .gpl_only       = false,
5396         .ret_type       = RET_INTEGER,
5397         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5398         .arg2_type      = ARG_ANYTHING,
5399         .arg3_type      = ARG_ANYTHING,
5400         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5401         .arg5_type      = ARG_CONST_SIZE,
5402 };
5403
5404 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5405            int, level, int, optname, char *, optval, int, optlen)
5406 {
5407         return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5408 }
5409
5410 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5411         .func           = bpf_sock_addr_setsockopt,
5412         .gpl_only       = false,
5413         .ret_type       = RET_INTEGER,
5414         .arg1_type      = ARG_PTR_TO_CTX,
5415         .arg2_type      = ARG_ANYTHING,
5416         .arg3_type      = ARG_ANYTHING,
5417         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5418         .arg5_type      = ARG_CONST_SIZE,
5419 };
5420
5421 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5422            int, level, int, optname, char *, optval, int, optlen)
5423 {
5424         return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5425 }
5426
5427 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5428         .func           = bpf_sock_addr_getsockopt,
5429         .gpl_only       = false,
5430         .ret_type       = RET_INTEGER,
5431         .arg1_type      = ARG_PTR_TO_CTX,
5432         .arg2_type      = ARG_ANYTHING,
5433         .arg3_type      = ARG_ANYTHING,
5434         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5435         .arg5_type      = ARG_CONST_SIZE,
5436 };
5437
5438 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5439            int, level, int, optname, char *, optval, int, optlen)
5440 {
5441         return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5442 }
5443
5444 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5445         .func           = bpf_sock_ops_setsockopt,
5446         .gpl_only       = false,
5447         .ret_type       = RET_INTEGER,
5448         .arg1_type      = ARG_PTR_TO_CTX,
5449         .arg2_type      = ARG_ANYTHING,
5450         .arg3_type      = ARG_ANYTHING,
5451         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5452         .arg5_type      = ARG_CONST_SIZE,
5453 };
5454
5455 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5456                                 int optname, const u8 **start)
5457 {
5458         struct sk_buff *syn_skb = bpf_sock->syn_skb;
5459         const u8 *hdr_start;
5460         int ret;
5461
5462         if (syn_skb) {
5463                 /* sk is a request_sock here */
5464
5465                 if (optname == TCP_BPF_SYN) {
5466                         hdr_start = syn_skb->data;
5467                         ret = tcp_hdrlen(syn_skb);
5468                 } else if (optname == TCP_BPF_SYN_IP) {
5469                         hdr_start = skb_network_header(syn_skb);
5470                         ret = skb_network_header_len(syn_skb) +
5471                                 tcp_hdrlen(syn_skb);
5472                 } else {
5473                         /* optname == TCP_BPF_SYN_MAC */
5474                         hdr_start = skb_mac_header(syn_skb);
5475                         ret = skb_mac_header_len(syn_skb) +
5476                                 skb_network_header_len(syn_skb) +
5477                                 tcp_hdrlen(syn_skb);
5478                 }
5479         } else {
5480                 struct sock *sk = bpf_sock->sk;
5481                 struct saved_syn *saved_syn;
5482
5483                 if (sk->sk_state == TCP_NEW_SYN_RECV)
5484                         /* synack retransmit. bpf_sock->syn_skb will
5485                          * not be available.  It has to resort to
5486                          * saved_syn (if it is saved).
5487                          */
5488                         saved_syn = inet_reqsk(sk)->saved_syn;
5489                 else
5490                         saved_syn = tcp_sk(sk)->saved_syn;
5491
5492                 if (!saved_syn)
5493                         return -ENOENT;
5494
5495                 if (optname == TCP_BPF_SYN) {
5496                         hdr_start = saved_syn->data +
5497                                 saved_syn->mac_hdrlen +
5498                                 saved_syn->network_hdrlen;
5499                         ret = saved_syn->tcp_hdrlen;
5500                 } else if (optname == TCP_BPF_SYN_IP) {
5501                         hdr_start = saved_syn->data +
5502                                 saved_syn->mac_hdrlen;
5503                         ret = saved_syn->network_hdrlen +
5504                                 saved_syn->tcp_hdrlen;
5505                 } else {
5506                         /* optname == TCP_BPF_SYN_MAC */
5507
5508                         /* TCP_SAVE_SYN may not have saved the mac hdr */
5509                         if (!saved_syn->mac_hdrlen)
5510                                 return -ENOENT;
5511
5512                         hdr_start = saved_syn->data;
5513                         ret = saved_syn->mac_hdrlen +
5514                                 saved_syn->network_hdrlen +
5515                                 saved_syn->tcp_hdrlen;
5516                 }
5517         }
5518
5519         *start = hdr_start;
5520         return ret;
5521 }
5522
5523 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5524            int, level, int, optname, char *, optval, int, optlen)
5525 {
5526         if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5527             optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5528                 int ret, copy_len = 0;
5529                 const u8 *start;
5530
5531                 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5532                 if (ret > 0) {
5533                         copy_len = ret;
5534                         if (optlen < copy_len) {
5535                                 copy_len = optlen;
5536                                 ret = -ENOSPC;
5537                         }
5538
5539                         memcpy(optval, start, copy_len);
5540                 }
5541
5542                 /* Zero out unused buffer at the end */
5543                 memset(optval + copy_len, 0, optlen - copy_len);
5544
5545                 return ret;
5546         }
5547
5548         return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5549 }
5550
5551 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5552         .func           = bpf_sock_ops_getsockopt,
5553         .gpl_only       = false,
5554         .ret_type       = RET_INTEGER,
5555         .arg1_type      = ARG_PTR_TO_CTX,
5556         .arg2_type      = ARG_ANYTHING,
5557         .arg3_type      = ARG_ANYTHING,
5558         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5559         .arg5_type      = ARG_CONST_SIZE,
5560 };
5561
5562 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5563            int, argval)
5564 {
5565         struct sock *sk = bpf_sock->sk;
5566         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5567
5568         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5569                 return -EINVAL;
5570
5571         tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5572
5573         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5574 }
5575
5576 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5577         .func           = bpf_sock_ops_cb_flags_set,
5578         .gpl_only       = false,
5579         .ret_type       = RET_INTEGER,
5580         .arg1_type      = ARG_PTR_TO_CTX,
5581         .arg2_type      = ARG_ANYTHING,
5582 };
5583
5584 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5585 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5586
5587 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5588            int, addr_len)
5589 {
5590 #ifdef CONFIG_INET
5591         struct sock *sk = ctx->sk;
5592         u32 flags = BIND_FROM_BPF;
5593         int err;
5594
5595         err = -EINVAL;
5596         if (addr_len < offsetofend(struct sockaddr, sa_family))
5597                 return err;
5598         if (addr->sa_family == AF_INET) {
5599                 if (addr_len < sizeof(struct sockaddr_in))
5600                         return err;
5601                 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5602                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5603                 return __inet_bind(sk, addr, addr_len, flags);
5604 #if IS_ENABLED(CONFIG_IPV6)
5605         } else if (addr->sa_family == AF_INET6) {
5606                 if (addr_len < SIN6_LEN_RFC2133)
5607                         return err;
5608                 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5609                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5610                 /* ipv6_bpf_stub cannot be NULL, since it's called from
5611                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5612                  */
5613                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5614 #endif /* CONFIG_IPV6 */
5615         }
5616 #endif /* CONFIG_INET */
5617
5618         return -EAFNOSUPPORT;
5619 }
5620
5621 static const struct bpf_func_proto bpf_bind_proto = {
5622         .func           = bpf_bind,
5623         .gpl_only       = false,
5624         .ret_type       = RET_INTEGER,
5625         .arg1_type      = ARG_PTR_TO_CTX,
5626         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5627         .arg3_type      = ARG_CONST_SIZE,
5628 };
5629
5630 #ifdef CONFIG_XFRM
5631 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5632            struct bpf_xfrm_state *, to, u32, size, u64, flags)
5633 {
5634         const struct sec_path *sp = skb_sec_path(skb);
5635         const struct xfrm_state *x;
5636
5637         if (!sp || unlikely(index >= sp->len || flags))
5638                 goto err_clear;
5639
5640         x = sp->xvec[index];
5641
5642         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5643                 goto err_clear;
5644
5645         to->reqid = x->props.reqid;
5646         to->spi = x->id.spi;
5647         to->family = x->props.family;
5648         to->ext = 0;
5649
5650         if (to->family == AF_INET6) {
5651                 memcpy(to->remote_ipv6, x->props.saddr.a6,
5652                        sizeof(to->remote_ipv6));
5653         } else {
5654                 to->remote_ipv4 = x->props.saddr.a4;
5655                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5656         }
5657
5658         return 0;
5659 err_clear:
5660         memset(to, 0, size);
5661         return -EINVAL;
5662 }
5663
5664 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5665         .func           = bpf_skb_get_xfrm_state,
5666         .gpl_only       = false,
5667         .ret_type       = RET_INTEGER,
5668         .arg1_type      = ARG_PTR_TO_CTX,
5669         .arg2_type      = ARG_ANYTHING,
5670         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
5671         .arg4_type      = ARG_CONST_SIZE,
5672         .arg5_type      = ARG_ANYTHING,
5673 };
5674 #endif
5675
5676 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5677 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5678                                   const struct neighbour *neigh,
5679                                   const struct net_device *dev, u32 mtu)
5680 {
5681         memcpy(params->dmac, neigh->ha, ETH_ALEN);
5682         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5683         params->h_vlan_TCI = 0;
5684         params->h_vlan_proto = 0;
5685         if (mtu)
5686                 params->mtu_result = mtu; /* union with tot_len */
5687
5688         return 0;
5689 }
5690 #endif
5691
5692 #if IS_ENABLED(CONFIG_INET)
5693 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5694                                u32 flags, bool check_mtu)
5695 {
5696         struct fib_nh_common *nhc;
5697         struct in_device *in_dev;
5698         struct neighbour *neigh;
5699         struct net_device *dev;
5700         struct fib_result res;
5701         struct flowi4 fl4;
5702         u32 mtu = 0;
5703         int err;
5704
5705         dev = dev_get_by_index_rcu(net, params->ifindex);
5706         if (unlikely(!dev))
5707                 return -ENODEV;
5708
5709         /* verify forwarding is enabled on this interface */
5710         in_dev = __in_dev_get_rcu(dev);
5711         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5712                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5713
5714         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5715                 fl4.flowi4_iif = 1;
5716                 fl4.flowi4_oif = params->ifindex;
5717         } else {
5718                 fl4.flowi4_iif = params->ifindex;
5719                 fl4.flowi4_oif = 0;
5720         }
5721         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5722         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5723         fl4.flowi4_flags = 0;
5724
5725         fl4.flowi4_proto = params->l4_protocol;
5726         fl4.daddr = params->ipv4_dst;
5727         fl4.saddr = params->ipv4_src;
5728         fl4.fl4_sport = params->sport;
5729         fl4.fl4_dport = params->dport;
5730         fl4.flowi4_multipath_hash = 0;
5731
5732         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5733                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5734                 struct fib_table *tb;
5735
5736                 tb = fib_get_table(net, tbid);
5737                 if (unlikely(!tb))
5738                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5739
5740                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5741         } else {
5742                 fl4.flowi4_mark = 0;
5743                 fl4.flowi4_secid = 0;
5744                 fl4.flowi4_tun_key.tun_id = 0;
5745                 fl4.flowi4_uid = sock_net_uid(net, NULL);
5746
5747                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5748         }
5749
5750         if (err) {
5751                 /* map fib lookup errors to RTN_ type */
5752                 if (err == -EINVAL)
5753                         return BPF_FIB_LKUP_RET_BLACKHOLE;
5754                 if (err == -EHOSTUNREACH)
5755                         return BPF_FIB_LKUP_RET_UNREACHABLE;
5756                 if (err == -EACCES)
5757                         return BPF_FIB_LKUP_RET_PROHIBIT;
5758
5759                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5760         }
5761
5762         if (res.type != RTN_UNICAST)
5763                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5764
5765         if (fib_info_num_path(res.fi) > 1)
5766                 fib_select_path(net, &res, &fl4, NULL);
5767
5768         if (check_mtu) {
5769                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5770                 if (params->tot_len > mtu) {
5771                         params->mtu_result = mtu; /* union with tot_len */
5772                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5773                 }
5774         }
5775
5776         nhc = res.nhc;
5777
5778         /* do not handle lwt encaps right now */
5779         if (nhc->nhc_lwtstate)
5780                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5781
5782         dev = nhc->nhc_dev;
5783
5784         params->rt_metric = res.fi->fib_priority;
5785         params->ifindex = dev->ifindex;
5786
5787         /* xdp and cls_bpf programs are run in RCU-bh so
5788          * rcu_read_lock_bh is not needed here
5789          */
5790         if (likely(nhc->nhc_gw_family != AF_INET6)) {
5791                 if (nhc->nhc_gw_family)
5792                         params->ipv4_dst = nhc->nhc_gw.ipv4;
5793
5794                 neigh = __ipv4_neigh_lookup_noref(dev,
5795                                                  (__force u32)params->ipv4_dst);
5796         } else {
5797                 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5798
5799                 params->family = AF_INET6;
5800                 *dst = nhc->nhc_gw.ipv6;
5801                 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5802         }
5803
5804         if (!neigh)
5805                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5806
5807         return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5808 }
5809 #endif
5810
5811 #if IS_ENABLED(CONFIG_IPV6)
5812 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5813                                u32 flags, bool check_mtu)
5814 {
5815         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5816         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5817         struct fib6_result res = {};
5818         struct neighbour *neigh;
5819         struct net_device *dev;
5820         struct inet6_dev *idev;
5821         struct flowi6 fl6;
5822         int strict = 0;
5823         int oif, err;
5824         u32 mtu = 0;
5825
5826         /* link local addresses are never forwarded */
5827         if (rt6_need_strict(dst) || rt6_need_strict(src))
5828                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5829
5830         dev = dev_get_by_index_rcu(net, params->ifindex);
5831         if (unlikely(!dev))
5832                 return -ENODEV;
5833
5834         idev = __in6_dev_get_safely(dev);
5835         if (unlikely(!idev || !idev->cnf.forwarding))
5836                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5837
5838         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5839                 fl6.flowi6_iif = 1;
5840                 oif = fl6.flowi6_oif = params->ifindex;
5841         } else {
5842                 oif = fl6.flowi6_iif = params->ifindex;
5843                 fl6.flowi6_oif = 0;
5844                 strict = RT6_LOOKUP_F_HAS_SADDR;
5845         }
5846         fl6.flowlabel = params->flowinfo;
5847         fl6.flowi6_scope = 0;
5848         fl6.flowi6_flags = 0;
5849         fl6.mp_hash = 0;
5850
5851         fl6.flowi6_proto = params->l4_protocol;
5852         fl6.daddr = *dst;
5853         fl6.saddr = *src;
5854         fl6.fl6_sport = params->sport;
5855         fl6.fl6_dport = params->dport;
5856
5857         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5858                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5859                 struct fib6_table *tb;
5860
5861                 tb = ipv6_stub->fib6_get_table(net, tbid);
5862                 if (unlikely(!tb))
5863                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5864
5865                 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5866                                                    strict);
5867         } else {
5868                 fl6.flowi6_mark = 0;
5869                 fl6.flowi6_secid = 0;
5870                 fl6.flowi6_tun_key.tun_id = 0;
5871                 fl6.flowi6_uid = sock_net_uid(net, NULL);
5872
5873                 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5874         }
5875
5876         if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5877                      res.f6i == net->ipv6.fib6_null_entry))
5878                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5879
5880         switch (res.fib6_type) {
5881         /* only unicast is forwarded */
5882         case RTN_UNICAST:
5883                 break;
5884         case RTN_BLACKHOLE:
5885                 return BPF_FIB_LKUP_RET_BLACKHOLE;
5886         case RTN_UNREACHABLE:
5887                 return BPF_FIB_LKUP_RET_UNREACHABLE;
5888         case RTN_PROHIBIT:
5889                 return BPF_FIB_LKUP_RET_PROHIBIT;
5890         default:
5891                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5892         }
5893
5894         ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5895                                     fl6.flowi6_oif != 0, NULL, strict);
5896
5897         if (check_mtu) {
5898                 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5899                 if (params->tot_len > mtu) {
5900                         params->mtu_result = mtu; /* union with tot_len */
5901                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5902                 }
5903         }
5904
5905         if (res.nh->fib_nh_lws)
5906                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5907
5908         if (res.nh->fib_nh_gw_family)
5909                 *dst = res.nh->fib_nh_gw6;
5910
5911         dev = res.nh->fib_nh_dev;
5912         params->rt_metric = res.f6i->fib6_metric;
5913         params->ifindex = dev->ifindex;
5914
5915         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5916          * not needed here.
5917          */
5918         neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5919         if (!neigh)
5920                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5921
5922         return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5923 }
5924 #endif
5925
5926 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5927            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5928 {
5929         if (plen < sizeof(*params))
5930                 return -EINVAL;
5931
5932         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5933                 return -EINVAL;
5934
5935         switch (params->family) {
5936 #if IS_ENABLED(CONFIG_INET)
5937         case AF_INET:
5938                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5939                                            flags, true);
5940 #endif
5941 #if IS_ENABLED(CONFIG_IPV6)
5942         case AF_INET6:
5943                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5944                                            flags, true);
5945 #endif
5946         }
5947         return -EAFNOSUPPORT;
5948 }
5949
5950 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5951         .func           = bpf_xdp_fib_lookup,
5952         .gpl_only       = true,
5953         .ret_type       = RET_INTEGER,
5954         .arg1_type      = ARG_PTR_TO_CTX,
5955         .arg2_type      = ARG_PTR_TO_MEM,
5956         .arg3_type      = ARG_CONST_SIZE,
5957         .arg4_type      = ARG_ANYTHING,
5958 };
5959
5960 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5961            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5962 {
5963         struct net *net = dev_net(skb->dev);
5964         int rc = -EAFNOSUPPORT;
5965         bool check_mtu = false;
5966
5967         if (plen < sizeof(*params))
5968                 return -EINVAL;
5969
5970         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5971                 return -EINVAL;
5972
5973         if (params->tot_len)
5974                 check_mtu = true;
5975
5976         switch (params->family) {
5977 #if IS_ENABLED(CONFIG_INET)
5978         case AF_INET:
5979                 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5980                 break;
5981 #endif
5982 #if IS_ENABLED(CONFIG_IPV6)
5983         case AF_INET6:
5984                 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5985                 break;
5986 #endif
5987         }
5988
5989         if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
5990                 struct net_device *dev;
5991
5992                 /* When tot_len isn't provided by user, check skb
5993                  * against MTU of FIB lookup resulting net_device
5994                  */
5995                 dev = dev_get_by_index_rcu(net, params->ifindex);
5996                 if (!is_skb_forwardable(dev, skb))
5997                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5998
5999                 params->mtu_result = dev->mtu; /* union with tot_len */
6000         }
6001
6002         return rc;
6003 }
6004
6005 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6006         .func           = bpf_skb_fib_lookup,
6007         .gpl_only       = true,
6008         .ret_type       = RET_INTEGER,
6009         .arg1_type      = ARG_PTR_TO_CTX,
6010         .arg2_type      = ARG_PTR_TO_MEM,
6011         .arg3_type      = ARG_CONST_SIZE,
6012         .arg4_type      = ARG_ANYTHING,
6013 };
6014
6015 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6016                                             u32 ifindex)
6017 {
6018         struct net *netns = dev_net(dev_curr);
6019
6020         /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6021         if (ifindex == 0)
6022                 return dev_curr;
6023
6024         return dev_get_by_index_rcu(netns, ifindex);
6025 }
6026
6027 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6028            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6029 {
6030         int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6031         struct net_device *dev = skb->dev;
6032         int skb_len, dev_len;
6033         int mtu;
6034
6035         if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6036                 return -EINVAL;
6037
6038         if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6039                 return -EINVAL;
6040
6041         dev = __dev_via_ifindex(dev, ifindex);
6042         if (unlikely(!dev))
6043                 return -ENODEV;
6044
6045         mtu = READ_ONCE(dev->mtu);
6046
6047         dev_len = mtu + dev->hard_header_len;
6048
6049         /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6050         skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6051
6052         skb_len += len_diff; /* minus result pass check */
6053         if (skb_len <= dev_len) {
6054                 ret = BPF_MTU_CHK_RET_SUCCESS;
6055                 goto out;
6056         }
6057         /* At this point, skb->len exceed MTU, but as it include length of all
6058          * segments, it can still be below MTU.  The SKB can possibly get
6059          * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6060          * must choose if segs are to be MTU checked.
