Merge tag 'block-6.1-2022-12-02' of git://git.kernel.dk/linux
[platform/kernel/linux-starfive.git] / net / core / filter.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *      Jay Schulist <jschlst@samba.org>
13  *      Alexei Starovoitov <ast@plumgrid.com>
14  *      Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83
84 static const struct bpf_func_proto *
85 bpf_sk_base_func_proto(enum bpf_func_id func_id);
86
87 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
88 {
89         if (in_compat_syscall()) {
90                 struct compat_sock_fprog f32;
91
92                 if (len != sizeof(f32))
93                         return -EINVAL;
94                 if (copy_from_sockptr(&f32, src, sizeof(f32)))
95                         return -EFAULT;
96                 memset(dst, 0, sizeof(*dst));
97                 dst->len = f32.len;
98                 dst->filter = compat_ptr(f32.filter);
99         } else {
100                 if (len != sizeof(*dst))
101                         return -EINVAL;
102                 if (copy_from_sockptr(dst, src, sizeof(*dst)))
103                         return -EFAULT;
104         }
105
106         return 0;
107 }
108 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
109
110 /**
111  *      sk_filter_trim_cap - run a packet through a socket filter
112  *      @sk: sock associated with &sk_buff
113  *      @skb: buffer to filter
114  *      @cap: limit on how short the eBPF program may trim the packet
115  *
116  * Run the eBPF program and then cut skb->data to correct size returned by
117  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
118  * than pkt_len we keep whole skb->data. This is the socket level
119  * wrapper to bpf_prog_run. It returns 0 if the packet should
120  * be accepted or -EPERM if the packet should be tossed.
121  *
122  */
123 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
124 {
125         int err;
126         struct sk_filter *filter;
127
128         /*
129          * If the skb was allocated from pfmemalloc reserves, only
130          * allow SOCK_MEMALLOC sockets to use it as this socket is
131          * helping free memory
132          */
133         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
134                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
135                 return -ENOMEM;
136         }
137         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
138         if (err)
139                 return err;
140
141         err = security_sock_rcv_skb(sk, skb);
142         if (err)
143                 return err;
144
145         rcu_read_lock();
146         filter = rcu_dereference(sk->sk_filter);
147         if (filter) {
148                 struct sock *save_sk = skb->sk;
149                 unsigned int pkt_len;
150
151                 skb->sk = sk;
152                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
153                 skb->sk = save_sk;
154                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
155         }
156         rcu_read_unlock();
157
158         return err;
159 }
160 EXPORT_SYMBOL(sk_filter_trim_cap);
161
162 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
163 {
164         return skb_get_poff(skb);
165 }
166
167 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
168 {
169         struct nlattr *nla;
170
171         if (skb_is_nonlinear(skb))
172                 return 0;
173
174         if (skb->len < sizeof(struct nlattr))
175                 return 0;
176
177         if (a > skb->len - sizeof(struct nlattr))
178                 return 0;
179
180         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
181         if (nla)
182                 return (void *) nla - (void *) skb->data;
183
184         return 0;
185 }
186
187 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
188 {
189         struct nlattr *nla;
190
191         if (skb_is_nonlinear(skb))
192                 return 0;
193
194         if (skb->len < sizeof(struct nlattr))
195                 return 0;
196
197         if (a > skb->len - sizeof(struct nlattr))
198                 return 0;
199
200         nla = (struct nlattr *) &skb->data[a];
201         if (nla->nla_len > skb->len - a)
202                 return 0;
203
204         nla = nla_find_nested(nla, x);
205         if (nla)
206                 return (void *) nla - (void *) skb->data;
207
208         return 0;
209 }
210
211 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
212            data, int, headlen, int, offset)
213 {
214         u8 tmp, *ptr;
215         const int len = sizeof(tmp);
216
217         if (offset >= 0) {
218                 if (headlen - offset >= len)
219                         return *(u8 *)(data + offset);
220                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
221                         return tmp;
222         } else {
223                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
224                 if (likely(ptr))
225                         return *(u8 *)ptr;
226         }
227
228         return -EFAULT;
229 }
230
231 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
232            int, offset)
233 {
234         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
235                                          offset);
236 }
237
238 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
239            data, int, headlen, int, offset)
240 {
241         __be16 tmp, *ptr;
242         const int len = sizeof(tmp);
243
244         if (offset >= 0) {
245                 if (headlen - offset >= len)
246                         return get_unaligned_be16(data + offset);
247                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
248                         return be16_to_cpu(tmp);
249         } else {
250                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
251                 if (likely(ptr))
252                         return get_unaligned_be16(ptr);
253         }
254
255         return -EFAULT;
256 }
257
258 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
259            int, offset)
260 {
261         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
262                                           offset);
263 }
264
265 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
266            data, int, headlen, int, offset)
267 {
268         __be32 tmp, *ptr;
269         const int len = sizeof(tmp);
270
271         if (likely(offset >= 0)) {
272                 if (headlen - offset >= len)
273                         return get_unaligned_be32(data + offset);
274                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
275                         return be32_to_cpu(tmp);
276         } else {
277                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
278                 if (likely(ptr))
279                         return get_unaligned_be32(ptr);
280         }
281
282         return -EFAULT;
283 }
284
285 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
286            int, offset)
287 {
288         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
289                                           offset);
290 }
291
292 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
293                               struct bpf_insn *insn_buf)
294 {
295         struct bpf_insn *insn = insn_buf;
296
297         switch (skb_field) {
298         case SKF_AD_MARK:
299                 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
300
301                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
302                                       offsetof(struct sk_buff, mark));
303                 break;
304
305         case SKF_AD_PKTTYPE:
306                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
307                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
308 #ifdef __BIG_ENDIAN_BITFIELD
309                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
310 #endif
311                 break;
312
313         case SKF_AD_QUEUE:
314                 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
315
316                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
317                                       offsetof(struct sk_buff, queue_mapping));
318                 break;
319
320         case SKF_AD_VLAN_TAG:
321                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
322
323                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
324                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
325                                       offsetof(struct sk_buff, vlan_tci));
326                 break;
327         case SKF_AD_VLAN_TAG_PRESENT:
328                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET);
329                 if (PKT_VLAN_PRESENT_BIT)
330                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
331                 if (PKT_VLAN_PRESENT_BIT < 7)
332                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
333                 break;
334         }
335
336         return insn - insn_buf;
337 }
338
339 static bool convert_bpf_extensions(struct sock_filter *fp,
340                                    struct bpf_insn **insnp)
341 {
342         struct bpf_insn *insn = *insnp;
343         u32 cnt;
344
345         switch (fp->k) {
346         case SKF_AD_OFF + SKF_AD_PROTOCOL:
347                 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
348
349                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
350                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
351                                       offsetof(struct sk_buff, protocol));
352                 /* A = ntohs(A) [emitting a nop or swap16] */
353                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
354                 break;
355
356         case SKF_AD_OFF + SKF_AD_PKTTYPE:
357                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
358                 insn += cnt - 1;
359                 break;
360
361         case SKF_AD_OFF + SKF_AD_IFINDEX:
362         case SKF_AD_OFF + SKF_AD_HATYPE:
363                 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
364                 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
365
366                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
367                                       BPF_REG_TMP, BPF_REG_CTX,
368                                       offsetof(struct sk_buff, dev));
369                 /* if (tmp != 0) goto pc + 1 */
370                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
371                 *insn++ = BPF_EXIT_INSN();
372                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
373                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
374                                             offsetof(struct net_device, ifindex));
375                 else
376                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
377                                             offsetof(struct net_device, type));
378                 break;
379
380         case SKF_AD_OFF + SKF_AD_MARK:
381                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
382                 insn += cnt - 1;
383                 break;
384
385         case SKF_AD_OFF + SKF_AD_RXHASH:
386                 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
387
388                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
389                                     offsetof(struct sk_buff, hash));
390                 break;
391
392         case SKF_AD_OFF + SKF_AD_QUEUE:
393                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
394                 insn += cnt - 1;
395                 break;
396
397         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
398                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
399                                          BPF_REG_A, BPF_REG_CTX, insn);
400                 insn += cnt - 1;
401                 break;
402
403         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
404                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
405                                          BPF_REG_A, BPF_REG_CTX, insn);
406                 insn += cnt - 1;
407                 break;
408
409         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
410                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
411
412                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
413                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
414                                       offsetof(struct sk_buff, vlan_proto));
415                 /* A = ntohs(A) [emitting a nop or swap16] */
416                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
417                 break;
418
419         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
420         case SKF_AD_OFF + SKF_AD_NLATTR:
421         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
422         case SKF_AD_OFF + SKF_AD_CPU:
423         case SKF_AD_OFF + SKF_AD_RANDOM:
424                 /* arg1 = CTX */
425                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
426                 /* arg2 = A */
427                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
428                 /* arg3 = X */
429                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
430                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
431                 switch (fp->k) {
432                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
433                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
434                         break;
435                 case SKF_AD_OFF + SKF_AD_NLATTR:
436                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
437                         break;
438                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
439                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
440                         break;
441                 case SKF_AD_OFF + SKF_AD_CPU:
442                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
443                         break;
444                 case SKF_AD_OFF + SKF_AD_RANDOM:
445                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
446                         bpf_user_rnd_init_once();
447                         break;
448                 }
449                 break;
450
451         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
452                 /* A ^= X */
453                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
454                 break;
455
456         default:
457                 /* This is just a dummy call to avoid letting the compiler
458                  * evict __bpf_call_base() as an optimization. Placed here
459                  * where no-one bothers.
460                  */
461                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
462                 return false;
463         }
464
465         *insnp = insn;
466         return true;
467 }
468
469 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
470 {
471         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
472         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
473         bool endian = BPF_SIZE(fp->code) == BPF_H ||
474                       BPF_SIZE(fp->code) == BPF_W;
475         bool indirect = BPF_MODE(fp->code) == BPF_IND;
476         const int ip_align = NET_IP_ALIGN;
477         struct bpf_insn *insn = *insnp;
478         int offset = fp->k;
479
480         if (!indirect &&
481             ((unaligned_ok && offset >= 0) ||
482              (!unaligned_ok && offset >= 0 &&
483               offset + ip_align >= 0 &&
484               offset + ip_align % size == 0))) {
485                 bool ldx_off_ok = offset <= S16_MAX;
486
487                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
488                 if (offset)
489                         *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
490                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
491                                       size, 2 + endian + (!ldx_off_ok * 2));
492                 if (ldx_off_ok) {
493                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
494                                               BPF_REG_D, offset);
495                 } else {
496                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
497                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
498                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
499                                               BPF_REG_TMP, 0);
500                 }
501                 if (endian)
502                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
503                 *insn++ = BPF_JMP_A(8);
504         }
505
506         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
507         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
508         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
509         if (!indirect) {
510                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
511         } else {
512                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
513                 if (fp->k)
514                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
515         }
516
517         switch (BPF_SIZE(fp->code)) {
518         case BPF_B:
519                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
520                 break;
521         case BPF_H:
522                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
523                 break;
524         case BPF_W:
525                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
526                 break;
527         default:
528                 return false;
529         }
530
531         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
532         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
533         *insn   = BPF_EXIT_INSN();
534
535         *insnp = insn;
536         return true;
537 }
538
539 /**
540  *      bpf_convert_filter - convert filter program
541  *      @prog: the user passed filter program
542  *      @len: the length of the user passed filter program
543  *      @new_prog: allocated 'struct bpf_prog' or NULL
544  *      @new_len: pointer to store length of converted program
545  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
546  *
547  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
548  * style extended BPF (eBPF).
549  * Conversion workflow:
550  *
551  * 1) First pass for calculating the new program length:
552  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
553  *
554  * 2) 2nd pass to remap in two passes: 1st pass finds new
555  *    jump offsets, 2nd pass remapping:
556  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
557  */
558 static int bpf_convert_filter(struct sock_filter *prog, int len,
559                               struct bpf_prog *new_prog, int *new_len,
560                               bool *seen_ld_abs)
561 {
562         int new_flen = 0, pass = 0, target, i, stack_off;
563         struct bpf_insn *new_insn, *first_insn = NULL;
564         struct sock_filter *fp;
565         int *addrs = NULL;
566         u8 bpf_src;
567
568         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
569         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
570
571         if (len <= 0 || len > BPF_MAXINSNS)
572                 return -EINVAL;
573
574         if (new_prog) {
575                 first_insn = new_prog->insnsi;
576                 addrs = kcalloc(len, sizeof(*addrs),
577                                 GFP_KERNEL | __GFP_NOWARN);
578                 if (!addrs)
579                         return -ENOMEM;
580         }
581
582 do_pass:
583         new_insn = first_insn;
584         fp = prog;
585
586         /* Classic BPF related prologue emission. */
587         if (new_prog) {
588                 /* Classic BPF expects A and X to be reset first. These need
589                  * to be guaranteed to be the first two instructions.
590                  */
591                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
592                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
593
594                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
595                  * In eBPF case it's done by the compiler, here we need to
596                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
597                  */
598                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
599                 if (*seen_ld_abs) {
600                         /* For packet access in classic BPF, cache skb->data
601                          * in callee-saved BPF R8 and skb->len - skb->data_len
602                          * (headlen) in BPF R9. Since classic BPF is read-only
603                          * on CTX, we only need to cache it once.
604                          */
605                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
606                                                   BPF_REG_D, BPF_REG_CTX,
607                                                   offsetof(struct sk_buff, data));
608                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
609                                                   offsetof(struct sk_buff, len));
610                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
611                                                   offsetof(struct sk_buff, data_len));
612                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
613                 }
614         } else {
615                 new_insn += 3;
616         }
617
618         for (i = 0; i < len; fp++, i++) {
619                 struct bpf_insn tmp_insns[32] = { };
620                 struct bpf_insn *insn = tmp_insns;
621
622                 if (addrs)
623                         addrs[i] = new_insn - first_insn;
624
625                 switch (fp->code) {
626                 /* All arithmetic insns and skb loads map as-is. */
627                 case BPF_ALU | BPF_ADD | BPF_X:
628                 case BPF_ALU | BPF_ADD | BPF_K:
629                 case BPF_ALU | BPF_SUB | BPF_X:
630                 case BPF_ALU | BPF_SUB | BPF_K:
631                 case BPF_ALU | BPF_AND | BPF_X:
632                 case BPF_ALU | BPF_AND | BPF_K:
633                 case BPF_ALU | BPF_OR | BPF_X:
634                 case BPF_ALU | BPF_OR | BPF_K:
635                 case BPF_ALU | BPF_LSH | BPF_X:
636                 case BPF_ALU | BPF_LSH | BPF_K:
637                 case BPF_ALU | BPF_RSH | BPF_X:
638                 case BPF_ALU | BPF_RSH | BPF_K:
639                 case BPF_ALU | BPF_XOR | BPF_X:
640                 case BPF_ALU | BPF_XOR | BPF_K:
641                 case BPF_ALU | BPF_MUL | BPF_X:
642                 case BPF_ALU | BPF_MUL | BPF_K:
643                 case BPF_ALU | BPF_DIV | BPF_X:
644                 case BPF_ALU | BPF_DIV | BPF_K:
645                 case BPF_ALU | BPF_MOD | BPF_X:
646                 case BPF_ALU | BPF_MOD | BPF_K:
647                 case BPF_ALU | BPF_NEG:
648                 case BPF_LD | BPF_ABS | BPF_W:
649                 case BPF_LD | BPF_ABS | BPF_H:
650                 case BPF_LD | BPF_ABS | BPF_B:
651                 case BPF_LD | BPF_IND | BPF_W:
652                 case BPF_LD | BPF_IND | BPF_H:
653                 case BPF_LD | BPF_IND | BPF_B:
654                         /* Check for overloaded BPF extension and
655                          * directly convert it if found, otherwise
656                          * just move on with mapping.
657                          */
658                         if (BPF_CLASS(fp->code) == BPF_LD &&
659                             BPF_MODE(fp->code) == BPF_ABS &&
660                             convert_bpf_extensions(fp, &insn))
661                                 break;
662                         if (BPF_CLASS(fp->code) == BPF_LD &&
663                             convert_bpf_ld_abs(fp, &insn)) {
664                                 *seen_ld_abs = true;
665                                 break;
666                         }
667
668                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
669                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
670                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
671                                 /* Error with exception code on div/mod by 0.
672                                  * For cBPF programs, this was always return 0.
673                                  */
674                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
675                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
676                                 *insn++ = BPF_EXIT_INSN();
677                         }
678
679                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
680                         break;
681
682                 /* Jump transformation cannot use BPF block macros
683                  * everywhere as offset calculation and target updates
684                  * require a bit more work than the rest, i.e. jump
685                  * opcodes map as-is, but offsets need adjustment.
686                  */
687
688 #define BPF_EMIT_JMP                                                    \
689         do {                                                            \
690                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
691                 s32 off;                                                \
692                                                                         \
693                 if (target >= len || target < 0)                        \
694                         goto err;                                       \
695                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
696                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
697                 off -= insn - tmp_insns;                                \
698                 /* Reject anything not fitting into insn->off. */       \
699                 if (off < off_min || off > off_max)                     \
700                         goto err;                                       \
701                 insn->off = off;                                        \
702         } while (0)
703
704                 case BPF_JMP | BPF_JA:
705                         target = i + fp->k + 1;
706                         insn->code = fp->code;
707                         BPF_EMIT_JMP;
708                         break;
709
710                 case BPF_JMP | BPF_JEQ | BPF_K:
711                 case BPF_JMP | BPF_JEQ | BPF_X:
712                 case BPF_JMP | BPF_JSET | BPF_K:
713                 case BPF_JMP | BPF_JSET | BPF_X:
714                 case BPF_JMP | BPF_JGT | BPF_K:
715                 case BPF_JMP | BPF_JGT | BPF_X:
716                 case BPF_JMP | BPF_JGE | BPF_K:
717                 case BPF_JMP | BPF_JGE | BPF_X:
718                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
719                                 /* BPF immediates are signed, zero extend
720                                  * immediate into tmp register and use it
721                                  * in compare insn.
722                                  */
723                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
724
725                                 insn->dst_reg = BPF_REG_A;
726                                 insn->src_reg = BPF_REG_TMP;
727                                 bpf_src = BPF_X;
728                         } else {
729                                 insn->dst_reg = BPF_REG_A;
730                                 insn->imm = fp->k;
731                                 bpf_src = BPF_SRC(fp->code);
732                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
733                         }
734
735                         /* Common case where 'jump_false' is next insn. */
736                         if (fp->jf == 0) {
737                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
738                                 target = i + fp->jt + 1;
739                                 BPF_EMIT_JMP;
740                                 break;
741                         }
742
743                         /* Convert some jumps when 'jump_true' is next insn. */
744                         if (fp->jt == 0) {
745                                 switch (BPF_OP(fp->code)) {
746                                 case BPF_JEQ:
747                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
748                                         break;
749                                 case BPF_JGT:
750                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
751                                         break;
752                                 case BPF_JGE:
753                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
754                                         break;
755                                 default:
756                                         goto jmp_rest;
757                                 }
758
759                                 target = i + fp->jf + 1;
760                                 BPF_EMIT_JMP;
761                                 break;
762                         }
763 jmp_rest:
764                         /* Other jumps are mapped into two insns: Jxx and JA. */
765                         target = i + fp->jt + 1;
766                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
767                         BPF_EMIT_JMP;
768                         insn++;
769
770                         insn->code = BPF_JMP | BPF_JA;
771                         target = i + fp->jf + 1;
772                         BPF_EMIT_JMP;
773                         break;
774
775                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
776                 case BPF_LDX | BPF_MSH | BPF_B: {
777                         struct sock_filter tmp = {
778                                 .code   = BPF_LD | BPF_ABS | BPF_B,
779                                 .k      = fp->k,
780                         };
781
782                         *seen_ld_abs = true;
783
784                         /* X = A */
785                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
786                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
787                         convert_bpf_ld_abs(&tmp, &insn);
788                         insn++;
789                         /* A &= 0xf */
790                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
791                         /* A <<= 2 */
792                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
793                         /* tmp = X */
794                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
795                         /* X = A */
796                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
797                         /* A = tmp */
798                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
799                         break;
800                 }
801                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
802                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
803                  */
804                 case BPF_RET | BPF_A:
805                 case BPF_RET | BPF_K:
806                         if (BPF_RVAL(fp->code) == BPF_K)
807                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
808                                                         0, fp->k);
809                         *insn = BPF_EXIT_INSN();
810                         break;
811
812                 /* Store to stack. */
813                 case BPF_ST:
814                 case BPF_STX:
815                         stack_off = fp->k * 4  + 4;
816                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
817                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
818                                             -stack_off);
819                         /* check_load_and_stores() verifies that classic BPF can
820                          * load from stack only after write, so tracking
821                          * stack_depth for ST|STX insns is enough
822                          */
823                         if (new_prog && new_prog->aux->stack_depth < stack_off)
824                                 new_prog->aux->stack_depth = stack_off;
825                         break;
826
827                 /* Load from stack. */
828                 case BPF_LD | BPF_MEM:
829                 case BPF_LDX | BPF_MEM:
830                         stack_off = fp->k * 4  + 4;
831                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
832                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
833                                             -stack_off);
834                         break;
835
836                 /* A = K or X = K */
837                 case BPF_LD | BPF_IMM:
838                 case BPF_LDX | BPF_IMM:
839                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
840                                               BPF_REG_A : BPF_REG_X, fp->k);
841                         break;
842
843                 /* X = A */
844                 case BPF_MISC | BPF_TAX:
845                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
846                         break;
847
848                 /* A = X */
849                 case BPF_MISC | BPF_TXA:
850                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
851                         break;
852
853                 /* A = skb->len or X = skb->len */
854                 case BPF_LD | BPF_W | BPF_LEN:
855                 case BPF_LDX | BPF_W | BPF_LEN:
856                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
857                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
858                                             offsetof(struct sk_buff, len));
859                         break;
860
861                 /* Access seccomp_data fields. */
862                 case BPF_LDX | BPF_ABS | BPF_W:
863                         /* A = *(u32 *) (ctx + K) */
864                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
865                         break;
866
867                 /* Unknown instruction. */
868                 default:
869                         goto err;
870                 }
871
872                 insn++;
873                 if (new_prog)
874                         memcpy(new_insn, tmp_insns,
875                                sizeof(*insn) * (insn - tmp_insns));
876                 new_insn += insn - tmp_insns;
877         }
878
879         if (!new_prog) {
880                 /* Only calculating new length. */
881                 *new_len = new_insn - first_insn;
882                 if (*seen_ld_abs)
883                         *new_len += 4; /* Prologue bits. */
884                 return 0;
885         }
886
887         pass++;
888         if (new_flen != new_insn - first_insn) {
889                 new_flen = new_insn - first_insn;
890                 if (pass > 2)
891                         goto err;
892                 goto do_pass;
893         }
894
895         kfree(addrs);
896         BUG_ON(*new_len != new_flen);
897         return 0;
898 err:
899         kfree(addrs);
900         return -EINVAL;
901 }
902
903 /* Security:
904  *
905  * As we dont want to clear mem[] array for each packet going through
906  * __bpf_prog_run(), we check that filter loaded by user never try to read
907  * a cell if not previously written, and we check all branches to be sure
908  * a malicious user doesn't try to abuse us.