6061          */
6062         if (skb_is_gso(skb)) {
6063                 ret = BPF_MTU_CHK_RET_SUCCESS;
6064
6065                 if (flags & BPF_MTU_CHK_SEGS &&
6066                     !skb_gso_validate_network_len(skb, mtu))
6067                         ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6068         }
6069 out:
6070         /* BPF verifier guarantees valid pointer */
6071         *mtu_len = mtu;
6072
6073         return ret;
6074 }
6075
6076 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6077            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6078 {
6079         struct net_device *dev = xdp->rxq->dev;
6080         int xdp_len = xdp->data_end - xdp->data;
6081         int ret = BPF_MTU_CHK_RET_SUCCESS;
6082         int mtu, dev_len;
6083
6084         /* XDP variant doesn't support multi-buffer segment check (yet) */
6085         if (unlikely(flags))
6086                 return -EINVAL;
6087
6088         dev = __dev_via_ifindex(dev, ifindex);
6089         if (unlikely(!dev))
6090                 return -ENODEV;
6091
6092         mtu = READ_ONCE(dev->mtu);
6093
6094         /* Add L2-header as dev MTU is L3 size */
6095         dev_len = mtu + dev->hard_header_len;
6096
6097         /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6098         if (*mtu_len)
6099                 xdp_len = *mtu_len + dev->hard_header_len;
6100
6101         xdp_len += len_diff; /* minus result pass check */
6102         if (xdp_len > dev_len)
6103                 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6104
6105         /* BPF verifier guarantees valid pointer */
6106         *mtu_len = mtu;
6107
6108         return ret;
6109 }
6110
6111 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6112         .func           = bpf_skb_check_mtu,
6113         .gpl_only       = true,
6114         .ret_type       = RET_INTEGER,
6115         .arg1_type      = ARG_PTR_TO_CTX,
6116         .arg2_type      = ARG_ANYTHING,
6117         .arg3_type      = ARG_PTR_TO_INT,
6118         .arg4_type      = ARG_ANYTHING,
6119         .arg5_type      = ARG_ANYTHING,
6120 };
6121
6122 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6123         .func           = bpf_xdp_check_mtu,
6124         .gpl_only       = true,
6125         .ret_type       = RET_INTEGER,
6126         .arg1_type      = ARG_PTR_TO_CTX,
6127         .arg2_type      = ARG_ANYTHING,
6128         .arg3_type      = ARG_PTR_TO_INT,
6129         .arg4_type      = ARG_ANYTHING,
6130         .arg5_type      = ARG_ANYTHING,
6131 };
6132
6133 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6134 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6135 {
6136         int err;
6137         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6138
6139         if (!seg6_validate_srh(srh, len, false))
6140                 return -EINVAL;
6141
6142         switch (type) {
6143         case BPF_LWT_ENCAP_SEG6_INLINE:
6144                 if (skb->protocol != htons(ETH_P_IPV6))
6145                         return -EBADMSG;
6146
6147                 err = seg6_do_srh_inline(skb, srh);
6148                 break;
6149         case BPF_LWT_ENCAP_SEG6:
6150                 skb_reset_inner_headers(skb);
6151                 skb->encapsulation = 1;
6152                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6153                 break;
6154         default:
6155                 return -EINVAL;
6156         }
6157
6158         bpf_compute_data_pointers(skb);
6159         if (err)
6160                 return err;
6161
6162         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6163
6164         return seg6_lookup_nexthop(skb, NULL, 0);
6165 }
6166 #endif /* CONFIG_IPV6_SEG6_BPF */
6167
6168 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6169 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6170                              bool ingress)
6171 {
6172         return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6173 }
6174 #endif
6175
6176 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6177            u32, len)
6178 {
6179         switch (type) {
6180 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6181         case BPF_LWT_ENCAP_SEG6:
6182         case BPF_LWT_ENCAP_SEG6_INLINE:
6183                 return bpf_push_seg6_encap(skb, type, hdr, len);
6184 #endif
6185 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6186         case BPF_LWT_ENCAP_IP:
6187                 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6188 #endif
6189         default:
6190                 return -EINVAL;
6191         }
6192 }
6193
6194 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6195            void *, hdr, u32, len)
6196 {
6197         switch (type) {
6198 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6199         case BPF_LWT_ENCAP_IP:
6200                 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6201 #endif
6202         default:
6203                 return -EINVAL;
6204         }
6205 }
6206
6207 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6208         .func           = bpf_lwt_in_push_encap,
6209         .gpl_only       = false,
6210         .ret_type       = RET_INTEGER,
6211         .arg1_type      = ARG_PTR_TO_CTX,
6212         .arg2_type      = ARG_ANYTHING,
6213         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6214         .arg4_type      = ARG_CONST_SIZE
6215 };
6216
6217 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6218         .func           = bpf_lwt_xmit_push_encap,
6219         .gpl_only       = false,
6220         .ret_type       = RET_INTEGER,
6221         .arg1_type      = ARG_PTR_TO_CTX,
6222         .arg2_type      = ARG_ANYTHING,
6223         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6224         .arg4_type      = ARG_CONST_SIZE
6225 };
6226
6227 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6228 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6229            const void *, from, u32, len)
6230 {
6231         struct seg6_bpf_srh_state *srh_state =
6232                 this_cpu_ptr(&seg6_bpf_srh_states);
6233         struct ipv6_sr_hdr *srh = srh_state->srh;
6234         void *srh_tlvs, *srh_end, *ptr;
6235         int srhoff = 0;
6236
6237         if (srh == NULL)
6238                 return -EINVAL;
6239
6240         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6241         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6242
6243         ptr = skb->data + offset;
6244         if (ptr >= srh_tlvs && ptr + len <= srh_end)
6245                 srh_state->valid = false;
6246         else if (ptr < (void *)&srh->flags ||
6247                  ptr + len > (void *)&srh->segments)
6248                 return -EFAULT;
6249
6250         if (unlikely(bpf_try_make_writable(skb, offset + len)))
6251                 return -EFAULT;
6252         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6253                 return -EINVAL;
6254         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6255
6256         memcpy(skb->data + offset, from, len);
6257         return 0;
6258 }
6259
6260 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6261         .func           = bpf_lwt_seg6_store_bytes,
6262         .gpl_only       = false,
6263         .ret_type       = RET_INTEGER,
6264         .arg1_type      = ARG_PTR_TO_CTX,
6265         .arg2_type      = ARG_ANYTHING,
6266         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6267         .arg4_type      = ARG_CONST_SIZE
6268 };
6269
6270 static void bpf_update_srh_state(struct sk_buff *skb)
6271 {
6272         struct seg6_bpf_srh_state *srh_state =
6273                 this_cpu_ptr(&seg6_bpf_srh_states);
6274         int srhoff = 0;
6275
6276         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6277                 srh_state->srh = NULL;
6278         } else {
6279                 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6280                 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6281                 srh_state->valid = true;
6282         }
6283 }
6284
6285 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6286            u32, action, void *, param, u32, param_len)
6287 {
6288         struct seg6_bpf_srh_state *srh_state =
6289                 this_cpu_ptr(&seg6_bpf_srh_states);
6290         int hdroff = 0;
6291         int err;
6292
6293         switch (action) {
6294         case SEG6_LOCAL_ACTION_END_X:
6295                 if (!seg6_bpf_has_valid_srh(skb))
6296                         return -EBADMSG;
6297                 if (param_len != sizeof(struct in6_addr))
6298                         return -EINVAL;
6299                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6300         case SEG6_LOCAL_ACTION_END_T:
6301                 if (!seg6_bpf_has_valid_srh(skb))
6302                         return -EBADMSG;
6303                 if (param_len != sizeof(int))
6304                         return -EINVAL;
6305                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6306         case SEG6_LOCAL_ACTION_END_DT6:
6307                 if (!seg6_bpf_has_valid_srh(skb))
6308                         return -EBADMSG;
6309                 if (param_len != sizeof(int))
6310                         return -EINVAL;
6311
6312                 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6313                         return -EBADMSG;
6314                 if (!pskb_pull(skb, hdroff))
6315                         return -EBADMSG;
6316
6317                 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6318                 skb_reset_network_header(skb);
6319                 skb_reset_transport_header(skb);
6320                 skb->encapsulation = 0;
6321
6322                 bpf_compute_data_pointers(skb);
6323                 bpf_update_srh_state(skb);
6324                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6325         case SEG6_LOCAL_ACTION_END_B6:
6326                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6327                         return -EBADMSG;
6328                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6329                                           param, param_len);
6330                 if (!err)
6331                         bpf_update_srh_state(skb);
6332
6333                 return err;
6334         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6335                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6336                         return -EBADMSG;
6337                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6338                                           param, param_len);
6339                 if (!err)
6340                         bpf_update_srh_state(skb);
6341
6342                 return err;
6343         default:
6344                 return -EINVAL;
6345         }
6346 }
6347
6348 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6349         .func           = bpf_lwt_seg6_action,
6350         .gpl_only       = false,
6351         .ret_type       = RET_INTEGER,
6352         .arg1_type      = ARG_PTR_TO_CTX,
6353         .arg2_type      = ARG_ANYTHING,
6354         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6355         .arg4_type      = ARG_CONST_SIZE
6356 };
6357
6358 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6359            s32, len)
6360 {
6361         struct seg6_bpf_srh_state *srh_state =
6362                 this_cpu_ptr(&seg6_bpf_srh_states);
6363         struct ipv6_sr_hdr *srh = srh_state->srh;
6364         void *srh_end, *srh_tlvs, *ptr;
6365         struct ipv6hdr *hdr;
6366         int srhoff = 0;
6367         int ret;
6368
6369         if (unlikely(srh == NULL))
6370                 return -EINVAL;
6371
6372         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6373                         ((srh->first_segment + 1) << 4));
6374         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6375                         srh_state->hdrlen);
6376         ptr = skb->data + offset;
6377
6378         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6379                 return -EFAULT;
6380         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6381                 return -EFAULT;
6382
6383         if (len > 0) {
6384                 ret = skb_cow_head(skb, len);
6385                 if (unlikely(ret < 0))
6386                         return ret;
6387
6388                 ret = bpf_skb_net_hdr_push(skb, offset, len);
6389         } else {
6390                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6391         }
6392
6393         bpf_compute_data_pointers(skb);
6394         if (unlikely(ret < 0))
6395                 return ret;
6396
6397         hdr = (struct ipv6hdr *)skb->data;
6398         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6399
6400         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6401                 return -EINVAL;
6402         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6403         srh_state->hdrlen += len;
6404         srh_state->valid = false;
6405         return 0;
6406 }
6407
6408 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6409         .func           = bpf_lwt_seg6_adjust_srh,
6410         .gpl_only       = false,
6411         .ret_type       = RET_INTEGER,
6412         .arg1_type      = ARG_PTR_TO_CTX,
6413         .arg2_type      = ARG_ANYTHING,
6414         .arg3_type      = ARG_ANYTHING,
6415 };
6416 #endif /* CONFIG_IPV6_SEG6_BPF */
6417
6418 #ifdef CONFIG_INET
6419 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6420                               int dif, int sdif, u8 family, u8 proto)
6421 {
6422         bool refcounted = false;
6423         struct sock *sk = NULL;
6424
6425         if (family == AF_INET) {
6426                 __be32 src4 = tuple->ipv4.saddr;
6427                 __be32 dst4 = tuple->ipv4.daddr;
6428
6429                 if (proto == IPPROTO_TCP)
6430                         sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
6431                                            src4, tuple->ipv4.sport,
6432                                            dst4, tuple->ipv4.dport,
6433                                            dif, sdif, &refcounted);
6434                 else
6435                         sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6436                                                dst4, tuple->ipv4.dport,
6437                                                dif, sdif, &udp_table, NULL);
6438 #if IS_ENABLED(CONFIG_IPV6)
6439         } else {
6440                 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6441                 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6442
6443                 if (proto == IPPROTO_TCP)
6444                         sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
6445                                             src6, tuple->ipv6.sport,
6446                                             dst6, ntohs(tuple->ipv6.dport),
6447                                             dif, sdif, &refcounted);
6448                 else if (likely(ipv6_bpf_stub))
6449                         sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6450                                                             src6, tuple->ipv6.sport,
6451                                                             dst6, tuple->ipv6.dport,
6452                                                             dif, sdif,
6453                                                             &udp_table, NULL);
6454 #endif
6455         }
6456
6457         if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6458                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6459                 sk = NULL;
6460         }
6461         return sk;
6462 }
6463
6464 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6465  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6466  */
6467 static struct sock *
6468 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6469                  struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6470                  u64 flags)
6471 {
6472         struct sock *sk = NULL;
6473         struct net *net;
6474         u8 family;
6475         int sdif;
6476
6477         if (len == sizeof(tuple->ipv4))
6478                 family = AF_INET;
6479         else if (len == sizeof(tuple->ipv6))
6480                 family = AF_INET6;
6481         else
6482                 return NULL;
6483
6484         if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6485                 goto out;
6486
6487         if (family == AF_INET)
6488                 sdif = inet_sdif(skb);
6489         else
6490                 sdif = inet6_sdif(skb);
6491
6492         if ((s32)netns_id < 0) {
6493                 net = caller_net;
6494                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6495         } else {
6496                 net = get_net_ns_by_id(caller_net, netns_id);
6497                 if (unlikely(!net))
6498                         goto out;
6499                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6500                 put_net(net);
6501         }
6502
6503 out:
6504         return sk;
6505 }
6506
6507 static struct sock *
6508 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6509                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6510                 u64 flags)
6511 {
6512         struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6513                                            ifindex, proto, netns_id, flags);
6514
6515         if (sk) {
6516                 struct sock *sk2 = sk_to_full_sk(sk);
6517
6518                 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6519                  * sock refcnt is decremented to prevent a request_sock leak.
6520                  */
6521                 if (!sk_fullsock(sk2))
6522                         sk2 = NULL;
6523                 if (sk2 != sk) {
6524                         sock_gen_put(sk);
6525                         /* Ensure there is no need to bump sk2 refcnt */
6526                         if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6527                                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6528                                 return NULL;
6529                         }
6530                         sk = sk2;
6531                 }
6532         }
6533
6534         return sk;
6535 }
6536
6537 static struct sock *
6538 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6539                u8 proto, u64 netns_id, u64 flags)
6540 {
6541         struct net *caller_net;
6542         int ifindex;
6543
6544         if (skb->dev) {
6545                 caller_net = dev_net(skb->dev);
6546                 ifindex = skb->dev->ifindex;
6547         } else {
6548                 caller_net = sock_net(skb->sk);
6549                 ifindex = 0;
6550         }
6551
6552         return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6553                                 netns_id, flags);
6554 }
6555
6556 static struct sock *
6557 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6558               u8 proto, u64 netns_id, u64 flags)
6559 {
6560         struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6561                                          flags);
6562
6563         if (sk) {
6564                 struct sock *sk2 = sk_to_full_sk(sk);
6565
6566                 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6567                  * sock refcnt is decremented to prevent a request_sock leak.
6568                  */
6569                 if (!sk_fullsock(sk2))
6570                         sk2 = NULL;
6571                 if (sk2 != sk) {
6572                         sock_gen_put(sk);
6573                         /* Ensure there is no need to bump sk2 refcnt */
6574                         if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6575                                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6576                                 return NULL;
6577                         }
6578                         sk = sk2;
6579                 }
6580         }
6581
6582         return sk;
6583 }
6584
6585 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6586            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6587 {
6588         return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6589                                              netns_id, flags);
6590 }
6591
6592 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6593         .func           = bpf_skc_lookup_tcp,
6594         .gpl_only       = false,
6595         .pkt_access     = true,
6596         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6597         .arg1_type      = ARG_PTR_TO_CTX,
6598         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6599         .arg3_type      = ARG_CONST_SIZE,
6600         .arg4_type      = ARG_ANYTHING,
6601         .arg5_type      = ARG_ANYTHING,
6602 };
6603
6604 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6605            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6606 {
6607         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6608                                             netns_id, flags);
6609 }
6610
6611 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6612         .func           = bpf_sk_lookup_tcp,
6613         .gpl_only       = false,
6614         .pkt_access     = true,
6615         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6616         .arg1_type      = ARG_PTR_TO_CTX,
6617         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6618         .arg3_type      = ARG_CONST_SIZE,
6619         .arg4_type      = ARG_ANYTHING,
6620         .arg5_type      = ARG_ANYTHING,
6621 };
6622
6623 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6624            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6625 {
6626         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6627                                             netns_id, flags);
6628 }
6629
6630 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6631         .func           = bpf_sk_lookup_udp,
6632         .gpl_only       = false,
6633         .pkt_access     = true,
6634         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6635         .arg1_type      = ARG_PTR_TO_CTX,
6636         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6637         .arg3_type      = ARG_CONST_SIZE,
6638         .arg4_type      = ARG_ANYTHING,
6639         .arg5_type      = ARG_ANYTHING,
6640 };
6641
6642 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6643 {
6644         if (sk && sk_is_refcounted(sk))
6645                 sock_gen_put(sk);
6646         return 0;
6647 }
6648
6649 static const struct bpf_func_proto bpf_sk_release_proto = {
6650         .func           = bpf_sk_release,
6651         .gpl_only       = false,
6652         .ret_type       = RET_INTEGER,
6653         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6654 };
6655
6656 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6657            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6658 {
6659         struct net *caller_net = dev_net(ctx->rxq->dev);
6660         int ifindex = ctx->rxq->dev->ifindex;
6661
6662         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6663                                               ifindex, IPPROTO_UDP, netns_id,
6664                                               flags);
6665 }
6666
6667 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6668         .func           = bpf_xdp_sk_lookup_udp,
6669         .gpl_only       = false,
6670         .pkt_access     = true,
6671         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6672         .arg1_type      = ARG_PTR_TO_CTX,
6673         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6674         .arg3_type      = ARG_CONST_SIZE,
6675         .arg4_type      = ARG_ANYTHING,
6676         .arg5_type      = ARG_ANYTHING,
6677 };
6678
6679 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6680            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6681 {
6682         struct net *caller_net = dev_net(ctx->rxq->dev);
6683         int ifindex = ctx->rxq->dev->ifindex;
6684
6685         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6686                                                ifindex, IPPROTO_TCP, netns_id,
6687                                                flags);
6688 }
6689
6690 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6691         .func           = bpf_xdp_skc_lookup_tcp,
6692         .gpl_only       = false,
6693         .pkt_access     = true,
6694         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6695         .arg1_type      = ARG_PTR_TO_CTX,
6696         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6697         .arg3_type      = ARG_CONST_SIZE,
6698         .arg4_type      = ARG_ANYTHING,
6699         .arg5_type      = ARG_ANYTHING,
6700 };
6701
6702 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6703            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6704 {
6705         struct net *caller_net = dev_net(ctx->rxq->dev);
6706         int ifindex = ctx->rxq->dev->ifindex;
6707
6708         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6709                                               ifindex, IPPROTO_TCP, netns_id,
6710                                               flags);
6711 }
6712
6713 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6714         .func           = bpf_xdp_sk_lookup_tcp,
6715         .gpl_only       = false,
6716         .pkt_access     = true,
6717         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6718         .arg1_type      = ARG_PTR_TO_CTX,
6719         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6720         .arg3_type      = ARG_CONST_SIZE,
6721         .arg4_type      = ARG_ANYTHING,
6722         .arg5_type      = ARG_ANYTHING,
6723 };
6724
6725 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6726            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6727 {
6728         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6729                                                sock_net(ctx->sk), 0,
6730                                                IPPROTO_TCP, netns_id, flags);
6731 }
6732
6733 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6734         .func           = bpf_sock_addr_skc_lookup_tcp,
6735         .gpl_only       = false,
6736         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6737         .arg1_type      = ARG_PTR_TO_CTX,
6738         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6739         .arg3_type      = ARG_CONST_SIZE,
6740         .arg4_type      = ARG_ANYTHING,
6741         .arg5_type      = ARG_ANYTHING,
6742 };
6743
6744 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6745            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6746 {
6747         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6748                                               sock_net(ctx->sk), 0, IPPROTO_TCP,
6749                                               netns_id, flags);
6750 }
6751
6752 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6753         .func           = bpf_sock_addr_sk_lookup_tcp,
6754         .gpl_only       = false,
6755         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6756         .arg1_type      = ARG_PTR_TO_CTX,
6757         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6758         .arg3_type      = ARG_CONST_SIZE,
6759         .arg4_type      = ARG_ANYTHING,
6760         .arg5_type      = ARG_ANYTHING,
6761 };
6762
6763 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6764            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6765 {
6766         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6767                                               sock_net(ctx->sk), 0, IPPROTO_UDP,
6768                                               netns_id, flags);
6769 }
6770
6771 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6772         .func           = bpf_sock_addr_sk_lookup_udp,
6773         .gpl_only       = false,
6774         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6775         .arg1_type      = ARG_PTR_TO_CTX,
6776         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6777         .arg3_type      = ARG_CONST_SIZE,
6778         .arg4_type      = ARG_ANYTHING,
6779         .arg5_type      = ARG_ANYTHING,
6780 };
6781
6782 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6783                                   struct bpf_insn_access_aux *info)
6784 {
6785         if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6786                                           icsk_retransmits))
6787                 return false;
6788
6789         if (off % size != 0)
6790                 return false;
6791
6792         switch (off) {
6793         case offsetof(struct bpf_tcp_sock, bytes_received):
6794         case offsetof(struct bpf_tcp_sock, bytes_acked):
6795                 return size == sizeof(__u64);
6796         default:
6797                 return size == sizeof(__u32);
6798         }
6799 }
6800
6801 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6802                                     const struct bpf_insn *si,
6803                                     struct bpf_insn *insn_buf,
6804                                     struct bpf_prog *prog, u32 *target_size)
6805 {
6806         struct bpf_insn *insn = insn_buf;
6807
6808 #define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
6809         do {                                                            \
6810                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >     \
6811                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6812                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6813                                       si->dst_reg, si->src_reg,         \
6814                                       offsetof(struct tcp_sock, FIELD)); \
6815         } while (0)
6816
6817 #define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
6818         do {                                                            \
6819                 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,  \
6820                                           FIELD) >                      \
6821                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6822                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
6823                                         struct inet_connection_sock,    \
6824                                         FIELD),                         \
6825                                       si->dst_reg, si->src_reg,         \
6826                                       offsetof(                         \
6827                                         struct inet_connection_sock,    \
6828                                         FIELD));                        \
6829         } while (0)
6830
6831         if (insn > insn_buf)
6832                 return insn - insn_buf;
6833
6834         switch (si->off) {
6835         case offsetof(struct bpf_tcp_sock, rtt_min):
6836                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6837                              sizeof(struct minmax));
6838                 BUILD_BUG_ON(sizeof(struct minmax) <
6839                              sizeof(struct minmax_sample));
6840
6841                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6842                                       offsetof(struct tcp_sock, rtt_min) +
6843                                       offsetof(struct minmax_sample, v));
6844                 break;
6845         case offsetof(struct bpf_tcp_sock, snd_cwnd):
6846                 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6847                 break;
6848         case offsetof(struct bpf_tcp_sock, srtt_us):
6849                 BPF_TCP_SOCK_GET_COMMON(srtt_us);
6850                 break;
6851         case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6852                 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6853                 break;
6854         case offsetof(struct bpf_tcp_sock, rcv_nxt):
6855                 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6856                 break;
6857         case offsetof(struct bpf_tcp_sock, snd_nxt):
6858                 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6859                 break;
6860         case offsetof(struct bpf_tcp_sock, snd_una):
6861                 BPF_TCP_SOCK_GET_COMMON(snd_una);
6862                 break;
6863         case offsetof(struct bpf_tcp_sock, mss_cache):
6864                 BPF_TCP_SOCK_GET_COMMON(mss_cache);
6865                 break;
6866         case offsetof(struct bpf_tcp_sock, ecn_flags):
6867                 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6868                 break;
6869         case offsetof(struct bpf_tcp_sock, rate_delivered):
6870                 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6871                 break;
6872         case offsetof(struct bpf_tcp_sock, rate_interval_us):
6873                 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6874                 break;
6875         case offsetof(struct bpf_tcp_sock, packets_out):
6876                 BPF_TCP_SOCK_GET_COMMON(packets_out);
6877                 break;
6878         case offsetof(struct bpf_tcp_sock, retrans_out):
6879                 BPF_TCP_SOCK_GET_COMMON(retrans_out);
6880                 break;
6881         case offsetof(struct bpf_tcp_sock, total_retrans):
6882                 BPF_TCP_SOCK_GET_COMMON(total_retrans);
6883                 break;
6884         case offsetof(struct bpf_tcp_sock, segs_in):
6885                 BPF_TCP_SOCK_GET_COMMON(segs_in);
6886                 break;
6887         case offsetof(struct bpf_tcp_sock, data_segs_in):
6888                 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6889                 break;
6890         case offsetof(struct bpf_tcp_sock, segs_out):
6891                 BPF_TCP_SOCK_GET_COMMON(segs_out);
6892                 break;
6893         case offsetof(struct bpf_tcp_sock, data_segs_out):
6894                 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6895                 break;
6896         case offsetof(struct bpf_tcp_sock, lost_out):
6897                 BPF_TCP_SOCK_GET_COMMON(lost_out);
6898                 break;
6899         case offsetof(struct bpf_tcp_sock, sacked_out):
6900                 BPF_TCP_SOCK_GET_COMMON(sacked_out);
6901                 break;
6902         case offsetof(struct bpf_tcp_sock, bytes_received):
6903                 BPF_TCP_SOCK_GET_COMMON(bytes_received);
6904                 break;
6905         case offsetof(struct bpf_tcp_sock, bytes_acked):
6906                 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6907                 break;
6908         case offsetof(struct bpf_tcp_sock, dsack_dups):
6909                 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6910                 break;
6911         case offsetof(struct bpf_tcp_sock, delivered):
6912                 BPF_TCP_SOCK_GET_COMMON(delivered);
6913                 break;
6914         case offsetof(struct bpf_tcp_sock, delivered_ce):
6915                 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6916                 break;
6917         case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6918                 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6919                 break;
6920         }
6921
6922         return insn - insn_buf;
6923 }
6924
6925 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6926 {
6927         if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6928                 return (unsigned long)sk;
6929
6930         return (unsigned long)NULL;
6931 }
6932
6933 const struct bpf_func_proto bpf_tcp_sock_proto = {
6934         .func           = bpf_tcp_sock,
6935         .gpl_only       = false,
6936         .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
6937         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6938 };
6939
6940 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6941 {
6942         sk = sk_to_full_sk(sk);
6943
6944         if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6945                 return (unsigned long)sk;
6946
6947         return (unsigned long)NULL;
6948 }
6949
6950 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6951         .func           = bpf_get_listener_sock,
6952         .gpl_only       = false,
6953         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6954         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6955 };
6956
6957 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6958 {
6959         unsigned int iphdr_len;
6960
6961         switch (skb_protocol(skb, true)) {
6962         case cpu_to_be16(ETH_P_IP):
6963                 iphdr_len = sizeof(struct iphdr);
6964                 break;
6965         case cpu_to_be16(ETH_P_IPV6):
6966                 iphdr_len = sizeof(struct ipv6hdr);
6967                 break;
6968         default:
6969                 return 0;
6970         }
6971
6972         if (skb_headlen(skb) < iphdr_len)
6973                 return 0;
6974
6975         if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6976                 return 0;
6977
6978         return INET_ECN_set_ce(skb);
6979 }
6980
6981 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6982                                   struct bpf_insn_access_aux *info)
6983 {
6984         if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6985                 return false;
6986
6987         if (off % size != 0)
6988                 return false;
6989
6990         switch (off) {
6991         default:
6992                 return size == sizeof(__u32);
6993         }
6994 }
6995
6996 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6997                                     const struct bpf_insn *si,
6998                                     struct bpf_insn *insn_buf,
6999                                     struct bpf_prog *prog, u32 *target_size)
7000 {
7001         struct bpf_insn *insn = insn_buf;
7002
7003 #define BPF_XDP_SOCK_GET(FIELD)                                         \
7004         do {                                                            \
7005                 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >     \
7006                              sizeof_field(struct bpf_xdp_sock, FIELD)); \
7007                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7008                                       si->dst_reg, si->src_reg,         \
7009                                       offsetof(struct xdp_sock, FIELD)); \
7010         } while (0)
7011
7012         switch (si->off) {
7013         case offsetof(struct bpf_xdp_sock, queue_id):
7014                 BPF_XDP_SOCK_GET(queue_id);
7015                 break;
7016         }
7017
7018         return insn - insn_buf;
7019 }
7020
7021 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7022         .func           = bpf_skb_ecn_set_ce,
7023         .gpl_only       = false,
7024         .ret_type       = RET_INTEGER,
7025         .arg1_type      = ARG_PTR_TO_CTX,
7026 };
7027
7028 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7029            struct tcphdr *, th, u32, th_len)
7030 {
7031 #ifdef CONFIG_SYN_COOKIES
7032         u32 cookie;
7033         int ret;
7034
7035         if (unlikely(!sk || th_len < sizeof(*th)))
7036                 return -EINVAL;
7037
7038         /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7039         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7040                 return -EINVAL;
7041
7042         if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7043                 return -EINVAL;
7044
7045         if (!th->ack || th->rst || th->syn)
7046                 return -ENOENT;
7047
7048         if (unlikely(iph_len < sizeof(struct iphdr)))
7049                 return -EINVAL;
7050
7051         if (tcp_synq_no_recent_overflow(sk))
7052                 return -ENOENT;
7053
7054         cookie = ntohl(th->ack_seq) - 1;
7055
7056         /* Both struct iphdr and struct ipv6hdr have the version field at the
7057          * same offset so we can cast to the shorter header (struct iphdr).
7058          */
7059         switch (((struct iphdr *)iph)->version) {
7060         case 4:
7061                 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7062                         return -EINVAL;
7063
7064                 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7065                 break;
7066
7067 #if IS_BUILTIN(CONFIG_IPV6)
7068         case 6:
7069                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7070                         return -EINVAL;
7071
7072                 if (sk->sk_family != AF_INET6)
7073                         return -EINVAL;
7074
7075                 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7076                 break;
7077 #endif /* CONFIG_IPV6 */
7078
7079         default:
7080                 return -EPROTONOSUPPORT;
7081         }
7082
7083         if (ret > 0)
7084                 return 0;
7085
7086         return -ENOENT;
7087 #else
7088         return -ENOTSUPP;
7089 #endif
7090 }
7091
7092 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7093         .func           = bpf_tcp_check_syncookie,
7094         .gpl_only       = true,
7095         .pkt_access     = true,
7096         .ret_type       = RET_INTEGER,
7097         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7098         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7099         .arg3_type      = ARG_CONST_SIZE,
7100         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7101         .arg5_type      = ARG_CONST_SIZE,
7102 };
7103
7104 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7105            struct tcphdr *, th, u32, th_len)
7106 {
7107 #ifdef CONFIG_SYN_COOKIES
7108         u32 cookie;
7109         u16 mss;
7110
7111         if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7112                 return -EINVAL;
7113
7114         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7115                 return -EINVAL;
7116
7117         if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7118                 return -ENOENT;
7119
7120         if (!th->syn || th->ack || th->fin || th->rst)
7121                 return -EINVAL;
7122
7123         if (unlikely(iph_len < sizeof(struct iphdr)))
7124                 return -EINVAL;
7125
7126         /* Both struct iphdr and struct ipv6hdr have the version field at the
7127          * same offset so we can cast to the shorter header (struct iphdr).
7128          */
7129         switch (((struct iphdr *)iph)->version) {
7130         case 4:
7131                 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7132                         return -EINVAL;
7133
7134                 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7135                 break;
7136
7137 #if IS_BUILTIN(CONFIG_IPV6)
7138         case 6:
7139                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7140                         return -EINVAL;
7141
7142                 if (sk->sk_family != AF_INET6)
7143                         return -EINVAL;
7144
7145                 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7146                 break;
7147 #endif /* CONFIG_IPV6 */
7148
7149         default:
7150                 return -EPROTONOSUPPORT;
7151         }
7152         if (mss == 0)
7153                 return -ENOENT;
7154
7155         return cookie | ((u64)mss << 32);
7156 #else
7157         return -EOPNOTSUPP;
7158 #endif /* CONFIG_SYN_COOKIES */
7159 }
7160
7161 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7162         .func           = bpf_tcp_gen_syncookie,
7163         .gpl_only       = true, /* __cookie_v*_init_sequence() is GPL */
7164         .pkt_access     = true,
7165         .ret_type       = RET_INTEGER,
7166         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7167         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7168         .arg3_type      = ARG_CONST_SIZE,
7169         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7170         .arg5_type      = ARG_CONST_SIZE,
7171 };
7172
7173 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7174 {
7175         if (!sk || flags != 0)
7176                 return -EINVAL;
7177         if (!skb_at_tc_ingress(skb))
7178                 return -EOPNOTSUPP;
7179         if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7180                 return -ENETUNREACH;
7181         if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
7182                 return -ESOCKTNOSUPPORT;
7183         if (sk_is_refcounted(sk) &&
7184             unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7185                 return -ENOENT;
7186
7187         skb_orphan(skb);
7188         skb->sk = sk;
7189         skb->destructor = sock_pfree;
7190
7191         return 0;
7192 }
7193
7194 static const struct bpf_func_proto bpf_sk_assign_proto = {
7195         .func           = bpf_sk_assign,
7196         .gpl_only       = false,
7197         .ret_type       = RET_INTEGER,
7198         .arg1_type      = ARG_PTR_TO_CTX,
7199         .arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7200         .arg3_type      = ARG_ANYTHING,
7201 };
7202
7203 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7204                                     u8 search_kind, const u8 *magic,
7205                                     u8 magic_len, bool *eol)
7206 {
7207         u8 kind, kind_len;
7208
7209         *eol = false;
7210
7211         while (op < opend) {
7212                 kind = op[0];
7213
7214                 if (kind == TCPOPT_EOL) {
7215                         *eol = true;
7216                         return ERR_PTR(-ENOMSG);
7217                 } else if (kind == TCPOPT_NOP) {
7218                         op++;
7219                         continue;
7220                 }
7221
7222                 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7223                         /* Something is wrong in the received header.
7224                          * Follow the TCP stack's tcp_parse_options()
7225                          * and just bail here.
7226                          */
7227                         return ERR_PTR(-EFAULT);
7228
7229                 kind_len = op[1];
7230                 if (search_kind == kind) {
7231                         if (!magic_len)
7232                                 return op;
7233
7234                         if (magic_len > kind_len - 2)
7235                                 return ERR_PTR(-ENOMSG);
7236
7237                         if (!memcmp(&op[2], magic, magic_len))
7238                                 return op;
7239                 }
7240
7241                 op += kind_len;
7242         }
7243
7244         return ERR_PTR(-ENOMSG);
7245 }
7246
7247 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7248            void *, search_res, u32, len, u64, flags)
7249 {
7250         bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7251         const u8 *op, *opend, *magic, *search = search_res;
7252         u8 search_kind, search_len, copy_len, magic_len;
7253         int ret;
7254
7255         /* 2 byte is the minimal option len except TCPOPT_NOP and
7256          * TCPOPT_EOL which are useless for the bpf prog to learn
7257          * and this helper disallow loading them also.
7258          */
7259         if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7260                 return -EINVAL;
7261
7262         search_kind = search[0];
7263         search_len = search[1];
7264
7265         if (search_len > len || search_kind == TCPOPT_NOP ||
7266             search_kind == TCPOPT_EOL)
7267                 return -EINVAL;
7268
7269         if (search_kind == TCPOPT_EXP || search_kind == 253) {
7270                 /* 16 or 32 bit magic.  +2 for kind and kind length */
7271                 if (search_len != 4 && search_len != 6)
7272                         return -EINVAL;
7273                 magic = &search[2];
7274                 magic_len = search_len - 2;
7275         } else {
7276                 if (search_len)
7277                         return -EINVAL;
7278                 magic = NULL;
7279                 magic_len = 0;
7280         }
7281
7282         if (load_syn) {
7283                 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7284                 if (ret < 0)
7285                         return ret;
7286
7287                 opend = op + ret;
7288                 op += sizeof(struct tcphdr);
7289         } else {
7290                 if (!bpf_sock->skb ||
7291                     bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7292                         /* This bpf_sock->op cannot call this helper */
7293                         return -EPERM;
7294
7295                 opend = bpf_sock->skb_data_end;
7296                 op = bpf_sock->skb->data + sizeof(struct tcphdr);
7297         }
7298
7299         op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7300                                 &eol);
7301         if (IS_ERR(op))
7302                 return PTR_ERR(op);
7303
7304         copy_len = op[1];
7305         ret = copy_len;
7306         if (copy_len > len) {
7307                 ret = -ENOSPC;
7308                 copy_len = len;
7309         }
7310
7311         memcpy(search_res, op, copy_len);
7312         return ret;
7313 }
7314
7315 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7316         .func           = bpf_sock_ops_load_hdr_opt,
7317         .gpl_only       = false,
7318         .ret_type       = RET_INTEGER,
7319         .arg1_type      = ARG_PTR_TO_CTX,
7320         .arg2_type      = ARG_PTR_TO_MEM,
7321         .arg3_type      = ARG_CONST_SIZE,
7322         .arg4_type      = ARG_ANYTHING,
7323 };
7324
7325 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7326            const void *, from, u32, len, u64, flags)
7327 {
7328         u8 new_kind, new_kind_len, magic_len = 0, *opend;
7329         const u8 *op, *new_op, *magic = NULL;
7330         struct sk_buff *skb;
7331         bool eol;
7332
7333         if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7334                 return -EPERM;
7335
7336         if (len < 2 || flags)
7337                 return -EINVAL;
7338
7339         new_op = from;
7340         new_kind = new_op[0];
7341         new_kind_len = new_op[1];
7342
7343         if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7344             new_kind == TCPOPT_EOL)
7345                 return -EINVAL;
7346
7347         if (new_kind_len > bpf_sock->remaining_opt_len)
7348                 return -ENOSPC;
7349
7350         /* 253 is another experimental kind */
7351         if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7352                 if (new_kind_len < 4)
7353                         return -EINVAL;
7354                 /* Match for the 2 byte magic also.
7355                  * RFC 6994: the magic could be 2 or 4 bytes.
7356                  * Hence, matching by 2 byte only is on the
7357                  * conservative side but it is the right
7358                  * thing to do for the 'search-for-duplication'
7359                  * purpose.
7360                  */
7361                 magic = &new_op[2];
7362                 magic_len = 2;
7363         }
7364
7365         /* Check for duplication */
7366         skb = bpf_sock->skb;
7367         op = skb->data + sizeof(struct tcphdr);
7368         opend = bpf_sock->skb_data_end;
7369
7370         op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7371                                 &eol);
7372         if (!IS_ERR(op))
7373                 return -EEXIST;
7374
7375         if (PTR_ERR(op) != -ENOMSG)
7376                 return PTR_ERR(op);
7377
7378         if (eol)
7379                 /* The option has been ended.  Treat it as no more
7380                  * header option can be written.
7381                  */
7382                 return -ENOSPC;
7383
7384         /* No duplication found.  Store the header option. */
7385         memcpy(opend, from, new_kind_len);
7386
7387         bpf_sock->remaining_opt_len -= new_kind_len;
7388         bpf_sock->skb_data_end += new_kind_len;
7389
7390         return 0;
7391 }
7392
7393 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7394         .func           = bpf_sock_ops_store_hdr_opt,
7395         .gpl_only       = false,
7396         .ret_type       = RET_INTEGER,
7397         .arg1_type      = ARG_PTR_TO_CTX,
7398         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7399         .arg3_type      = ARG_CONST_SIZE,
7400         .arg4_type      = ARG_ANYTHING,
7401 };
7402
7403 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7404            u32, len, u64, flags)
7405 {
7406         if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7407                 return -EPERM;
7408
7409         if (flags || len < 2)
7410                 return -EINVAL;
7411
7412         if (len > bpf_sock->remaining_opt_len)
7413                 return -ENOSPC;
7414
7415         bpf_sock->remaining_opt_len -= len;
7416
7417         return 0;
7418 }
7419
7420 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7421         .func           = bpf_sock_ops_reserve_hdr_opt,
7422         .gpl_only       = false,
7423         .ret_type       = RET_INTEGER,
7424         .arg1_type      = ARG_PTR_TO_CTX,
7425         .arg2_type      = ARG_ANYTHING,
7426         .arg3_type      = ARG_ANYTHING,
7427 };
7428
7429 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7430            u64, tstamp, u32, tstamp_type)
7431 {
7432         /* skb_clear_delivery_time() is done for inet protocol */
7433         if (skb->protocol != htons(ETH_P_IP) &&
7434             skb->protocol != htons(ETH_P_IPV6))
7435                 return -EOPNOTSUPP;
7436
7437         switch (tstamp_type) {
7438         case BPF_SKB_TSTAMP_DELIVERY_MONO:
7439                 if (!tstamp)
7440                         return -EINVAL;
7441                 skb->tstamp = tstamp;
7442                 skb->mono_delivery_time = 1;
7443                 break;
7444         case BPF_SKB_TSTAMP_UNSPEC:
7445                 if (tstamp)
7446                         return -EINVAL;
7447                 skb->tstamp = 0;
7448                 skb->mono_delivery_time = 0;
7449                 break;
7450         default:
7451                 return -EINVAL;
7452         }
7453
7454         return 0;
7455 }
7456
7457 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7458         .func           = bpf_skb_set_tstamp,
7459         .gpl_only       = false,
7460         .ret_type       = RET_INTEGER,
7461         .arg1_type      = ARG_PTR_TO_CTX,
7462         .arg2_type      = ARG_ANYTHING,
7463         .arg3_type      = ARG_ANYTHING,
7464 };
7465
7466 #ifdef CONFIG_SYN_COOKIES
7467 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7468            struct tcphdr *, th, u32, th_len)
7469 {
7470         u32 cookie;
7471         u16 mss;
7472
7473         if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7474                 return -EINVAL;
7475
7476         mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7477         cookie = __cookie_v4_init_sequence(iph, th, &mss);
7478
7479         return cookie | ((u64)mss << 32);
7480 }
7481
7482 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7483         .func           = bpf_tcp_raw_gen_syncookie_ipv4,
7484         .gpl_only       = true, /* __cookie_v4_init_sequence() is GPL */
7485         .pkt_access     = true,
7486         .ret_type       = RET_INTEGER,
7487         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7488         .arg1_size      = sizeof(struct iphdr),
7489         .arg2_type      = ARG_PTR_TO_MEM,
7490         .arg3_type      = ARG_CONST_SIZE,
7491 };
7492
7493 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7494            struct tcphdr *, th, u32, th_len)
7495 {
7496 #if IS_BUILTIN(CONFIG_IPV6)
7497         const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7498                 sizeof(struct ipv6hdr);
7499         u32 cookie;
7500         u16 mss;
7501
7502         if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7503                 return -EINVAL;
7504
7505         mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7506         cookie = __cookie_v6_init_sequence(iph, th, &mss);
7507
7508         return cookie | ((u64)mss << 32);
7509 #else
7510         return -EPROTONOSUPPORT;
7511 #endif
7512 }
7513
7514 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7515         .func           = bpf_tcp_raw_gen_syncookie_ipv6,
7516         .gpl_only       = true, /* __cookie_v6_init_sequence() is GPL */
7517         .pkt_access     = true,
7518         .ret_type       = RET_INTEGER,
7519         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7520         .arg1_size      = sizeof(struct ipv6hdr),
7521         .arg2_type      = ARG_PTR_TO_MEM,
7522         .arg3_type      = ARG_CONST_SIZE,
7523 };
7524
7525 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7526            struct tcphdr *, th)
7527 {
7528         u32 cookie = ntohl(th->ack_seq) - 1;
7529
7530         if (__cookie_v4_check(iph, th, cookie) > 0)
7531                 return 0;
7532
7533         return -EACCES;
7534 }
7535
7536 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7537         .func           = bpf_tcp_raw_check_syncookie_ipv4,
7538         .gpl_only       = true, /* __cookie_v4_check is GPL */
7539         .pkt_access     = true,
7540         .ret_type       = RET_INTEGER,
7541         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7542         .arg1_size      = sizeof(struct iphdr),
7543         .arg2_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7544         .arg2_size      = sizeof(struct tcphdr),
7545 };
7546
7547 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7548            struct tcphdr *, th)
7549 {
7550 #if IS_BUILTIN(CONFIG_IPV6)
7551         u32 cookie = ntohl(th->ack_seq) - 1;
7552
7553         if (__cookie_v6_check(iph, th, cookie) > 0)
7554                 return 0;
7555
7556         return -EACCES;
7557 #else
7558         return -EPROTONOSUPPORT;
7559 #endif
7560 }
7561
7562 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7563         .func           = bpf_tcp_raw_check_syncookie_ipv6,
7564         .gpl_only       = true, /* __cookie_v6_check is GPL */
7565         .pkt_access     = true,
7566         .ret_type       = RET_INTEGER,
7567         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7568         .arg1_size      = sizeof(struct ipv6hdr),
7569         .arg2_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7570         .arg2_size      = sizeof(struct tcphdr),
7571 };
7572 #endif /* CONFIG_SYN_COOKIES */
7573
7574 #endif /* CONFIG_INET */
7575
7576 bool bpf_helper_changes_pkt_data(void *func)
7577 {
7578         if (func == bpf_skb_vlan_push ||
7579             func == bpf_skb_vlan_pop ||
7580             func == bpf_skb_store_bytes ||
7581             func == bpf_skb_change_proto ||
7582             func == bpf_skb_change_head ||
7583             func == sk_skb_change_head ||
7584             func == bpf_skb_change_tail ||
7585             func == sk_skb_change_tail ||
7586             func == bpf_skb_adjust_room ||
7587             func == sk_skb_adjust_room ||
7588             func == bpf_skb_pull_data ||
7589             func == sk_skb_pull_data ||
7590             func == bpf_clone_redirect ||
7591             func == bpf_l3_csum_replace ||
7592             func == bpf_l4_csum_replace ||
7593             func == bpf_xdp_adjust_head ||
7594             func == bpf_xdp_adjust_meta ||
7595             func == bpf_msg_pull_data ||
7596             func == bpf_msg_push_data ||
7597             func == bpf_msg_pop_data ||
7598             func == bpf_xdp_adjust_tail ||
7599 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7600             func == bpf_lwt_seg6_store_bytes ||
7601             func == bpf_lwt_seg6_adjust_srh ||
7602             func == bpf_lwt_seg6_action ||
7603 #endif
7604 #ifdef CONFIG_INET
7605             func == bpf_sock_ops_store_hdr_opt ||
7606 #endif
7607             func == bpf_lwt_in_push_encap ||
7608             func == bpf_lwt_xmit_push_encap)
7609                 return true;
7610
7611         return false;
7612 }
7613
7614 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7615 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7616
7617 static const struct bpf_func_proto *
7618 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7619 {
7620         switch (func_id) {
7621         /* inet and inet6 sockets are created in a process
7622          * context so there is always a valid uid/gid
7623          */
7624         case BPF_FUNC_get_current_uid_gid:
7625                 return &bpf_get_current_uid_gid_proto;
7626         case BPF_FUNC_get_local_storage:
7627                 return &bpf_get_local_storage_proto;
7628         case BPF_FUNC_get_socket_cookie:
7629                 return &bpf_get_socket_cookie_sock_proto;
7630         case BPF_FUNC_get_netns_cookie:
7631                 return &bpf_get_netns_cookie_sock_proto;
7632         case BPF_FUNC_perf_event_output:
7633                 return &bpf_event_output_data_proto;
7634         case BPF_FUNC_get_current_pid_tgid:
7635                 return &bpf_get_current_pid_tgid_proto;
7636         case BPF_FUNC_get_current_comm:
7637                 return &bpf_get_current_comm_proto;
7638 #ifdef CONFIG_CGROUPS
7639         case BPF_FUNC_get_current_cgroup_id:
7640                 return &bpf_get_current_cgroup_id_proto;
7641         case BPF_FUNC_get_current_ancestor_cgroup_id:
7642                 return &bpf_get_current_ancestor_cgroup_id_proto;
7643 #endif
7644 #ifdef CONFIG_CGROUP_NET_CLASSID
7645         case BPF_FUNC_get_cgroup_classid:
7646                 return &bpf_get_cgroup_classid_curr_proto;
7647 #endif
7648         case BPF_FUNC_sk_storage_get:
7649                 return &bpf_sk_storage_get_cg_sock_proto;
7650         case BPF_FUNC_ktime_get_coarse_ns:
7651                 return &bpf_ktime_get_coarse_ns_proto;
7652         default:
7653                 return bpf_base_func_proto(func_id);
7654         }
7655 }
7656
7657 static const struct bpf_func_proto *
7658 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7659 {
7660         switch (func_id) {
7661         /* inet and inet6 sockets are created in a process
7662          * context so there is always a valid uid/gid
7663          */
7664         case BPF_FUNC_get_current_uid_gid:
7665                 return &bpf_get_current_uid_gid_proto;
7666         case BPF_FUNC_bind:
7667                 switch (prog->expected_attach_type) {
7668                 case BPF_CGROUP_INET4_CONNECT:
7669                 case BPF_CGROUP_INET6_CONNECT:
7670                         return &bpf_bind_proto;
7671                 default:
7672                         return NULL;
7673                 }
7674         case BPF_FUNC_get_socket_cookie:
7675                 return &bpf_get_socket_cookie_sock_addr_proto;
7676         case BPF_FUNC_get_netns_cookie:
7677                 return &bpf_get_netns_cookie_sock_addr_proto;
7678         case BPF_FUNC_get_local_storage:
7679                 return &bpf_get_local_storage_proto;
7680         case BPF_FUNC_perf_event_output:
7681                 return &bpf_event_output_data_proto;
7682         case BPF_FUNC_get_current_pid_tgid:
7683                 return &bpf_get_current_pid_tgid_proto;
7684         case BPF_FUNC_get_current_comm:
7685                 return &bpf_get_current_comm_proto;
7686 #ifdef CONFIG_CGROUPS
7687         case BPF_FUNC_get_current_cgroup_id:
7688                 return &bpf_get_current_cgroup_id_proto;
7689         case BPF_FUNC_get_current_ancestor_cgroup_id:
7690                 return &bpf_get_current_ancestor_cgroup_id_proto;
7691 #endif
7692 #ifdef CONFIG_CGROUP_NET_CLASSID
7693         case BPF_FUNC_get_cgroup_classid:
7694                 return &bpf_get_cgroup_classid_curr_proto;
7695 #endif
7696 #ifdef CONFIG_INET
7697         case BPF_FUNC_sk_lookup_tcp:
7698                 return &bpf_sock_addr_sk_lookup_tcp_proto;
7699         case BPF_FUNC_sk_lookup_udp:
7700                 return &bpf_sock_addr_sk_lookup_udp_proto;
7701         case BPF_FUNC_sk_release:
7702                 return &bpf_sk_release_proto;
7703         case BPF_FUNC_skc_lookup_tcp:
7704                 return &bpf_sock_addr_skc_lookup_tcp_proto;
7705 #endif /* CONFIG_INET */
7706         case BPF_FUNC_sk_storage_get:
7707                 return &bpf_sk_storage_get_proto;
7708         case BPF_FUNC_sk_storage_delete:
7709                 return &bpf_sk_storage_delete_proto;
7710         case BPF_FUNC_setsockopt:
7711                 switch (prog->expected_attach_type) {
7712                 case BPF_CGROUP_INET4_BIND:
7713                 case BPF_CGROUP_INET6_BIND:
7714                 case BPF_CGROUP_INET4_CONNECT:
7715                 case BPF_CGROUP_INET6_CONNECT:
7716                 case BPF_CGROUP_UDP4_RECVMSG:
7717                 case BPF_CGROUP_UDP6_RECVMSG:
7718                 case BPF_CGROUP_UDP4_SENDMSG:
7719                 case BPF_CGROUP_UDP6_SENDMSG:
7720                 case BPF_CGROUP_INET4_GETPEERNAME:
7721                 case BPF_CGROUP_INET6_GETPEERNAME:
7722                 case BPF_CGROUP_INET4_GETSOCKNAME:
7723                 case BPF_CGROUP_INET6_GETSOCKNAME:
7724                         return &bpf_sock_addr_setsockopt_proto;
7725                 default:
7726                         return NULL;
7727                 }
7728         case BPF_FUNC_getsockopt:
7729                 switch (prog->expected_attach_type) {
7730                 case BPF_CGROUP_INET4_BIND:
7731                 case BPF_CGROUP_INET6_BIND:
7732                 case BPF_CGROUP_INET4_CONNECT:
7733                 case BPF_CGROUP_INET6_CONNECT:
7734                 case BPF_CGROUP_UDP4_RECVMSG:
7735                 case BPF_CGROUP_UDP6_RECVMSG:
7736                 case BPF_CGROUP_UDP4_SENDMSG:
7737                 case BPF_CGROUP_UDP6_SENDMSG:
7738                 case BPF_CGROUP_INET4_GETPEERNAME:
7739                 case BPF_CGROUP_INET6_GETPEERNAME:
7740                 case BPF_CGROUP_INET4_GETSOCKNAME:
7741                 case BPF_CGROUP_INET6_GETSOCKNAME:
7742                         return &bpf_sock_addr_getsockopt_proto;
7743                 default:
7744                         return NULL;
7745                 }
7746         default:
7747                 return bpf_sk_base_func_proto(func_id);
7748         }
7749 }
7750
7751 static const struct bpf_func_proto *
7752 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7753 {
7754         switch (func_id) {
7755         case BPF_FUNC_skb_load_bytes:
7756                 return &bpf_skb_load_bytes_proto;
7757         case BPF_FUNC_skb_load_bytes_relative:
7758                 return &bpf_skb_load_bytes_relative_proto;
7759         case BPF_FUNC_get_socket_cookie:
7760                 return &bpf_get_socket_cookie_proto;
7761         case BPF_FUNC_get_socket_uid:
7762                 return &bpf_get_socket_uid_proto;
7763         case BPF_FUNC_perf_event_output:
7764                 return &bpf_skb_event_output_proto;
7765         default:
7766                 return bpf_sk_base_func_proto(func_id);
7767         }
7768 }
7769
7770 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7771 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7772
7773 static const struct bpf_func_proto *
7774 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7775 {
7776         switch (func_id) {
7777         case BPF_FUNC_get_local_storage:
7778                 return &bpf_get_local_storage_proto;
7779         case BPF_FUNC_sk_fullsock:
7780                 return &bpf_sk_fullsock_proto;
7781         case BPF_FUNC_sk_storage_get:
7782                 return &bpf_sk_storage_get_proto;
7783         case BPF_FUNC_sk_storage_delete:
7784                 return &bpf_sk_storage_delete_proto;
7785         case BPF_FUNC_perf_event_output:
7786                 return &bpf_skb_event_output_proto;
7787 #ifdef CONFIG_SOCK_CGROUP_DATA
7788         case BPF_FUNC_skb_cgroup_id:
7789                 return &bpf_skb_cgroup_id_proto;
7790         case BPF_FUNC_skb_ancestor_cgroup_id:
7791                 return &bpf_skb_ancestor_cgroup_id_proto;
7792         case BPF_FUNC_sk_cgroup_id:
7793                 return &bpf_sk_cgroup_id_proto;
7794         case BPF_FUNC_sk_ancestor_cgroup_id:
7795                 return &bpf_sk_ancestor_cgroup_id_proto;
7796 #endif
7797 #ifdef CONFIG_INET
7798         case BPF_FUNC_sk_lookup_tcp:
7799                 return &bpf_sk_lookup_tcp_proto;
7800         case BPF_FUNC_sk_lookup_udp:
7801                 return &bpf_sk_lookup_udp_proto;
7802         case BPF_FUNC_sk_release:
7803                 return &bpf_sk_release_proto;
7804         case BPF_FUNC_skc_lookup_tcp:
7805                 return &bpf_skc_lookup_tcp_proto;
7806         case BPF_FUNC_tcp_sock:
7807                 return &bpf_tcp_sock_proto;
7808         case BPF_FUNC_get_listener_sock:
7809                 return &bpf_get_listener_sock_proto;
7810         case BPF_FUNC_skb_ecn_set_ce:
7811                 return &bpf_skb_ecn_set_ce_proto;
7812 #endif
7813         default:
7814                 return sk_filter_func_proto(func_id, prog);
7815         }
7816 }
7817
7818 static const struct bpf_func_proto *
7819 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7820 {
7821         switch (func_id) {
7822         case BPF_FUNC_skb_store_bytes:
7823                 return &bpf_skb_store_bytes_proto;
7824         case BPF_FUNC_skb_load_bytes:
7825                 return &bpf_skb_load_bytes_proto;
7826         case BPF_FUNC_skb_load_bytes_relative:
7827                 return &bpf_skb_load_bytes_relative_proto;
7828         case BPF_FUNC_skb_pull_data:
7829                 return &bpf_skb_pull_data_proto;
7830         case BPF_FUNC_csum_diff:
7831                 return &bpf_csum_diff_proto;