909  */
910 static int check_load_and_stores(const struct sock_filter *filter, int flen)
911 {
912         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
913         int pc, ret = 0;
914
915         BUILD_BUG_ON(BPF_MEMWORDS > 16);
916
917         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
918         if (!masks)
919                 return -ENOMEM;
920
921         memset(masks, 0xff, flen * sizeof(*masks));
922
923         for (pc = 0; pc < flen; pc++) {
924                 memvalid &= masks[pc];
925
926                 switch (filter[pc].code) {
927                 case BPF_ST:
928                 case BPF_STX:
929                         memvalid |= (1 << filter[pc].k);
930                         break;
931                 case BPF_LD | BPF_MEM:
932                 case BPF_LDX | BPF_MEM:
933                         if (!(memvalid & (1 << filter[pc].k))) {
934                                 ret = -EINVAL;
935                                 goto error;
936                         }
937                         break;
938                 case BPF_JMP | BPF_JA:
939                         /* A jump must set masks on target */
940                         masks[pc + 1 + filter[pc].k] &= memvalid;
941                         memvalid = ~0;
942                         break;
943                 case BPF_JMP | BPF_JEQ | BPF_K:
944                 case BPF_JMP | BPF_JEQ | BPF_X:
945                 case BPF_JMP | BPF_JGE | BPF_K:
946                 case BPF_JMP | BPF_JGE | BPF_X:
947                 case BPF_JMP | BPF_JGT | BPF_K:
948                 case BPF_JMP | BPF_JGT | BPF_X:
949                 case BPF_JMP | BPF_JSET | BPF_K:
950                 case BPF_JMP | BPF_JSET | BPF_X:
951                         /* A jump must set masks on targets */
952                         masks[pc + 1 + filter[pc].jt] &= memvalid;
953                         masks[pc + 1 + filter[pc].jf] &= memvalid;
954                         memvalid = ~0;
955                         break;
956                 }
957         }
958 error:
959         kfree(masks);
960         return ret;
961 }
962
963 static bool chk_code_allowed(u16 code_to_probe)
964 {
965         static const bool codes[] = {
966                 /* 32 bit ALU operations */
967                 [BPF_ALU | BPF_ADD | BPF_K] = true,
968                 [BPF_ALU | BPF_ADD | BPF_X] = true,
969                 [BPF_ALU | BPF_SUB | BPF_K] = true,
970                 [BPF_ALU | BPF_SUB | BPF_X] = true,
971                 [BPF_ALU | BPF_MUL | BPF_K] = true,
972                 [BPF_ALU | BPF_MUL | BPF_X] = true,
973                 [BPF_ALU | BPF_DIV | BPF_K] = true,
974                 [BPF_ALU | BPF_DIV | BPF_X] = true,
975                 [BPF_ALU | BPF_MOD | BPF_K] = true,
976                 [BPF_ALU | BPF_MOD | BPF_X] = true,
977                 [BPF_ALU | BPF_AND | BPF_K] = true,
978                 [BPF_ALU | BPF_AND | BPF_X] = true,
979                 [BPF_ALU | BPF_OR | BPF_K] = true,
980                 [BPF_ALU | BPF_OR | BPF_X] = true,
981                 [BPF_ALU | BPF_XOR | BPF_K] = true,
982                 [BPF_ALU | BPF_XOR | BPF_X] = true,
983                 [BPF_ALU | BPF_LSH | BPF_K] = true,
984                 [BPF_ALU | BPF_LSH | BPF_X] = true,
985                 [BPF_ALU | BPF_RSH | BPF_K] = true,
986                 [BPF_ALU | BPF_RSH | BPF_X] = true,
987                 [BPF_ALU | BPF_NEG] = true,
988                 /* Load instructions */
989                 [BPF_LD | BPF_W | BPF_ABS] = true,
990                 [BPF_LD | BPF_H | BPF_ABS] = true,
991                 [BPF_LD | BPF_B | BPF_ABS] = true,
992                 [BPF_LD | BPF_W | BPF_LEN] = true,
993                 [BPF_LD | BPF_W | BPF_IND] = true,
994                 [BPF_LD | BPF_H | BPF_IND] = true,
995                 [BPF_LD | BPF_B | BPF_IND] = true,
996                 [BPF_LD | BPF_IMM] = true,
997                 [BPF_LD | BPF_MEM] = true,
998                 [BPF_LDX | BPF_W | BPF_LEN] = true,
999                 [BPF_LDX | BPF_B | BPF_MSH] = true,
1000                 [BPF_LDX | BPF_IMM] = true,
1001                 [BPF_LDX | BPF_MEM] = true,
1002                 /* Store instructions */
1003                 [BPF_ST] = true,
1004                 [BPF_STX] = true,
1005                 /* Misc instructions */
1006                 [BPF_MISC | BPF_TAX] = true,
1007                 [BPF_MISC | BPF_TXA] = true,
1008                 /* Return instructions */
1009                 [BPF_RET | BPF_K] = true,
1010                 [BPF_RET | BPF_A] = true,
1011                 /* Jump instructions */
1012                 [BPF_JMP | BPF_JA] = true,
1013                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1014                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1015                 [BPF_JMP | BPF_JGE | BPF_K] = true,
1016                 [BPF_JMP | BPF_JGE | BPF_X] = true,
1017                 [BPF_JMP | BPF_JGT | BPF_K] = true,
1018                 [BPF_JMP | BPF_JGT | BPF_X] = true,
1019                 [BPF_JMP | BPF_JSET | BPF_K] = true,
1020                 [BPF_JMP | BPF_JSET | BPF_X] = true,
1021         };
1022
1023         if (code_to_probe >= ARRAY_SIZE(codes))
1024                 return false;
1025
1026         return codes[code_to_probe];
1027 }
1028
1029 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1030                                 unsigned int flen)
1031 {
1032         if (filter == NULL)
1033                 return false;
1034         if (flen == 0 || flen > BPF_MAXINSNS)
1035                 return false;
1036
1037         return true;
1038 }
1039
1040 /**
1041  *      bpf_check_classic - verify socket filter code
1042  *      @filter: filter to verify
1043  *      @flen: length of filter
1044  *
1045  * Check the user's filter code. If we let some ugly
1046  * filter code slip through kaboom! The filter must contain
1047  * no references or jumps that are out of range, no illegal
1048  * instructions, and must end with a RET instruction.
1049  *
1050  * All jumps are forward as they are not signed.
1051  *
1052  * Returns 0 if the rule set is legal or -EINVAL if not.
1053  */
1054 static int bpf_check_classic(const struct sock_filter *filter,
1055                              unsigned int flen)
1056 {
1057         bool anc_found;
1058         int pc;
1059
1060         /* Check the filter code now */
1061         for (pc = 0; pc < flen; pc++) {
1062                 const struct sock_filter *ftest = &filter[pc];
1063
1064                 /* May we actually operate on this code? */
1065                 if (!chk_code_allowed(ftest->code))
1066                         return -EINVAL;
1067
1068                 /* Some instructions need special checks */
1069                 switch (ftest->code) {
1070                 case BPF_ALU | BPF_DIV | BPF_K:
1071                 case BPF_ALU | BPF_MOD | BPF_K:
1072                         /* Check for division by zero */
1073                         if (ftest->k == 0)
1074                                 return -EINVAL;
1075                         break;
1076                 case BPF_ALU | BPF_LSH | BPF_K:
1077                 case BPF_ALU | BPF_RSH | BPF_K:
1078                         if (ftest->k >= 32)
1079                                 return -EINVAL;
1080                         break;
1081                 case BPF_LD | BPF_MEM:
1082                 case BPF_LDX | BPF_MEM:
1083                 case BPF_ST:
1084                 case BPF_STX:
1085                         /* Check for invalid memory addresses */
1086                         if (ftest->k >= BPF_MEMWORDS)
1087                                 return -EINVAL;
1088                         break;
1089                 case BPF_JMP | BPF_JA:
1090                         /* Note, the large ftest->k might cause loops.
1091                          * Compare this with conditional jumps below,
1092                          * where offsets are limited. --ANK (981016)
1093                          */
1094                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1095                                 return -EINVAL;
1096                         break;
1097                 case BPF_JMP | BPF_JEQ | BPF_K:
1098                 case BPF_JMP | BPF_JEQ | BPF_X:
1099                 case BPF_JMP | BPF_JGE | BPF_K:
1100                 case BPF_JMP | BPF_JGE | BPF_X:
1101                 case BPF_JMP | BPF_JGT | BPF_K:
1102                 case BPF_JMP | BPF_JGT | BPF_X:
1103                 case BPF_JMP | BPF_JSET | BPF_K:
1104                 case BPF_JMP | BPF_JSET | BPF_X:
1105                         /* Both conditionals must be safe */
1106                         if (pc + ftest->jt + 1 >= flen ||
1107                             pc + ftest->jf + 1 >= flen)
1108                                 return -EINVAL;
1109                         break;
1110                 case BPF_LD | BPF_W | BPF_ABS:
1111                 case BPF_LD | BPF_H | BPF_ABS:
1112                 case BPF_LD | BPF_B | BPF_ABS:
1113                         anc_found = false;
1114                         if (bpf_anc_helper(ftest) & BPF_ANC)
1115                                 anc_found = true;
1116                         /* Ancillary operation unknown or unsupported */
1117                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1118                                 return -EINVAL;
1119                 }
1120         }
1121
1122         /* Last instruction must be a RET code */
1123         switch (filter[flen - 1].code) {
1124         case BPF_RET | BPF_K:
1125         case BPF_RET | BPF_A:
1126                 return check_load_and_stores(filter, flen);
1127         }
1128
1129         return -EINVAL;
1130 }
1131
1132 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1133                                       const struct sock_fprog *fprog)
1134 {
1135         unsigned int fsize = bpf_classic_proglen(fprog);
1136         struct sock_fprog_kern *fkprog;
1137
1138         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1139         if (!fp->orig_prog)
1140                 return -ENOMEM;
1141
1142         fkprog = fp->orig_prog;
1143         fkprog->len = fprog->len;
1144
1145         fkprog->filter = kmemdup(fp->insns, fsize,
1146                                  GFP_KERNEL | __GFP_NOWARN);
1147         if (!fkprog->filter) {
1148                 kfree(fp->orig_prog);
1149                 return -ENOMEM;
1150         }
1151
1152         return 0;
1153 }
1154
1155 static void bpf_release_orig_filter(struct bpf_prog *fp)
1156 {
1157         struct sock_fprog_kern *fprog = fp->orig_prog;
1158
1159         if (fprog) {
1160                 kfree(fprog->filter);
1161                 kfree(fprog);
1162         }
1163 }
1164
1165 static void __bpf_prog_release(struct bpf_prog *prog)
1166 {
1167         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1168                 bpf_prog_put(prog);
1169         } else {
1170                 bpf_release_orig_filter(prog);
1171                 bpf_prog_free(prog);
1172         }
1173 }
1174
1175 static void __sk_filter_release(struct sk_filter *fp)
1176 {
1177         __bpf_prog_release(fp->prog);
1178         kfree(fp);
1179 }
1180
1181 /**
1182  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1183  *      @rcu: rcu_head that contains the sk_filter to free
1184  */
1185 static void sk_filter_release_rcu(struct rcu_head *rcu)
1186 {
1187         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1188
1189         __sk_filter_release(fp);
1190 }
1191
1192 /**
1193  *      sk_filter_release - release a socket filter
1194  *      @fp: filter to remove
1195  *
1196  *      Remove a filter from a socket and release its resources.
1197  */
1198 static void sk_filter_release(struct sk_filter *fp)
1199 {
1200         if (refcount_dec_and_test(&fp->refcnt))
1201                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1202 }
1203
1204 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1205 {
1206         u32 filter_size = bpf_prog_size(fp->prog->len);
1207
1208         atomic_sub(filter_size, &sk->sk_omem_alloc);
1209         sk_filter_release(fp);
1210 }
1211
1212 /* try to charge the socket memory if there is space available
1213  * return true on success
1214  */
1215 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1216 {
1217         u32 filter_size = bpf_prog_size(fp->prog->len);
1218         int optmem_max = READ_ONCE(sysctl_optmem_max);
1219
1220         /* same check as in sock_kmalloc() */
1221         if (filter_size <= optmem_max &&
1222             atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1223                 atomic_add(filter_size, &sk->sk_omem_alloc);
1224                 return true;
1225         }
1226         return false;
1227 }
1228
1229 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1230 {
1231         if (!refcount_inc_not_zero(&fp->refcnt))
1232                 return false;
1233
1234         if (!__sk_filter_charge(sk, fp)) {
1235                 sk_filter_release(fp);
1236                 return false;
1237         }
1238         return true;
1239 }
1240
1241 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1242 {
1243         struct sock_filter *old_prog;
1244         struct bpf_prog *old_fp;
1245         int err, new_len, old_len = fp->len;
1246         bool seen_ld_abs = false;
1247
1248         /* We are free to overwrite insns et al right here as it won't be used at
1249          * this point in time anymore internally after the migration to the eBPF
1250          * instruction representation.
1251          */
1252         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1253                      sizeof(struct bpf_insn));
1254
1255         /* Conversion cannot happen on overlapping memory areas,
1256          * so we need to keep the user BPF around until the 2nd
1257          * pass. At this time, the user BPF is stored in fp->insns.
1258          */
1259         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1260                            GFP_KERNEL | __GFP_NOWARN);
1261         if (!old_prog) {
1262                 err = -ENOMEM;
1263                 goto out_err;
1264         }
1265
1266         /* 1st pass: calculate the new program length. */
1267         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1268                                  &seen_ld_abs);
1269         if (err)
1270                 goto out_err_free;
1271
1272         /* Expand fp for appending the new filter representation. */
1273         old_fp = fp;
1274         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1275         if (!fp) {
1276                 /* The old_fp is still around in case we couldn't
1277                  * allocate new memory, so uncharge on that one.
1278                  */
1279                 fp = old_fp;
1280                 err = -ENOMEM;
1281                 goto out_err_free;
1282         }
1283
1284         fp->len = new_len;
1285
1286         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1287         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1288                                  &seen_ld_abs);
1289         if (err)
1290                 /* 2nd bpf_convert_filter() can fail only if it fails
1291                  * to allocate memory, remapping must succeed. Note,
1292                  * that at this time old_fp has already been released
1293                  * by krealloc().
1294                  */
1295                 goto out_err_free;
1296
1297         fp = bpf_prog_select_runtime(fp, &err);
1298         if (err)
1299                 goto out_err_free;
1300
1301         kfree(old_prog);
1302         return fp;
1303
1304 out_err_free:
1305         kfree(old_prog);
1306 out_err:
1307         __bpf_prog_release(fp);
1308         return ERR_PTR(err);
1309 }
1310
1311 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1312                                            bpf_aux_classic_check_t trans)
1313 {
1314         int err;
1315
1316         fp->bpf_func = NULL;
1317         fp->jited = 0;
1318
1319         err = bpf_check_classic(fp->insns, fp->len);
1320         if (err) {
1321                 __bpf_prog_release(fp);
1322                 return ERR_PTR(err);
1323         }
1324
1325         /* There might be additional checks and transformations
1326          * needed on classic filters, f.e. in case of seccomp.
1327          */
1328         if (trans) {
1329                 err = trans(fp->insns, fp->len);
1330                 if (err) {
1331                         __bpf_prog_release(fp);
1332                         return ERR_PTR(err);
1333                 }
1334         }
1335
1336         /* Probe if we can JIT compile the filter and if so, do
1337          * the compilation of the filter.
1338          */
1339         bpf_jit_compile(fp);
1340
1341         /* JIT compiler couldn't process this filter, so do the eBPF translation
1342          * for the optimized interpreter.
1343          */
1344         if (!fp->jited)
1345                 fp = bpf_migrate_filter(fp);
1346
1347         return fp;
1348 }
1349
1350 /**
1351  *      bpf_prog_create - create an unattached filter
1352  *      @pfp: the unattached filter that is created
1353  *      @fprog: the filter program
1354  *
1355  * Create a filter independent of any socket. We first run some
1356  * sanity checks on it to make sure it does not explode on us later.
1357  * If an error occurs or there is insufficient memory for the filter
1358  * a negative errno code is returned. On success the return is zero.
1359  */
1360 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1361 {
1362         unsigned int fsize = bpf_classic_proglen(fprog);
1363         struct bpf_prog *fp;
1364
1365         /* Make sure new filter is there and in the right amounts. */
1366         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1367                 return -EINVAL;
1368
1369         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1370         if (!fp)
1371                 return -ENOMEM;
1372
1373         memcpy(fp->insns, fprog->filter, fsize);
1374
1375         fp->len = fprog->len;
1376         /* Since unattached filters are not copied back to user
1377          * space through sk_get_filter(), we do not need to hold
1378          * a copy here, and can spare us the work.
1379          */
1380         fp->orig_prog = NULL;
1381
1382         /* bpf_prepare_filter() already takes care of freeing
1383          * memory in case something goes wrong.
1384          */
1385         fp = bpf_prepare_filter(fp, NULL);
1386         if (IS_ERR(fp))
1387                 return PTR_ERR(fp);
1388
1389         *pfp = fp;
1390         return 0;
1391 }
1392 EXPORT_SYMBOL_GPL(bpf_prog_create);
1393
1394 /**
1395  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1396  *      @pfp: the unattached filter that is created
1397  *      @fprog: the filter program
1398  *      @trans: post-classic verifier transformation handler
1399  *      @save_orig: save classic BPF program
1400  *
1401  * This function effectively does the same as bpf_prog_create(), only
1402  * that it builds up its insns buffer from user space provided buffer.
1403  * It also allows for passing a bpf_aux_classic_check_t handler.
1404  */
1405 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1406                               bpf_aux_classic_check_t trans, bool save_orig)
1407 {
1408         unsigned int fsize = bpf_classic_proglen(fprog);
1409         struct bpf_prog *fp;
1410         int err;
1411
1412         /* Make sure new filter is there and in the right amounts. */
1413         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1414                 return -EINVAL;
1415
1416         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1417         if (!fp)
1418                 return -ENOMEM;
1419
1420         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1421                 __bpf_prog_free(fp);
1422                 return -EFAULT;
1423         }
1424
1425         fp->len = fprog->len;
1426         fp->orig_prog = NULL;
1427
1428         if (save_orig) {
1429                 err = bpf_prog_store_orig_filter(fp, fprog);
1430                 if (err) {
1431                         __bpf_prog_free(fp);
1432                         return -ENOMEM;
1433                 }
1434         }
1435
1436         /* bpf_prepare_filter() already takes care of freeing
1437          * memory in case something goes wrong.
1438          */
1439         fp = bpf_prepare_filter(fp, trans);
1440         if (IS_ERR(fp))
1441                 return PTR_ERR(fp);
1442
1443         *pfp = fp;
1444         return 0;
1445 }
1446 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1447
1448 void bpf_prog_destroy(struct bpf_prog *fp)
1449 {
1450         __bpf_prog_release(fp);
1451 }
1452 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1453
1454 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1455 {
1456         struct sk_filter *fp, *old_fp;
1457
1458         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1459         if (!fp)
1460                 return -ENOMEM;
1461
1462         fp->prog = prog;
1463
1464         if (!__sk_filter_charge(sk, fp)) {
1465                 kfree(fp);
1466                 return -ENOMEM;
1467         }
1468         refcount_set(&fp->refcnt, 1);
1469
1470         old_fp = rcu_dereference_protected(sk->sk_filter,
1471                                            lockdep_sock_is_held(sk));
1472         rcu_assign_pointer(sk->sk_filter, fp);
1473
1474         if (old_fp)
1475                 sk_filter_uncharge(sk, old_fp);
1476
1477         return 0;
1478 }
1479
1480 static
1481 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1482 {
1483         unsigned int fsize = bpf_classic_proglen(fprog);
1484         struct bpf_prog *prog;
1485         int err;
1486
1487         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1488                 return ERR_PTR(-EPERM);
1489
1490         /* Make sure new filter is there and in the right amounts. */
1491         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1492                 return ERR_PTR(-EINVAL);
1493
1494         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1495         if (!prog)
1496                 return ERR_PTR(-ENOMEM);
1497
1498         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1499                 __bpf_prog_free(prog);
1500                 return ERR_PTR(-EFAULT);
1501         }
1502
1503         prog->len = fprog->len;
1504
1505         err = bpf_prog_store_orig_filter(prog, fprog);
1506         if (err) {
1507                 __bpf_prog_free(prog);
1508                 return ERR_PTR(-ENOMEM);
1509         }
1510
1511         /* bpf_prepare_filter() already takes care of freeing
1512          * memory in case something goes wrong.
1513          */
1514         return bpf_prepare_filter(prog, NULL);
1515 }
1516
1517 /**
1518  *      sk_attach_filter - attach a socket filter
1519  *      @fprog: the filter program
1520  *      @sk: the socket to use
1521  *
1522  * Attach the user's filter code. We first run some sanity checks on
1523  * it to make sure it does not explode on us later. If an error
1524  * occurs or there is insufficient memory for the filter a negative
1525  * errno code is returned. On success the return is zero.
1526  */
1527 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1528 {
1529         struct bpf_prog *prog = __get_filter(fprog, sk);
1530         int err;
1531
1532         if (IS_ERR(prog))
1533                 return PTR_ERR(prog);
1534
1535         err = __sk_attach_prog(prog, sk);
1536         if (err < 0) {
1537                 __bpf_prog_release(prog);
1538                 return err;
1539         }
1540
1541         return 0;
1542 }
1543 EXPORT_SYMBOL_GPL(sk_attach_filter);
1544
1545 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1546 {
1547         struct bpf_prog *prog = __get_filter(fprog, sk);
1548         int err;
1549
1550         if (IS_ERR(prog))
1551                 return PTR_ERR(prog);
1552
1553         if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1554                 err = -ENOMEM;
1555         else
1556                 err = reuseport_attach_prog(sk, prog);
1557
1558         if (err)
1559                 __bpf_prog_release(prog);
1560
1561         return err;
1562 }
1563
1564 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1565 {
1566         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1567                 return ERR_PTR(-EPERM);
1568
1569         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1570 }
1571
1572 int sk_attach_bpf(u32 ufd, struct sock *sk)
1573 {
1574         struct bpf_prog *prog = __get_bpf(ufd, sk);
1575         int err;
1576
1577         if (IS_ERR(prog))
1578                 return PTR_ERR(prog);
1579
1580         err = __sk_attach_prog(prog, sk);
1581         if (err < 0) {
1582                 bpf_prog_put(prog);
1583                 return err;
1584         }
1585
1586         return 0;
1587 }
1588
1589 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1590 {
1591         struct bpf_prog *prog;
1592         int err;
1593
1594         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1595                 return -EPERM;
1596
1597         prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1598         if (PTR_ERR(prog) == -EINVAL)
1599                 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1600         if (IS_ERR(prog))
1601                 return PTR_ERR(prog);
1602
1603         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1604                 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1605                  * bpf prog (e.g. sockmap).  It depends on the
1606                  * limitation imposed by bpf_prog_load().
1607                  * Hence, sysctl_optmem_max is not checked.
1608                  */
1609                 if ((sk->sk_type != SOCK_STREAM &&
1610                      sk->sk_type != SOCK_DGRAM) ||
1611                     (sk->sk_protocol != IPPROTO_UDP &&
1612                      sk->sk_protocol != IPPROTO_TCP) ||
1613                     (sk->sk_family != AF_INET &&
1614                      sk->sk_family != AF_INET6)) {
1615                         err = -ENOTSUPP;
1616                         goto err_prog_put;
1617                 }
1618         } else {
1619                 /* BPF_PROG_TYPE_SOCKET_FILTER */
1620                 if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1621                         err = -ENOMEM;
1622                         goto err_prog_put;
1623                 }
1624         }
1625
1626         err = reuseport_attach_prog(sk, prog);
1627 err_prog_put:
1628         if (err)
1629                 bpf_prog_put(prog);
1630
1631         return err;
1632 }
1633
1634 void sk_reuseport_prog_free(struct bpf_prog *prog)
1635 {
1636         if (!prog)
1637                 return;
1638
1639         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1640                 bpf_prog_put(prog);
1641         else
1642                 bpf_prog_destroy(prog);
1643 }
1644
1645 struct bpf_scratchpad {
1646         union {
1647                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1648                 u8     buff[MAX_BPF_STACK];
1649         };
1650 };
1651
1652 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1653
1654 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1655                                           unsigned int write_len)
1656 {
1657         return skb_ensure_writable(skb, write_len);
1658 }
1659
1660 static inline int bpf_try_make_writable(struct sk_buff *skb,
1661                                         unsigned int write_len)
1662 {
1663         int err = __bpf_try_make_writable(skb, write_len);
1664
1665         bpf_compute_data_pointers(skb);
1666         return err;
1667 }
1668
1669 static int bpf_try_make_head_writable(struct sk_buff *skb)
1670 {
1671         return bpf_try_make_writable(skb, skb_headlen(skb));
1672 }
1673
1674 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1675 {
1676         if (skb_at_tc_ingress(skb))
1677                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1678 }
1679
1680 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1681 {
1682         if (skb_at_tc_ingress(skb))
1683                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1684 }
1685
1686 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1687            const void *, from, u32, len, u64, flags)
1688 {
1689         void *ptr;
1690
1691         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1692                 return -EINVAL;
1693         if (unlikely(offset > INT_MAX))
1694                 return -EFAULT;
1695         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1696                 return -EFAULT;
1697
1698         ptr = skb->data + offset;
1699         if (flags & BPF_F_RECOMPUTE_CSUM)
1700                 __skb_postpull_rcsum(skb, ptr, len, offset);
1701
1702         memcpy(ptr, from, len);
1703
1704         if (flags & BPF_F_RECOMPUTE_CSUM)
1705                 __skb_postpush_rcsum(skb, ptr, len, offset);
1706         if (flags & BPF_F_INVALIDATE_HASH)
1707                 skb_clear_hash(skb);
1708
1709         return 0;
1710 }
1711
1712 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1713         .func           = bpf_skb_store_bytes,
1714         .gpl_only       = false,
1715         .ret_type       = RET_INTEGER,
1716         .arg1_type      = ARG_PTR_TO_CTX,
1717         .arg2_type      = ARG_ANYTHING,
1718         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
1719         .arg4_type      = ARG_CONST_SIZE,
1720         .arg5_type      = ARG_ANYTHING,
1721 };
1722
1723 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1724            void *, to, u32, len)
1725 {
1726         void *ptr;
1727
1728         if (unlikely(offset > INT_MAX))
1729                 goto err_clear;
1730
1731         ptr = skb_header_pointer(skb, offset, len, to);
1732         if (unlikely(!ptr))
1733                 goto err_clear;
1734         if (ptr != to)
1735                 memcpy(to, ptr, len);
1736
1737         return 0;
1738 err_clear:
1739         memset(to, 0, len);
1740         return -EFAULT;
1741 }
1742
1743 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1744         .func           = bpf_skb_load_bytes,
1745         .gpl_only       = false,
1746         .ret_type       = RET_INTEGER,
1747         .arg1_type      = ARG_PTR_TO_CTX,
1748         .arg2_type      = ARG_ANYTHING,
1749         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1750         .arg4_type      = ARG_CONST_SIZE,
1751 };
1752
1753 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1754            const struct bpf_flow_dissector *, ctx, u32, offset,
1755            void *, to, u32, len)
1756 {
1757         void *ptr;
1758
1759         if (unlikely(offset > 0xffff))
1760                 goto err_clear;
1761
1762         if (unlikely(!ctx->skb))
1763                 goto err_clear;
1764
1765         ptr = skb_header_pointer(ctx->skb, offset, len, to);
1766         if (unlikely(!ptr))
1767                 goto err_clear;
1768         if (ptr != to)
1769                 memcpy(to, ptr, len);
1770
1771         return 0;
1772 err_clear:
1773         memset(to, 0, len);
1774         return -EFAULT;
1775 }
1776
1777 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1778         .func           = bpf_flow_dissector_load_bytes,
1779         .gpl_only       = false,
1780         .ret_type       = RET_INTEGER,
1781         .arg1_type      = ARG_PTR_TO_CTX,
1782         .arg2_type      = ARG_ANYTHING,
1783         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1784         .arg4_type      = ARG_CONST_SIZE,
1785 };
1786
1787 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1788            u32, offset, void *, to, u32, len, u32, start_header)
1789 {
1790         u8 *end = skb_tail_pointer(skb);
1791         u8 *start, *ptr;
1792
1793         if (unlikely(offset > 0xffff))
1794                 goto err_clear;
1795
1796         switch (start_header) {
1797         case BPF_HDR_START_MAC:
1798                 if (unlikely(!skb_mac_header_was_set(skb)))
1799                         goto err_clear;
1800                 start = skb_mac_header(skb);
1801                 break;
1802         case BPF_HDR_START_NET:
1803                 start = skb_network_header(skb);
1804                 break;
1805         default:
1806                 goto err_clear;
1807         }
1808
1809         ptr = start + offset;
1810
1811         if (likely(ptr + len <= end)) {
1812                 memcpy(to, ptr, len);
1813                 return 0;
1814         }
1815
1816 err_clear:
1817         memset(to, 0, len);
1818         return -EFAULT;
1819 }
1820
1821 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1822         .func           = bpf_skb_load_bytes_relative,
1823         .gpl_only       = false,
1824         .ret_type       = RET_INTEGER,
1825         .arg1_type      = ARG_PTR_TO_CTX,
1826         .arg2_type      = ARG_ANYTHING,
1827         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1828         .arg4_type      = ARG_CONST_SIZE,
1829         .arg5_type      = ARG_ANYTHING,
1830 };
1831
1832 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1833 {
1834         /* Idea is the following: should the needed direct read/write
1835          * test fail during runtime, we can pull in more data and redo
1836          * again, since implicitly, we invalidate previous checks here.
1837          *
1838          * Or, since we know how much we need to make read/writeable,
1839          * this can be done once at the program beginning for direct
1840          * access case. By this we overcome limitations of only current
1841          * headroom being accessible.
1842          */
1843         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1844 }
1845
1846 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1847         .func           = bpf_skb_pull_data,
1848         .gpl_only       = false,
1849         .ret_type       = RET_INTEGER,
1850         .arg1_type      = ARG_PTR_TO_CTX,
1851         .arg2_type      = ARG_ANYTHING,
1852 };
1853
1854 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1855 {
1856         return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1857 }
1858
1859 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1860         .func           = bpf_sk_fullsock,
1861         .gpl_only       = false,
1862         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1863         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1864 };
1865
1866 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1867                                            unsigned int write_len)
1868 {
1869         return __bpf_try_make_writable(skb, write_len);
1870 }
1871
1872 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1873 {
1874         /* Idea is the following: should the needed direct read/write
1875          * test fail during runtime, we can pull in more data and redo
1876          * again, since implicitly, we invalidate previous checks here.
1877          *
1878          * Or, since we know how much we need to make read/writeable,
1879          * this can be done once at the program beginning for direct
1880          * access case. By this we overcome limitations of only current
1881          * headroom being accessible.
1882          */
1883         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1884 }
1885
1886 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1887         .func           = sk_skb_pull_data,
1888         .gpl_only       = false,
1889         .ret_type       = RET_INTEGER,
1890         .arg1_type      = ARG_PTR_TO_CTX,
1891         .arg2_type      = ARG_ANYTHING,
1892 };
1893
1894 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1895            u64, from, u64, to, u64, flags)
1896 {
1897         __sum16 *ptr;
1898
1899         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1900                 return -EINVAL;
1901         if (unlikely(offset > 0xffff || offset & 1))
1902                 return -EFAULT;
1903         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1904                 return -EFAULT;
1905
1906         ptr = (__sum16 *)(skb->data + offset);
1907         switch (flags & BPF_F_HDR_FIELD_MASK) {
1908         case 0:
1909                 if (unlikely(from != 0))
1910                         return -EINVAL;
1911
1912                 csum_replace_by_diff(ptr, to);
1913                 break;
1914         case 2:
1915                 csum_replace2(ptr, from, to);
1916                 break;
1917         case 4:
1918                 csum_replace4(ptr, from, to);
1919                 break;
1920         default:
1921                 return -EINVAL;
1922         }
1923
1924         return 0;
1925 }
1926
1927 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1928         .func           = bpf_l3_csum_replace,
1929         .gpl_only       = false,
1930         .ret_type       = RET_INTEGER,
1931         .arg1_type      = ARG_PTR_TO_CTX,
1932         .arg2_type      = ARG_ANYTHING,
1933         .arg3_type      = ARG_ANYTHING,
1934         .arg4_type      = ARG_ANYTHING,
1935         .arg5_type      = ARG_ANYTHING,
1936 };
1937
1938 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1939            u64, from, u64, to, u64, flags)
1940 {
1941         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1942         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1943         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1944         __sum16 *ptr;
1945
1946         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1947                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1948                 return -EINVAL;
1949         if (unlikely(offset > 0xffff || offset & 1))
1950                 return -EFAULT;
1951         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1952                 return -EFAULT;
1953
1954         ptr = (__sum16 *)(skb->data + offset);
1955         if (is_mmzero && !do_mforce && !*ptr)
1956                 return 0;
1957
1958         switch (flags & BPF_F_HDR_FIELD_MASK) {
1959         case 0:
1960                 if (unlikely(from != 0))
1961                         return -EINVAL;
1962
1963                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1964                 break;
1965         case 2:
1966                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1967                 break;
1968         case 4:
1969                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1970                 break;
1971         default:
1972                 return -EINVAL;
1973         }
1974
1975         if (is_mmzero && !*ptr)
1976                 *ptr = CSUM_MANGLED_0;
1977         return 0;
1978 }
1979
1980 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1981         .func           = bpf_l4_csum_replace,
1982         .gpl_only       = false,
1983         .ret_type       = RET_INTEGER,
1984         .arg1_type      = ARG_PTR_TO_CTX,
1985         .arg2_type      = ARG_ANYTHING,
1986         .arg3_type      = ARG_ANYTHING,
1987         .arg4_type      = ARG_ANYTHING,
1988         .arg5_type      = ARG_ANYTHING,
1989 };
1990
1991 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1992            __be32 *, to, u32, to_size, __wsum, seed)
1993 {
1994         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1995         u32 diff_size = from_size + to_size;
1996         int i, j = 0;
1997
1998         /* This is quite flexible, some examples:
1999          *
2000          * from_size == 0, to_size > 0,  seed := csum --> pushing data
2001          * from_size > 0,  to_size == 0, seed := csum --> pulling data
2002          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2003          *
2004          * Even for diffing, from_size and to_size don't need to be equal.
2005          */
2006         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2007                      diff_size > sizeof(sp->diff)))
2008                 return -EINVAL;
2009
2010         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2011                 sp->diff[j] = ~from[i];
2012         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2013                 sp->diff[j] = to[i];
2014
2015         return csum_partial(sp->diff, diff_size, seed);
2016 }
2017
2018 static const struct bpf_func_proto bpf_csum_diff_proto = {
2019         .func           = bpf_csum_diff,
2020         .gpl_only       = false,
2021         .pkt_access     = true,
2022         .ret_type       = RET_INTEGER,
2023         .arg1_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2024         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2025         .arg3_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2026         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2027         .arg5_type      = ARG_ANYTHING,
2028 };
2029
2030 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2031 {
2032         /* The interface is to be used in combination with bpf_csum_diff()
2033          * for direct packet writes. csum rotation for alignment as well
2034          * as emulating csum_sub() can be done from the eBPF program.
2035          */
2036         if (skb->ip_summed == CHECKSUM_COMPLETE)
2037                 return (skb->csum = csum_add(skb->csum, csum));
2038
2039         return -ENOTSUPP;
2040 }
2041
2042 static const struct bpf_func_proto bpf_csum_update_proto = {
2043         .func           = bpf_csum_update,
2044         .gpl_only       = false,
2045         .ret_type       = RET_INTEGER,
2046         .arg1_type      = ARG_PTR_TO_CTX,
2047         .arg2_type      = ARG_ANYTHING,
2048 };
2049
2050 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2051 {
2052         /* The interface is to be used in combination with bpf_skb_adjust_room()
2053          * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2054          * is passed as flags, for example.
2055          */
2056         switch (level) {
2057         case BPF_CSUM_LEVEL_INC:
2058                 __skb_incr_checksum_unnecessary(skb);
2059                 break;
2060         case BPF_CSUM_LEVEL_DEC:
2061                 __skb_decr_checksum_unnecessary(skb);
2062                 break;
2063         case BPF_CSUM_LEVEL_RESET:
2064                 __skb_reset_checksum_unnecessary(skb);
2065                 break;
2066         case BPF_CSUM_LEVEL_QUERY:
2067                 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2068                        skb->csum_level : -EACCES;
2069         default:
2070                 return -EINVAL;
2071         }
2072
2073         return 0;
2074 }
2075
2076 static const struct bpf_func_proto bpf_csum_level_proto = {
2077         .func           = bpf_csum_level,
2078         .gpl_only       = false,
2079         .ret_type       = RET_INTEGER,
2080         .arg1_type      = ARG_PTR_TO_CTX,
2081         .arg2_type      = ARG_ANYTHING,
2082 };
2083
2084 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2085 {
2086         return dev_forward_skb_nomtu(dev, skb);
2087 }
2088
2089 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2090                                       struct sk_buff *skb)
2091 {
2092         int ret = ____dev_forward_skb(dev, skb, false);
2093
2094         if (likely(!ret)) {
2095                 skb->dev = dev;
2096                 ret = netif_rx(skb);
2097         }
2098
2099         return ret;
2100 }
2101
2102 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2103 {
2104         int ret;
2105
2106         if (dev_xmit_recursion()) {
2107                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2108                 kfree_skb(skb);
2109                 return -ENETDOWN;
2110         }
2111
2112         skb->dev = dev;
2113         skb_clear_tstamp(skb);
2114
2115         dev_xmit_recursion_inc();
2116         ret = dev_queue_xmit(skb);
2117         dev_xmit_recursion_dec();
2118
2119         return ret;
2120 }
2121
2122 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2123                                  u32 flags)
2124 {
2125         unsigned int mlen = skb_network_offset(skb);
2126
2127         if (mlen) {
2128                 __skb_pull(skb, mlen);
2129
2130                 /* At ingress, the mac header has already been pulled once.
2131                  * At egress, skb_pospull_rcsum has to be done in case that
2132                  * the skb is originated from ingress (i.e. a forwarded skb)
2133                  * to ensure that rcsum starts at net header.
2134                  */
2135                 if (!skb_at_tc_ingress(skb))
2136                         skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2137         }
2138         skb_pop_mac_header(skb);
2139         skb_reset_mac_len(skb);
2140         return flags & BPF_F_INGRESS ?
2141                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2142 }
2143
2144 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2145                                  u32 flags)
2146 {
2147         /* Verify that a link layer header is carried */
2148         if (unlikely(skb->mac_header >= skb->network_header)) {
2149                 kfree_skb(skb);
2150                 return -ERANGE;
2151         }
2152
2153         bpf_push_mac_rcsum(skb);
2154         return flags & BPF_F_INGRESS ?
2155                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2156 }
2157
2158 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2159                           u32 flags)
2160 {
2161         if (dev_is_mac_header_xmit(dev))
2162                 return __bpf_redirect_common(skb, dev, flags);
2163         else
2164                 return __bpf_redirect_no_mac(skb, dev, flags);
2165 }
2166
2167 #if IS_ENABLED(CONFIG_IPV6)
2168 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2169                             struct net_device *dev, struct bpf_nh_params *nh)
2170 {
2171         u32 hh_len = LL_RESERVED_SPACE(dev);
2172         const struct in6_addr *nexthop;
2173         struct dst_entry *dst = NULL;
2174         struct neighbour *neigh;
2175
2176         if (dev_xmit_recursion()) {
2177                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2178                 goto out_drop;
2179         }
2180
2181         skb->dev = dev;
2182         skb_clear_tstamp(skb);
2183
2184         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2185                 skb = skb_expand_head(skb, hh_len);
2186                 if (!skb)
2187                         return -ENOMEM;
2188         }
2189
2190         rcu_read_lock_bh();
2191         if (!nh) {
2192                 dst = skb_dst(skb);
2193                 nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2194                                       &ipv6_hdr(skb)->daddr);
2195         } else {
2196                 nexthop = &nh->ipv6_nh;
2197         }
2198         neigh = ip_neigh_gw6(dev, nexthop);
2199         if (likely(!IS_ERR(neigh))) {
2200                 int ret;
2201
2202                 sock_confirm_neigh(skb, neigh);
2203                 dev_xmit_recursion_inc();
2204                 ret = neigh_output(neigh, skb, false);
2205                 dev_xmit_recursion_dec();
2206                 rcu_read_unlock_bh();
2207                 return ret;
2208         }
2209         rcu_read_unlock_bh();
2210         if (dst)
2211                 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2212 out_drop:
2213         kfree_skb(skb);
2214         return -ENETDOWN;
2215 }
2216
2217 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2218                                    struct bpf_nh_params *nh)
2219 {
2220         const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2221         struct net *net = dev_net(dev);
2222         int err, ret = NET_XMIT_DROP;
2223
2224         if (!nh) {
2225                 struct dst_entry *dst;
2226                 struct flowi6 fl6 = {
2227                         .flowi6_flags = FLOWI_FLAG_ANYSRC,
2228                         .flowi6_mark  = skb->mark,
2229                         .flowlabel    = ip6_flowinfo(ip6h),
2230                         .flowi6_oif   = dev->ifindex,
2231                         .flowi6_proto = ip6h->nexthdr,
2232                         .daddr        = ip6h->daddr,
2233                         .saddr        = ip6h->saddr,
2234                 };
2235
2236                 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2237                 if (IS_ERR(dst))
2238                         goto out_drop;
2239
2240                 skb_dst_set(skb, dst);
2241         } else if (nh->nh_family != AF_INET6) {
2242                 goto out_drop;
2243         }
2244
2245         err = bpf_out_neigh_v6(net, skb, dev, nh);
2246         if (unlikely(net_xmit_eval(err)))
2247                 dev->stats.tx_errors++;
2248         else
2249                 ret = NET_XMIT_SUCCESS;
2250         goto out_xmit;
2251 out_drop:
2252         dev->stats.tx_errors++;
2253         kfree_skb(skb);
2254 out_xmit:
2255         return ret;
2256 }
2257 #else
2258 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2259                                    struct bpf_nh_params *nh)
2260 {
2261         kfree_skb(skb);
2262         return NET_XMIT_DROP;
2263 }
2264 #endif /* CONFIG_IPV6 */
2265
2266 #if IS_ENABLED(CONFIG_INET)
2267 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2268                             struct net_device *dev, struct bpf_nh_params *nh)
2269 {
2270         u32 hh_len = LL_RESERVED_SPACE(dev);
2271         struct neighbour *neigh;
2272         bool is_v6gw = false;
2273
2274         if (dev_xmit_recursion()) {
2275                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2276                 goto out_drop;
2277         }
2278
2279         skb->dev = dev;
2280         skb_clear_tstamp(skb);
2281
2282         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2283                 skb = skb_expand_head(skb, hh_len);
2284                 if (!skb)
2285                         return -ENOMEM;
2286         }
2287
2288         rcu_read_lock_bh();
2289         if (!nh) {
2290                 struct dst_entry *dst = skb_dst(skb);
2291                 struct rtable *rt = container_of(dst, struct rtable, dst);
2292
2293                 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2294         } else if (nh->nh_family == AF_INET6) {
2295                 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2296                 is_v6gw = true;
2297         } else if (nh->nh_family == AF_INET) {
2298                 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2299         } else {
2300                 rcu_read_unlock_bh();
2301                 goto out_drop;
2302         }
2303
2304         if (likely(!IS_ERR(neigh))) {
2305                 int ret;
2306
2307                 sock_confirm_neigh(skb, neigh);
2308                 dev_xmit_recursion_inc();
2309                 ret = neigh_output(neigh, skb, is_v6gw);
2310                 dev_xmit_recursion_dec();
2311                 rcu_read_unlock_bh();
2312                 return ret;
2313         }
2314         rcu_read_unlock_bh();
2315 out_drop:
2316         kfree_skb(skb);
2317         return -ENETDOWN;
2318 }
2319
2320 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2321                                    struct bpf_nh_params *nh)
2322 {
2323         const struct iphdr *ip4h = ip_hdr(skb);
2324         struct net *net = dev_net(dev);
2325         int err, ret = NET_XMIT_DROP;
2326
2327         if (!nh) {
2328                 struct flowi4 fl4 = {
2329                         .flowi4_flags = FLOWI_FLAG_ANYSRC,
2330                         .flowi4_mark  = skb->mark,
2331                         .flowi4_tos   = RT_TOS(ip4h->tos),
2332                         .flowi4_oif   = dev->ifindex,
2333                         .flowi4_proto = ip4h->protocol,
2334                         .daddr        = ip4h->daddr,
2335                         .saddr        = ip4h->saddr,
2336                 };
2337                 struct rtable *rt;
2338
2339                 rt = ip_route_output_flow(net, &fl4, NULL);
2340                 if (IS_ERR(rt))
2341                         goto out_drop;
2342                 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2343                         ip_rt_put(rt);
2344                         goto out_drop;
2345                 }
2346
2347                 skb_dst_set(skb, &rt->dst);
2348         }
2349
2350         err = bpf_out_neigh_v4(net, skb, dev, nh);
2351         if (unlikely(net_xmit_eval(err)))
2352                 dev->stats.tx_errors++;
2353         else
2354                 ret = NET_XMIT_SUCCESS;
2355         goto out_xmit;
2356 out_drop:
2357         dev->stats.tx_errors++;
2358         kfree_skb(skb);
2359 out_xmit:
2360         return ret;
2361 }
2362 #else
2363 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2364                                    struct bpf_nh_params *nh)
2365 {
2366         kfree_skb(skb);
2367         return NET_XMIT_DROP;
2368 }
2369 #endif /* CONFIG_INET */
2370
2371 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2372                                 struct bpf_nh_params *nh)
2373 {
2374         struct ethhdr *ethh = eth_hdr(skb);
2375
2376         if (unlikely(skb->mac_header >= skb->network_header))
2377                 goto out;
2378         bpf_push_mac_rcsum(skb);
2379         if (is_multicast_ether_addr(ethh->h_dest))
2380                 goto out;
2381
2382         skb_pull(skb, sizeof(*ethh));
2383         skb_unset_mac_header(skb);
2384         skb_reset_network_header(skb);
2385
2386         if (skb->protocol == htons(ETH_P_IP))
2387                 return __bpf_redirect_neigh_v4(skb, dev, nh);
2388         else if (skb->protocol == htons(ETH_P_IPV6))
2389                 return __bpf_redirect_neigh_v6(skb, dev, nh);
2390 out:
2391         kfree_skb(skb);
2392         return -ENOTSUPP;
2393 }
2394
2395 /* Internal, non-exposed redirect flags. */
2396 enum {
2397         BPF_F_NEIGH     = (1ULL << 1),
2398         BPF_F_PEER      = (1ULL << 2),
2399         BPF_F_NEXTHOP   = (1ULL << 3),
2400 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2401 };
2402
2403 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2404 {
2405         struct net_device *dev;
2406         struct sk_buff *clone;
2407         int ret;
2408
2409         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2410                 return -EINVAL;
2411
2412         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2413         if (unlikely(!dev))
2414                 return -EINVAL;
2415
2416         clone = skb_clone(skb, GFP_ATOMIC);
2417         if (unlikely(!clone))
2418                 return -ENOMEM;
2419
2420         /* For direct write, we need to keep the invariant that the skbs
2421          * we're dealing with need to be uncloned. Should uncloning fail
2422          * here, we need to free the just generated clone to unclone once
2423          * again.