7832         case BPF_FUNC_csum_update:
7833                 return &bpf_csum_update_proto;
7834         case BPF_FUNC_csum_level:
7835                 return &bpf_csum_level_proto;
7836         case BPF_FUNC_l3_csum_replace:
7837                 return &bpf_l3_csum_replace_proto;
7838         case BPF_FUNC_l4_csum_replace:
7839                 return &bpf_l4_csum_replace_proto;
7840         case BPF_FUNC_clone_redirect:
7841                 return &bpf_clone_redirect_proto;
7842         case BPF_FUNC_get_cgroup_classid:
7843                 return &bpf_get_cgroup_classid_proto;
7844         case BPF_FUNC_skb_vlan_push:
7845                 return &bpf_skb_vlan_push_proto;
7846         case BPF_FUNC_skb_vlan_pop:
7847                 return &bpf_skb_vlan_pop_proto;
7848         case BPF_FUNC_skb_change_proto:
7849                 return &bpf_skb_change_proto_proto;
7850         case BPF_FUNC_skb_change_type:
7851                 return &bpf_skb_change_type_proto;
7852         case BPF_FUNC_skb_adjust_room:
7853                 return &bpf_skb_adjust_room_proto;
7854         case BPF_FUNC_skb_change_tail:
7855                 return &bpf_skb_change_tail_proto;
7856         case BPF_FUNC_skb_change_head:
7857                 return &bpf_skb_change_head_proto;
7858         case BPF_FUNC_skb_get_tunnel_key:
7859                 return &bpf_skb_get_tunnel_key_proto;
7860         case BPF_FUNC_skb_set_tunnel_key:
7861                 return bpf_get_skb_set_tunnel_proto(func_id);
7862         case BPF_FUNC_skb_get_tunnel_opt:
7863                 return &bpf_skb_get_tunnel_opt_proto;
7864         case BPF_FUNC_skb_set_tunnel_opt:
7865                 return bpf_get_skb_set_tunnel_proto(func_id);
7866         case BPF_FUNC_redirect:
7867                 return &bpf_redirect_proto;
7868         case BPF_FUNC_redirect_neigh:
7869                 return &bpf_redirect_neigh_proto;
7870         case BPF_FUNC_redirect_peer:
7871                 return &bpf_redirect_peer_proto;
7872         case BPF_FUNC_get_route_realm:
7873                 return &bpf_get_route_realm_proto;
7874         case BPF_FUNC_get_hash_recalc:
7875                 return &bpf_get_hash_recalc_proto;
7876         case BPF_FUNC_set_hash_invalid:
7877                 return &bpf_set_hash_invalid_proto;
7878         case BPF_FUNC_set_hash:
7879                 return &bpf_set_hash_proto;
7880         case BPF_FUNC_perf_event_output:
7881                 return &bpf_skb_event_output_proto;
7882         case BPF_FUNC_get_smp_processor_id:
7883                 return &bpf_get_smp_processor_id_proto;
7884         case BPF_FUNC_skb_under_cgroup:
7885                 return &bpf_skb_under_cgroup_proto;
7886         case BPF_FUNC_get_socket_cookie:
7887                 return &bpf_get_socket_cookie_proto;
7888         case BPF_FUNC_get_socket_uid:
7889                 return &bpf_get_socket_uid_proto;
7890         case BPF_FUNC_fib_lookup:
7891                 return &bpf_skb_fib_lookup_proto;
7892         case BPF_FUNC_check_mtu:
7893                 return &bpf_skb_check_mtu_proto;
7894         case BPF_FUNC_sk_fullsock:
7895                 return &bpf_sk_fullsock_proto;
7896         case BPF_FUNC_sk_storage_get:
7897                 return &bpf_sk_storage_get_proto;
7898         case BPF_FUNC_sk_storage_delete:
7899                 return &bpf_sk_storage_delete_proto;
7900 #ifdef CONFIG_XFRM
7901         case BPF_FUNC_skb_get_xfrm_state:
7902                 return &bpf_skb_get_xfrm_state_proto;
7903 #endif
7904 #ifdef CONFIG_CGROUP_NET_CLASSID
7905         case BPF_FUNC_skb_cgroup_classid:
7906                 return &bpf_skb_cgroup_classid_proto;
7907 #endif
7908 #ifdef CONFIG_SOCK_CGROUP_DATA
7909         case BPF_FUNC_skb_cgroup_id:
7910                 return &bpf_skb_cgroup_id_proto;
7911         case BPF_FUNC_skb_ancestor_cgroup_id:
7912                 return &bpf_skb_ancestor_cgroup_id_proto;
7913 #endif
7914 #ifdef CONFIG_INET
7915         case BPF_FUNC_sk_lookup_tcp:
7916                 return &bpf_sk_lookup_tcp_proto;
7917         case BPF_FUNC_sk_lookup_udp:
7918                 return &bpf_sk_lookup_udp_proto;
7919         case BPF_FUNC_sk_release:
7920                 return &bpf_sk_release_proto;
7921         case BPF_FUNC_tcp_sock:
7922                 return &bpf_tcp_sock_proto;
7923         case BPF_FUNC_get_listener_sock:
7924                 return &bpf_get_listener_sock_proto;
7925         case BPF_FUNC_skc_lookup_tcp:
7926                 return &bpf_skc_lookup_tcp_proto;
7927         case BPF_FUNC_tcp_check_syncookie:
7928                 return &bpf_tcp_check_syncookie_proto;
7929         case BPF_FUNC_skb_ecn_set_ce:
7930                 return &bpf_skb_ecn_set_ce_proto;
7931         case BPF_FUNC_tcp_gen_syncookie:
7932                 return &bpf_tcp_gen_syncookie_proto;
7933         case BPF_FUNC_sk_assign:
7934                 return &bpf_sk_assign_proto;
7935         case BPF_FUNC_skb_set_tstamp:
7936                 return &bpf_skb_set_tstamp_proto;
7937 #ifdef CONFIG_SYN_COOKIES
7938         case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
7939                 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
7940         case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
7941                 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
7942         case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
7943                 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
7944         case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
7945                 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
7946 #endif
7947 #endif
7948         default:
7949                 return bpf_sk_base_func_proto(func_id);
7950         }
7951 }
7952
7953 static const struct bpf_func_proto *
7954 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7955 {
7956         switch (func_id) {
7957         case BPF_FUNC_perf_event_output:
7958                 return &bpf_xdp_event_output_proto;
7959         case BPF_FUNC_get_smp_processor_id:
7960                 return &bpf_get_smp_processor_id_proto;
7961         case BPF_FUNC_csum_diff:
7962                 return &bpf_csum_diff_proto;
7963         case BPF_FUNC_xdp_adjust_head:
7964                 return &bpf_xdp_adjust_head_proto;
7965         case BPF_FUNC_xdp_adjust_meta:
7966                 return &bpf_xdp_adjust_meta_proto;
7967         case BPF_FUNC_redirect:
7968                 return &bpf_xdp_redirect_proto;
7969         case BPF_FUNC_redirect_map:
7970                 return &bpf_xdp_redirect_map_proto;
7971         case BPF_FUNC_xdp_adjust_tail:
7972                 return &bpf_xdp_adjust_tail_proto;
7973         case BPF_FUNC_xdp_get_buff_len:
7974                 return &bpf_xdp_get_buff_len_proto;
7975         case BPF_FUNC_xdp_load_bytes:
7976                 return &bpf_xdp_load_bytes_proto;
7977         case BPF_FUNC_xdp_store_bytes:
7978                 return &bpf_xdp_store_bytes_proto;
7979         case BPF_FUNC_fib_lookup:
7980                 return &bpf_xdp_fib_lookup_proto;
7981         case BPF_FUNC_check_mtu:
7982                 return &bpf_xdp_check_mtu_proto;
7983 #ifdef CONFIG_INET
7984         case BPF_FUNC_sk_lookup_udp:
7985                 return &bpf_xdp_sk_lookup_udp_proto;
7986         case BPF_FUNC_sk_lookup_tcp:
7987                 return &bpf_xdp_sk_lookup_tcp_proto;
7988         case BPF_FUNC_sk_release:
7989                 return &bpf_sk_release_proto;
7990         case BPF_FUNC_skc_lookup_tcp:
7991                 return &bpf_xdp_skc_lookup_tcp_proto;
7992         case BPF_FUNC_tcp_check_syncookie:
7993                 return &bpf_tcp_check_syncookie_proto;
7994         case BPF_FUNC_tcp_gen_syncookie:
7995                 return &bpf_tcp_gen_syncookie_proto;
7996 #ifdef CONFIG_SYN_COOKIES
7997         case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
7998                 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
7999         case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8000                 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8001         case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8002                 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8003         case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8004                 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8005 #endif
8006 #endif
8007         default:
8008                 return bpf_sk_base_func_proto(func_id);
8009         }
8010 }
8011
8012 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8013 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8014
8015 static const struct bpf_func_proto *
8016 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8017 {
8018         switch (func_id) {
8019         case BPF_FUNC_setsockopt:
8020                 return &bpf_sock_ops_setsockopt_proto;
8021         case BPF_FUNC_getsockopt:
8022                 return &bpf_sock_ops_getsockopt_proto;
8023         case BPF_FUNC_sock_ops_cb_flags_set:
8024                 return &bpf_sock_ops_cb_flags_set_proto;
8025         case BPF_FUNC_sock_map_update:
8026                 return &bpf_sock_map_update_proto;
8027         case BPF_FUNC_sock_hash_update:
8028                 return &bpf_sock_hash_update_proto;
8029         case BPF_FUNC_get_socket_cookie:
8030                 return &bpf_get_socket_cookie_sock_ops_proto;
8031         case BPF_FUNC_get_local_storage:
8032                 return &bpf_get_local_storage_proto;
8033         case BPF_FUNC_perf_event_output:
8034                 return &bpf_event_output_data_proto;
8035         case BPF_FUNC_sk_storage_get:
8036                 return &bpf_sk_storage_get_proto;
8037         case BPF_FUNC_sk_storage_delete:
8038                 return &bpf_sk_storage_delete_proto;
8039         case BPF_FUNC_get_netns_cookie:
8040                 return &bpf_get_netns_cookie_sock_ops_proto;
8041 #ifdef CONFIG_INET
8042         case BPF_FUNC_load_hdr_opt:
8043                 return &bpf_sock_ops_load_hdr_opt_proto;
8044         case BPF_FUNC_store_hdr_opt:
8045                 return &bpf_sock_ops_store_hdr_opt_proto;
8046         case BPF_FUNC_reserve_hdr_opt:
8047                 return &bpf_sock_ops_reserve_hdr_opt_proto;
8048         case BPF_FUNC_tcp_sock:
8049                 return &bpf_tcp_sock_proto;
8050 #endif /* CONFIG_INET */
8051         default:
8052                 return bpf_sk_base_func_proto(func_id);
8053         }
8054 }
8055
8056 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8057 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8058
8059 static const struct bpf_func_proto *
8060 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8061 {
8062         switch (func_id) {
8063         case BPF_FUNC_msg_redirect_map:
8064                 return &bpf_msg_redirect_map_proto;
8065         case BPF_FUNC_msg_redirect_hash:
8066                 return &bpf_msg_redirect_hash_proto;
8067         case BPF_FUNC_msg_apply_bytes:
8068                 return &bpf_msg_apply_bytes_proto;
8069         case BPF_FUNC_msg_cork_bytes:
8070                 return &bpf_msg_cork_bytes_proto;
8071         case BPF_FUNC_msg_pull_data:
8072                 return &bpf_msg_pull_data_proto;
8073         case BPF_FUNC_msg_push_data:
8074                 return &bpf_msg_push_data_proto;
8075         case BPF_FUNC_msg_pop_data:
8076                 return &bpf_msg_pop_data_proto;
8077         case BPF_FUNC_perf_event_output:
8078                 return &bpf_event_output_data_proto;
8079         case BPF_FUNC_get_current_uid_gid:
8080                 return &bpf_get_current_uid_gid_proto;
8081         case BPF_FUNC_get_current_pid_tgid:
8082                 return &bpf_get_current_pid_tgid_proto;
8083         case BPF_FUNC_sk_storage_get:
8084                 return &bpf_sk_storage_get_proto;
8085         case BPF_FUNC_sk_storage_delete:
8086                 return &bpf_sk_storage_delete_proto;
8087         case BPF_FUNC_get_netns_cookie:
8088                 return &bpf_get_netns_cookie_sk_msg_proto;
8089 #ifdef CONFIG_CGROUPS
8090         case BPF_FUNC_get_current_cgroup_id:
8091                 return &bpf_get_current_cgroup_id_proto;
8092         case BPF_FUNC_get_current_ancestor_cgroup_id:
8093                 return &bpf_get_current_ancestor_cgroup_id_proto;
8094 #endif
8095 #ifdef CONFIG_CGROUP_NET_CLASSID
8096         case BPF_FUNC_get_cgroup_classid:
8097                 return &bpf_get_cgroup_classid_curr_proto;
8098 #endif
8099         default:
8100                 return bpf_sk_base_func_proto(func_id);
8101         }
8102 }
8103
8104 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8105 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8106
8107 static const struct bpf_func_proto *
8108 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8109 {
8110         switch (func_id) {
8111         case BPF_FUNC_skb_store_bytes:
8112                 return &bpf_skb_store_bytes_proto;
8113         case BPF_FUNC_skb_load_bytes:
8114                 return &bpf_skb_load_bytes_proto;
8115         case BPF_FUNC_skb_pull_data:
8116                 return &sk_skb_pull_data_proto;
8117         case BPF_FUNC_skb_change_tail:
8118                 return &sk_skb_change_tail_proto;
8119         case BPF_FUNC_skb_change_head:
8120                 return &sk_skb_change_head_proto;
8121         case BPF_FUNC_skb_adjust_room:
8122                 return &sk_skb_adjust_room_proto;
8123         case BPF_FUNC_get_socket_cookie:
8124                 return &bpf_get_socket_cookie_proto;
8125         case BPF_FUNC_get_socket_uid:
8126                 return &bpf_get_socket_uid_proto;
8127         case BPF_FUNC_sk_redirect_map:
8128                 return &bpf_sk_redirect_map_proto;
8129         case BPF_FUNC_sk_redirect_hash:
8130                 return &bpf_sk_redirect_hash_proto;
8131         case BPF_FUNC_perf_event_output:
8132                 return &bpf_skb_event_output_proto;
8133 #ifdef CONFIG_INET
8134         case BPF_FUNC_sk_lookup_tcp:
8135                 return &bpf_sk_lookup_tcp_proto;
8136         case BPF_FUNC_sk_lookup_udp:
8137                 return &bpf_sk_lookup_udp_proto;
8138         case BPF_FUNC_sk_release:
8139                 return &bpf_sk_release_proto;
8140         case BPF_FUNC_skc_lookup_tcp:
8141                 return &bpf_skc_lookup_tcp_proto;
8142 #endif
8143         default:
8144                 return bpf_sk_base_func_proto(func_id);
8145         }
8146 }
8147
8148 static const struct bpf_func_proto *
8149 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8150 {
8151         switch (func_id) {
8152         case BPF_FUNC_skb_load_bytes:
8153                 return &bpf_flow_dissector_load_bytes_proto;
8154         default:
8155                 return bpf_sk_base_func_proto(func_id);
8156         }
8157 }
8158
8159 static const struct bpf_func_proto *
8160 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8161 {
8162         switch (func_id) {
8163         case BPF_FUNC_skb_load_bytes:
8164                 return &bpf_skb_load_bytes_proto;
8165         case BPF_FUNC_skb_pull_data:
8166                 return &bpf_skb_pull_data_proto;
8167         case BPF_FUNC_csum_diff:
8168                 return &bpf_csum_diff_proto;
8169         case BPF_FUNC_get_cgroup_classid:
8170                 return &bpf_get_cgroup_classid_proto;
8171         case BPF_FUNC_get_route_realm:
8172                 return &bpf_get_route_realm_proto;
8173         case BPF_FUNC_get_hash_recalc:
8174                 return &bpf_get_hash_recalc_proto;
8175         case BPF_FUNC_perf_event_output:
8176                 return &bpf_skb_event_output_proto;
8177         case BPF_FUNC_get_smp_processor_id:
8178                 return &bpf_get_smp_processor_id_proto;
8179         case BPF_FUNC_skb_under_cgroup:
8180                 return &bpf_skb_under_cgroup_proto;
8181         default:
8182                 return bpf_sk_base_func_proto(func_id);
8183         }
8184 }
8185
8186 static const struct bpf_func_proto *
8187 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8188 {
8189         switch (func_id) {
8190         case BPF_FUNC_lwt_push_encap:
8191                 return &bpf_lwt_in_push_encap_proto;
8192         default:
8193                 return lwt_out_func_proto(func_id, prog);
8194         }
8195 }
8196
8197 static const struct bpf_func_proto *
8198 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8199 {
8200         switch (func_id) {
8201         case BPF_FUNC_skb_get_tunnel_key:
8202                 return &bpf_skb_get_tunnel_key_proto;
8203         case BPF_FUNC_skb_set_tunnel_key:
8204                 return bpf_get_skb_set_tunnel_proto(func_id);
8205         case BPF_FUNC_skb_get_tunnel_opt:
8206                 return &bpf_skb_get_tunnel_opt_proto;
8207         case BPF_FUNC_skb_set_tunnel_opt:
8208                 return bpf_get_skb_set_tunnel_proto(func_id);
8209         case BPF_FUNC_redirect:
8210                 return &bpf_redirect_proto;
8211         case BPF_FUNC_clone_redirect:
8212                 return &bpf_clone_redirect_proto;
8213         case BPF_FUNC_skb_change_tail:
8214                 return &bpf_skb_change_tail_proto;
8215         case BPF_FUNC_skb_change_head:
8216                 return &bpf_skb_change_head_proto;
8217         case BPF_FUNC_skb_store_bytes:
8218                 return &bpf_skb_store_bytes_proto;
8219         case BPF_FUNC_csum_update:
8220                 return &bpf_csum_update_proto;
8221         case BPF_FUNC_csum_level:
8222                 return &bpf_csum_level_proto;
8223         case BPF_FUNC_l3_csum_replace:
8224                 return &bpf_l3_csum_replace_proto;
8225         case BPF_FUNC_l4_csum_replace:
8226                 return &bpf_l4_csum_replace_proto;
8227         case BPF_FUNC_set_hash_invalid:
8228                 return &bpf_set_hash_invalid_proto;
8229         case BPF_FUNC_lwt_push_encap:
8230                 return &bpf_lwt_xmit_push_encap_proto;
8231         default:
8232                 return lwt_out_func_proto(func_id, prog);
8233         }
8234 }
8235
8236 static const struct bpf_func_proto *
8237 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8238 {
8239         switch (func_id) {
8240 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8241         case BPF_FUNC_lwt_seg6_store_bytes:
8242                 return &bpf_lwt_seg6_store_bytes_proto;
8243         case BPF_FUNC_lwt_seg6_action:
8244                 return &bpf_lwt_seg6_action_proto;
8245         case BPF_FUNC_lwt_seg6_adjust_srh:
8246                 return &bpf_lwt_seg6_adjust_srh_proto;
8247 #endif
8248         default:
8249                 return lwt_out_func_proto(func_id, prog);
8250         }
8251 }
8252
8253 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8254                                     const struct bpf_prog *prog,
8255                                     struct bpf_insn_access_aux *info)
8256 {
8257         const int size_default = sizeof(__u32);
8258
8259         if (off < 0 || off >= sizeof(struct __sk_buff))
8260                 return false;
8261
8262         /* The verifier guarantees that size > 0. */
8263         if (off % size != 0)
8264                 return false;
8265
8266         switch (off) {
8267         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8268                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
8269                         return false;
8270                 break;
8271         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8272         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8273         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8274         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8275         case bpf_ctx_range(struct __sk_buff, data):
8276         case bpf_ctx_range(struct __sk_buff, data_meta):
8277         case bpf_ctx_range(struct __sk_buff, data_end):
8278                 if (size != size_default)
8279                         return false;
8280                 break;
8281         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8282                 return false;
8283         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8284                 if (type == BPF_WRITE || size != sizeof(__u64))
8285                         return false;
8286                 break;
8287         case bpf_ctx_range(struct __sk_buff, tstamp):
8288                 if (size != sizeof(__u64))
8289                         return false;
8290                 break;
8291         case offsetof(struct __sk_buff, sk):
8292                 if (type == BPF_WRITE || size != sizeof(__u64))
8293                         return false;
8294                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8295                 break;
8296         case offsetof(struct __sk_buff, tstamp_type):
8297                 return false;
8298         case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8299                 /* Explicitly prohibit access to padding in __sk_buff. */
8300                 return false;
8301         default:
8302                 /* Only narrow read access allowed for now. */
8303                 if (type == BPF_WRITE) {
8304                         if (size != size_default)
8305                                 return false;
8306                 } else {
8307                         bpf_ctx_record_field_size(info, size_default);
8308                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8309                                 return false;
8310                 }
8311         }
8312
8313         return true;
8314 }
8315
8316 static bool sk_filter_is_valid_access(int off, int size,
8317                                       enum bpf_access_type type,
8318                                       const struct bpf_prog *prog,
8319                                       struct bpf_insn_access_aux *info)
8320 {
8321         switch (off) {
8322         case bpf_ctx_range(struct __sk_buff, tc_classid):
8323         case bpf_ctx_range(struct __sk_buff, data):
8324         case bpf_ctx_range(struct __sk_buff, data_meta):
8325         case bpf_ctx_range(struct __sk_buff, data_end):
8326         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8327         case bpf_ctx_range(struct __sk_buff, tstamp):
8328         case bpf_ctx_range(struct __sk_buff, wire_len):
8329         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8330                 return false;
8331         }
8332
8333         if (type == BPF_WRITE) {
8334                 switch (off) {
8335                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8336                         break;
8337                 default:
8338                         return false;
8339                 }
8340         }
8341
8342         return bpf_skb_is_valid_access(off, size, type, prog, info);
8343 }
8344
8345 static bool cg_skb_is_valid_access(int off, int size,
8346                                    enum bpf_access_type type,
8347                                    const struct bpf_prog *prog,
8348                                    struct bpf_insn_access_aux *info)
8349 {
8350         switch (off) {
8351         case bpf_ctx_range(struct __sk_buff, tc_classid):
8352         case bpf_ctx_range(struct __sk_buff, data_meta):
8353         case bpf_ctx_range(struct __sk_buff, wire_len):
8354                 return false;
8355         case bpf_ctx_range(struct __sk_buff, data):
8356         case bpf_ctx_range(struct __sk_buff, data_end):
8357                 if (!bpf_capable())
8358                         return false;
8359                 break;
8360         }
8361
8362         if (type == BPF_WRITE) {
8363                 switch (off) {
8364                 case bpf_ctx_range(struct __sk_buff, mark):
8365                 case bpf_ctx_range(struct __sk_buff, priority):
8366                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8367                         break;
8368                 case bpf_ctx_range(struct __sk_buff, tstamp):
8369                         if (!bpf_capable())
8370                                 return false;
8371                         break;
8372                 default:
8373                         return false;
8374                 }
8375         }
8376
8377         switch (off) {
8378         case bpf_ctx_range(struct __sk_buff, data):
8379                 info->reg_type = PTR_TO_PACKET;
8380                 break;
8381         case bpf_ctx_range(struct __sk_buff, data_end):
8382                 info->reg_type = PTR_TO_PACKET_END;
8383                 break;
8384         }
8385
8386         return bpf_skb_is_valid_access(off, size, type, prog, info);
8387 }
8388
8389 static bool lwt_is_valid_access(int off, int size,
8390                                 enum bpf_access_type type,
8391                                 const struct bpf_prog *prog,
8392                                 struct bpf_insn_access_aux *info)
8393 {
8394         switch (off) {
8395         case bpf_ctx_range(struct __sk_buff, tc_classid):
8396         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8397         case bpf_ctx_range(struct __sk_buff, data_meta):
8398         case bpf_ctx_range(struct __sk_buff, tstamp):
8399         case bpf_ctx_range(struct __sk_buff, wire_len):
8400         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8401                 return false;
8402         }
8403
8404         if (type == BPF_WRITE) {
8405                 switch (off) {
8406                 case bpf_ctx_range(struct __sk_buff, mark):
8407                 case bpf_ctx_range(struct __sk_buff, priority):
8408                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8409                         break;
8410                 default:
8411                         return false;
8412                 }
8413         }
8414
8415         switch (off) {
8416         case bpf_ctx_range(struct __sk_buff, data):
8417                 info->reg_type = PTR_TO_PACKET;
8418                 break;
8419         case bpf_ctx_range(struct __sk_buff, data_end):
8420                 info->reg_type = PTR_TO_PACKET_END;
8421                 break;
8422         }
8423
8424         return bpf_skb_is_valid_access(off, size, type, prog, info);
8425 }
8426
8427 /* Attach type specific accesses */
8428 static bool __sock_filter_check_attach_type(int off,
8429                                             enum bpf_access_type access_type,
8430                                             enum bpf_attach_type attach_type)
8431 {
8432         switch (off) {
8433         case offsetof(struct bpf_sock, bound_dev_if):
8434         case offsetof(struct bpf_sock, mark):
8435         case offsetof(struct bpf_sock, priority):
8436                 switch (attach_type) {
8437                 case BPF_CGROUP_INET_SOCK_CREATE:
8438                 case BPF_CGROUP_INET_SOCK_RELEASE:
8439                         goto full_access;
8440                 default:
8441                         return false;
8442                 }
8443         case bpf_ctx_range(struct bpf_sock, src_ip4):
8444                 switch (attach_type) {
8445                 case BPF_CGROUP_INET4_POST_BIND:
8446                         goto read_only;
8447                 default:
8448                         return false;
8449                 }
8450         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8451                 switch (attach_type) {
8452                 case BPF_CGROUP_INET6_POST_BIND:
8453                         goto read_only;
8454                 default:
8455                         return false;
8456                 }
8457         case bpf_ctx_range(struct bpf_sock, src_port):
8458                 switch (attach_type) {
8459                 case BPF_CGROUP_INET4_POST_BIND:
8460                 case BPF_CGROUP_INET6_POST_BIND:
8461                         goto read_only;
8462                 default:
8463                         return false;
8464                 }
8465         }
8466 read_only:
8467         return access_type == BPF_READ;
8468 full_access:
8469         return true;
8470 }
8471
8472 bool bpf_sock_common_is_valid_access(int off, int size,
8473                                      enum bpf_access_type type,
8474                                      struct bpf_insn_access_aux *info)
8475 {
8476         switch (off) {
8477         case bpf_ctx_range_till(struct bpf_sock, type, priority):
8478                 return false;
8479         default:
8480                 return bpf_sock_is_valid_access(off, size, type, info);
8481         }
8482 }
8483
8484 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8485                               struct bpf_insn_access_aux *info)
8486 {
8487         const int size_default = sizeof(__u32);
8488         int field_size;
8489
8490         if (off < 0 || off >= sizeof(struct bpf_sock))
8491                 return false;
8492         if (off % size != 0)
8493                 return false;
8494
8495         switch (off) {
8496         case offsetof(struct bpf_sock, state):
8497         case offsetof(struct bpf_sock, family):
8498         case offsetof(struct bpf_sock, type):
8499         case offsetof(struct bpf_sock, protocol):
8500         case offsetof(struct bpf_sock, src_port):
8501         case offsetof(struct bpf_sock, rx_queue_mapping):
8502         case bpf_ctx_range(struct bpf_sock, src_ip4):
8503         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8504         case bpf_ctx_range(struct bpf_sock, dst_ip4):
8505         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8506                 bpf_ctx_record_field_size(info, size_default);
8507                 return bpf_ctx_narrow_access_ok(off, size, size_default);
8508         case bpf_ctx_range(struct bpf_sock, dst_port):
8509                 field_size = size == size_default ?
8510                         size_default : sizeof_field(struct bpf_sock, dst_port);
8511                 bpf_ctx_record_field_size(info, field_size);
8512                 return bpf_ctx_narrow_access_ok(off, size, field_size);
8513         case offsetofend(struct bpf_sock, dst_port) ...
8514              offsetof(struct bpf_sock, dst_ip4) - 1:
8515                 return false;
8516         }
8517
8518         return size == size_default;
8519 }
8520
8521 static bool sock_filter_is_valid_access(int off, int size,
8522                                         enum bpf_access_type type,
8523                                         const struct bpf_prog *prog,
8524                                         struct bpf_insn_access_aux *info)
8525 {
8526         if (!bpf_sock_is_valid_access(off, size, type, info))
8527                 return false;
8528         return __sock_filter_check_attach_type(off, type,
8529                                                prog->expected_attach_type);
8530 }
8531
8532 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8533                              const struct bpf_prog *prog)
8534 {
8535         /* Neither direct read nor direct write requires any preliminary
8536          * action.
8537          */
8538         return 0;
8539 }
8540
8541 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8542                                 const struct bpf_prog *prog, int drop_verdict)
8543 {
8544         struct bpf_insn *insn = insn_buf;
8545
8546         if (!direct_write)
8547                 return 0;
8548
8549         /* if (!skb->cloned)
8550          *       goto start;
8551          *
8552          * (Fast-path, otherwise approximation that we might be
8553          *  a clone, do the rest in helper.)
8554          */
8555         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8556         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8557         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8558
8559         /* ret = bpf_skb_pull_data(skb, 0); */
8560         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8561         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8562         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8563                                BPF_FUNC_skb_pull_data);
8564         /* if (!ret)
8565          *      goto restore;
8566          * return TC_ACT_SHOT;
8567          */
8568         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8569         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8570         *insn++ = BPF_EXIT_INSN();
8571
8572         /* restore: */
8573         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8574         /* start: */
8575         *insn++ = prog->insnsi[0];
8576
8577         return insn - insn_buf;
8578 }
8579
8580 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8581                           struct bpf_insn *insn_buf)
8582 {
8583         bool indirect = BPF_MODE(orig->code) == BPF_IND;
8584         struct bpf_insn *insn = insn_buf;
8585
8586         if (!indirect) {
8587                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8588         } else {
8589                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8590                 if (orig->imm)
8591                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8592         }
8593         /* We're guaranteed here that CTX is in R6. */
8594         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8595
8596         switch (BPF_SIZE(orig->code)) {
8597         case BPF_B:
8598                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8599                 break;
8600         case BPF_H:
8601                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8602                 break;
8603         case BPF_W:
8604                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8605                 break;
8606         }
8607
8608         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8609         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8610         *insn++ = BPF_EXIT_INSN();
8611
8612         return insn - insn_buf;
8613 }
8614
8615 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8616                                const struct bpf_prog *prog)
8617 {
8618         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8619 }
8620
8621 static bool tc_cls_act_is_valid_access(int off, int size,
8622                                        enum bpf_access_type type,
8623                                        const struct bpf_prog *prog,
8624                                        struct bpf_insn_access_aux *info)
8625 {
8626         if (type == BPF_WRITE) {
8627                 switch (off) {
8628                 case bpf_ctx_range(struct __sk_buff, mark):
8629                 case bpf_ctx_range(struct __sk_buff, tc_index):
8630                 case bpf_ctx_range(struct __sk_buff, priority):
8631                 case bpf_ctx_range(struct __sk_buff, tc_classid):
8632                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8633                 case bpf_ctx_range(struct __sk_buff, tstamp):
8634                 case bpf_ctx_range(struct __sk_buff, queue_mapping):
8635                         break;
8636                 default:
8637                         return false;
8638                 }
8639         }
8640
8641         switch (off) {
8642         case bpf_ctx_range(struct __sk_buff, data):
8643                 info->reg_type = PTR_TO_PACKET;
8644                 break;
8645         case bpf_ctx_range(struct __sk_buff, data_meta):
8646                 info->reg_type = PTR_TO_PACKET_META;
8647                 break;
8648         case bpf_ctx_range(struct __sk_buff, data_end):
8649                 info->reg_type = PTR_TO_PACKET_END;
8650                 break;
8651         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8652                 return false;
8653         case offsetof(struct __sk_buff, tstamp_type):
8654                 /* The convert_ctx_access() on reading and writing
8655                  * __sk_buff->tstamp depends on whether the bpf prog
8656                  * has used __sk_buff->tstamp_type or not.
8657                  * Thus, we need to set prog->tstamp_type_access
8658                  * earlier during is_valid_access() here.
8659                  */
8660                 ((struct bpf_prog *)prog)->tstamp_type_access = 1;
8661                 return size == sizeof(__u8);
8662         }
8663
8664         return bpf_skb_is_valid_access(off, size, type, prog, info);
8665 }
8666
8667 static bool __is_valid_xdp_access(int off, int size)
8668 {
8669         if (off < 0 || off >= sizeof(struct xdp_md))
8670                 return false;
8671         if (off % size != 0)
8672                 return false;
8673         if (size != sizeof(__u32))
8674                 return false;
8675
8676         return true;
8677 }
8678
8679 static bool xdp_is_valid_access(int off, int size,
8680                                 enum bpf_access_type type,
8681                                 const struct bpf_prog *prog,
8682                                 struct bpf_insn_access_aux *info)
8683 {
8684         if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8685                 switch (off) {
8686                 case offsetof(struct xdp_md, egress_ifindex):
8687                         return false;
8688                 }
8689         }
8690
8691         if (type == BPF_WRITE) {
8692                 if (bpf_prog_is_dev_bound(prog->aux)) {
8693                         switch (off) {
8694                         case offsetof(struct xdp_md, rx_queue_index):
8695                                 return __is_valid_xdp_access(off, size);
8696                         }
8697                 }
8698                 return false;
8699         }
8700
8701         switch (off) {
8702         case offsetof(struct xdp_md, data):
8703                 info->reg_type = PTR_TO_PACKET;
8704                 break;
8705         case offsetof(struct xdp_md, data_meta):
8706                 info->reg_type = PTR_TO_PACKET_META;
8707                 break;
8708         case offsetof(struct xdp_md, data_end):
8709                 info->reg_type = PTR_TO_PACKET_END;
8710                 break;
8711         }
8712
8713         return __is_valid_xdp_access(off, size);
8714 }
8715
8716 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8717 {
8718         const u32 act_max = XDP_REDIRECT;
8719
8720         pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
8721                      act > act_max ? "Illegal" : "Driver unsupported",
8722                      act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
8723 }
8724 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8725
8726 static bool sock_addr_is_valid_access(int off, int size,
8727                                       enum bpf_access_type type,
8728                                       const struct bpf_prog *prog,
8729                                       struct bpf_insn_access_aux *info)
8730 {
8731         const int size_default = sizeof(__u32);
8732
8733         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8734                 return false;
8735         if (off % size != 0)
8736                 return false;
8737
8738         /* Disallow access to IPv6 fields from IPv4 contex and vise
8739          * versa.
8740          */
8741         switch (off) {
8742         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8743                 switch (prog->expected_attach_type) {
8744                 case BPF_CGROUP_INET4_BIND:
8745                 case BPF_CGROUP_INET4_CONNECT:
8746                 case BPF_CGROUP_INET4_GETPEERNAME:
8747                 case BPF_CGROUP_INET4_GETSOCKNAME:
8748                 case BPF_CGROUP_UDP4_SENDMSG:
8749                 case BPF_CGROUP_UDP4_RECVMSG:
8750                         break;
8751                 default:
8752                         return false;
8753                 }
8754                 break;
8755         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8756                 switch (prog->expected_attach_type) {
8757                 case BPF_CGROUP_INET6_BIND:
8758                 case BPF_CGROUP_INET6_CONNECT:
8759                 case BPF_CGROUP_INET6_GETPEERNAME:
8760                 case BPF_CGROUP_INET6_GETSOCKNAME:
8761                 case BPF_CGROUP_UDP6_SENDMSG:
8762                 case BPF_CGROUP_UDP6_RECVMSG:
8763                         break;
8764                 default:
8765                         return false;
8766                 }
8767                 break;
8768         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8769                 switch (prog->expected_attach_type) {
8770                 case BPF_CGROUP_UDP4_SENDMSG:
8771                         break;
8772                 default:
8773                         return false;
8774                 }
8775                 break;
8776         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8777                                 msg_src_ip6[3]):
8778                 switch (prog->expected_attach_type) {
8779                 case BPF_CGROUP_UDP6_SENDMSG:
8780                         break;
8781                 default:
8782                         return false;
8783                 }
8784                 break;
8785         }
8786
8787         switch (off) {
8788         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8789         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8790         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8791         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8792                                 msg_src_ip6[3]):
8793         case bpf_ctx_range(struct bpf_sock_addr, user_port):
8794                 if (type == BPF_READ) {
8795                         bpf_ctx_record_field_size(info, size_default);
8796
8797                         if (bpf_ctx_wide_access_ok(off, size,
8798                                                    struct bpf_sock_addr,
8799                                                    user_ip6))
8800                                 return true;
8801
8802                         if (bpf_ctx_wide_access_ok(off, size,
8803                                                    struct bpf_sock_addr,
8804                                                    msg_src_ip6))
8805                                 return true;
8806
8807                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8808                                 return false;
8809                 } else {
8810                         if (bpf_ctx_wide_access_ok(off, size,
8811                                                    struct bpf_sock_addr,
8812                                                    user_ip6))
8813                                 return true;
8814
8815                         if (bpf_ctx_wide_access_ok(off, size,
8816                                                    struct bpf_sock_addr,
8817                                                    msg_src_ip6))
8818                                 return true;
8819
8820                         if (size != size_default)
8821                                 return false;
8822                 }
8823                 break;
8824         case offsetof(struct bpf_sock_addr, sk):
8825                 if (type != BPF_READ)
8826                         return false;
8827                 if (size != sizeof(__u64))
8828                         return false;
8829                 info->reg_type = PTR_TO_SOCKET;
8830                 break;
8831         default:
8832                 if (type == BPF_READ) {
8833                         if (size != size_default)
8834                                 return false;
8835                 } else {
8836                         return false;
8837                 }
8838         }
8839
8840         return true;
8841 }
8842
8843 static bool sock_ops_is_valid_access(int off, int size,
8844                                      enum bpf_access_type type,
8845                                      const struct bpf_prog *prog,
8846                                      struct bpf_insn_access_aux *info)
8847 {
8848         const int size_default = sizeof(__u32);
8849
8850         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8851                 return false;
8852
8853         /* The verifier guarantees that size > 0. */
8854         if (off % size != 0)
8855                 return false;
8856
8857         if (type == BPF_WRITE) {
8858                 switch (off) {
8859                 case offsetof(struct bpf_sock_ops, reply):
8860                 case offsetof(struct bpf_sock_ops, sk_txhash):
8861                         if (size != size_default)
8862                                 return false;
8863                         break;
8864                 default:
8865                         return false;
8866                 }
8867         } else {
8868                 switch (off) {
8869                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8870                                         bytes_acked):
8871                         if (size != sizeof(__u64))
8872                                 return false;
8873                         break;
8874                 case offsetof(struct bpf_sock_ops, sk):
8875                         if (size != sizeof(__u64))
8876                                 return false;
8877                         info->reg_type = PTR_TO_SOCKET_OR_NULL;
8878                         break;
8879                 case offsetof(struct bpf_sock_ops, skb_data):
8880                         if (size != sizeof(__u64))
8881                                 return false;
8882                         info->reg_type = PTR_TO_PACKET;
8883                         break;
8884                 case offsetof(struct bpf_sock_ops, skb_data_end):
8885                         if (size != sizeof(__u64))
8886                                 return false;
8887                         info->reg_type = PTR_TO_PACKET_END;
8888                         break;
8889                 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8890                         bpf_ctx_record_field_size(info, size_default);
8891                         return bpf_ctx_narrow_access_ok(off, size,
8892                                                         size_default);
8893                 default:
8894                         if (size != size_default)
8895                                 return false;
8896                         break;
8897                 }
8898         }
8899
8900         return true;
8901 }
8902
8903 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8904                            const struct bpf_prog *prog)
8905 {
8906         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8907 }
8908
8909 static bool sk_skb_is_valid_access(int off, int size,
8910                                    enum bpf_access_type type,
8911                                    const struct bpf_prog *prog,
8912                                    struct bpf_insn_access_aux *info)
8913 {
8914         switch (off) {
8915         case bpf_ctx_range(struct __sk_buff, tc_classid):
8916         case bpf_ctx_range(struct __sk_buff, data_meta):
8917         case bpf_ctx_range(struct __sk_buff, tstamp):
8918         case bpf_ctx_range(struct __sk_buff, wire_len):
8919         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8920                 return false;
8921         }
8922
8923         if (type == BPF_WRITE) {
8924                 switch (off) {
8925                 case bpf_ctx_range(struct __sk_buff, tc_index):
8926                 case bpf_ctx_range(struct __sk_buff, priority):
8927                         break;
8928                 default:
8929                         return false;
8930                 }
8931         }
8932
8933         switch (off) {
8934         case bpf_ctx_range(struct __sk_buff, mark):
8935                 return false;
8936         case bpf_ctx_range(struct __sk_buff, data):
8937                 info->reg_type = PTR_TO_PACKET;
8938                 break;
8939         case bpf_ctx_range(struct __sk_buff, data_end):
8940                 info->reg_type = PTR_TO_PACKET_END;
8941                 break;
8942         }
8943
8944         return bpf_skb_is_valid_access(off, size, type, prog, info);
8945 }
8946
8947 static bool sk_msg_is_valid_access(int off, int size,
8948                                    enum bpf_access_type type,
8949                                    const struct bpf_prog *prog,
8950                                    struct bpf_insn_access_aux *info)
8951 {
8952         if (type == BPF_WRITE)
8953                 return false;
8954
8955         if (off % size != 0)
8956                 return false;
8957
8958         switch (off) {
8959         case offsetof(struct sk_msg_md, data):
8960                 info->reg_type = PTR_TO_PACKET;
8961                 if (size != sizeof(__u64))
8962                         return false;
8963                 break;
8964         case offsetof(struct sk_msg_md, data_end):
8965                 info->reg_type = PTR_TO_PACKET_END;
8966                 if (size != sizeof(__u64))
8967                         return false;
8968                 break;
8969         case offsetof(struct sk_msg_md, sk):
8970                 if (size != sizeof(__u64))
8971                         return false;
8972                 info->reg_type = PTR_TO_SOCKET;
8973                 break;
8974         case bpf_ctx_range(struct sk_msg_md, family):
8975         case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8976         case bpf_ctx_range(struct sk_msg_md, local_ip4):
8977         case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8978         case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8979         case bpf_ctx_range(struct sk_msg_md, remote_port):
8980         case bpf_ctx_range(struct sk_msg_md, local_port):
8981         case bpf_ctx_range(struct sk_msg_md, size):
8982                 if (size != sizeof(__u32))
8983                         return false;
8984                 break;
8985         default:
8986                 return false;
8987         }
8988         return true;
8989 }
8990
8991 static bool flow_dissector_is_valid_access(int off, int size,
8992                                            enum bpf_access_type type,
8993                                            const struct bpf_prog *prog,
8994                                            struct bpf_insn_access_aux *info)
8995 {
8996         const int size_default = sizeof(__u32);
8997
8998         if (off < 0 || off >= sizeof(struct __sk_buff))
8999                 return false;
9000
9001         if (type == BPF_WRITE)
9002                 return false;
9003
9004         switch (off) {
9005         case bpf_ctx_range(struct __sk_buff, data):
9006                 if (size != size_default)
9007                         return false;
9008                 info->reg_type = PTR_TO_PACKET;
9009                 return true;
9010         case bpf_ctx_range(struct __sk_buff, data_end):
9011                 if (size != size_default)
9012                         return false;
9013                 info->reg_type = PTR_TO_PACKET_END;
9014                 return true;
9015         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9016                 if (size != sizeof(__u64))
9017                         return false;
9018                 info->reg_type = PTR_TO_FLOW_KEYS;
9019                 return true;
9020         default:
9021                 return false;
9022         }
9023 }
9024
9025 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9026                                              const struct bpf_insn *si,
9027                                              struct bpf_insn *insn_buf,
9028                                              struct bpf_prog *prog,
9029                                              u32 *target_size)
9030
9031 {
9032         struct bpf_insn *insn = insn_buf;
9033
9034         switch (si->off) {
9035         case offsetof(struct __sk_buff, data):
9036                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9037                                       si->dst_reg, si->src_reg,
9038                                       offsetof(struct bpf_flow_dissector, data));
9039                 break;
9040
9041         case offsetof(struct __sk_buff, data_end):
9042                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9043                                       si->dst_reg, si->src_reg,
9044                                       offsetof(struct bpf_flow_dissector, data_end));
9045                 break;
9046
9047         case offsetof(struct __sk_buff, flow_keys):
9048                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9049                                       si->dst_reg, si->src_reg,
9050                                       offsetof(struct bpf_flow_dissector, flow_keys));
9051                 break;
9052         }
9053
9054         return insn - insn_buf;
9055 }
9056
9057 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9058                                                      struct bpf_insn *insn)
9059 {
9060         __u8 value_reg = si->dst_reg;
9061         __u8 skb_reg = si->src_reg;
9062         /* AX is needed because src_reg and dst_reg could be the same */
9063         __u8 tmp_reg = BPF_REG_AX;
9064
9065         *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9066                               PKT_VLAN_PRESENT_OFFSET);
9067         *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9068                                 SKB_MONO_DELIVERY_TIME_MASK, 2);
9069         *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9070         *insn++ = BPF_JMP_A(1);
9071         *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9072
9073         return insn;
9074 }
9075
9076 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
9077                                                   struct bpf_insn *insn)
9078 {
9079         /* si->dst_reg = skb_shinfo(SKB); */
9080 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9081         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9082                               BPF_REG_AX, si->src_reg,
9083                               offsetof(struct sk_buff, end));
9084         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9085                               si->dst_reg, si->src_reg,
9086                               offsetof(struct sk_buff, head));
9087         *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
9088 #else
9089         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9090                               si->dst_reg, si->src_reg,
9091                               offsetof(struct sk_buff, end));
9092 #endif
9093
9094         return insn;
9095 }
9096
9097 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9098                                                 const struct bpf_insn *si,
9099                                                 struct bpf_insn *insn)
9100 {
9101         __u8 value_reg = si->dst_reg;
9102         __u8 skb_reg = si->src_reg;
9103
9104 #ifdef CONFIG_NET_CLS_ACT
9105         /* If the tstamp_type is read,
9106          * the bpf prog is aware the tstamp could have delivery time.
9107          * Thus, read skb->tstamp as is if tstamp_type_access is true.
9108          */
9109         if (!prog->tstamp_type_access) {
9110                 /* AX is needed because src_reg and dst_reg could be the same */
9111                 __u8 tmp_reg = BPF_REG_AX;
9112
9113                 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9114                 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9115                                         TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9116                 *insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9117                                         TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9118                 /* skb->tc_at_ingress && skb->mono_delivery_time,
9119                  * read 0 as the (rcv) timestamp.
9120                  */
9121                 *insn++ = BPF_MOV64_IMM(value_reg, 0);
9122                 *insn++ = BPF_JMP_A(1);
9123         }
9124 #endif
9125
9126         *insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9127                               offsetof(struct sk_buff, tstamp));
9128         return insn;
9129 }
9130
9131 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9132                                                  const struct bpf_insn *si,
9133                                                  struct bpf_insn *insn)
9134 {
9135         __u8 value_reg = si->src_reg;
9136         __u8 skb_reg = si->dst_reg;
9137
9138 #ifdef CONFIG_NET_CLS_ACT
9139         /* If the tstamp_type is read,
9140          * the bpf prog is aware the tstamp could have delivery time.
9141          * Thus, write skb->tstamp as is if tstamp_type_access is true.