2424          */
2425         ret = bpf_try_make_head_writable(skb);
2426         if (unlikely(ret)) {
2427                 kfree_skb(clone);
2428                 return -ENOMEM;
2429         }
2430
2431         return __bpf_redirect(clone, dev, flags);
2432 }
2433
2434 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2435         .func           = bpf_clone_redirect,
2436         .gpl_only       = false,
2437         .ret_type       = RET_INTEGER,
2438         .arg1_type      = ARG_PTR_TO_CTX,
2439         .arg2_type      = ARG_ANYTHING,
2440         .arg3_type      = ARG_ANYTHING,
2441 };
2442
2443 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2444 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2445
2446 int skb_do_redirect(struct sk_buff *skb)
2447 {
2448         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2449         struct net *net = dev_net(skb->dev);
2450         struct net_device *dev;
2451         u32 flags = ri->flags;
2452
2453         dev = dev_get_by_index_rcu(net, ri->tgt_index);
2454         ri->tgt_index = 0;
2455         ri->flags = 0;
2456         if (unlikely(!dev))
2457                 goto out_drop;
2458         if (flags & BPF_F_PEER) {
2459                 const struct net_device_ops *ops = dev->netdev_ops;
2460
2461                 if (unlikely(!ops->ndo_get_peer_dev ||
2462                              !skb_at_tc_ingress(skb)))
2463                         goto out_drop;
2464                 dev = ops->ndo_get_peer_dev(dev);
2465                 if (unlikely(!dev ||
2466                              !(dev->flags & IFF_UP) ||
2467                              net_eq(net, dev_net(dev))))
2468                         goto out_drop;
2469                 skb->dev = dev;
2470                 return -EAGAIN;
2471         }
2472         return flags & BPF_F_NEIGH ?
2473                __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2474                                     &ri->nh : NULL) :
2475                __bpf_redirect(skb, dev, flags);
2476 out_drop:
2477         kfree_skb(skb);
2478         return -EINVAL;
2479 }
2480
2481 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2482 {
2483         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2484
2485         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2486                 return TC_ACT_SHOT;
2487
2488         ri->flags = flags;
2489         ri->tgt_index = ifindex;
2490
2491         return TC_ACT_REDIRECT;
2492 }
2493
2494 static const struct bpf_func_proto bpf_redirect_proto = {
2495         .func           = bpf_redirect,
2496         .gpl_only       = false,
2497         .ret_type       = RET_INTEGER,
2498         .arg1_type      = ARG_ANYTHING,
2499         .arg2_type      = ARG_ANYTHING,
2500 };
2501
2502 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2503 {
2504         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2505
2506         if (unlikely(flags))
2507                 return TC_ACT_SHOT;
2508
2509         ri->flags = BPF_F_PEER;
2510         ri->tgt_index = ifindex;
2511
2512         return TC_ACT_REDIRECT;
2513 }
2514
2515 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2516         .func           = bpf_redirect_peer,
2517         .gpl_only       = false,
2518         .ret_type       = RET_INTEGER,
2519         .arg1_type      = ARG_ANYTHING,
2520         .arg2_type      = ARG_ANYTHING,
2521 };
2522
2523 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2524            int, plen, u64, flags)
2525 {
2526         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2527
2528         if (unlikely((plen && plen < sizeof(*params)) || flags))
2529                 return TC_ACT_SHOT;
2530
2531         ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2532         ri->tgt_index = ifindex;
2533
2534         BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2535         if (plen)
2536                 memcpy(&ri->nh, params, sizeof(ri->nh));
2537
2538         return TC_ACT_REDIRECT;
2539 }
2540
2541 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2542         .func           = bpf_redirect_neigh,
2543         .gpl_only       = false,
2544         .ret_type       = RET_INTEGER,
2545         .arg1_type      = ARG_ANYTHING,
2546         .arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2547         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2548         .arg4_type      = ARG_ANYTHING,
2549 };
2550
2551 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2552 {
2553         msg->apply_bytes = bytes;
2554         return 0;
2555 }
2556
2557 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2558         .func           = bpf_msg_apply_bytes,
2559         .gpl_only       = false,
2560         .ret_type       = RET_INTEGER,
2561         .arg1_type      = ARG_PTR_TO_CTX,
2562         .arg2_type      = ARG_ANYTHING,
2563 };
2564
2565 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2566 {
2567         msg->cork_bytes = bytes;
2568         return 0;
2569 }
2570
2571 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2572         .func           = bpf_msg_cork_bytes,
2573         .gpl_only       = false,
2574         .ret_type       = RET_INTEGER,
2575         .arg1_type      = ARG_PTR_TO_CTX,
2576         .arg2_type      = ARG_ANYTHING,
2577 };
2578
2579 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2580            u32, end, u64, flags)
2581 {
2582         u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2583         u32 first_sge, last_sge, i, shift, bytes_sg_total;
2584         struct scatterlist *sge;
2585         u8 *raw, *to, *from;
2586         struct page *page;
2587
2588         if (unlikely(flags || end <= start))
2589                 return -EINVAL;
2590
2591         /* First find the starting scatterlist element */
2592         i = msg->sg.start;
2593         do {
2594                 offset += len;
2595                 len = sk_msg_elem(msg, i)->length;
2596                 if (start < offset + len)
2597                         break;
2598                 sk_msg_iter_var_next(i);
2599         } while (i != msg->sg.end);
2600
2601         if (unlikely(start >= offset + len))
2602                 return -EINVAL;
2603
2604         first_sge = i;
2605         /* The start may point into the sg element so we need to also
2606          * account for the headroom.
2607          */
2608         bytes_sg_total = start - offset + bytes;
2609         if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2610                 goto out;
2611
2612         /* At this point we need to linearize multiple scatterlist
2613          * elements or a single shared page. Either way we need to
2614          * copy into a linear buffer exclusively owned by BPF. Then
2615          * place the buffer in the scatterlist and fixup the original
2616          * entries by removing the entries now in the linear buffer
2617          * and shifting the remaining entries. For now we do not try
2618          * to copy partial entries to avoid complexity of running out
2619          * of sg_entry slots. The downside is reading a single byte
2620          * will copy the entire sg entry.
2621          */
2622         do {
2623                 copy += sk_msg_elem(msg, i)->length;
2624                 sk_msg_iter_var_next(i);
2625                 if (bytes_sg_total <= copy)
2626                         break;
2627         } while (i != msg->sg.end);
2628         last_sge = i;
2629
2630         if (unlikely(bytes_sg_total > copy))
2631                 return -EINVAL;
2632
2633         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2634                            get_order(copy));
2635         if (unlikely(!page))
2636                 return -ENOMEM;
2637
2638         raw = page_address(page);
2639         i = first_sge;
2640         do {
2641                 sge = sk_msg_elem(msg, i);
2642                 from = sg_virt(sge);
2643                 len = sge->length;
2644                 to = raw + poffset;
2645
2646                 memcpy(to, from, len);
2647                 poffset += len;
2648                 sge->length = 0;
2649                 put_page(sg_page(sge));
2650
2651                 sk_msg_iter_var_next(i);
2652         } while (i != last_sge);
2653
2654         sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2655
2656         /* To repair sg ring we need to shift entries. If we only
2657          * had a single entry though we can just replace it and
2658          * be done. Otherwise walk the ring and shift the entries.
2659          */
2660         WARN_ON_ONCE(last_sge == first_sge);
2661         shift = last_sge > first_sge ?
2662                 last_sge - first_sge - 1 :
2663                 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2664         if (!shift)
2665                 goto out;
2666
2667         i = first_sge;
2668         sk_msg_iter_var_next(i);
2669         do {
2670                 u32 move_from;
2671
2672                 if (i + shift >= NR_MSG_FRAG_IDS)
2673                         move_from = i + shift - NR_MSG_FRAG_IDS;
2674                 else
2675                         move_from = i + shift;
2676                 if (move_from == msg->sg.end)
2677                         break;
2678
2679                 msg->sg.data[i] = msg->sg.data[move_from];
2680                 msg->sg.data[move_from].length = 0;
2681                 msg->sg.data[move_from].page_link = 0;
2682                 msg->sg.data[move_from].offset = 0;
2683                 sk_msg_iter_var_next(i);
2684         } while (1);
2685
2686         msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2687                       msg->sg.end - shift + NR_MSG_FRAG_IDS :
2688                       msg->sg.end - shift;
2689 out:
2690         msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2691         msg->data_end = msg->data + bytes;
2692         return 0;
2693 }
2694
2695 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2696         .func           = bpf_msg_pull_data,
2697         .gpl_only       = false,
2698         .ret_type       = RET_INTEGER,
2699         .arg1_type      = ARG_PTR_TO_CTX,
2700         .arg2_type      = ARG_ANYTHING,
2701         .arg3_type      = ARG_ANYTHING,
2702         .arg4_type      = ARG_ANYTHING,
2703 };
2704
2705 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2706            u32, len, u64, flags)
2707 {
2708         struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2709         u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2710         u8 *raw, *to, *from;
2711         struct page *page;
2712
2713         if (unlikely(flags))
2714                 return -EINVAL;
2715
2716         if (unlikely(len == 0))
2717                 return 0;
2718
2719         /* First find the starting scatterlist element */
2720         i = msg->sg.start;
2721         do {
2722                 offset += l;
2723                 l = sk_msg_elem(msg, i)->length;
2724
2725                 if (start < offset + l)
2726                         break;
2727                 sk_msg_iter_var_next(i);
2728         } while (i != msg->sg.end);
2729
2730         if (start >= offset + l)
2731                 return -EINVAL;
2732
2733         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2734
2735         /* If no space available will fallback to copy, we need at
2736          * least one scatterlist elem available to push data into
2737          * when start aligns to the beginning of an element or two
2738          * when it falls inside an element. We handle the start equals
2739          * offset case because its the common case for inserting a
2740          * header.
2741          */
2742         if (!space || (space == 1 && start != offset))
2743                 copy = msg->sg.data[i].length;
2744
2745         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2746                            get_order(copy + len));
2747         if (unlikely(!page))
2748                 return -ENOMEM;
2749
2750         if (copy) {
2751                 int front, back;
2752
2753                 raw = page_address(page);
2754
2755                 psge = sk_msg_elem(msg, i);
2756                 front = start - offset;
2757                 back = psge->length - front;
2758                 from = sg_virt(psge);
2759
2760                 if (front)
2761                         memcpy(raw, from, front);
2762
2763                 if (back) {
2764                         from += front;
2765                         to = raw + front + len;
2766
2767                         memcpy(to, from, back);
2768                 }
2769
2770                 put_page(sg_page(psge));
2771         } else if (start - offset) {
2772                 psge = sk_msg_elem(msg, i);
2773                 rsge = sk_msg_elem_cpy(msg, i);
2774
2775                 psge->length = start - offset;
2776                 rsge.length -= psge->length;
2777                 rsge.offset += start;
2778
2779                 sk_msg_iter_var_next(i);
2780                 sg_unmark_end(psge);
2781                 sg_unmark_end(&rsge);
2782                 sk_msg_iter_next(msg, end);
2783         }
2784
2785         /* Slot(s) to place newly allocated data */
2786         new = i;
2787
2788         /* Shift one or two slots as needed */
2789         if (!copy) {
2790                 sge = sk_msg_elem_cpy(msg, i);
2791
2792                 sk_msg_iter_var_next(i);
2793                 sg_unmark_end(&sge);
2794                 sk_msg_iter_next(msg, end);
2795
2796                 nsge = sk_msg_elem_cpy(msg, i);
2797                 if (rsge.length) {
2798                         sk_msg_iter_var_next(i);
2799                         nnsge = sk_msg_elem_cpy(msg, i);
2800                 }
2801
2802                 while (i != msg->sg.end) {
2803                         msg->sg.data[i] = sge;
2804                         sge = nsge;
2805                         sk_msg_iter_var_next(i);
2806                         if (rsge.length) {
2807                                 nsge = nnsge;
2808                                 nnsge = sk_msg_elem_cpy(msg, i);
2809                         } else {
2810                                 nsge = sk_msg_elem_cpy(msg, i);
2811                         }
2812                 }
2813         }
2814
2815         /* Place newly allocated data buffer */
2816         sk_mem_charge(msg->sk, len);
2817         msg->sg.size += len;
2818         __clear_bit(new, msg->sg.copy);
2819         sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2820         if (rsge.length) {
2821                 get_page(sg_page(&rsge));
2822                 sk_msg_iter_var_next(new);
2823                 msg->sg.data[new] = rsge;
2824         }
2825
2826         sk_msg_compute_data_pointers(msg);
2827         return 0;
2828 }
2829
2830 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2831         .func           = bpf_msg_push_data,
2832         .gpl_only       = false,
2833         .ret_type       = RET_INTEGER,
2834         .arg1_type      = ARG_PTR_TO_CTX,
2835         .arg2_type      = ARG_ANYTHING,
2836         .arg3_type      = ARG_ANYTHING,
2837         .arg4_type      = ARG_ANYTHING,
2838 };
2839
2840 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2841 {
2842         int prev;
2843
2844         do {
2845                 prev = i;
2846                 sk_msg_iter_var_next(i);
2847                 msg->sg.data[prev] = msg->sg.data[i];
2848         } while (i != msg->sg.end);
2849
2850         sk_msg_iter_prev(msg, end);
2851 }
2852
2853 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2854 {
2855         struct scatterlist tmp, sge;
2856
2857         sk_msg_iter_next(msg, end);
2858         sge = sk_msg_elem_cpy(msg, i);
2859         sk_msg_iter_var_next(i);
2860         tmp = sk_msg_elem_cpy(msg, i);
2861
2862         while (i != msg->sg.end) {
2863                 msg->sg.data[i] = sge;
2864                 sk_msg_iter_var_next(i);
2865                 sge = tmp;
2866                 tmp = sk_msg_elem_cpy(msg, i);
2867         }
2868 }
2869
2870 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2871            u32, len, u64, flags)
2872 {
2873         u32 i = 0, l = 0, space, offset = 0;
2874         u64 last = start + len;
2875         int pop;
2876
2877         if (unlikely(flags))
2878                 return -EINVAL;
2879
2880         /* First find the starting scatterlist element */
2881         i = msg->sg.start;
2882         do {
2883                 offset += l;
2884                 l = sk_msg_elem(msg, i)->length;
2885
2886                 if (start < offset + l)
2887                         break;
2888                 sk_msg_iter_var_next(i);
2889         } while (i != msg->sg.end);
2890
2891         /* Bounds checks: start and pop must be inside message */
2892         if (start >= offset + l || last >= msg->sg.size)
2893                 return -EINVAL;
2894
2895         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2896
2897         pop = len;
2898         /* --------------| offset
2899          * -| start      |-------- len -------|
2900          *
2901          *  |----- a ----|-------- pop -------|----- b ----|
2902          *  |______________________________________________| length
2903          *
2904          *
2905          * a:   region at front of scatter element to save
2906          * b:   region at back of scatter element to save when length > A + pop
2907          * pop: region to pop from element, same as input 'pop' here will be
2908          *      decremented below per iteration.
2909          *
2910          * Two top-level cases to handle when start != offset, first B is non
2911          * zero and second B is zero corresponding to when a pop includes more
2912          * than one element.
2913          *
2914          * Then if B is non-zero AND there is no space allocate space and
2915          * compact A, B regions into page. If there is space shift ring to
2916          * the rigth free'ing the next element in ring to place B, leaving
2917          * A untouched except to reduce length.
2918          */
2919         if (start != offset) {
2920                 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2921                 int a = start;
2922                 int b = sge->length - pop - a;
2923
2924                 sk_msg_iter_var_next(i);
2925
2926                 if (pop < sge->length - a) {
2927                         if (space) {
2928                                 sge->length = a;
2929                                 sk_msg_shift_right(msg, i);
2930                                 nsge = sk_msg_elem(msg, i);
2931                                 get_page(sg_page(sge));
2932                                 sg_set_page(nsge,
2933                                             sg_page(sge),
2934                                             b, sge->offset + pop + a);
2935                         } else {
2936                                 struct page *page, *orig;
2937                                 u8 *to, *from;
2938
2939                                 page = alloc_pages(__GFP_NOWARN |
2940                                                    __GFP_COMP   | GFP_ATOMIC,
2941                                                    get_order(a + b));
2942                                 if (unlikely(!page))
2943                                         return -ENOMEM;
2944
2945                                 sge->length = a;
2946                                 orig = sg_page(sge);
2947                                 from = sg_virt(sge);
2948                                 to = page_address(page);
2949                                 memcpy(to, from, a);
2950                                 memcpy(to + a, from + a + pop, b);
2951                                 sg_set_page(sge, page, a + b, 0);
2952                                 put_page(orig);
2953                         }
2954                         pop = 0;
2955                 } else if (pop >= sge->length - a) {
2956                         pop -= (sge->length - a);
2957                         sge->length = a;
2958                 }
2959         }
2960
2961         /* From above the current layout _must_ be as follows,
2962          *
2963          * -| offset
2964          * -| start
2965          *
2966          *  |---- pop ---|---------------- b ------------|
2967          *  |____________________________________________| length
2968          *
2969          * Offset and start of the current msg elem are equal because in the
2970          * previous case we handled offset != start and either consumed the
2971          * entire element and advanced to the next element OR pop == 0.
2972          *
2973          * Two cases to handle here are first pop is less than the length
2974          * leaving some remainder b above. Simply adjust the element's layout
2975          * in this case. Or pop >= length of the element so that b = 0. In this
2976          * case advance to next element decrementing pop.
2977          */
2978         while (pop) {
2979                 struct scatterlist *sge = sk_msg_elem(msg, i);
2980
2981                 if (pop < sge->length) {
2982                         sge->length -= pop;
2983                         sge->offset += pop;
2984                         pop = 0;
2985                 } else {
2986                         pop -= sge->length;
2987                         sk_msg_shift_left(msg, i);
2988                 }
2989                 sk_msg_iter_var_next(i);
2990         }
2991
2992         sk_mem_uncharge(msg->sk, len - pop);
2993         msg->sg.size -= (len - pop);
2994         sk_msg_compute_data_pointers(msg);
2995         return 0;
2996 }
2997
2998 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2999         .func           = bpf_msg_pop_data,
3000         .gpl_only       = false,
3001         .ret_type       = RET_INTEGER,
3002         .arg1_type      = ARG_PTR_TO_CTX,
3003         .arg2_type      = ARG_ANYTHING,
3004         .arg3_type      = ARG_ANYTHING,
3005         .arg4_type      = ARG_ANYTHING,
3006 };
3007
3008 #ifdef CONFIG_CGROUP_NET_CLASSID
3009 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3010 {
3011         return __task_get_classid(current);
3012 }
3013
3014 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3015         .func           = bpf_get_cgroup_classid_curr,
3016         .gpl_only       = false,
3017         .ret_type       = RET_INTEGER,
3018 };
3019
3020 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3021 {
3022         struct sock *sk = skb_to_full_sk(skb);
3023
3024         if (!sk || !sk_fullsock(sk))
3025                 return 0;
3026
3027         return sock_cgroup_classid(&sk->sk_cgrp_data);
3028 }
3029
3030 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3031         .func           = bpf_skb_cgroup_classid,
3032         .gpl_only       = false,
3033         .ret_type       = RET_INTEGER,
3034         .arg1_type      = ARG_PTR_TO_CTX,
3035 };
3036 #endif
3037
3038 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3039 {
3040         return task_get_classid(skb);
3041 }
3042
3043 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3044         .func           = bpf_get_cgroup_classid,
3045         .gpl_only       = false,
3046         .ret_type       = RET_INTEGER,
3047         .arg1_type      = ARG_PTR_TO_CTX,
3048 };
3049
3050 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3051 {
3052         return dst_tclassid(skb);
3053 }
3054
3055 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3056         .func           = bpf_get_route_realm,
3057         .gpl_only       = false,
3058         .ret_type       = RET_INTEGER,
3059         .arg1_type      = ARG_PTR_TO_CTX,
3060 };
3061
3062 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3063 {
3064         /* If skb_clear_hash() was called due to mangling, we can
3065          * trigger SW recalculation here. Later access to hash
3066          * can then use the inline skb->hash via context directly
3067          * instead of calling this helper again.