9142          * Otherwise, writing at ingress will have to clear the
9143          * mono_delivery_time bit also.
9144          */
9145         if (!prog->tstamp_type_access) {
9146                 __u8 tmp_reg = BPF_REG_AX;
9147
9148                 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9149                 /* Writing __sk_buff->tstamp as ingress, goto <clear> */
9150                 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9151                 /* goto <store> */
9152                 *insn++ = BPF_JMP_A(2);
9153                 /* <clear>: mono_delivery_time */
9154                 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9155                 *insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, PKT_VLAN_PRESENT_OFFSET);
9156         }
9157 #endif
9158
9159         /* <store>: skb->tstamp = tstamp */
9160         *insn++ = BPF_STX_MEM(BPF_DW, skb_reg, value_reg,
9161                               offsetof(struct sk_buff, tstamp));
9162         return insn;
9163 }
9164
9165 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9166                                   const struct bpf_insn *si,
9167                                   struct bpf_insn *insn_buf,
9168                                   struct bpf_prog *prog, u32 *target_size)
9169 {
9170         struct bpf_insn *insn = insn_buf;
9171         int off;
9172
9173         switch (si->off) {
9174         case offsetof(struct __sk_buff, len):
9175                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9176                                       bpf_target_off(struct sk_buff, len, 4,
9177                                                      target_size));
9178                 break;
9179
9180         case offsetof(struct __sk_buff, protocol):
9181                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9182                                       bpf_target_off(struct sk_buff, protocol, 2,
9183                                                      target_size));
9184                 break;
9185
9186         case offsetof(struct __sk_buff, vlan_proto):
9187                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9188                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
9189                                                      target_size));
9190                 break;
9191
9192         case offsetof(struct __sk_buff, priority):
9193                 if (type == BPF_WRITE)
9194                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9195                                               bpf_target_off(struct sk_buff, priority, 4,
9196                                                              target_size));
9197                 else
9198                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9199                                               bpf_target_off(struct sk_buff, priority, 4,
9200                                                              target_size));
9201                 break;
9202
9203         case offsetof(struct __sk_buff, ingress_ifindex):
9204                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9205                                       bpf_target_off(struct sk_buff, skb_iif, 4,
9206                                                      target_size));
9207                 break;
9208
9209         case offsetof(struct __sk_buff, ifindex):
9210                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9211                                       si->dst_reg, si->src_reg,
9212                                       offsetof(struct sk_buff, dev));
9213                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9214                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9215                                       bpf_target_off(struct net_device, ifindex, 4,
9216                                                      target_size));
9217                 break;
9218
9219         case offsetof(struct __sk_buff, hash):
9220                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9221                                       bpf_target_off(struct sk_buff, hash, 4,
9222                                                      target_size));
9223                 break;
9224
9225         case offsetof(struct __sk_buff, mark):
9226                 if (type == BPF_WRITE)
9227                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9228                                               bpf_target_off(struct sk_buff, mark, 4,
9229                                                              target_size));
9230                 else
9231                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9232                                               bpf_target_off(struct sk_buff, mark, 4,
9233                                                              target_size));
9234                 break;
9235
9236         case offsetof(struct __sk_buff, pkt_type):
9237                 *target_size = 1;
9238                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9239                                       PKT_TYPE_OFFSET);
9240                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9241 #ifdef __BIG_ENDIAN_BITFIELD
9242                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9243 #endif
9244                 break;
9245
9246         case offsetof(struct __sk_buff, queue_mapping):
9247                 if (type == BPF_WRITE) {
9248                         *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9249                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9250                                               bpf_target_off(struct sk_buff,
9251                                                              queue_mapping,
9252                                                              2, target_size));
9253                 } else {
9254                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9255                                               bpf_target_off(struct sk_buff,
9256                                                              queue_mapping,
9257                                                              2, target_size));
9258                 }
9259                 break;
9260
9261         case offsetof(struct __sk_buff, vlan_present):
9262                 *target_size = 1;
9263                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9264                                       PKT_VLAN_PRESENT_OFFSET);
9265                 if (PKT_VLAN_PRESENT_BIT)
9266                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
9267                 if (PKT_VLAN_PRESENT_BIT < 7)
9268                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
9269                 break;
9270
9271         case offsetof(struct __sk_buff, vlan_tci):
9272                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9273                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
9274                                                      target_size));
9275                 break;
9276
9277         case offsetof(struct __sk_buff, cb[0]) ...
9278              offsetofend(struct __sk_buff, cb[4]) - 1:
9279                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9280                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9281                               offsetof(struct qdisc_skb_cb, data)) %
9282                              sizeof(__u64));
9283
9284                 prog->cb_access = 1;
9285                 off  = si->off;
9286                 off -= offsetof(struct __sk_buff, cb[0]);
9287                 off += offsetof(struct sk_buff, cb);
9288                 off += offsetof(struct qdisc_skb_cb, data);
9289                 if (type == BPF_WRITE)
9290                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9291                                               si->src_reg, off);
9292                 else
9293                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9294                                               si->src_reg, off);
9295                 break;
9296
9297         case offsetof(struct __sk_buff, tc_classid):
9298                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9299
9300                 off  = si->off;
9301                 off -= offsetof(struct __sk_buff, tc_classid);
9302                 off += offsetof(struct sk_buff, cb);
9303                 off += offsetof(struct qdisc_skb_cb, tc_classid);
9304                 *target_size = 2;
9305                 if (type == BPF_WRITE)
9306                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
9307                                               si->src_reg, off);
9308                 else
9309                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9310                                               si->src_reg, off);
9311                 break;
9312
9313         case offsetof(struct __sk_buff, data):
9314                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9315                                       si->dst_reg, si->src_reg,
9316                                       offsetof(struct sk_buff, data));
9317                 break;
9318
9319         case offsetof(struct __sk_buff, data_meta):
9320                 off  = si->off;
9321                 off -= offsetof(struct __sk_buff, data_meta);
9322                 off += offsetof(struct sk_buff, cb);
9323                 off += offsetof(struct bpf_skb_data_end, data_meta);
9324                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9325                                       si->src_reg, off);
9326                 break;
9327
9328         case offsetof(struct __sk_buff, data_end):
9329                 off  = si->off;
9330                 off -= offsetof(struct __sk_buff, data_end);
9331                 off += offsetof(struct sk_buff, cb);
9332                 off += offsetof(struct bpf_skb_data_end, data_end);
9333                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9334                                       si->src_reg, off);
9335                 break;
9336
9337         case offsetof(struct __sk_buff, tc_index):
9338 #ifdef CONFIG_NET_SCHED
9339                 if (type == BPF_WRITE)
9340                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9341                                               bpf_target_off(struct sk_buff, tc_index, 2,
9342                                                              target_size));
9343                 else
9344                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9345                                               bpf_target_off(struct sk_buff, tc_index, 2,
9346                                                              target_size));
9347 #else
9348                 *target_size = 2;
9349                 if (type == BPF_WRITE)
9350                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9351                 else
9352                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9353 #endif
9354                 break;
9355
9356         case offsetof(struct __sk_buff, napi_id):
9357 #if defined(CONFIG_NET_RX_BUSY_POLL)
9358                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9359                                       bpf_target_off(struct sk_buff, napi_id, 4,
9360                                                      target_size));
9361                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9362                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9363 #else
9364                 *target_size = 4;
9365                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9366 #endif
9367                 break;
9368         case offsetof(struct __sk_buff, family):
9369                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9370
9371                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9372                                       si->dst_reg, si->src_reg,
9373                                       offsetof(struct sk_buff, sk));
9374                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9375                                       bpf_target_off(struct sock_common,
9376                                                      skc_family,
9377                                                      2, target_size));
9378                 break;
9379         case offsetof(struct __sk_buff, remote_ip4):
9380                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9381
9382                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9383                                       si->dst_reg, si->src_reg,
9384                                       offsetof(struct sk_buff, sk));
9385                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9386                                       bpf_target_off(struct sock_common,
9387                                                      skc_daddr,
9388                                                      4, target_size));
9389                 break;
9390         case offsetof(struct __sk_buff, local_ip4):
9391                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9392                                           skc_rcv_saddr) != 4);
9393
9394                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9395                                       si->dst_reg, si->src_reg,
9396                                       offsetof(struct sk_buff, sk));
9397                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9398                                       bpf_target_off(struct sock_common,
9399                                                      skc_rcv_saddr,
9400                                                      4, target_size));
9401                 break;
9402         case offsetof(struct __sk_buff, remote_ip6[0]) ...
9403              offsetof(struct __sk_buff, remote_ip6[3]):
9404 #if IS_ENABLED(CONFIG_IPV6)
9405                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9406                                           skc_v6_daddr.s6_addr32[0]) != 4);
9407
9408                 off = si->off;
9409                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
9410
9411                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9412                                       si->dst_reg, si->src_reg,
9413                                       offsetof(struct sk_buff, sk));
9414                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9415                                       offsetof(struct sock_common,
9416                                                skc_v6_daddr.s6_addr32[0]) +
9417                                       off);
9418 #else
9419                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9420 #endif
9421                 break;
9422         case offsetof(struct __sk_buff, local_ip6[0]) ...
9423              offsetof(struct __sk_buff, local_ip6[3]):
9424 #if IS_ENABLED(CONFIG_IPV6)
9425                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9426                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9427
9428                 off = si->off;
9429                 off -= offsetof(struct __sk_buff, local_ip6[0]);
9430
9431                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9432                                       si->dst_reg, si->src_reg,
9433                                       offsetof(struct sk_buff, sk));
9434                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9435                                       offsetof(struct sock_common,
9436                                                skc_v6_rcv_saddr.s6_addr32[0]) +
9437                                       off);
9438 #else
9439                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9440 #endif
9441                 break;
9442
9443         case offsetof(struct __sk_buff, remote_port):
9444                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9445
9446                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9447                                       si->dst_reg, si->src_reg,
9448                                       offsetof(struct sk_buff, sk));
9449                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9450                                       bpf_target_off(struct sock_common,
9451                                                      skc_dport,
9452                                                      2, target_size));
9453 #ifndef __BIG_ENDIAN_BITFIELD
9454                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9455 #endif
9456                 break;
9457
9458         case offsetof(struct __sk_buff, local_port):
9459                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9460
9461                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9462                                       si->dst_reg, si->src_reg,
9463                                       offsetof(struct sk_buff, sk));
9464                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9465                                       bpf_target_off(struct sock_common,
9466                                                      skc_num, 2, target_size));
9467                 break;
9468
9469         case offsetof(struct __sk_buff, tstamp):
9470                 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9471
9472                 if (type == BPF_WRITE)
9473                         insn = bpf_convert_tstamp_write(prog, si, insn);
9474                 else
9475                         insn = bpf_convert_tstamp_read(prog, si, insn);
9476                 break;
9477
9478         case offsetof(struct __sk_buff, tstamp_type):
9479                 insn = bpf_convert_tstamp_type_read(si, insn);
9480                 break;
9481
9482         case offsetof(struct __sk_buff, gso_segs):
9483                 insn = bpf_convert_shinfo_access(si, insn);
9484                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9485                                       si->dst_reg, si->dst_reg,
9486                                       bpf_target_off(struct skb_shared_info,
9487                                                      gso_segs, 2,
9488                                                      target_size));
9489                 break;
9490         case offsetof(struct __sk_buff, gso_size):
9491                 insn = bpf_convert_shinfo_access(si, insn);
9492                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9493                                       si->dst_reg, si->dst_reg,
9494                                       bpf_target_off(struct skb_shared_info,
9495                                                      gso_size, 2,
9496                                                      target_size));
9497                 break;
9498         case offsetof(struct __sk_buff, wire_len):
9499                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9500
9501                 off = si->off;
9502                 off -= offsetof(struct __sk_buff, wire_len);
9503                 off += offsetof(struct sk_buff, cb);
9504                 off += offsetof(struct qdisc_skb_cb, pkt_len);
9505                 *target_size = 4;
9506                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9507                 break;
9508
9509         case offsetof(struct __sk_buff, sk):
9510                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9511                                       si->dst_reg, si->src_reg,
9512                                       offsetof(struct sk_buff, sk));
9513                 break;
9514         case offsetof(struct __sk_buff, hwtstamp):
9515                 BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9516                 BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9517
9518                 insn = bpf_convert_shinfo_access(si, insn);
9519                 *insn++ = BPF_LDX_MEM(BPF_DW,
9520                                       si->dst_reg, si->dst_reg,
9521                                       bpf_target_off(struct skb_shared_info,
9522                                                      hwtstamps, 8,
9523                                                      target_size));
9524                 break;
9525         }
9526
9527         return insn - insn_buf;
9528 }
9529
9530 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9531                                 const struct bpf_insn *si,
9532                                 struct bpf_insn *insn_buf,
9533                                 struct bpf_prog *prog, u32 *target_size)
9534 {
9535         struct bpf_insn *insn = insn_buf;
9536         int off;
9537
9538         switch (si->off) {
9539         case offsetof(struct bpf_sock, bound_dev_if):
9540                 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9541
9542                 if (type == BPF_WRITE)
9543                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9544                                         offsetof(struct sock, sk_bound_dev_if));
9545                 else
9546                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9547                                       offsetof(struct sock, sk_bound_dev_if));
9548                 break;
9549
9550         case offsetof(struct bpf_sock, mark):
9551                 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9552
9553                 if (type == BPF_WRITE)
9554                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9555                                         offsetof(struct sock, sk_mark));
9556                 else
9557                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9558                                       offsetof(struct sock, sk_mark));
9559                 break;
9560
9561         case offsetof(struct bpf_sock, priority):
9562                 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9563
9564                 if (type == BPF_WRITE)
9565                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9566                                         offsetof(struct sock, sk_priority));
9567                 else
9568                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9569                                       offsetof(struct sock, sk_priority));
9570                 break;
9571
9572         case offsetof(struct bpf_sock, family):
9573                 *insn++ = BPF_LDX_MEM(
9574                         BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9575                         si->dst_reg, si->src_reg,
9576                         bpf_target_off(struct sock_common,
9577                                        skc_family,
9578                                        sizeof_field(struct sock_common,
9579                                                     skc_family),
9580                                        target_size));
9581                 break;
9582
9583         case offsetof(struct bpf_sock, type):
9584                 *insn++ = BPF_LDX_MEM(
9585                         BPF_FIELD_SIZEOF(struct sock, sk_type),
9586                         si->dst_reg, si->src_reg,
9587                         bpf_target_off(struct sock, sk_type,
9588                                        sizeof_field(struct sock, sk_type),
9589                                        target_size));
9590                 break;
9591
9592         case offsetof(struct bpf_sock, protocol):
9593                 *insn++ = BPF_LDX_MEM(
9594                         BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9595                         si->dst_reg, si->src_reg,
9596                         bpf_target_off(struct sock, sk_protocol,
9597                                        sizeof_field(struct sock, sk_protocol),
9598                                        target_size));
9599                 break;
9600
9601         case offsetof(struct bpf_sock, src_ip4):
9602                 *insn++ = BPF_LDX_MEM(
9603                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9604                         bpf_target_off(struct sock_common, skc_rcv_saddr,
9605                                        sizeof_field(struct sock_common,
9606                                                     skc_rcv_saddr),
9607                                        target_size));
9608                 break;
9609
9610         case offsetof(struct bpf_sock, dst_ip4):
9611                 *insn++ = BPF_LDX_MEM(
9612                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9613                         bpf_target_off(struct sock_common, skc_daddr,
9614                                        sizeof_field(struct sock_common,
9615                                                     skc_daddr),
9616                                        target_size));
9617                 break;
9618
9619         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9620 #if IS_ENABLED(CONFIG_IPV6)
9621                 off = si->off;
9622                 off -= offsetof(struct bpf_sock, src_ip6[0]);
9623                 *insn++ = BPF_LDX_MEM(
9624                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9625                         bpf_target_off(
9626                                 struct sock_common,
9627                                 skc_v6_rcv_saddr.s6_addr32[0],
9628                                 sizeof_field(struct sock_common,
9629                                              skc_v6_rcv_saddr.s6_addr32[0]),
9630                                 target_size) + off);
9631 #else
9632                 (void)off;
9633                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9634 #endif
9635                 break;
9636
9637         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9638 #if IS_ENABLED(CONFIG_IPV6)
9639                 off = si->off;
9640                 off -= offsetof(struct bpf_sock, dst_ip6[0]);
9641                 *insn++ = BPF_LDX_MEM(
9642                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9643                         bpf_target_off(struct sock_common,
9644                                        skc_v6_daddr.s6_addr32[0],
9645                                        sizeof_field(struct sock_common,
9646                                                     skc_v6_daddr.s6_addr32[0]),
9647                                        target_size) + off);
9648 #else
9649                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9650                 *target_size = 4;
9651 #endif
9652                 break;
9653
9654         case offsetof(struct bpf_sock, src_port):
9655                 *insn++ = BPF_LDX_MEM(
9656                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9657                         si->dst_reg, si->src_reg,
9658                         bpf_target_off(struct sock_common, skc_num,
9659                                        sizeof_field(struct sock_common,
9660                                                     skc_num),
9661                                        target_size));
9662                 break;
9663
9664         case offsetof(struct bpf_sock, dst_port):
9665                 *insn++ = BPF_LDX_MEM(
9666                         BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9667                         si->dst_reg, si->src_reg,
9668                         bpf_target_off(struct sock_common, skc_dport,
9669                                        sizeof_field(struct sock_common,
9670                                                     skc_dport),
9671                                        target_size));
9672                 break;
9673
9674         case offsetof(struct bpf_sock, state):
9675                 *insn++ = BPF_LDX_MEM(
9676                         BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9677                         si->dst_reg, si->src_reg,
9678                         bpf_target_off(struct sock_common, skc_state,
9679                                        sizeof_field(struct sock_common,
9680                                                     skc_state),
9681                                        target_size));
9682                 break;
9683         case offsetof(struct bpf_sock, rx_queue_mapping):
9684 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9685                 *insn++ = BPF_LDX_MEM(
9686                         BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9687                         si->dst_reg, si->src_reg,
9688                         bpf_target_off(struct sock, sk_rx_queue_mapping,
9689                                        sizeof_field(struct sock,
9690                                                     sk_rx_queue_mapping),
9691                                        target_size));
9692                 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9693                                       1);
9694                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9695 #else
9696                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9697                 *target_size = 2;
9698 #endif
9699                 break;
9700         }
9701
9702         return insn - insn_buf;
9703 }
9704
9705 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9706                                          const struct bpf_insn *si,
9707                                          struct bpf_insn *insn_buf,
9708                                          struct bpf_prog *prog, u32 *target_size)
9709 {
9710         struct bpf_insn *insn = insn_buf;
9711
9712         switch (si->off) {
9713         case offsetof(struct __sk_buff, ifindex):
9714                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9715                                       si->dst_reg, si->src_reg,
9716                                       offsetof(struct sk_buff, dev));
9717                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9718                                       bpf_target_off(struct net_device, ifindex, 4,
9719                                                      target_size));
9720                 break;
9721         default:
9722                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9723                                               target_size);
9724         }
9725
9726         return insn - insn_buf;
9727 }
9728
9729 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9730                                   const struct bpf_insn *si,
9731                                   struct bpf_insn *insn_buf,
9732                                   struct bpf_prog *prog, u32 *target_size)
9733 {
9734         struct bpf_insn *insn = insn_buf;
9735
9736         switch (si->off) {
9737         case offsetof(struct xdp_md, data):
9738                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9739                                       si->dst_reg, si->src_reg,
9740                                       offsetof(struct xdp_buff, data));
9741                 break;
9742         case offsetof(struct xdp_md, data_meta):
9743                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9744                                       si->dst_reg, si->src_reg,
9745                                       offsetof(struct xdp_buff, data_meta));
9746                 break;
9747         case offsetof(struct xdp_md, data_end):
9748                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9749                                       si->dst_reg, si->src_reg,
9750                                       offsetof(struct xdp_buff, data_end));
9751                 break;
9752         case offsetof(struct xdp_md, ingress_ifindex):
9753                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9754                                       si->dst_reg, si->src_reg,
9755                                       offsetof(struct xdp_buff, rxq));
9756                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9757                                       si->dst_reg, si->dst_reg,
9758                                       offsetof(struct xdp_rxq_info, dev));
9759                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9760                                       offsetof(struct net_device, ifindex));
9761                 break;
9762         case offsetof(struct xdp_md, rx_queue_index):
9763                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9764                                       si->dst_reg, si->src_reg,
9765                                       offsetof(struct xdp_buff, rxq));
9766                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9767                                       offsetof(struct xdp_rxq_info,
9768                                                queue_index));
9769                 break;
9770         case offsetof(struct xdp_md, egress_ifindex):
9771                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9772                                       si->dst_reg, si->src_reg,
9773                                       offsetof(struct xdp_buff, txq));
9774                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9775                                       si->dst_reg, si->dst_reg,
9776                                       offsetof(struct xdp_txq_info, dev));
9777                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9778                                       offsetof(struct net_device, ifindex));
9779                 break;
9780         }
9781
9782         return insn - insn_buf;
9783 }
9784
9785 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9786  * context Structure, F is Field in context structure that contains a pointer
9787  * to Nested Structure of type NS that has the field NF.
9788  *
9789  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9790  * sure that SIZE is not greater than actual size of S.F.NF.
9791  *
9792  * If offset OFF is provided, the load happens from that offset relative to
9793  * offset of NF.
9794  */
9795 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
9796         do {                                                                   \
9797                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9798                                       si->src_reg, offsetof(S, F));            \
9799                 *insn++ = BPF_LDX_MEM(                                         \
9800                         SIZE, si->dst_reg, si->dst_reg,                        \
9801                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9802                                        target_size)                            \
9803                                 + OFF);                                        \
9804         } while (0)
9805
9806 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
9807         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
9808                                              BPF_FIELD_SIZEOF(NS, NF), 0)
9809
9810 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9811  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9812  *
9813  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9814  * "register" since two registers available in convert_ctx_access are not
9815  * enough: we can't override neither SRC, since it contains value to store, nor
9816  * DST since it contains pointer to context that may be used by later
9817  * instructions. But we need a temporary place to save pointer to nested
9818  * structure whose field we want to store to.
9819  */
9820 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
9821         do {                                                                   \
9822                 int tmp_reg = BPF_REG_9;                                       \
9823                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9824                         --tmp_reg;                                             \
9825                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9826                         --tmp_reg;                                             \
9827                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
9828                                       offsetof(S, TF));                        \
9829                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
9830                                       si->dst_reg, offsetof(S, F));            \
9831                 *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,              \
9832                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9833                                        target_size)                            \
9834                                 + OFF);                                        \
9835                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
9836                                       offsetof(S, TF));                        \
9837         } while (0)
9838
9839 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9840                                                       TF)                      \
9841         do {                                                                   \
9842                 if (type == BPF_WRITE) {                                       \
9843                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9844                                                          OFF, TF);             \
9845                 } else {                                                       \
9846                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
9847                                 S, NS, F, NF, SIZE, OFF);  \
9848                 }                                                              \
9849         } while (0)
9850
9851 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
9852         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
9853                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9854
9855 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9856                                         const struct bpf_insn *si,
9857                                         struct bpf_insn *insn_buf,
9858                                         struct bpf_prog *prog, u32 *target_size)
9859 {
9860         int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9861         struct bpf_insn *insn = insn_buf;
9862
9863         switch (si->off) {
9864         case offsetof(struct bpf_sock_addr, user_family):
9865                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9866                                             struct sockaddr, uaddr, sa_family);
9867                 break;
9868
9869         case offsetof(struct bpf_sock_addr, user_ip4):
9870                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9871                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9872                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9873                 break;
9874
9875         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9876                 off = si->off;
9877                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9878                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9879                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9880                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9881                         tmp_reg);
9882                 break;
9883
9884         case offsetof(struct bpf_sock_addr, user_port):
9885                 /* To get port we need to know sa_family first and then treat
9886                  * sockaddr as either sockaddr_in or sockaddr_in6.
9887                  * Though we can simplify since port field has same offset and
9888                  * size in both structures.
9889                  * Here we check this invariant and use just one of the
9890                  * structures if it's true.