3068          */
3069         return skb_get_hash(skb);
3070 }
3071
3072 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3073         .func           = bpf_get_hash_recalc,
3074         .gpl_only       = false,
3075         .ret_type       = RET_INTEGER,
3076         .arg1_type      = ARG_PTR_TO_CTX,
3077 };
3078
3079 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3080 {
3081         /* After all direct packet write, this can be used once for
3082          * triggering a lazy recalc on next skb_get_hash() invocation.
3083          */
3084         skb_clear_hash(skb);
3085         return 0;
3086 }
3087
3088 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3089         .func           = bpf_set_hash_invalid,
3090         .gpl_only       = false,
3091         .ret_type       = RET_INTEGER,
3092         .arg1_type      = ARG_PTR_TO_CTX,
3093 };
3094
3095 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3096 {
3097         /* Set user specified hash as L4(+), so that it gets returned
3098          * on skb_get_hash() call unless BPF prog later on triggers a
3099          * skb_clear_hash().
3100          */
3101         __skb_set_sw_hash(skb, hash, true);
3102         return 0;
3103 }
3104
3105 static const struct bpf_func_proto bpf_set_hash_proto = {
3106         .func           = bpf_set_hash,
3107         .gpl_only       = false,
3108         .ret_type       = RET_INTEGER,
3109         .arg1_type      = ARG_PTR_TO_CTX,
3110         .arg2_type      = ARG_ANYTHING,
3111 };
3112
3113 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3114            u16, vlan_tci)
3115 {
3116         int ret;
3117
3118         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3119                      vlan_proto != htons(ETH_P_8021AD)))
3120                 vlan_proto = htons(ETH_P_8021Q);
3121
3122         bpf_push_mac_rcsum(skb);
3123         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3124         bpf_pull_mac_rcsum(skb);
3125
3126         bpf_compute_data_pointers(skb);
3127         return ret;
3128 }
3129
3130 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3131         .func           = bpf_skb_vlan_push,
3132         .gpl_only       = false,
3133         .ret_type       = RET_INTEGER,
3134         .arg1_type      = ARG_PTR_TO_CTX,
3135         .arg2_type      = ARG_ANYTHING,
3136         .arg3_type      = ARG_ANYTHING,
3137 };
3138
3139 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3140 {
3141         int ret;
3142
3143         bpf_push_mac_rcsum(skb);
3144         ret = skb_vlan_pop(skb);
3145         bpf_pull_mac_rcsum(skb);
3146
3147         bpf_compute_data_pointers(skb);
3148         return ret;
3149 }
3150
3151 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3152         .func           = bpf_skb_vlan_pop,
3153         .gpl_only       = false,
3154         .ret_type       = RET_INTEGER,
3155         .arg1_type      = ARG_PTR_TO_CTX,
3156 };
3157
3158 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3159 {
3160         /* Caller already did skb_cow() with len as headroom,
3161          * so no need to do it here.
3162          */
3163         skb_push(skb, len);
3164         memmove(skb->data, skb->data + len, off);
3165         memset(skb->data + off, 0, len);
3166
3167         /* No skb_postpush_rcsum(skb, skb->data + off, len)
3168          * needed here as it does not change the skb->csum
3169          * result for checksum complete when summing over
3170          * zeroed blocks.
3171          */
3172         return 0;
3173 }
3174
3175 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3176 {
3177         /* skb_ensure_writable() is not needed here, as we're
3178          * already working on an uncloned skb.
3179          */
3180         if (unlikely(!pskb_may_pull(skb, off + len)))
3181                 return -ENOMEM;
3182
3183         skb_postpull_rcsum(skb, skb->data + off, len);
3184         memmove(skb->data + len, skb->data, off);
3185         __skb_pull(skb, len);
3186
3187         return 0;
3188 }
3189
3190 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3191 {
3192         bool trans_same = skb->transport_header == skb->network_header;
3193         int ret;
3194
3195         /* There's no need for __skb_push()/__skb_pull() pair to
3196          * get to the start of the mac header as we're guaranteed
3197          * to always start from here under eBPF.
3198          */
3199         ret = bpf_skb_generic_push(skb, off, len);
3200         if (likely(!ret)) {
3201                 skb->mac_header -= len;
3202                 skb->network_header -= len;
3203                 if (trans_same)
3204                         skb->transport_header = skb->network_header;
3205         }
3206
3207         return ret;
3208 }
3209
3210 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3211 {
3212         bool trans_same = skb->transport_header == skb->network_header;
3213         int ret;
3214
3215         /* Same here, __skb_push()/__skb_pull() pair not needed. */
3216         ret = bpf_skb_generic_pop(skb, off, len);
3217         if (likely(!ret)) {
3218                 skb->mac_header += len;
3219                 skb->network_header += len;
3220                 if (trans_same)
3221                         skb->transport_header = skb->network_header;
3222         }
3223
3224         return ret;
3225 }
3226
3227 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3228 {
3229         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3230         u32 off = skb_mac_header_len(skb);
3231         int ret;
3232
3233         ret = skb_cow(skb, len_diff);
3234         if (unlikely(ret < 0))
3235                 return ret;
3236
3237         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3238         if (unlikely(ret < 0))
3239                 return ret;
3240
3241         if (skb_is_gso(skb)) {
3242                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3243
3244                 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3245                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3246                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
3247                         shinfo->gso_type |=  SKB_GSO_TCPV6;
3248                 }
3249         }
3250
3251         skb->protocol = htons(ETH_P_IPV6);
3252         skb_clear_hash(skb);
3253
3254         return 0;
3255 }
3256
3257 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3258 {
3259         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3260         u32 off = skb_mac_header_len(skb);
3261         int ret;
3262
3263         ret = skb_unclone(skb, GFP_ATOMIC);
3264         if (unlikely(ret < 0))
3265                 return ret;
3266
3267         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3268         if (unlikely(ret < 0))
3269                 return ret;
3270
3271         if (skb_is_gso(skb)) {
3272                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3273
3274                 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3275                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3276                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
3277                         shinfo->gso_type |=  SKB_GSO_TCPV4;
3278                 }
3279         }
3280
3281         skb->protocol = htons(ETH_P_IP);
3282         skb_clear_hash(skb);
3283
3284         return 0;
3285 }
3286
3287 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3288 {
3289         __be16 from_proto = skb->protocol;
3290
3291         if (from_proto == htons(ETH_P_IP) &&
3292               to_proto == htons(ETH_P_IPV6))
3293                 return bpf_skb_proto_4_to_6(skb);
3294
3295         if (from_proto == htons(ETH_P_IPV6) &&
3296               to_proto == htons(ETH_P_IP))
3297                 return bpf_skb_proto_6_to_4(skb);
3298
3299         return -ENOTSUPP;
3300 }
3301
3302 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3303            u64, flags)
3304 {
3305         int ret;
3306
3307         if (unlikely(flags))
3308                 return -EINVAL;
3309
3310         /* General idea is that this helper does the basic groundwork
3311          * needed for changing the protocol, and eBPF program fills the
3312          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3313          * and other helpers, rather than passing a raw buffer here.
3314          *
3315          * The rationale is to keep this minimal and without a need to
3316          * deal with raw packet data. F.e. even if we would pass buffers
3317          * here, the program still needs to call the bpf_lX_csum_replace()
3318          * helpers anyway. Plus, this way we keep also separation of
3319          * concerns, since f.e. bpf_skb_store_bytes() should only take
3320          * care of stores.
3321          *
3322          * Currently, additional options and extension header space are
3323          * not supported, but flags register is reserved so we can adapt
3324          * that. For offloads, we mark packet as dodgy, so that headers
3325          * need to be verified first.
3326          */
3327         ret = bpf_skb_proto_xlat(skb, proto);
3328         bpf_compute_data_pointers(skb);
3329         return ret;
3330 }
3331
3332 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3333         .func           = bpf_skb_change_proto,
3334         .gpl_only       = false,
3335         .ret_type       = RET_INTEGER,
3336         .arg1_type      = ARG_PTR_TO_CTX,
3337         .arg2_type      = ARG_ANYTHING,
3338         .arg3_type      = ARG_ANYTHING,
3339 };
3340
3341 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3342 {
3343         /* We only allow a restricted subset to be changed for now. */
3344         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3345                      !skb_pkt_type_ok(pkt_type)))
3346                 return -EINVAL;
3347
3348         skb->pkt_type = pkt_type;
3349         return 0;
3350 }
3351
3352 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3353         .func           = bpf_skb_change_type,
3354         .gpl_only       = false,
3355         .ret_type       = RET_INTEGER,
3356         .arg1_type      = ARG_PTR_TO_CTX,
3357         .arg2_type      = ARG_ANYTHING,
3358 };
3359
3360 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3361 {
3362         switch (skb->protocol) {
3363         case htons(ETH_P_IP):
3364                 return sizeof(struct iphdr);
3365         case htons(ETH_P_IPV6):
3366                 return sizeof(struct ipv6hdr);
3367         default:
3368                 return ~0U;
3369         }
3370 }
3371
3372 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3373                                          BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3374
3375 #define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3376                                          BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3377                                          BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3378                                          BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3379                                          BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3380                                          BPF_F_ADJ_ROOM_ENCAP_L2( \
3381                                           BPF_ADJ_ROOM_ENCAP_L2_MASK))
3382
3383 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3384                             u64 flags)
3385 {
3386         u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3387         bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3388         u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3389         unsigned int gso_type = SKB_GSO_DODGY;
3390         int ret;
3391
3392         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3393                 /* udp gso_size delineates datagrams, only allow if fixed */
3394                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3395                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3396                         return -ENOTSUPP;
3397         }
3398
3399         ret = skb_cow_head(skb, len_diff);
3400         if (unlikely(ret < 0))
3401                 return ret;
3402
3403         if (encap) {
3404                 if (skb->protocol != htons(ETH_P_IP) &&
3405                     skb->protocol != htons(ETH_P_IPV6))
3406                         return -ENOTSUPP;
3407
3408                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3409                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3410                         return -EINVAL;
3411
3412                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3413                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3414                         return -EINVAL;
3415
3416                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3417                     inner_mac_len < ETH_HLEN)
3418                         return -EINVAL;
3419
3420                 if (skb->encapsulation)
3421                         return -EALREADY;
3422
3423                 mac_len = skb->network_header - skb->mac_header;
3424                 inner_net = skb->network_header;
3425                 if (inner_mac_len > len_diff)
3426                         return -EINVAL;
3427                 inner_trans = skb->transport_header;
3428         }
3429
3430         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3431         if (unlikely(ret < 0))
3432                 return ret;
3433
3434         if (encap) {
3435                 skb->inner_mac_header = inner_net - inner_mac_len;
3436                 skb->inner_network_header = inner_net;
3437                 skb->inner_transport_header = inner_trans;
3438
3439                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3440                         skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3441                 else
3442                         skb_set_inner_protocol(skb, skb->protocol);
3443
3444                 skb->encapsulation = 1;
3445                 skb_set_network_header(skb, mac_len);
3446
3447                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3448                         gso_type |= SKB_GSO_UDP_TUNNEL;
3449                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3450                         gso_type |= SKB_GSO_GRE;
3451                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3452                         gso_type |= SKB_GSO_IPXIP6;
3453                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3454                         gso_type |= SKB_GSO_IPXIP4;
3455
3456                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3457                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3458                         int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3459                                         sizeof(struct ipv6hdr) :
3460                                         sizeof(struct iphdr);
3461
3462                         skb_set_transport_header(skb, mac_len + nh_len);
3463                 }
3464
3465                 /* Match skb->protocol to new outer l3 protocol */
3466                 if (skb->protocol == htons(ETH_P_IP) &&
3467                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3468                         skb->protocol = htons(ETH_P_IPV6);
3469                 else if (skb->protocol == htons(ETH_P_IPV6) &&
3470                          flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3471                         skb->protocol = htons(ETH_P_IP);
3472         }
3473
3474         if (skb_is_gso(skb)) {
3475                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3476
3477                 /* Due to header grow, MSS needs to be downgraded. */
3478                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3479                         skb_decrease_gso_size(shinfo, len_diff);
3480
3481                 /* Header must be checked, and gso_segs recomputed. */
3482                 shinfo->gso_type |= gso_type;
3483                 shinfo->gso_segs = 0;
3484         }
3485
3486         return 0;
3487 }
3488
3489 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3490                               u64 flags)
3491 {
3492         int ret;
3493
3494         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3495                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3496                 return -EINVAL;
3497
3498         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3499                 /* udp gso_size delineates datagrams, only allow if fixed */
3500                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3501                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3502                         return -ENOTSUPP;
3503         }
3504
3505         ret = skb_unclone(skb, GFP_ATOMIC);
3506         if (unlikely(ret < 0))
3507                 return ret;
3508
3509         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3510         if (unlikely(ret < 0))
3511                 return ret;
3512
3513         if (skb_is_gso(skb)) {
3514                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3515
3516                 /* Due to header shrink, MSS can be upgraded. */
3517                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3518                         skb_increase_gso_size(shinfo, len_diff);
3519
3520                 /* Header must be checked, and gso_segs recomputed. */
3521                 shinfo->gso_type |= SKB_GSO_DODGY;
3522                 shinfo->gso_segs = 0;
3523         }
3524
3525         return 0;
3526 }
3527
3528 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3529
3530 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3531            u32, mode, u64, flags)
3532 {
3533         u32 len_diff_abs = abs(len_diff);
3534         bool shrink = len_diff < 0;
3535         int ret = 0;
3536
3537         if (unlikely(flags || mode))
3538                 return -EINVAL;
3539         if (unlikely(len_diff_abs > 0xfffU))
3540                 return -EFAULT;
3541
3542         if (!shrink) {
3543                 ret = skb_cow(skb, len_diff);
3544                 if (unlikely(ret < 0))
3545                         return ret;
3546                 __skb_push(skb, len_diff_abs);
3547                 memset(skb->data, 0, len_diff_abs);
3548         } else {
3549                 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3550                         return -ENOMEM;
3551                 __skb_pull(skb, len_diff_abs);
3552         }
3553         if (tls_sw_has_ctx_rx(skb->sk)) {
3554                 struct strp_msg *rxm = strp_msg(skb);
3555
3556                 rxm->full_len += len_diff;
3557         }
3558         return ret;
3559 }
3560
3561 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3562         .func           = sk_skb_adjust_room,
3563         .gpl_only       = false,
3564         .ret_type       = RET_INTEGER,
3565         .arg1_type      = ARG_PTR_TO_CTX,
3566         .arg2_type      = ARG_ANYTHING,
3567         .arg3_type      = ARG_ANYTHING,
3568         .arg4_type      = ARG_ANYTHING,
3569 };
3570
3571 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3572            u32, mode, u64, flags)
3573 {
3574         u32 len_cur, len_diff_abs = abs(len_diff);
3575         u32 len_min = bpf_skb_net_base_len(skb);
3576         u32 len_max = BPF_SKB_MAX_LEN;
3577         __be16 proto = skb->protocol;
3578         bool shrink = len_diff < 0;
3579         u32 off;
3580         int ret;
3581
3582         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3583                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3584                 return -EINVAL;
3585         if (unlikely(len_diff_abs > 0xfffU))
3586                 return -EFAULT;
3587         if (unlikely(proto != htons(ETH_P_IP) &&
3588                      proto != htons(ETH_P_IPV6)))
3589                 return -ENOTSUPP;
3590
3591         off = skb_mac_header_len(skb);
3592         switch (mode) {
3593         case BPF_ADJ_ROOM_NET:
3594                 off += bpf_skb_net_base_len(skb);
3595                 break;
3596         case BPF_ADJ_ROOM_MAC:
3597                 break;
3598         default:
3599                 return -ENOTSUPP;
3600         }
3601
3602         len_cur = skb->len - skb_network_offset(skb);
3603         if ((shrink && (len_diff_abs >= len_cur ||
3604                         len_cur - len_diff_abs < len_min)) ||
3605             (!shrink && (skb->len + len_diff_abs > len_max &&
3606                          !skb_is_gso(skb))))
3607                 return -ENOTSUPP;
3608
3609         ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3610                        bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3611         if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3612                 __skb_reset_checksum_unnecessary(skb);
3613
3614         bpf_compute_data_pointers(skb);
3615         return ret;
3616 }
3617
3618 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3619         .func           = bpf_skb_adjust_room,
3620         .gpl_only       = false,
3621         .ret_type       = RET_INTEGER,
3622         .arg1_type      = ARG_PTR_TO_CTX,
3623         .arg2_type      = ARG_ANYTHING,
3624         .arg3_type      = ARG_ANYTHING,
3625         .arg4_type      = ARG_ANYTHING,
3626 };
3627
3628 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3629 {
3630         u32 min_len = skb_network_offset(skb);
3631
3632         if (skb_transport_header_was_set(skb))
3633                 min_len = skb_transport_offset(skb);
3634         if (skb->ip_summed == CHECKSUM_PARTIAL)
3635                 min_len = skb_checksum_start_offset(skb) +
3636                           skb->csum_offset + sizeof(__sum16);
3637         return min_len;
3638 }
3639
3640 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3641 {
3642         unsigned int old_len = skb->len;
3643         int ret;
3644
3645         ret = __skb_grow_rcsum(skb, new_len);
3646         if (!ret)
3647                 memset(skb->data + old_len, 0, new_len - old_len);
3648         return ret;
3649 }
3650
3651 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3652 {
3653         return __skb_trim_rcsum(skb, new_len);
3654 }
3655
3656 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3657                                         u64 flags)
3658 {
3659         u32 max_len = BPF_SKB_MAX_LEN;
3660         u32 min_len = __bpf_skb_min_len(skb);
3661         int ret;
3662
3663         if (unlikely(flags || new_len > max_len || new_len < min_len))
3664                 return -EINVAL;
3665         if (skb->encapsulation)
3666                 return -ENOTSUPP;
3667
3668         /* The basic idea of this helper is that it's performing the
3669          * needed work to either grow or trim an skb, and eBPF program
3670          * rewrites the rest via helpers like bpf_skb_store_bytes(),
3671          * bpf_lX_csum_replace() and others rather than passing a raw
3672          * buffer here. This one is a slow path helper and intended
3673          * for replies with control messages.
3674          *
3675          * Like in bpf_skb_change_proto(), we want to keep this rather
3676          * minimal and without protocol specifics so that we are able
3677          * to separate concerns as in bpf_skb_store_bytes() should only
3678          * be the one responsible for writing buffers.
3679          *
3680          * It's really expected to be a slow path operation here for
3681          * control message replies, so we're implicitly linearizing,
3682          * uncloning and drop offloads from the skb by this.
3683          */
3684         ret = __bpf_try_make_writable(skb, skb->len);
3685         if (!ret) {
3686                 if (new_len > skb->len)
3687                         ret = bpf_skb_grow_rcsum(skb, new_len);
3688                 else if (new_len < skb->len)
3689                         ret = bpf_skb_trim_rcsum(skb, new_len);
3690                 if (!ret && skb_is_gso(skb))
3691                         skb_gso_reset(skb);
3692         }
3693         return ret;
3694 }
3695
3696 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3697            u64, flags)
3698 {
3699         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3700
3701         bpf_compute_data_pointers(skb);
3702         return ret;
3703 }
3704
3705 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3706         .func           = bpf_skb_change_tail,
3707         .gpl_only       = false,
3708         .ret_type       = RET_INTEGER,
3709         .arg1_type      = ARG_PTR_TO_CTX,
3710         .arg2_type      = ARG_ANYTHING,
3711         .arg3_type      = ARG_ANYTHING,
3712 };
3713
3714 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3715            u64, flags)
3716 {
3717         return __bpf_skb_change_tail(skb, new_len, flags);
3718 }
3719
3720 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3721         .func           = sk_skb_change_tail,
3722         .gpl_only       = false,
3723         .ret_type       = RET_INTEGER,
3724         .arg1_type      = ARG_PTR_TO_CTX,
3725         .arg2_type      = ARG_ANYTHING,
3726         .arg3_type      = ARG_ANYTHING,
3727 };
3728
3729 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3730                                         u64 flags)
3731 {
3732         u32 max_len = BPF_SKB_MAX_LEN;
3733         u32 new_len = skb->len + head_room;
3734         int ret;
3735
3736         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3737                      new_len < skb->len))
3738                 return -EINVAL;
3739
3740         ret = skb_cow(skb, head_room);
3741         if (likely(!ret)) {
3742                 /* Idea for this helper is that we currently only
3743                  * allow to expand on mac header. This means that
3744                  * skb->protocol network header, etc, stay as is.
3745                  * Compared to bpf_skb_change_tail(), we're more
3746                  * flexible due to not needing to linearize or
3747                  * reset GSO. Intention for this helper is to be
3748                  * used by an L3 skb that needs to push mac header
3749                  * for redirection into L2 device.
3750                  */
3751                 __skb_push(skb, head_room);
3752                 memset(skb->data, 0, head_room);
3753                 skb_reset_mac_header(skb);
3754                 skb_reset_mac_len(skb);
3755         }
3756
3757         return ret;
3758 }
3759
3760 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3761            u64, flags)
3762 {
3763         int ret = __bpf_skb_change_head(skb, head_room, flags);
3764
3765         bpf_compute_data_pointers(skb);
3766         return ret;
3767 }
3768
3769 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3770         .func           = bpf_skb_change_head,
3771         .gpl_only       = false,
3772         .ret_type       = RET_INTEGER,
3773         .arg1_type      = ARG_PTR_TO_CTX,
3774         .arg2_type      = ARG_ANYTHING,
3775         .arg3_type      = ARG_ANYTHING,
3776 };
3777
3778 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3779            u64, flags)
3780 {
3781         return __bpf_skb_change_head(skb, head_room, flags);
3782 }
3783
3784 static const struct bpf_func_proto sk_skb_change_head_proto = {
3785         .func           = sk_skb_change_head,
3786         .gpl_only       = false,
3787         .ret_type       = RET_INTEGER,
3788         .arg1_type      = ARG_PTR_TO_CTX,
3789         .arg2_type      = ARG_ANYTHING,
3790         .arg3_type      = ARG_ANYTHING,
3791 };
3792
3793 BPF_CALL_1(bpf_xdp_get_buff_len, struct  xdp_buff*, xdp)
3794 {
3795         return xdp_get_buff_len(xdp);
3796 }
3797
3798 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3799         .func           = bpf_xdp_get_buff_len,
3800         .gpl_only       = false,
3801         .ret_type       = RET_INTEGER,
3802         .arg1_type      = ARG_PTR_TO_CTX,
3803 };
3804
3805 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3806
3807 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3808         .func           = bpf_xdp_get_buff_len,
3809         .gpl_only       = false,
3810         .arg1_type      = ARG_PTR_TO_BTF_ID,
3811         .arg1_btf_id    = &bpf_xdp_get_buff_len_bpf_ids[0],
3812 };
3813
3814 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3815 {
3816         return xdp_data_meta_unsupported(xdp) ? 0 :
3817                xdp->data - xdp->data_meta;
3818 }
3819
3820 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3821 {
3822         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3823         unsigned long metalen = xdp_get_metalen(xdp);
3824         void *data_start = xdp_frame_end + metalen;
3825         void *data = xdp->data + offset;
3826
3827         if (unlikely(data < data_start ||
3828                      data > xdp->data_end - ETH_HLEN))
3829                 return -EINVAL;
3830
3831         if (metalen)
3832                 memmove(xdp->data_meta + offset,
3833                         xdp->data_meta, metalen);
3834         xdp->data_meta += offset;
3835         xdp->data = data;
3836
3837         return 0;
3838 }
3839
3840 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3841         .func           = bpf_xdp_adjust_head,
3842         .gpl_only       = false,
3843         .ret_type       = RET_INTEGER,
3844         .arg1_type      = ARG_PTR_TO_CTX,
3845         .arg2_type      = ARG_ANYTHING,
3846 };
3847
3848 static void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3849                              void *buf, unsigned long len, bool flush)
3850 {
3851         unsigned long ptr_len, ptr_off = 0;
3852         skb_frag_t *next_frag, *end_frag;
3853         struct skb_shared_info *sinfo;
3854         void *src, *dst;
3855         u8 *ptr_buf;
3856
3857         if (likely(xdp->data_end - xdp->data >= off + len)) {
3858                 src = flush ? buf : xdp->data + off;
3859                 dst = flush ? xdp->data + off : buf;
3860                 memcpy(dst, src, len);
3861                 return;
3862         }
3863
3864         sinfo = xdp_get_shared_info_from_buff(xdp);
3865         end_frag = &sinfo->frags[sinfo->nr_frags];
3866         next_frag = &sinfo->frags[0];
3867
3868         ptr_len = xdp->data_end - xdp->data;
3869         ptr_buf = xdp->data;
3870
3871         while (true) {
3872                 if (off < ptr_off + ptr_len) {
3873                         unsigned long copy_off = off - ptr_off;
3874                         unsigned long copy_len = min(len, ptr_len - copy_off);
3875
3876                         src = flush ? buf : ptr_buf + copy_off;
3877                         dst = flush ? ptr_buf + copy_off : buf;
3878                         memcpy(dst, src, copy_len);
3879
3880                         off += copy_len;
3881                         len -= copy_len;
3882                         buf += copy_len;
3883                 }
3884
3885                 if (!len || next_frag == end_frag)
3886                         break;
3887
3888                 ptr_off += ptr_len;
3889                 ptr_buf = skb_frag_address(next_frag);
3890                 ptr_len = skb_frag_size(next_frag);
3891                 next_frag++;
3892         }
3893 }
3894
3895 static void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3896 {
3897         struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3898         u32 size = xdp->data_end - xdp->data;
3899         void *addr = xdp->data;
3900         int i;
3901
3902         if (unlikely(offset > 0xffff || len > 0xffff))
3903                 return ERR_PTR(-EFAULT);
3904
3905         if (offset + len > xdp_get_buff_len(xdp))
3906                 return ERR_PTR(-EINVAL);
3907
3908         if (offset < size) /* linear area */
3909                 goto out;
3910
3911         offset -= size;
3912         for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
3913                 u32 frag_size = skb_frag_size(&sinfo->frags[i]);
3914
3915                 if  (offset < frag_size) {
3916                         addr = skb_frag_address(&sinfo->frags[i]);
3917                         size = frag_size;
3918                         break;
3919                 }
3920                 offset -= frag_size;
3921         }
3922 out:
3923         return offset + len <= size ? addr + offset : NULL;
3924 }
3925
3926 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
3927            void *, buf, u32, len)
3928 {
3929         void *ptr;
3930
3931         ptr = bpf_xdp_pointer(xdp, offset, len);
3932         if (IS_ERR(ptr))
3933                 return PTR_ERR(ptr);
3934
3935         if (!ptr)
3936                 bpf_xdp_copy_buf(xdp, offset, buf, len, false);
3937         else
3938                 memcpy(buf, ptr, len);
3939
3940         return 0;
3941 }
3942
3943 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
3944         .func           = bpf_xdp_load_bytes,
3945         .gpl_only       = false,
3946         .ret_type       = RET_INTEGER,
3947         .arg1_type      = ARG_PTR_TO_CTX,
3948         .arg2_type      = ARG_ANYTHING,
3949         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
3950         .arg4_type      = ARG_CONST_SIZE,
3951 };
3952
3953 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
3954            void *, buf, u32, len)
3955 {
3956         void *ptr;
3957
3958         ptr = bpf_xdp_pointer(xdp, offset, len);
3959         if (IS_ERR(ptr))
3960                 return PTR_ERR(ptr);
3961
3962         if (!ptr)
3963                 bpf_xdp_copy_buf(xdp, offset, buf, len, true);
3964         else
3965                 memcpy(ptr, buf, len);
3966
3967         return 0;
3968 }
3969
3970 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
3971         .func           = bpf_xdp_store_bytes,
3972         .gpl_only       = false,
3973         .ret_type       = RET_INTEGER,
3974         .arg1_type      = ARG_PTR_TO_CTX,
3975         .arg2_type      = ARG_ANYTHING,
3976         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
3977         .arg4_type      = ARG_CONST_SIZE,
3978 };
3979
3980 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
3981 {
3982         struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3983         skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
3984         struct xdp_rxq_info *rxq = xdp->rxq;
3985         unsigned int tailroom;
3986
3987         if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
3988                 return -EOPNOTSUPP;
3989
3990         tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
3991         if (unlikely(offset > tailroom))
3992                 return -EINVAL;
3993
3994         memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
3995         skb_frag_size_add(frag, offset);
3996         sinfo->xdp_frags_size += offset;
3997
3998         return 0;
3999 }
4000
4001 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4002 {
4003         struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4004         int i, n_frags_free = 0, len_free = 0;
4005
4006         if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4007                 return -EINVAL;
4008
4009         for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4010                 skb_frag_t *frag = &sinfo->frags[i];
4011                 int shrink = min_t(int, offset, skb_frag_size(frag));
4012
4013                 len_free += shrink;
4014                 offset -= shrink;
4015
4016                 if (skb_frag_size(frag) == shrink) {
4017                         struct page *page = skb_frag_page(frag);
4018
4019                         __xdp_return(page_address(page), &xdp->rxq->mem,
4020                                      false, NULL);
4021                         n_frags_free++;
4022                 } else {
4023                         skb_frag_size_sub(frag, shrink);
4024                         break;
4025                 }
4026         }
4027         sinfo->nr_frags -= n_frags_free;
4028         sinfo->xdp_frags_size -= len_free;
4029
4030         if (unlikely(!sinfo->nr_frags)) {
4031                 xdp_buff_clear_frags_flag(xdp);
4032                 xdp->data_end -= offset;
4033         }
4034
4035         return 0;
4036 }
4037
4038 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4039 {
4040         void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4041         void *data_end = xdp->data_end + offset;
4042
4043         if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4044                 if (offset < 0)
4045                         return bpf_xdp_frags_shrink_tail(xdp, -offset);
4046
4047                 return bpf_xdp_frags_increase_tail(xdp, offset);
4048         }
4049
4050         /* Notice that xdp_data_hard_end have reserved some tailroom */
4051         if (unlikely(data_end > data_hard_end))
4052                 return -EINVAL;
4053
4054         /* ALL drivers MUST init xdp->frame_sz, chicken check below */
4055         if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
4056                 WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
4057                 return -EINVAL;
4058         }
4059
4060         if (unlikely(data_end < xdp->data + ETH_HLEN))
4061                 return -EINVAL;
4062
4063         /* Clear memory area on grow, can contain uninit kernel memory */
4064         if (offset > 0)
4065                 memset(xdp->data_end, 0, offset);
4066
4067         xdp->data_end = data_end;
4068
4069         return 0;
4070 }
4071
4072 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4073         .func           = bpf_xdp_adjust_tail,
4074         .gpl_only       = false,
4075         .ret_type       = RET_INTEGER,
4076         .arg1_type      = ARG_PTR_TO_CTX,
4077         .arg2_type      = ARG_ANYTHING,
4078 };
4079
4080 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4081 {
4082         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4083         void *meta = xdp->data_meta + offset;
4084         unsigned long metalen = xdp->data - meta;
4085
4086         if (xdp_data_meta_unsupported(xdp))
4087                 return -ENOTSUPP;
4088         if (unlikely(meta < xdp_frame_end ||
4089                      meta > xdp->data))
4090                 return -EINVAL;
4091         if (unlikely(xdp_metalen_invalid(metalen)))
4092                 return -EACCES;
4093
4094         xdp->data_meta = meta;
4095
4096         return 0;
4097 }
4098
4099 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4100         .func           = bpf_xdp_adjust_meta,
4101         .gpl_only       = false,
4102         .ret_type       = RET_INTEGER,
4103         .arg1_type      = ARG_PTR_TO_CTX,
4104         .arg2_type      = ARG_ANYTHING,
4105 };
4106
4107 /* XDP_REDIRECT works by a three-step process, implemented in the functions
4108  * below:
4109  *
4110  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4111  *    of the redirect and store it (along with some other metadata) in a per-CPU
4112  *    struct bpf_redirect_info.
4113  *
4114  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4115  *    call xdp_do_redirect() which will use the information in struct
4116  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4117  *    bulk queue structure.
4118  *
4119  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
4120  *    which will flush all the different bulk queues, thus completing the
4121  *    redirect.
4122  *
4123  * Pointers to the map entries will be kept around for this whole sequence of
4124  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4125  * the core code; instead, the RCU protection relies on everything happening
4126  * inside a single NAPI poll sequence, which means it's between a pair of calls
4127  * to local_bh_disable()/local_bh_enable().
4128  *
4129  * The map entries are marked as __rcu and the map code makes sure to
4130  * dereference those pointers with rcu_dereference_check() in a way that works
4131  * for both sections that to hold an rcu_read_lock() and sections that are
4132  * called from NAPI without a separate rcu_read_lock(). The code below does not
4133  * use RCU annotations, but relies on those in the map code.
4134  */
4135 void xdp_do_flush(void)
4136 {
4137         __dev_flush();
4138         __cpu_map_flush();
4139         __xsk_map_flush();
4140 }
4141 EXPORT_SYMBOL_GPL(xdp_do_flush);
4142
4143 void bpf_clear_redirect_map(struct bpf_map *map)
4144 {
4145         struct bpf_redirect_info *ri;
4146         int cpu;
4147
4148         for_each_possible_cpu(cpu) {
4149                 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4150                 /* Avoid polluting remote cacheline due to writes if
4151                  * not needed. Once we pass this test, we need the
4152                  * cmpxchg() to make sure it hasn't been changed in
4153                  * the meantime by remote CPU.
4154                  */
4155                 if (unlikely(READ_ONCE(ri->map) == map))
4156                         cmpxchg(&ri->map, map, NULL);
4157         }
4158 }
4159
4160 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4161 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4162
4163 u32 xdp_master_redirect(struct xdp_buff *xdp)
4164 {
4165         struct net_device *master, *slave;
4166         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4167
4168         master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4169         slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4170         if (slave && slave != xdp->rxq->dev) {
4171                 /* The target device is different from the receiving device, so
4172                  * redirect it to the new device.
4173                  * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4174                  * drivers to unmap the packet from their rx ring.
4175                  */
4176                 ri->tgt_index = slave->ifindex;
4177                 ri->map_id = INT_MAX;
4178                 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4179                 return XDP_REDIRECT;
4180         }
4181         return XDP_TX;
4182 }
4183 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4184
4185 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4186                                         struct net_device *dev,
4187                                         struct xdp_buff *xdp,
4188                                         struct bpf_prog *xdp_prog)
4189 {
4190         enum bpf_map_type map_type = ri->map_type;
4191         void *fwd = ri->tgt_value;
4192         u32 map_id = ri->map_id;
4193         int err;
4194
4195         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4196         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4197
4198         err = __xsk_map_redirect(fwd, xdp);
4199         if (unlikely(err))
4200                 goto err;
4201
4202         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4203         return 0;
4204 err:
4205         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4206         return err;
4207 }
4208
4209 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4210                                                    struct net_device *dev,
4211                                                    struct xdp_frame *xdpf,
4212                                                    struct bpf_prog *xdp_prog)
4213 {
4214         enum bpf_map_type map_type = ri->map_type;
4215         void *fwd = ri->tgt_value;
4216         u32 map_id = ri->map_id;
4217         struct bpf_map *map;
4218         int err;
4219
4220         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4221         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4222
4223         if (unlikely(!xdpf)) {
4224                 err = -EOVERFLOW;
4225                 goto err;
4226         }
4227
4228         switch (map_type) {
4229         case BPF_MAP_TYPE_DEVMAP:
4230                 fallthrough;
4231         case BPF_MAP_TYPE_DEVMAP_HASH:
4232                 map = READ_ONCE(ri->map);
4233                 if (unlikely(map)) {
4234                         WRITE_ONCE(ri->map, NULL);
4235                         err = dev_map_enqueue_multi(xdpf, dev, map,
4236                                                     ri->flags & BPF_F_EXCLUDE_INGRESS);
4237                 } else {
4238                         err = dev_map_enqueue(fwd, xdpf, dev);
4239                 }
4240                 break;
4241         case BPF_MAP_TYPE_CPUMAP:
4242                 err = cpu_map_enqueue(fwd, xdpf, dev);
4243                 break;
4244         case BPF_MAP_TYPE_UNSPEC:
4245                 if (map_id == INT_MAX) {
4246                         fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4247                         if (unlikely(!fwd)) {
4248                                 err = -EINVAL;
4249                                 break;
4250                         }
4251                         err = dev_xdp_enqueue(fwd, xdpf, dev);
4252                         break;
4253                 }
4254                 fallthrough;
4255         default:
4256                 err = -EBADRQC;
4257         }
4258
4259         if (unlikely(err))
4260                 goto err;
4261
4262         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4263         return 0;
4264 err:
4265         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4266         return err;
4267 }
4268
4269 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4270                     struct bpf_prog *xdp_prog)
4271 {
4272         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4273         enum bpf_map_type map_type = ri->map_type;
4274
4275         /* XDP_REDIRECT is not fully supported yet for xdp frags since
4276          * not all XDP capable drivers can map non-linear xdp_frame in
4277          * ndo_xdp_xmit.
4278          */
4279         if (unlikely(xdp_buff_has_frags(xdp) &&
4280                      map_type != BPF_MAP_TYPE_CPUMAP))
4281                 return -EOPNOTSUPP;
4282
4283         if (map_type == BPF_MAP_TYPE_XSKMAP)
4284                 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4285
4286         return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4287                                        xdp_prog);
4288 }
4289 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4290
4291 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4292                           struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4293 {
4294         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4295         enum bpf_map_type map_type = ri->map_type;
4296
4297         if (map_type == BPF_MAP_TYPE_XSKMAP)
4298                 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4299
4300         return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4301 }
4302 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4303
4304 static int xdp_do_generic_redirect_map(struct net_device *dev,
4305                                        struct sk_buff *skb,
4306                                        struct xdp_buff *xdp,
4307                                        struct bpf_prog *xdp_prog,
4308                                        void *fwd,
4309                                        enum bpf_map_type map_type, u32 map_id)
4310 {
4311         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4312         struct bpf_map *map;
4313         int err;
4314
4315         switch (map_type) {
4316         case BPF_MAP_TYPE_DEVMAP:
4317                 fallthrough;
4318         case BPF_MAP_TYPE_DEVMAP_HASH:
4319                 map = READ_ONCE(ri->map);
4320                 if (unlikely(map)) {
4321                         WRITE_ONCE(ri->map, NULL);
4322                         err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4323                                                      ri->flags & BPF_F_EXCLUDE_INGRESS);
4324                 } else {
4325                         err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4326                 }
4327                 if (unlikely(err))
4328                         goto err;
4329                 break;
4330         case BPF_MAP_TYPE_XSKMAP:
4331                 err = xsk_generic_rcv(fwd, xdp);
4332                 if (err)
4333                         goto err;
4334                 consume_skb(skb);
4335                 break;
4336         case BPF_MAP_TYPE_CPUMAP:
4337                 err = cpu_map_generic_redirect(fwd, skb);
4338                 if (unlikely(err))
4339                         goto err;
4340                 break;
4341         default:
4342                 err = -EBADRQC;
4343                 goto err;
4344         }
4345
4346         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4347         return 0;
4348 err:
4349         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4350         return err;
4351 }
4352
4353 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4354                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4355 {
4356         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4357         enum bpf_map_type map_type = ri->map_type;
4358         void *fwd = ri->tgt_value;
4359         u32 map_id = ri->map_id;
4360         int err;
4361
4362         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4363         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4364
4365         if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4366                 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4367                 if (unlikely(!fwd)) {
4368                         err = -EINVAL;
4369                         goto err;
4370                 }
4371
4372                 err = xdp_ok_fwd_dev(fwd, skb->len);
4373                 if (unlikely(err))
4374                         goto err;
4375
4376                 skb->dev = fwd;
4377                 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4378                 generic_xdp_tx(skb, xdp_prog);
4379                 return 0;
4380         }
4381
4382         return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4383 err:
4384         _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4385         return err;
4386 }
4387
4388 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4389 {
4390         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4391
4392         if (unlikely(flags))
4393                 return XDP_ABORTED;
4394
4395         /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4396          * by map_idr) is used for ifindex based XDP redirect.
4397          */
4398         ri->tgt_index = ifindex;
4399         ri->map_id = INT_MAX;
4400         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4401
4402         return XDP_REDIRECT;
4403 }
4404
4405 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4406         .func           = bpf_xdp_redirect,
4407         .gpl_only       = false,
4408         .ret_type       = RET_INTEGER,
4409         .arg1_type      = ARG_ANYTHING,
4410         .arg2_type      = ARG_ANYTHING,
4411 };
4412
4413 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4414            u64, flags)
4415 {
4416         return map->ops->map_redirect(map, ifindex, flags);
4417 }
4418
4419 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4420         .func           = bpf_xdp_redirect_map,
4421         .gpl_only       = false,
4422         .ret_type       = RET_INTEGER,
4423         .arg1_type      = ARG_CONST_MAP_PTR,
4424         .arg2_type      = ARG_ANYTHING,
4425         .arg3_type      = ARG_ANYTHING,
4426 };
4427
4428 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4429                                   unsigned long off, unsigned long len)
4430 {
4431         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4432
4433         if (unlikely(!ptr))
4434                 return len;
4435         if (ptr != dst_buff)
4436                 memcpy(dst_buff, ptr, len);
4437
4438         return 0;
4439 }
4440
4441 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4442            u64, flags, void *, meta, u64, meta_size)
4443 {
4444         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4445
4446         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4447                 return -EINVAL;
4448         if (unlikely(!skb || skb_size > skb->len))
4449                 return -EFAULT;
4450
4451         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4452                                 bpf_skb_copy);
4453 }
4454
4455 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4456         .func           = bpf_skb_event_output,
4457         .gpl_only       = true,
4458         .ret_type       = RET_INTEGER,
4459         .arg1_type      = ARG_PTR_TO_CTX,
4460         .arg2_type      = ARG_CONST_MAP_PTR,
4461         .arg3_type      = ARG_ANYTHING,
4462         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4463         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4464 };
4465
4466 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4467
4468 const struct bpf_func_proto bpf_skb_output_proto = {
4469         .func           = bpf_skb_event_output,
4470         .gpl_only       = true,
4471         .ret_type       = RET_INTEGER,
4472         .arg1_type      = ARG_PTR_TO_BTF_ID,
4473         .arg1_btf_id    = &bpf_skb_output_btf_ids[0],
4474         .arg2_type      = ARG_CONST_MAP_PTR,
4475         .arg3_type      = ARG_ANYTHING,
4476         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4477         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4478 };
4479
4480 static unsigned short bpf_tunnel_key_af(u64 flags)
4481 {
4482         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4483 }
4484
4485 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4486            u32, size, u64, flags)
4487 {
4488         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4489         u8 compat[sizeof(struct bpf_tunnel_key)];
4490         void *to_orig = to;
4491         int err;
4492
4493         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4494                                          BPF_F_TUNINFO_FLAGS)))) {
4495                 err = -EINVAL;
4496                 goto err_clear;
4497         }
4498         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4499                 err = -EPROTO;
4500                 goto err_clear;
4501         }
4502         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4503                 err = -EINVAL;
4504                 switch (size) {
4505                 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4506                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4507                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4508                         goto set_compat;
4509                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4510                         /* Fixup deprecated structure layouts here, so we have
4511                          * a common path later on.