9891                  */
9892                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9893                              offsetof(struct sockaddr_in6, sin6_port));
9894                 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9895                              sizeof_field(struct sockaddr_in6, sin6_port));
9896                 /* Account for sin6_port being smaller than user_port. */
9897                 port_size = min(port_size, BPF_LDST_BYTES(si));
9898                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9899                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9900                         sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9901                 break;
9902
9903         case offsetof(struct bpf_sock_addr, family):
9904                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9905                                             struct sock, sk, sk_family);
9906                 break;
9907
9908         case offsetof(struct bpf_sock_addr, type):
9909                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9910                                             struct sock, sk, sk_type);
9911                 break;
9912
9913         case offsetof(struct bpf_sock_addr, protocol):
9914                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9915                                             struct sock, sk, sk_protocol);
9916                 break;
9917
9918         case offsetof(struct bpf_sock_addr, msg_src_ip4):
9919                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
9920                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9921                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9922                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9923                 break;
9924
9925         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9926                                 msg_src_ip6[3]):
9927                 off = si->off;
9928                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9929                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9930                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9931                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9932                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9933                 break;
9934         case offsetof(struct bpf_sock_addr, sk):
9935                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9936                                       si->dst_reg, si->src_reg,
9937                                       offsetof(struct bpf_sock_addr_kern, sk));
9938                 break;
9939         }
9940
9941         return insn - insn_buf;
9942 }
9943
9944 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9945                                        const struct bpf_insn *si,
9946                                        struct bpf_insn *insn_buf,
9947                                        struct bpf_prog *prog,
9948                                        u32 *target_size)
9949 {
9950         struct bpf_insn *insn = insn_buf;
9951         int off;
9952
9953 /* Helper macro for adding read access to tcp_sock or sock fields. */
9954 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
9955         do {                                                                  \
9956                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9957                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
9958                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9959                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9960                         reg--;                                                \
9961                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9962                         reg--;                                                \
9963                 if (si->dst_reg == si->src_reg) {                             \
9964                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
9965                                           offsetof(struct bpf_sock_ops_kern,  \
9966                                           temp));                             \
9967                         fullsock_reg = reg;                                   \
9968                         jmp += 2;                                             \
9969                 }                                                             \
9970                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9971                                                 struct bpf_sock_ops_kern,     \
9972                                                 is_fullsock),                 \
9973                                       fullsock_reg, si->src_reg,              \
9974                                       offsetof(struct bpf_sock_ops_kern,      \
9975                                                is_fullsock));                 \
9976                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
9977                 if (si->dst_reg == si->src_reg)                               \
9978                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9979                                       offsetof(struct bpf_sock_ops_kern,      \
9980                                       temp));                                 \
9981                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9982                                                 struct bpf_sock_ops_kern, sk),\
9983                                       si->dst_reg, si->src_reg,               \
9984                                       offsetof(struct bpf_sock_ops_kern, sk));\
9985                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
9986                                                        OBJ_FIELD),            \
9987                                       si->dst_reg, si->dst_reg,               \
9988                                       offsetof(OBJ, OBJ_FIELD));              \
9989                 if (si->dst_reg == si->src_reg) {                             \
9990                         *insn++ = BPF_JMP_A(1);                               \
9991                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9992                                       offsetof(struct bpf_sock_ops_kern,      \
9993                                       temp));                                 \
9994                 }                                                             \
9995         } while (0)
9996
9997 #define SOCK_OPS_GET_SK()                                                             \
9998         do {                                                                  \
9999                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10000                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10001                         reg--;                                                \
10002                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10003                         reg--;                                                \
10004                 if (si->dst_reg == si->src_reg) {                             \
10005                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
10006                                           offsetof(struct bpf_sock_ops_kern,  \
10007                                           temp));                             \
10008                         fullsock_reg = reg;                                   \
10009                         jmp += 2;                                             \
10010                 }                                                             \
10011                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10012                                                 struct bpf_sock_ops_kern,     \
10013                                                 is_fullsock),                 \
10014                                       fullsock_reg, si->src_reg,              \
10015                                       offsetof(struct bpf_sock_ops_kern,      \
10016                                                is_fullsock));                 \
10017                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
10018                 if (si->dst_reg == si->src_reg)                               \
10019                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10020                                       offsetof(struct bpf_sock_ops_kern,      \
10021                                       temp));                                 \
10022                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10023                                                 struct bpf_sock_ops_kern, sk),\
10024                                       si->dst_reg, si->src_reg,               \
10025                                       offsetof(struct bpf_sock_ops_kern, sk));\
10026                 if (si->dst_reg == si->src_reg) {                             \
10027                         *insn++ = BPF_JMP_A(1);                               \
10028                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10029                                       offsetof(struct bpf_sock_ops_kern,      \
10030                                       temp));                                 \
10031                 }                                                             \
10032         } while (0)
10033
10034 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10035                 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10036
10037 /* Helper macro for adding write access to tcp_sock or sock fields.
10038  * The macro is called with two registers, dst_reg which contains a pointer
10039  * to ctx (context) and src_reg which contains the value that should be
10040  * stored. However, we need an additional register since we cannot overwrite
10041  * dst_reg because it may be used later in the program.
10042  * Instead we "borrow" one of the other register. We first save its value
10043  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10044  * it at the end of the macro.
10045  */
10046 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
10047         do {                                                                  \
10048                 int reg = BPF_REG_9;                                          \
10049                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
10050                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10051                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10052                         reg--;                                                \
10053                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10054                         reg--;                                                \
10055                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
10056                                       offsetof(struct bpf_sock_ops_kern,      \
10057                                                temp));                        \
10058                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10059                                                 struct bpf_sock_ops_kern,     \
10060                                                 is_fullsock),                 \
10061                                       reg, si->dst_reg,                       \
10062                                       offsetof(struct bpf_sock_ops_kern,      \
10063                                                is_fullsock));                 \
10064                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
10065                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10066                                                 struct bpf_sock_ops_kern, sk),\
10067                                       reg, si->dst_reg,                       \
10068                                       offsetof(struct bpf_sock_ops_kern, sk));\
10069                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
10070                                       reg, si->src_reg,                       \
10071                                       offsetof(OBJ, OBJ_FIELD));              \
10072                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
10073                                       offsetof(struct bpf_sock_ops_kern,      \
10074                                                temp));                        \
10075         } while (0)
10076
10077 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
10078         do {                                                                  \
10079                 if (TYPE == BPF_WRITE)                                        \
10080                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
10081                 else                                                          \
10082                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
10083         } while (0)
10084
10085         if (insn > insn_buf)
10086                 return insn - insn_buf;
10087
10088         switch (si->off) {
10089         case offsetof(struct bpf_sock_ops, op):
10090                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10091                                                        op),
10092                                       si->dst_reg, si->src_reg,
10093                                       offsetof(struct bpf_sock_ops_kern, op));
10094                 break;
10095
10096         case offsetof(struct bpf_sock_ops, replylong[0]) ...
10097              offsetof(struct bpf_sock_ops, replylong[3]):
10098                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10099                              sizeof_field(struct bpf_sock_ops_kern, reply));
10100                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10101                              sizeof_field(struct bpf_sock_ops_kern, replylong));
10102                 off = si->off;
10103                 off -= offsetof(struct bpf_sock_ops, replylong[0]);
10104                 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10105                 if (type == BPF_WRITE)
10106                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
10107                                               off);
10108                 else
10109                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10110                                               off);
10111                 break;
10112
10113         case offsetof(struct bpf_sock_ops, family):
10114                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10115
10116                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10117                                               struct bpf_sock_ops_kern, sk),
10118                                       si->dst_reg, si->src_reg,
10119                                       offsetof(struct bpf_sock_ops_kern, sk));
10120                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10121                                       offsetof(struct sock_common, skc_family));
10122                 break;
10123
10124         case offsetof(struct bpf_sock_ops, remote_ip4):
10125                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10126
10127                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10128                                                 struct bpf_sock_ops_kern, sk),
10129                                       si->dst_reg, si->src_reg,
10130                                       offsetof(struct bpf_sock_ops_kern, sk));
10131                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10132                                       offsetof(struct sock_common, skc_daddr));
10133                 break;
10134
10135         case offsetof(struct bpf_sock_ops, local_ip4):
10136                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10137                                           skc_rcv_saddr) != 4);
10138
10139                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10140                                               struct bpf_sock_ops_kern, sk),
10141                                       si->dst_reg, si->src_reg,
10142                                       offsetof(struct bpf_sock_ops_kern, sk));
10143                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10144                                       offsetof(struct sock_common,
10145                                                skc_rcv_saddr));
10146                 break;
10147
10148         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10149              offsetof(struct bpf_sock_ops, remote_ip6[3]):
10150 #if IS_ENABLED(CONFIG_IPV6)
10151                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10152                                           skc_v6_daddr.s6_addr32[0]) != 4);
10153
10154                 off = si->off;
10155                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10156                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10157                                                 struct bpf_sock_ops_kern, sk),
10158                                       si->dst_reg, si->src_reg,
10159                                       offsetof(struct bpf_sock_ops_kern, sk));
10160                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10161                                       offsetof(struct sock_common,
10162                                                skc_v6_daddr.s6_addr32[0]) +
10163                                       off);
10164 #else
10165                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10166 #endif
10167                 break;
10168
10169         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10170              offsetof(struct bpf_sock_ops, local_ip6[3]):
10171 #if IS_ENABLED(CONFIG_IPV6)
10172                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10173                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10174
10175                 off = si->off;
10176                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10177                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10178                                                 struct bpf_sock_ops_kern, sk),
10179                                       si->dst_reg, si->src_reg,
10180                                       offsetof(struct bpf_sock_ops_kern, sk));
10181                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10182                                       offsetof(struct sock_common,
10183                                                skc_v6_rcv_saddr.s6_addr32[0]) +
10184                                       off);
10185 #else
10186                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10187 #endif
10188                 break;
10189
10190         case offsetof(struct bpf_sock_ops, remote_port):
10191                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10192
10193                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10194                                                 struct bpf_sock_ops_kern, sk),
10195                                       si->dst_reg, si->src_reg,
10196                                       offsetof(struct bpf_sock_ops_kern, sk));
10197                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10198                                       offsetof(struct sock_common, skc_dport));
10199 #ifndef __BIG_ENDIAN_BITFIELD
10200                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10201 #endif
10202                 break;
10203
10204         case offsetof(struct bpf_sock_ops, local_port):
10205                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10206
10207                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10208                                                 struct bpf_sock_ops_kern, sk),
10209                                       si->dst_reg, si->src_reg,
10210                                       offsetof(struct bpf_sock_ops_kern, sk));
10211                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10212                                       offsetof(struct sock_common, skc_num));
10213                 break;
10214
10215         case offsetof(struct bpf_sock_ops, is_fullsock):
10216                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10217                                                 struct bpf_sock_ops_kern,
10218                                                 is_fullsock),
10219                                       si->dst_reg, si->src_reg,
10220                                       offsetof(struct bpf_sock_ops_kern,
10221                                                is_fullsock));
10222                 break;
10223
10224         case offsetof(struct bpf_sock_ops, state):
10225                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10226
10227                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10228                                                 struct bpf_sock_ops_kern, sk),
10229                                       si->dst_reg, si->src_reg,
10230                                       offsetof(struct bpf_sock_ops_kern, sk));
10231                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10232                                       offsetof(struct sock_common, skc_state));
10233                 break;
10234
10235         case offsetof(struct bpf_sock_ops, rtt_min):
10236                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10237                              sizeof(struct minmax));
10238                 BUILD_BUG_ON(sizeof(struct minmax) <
10239                              sizeof(struct minmax_sample));
10240
10241                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10242                                                 struct bpf_sock_ops_kern, sk),
10243                                       si->dst_reg, si->src_reg,
10244                                       offsetof(struct bpf_sock_ops_kern, sk));
10245                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10246                                       offsetof(struct tcp_sock, rtt_min) +
10247                                       sizeof_field(struct minmax_sample, t));
10248                 break;
10249
10250         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10251                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10252                                    struct tcp_sock);
10253                 break;
10254
10255         case offsetof(struct bpf_sock_ops, sk_txhash):
10256                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10257                                           struct sock, type);
10258                 break;
10259         case offsetof(struct bpf_sock_ops, snd_cwnd):
10260                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10261                 break;
10262         case offsetof(struct bpf_sock_ops, srtt_us):
10263                 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10264                 break;
10265         case offsetof(struct bpf_sock_ops, snd_ssthresh):
10266                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10267                 break;
10268         case offsetof(struct bpf_sock_ops, rcv_nxt):
10269                 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10270                 break;
10271         case offsetof(struct bpf_sock_ops, snd_nxt):
10272                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10273                 break;
10274         case offsetof(struct bpf_sock_ops, snd_una):
10275                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10276                 break;
10277         case offsetof(struct bpf_sock_ops, mss_cache):
10278                 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10279                 break;
10280         case offsetof(struct bpf_sock_ops, ecn_flags):
10281                 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10282                 break;
10283         case offsetof(struct bpf_sock_ops, rate_delivered):
10284                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10285                 break;
10286         case offsetof(struct bpf_sock_ops, rate_interval_us):
10287                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10288                 break;
10289         case offsetof(struct bpf_sock_ops, packets_out):
10290                 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10291                 break;
10292         case offsetof(struct bpf_sock_ops, retrans_out):
10293                 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10294                 break;
10295         case offsetof(struct bpf_sock_ops, total_retrans):
10296                 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10297                 break;
10298         case offsetof(struct bpf_sock_ops, segs_in):
10299                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10300                 break;
10301         case offsetof(struct bpf_sock_ops, data_segs_in):
10302                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10303                 break;
10304         case offsetof(struct bpf_sock_ops, segs_out):
10305                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10306                 break;
10307         case offsetof(struct bpf_sock_ops, data_segs_out):
10308                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10309                 break;
10310         case offsetof(struct bpf_sock_ops, lost_out):
10311                 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10312                 break;
10313         case offsetof(struct bpf_sock_ops, sacked_out):
10314                 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10315                 break;
10316         case offsetof(struct bpf_sock_ops, bytes_received):
10317                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10318                 break;
10319         case offsetof(struct bpf_sock_ops, bytes_acked):
10320                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10321                 break;
10322         case offsetof(struct bpf_sock_ops, sk):
10323                 SOCK_OPS_GET_SK();
10324                 break;
10325         case offsetof(struct bpf_sock_ops, skb_data_end):
10326                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10327                                                        skb_data_end),
10328                                       si->dst_reg, si->src_reg,
10329                                       offsetof(struct bpf_sock_ops_kern,
10330                                                skb_data_end));
10331                 break;
10332         case offsetof(struct bpf_sock_ops, skb_data):
10333                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10334                                                        skb),
10335                                       si->dst_reg, si->src_reg,
10336                                       offsetof(struct bpf_sock_ops_kern,
10337                                                skb));
10338                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10339                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10340                                       si->dst_reg, si->dst_reg,
10341                                       offsetof(struct sk_buff, data));
10342                 break;
10343         case offsetof(struct bpf_sock_ops, skb_len):
10344                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10345                                                        skb),
10346                                       si->dst_reg, si->src_reg,
10347                                       offsetof(struct bpf_sock_ops_kern,
10348                                                skb));
10349                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10350                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10351                                       si->dst_reg, si->dst_reg,
10352                                       offsetof(struct sk_buff, len));
10353                 break;
10354         case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10355                 off = offsetof(struct sk_buff, cb);
10356                 off += offsetof(struct tcp_skb_cb, tcp_flags);
10357                 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10358                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10359                                                        skb),
10360                                       si->dst_reg, si->src_reg,
10361                                       offsetof(struct bpf_sock_ops_kern,
10362                                                skb));
10363                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10364                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10365                                                        tcp_flags),
10366                                       si->dst_reg, si->dst_reg, off);
10367                 break;
10368         }
10369         return insn - insn_buf;
10370 }
10371
10372 /* data_end = skb->data + skb_headlen() */
10373 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10374                                                     struct bpf_insn *insn)
10375 {
10376         int reg;
10377         int temp_reg_off = offsetof(struct sk_buff, cb) +
10378                            offsetof(struct sk_skb_cb, temp_reg);
10379
10380         if (si->src_reg == si->dst_reg) {
10381                 /* We need an extra register, choose and save a register. */
10382                 reg = BPF_REG_9;
10383                 if (si->src_reg == reg || si->dst_reg == reg)
10384                         reg--;
10385                 if (si->src_reg == reg || si->dst_reg == reg)
10386                         reg--;
10387                 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10388         } else {
10389                 reg = si->dst_reg;
10390         }
10391
10392         /* reg = skb->data */
10393         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10394                               reg, si->src_reg,
10395                               offsetof(struct sk_buff, data));
10396         /* AX = skb->len */
10397         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10398                               BPF_REG_AX, si->src_reg,
10399                               offsetof(struct sk_buff, len));
10400         /* reg = skb->data + skb->len */
10401         *insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10402         /* AX = skb->data_len */
10403         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10404                               BPF_REG_AX, si->src_reg,
10405                               offsetof(struct sk_buff, data_len));
10406
10407         /* reg = skb->data + skb->len - skb->data_len */
10408         *insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10409
10410         if (si->src_reg == si->dst_reg) {
10411                 /* Restore the saved register */
10412                 *insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10413                 *insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10414                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10415         }
10416
10417         return insn;
10418 }
10419
10420 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10421                                      const struct bpf_insn *si,
10422                                      struct bpf_insn *insn_buf,
10423                                      struct bpf_prog *prog, u32 *target_size)
10424 {
10425         struct bpf_insn *insn = insn_buf;
10426         int off;
10427
10428         switch (si->off) {
10429         case offsetof(struct __sk_buff, data_end):
10430                 insn = bpf_convert_data_end_access(si, insn);
10431                 break;
10432         case offsetof(struct __sk_buff, cb[0]) ...
10433              offsetofend(struct __sk_buff, cb[4]) - 1:
10434                 BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10435                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10436                               offsetof(struct sk_skb_cb, data)) %
10437                              sizeof(__u64));
10438
10439                 prog->cb_access = 1;
10440                 off  = si->off;
10441                 off -= offsetof(struct __sk_buff, cb[0]);
10442                 off += offsetof(struct sk_buff, cb);
10443                 off += offsetof(struct sk_skb_cb, data);
10444                 if (type == BPF_WRITE)
10445                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
10446                                               si->src_reg, off);
10447                 else
10448                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10449                                               si->src_reg, off);
10450                 break;
10451
10452
10453         default:
10454                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10455                                               target_size);
10456         }
10457
10458         return insn - insn_buf;
10459 }
10460
10461 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10462                                      const struct bpf_insn *si,
10463                                      struct bpf_insn *insn_buf,
10464                                      struct bpf_prog *prog, u32 *target_size)
10465 {
10466         struct bpf_insn *insn = insn_buf;
10467 #if IS_ENABLED(CONFIG_IPV6)
10468         int off;
10469 #endif
10470
10471         /* convert ctx uses the fact sg element is first in struct */
10472         BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10473
10474         switch (si->off) {
10475         case offsetof(struct sk_msg_md, data):
10476                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10477                                       si->dst_reg, si->src_reg,
10478                                       offsetof(struct sk_msg, data));
10479                 break;
10480         case offsetof(struct sk_msg_md, data_end):
10481                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10482                                       si->dst_reg, si->src_reg,
10483                                       offsetof(struct sk_msg, data_end));
10484                 break;
10485         case offsetof(struct sk_msg_md, family):
10486                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10487
10488                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10489                                               struct sk_msg, sk),
10490                                       si->dst_reg, si->src_reg,
10491                                       offsetof(struct sk_msg, sk));
10492                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10493                                       offsetof(struct sock_common, skc_family));
10494                 break;
10495
10496         case offsetof(struct sk_msg_md, remote_ip4):
10497                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10498
10499                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10500                                                 struct sk_msg, sk),
10501                                       si->dst_reg, si->src_reg,
10502                                       offsetof(struct sk_msg, sk));
10503                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10504                                       offsetof(struct sock_common, skc_daddr));
10505                 break;
10506
10507         case offsetof(struct sk_msg_md, local_ip4):
10508                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10509                                           skc_rcv_saddr) != 4);
10510
10511                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10512                                               struct sk_msg, sk),
10513                                       si->dst_reg, si->src_reg,
10514                                       offsetof(struct sk_msg, sk));
10515                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10516                                       offsetof(struct sock_common,
10517                                                skc_rcv_saddr));
10518                 break;
10519
10520         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10521              offsetof(struct sk_msg_md, remote_ip6[3]):
10522 #if IS_ENABLED(CONFIG_IPV6)
10523                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10524                                           skc_v6_daddr.s6_addr32[0]) != 4);
10525
10526                 off = si->off;
10527                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10528                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10529                                                 struct sk_msg, sk),
10530                                       si->dst_reg, si->src_reg,
10531                                       offsetof(struct sk_msg, sk));
10532                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10533                                       offsetof(struct sock_common,
10534                                                skc_v6_daddr.s6_addr32[0]) +
10535                                       off);
10536 #else
10537                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10538 #endif
10539                 break;
10540
10541         case offsetof(struct sk_msg_md, local_ip6[0]) ...
10542              offsetof(struct sk_msg_md, local_ip6[3]):
10543 #if IS_ENABLED(CONFIG_IPV6)
10544                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10545                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10546
10547                 off = si->off;
10548                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
10549                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10550                                                 struct sk_msg, sk),
10551                                       si->dst_reg, si->src_reg,
10552                                       offsetof(struct sk_msg, sk));
10553                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10554                                       offsetof(struct sock_common,
10555                                                skc_v6_rcv_saddr.s6_addr32[0]) +
10556                                       off);
10557 #else
10558                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10559 #endif
10560                 break;
10561
10562         case offsetof(struct sk_msg_md, remote_port):
10563                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10564
10565                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10566                                                 struct sk_msg, sk),
10567                                       si->dst_reg, si->src_reg,
10568                                       offsetof(struct sk_msg, sk));
10569                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10570                                       offsetof(struct sock_common, skc_dport));
10571 #ifndef __BIG_ENDIAN_BITFIELD
10572                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10573 #endif
10574                 break;
10575
10576         case offsetof(struct sk_msg_md, local_port):
10577                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10578
10579                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10580                                                 struct sk_msg, sk),
10581                                       si->dst_reg, si->src_reg,
10582                                       offsetof(struct sk_msg, sk));
10583                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10584                                       offsetof(struct sock_common, skc_num));
10585                 break;
10586
10587         case offsetof(struct sk_msg_md, size):
10588                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10589                                       si->dst_reg, si->src_reg,
10590                                       offsetof(struct sk_msg_sg, size));
10591                 break;
10592
10593         case offsetof(struct sk_msg_md, sk):
10594                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10595                                       si->dst_reg, si->src_reg,
10596                                       offsetof(struct sk_msg, sk));
10597                 break;
10598         }
10599
10600         return insn - insn_buf;
10601 }
10602
10603 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10604         .get_func_proto         = sk_filter_func_proto,
10605         .is_valid_access        = sk_filter_is_valid_access,
10606         .convert_ctx_access     = bpf_convert_ctx_access,
10607         .gen_ld_abs             = bpf_gen_ld_abs,
10608 };
10609
10610 const struct bpf_prog_ops sk_filter_prog_ops = {
10611         .test_run               = bpf_prog_test_run_skb,
10612 };
10613
10614 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10615         .get_func_proto         = tc_cls_act_func_proto,
10616         .is_valid_access        = tc_cls_act_is_valid_access,
10617         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
10618         .gen_prologue           = tc_cls_act_prologue,
10619         .gen_ld_abs             = bpf_gen_ld_abs,
10620 };
10621
10622 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10623         .test_run               = bpf_prog_test_run_skb,
10624 };
10625
10626 const struct bpf_verifier_ops xdp_verifier_ops = {
10627         .get_func_proto         = xdp_func_proto,
10628         .is_valid_access        = xdp_is_valid_access,
10629         .convert_ctx_access     = xdp_convert_ctx_access,
10630         .gen_prologue           = bpf_noop_prologue,
10631 };
10632
10633 const struct bpf_prog_ops xdp_prog_ops = {
10634         .test_run               = bpf_prog_test_run_xdp,
10635 };
10636
10637 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10638         .get_func_proto         = cg_skb_func_proto,
10639         .is_valid_access        = cg_skb_is_valid_access,
10640         .convert_ctx_access     = bpf_convert_ctx_access,
10641 };
10642
10643 const struct bpf_prog_ops cg_skb_prog_ops = {
10644         .test_run               = bpf_prog_test_run_skb,
10645 };
10646
10647 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10648         .get_func_proto         = lwt_in_func_proto,
10649         .is_valid_access        = lwt_is_valid_access,
10650         .convert_ctx_access     = bpf_convert_ctx_access,
10651 };
10652
10653 const struct bpf_prog_ops lwt_in_prog_ops = {
10654         .test_run               = bpf_prog_test_run_skb,
10655 };
10656
10657 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10658         .get_func_proto         = lwt_out_func_proto,
10659         .is_valid_access        = lwt_is_valid_access,
10660         .convert_ctx_access     = bpf_convert_ctx_access,
10661 };
10662
10663 const struct bpf_prog_ops lwt_out_prog_ops = {
10664         .test_run               = bpf_prog_test_run_skb,
10665 };
10666
10667 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10668         .get_func_proto         = lwt_xmit_func_proto,
10669         .is_valid_access        = lwt_is_valid_access,
10670         .convert_ctx_access     = bpf_convert_ctx_access,
10671         .gen_prologue           = tc_cls_act_prologue,
10672 };
10673
10674 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10675         .test_run               = bpf_prog_test_run_skb,
10676 };
10677
10678 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10679         .get_func_proto         = lwt_seg6local_func_proto,
10680         .is_valid_access        = lwt_is_valid_access,
10681         .convert_ctx_access     = bpf_convert_ctx_access,
10682 };
10683
10684 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10685         .test_run               = bpf_prog_test_run_skb,
10686 };
10687
10688 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10689         .get_func_proto         = sock_filter_func_proto,
10690         .is_valid_access        = sock_filter_is_valid_access,
10691         .convert_ctx_access     = bpf_sock_convert_ctx_access,
10692 };
10693
10694 const struct bpf_prog_ops cg_sock_prog_ops = {
10695 };
10696
10697 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10698         .get_func_proto         = sock_addr_func_proto,
10699         .is_valid_access        = sock_addr_is_valid_access,
10700         .convert_ctx_access     = sock_addr_convert_ctx_access,
10701 };
10702
10703 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10704 };
10705
10706 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10707         .get_func_proto         = sock_ops_func_proto,
10708         .is_valid_access        = sock_ops_is_valid_access,
10709         .convert_ctx_access     = sock_ops_convert_ctx_access,
10710 };
10711
10712 const struct bpf_prog_ops sock_ops_prog_ops = {
10713 };
10714
10715 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10716         .get_func_proto         = sk_skb_func_proto,
10717         .is_valid_access        = sk_skb_is_valid_access,
10718         .convert_ctx_access     = sk_skb_convert_ctx_access,
10719         .gen_prologue           = sk_skb_prologue,
10720 };
10721
10722 const struct bpf_prog_ops sk_skb_prog_ops = {
10723 };
10724
10725 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10726         .get_func_proto         = sk_msg_func_proto,
10727         .is_valid_access        = sk_msg_is_valid_access,
10728         .convert_ctx_access     = sk_msg_convert_ctx_access,
10729         .gen_prologue           = bpf_noop_prologue,
10730 };
10731
10732 const struct bpf_prog_ops sk_msg_prog_ops = {
10733 };
10734
10735 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10736         .get_func_proto         = flow_dissector_func_proto,
10737         .is_valid_access        = flow_dissector_is_valid_access,
10738         .convert_ctx_access     = flow_dissector_convert_ctx_access,
10739 };
10740
10741 const struct bpf_prog_ops flow_dissector_prog_ops = {
10742         .test_run               = bpf_prog_test_run_flow_dissector,
10743 };
10744
10745 int sk_detach_filter(struct sock *sk)
10746 {
10747         int ret = -ENOENT;
10748         struct sk_filter *filter;
10749
10750         if (sock_flag(sk, SOCK_FILTER_LOCKED))
10751                 return -EPERM;
10752
10753         filter = rcu_dereference_protected(sk->sk_filter,
10754                                            lockdep_sock_is_held(sk));
10755         if (filter) {
10756                 RCU_INIT_POINTER(sk->sk_filter, NULL);
10757                 sk_filter_uncharge(sk, filter);
10758                 ret = 0;
10759         }
10760
10761         return ret;
10762 }
10763 EXPORT_SYMBOL_GPL(sk_detach_filter);
10764
10765 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
10766                   unsigned int len)
10767 {
10768         struct sock_fprog_kern *fprog;
10769         struct sk_filter *filter;
10770         int ret = 0;
10771
10772         lock_sock(sk);
10773         filter = rcu_dereference_protected(sk->sk_filter,
10774                                            lockdep_sock_is_held(sk));
10775         if (!filter)
10776                 goto out;
10777
10778         /* We're copying the filter that has been originally attached,
10779          * so no conversion/decode needed anymore. eBPF programs that
10780          * have no original program cannot be dumped through this.