4512                          */
4513                         if (ip_tunnel_info_af(info) != AF_INET)
4514                                 goto err_clear;
4515 set_compat:
4516                         to = (struct bpf_tunnel_key *)compat;
4517                         break;
4518                 default:
4519                         goto err_clear;
4520                 }
4521         }
4522
4523         to->tunnel_id = be64_to_cpu(info->key.tun_id);
4524         to->tunnel_tos = info->key.tos;
4525         to->tunnel_ttl = info->key.ttl;
4526         if (flags & BPF_F_TUNINFO_FLAGS)
4527                 to->tunnel_flags = info->key.tun_flags;
4528         else
4529                 to->tunnel_ext = 0;
4530
4531         if (flags & BPF_F_TUNINFO_IPV6) {
4532                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4533                        sizeof(to->remote_ipv6));
4534                 memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4535                        sizeof(to->local_ipv6));
4536                 to->tunnel_label = be32_to_cpu(info->key.label);
4537         } else {
4538                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4539                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4540                 to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4541                 memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4542                 to->tunnel_label = 0;
4543         }
4544
4545         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4546                 memcpy(to_orig, to, size);
4547
4548         return 0;
4549 err_clear:
4550         memset(to_orig, 0, size);
4551         return err;
4552 }
4553
4554 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4555         .func           = bpf_skb_get_tunnel_key,
4556         .gpl_only       = false,
4557         .ret_type       = RET_INTEGER,
4558         .arg1_type      = ARG_PTR_TO_CTX,
4559         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4560         .arg3_type      = ARG_CONST_SIZE,
4561         .arg4_type      = ARG_ANYTHING,
4562 };
4563
4564 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4565 {
4566         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4567         int err;
4568
4569         if (unlikely(!info ||
4570                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4571                 err = -ENOENT;
4572                 goto err_clear;
4573         }
4574         if (unlikely(size < info->options_len)) {
4575                 err = -ENOMEM;
4576                 goto err_clear;
4577         }
4578
4579         ip_tunnel_info_opts_get(to, info);
4580         if (size > info->options_len)
4581                 memset(to + info->options_len, 0, size - info->options_len);
4582
4583         return info->options_len;
4584 err_clear:
4585         memset(to, 0, size);
4586         return err;
4587 }
4588
4589 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4590         .func           = bpf_skb_get_tunnel_opt,
4591         .gpl_only       = false,
4592         .ret_type       = RET_INTEGER,
4593         .arg1_type      = ARG_PTR_TO_CTX,
4594         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4595         .arg3_type      = ARG_CONST_SIZE,
4596 };
4597
4598 static struct metadata_dst __percpu *md_dst;
4599
4600 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4601            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4602 {
4603         struct metadata_dst *md = this_cpu_ptr(md_dst);
4604         u8 compat[sizeof(struct bpf_tunnel_key)];
4605         struct ip_tunnel_info *info;
4606
4607         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4608                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4609                 return -EINVAL;
4610         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4611                 switch (size) {
4612                 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4613                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4614                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4615                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4616                         /* Fixup deprecated structure layouts here, so we have
4617                          * a common path later on.
4618                          */
4619                         memcpy(compat, from, size);
4620                         memset(compat + size, 0, sizeof(compat) - size);
4621                         from = (const struct bpf_tunnel_key *) compat;
4622                         break;
4623                 default:
4624                         return -EINVAL;
4625                 }
4626         }
4627         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4628                      from->tunnel_ext))
4629                 return -EINVAL;
4630
4631         skb_dst_drop(skb);
4632         dst_hold((struct dst_entry *) md);
4633         skb_dst_set(skb, (struct dst_entry *) md);
4634
4635         info = &md->u.tun_info;
4636         memset(info, 0, sizeof(*info));
4637         info->mode = IP_TUNNEL_INFO_TX;
4638
4639         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4640         if (flags & BPF_F_DONT_FRAGMENT)
4641                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4642         if (flags & BPF_F_ZERO_CSUM_TX)
4643                 info->key.tun_flags &= ~TUNNEL_CSUM;
4644         if (flags & BPF_F_SEQ_NUMBER)
4645                 info->key.tun_flags |= TUNNEL_SEQ;
4646
4647         info->key.tun_id = cpu_to_be64(from->tunnel_id);
4648         info->key.tos = from->tunnel_tos;
4649         info->key.ttl = from->tunnel_ttl;
4650
4651         if (flags & BPF_F_TUNINFO_IPV6) {
4652                 info->mode |= IP_TUNNEL_INFO_IPV6;
4653                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4654                        sizeof(from->remote_ipv6));
4655                 memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4656                        sizeof(from->local_ipv6));
4657                 info->key.label = cpu_to_be32(from->tunnel_label) &
4658                                   IPV6_FLOWLABEL_MASK;
4659         } else {
4660                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4661                 info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4662                 info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4663         }
4664
4665         return 0;
4666 }
4667
4668 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4669         .func           = bpf_skb_set_tunnel_key,
4670         .gpl_only       = false,
4671         .ret_type       = RET_INTEGER,
4672         .arg1_type      = ARG_PTR_TO_CTX,
4673         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4674         .arg3_type      = ARG_CONST_SIZE,
4675         .arg4_type      = ARG_ANYTHING,
4676 };
4677
4678 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4679            const u8 *, from, u32, size)
4680 {
4681         struct ip_tunnel_info *info = skb_tunnel_info(skb);
4682         const struct metadata_dst *md = this_cpu_ptr(md_dst);
4683
4684         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4685                 return -EINVAL;
4686         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4687                 return -ENOMEM;
4688
4689         ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4690
4691         return 0;
4692 }
4693
4694 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4695         .func           = bpf_skb_set_tunnel_opt,
4696         .gpl_only       = false,
4697         .ret_type       = RET_INTEGER,
4698         .arg1_type      = ARG_PTR_TO_CTX,
4699         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4700         .arg3_type      = ARG_CONST_SIZE,
4701 };
4702
4703 static const struct bpf_func_proto *
4704 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4705 {
4706         if (!md_dst) {
4707                 struct metadata_dst __percpu *tmp;
4708
4709                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4710                                                 METADATA_IP_TUNNEL,
4711                                                 GFP_KERNEL);
4712                 if (!tmp)
4713                         return NULL;
4714                 if (cmpxchg(&md_dst, NULL, tmp))
4715                         metadata_dst_free_percpu(tmp);
4716         }
4717
4718         switch (which) {
4719         case BPF_FUNC_skb_set_tunnel_key:
4720                 return &bpf_skb_set_tunnel_key_proto;
4721         case BPF_FUNC_skb_set_tunnel_opt:
4722                 return &bpf_skb_set_tunnel_opt_proto;
4723         default:
4724                 return NULL;
4725         }
4726 }
4727
4728 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4729            u32, idx)
4730 {
4731         struct bpf_array *array = container_of(map, struct bpf_array, map);
4732         struct cgroup *cgrp;
4733         struct sock *sk;
4734
4735         sk = skb_to_full_sk(skb);
4736         if (!sk || !sk_fullsock(sk))
4737                 return -ENOENT;
4738         if (unlikely(idx >= array->map.max_entries))
4739                 return -E2BIG;
4740
4741         cgrp = READ_ONCE(array->ptrs[idx]);
4742         if (unlikely(!cgrp))
4743                 return -EAGAIN;
4744
4745         return sk_under_cgroup_hierarchy(sk, cgrp);
4746 }
4747
4748 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4749         .func           = bpf_skb_under_cgroup,
4750         .gpl_only       = false,
4751         .ret_type       = RET_INTEGER,
4752         .arg1_type      = ARG_PTR_TO_CTX,
4753         .arg2_type      = ARG_CONST_MAP_PTR,
4754         .arg3_type      = ARG_ANYTHING,
4755 };
4756
4757 #ifdef CONFIG_SOCK_CGROUP_DATA
4758 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4759 {
4760         struct cgroup *cgrp;
4761
4762         sk = sk_to_full_sk(sk);
4763         if (!sk || !sk_fullsock(sk))
4764                 return 0;
4765
4766         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4767         return cgroup_id(cgrp);
4768 }
4769
4770 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4771 {
4772         return __bpf_sk_cgroup_id(skb->sk);
4773 }
4774
4775 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4776         .func           = bpf_skb_cgroup_id,
4777         .gpl_only       = false,
4778         .ret_type       = RET_INTEGER,
4779         .arg1_type      = ARG_PTR_TO_CTX,
4780 };
4781
4782 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4783                                               int ancestor_level)
4784 {
4785         struct cgroup *ancestor;
4786         struct cgroup *cgrp;
4787
4788         sk = sk_to_full_sk(sk);
4789         if (!sk || !sk_fullsock(sk))
4790                 return 0;
4791
4792         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4793         ancestor = cgroup_ancestor(cgrp, ancestor_level);
4794         if (!ancestor)
4795                 return 0;
4796
4797         return cgroup_id(ancestor);
4798 }
4799
4800 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4801            ancestor_level)
4802 {
4803         return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4804 }
4805
4806 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4807         .func           = bpf_skb_ancestor_cgroup_id,
4808         .gpl_only       = false,
4809         .ret_type       = RET_INTEGER,
4810         .arg1_type      = ARG_PTR_TO_CTX,
4811         .arg2_type      = ARG_ANYTHING,
4812 };
4813
4814 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4815 {
4816         return __bpf_sk_cgroup_id(sk);
4817 }
4818
4819 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4820         .func           = bpf_sk_cgroup_id,
4821         .gpl_only       = false,
4822         .ret_type       = RET_INTEGER,
4823         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4824 };
4825
4826 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4827 {
4828         return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4829 }
4830
4831 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4832         .func           = bpf_sk_ancestor_cgroup_id,
4833         .gpl_only       = false,
4834         .ret_type       = RET_INTEGER,
4835         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4836         .arg2_type      = ARG_ANYTHING,
4837 };
4838 #endif
4839
4840 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4841                                   unsigned long off, unsigned long len)
4842 {
4843         struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4844
4845         bpf_xdp_copy_buf(xdp, off, dst, len, false);
4846         return 0;
4847 }
4848
4849 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4850            u64, flags, void *, meta, u64, meta_size)
4851 {
4852         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4853
4854         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4855                 return -EINVAL;
4856
4857         if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4858                 return -EFAULT;
4859
4860         return bpf_event_output(map, flags, meta, meta_size, xdp,
4861                                 xdp_size, bpf_xdp_copy);
4862 }
4863
4864 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4865         .func           = bpf_xdp_event_output,
4866         .gpl_only       = true,
4867         .ret_type       = RET_INTEGER,
4868         .arg1_type      = ARG_PTR_TO_CTX,
4869         .arg2_type      = ARG_CONST_MAP_PTR,
4870         .arg3_type      = ARG_ANYTHING,
4871         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4872         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4873 };
4874
4875 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4876
4877 const struct bpf_func_proto bpf_xdp_output_proto = {
4878         .func           = bpf_xdp_event_output,
4879         .gpl_only       = true,
4880         .ret_type       = RET_INTEGER,
4881         .arg1_type      = ARG_PTR_TO_BTF_ID,
4882         .arg1_btf_id    = &bpf_xdp_output_btf_ids[0],
4883         .arg2_type      = ARG_CONST_MAP_PTR,
4884         .arg3_type      = ARG_ANYTHING,
4885         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4886         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4887 };
4888
4889 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4890 {
4891         return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4892 }
4893
4894 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4895         .func           = bpf_get_socket_cookie,
4896         .gpl_only       = false,
4897         .ret_type       = RET_INTEGER,
4898         .arg1_type      = ARG_PTR_TO_CTX,
4899 };
4900
4901 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4902 {
4903         return __sock_gen_cookie(ctx->sk);
4904 }
4905
4906 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4907         .func           = bpf_get_socket_cookie_sock_addr,
4908         .gpl_only       = false,
4909         .ret_type       = RET_INTEGER,
4910         .arg1_type      = ARG_PTR_TO_CTX,
4911 };
4912
4913 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4914 {
4915         return __sock_gen_cookie(ctx);
4916 }
4917
4918 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4919         .func           = bpf_get_socket_cookie_sock,
4920         .gpl_only       = false,
4921         .ret_type       = RET_INTEGER,
4922         .arg1_type      = ARG_PTR_TO_CTX,
4923 };
4924
4925 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4926 {
4927         return sk ? sock_gen_cookie(sk) : 0;
4928 }
4929
4930 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4931         .func           = bpf_get_socket_ptr_cookie,
4932         .gpl_only       = false,
4933         .ret_type       = RET_INTEGER,
4934         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4935 };
4936
4937 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4938 {
4939         return __sock_gen_cookie(ctx->sk);
4940 }
4941
4942 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4943         .func           = bpf_get_socket_cookie_sock_ops,
4944         .gpl_only       = false,
4945         .ret_type       = RET_INTEGER,
4946         .arg1_type      = ARG_PTR_TO_CTX,
4947 };
4948
4949 static u64 __bpf_get_netns_cookie(struct sock *sk)
4950 {
4951         const struct net *net = sk ? sock_net(sk) : &init_net;
4952
4953         return net->net_cookie;
4954 }
4955
4956 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4957 {
4958         return __bpf_get_netns_cookie(ctx);
4959 }
4960
4961 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4962         .func           = bpf_get_netns_cookie_sock,
4963         .gpl_only       = false,
4964         .ret_type       = RET_INTEGER,
4965         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4966 };
4967
4968 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4969 {
4970         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4971 }
4972
4973 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4974         .func           = bpf_get_netns_cookie_sock_addr,
4975         .gpl_only       = false,
4976         .ret_type       = RET_INTEGER,
4977         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4978 };
4979
4980 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4981 {
4982         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4983 }
4984
4985 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
4986         .func           = bpf_get_netns_cookie_sock_ops,
4987         .gpl_only       = false,
4988         .ret_type       = RET_INTEGER,
4989         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4990 };
4991
4992 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
4993 {
4994         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4995 }
4996
4997 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
4998         .func           = bpf_get_netns_cookie_sk_msg,
4999         .gpl_only       = false,
5000         .ret_type       = RET_INTEGER,
5001         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
5002 };
5003
5004 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5005 {
5006         struct sock *sk = sk_to_full_sk(skb->sk);
5007         kuid_t kuid;
5008
5009         if (!sk || !sk_fullsock(sk))
5010                 return overflowuid;
5011         kuid = sock_net_uid(sock_net(sk), sk);
5012         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5013 }
5014
5015 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5016         .func           = bpf_get_socket_uid,
5017         .gpl_only       = false,
5018         .ret_type       = RET_INTEGER,
5019         .arg1_type      = ARG_PTR_TO_CTX,
5020 };
5021
5022 static int sol_socket_sockopt(struct sock *sk, int optname,
5023                               char *optval, int *optlen,
5024                               bool getopt)
5025 {
5026         switch (optname) {
5027         case SO_REUSEADDR:
5028         case SO_SNDBUF:
5029         case SO_RCVBUF:
5030         case SO_KEEPALIVE:
5031         case SO_PRIORITY:
5032         case SO_REUSEPORT:
5033         case SO_RCVLOWAT:
5034         case SO_MARK:
5035         case SO_MAX_PACING_RATE:
5036         case SO_BINDTOIFINDEX:
5037         case SO_TXREHASH:
5038                 if (*optlen != sizeof(int))
5039                         return -EINVAL;
5040                 break;
5041         case SO_BINDTODEVICE:
5042                 break;
5043         default:
5044                 return -EINVAL;
5045         }
5046
5047         if (getopt) {
5048                 if (optname == SO_BINDTODEVICE)
5049                         return -EINVAL;
5050                 return sk_getsockopt(sk, SOL_SOCKET, optname,
5051                                      KERNEL_SOCKPTR(optval),
5052                                      KERNEL_SOCKPTR(optlen));
5053         }
5054
5055         return sk_setsockopt(sk, SOL_SOCKET, optname,
5056                              KERNEL_SOCKPTR(optval), *optlen);
5057 }
5058
5059 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5060                                   char *optval, int optlen)
5061 {
5062         struct tcp_sock *tp = tcp_sk(sk);
5063         unsigned long timeout;
5064         int val;
5065
5066         if (optlen != sizeof(int))
5067                 return -EINVAL;
5068
5069         val = *(int *)optval;
5070
5071         /* Only some options are supported */
5072         switch (optname) {
5073         case TCP_BPF_IW:
5074                 if (val <= 0 || tp->data_segs_out > tp->syn_data)
5075                         return -EINVAL;
5076                 tcp_snd_cwnd_set(tp, val);
5077                 break;
5078         case TCP_BPF_SNDCWND_CLAMP:
5079                 if (val <= 0)
5080                         return -EINVAL;
5081                 tp->snd_cwnd_clamp = val;
5082                 tp->snd_ssthresh = val;
5083                 break;
5084         case TCP_BPF_DELACK_MAX:
5085                 timeout = usecs_to_jiffies(val);
5086                 if (timeout > TCP_DELACK_MAX ||
5087                     timeout < TCP_TIMEOUT_MIN)
5088                         return -EINVAL;
5089                 inet_csk(sk)->icsk_delack_max = timeout;
5090                 break;
5091         case TCP_BPF_RTO_MIN:
5092                 timeout = usecs_to_jiffies(val);
5093                 if (timeout > TCP_RTO_MIN ||
5094                     timeout < TCP_TIMEOUT_MIN)
5095                         return -EINVAL;
5096                 inet_csk(sk)->icsk_rto_min = timeout;
5097                 break;
5098         default:
5099                 return -EINVAL;
5100         }
5101
5102         return 0;
5103 }
5104
5105 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5106                                       int *optlen, bool getopt)
5107 {
5108         struct tcp_sock *tp;
5109         int ret;
5110
5111         if (*optlen < 2)
5112                 return -EINVAL;
5113
5114         if (getopt) {
5115                 if (!inet_csk(sk)->icsk_ca_ops)
5116                         return -EINVAL;
5117                 /* BPF expects NULL-terminated tcp-cc string */
5118                 optval[--(*optlen)] = '\0';
5119                 return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5120                                          KERNEL_SOCKPTR(optval),
5121                                          KERNEL_SOCKPTR(optlen));
5122         }
5123
5124         /* "cdg" is the only cc that alloc a ptr
5125          * in inet_csk_ca area.  The bpf-tcp-cc may
5126          * overwrite this ptr after switching to cdg.
5127          */
5128         if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5129                 return -ENOTSUPP;
5130
5131         /* It stops this looping
5132          *
5133          * .init => bpf_setsockopt(tcp_cc) => .init =>
5134          * bpf_setsockopt(tcp_cc)" => .init => ....
5135          *
5136          * The second bpf_setsockopt(tcp_cc) is not allowed
5137          * in order to break the loop when both .init
5138          * are the same bpf prog.
5139          *
5140          * This applies even the second bpf_setsockopt(tcp_cc)
5141          * does not cause a loop.  This limits only the first
5142          * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5143          * pick a fallback cc (eg. peer does not support ECN)
5144          * and the second '.init' cannot fallback to
5145          * another.
5146          */
5147         tp = tcp_sk(sk);
5148         if (tp->bpf_chg_cc_inprogress)
5149                 return -EBUSY;
5150
5151         tp->bpf_chg_cc_inprogress = 1;
5152         ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5153                                 KERNEL_SOCKPTR(optval), *optlen);
5154         tp->bpf_chg_cc_inprogress = 0;
5155         return ret;
5156 }
5157
5158 static int sol_tcp_sockopt(struct sock *sk, int optname,
5159                            char *optval, int *optlen,
5160                            bool getopt)
5161 {
5162         if (sk->sk_prot->setsockopt != tcp_setsockopt)
5163                 return -EINVAL;
5164
5165         switch (optname) {
5166         case TCP_NODELAY:
5167         case TCP_MAXSEG:
5168         case TCP_KEEPIDLE:
5169         case TCP_KEEPINTVL:
5170         case TCP_KEEPCNT:
5171         case TCP_SYNCNT:
5172         case TCP_WINDOW_CLAMP:
5173         case TCP_THIN_LINEAR_TIMEOUTS:
5174         case TCP_USER_TIMEOUT:
5175         case TCP_NOTSENT_LOWAT:
5176         case TCP_SAVE_SYN:
5177                 if (*optlen != sizeof(int))
5178                         return -EINVAL;
5179                 break;
5180         case TCP_CONGESTION:
5181                 return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5182         case TCP_SAVED_SYN:
5183                 if (*optlen < 1)
5184                         return -EINVAL;
5185                 break;
5186         default:
5187                 if (getopt)
5188                         return -EINVAL;
5189                 return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5190         }
5191
5192         if (getopt) {
5193                 if (optname == TCP_SAVED_SYN) {
5194                         struct tcp_sock *tp = tcp_sk(sk);
5195
5196                         if (!tp->saved_syn ||
5197                             *optlen > tcp_saved_syn_len(tp->saved_syn))
5198                                 return -EINVAL;
5199                         memcpy(optval, tp->saved_syn->data, *optlen);
5200                         /* It cannot free tp->saved_syn here because it
5201                          * does not know if the user space still needs it.