10781          */
10782         ret = -EACCES;
10783         fprog = filter->prog->orig_prog;
10784         if (!fprog)
10785                 goto out;
10786
10787         ret = fprog->len;
10788         if (!len)
10789                 /* User space only enquires number of filter blocks. */
10790                 goto out;
10791
10792         ret = -EINVAL;
10793         if (len < fprog->len)
10794                 goto out;
10795
10796         ret = -EFAULT;
10797         if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
10798                 goto out;
10799
10800         /* Instead of bytes, the API requests to return the number
10801          * of filter blocks.
10802          */
10803         ret = fprog->len;
10804 out:
10805         release_sock(sk);
10806         return ret;
10807 }
10808
10809 #ifdef CONFIG_INET
10810 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10811                                     struct sock_reuseport *reuse,
10812                                     struct sock *sk, struct sk_buff *skb,
10813                                     struct sock *migrating_sk,
10814                                     u32 hash)
10815 {
10816         reuse_kern->skb = skb;
10817         reuse_kern->sk = sk;
10818         reuse_kern->selected_sk = NULL;
10819         reuse_kern->migrating_sk = migrating_sk;
10820         reuse_kern->data_end = skb->data + skb_headlen(skb);
10821         reuse_kern->hash = hash;
10822         reuse_kern->reuseport_id = reuse->reuseport_id;
10823         reuse_kern->bind_inany = reuse->bind_inany;
10824 }
10825
10826 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10827                                   struct bpf_prog *prog, struct sk_buff *skb,
10828                                   struct sock *migrating_sk,
10829                                   u32 hash)
10830 {
10831         struct sk_reuseport_kern reuse_kern;
10832         enum sk_action action;
10833
10834         bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10835         action = bpf_prog_run(prog, &reuse_kern);
10836
10837         if (action == SK_PASS)
10838                 return reuse_kern.selected_sk;
10839         else
10840                 return ERR_PTR(-ECONNREFUSED);
10841 }
10842
10843 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10844            struct bpf_map *, map, void *, key, u32, flags)
10845 {
10846         bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10847         struct sock_reuseport *reuse;
10848         struct sock *selected_sk;
10849
10850         selected_sk = map->ops->map_lookup_elem(map, key);
10851         if (!selected_sk)
10852                 return -ENOENT;
10853
10854         reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10855         if (!reuse) {
10856                 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10857                 if (sk_is_refcounted(selected_sk))
10858                         sock_put(selected_sk);
10859
10860                 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
10861                  * The only (!reuse) case here is - the sk has already been
10862                  * unhashed (e.g. by close()), so treat it as -ENOENT.
10863                  *
10864                  * Other maps (e.g. sock_map) do not provide this guarantee and
10865                  * the sk may never be in the reuseport group to begin with.
10866                  */
10867                 return is_sockarray ? -ENOENT : -EINVAL;
10868         }
10869
10870         if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10871                 struct sock *sk = reuse_kern->sk;
10872
10873                 if (sk->sk_protocol != selected_sk->sk_protocol)
10874                         return -EPROTOTYPE;
10875                 else if (sk->sk_family != selected_sk->sk_family)
10876                         return -EAFNOSUPPORT;
10877
10878                 /* Catch all. Likely bound to a different sockaddr. */
10879                 return -EBADFD;
10880         }
10881
10882         reuse_kern->selected_sk = selected_sk;
10883
10884         return 0;
10885 }
10886
10887 static const struct bpf_func_proto sk_select_reuseport_proto = {
10888         .func           = sk_select_reuseport,
10889         .gpl_only       = false,
10890         .ret_type       = RET_INTEGER,
10891         .arg1_type      = ARG_PTR_TO_CTX,
10892         .arg2_type      = ARG_CONST_MAP_PTR,
10893         .arg3_type      = ARG_PTR_TO_MAP_KEY,
10894         .arg4_type      = ARG_ANYTHING,
10895 };
10896
10897 BPF_CALL_4(sk_reuseport_load_bytes,
10898            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10899            void *, to, u32, len)
10900 {
10901         return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10902 }
10903
10904 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10905         .func           = sk_reuseport_load_bytes,
10906         .gpl_only       = false,
10907         .ret_type       = RET_INTEGER,
10908         .arg1_type      = ARG_PTR_TO_CTX,
10909         .arg2_type      = ARG_ANYTHING,
10910         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
10911         .arg4_type      = ARG_CONST_SIZE,
10912 };
10913
10914 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10915            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10916            void *, to, u32, len, u32, start_header)
10917 {
10918         return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10919                                                len, start_header);
10920 }
10921
10922 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10923         .func           = sk_reuseport_load_bytes_relative,
10924         .gpl_only       = false,
10925         .ret_type       = RET_INTEGER,
10926         .arg1_type      = ARG_PTR_TO_CTX,
10927         .arg2_type      = ARG_ANYTHING,
10928         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
10929         .arg4_type      = ARG_CONST_SIZE,
10930         .arg5_type      = ARG_ANYTHING,
10931 };
10932
10933 static const struct bpf_func_proto *
10934 sk_reuseport_func_proto(enum bpf_func_id func_id,
10935                         const struct bpf_prog *prog)
10936 {
10937         switch (func_id) {
10938         case BPF_FUNC_sk_select_reuseport:
10939                 return &sk_select_reuseport_proto;
10940         case BPF_FUNC_skb_load_bytes:
10941                 return &sk_reuseport_load_bytes_proto;
10942         case BPF_FUNC_skb_load_bytes_relative:
10943                 return &sk_reuseport_load_bytes_relative_proto;
10944         case BPF_FUNC_get_socket_cookie:
10945                 return &bpf_get_socket_ptr_cookie_proto;
10946         case BPF_FUNC_ktime_get_coarse_ns:
10947                 return &bpf_ktime_get_coarse_ns_proto;
10948         default:
10949                 return bpf_base_func_proto(func_id);
10950         }
10951 }
10952
10953 static bool
10954 sk_reuseport_is_valid_access(int off, int size,
10955                              enum bpf_access_type type,
10956                              const struct bpf_prog *prog,
10957                              struct bpf_insn_access_aux *info)
10958 {
10959         const u32 size_default = sizeof(__u32);
10960
10961         if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
10962             off % size || type != BPF_READ)
10963                 return false;
10964
10965         switch (off) {
10966         case offsetof(struct sk_reuseport_md, data):
10967                 info->reg_type = PTR_TO_PACKET;
10968                 return size == sizeof(__u64);
10969
10970         case offsetof(struct sk_reuseport_md, data_end):
10971                 info->reg_type = PTR_TO_PACKET_END;
10972                 return size == sizeof(__u64);
10973
10974         case offsetof(struct sk_reuseport_md, hash):
10975                 return size == size_default;
10976
10977         case offsetof(struct sk_reuseport_md, sk):
10978                 info->reg_type = PTR_TO_SOCKET;
10979                 return size == sizeof(__u64);
10980
10981         case offsetof(struct sk_reuseport_md, migrating_sk):
10982                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
10983                 return size == sizeof(__u64);
10984
10985         /* Fields that allow narrowing */
10986         case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
10987                 if (size < sizeof_field(struct sk_buff, protocol))
10988                         return false;
10989                 fallthrough;
10990         case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
10991         case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
10992         case bpf_ctx_range(struct sk_reuseport_md, len):
10993                 bpf_ctx_record_field_size(info, size_default);
10994                 return bpf_ctx_narrow_access_ok(off, size, size_default);
10995
10996         default:
10997                 return false;
10998         }
10999 }
11000
11001 #define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
11002         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11003                               si->dst_reg, si->src_reg,                 \
11004                               bpf_target_off(struct sk_reuseport_kern, F, \
11005                                              sizeof_field(struct sk_reuseport_kern, F), \
11006                                              target_size));             \
11007         })
11008
11009 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
11010         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
11011                                     struct sk_buff,                     \
11012                                     skb,                                \
11013                                     SKB_FIELD)
11014
11015 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)                            \
11016         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
11017                                     struct sock,                        \
11018                                     sk,                                 \
11019                                     SK_FIELD)
11020
11021 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11022                                            const struct bpf_insn *si,
11023                                            struct bpf_insn *insn_buf,
11024                                            struct bpf_prog *prog,
11025                                            u32 *target_size)
11026 {
11027         struct bpf_insn *insn = insn_buf;
11028
11029         switch (si->off) {
11030         case offsetof(struct sk_reuseport_md, data):
11031                 SK_REUSEPORT_LOAD_SKB_FIELD(data);
11032                 break;
11033
11034         case offsetof(struct sk_reuseport_md, len):
11035                 SK_REUSEPORT_LOAD_SKB_FIELD(len);
11036                 break;
11037
11038         case offsetof(struct sk_reuseport_md, eth_protocol):
11039                 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11040                 break;
11041
11042         case offsetof(struct sk_reuseport_md, ip_protocol):
11043                 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11044                 break;
11045
11046         case offsetof(struct sk_reuseport_md, data_end):
11047                 SK_REUSEPORT_LOAD_FIELD(data_end);
11048                 break;
11049
11050         case offsetof(struct sk_reuseport_md, hash):
11051                 SK_REUSEPORT_LOAD_FIELD(hash);
11052                 break;
11053
11054         case offsetof(struct sk_reuseport_md, bind_inany):
11055                 SK_REUSEPORT_LOAD_FIELD(bind_inany);
11056                 break;
11057
11058         case offsetof(struct sk_reuseport_md, sk):
11059                 SK_REUSEPORT_LOAD_FIELD(sk);
11060                 break;
11061
11062         case offsetof(struct sk_reuseport_md, migrating_sk):
11063                 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11064                 break;
11065         }
11066
11067         return insn - insn_buf;
11068 }
11069
11070 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11071         .get_func_proto         = sk_reuseport_func_proto,
11072         .is_valid_access        = sk_reuseport_is_valid_access,
11073         .convert_ctx_access     = sk_reuseport_convert_ctx_access,
11074 };
11075
11076 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11077 };
11078
11079 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11080 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11081
11082 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11083            struct sock *, sk, u64, flags)
11084 {
11085         if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11086                                BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11087                 return -EINVAL;
11088         if (unlikely(sk && sk_is_refcounted(sk)))
11089                 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11090         if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11091                 return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11092         if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11093                 return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11094
11095         /* Check if socket is suitable for packet L3/L4 protocol */
11096         if (sk && sk->sk_protocol != ctx->protocol)
11097                 return -EPROTOTYPE;
11098         if (sk && sk->sk_family != ctx->family &&
11099             (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11100                 return -EAFNOSUPPORT;
11101
11102         if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11103                 return -EEXIST;
11104
11105         /* Select socket as lookup result */
11106         ctx->selected_sk = sk;
11107         ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11108         return 0;
11109 }
11110
11111 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11112         .func           = bpf_sk_lookup_assign,
11113         .gpl_only       = false,
11114         .ret_type       = RET_INTEGER,
11115         .arg1_type      = ARG_PTR_TO_CTX,
11116         .arg2_type      = ARG_PTR_TO_SOCKET_OR_NULL,
11117         .arg3_type      = ARG_ANYTHING,
11118 };
11119
11120 static const struct bpf_func_proto *
11121 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11122 {
11123         switch (func_id) {
11124         case BPF_FUNC_perf_event_output:
11125                 return &bpf_event_output_data_proto;
11126         case BPF_FUNC_sk_assign:
11127                 return &bpf_sk_lookup_assign_proto;
11128         case BPF_FUNC_sk_release:
11129                 return &bpf_sk_release_proto;
11130         default:
11131                 return bpf_sk_base_func_proto(func_id);
11132         }
11133 }
11134
11135 static bool sk_lookup_is_valid_access(int off, int size,
11136                                       enum bpf_access_type type,
11137                                       const struct bpf_prog *prog,
11138                                       struct bpf_insn_access_aux *info)
11139 {
11140         if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11141                 return false;
11142         if (off % size != 0)
11143                 return false;
11144         if (type != BPF_READ)
11145                 return false;
11146
11147         switch (off) {
11148         case offsetof(struct bpf_sk_lookup, sk):
11149                 info->reg_type = PTR_TO_SOCKET_OR_NULL;
11150                 return size == sizeof(__u64);
11151
11152         case bpf_ctx_range(struct bpf_sk_lookup, family):
11153         case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11154         case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11155         case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11156         case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11157         case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11158         case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11159         case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11160                 bpf_ctx_record_field_size(info, sizeof(__u32));
11161                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11162
11163         case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11164                 /* Allow 4-byte access to 2-byte field for backward compatibility */
11165                 if (size == sizeof(__u32))
11166                         return true;
11167                 bpf_ctx_record_field_size(info, sizeof(__be16));
11168                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11169
11170         case offsetofend(struct bpf_sk_lookup, remote_port) ...
11171              offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11172                 /* Allow access to zero padding for backward compatibility */
11173                 bpf_ctx_record_field_size(info, sizeof(__u16));
11174                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11175
11176         default:
11177                 return false;
11178         }
11179 }
11180
11181 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11182                                         const struct bpf_insn *si,
11183                                         struct bpf_insn *insn_buf,
11184                                         struct bpf_prog *prog,
11185                                         u32 *target_size)
11186 {
11187         struct bpf_insn *insn = insn_buf;
11188
11189         switch (si->off) {
11190         case offsetof(struct bpf_sk_lookup, sk):
11191                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11192                                       offsetof(struct bpf_sk_lookup_kern, selected_sk));
11193                 break;
11194
11195         case offsetof(struct bpf_sk_lookup, family):
11196                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11197                                       bpf_target_off(struct bpf_sk_lookup_kern,
11198                                                      family, 2, target_size));
11199                 break;
11200
11201         case offsetof(struct bpf_sk_lookup, protocol):
11202                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11203                                       bpf_target_off(struct bpf_sk_lookup_kern,
11204                                                      protocol, 2, target_size));
11205                 break;
11206
11207         case offsetof(struct bpf_sk_lookup, remote_ip4):
11208                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11209                                       bpf_target_off(struct bpf_sk_lookup_kern,
11210                                                      v4.saddr, 4, target_size));
11211                 break;
11212
11213         case offsetof(struct bpf_sk_lookup, local_ip4):
11214                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11215                                       bpf_target_off(struct bpf_sk_lookup_kern,
11216                                                      v4.daddr, 4, target_size));
11217                 break;
11218
11219         case bpf_ctx_range_till(struct bpf_sk_lookup,
11220                                 remote_ip6[0], remote_ip6[3]): {
11221 #if IS_ENABLED(CONFIG_IPV6)
11222                 int off = si->off;
11223
11224                 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11225                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11226                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11227                                       offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11228                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11229                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11230 #else
11231                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11232 #endif
11233                 break;
11234         }
11235         case bpf_ctx_range_till(struct bpf_sk_lookup,
11236                                 local_ip6[0], local_ip6[3]): {
11237 #if IS_ENABLED(CONFIG_IPV6)
11238                 int off = si->off;
11239
11240                 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11241                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11242                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11243                                       offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11244                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11245                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11246 #else
11247                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11248 #endif
11249                 break;
11250         }
11251         case offsetof(struct bpf_sk_lookup, remote_port):
11252                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11253                                       bpf_target_off(struct bpf_sk_lookup_kern,
11254                                                      sport, 2, target_size));
11255                 break;
11256
11257         case offsetofend(struct bpf_sk_lookup, remote_port):
11258                 *target_size = 2;
11259                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11260                 break;
11261
11262         case offsetof(struct bpf_sk_lookup, local_port):
11263                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11264                                       bpf_target_off(struct bpf_sk_lookup_kern,
11265                                                      dport, 2, target_size));
11266                 break;
11267
11268         case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11269                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11270                                       bpf_target_off(struct bpf_sk_lookup_kern,
11271                                                      ingress_ifindex, 4, target_size));
11272                 break;
11273         }
11274
11275         return insn - insn_buf;
11276 }
11277
11278 const struct bpf_prog_ops sk_lookup_prog_ops = {
11279         .test_run = bpf_prog_test_run_sk_lookup,
11280 };
11281
11282 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11283         .get_func_proto         = sk_lookup_func_proto,
11284         .is_valid_access        = sk_lookup_is_valid_access,
11285         .convert_ctx_access     = sk_lookup_convert_ctx_access,
11286 };
11287
11288 #endif /* CONFIG_INET */
11289
11290 DEFINE_BPF_DISPATCHER(xdp)
11291
11292 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11293 {
11294         bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11295 }
11296
11297 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11298 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11299 BTF_SOCK_TYPE_xxx
11300 #undef BTF_SOCK_TYPE
11301
11302 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11303 {
11304         /* tcp6_sock type is not generated in dwarf and hence btf,
11305          * trigger an explicit type generation here.
11306          */
11307         BTF_TYPE_EMIT(struct tcp6_sock);
11308         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11309             sk->sk_family == AF_INET6)
11310                 return (unsigned long)sk;
11311
11312         return (unsigned long)NULL;
11313 }
11314
11315 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11316         .func                   = bpf_skc_to_tcp6_sock,
11317         .gpl_only               = false,
11318         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11319         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11320         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11321 };
11322
11323 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11324 {
11325         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11326                 return (unsigned long)sk;
11327
11328         return (unsigned long)NULL;
11329 }
11330
11331 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11332         .func                   = bpf_skc_to_tcp_sock,
11333         .gpl_only               = false,
11334         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11335         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11336         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11337 };
11338
11339 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11340 {
11341         /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11342          * generated if CONFIG_INET=n. Trigger an explicit generation here.
11343          */
11344         BTF_TYPE_EMIT(struct inet_timewait_sock);
11345         BTF_TYPE_EMIT(struct tcp_timewait_sock);
11346
11347 #ifdef CONFIG_INET
11348         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11349                 return (unsigned long)sk;
11350 #endif
11351
11352 #if IS_BUILTIN(CONFIG_IPV6)
11353         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11354                 return (unsigned long)sk;
11355 #endif
11356
11357         return (unsigned long)NULL;
11358 }
11359
11360 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11361         .func                   = bpf_skc_to_tcp_timewait_sock,
11362         .gpl_only               = false,
11363         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11364         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11365         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11366 };
11367
11368 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11369 {
11370 #ifdef CONFIG_INET
11371         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11372                 return (unsigned long)sk;
11373 #endif
11374
11375 #if IS_BUILTIN(CONFIG_IPV6)
11376         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11377                 return (unsigned long)sk;
11378 #endif
11379
11380         return (unsigned long)NULL;
11381 }
11382
11383 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11384         .func                   = bpf_skc_to_tcp_request_sock,
11385         .gpl_only               = false,
11386         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11387         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11388         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11389 };
11390
11391 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11392 {
11393         /* udp6_sock type is not generated in dwarf and hence btf,
11394          * trigger an explicit type generation here.
11395          */
11396         BTF_TYPE_EMIT(struct udp6_sock);
11397         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11398             sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11399                 return (unsigned long)sk;
11400
11401         return (unsigned long)NULL;
11402 }
11403
11404 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11405         .func                   = bpf_skc_to_udp6_sock,
11406         .gpl_only               = false,
11407         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11408         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11409         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11410 };
11411
11412 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11413 {
11414         /* unix_sock type is not generated in dwarf and hence btf,
11415          * trigger an explicit type generation here.
11416          */
11417         BTF_TYPE_EMIT(struct unix_sock);
11418         if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11419                 return (unsigned long)sk;
11420
11421         return (unsigned long)NULL;
11422 }
11423
11424 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11425         .func                   = bpf_skc_to_unix_sock,
11426         .gpl_only               = false,
11427         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11428         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11429         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11430 };
11431
11432 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11433 {
11434         BTF_TYPE_EMIT(struct mptcp_sock);
11435         return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11436 }
11437
11438 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11439         .func           = bpf_skc_to_mptcp_sock,
11440         .gpl_only       = false,
11441         .ret_type       = RET_PTR_TO_BTF_ID_OR_NULL,
11442         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
11443         .ret_btf_id     = &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11444 };
11445
11446 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11447 {
11448         return (unsigned long)sock_from_file(file);
11449 }
11450
11451 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11452 BTF_ID(struct, socket)
11453 BTF_ID(struct, file)
11454
11455 const struct bpf_func_proto bpf_sock_from_file_proto = {
11456         .func           = bpf_sock_from_file,
11457         .gpl_only       = false,
11458         .ret_type       = RET_PTR_TO_BTF_ID_OR_NULL,
11459         .ret_btf_id     = &bpf_sock_from_file_btf_ids[0],
11460         .arg1_type      = ARG_PTR_TO_BTF_ID,
11461         .arg1_btf_id    = &bpf_sock_from_file_btf_ids[1],
11462 };
11463
11464 static const struct bpf_func_proto *
11465 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11466 {
11467         const struct bpf_func_proto *func;
11468
11469         switch (func_id) {
11470         case BPF_FUNC_skc_to_tcp6_sock:
11471                 func = &bpf_skc_to_tcp6_sock_proto;
11472                 break;
11473         case BPF_FUNC_skc_to_tcp_sock:
11474                 func = &bpf_skc_to_tcp_sock_proto;
11475                 break;
11476         case BPF_FUNC_skc_to_tcp_timewait_sock:
11477                 func = &bpf_skc_to_tcp_timewait_sock_proto;
11478                 break;
11479         case BPF_FUNC_skc_to_tcp_request_sock:
11480                 func = &bpf_skc_to_tcp_request_sock_proto;
11481                 break;
11482         case BPF_FUNC_skc_to_udp6_sock:
11483                 func = &bpf_skc_to_udp6_sock_proto;
11484                 break;
11485         case BPF_FUNC_skc_to_unix_sock:
11486                 func = &bpf_skc_to_unix_sock_proto;
11487                 break;
11488         case BPF_FUNC_skc_to_mptcp_sock:
11489                 func = &bpf_skc_to_mptcp_sock_proto;
11490                 break;
11491         case BPF_FUNC_ktime_get_coarse_ns:
11492                 return &bpf_ktime_get_coarse_ns_proto;
11493         default:
11494                 return bpf_base_func_proto(func_id);
11495         }
11496
11497         if (!perfmon_capable())
11498                 return NULL;
11499
11500         return func;
11501 }