5202                          */
5203                         return 0;
5204                 }
5205
5206                 return do_tcp_getsockopt(sk, SOL_TCP, optname,
5207                                          KERNEL_SOCKPTR(optval),
5208                                          KERNEL_SOCKPTR(optlen));
5209         }
5210
5211         return do_tcp_setsockopt(sk, SOL_TCP, optname,
5212                                  KERNEL_SOCKPTR(optval), *optlen);
5213 }
5214
5215 static int sol_ip_sockopt(struct sock *sk, int optname,
5216                           char *optval, int *optlen,
5217                           bool getopt)
5218 {
5219         if (sk->sk_family != AF_INET)
5220                 return -EINVAL;
5221
5222         switch (optname) {
5223         case IP_TOS:
5224                 if (*optlen != sizeof(int))
5225                         return -EINVAL;
5226                 break;
5227         default:
5228                 return -EINVAL;
5229         }
5230
5231         if (getopt)
5232                 return do_ip_getsockopt(sk, SOL_IP, optname,
5233                                         KERNEL_SOCKPTR(optval),
5234                                         KERNEL_SOCKPTR(optlen));
5235
5236         return do_ip_setsockopt(sk, SOL_IP, optname,
5237                                 KERNEL_SOCKPTR(optval), *optlen);
5238 }
5239
5240 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5241                             char *optval, int *optlen,
5242                             bool getopt)
5243 {
5244         if (sk->sk_family != AF_INET6)
5245                 return -EINVAL;
5246
5247         switch (optname) {
5248         case IPV6_TCLASS:
5249         case IPV6_AUTOFLOWLABEL:
5250                 if (*optlen != sizeof(int))
5251                         return -EINVAL;
5252                 break;
5253         default:
5254                 return -EINVAL;
5255         }
5256
5257         if (getopt)
5258                 return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5259                                                       KERNEL_SOCKPTR(optval),
5260                                                       KERNEL_SOCKPTR(optlen));
5261
5262         return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5263                                               KERNEL_SOCKPTR(optval), *optlen);
5264 }
5265
5266 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5267                             char *optval, int optlen)
5268 {
5269         if (!sk_fullsock(sk))
5270                 return -EINVAL;
5271
5272         if (level == SOL_SOCKET)
5273                 return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5274         else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5275                 return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5276         else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5277                 return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5278         else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5279                 return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5280
5281         return -EINVAL;
5282 }
5283
5284 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5285                            char *optval, int optlen)
5286 {
5287         if (sk_fullsock(sk))
5288                 sock_owned_by_me(sk);
5289         return __bpf_setsockopt(sk, level, optname, optval, optlen);
5290 }
5291
5292 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5293                             char *optval, int optlen)
5294 {
5295         int err, saved_optlen = optlen;
5296
5297         if (!sk_fullsock(sk)) {
5298                 err = -EINVAL;
5299                 goto done;
5300         }
5301
5302         if (level == SOL_SOCKET)
5303                 err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5304         else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5305                 err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5306         else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5307                 err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5308         else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5309                 err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5310         else
5311                 err = -EINVAL;
5312
5313 done:
5314         if (err)
5315                 optlen = 0;
5316         if (optlen < saved_optlen)
5317                 memset(optval + optlen, 0, saved_optlen - optlen);
5318         return err;
5319 }
5320
5321 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5322                            char *optval, int optlen)
5323 {
5324         if (sk_fullsock(sk))
5325                 sock_owned_by_me(sk);
5326         return __bpf_getsockopt(sk, level, optname, optval, optlen);
5327 }
5328
5329 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5330            int, optname, char *, optval, int, optlen)
5331 {
5332         return _bpf_setsockopt(sk, level, optname, optval, optlen);
5333 }
5334
5335 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5336         .func           = bpf_sk_setsockopt,
5337         .gpl_only       = false,
5338         .ret_type       = RET_INTEGER,
5339         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5340         .arg2_type      = ARG_ANYTHING,
5341         .arg3_type      = ARG_ANYTHING,
5342         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5343         .arg5_type      = ARG_CONST_SIZE,
5344 };
5345
5346 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5347            int, optname, char *, optval, int, optlen)
5348 {
5349         return _bpf_getsockopt(sk, level, optname, optval, optlen);
5350 }
5351
5352 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5353         .func           = bpf_sk_getsockopt,
5354         .gpl_only       = false,
5355         .ret_type       = RET_INTEGER,
5356         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5357         .arg2_type      = ARG_ANYTHING,
5358         .arg3_type      = ARG_ANYTHING,
5359         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5360         .arg5_type      = ARG_CONST_SIZE,
5361 };
5362
5363 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5364            int, optname, char *, optval, int, optlen)
5365 {
5366         return __bpf_setsockopt(sk, level, optname, optval, optlen);
5367 }
5368
5369 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5370         .func           = bpf_unlocked_sk_setsockopt,
5371         .gpl_only       = false,
5372         .ret_type       = RET_INTEGER,
5373         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5374         .arg2_type      = ARG_ANYTHING,
5375         .arg3_type      = ARG_ANYTHING,
5376         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5377         .arg5_type      = ARG_CONST_SIZE,
5378 };
5379
5380 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5381            int, optname, char *, optval, int, optlen)
5382 {
5383         return __bpf_getsockopt(sk, level, optname, optval, optlen);
5384 }
5385
5386 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5387         .func           = bpf_unlocked_sk_getsockopt,
5388         .gpl_only       = false,
5389         .ret_type       = RET_INTEGER,
5390         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5391         .arg2_type      = ARG_ANYTHING,
5392         .arg3_type      = ARG_ANYTHING,
5393         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5394         .arg5_type      = ARG_CONST_SIZE,
5395 };
5396
5397 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5398            int, level, int, optname, char *, optval, int, optlen)
5399 {
5400         return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5401 }
5402
5403 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5404         .func           = bpf_sock_addr_setsockopt,
5405         .gpl_only       = false,
5406         .ret_type       = RET_INTEGER,
5407         .arg1_type      = ARG_PTR_TO_CTX,
5408         .arg2_type      = ARG_ANYTHING,
5409         .arg3_type      = ARG_ANYTHING,
5410         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5411         .arg5_type      = ARG_CONST_SIZE,
5412 };
5413
5414 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5415            int, level, int, optname, char *, optval, int, optlen)
5416 {
5417         return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5418 }
5419
5420 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5421         .func           = bpf_sock_addr_getsockopt,
5422         .gpl_only       = false,
5423         .ret_type       = RET_INTEGER,
5424         .arg1_type      = ARG_PTR_TO_CTX,
5425         .arg2_type      = ARG_ANYTHING,
5426         .arg3_type      = ARG_ANYTHING,
5427         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5428         .arg5_type      = ARG_CONST_SIZE,
5429 };
5430
5431 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5432            int, level, int, optname, char *, optval, int, optlen)
5433 {
5434         return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5435 }
5436
5437 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5438         .func           = bpf_sock_ops_setsockopt,
5439         .gpl_only       = false,
5440         .ret_type       = RET_INTEGER,
5441         .arg1_type      = ARG_PTR_TO_CTX,
5442         .arg2_type      = ARG_ANYTHING,
5443         .arg3_type      = ARG_ANYTHING,
5444         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5445         .arg5_type      = ARG_CONST_SIZE,
5446 };
5447
5448 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5449                                 int optname, const u8 **start)
5450 {
5451         struct sk_buff *syn_skb = bpf_sock->syn_skb;
5452         const u8 *hdr_start;
5453         int ret;
5454
5455         if (syn_skb) {
5456                 /* sk is a request_sock here */
5457
5458                 if (optname == TCP_BPF_SYN) {
5459                         hdr_start = syn_skb->data;
5460                         ret = tcp_hdrlen(syn_skb);
5461                 } else if (optname == TCP_BPF_SYN_IP) {
5462                         hdr_start = skb_network_header(syn_skb);
5463                         ret = skb_network_header_len(syn_skb) +
5464                                 tcp_hdrlen(syn_skb);
5465                 } else {
5466                         /* optname == TCP_BPF_SYN_MAC */
5467                         hdr_start = skb_mac_header(syn_skb);
5468                         ret = skb_mac_header_len(syn_skb) +
5469                                 skb_network_header_len(syn_skb) +
5470                                 tcp_hdrlen(syn_skb);
5471                 }
5472         } else {
5473                 struct sock *sk = bpf_sock->sk;
5474                 struct saved_syn *saved_syn;
5475
5476                 if (sk->sk_state == TCP_NEW_SYN_RECV)
5477                         /* synack retransmit. bpf_sock->syn_skb will
5478                          * not be available.  It has to resort to
5479                          * saved_syn (if it is saved).
5480                          */
5481                         saved_syn = inet_reqsk(sk)->saved_syn;
5482                 else
5483                         saved_syn = tcp_sk(sk)->saved_syn;
5484
5485                 if (!saved_syn)
5486                         return -ENOENT;
5487
5488                 if (optname == TCP_BPF_SYN) {
5489                         hdr_start = saved_syn->data +
5490                                 saved_syn->mac_hdrlen +
5491                                 saved_syn->network_hdrlen;
5492                         ret = saved_syn->tcp_hdrlen;
5493                 } else if (optname == TCP_BPF_SYN_IP) {
5494                         hdr_start = saved_syn->data +
5495                                 saved_syn->mac_hdrlen;
5496                         ret = saved_syn->network_hdrlen +
5497                                 saved_syn->tcp_hdrlen;
5498                 } else {
5499                         /* optname == TCP_BPF_SYN_MAC */
5500
5501                         /* TCP_SAVE_SYN may not have saved the mac hdr */
5502                         if (!saved_syn->mac_hdrlen)
5503                                 return -ENOENT;
5504
5505                         hdr_start = saved_syn->data;
5506                         ret = saved_syn->mac_hdrlen +
5507                                 saved_syn->network_hdrlen +
5508                                 saved_syn->tcp_hdrlen;
5509                 }
5510         }
5511
5512         *start = hdr_start;
5513         return ret;
5514 }
5515
5516 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5517            int, level, int, optname, char *, optval, int, optlen)
5518 {
5519         if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5520             optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5521                 int ret, copy_len = 0;
5522                 const u8 *start;
5523
5524                 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5525                 if (ret > 0) {
5526                         copy_len = ret;
5527                         if (optlen < copy_len) {
5528                                 copy_len = optlen;
5529                                 ret = -ENOSPC;
5530                         }
5531
5532                         memcpy(optval, start, copy_len);
5533                 }
5534
5535                 /* Zero out unused buffer at the end */
5536                 memset(optval + copy_len, 0, optlen - copy_len);
5537
5538                 return ret;
5539         }
5540
5541         return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5542 }
5543
5544 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5545         .func           = bpf_sock_ops_getsockopt,
5546         .gpl_only       = false,
5547         .ret_type       = RET_INTEGER,
5548         .arg1_type      = ARG_PTR_TO_CTX,
5549         .arg2_type      = ARG_ANYTHING,
5550         .arg3_type      = ARG_ANYTHING,
5551         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5552         .arg5_type      = ARG_CONST_SIZE,
5553 };
5554
5555 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5556            int, argval)
5557 {
5558         struct sock *sk = bpf_sock->sk;
5559         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5560
5561         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5562                 return -EINVAL;
5563
5564         tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5565
5566         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5567 }
5568
5569 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5570         .func           = bpf_sock_ops_cb_flags_set,
5571         .gpl_only       = false,
5572         .ret_type       = RET_INTEGER,
5573         .arg1_type      = ARG_PTR_TO_CTX,
5574         .arg2_type      = ARG_ANYTHING,
5575 };
5576
5577 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5578 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5579
5580 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5581            int, addr_len)
5582 {
5583 #ifdef CONFIG_INET
5584         struct sock *sk = ctx->sk;
5585         u32 flags = BIND_FROM_BPF;
5586         int err;
5587
5588         err = -EINVAL;
5589         if (addr_len < offsetofend(struct sockaddr, sa_family))
5590                 return err;
5591         if (addr->sa_family == AF_INET) {
5592                 if (addr_len < sizeof(struct sockaddr_in))
5593                         return err;
5594                 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5595                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5596                 return __inet_bind(sk, addr, addr_len, flags);
5597 #if IS_ENABLED(CONFIG_IPV6)
5598         } else if (addr->sa_family == AF_INET6) {
5599                 if (addr_len < SIN6_LEN_RFC2133)
5600                         return err;
5601                 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5602                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5603                 /* ipv6_bpf_stub cannot be NULL, since it's called from
5604                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5605                  */
5606                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5607 #endif /* CONFIG_IPV6 */
5608         }
5609 #endif /* CONFIG_INET */
5610
5611         return -EAFNOSUPPORT;
5612 }
5613
5614 static const struct bpf_func_proto bpf_bind_proto = {
5615         .func           = bpf_bind,
5616         .gpl_only       = false,
5617         .ret_type       = RET_INTEGER,
5618         .arg1_type      = ARG_PTR_TO_CTX,
5619         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5620         .arg3_type      = ARG_CONST_SIZE,
5621 };
5622
5623 #ifdef CONFIG_XFRM
5624 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5625            struct bpf_xfrm_state *, to, u32, size, u64, flags)
5626 {
5627         const struct sec_path *sp = skb_sec_path(skb);
5628         const struct xfrm_state *x;
5629
5630         if (!sp || unlikely(index >= sp->len || flags))
5631                 goto err_clear;
5632
5633         x = sp->xvec[index];
5634
5635         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5636                 goto err_clear;
5637
5638         to->reqid = x->props.reqid;
5639         to->spi = x->id.spi;
5640         to->family = x->props.family;
5641         to->ext = 0;
5642
5643         if (to->family == AF_INET6) {
5644                 memcpy(to->remote_ipv6, x->props.saddr.a6,
5645                        sizeof(to->remote_ipv6));
5646         } else {
5647                 to->remote_ipv4 = x->props.saddr.a4;
5648                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5649         }
5650
5651         return 0;
5652 err_clear:
5653         memset(to, 0, size);
5654         return -EINVAL;
5655 }
5656
5657 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5658         .func           = bpf_skb_get_xfrm_state,
5659         .gpl_only       = false,
5660         .ret_type       = RET_INTEGER,
5661         .arg1_type      = ARG_PTR_TO_CTX,
5662         .arg2_type      = ARG_ANYTHING,
5663         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
5664         .arg4_type      = ARG_CONST_SIZE,
5665         .arg5_type      = ARG_ANYTHING,
5666 };
5667 #endif
5668
5669 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5670 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5671                                   const struct neighbour *neigh,
5672                                   const struct net_device *dev, u32 mtu)
5673 {
5674         memcpy(params->dmac, neigh->ha, ETH_ALEN);
5675         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5676         params->h_vlan_TCI = 0;
5677         params->h_vlan_proto = 0;
5678         if (mtu)
5679                 params->mtu_result = mtu; /* union with tot_len */
5680
5681         return 0;
5682 }
5683 #endif
5684
5685 #if IS_ENABLED(CONFIG_INET)
5686 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5687                                u32 flags, bool check_mtu)
5688 {
5689         struct fib_nh_common *nhc;
5690         struct in_device *in_dev;
5691         struct neighbour *neigh;
5692         struct net_device *dev;
5693         struct fib_result res;
5694         struct flowi4 fl4;
5695         u32 mtu = 0;
5696         int err;
5697
5698         dev = dev_get_by_index_rcu(net, params->ifindex);
5699         if (unlikely(!dev))
5700                 return -ENODEV;
5701
5702         /* verify forwarding is enabled on this interface */
5703         in_dev = __in_dev_get_rcu(dev);
5704         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5705                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5706
5707         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5708                 fl4.flowi4_iif = 1;
5709                 fl4.flowi4_oif = params->ifindex;
5710         } else {
5711                 fl4.flowi4_iif = params->ifindex;
5712                 fl4.flowi4_oif = 0;
5713         }
5714         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5715         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5716         fl4.flowi4_flags = 0;
5717
5718         fl4.flowi4_proto = params->l4_protocol;
5719         fl4.daddr = params->ipv4_dst;
5720         fl4.saddr = params->ipv4_src;
5721         fl4.fl4_sport = params->sport;
5722         fl4.fl4_dport = params->dport;
5723         fl4.flowi4_multipath_hash = 0;
5724
5725         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5726                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5727                 struct fib_table *tb;
5728
5729                 tb = fib_get_table(net, tbid);
5730                 if (unlikely(!tb))
5731                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5732
5733                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5734         } else {
5735                 fl4.flowi4_mark = 0;
5736                 fl4.flowi4_secid = 0;
5737                 fl4.flowi4_tun_key.tun_id = 0;
5738                 fl4.flowi4_uid = sock_net_uid(net, NULL);
5739
5740                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5741         }
5742
5743         if (err) {
5744                 /* map fib lookup errors to RTN_ type */
5745                 if (err == -EINVAL)
5746                         return BPF_FIB_LKUP_RET_BLACKHOLE;
5747                 if (err == -EHOSTUNREACH)
5748                         return BPF_FIB_LKUP_RET_UNREACHABLE;
5749                 if (err == -EACCES)
5750                         return BPF_FIB_LKUP_RET_PROHIBIT;
5751
5752                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5753         }
5754
5755         if (res.type != RTN_UNICAST)
5756                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5757
5758         if (fib_info_num_path(res.fi) > 1)
5759                 fib_select_path(net, &res, &fl4, NULL);
5760
5761         if (check_mtu) {
5762                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5763                 if (params->tot_len > mtu) {
5764                         params->mtu_result = mtu; /* union with tot_len */
5765                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5766                 }
5767         }
5768
5769         nhc = res.nhc;
5770
5771         /* do not handle lwt encaps right now */
5772         if (nhc->nhc_lwtstate)
5773                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5774
5775         dev = nhc->nhc_dev;
5776
5777         params->rt_metric = res.fi->fib_priority;
5778         params->ifindex = dev->ifindex;
5779
5780         /* xdp and cls_bpf programs are run in RCU-bh so
5781          * rcu_read_lock_bh is not needed here
5782          */
5783         if (likely(nhc->nhc_gw_family != AF_INET6)) {
5784                 if (nhc->nhc_gw_family)
5785                         params->ipv4_dst = nhc->nhc_gw.ipv4;
5786
5787                 neigh = __ipv4_neigh_lookup_noref(dev,
5788                                                  (__force u32)params->ipv4_dst);
5789         } else {
5790                 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5791
5792                 params->family = AF_INET6;
5793                 *dst = nhc->nhc_gw.ipv6;
5794                 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5795         }
5796
5797         if (!neigh)
5798                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5799
5800         return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5801 }
5802 #endif
5803
5804 #if IS_ENABLED(CONFIG_IPV6)
5805 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5806                                u32 flags, bool check_mtu)
5807 {
5808         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5809         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5810         struct fib6_result res = {};
5811         struct neighbour *neigh;
5812         struct net_device *dev;
5813         struct inet6_dev *idev;
5814         struct flowi6 fl6;
5815         int strict = 0;
5816         int oif, err;
5817         u32 mtu = 0;
5818
5819         /* link local addresses are never forwarded */
5820         if (rt6_need_strict(dst) || rt6_need_strict(src))
5821                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5822
5823         dev = dev_get_by_index_rcu(net, params->ifindex);
5824         if (unlikely(!dev))
5825                 return -ENODEV;
5826
5827         idev = __in6_dev_get_safely(dev);
5828         if (unlikely(!idev || !idev->cnf.forwarding))
5829                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5830
5831         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5832                 fl6.flowi6_iif = 1;
5833                 oif = fl6.flowi6_oif = params->ifindex;
5834         } else {
5835                 oif = fl6.flowi6_iif = params->ifindex;
5836                 fl6.flowi6_oif = 0;
5837                 strict = RT6_LOOKUP_F_HAS_SADDR;
5838         }
5839         fl6.flowlabel = params->flowinfo;
5840         fl6.flowi6_scope = 0;
5841         fl6.flowi6_flags = 0;
5842         fl6.mp_hash = 0;
5843
5844         fl6.flowi6_proto = params->l4_protocol;
5845         fl6.daddr = *dst;
5846         fl6.saddr = *src;
5847         fl6.fl6_sport = params->sport;
5848         fl6.fl6_dport = params->dport;
5849
5850         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5851                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5852                 struct fib6_table *tb;
5853
5854                 tb = ipv6_stub->fib6_get_table(net, tbid);
5855                 if (unlikely(!tb))
5856                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5857
5858                 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5859                                                    strict);
5860         } else {
5861                 fl6.flowi6_mark = 0;
5862                 fl6.flowi6_secid = 0;
5863                 fl6.flowi6_tun_key.tun_id = 0;
5864                 fl6.flowi6_uid = sock_net_uid(net, NULL);
5865
5866                 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5867         }
5868
5869         if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5870                      res.f6i == net->ipv6.fib6_null_entry))
5871                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5872
5873         switch (res.fib6_type) {
5874         /* only unicast is forwarded */
5875         case RTN_UNICAST:
5876                 break;
5877         case RTN_BLACKHOLE:
5878                 return BPF_FIB_LKUP_RET_BLACKHOLE;
5879         case RTN_UNREACHABLE:
5880                 return BPF_FIB_LKUP_RET_UNREACHABLE;
5881         case RTN_PROHIBIT:
5882                 return BPF_FIB_LKUP_RET_PROHIBIT;
5883         default:
5884                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5885         }
5886
5887         ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5888                                     fl6.flowi6_oif != 0, NULL, strict);
5889
5890         if (check_mtu) {
5891                 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5892                 if (params->tot_len > mtu) {
5893                         params->mtu_result = mtu; /* union with tot_len */
5894                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5895                 }
5896         }
5897
5898         if (res.nh->fib_nh_lws)
5899                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5900
5901         if (res.nh->fib_nh_gw_family)
5902                 *dst = res.nh->fib_nh_gw6;
5903
5904         dev = res.nh->fib_nh_dev;
5905         params->rt_metric = res.f6i->fib6_metric;
5906         params->ifindex = dev->ifindex;
5907
5908         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5909          * not needed here.
5910          */
5911         neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5912         if (!neigh)
5913                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5914
5915         return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5916 }
5917 #endif
5918
5919 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5920            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5921 {
5922         if (plen < sizeof(*params))
5923                 return -EINVAL;
5924
5925         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5926                 return -EINVAL;
5927
5928         switch (params->family) {
5929 #if IS_ENABLED(CONFIG_INET)
5930         case AF_INET:
5931                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5932                                            flags, true);
5933 #endif
5934 #if IS_ENABLED(CONFIG_IPV6)
5935         case AF_INET6:
5936                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5937                                            flags, true);
5938 #endif
5939         }
5940         return -EAFNOSUPPORT;
5941 }
5942
5943 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5944         .func           = bpf_xdp_fib_lookup,
5945         .gpl_only       = true,
5946         .ret_type       = RET_INTEGER,
5947         .arg1_type      = ARG_PTR_TO_CTX,
5948         .arg2_type      = ARG_PTR_TO_MEM,
5949         .arg3_type      = ARG_CONST_SIZE,
5950         .arg4_type      = ARG_ANYTHING,
5951 };
5952
5953 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5954            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5955 {
5956         struct net *net = dev_net(skb->dev);
5957         int rc = -EAFNOSUPPORT;
5958         bool check_mtu = false;
5959
5960         if (plen < sizeof(*params))
5961                 return -EINVAL;
5962
5963         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5964                 return -EINVAL;
5965
5966         if (params->tot_len)
5967                 check_mtu = true;
5968
5969         switch (params->family) {
5970 #if IS_ENABLED(CONFIG_INET)
5971         case AF_INET:
5972                 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5973                 break;
5974 #endif
5975 #if IS_ENABLED(CONFIG_IPV6)
5976         case AF_INET6:
5977                 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5978                 break;
5979 #endif
5980         }
5981
5982         if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
5983                 struct net_device *dev;
5984
5985                 /* When tot_len isn't provided by user, check skb
5986                  * against MTU of FIB lookup resulting net_device
5987                  */
5988                 dev = dev_get_by_index_rcu(net, params->ifindex);
5989                 if (!is_skb_forwardable(dev, skb))
5990                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5991
5992                 params->mtu_result = dev->mtu; /* union with tot_len */
5993         }
5994
5995         return rc;
5996 }
5997
5998 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5999         .func           = bpf_skb_fib_lookup,
6000         .gpl_only       = true,
6001         .ret_type       = RET_INTEGER,
6002         .arg1_type      = ARG_PTR_TO_CTX,
6003         .arg2_type      = ARG_PTR_TO_MEM,
6004         .arg3_type      = ARG_CONST_SIZE,
6005         .arg4_type      = ARG_ANYTHING,
6006 };
6007
6008 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6009                                             u32 ifindex)
6010 {
6011         struct net *netns = dev_net(dev_curr);
6012
6013         /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6014         if (ifindex == 0)
6015                 return dev_curr;
6016
6017         return dev_get_by_index_rcu(netns, ifindex);
6018 }
6019
6020 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6021            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6022 {
6023         int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6024         struct net_device *dev = skb->dev;
6025         int skb_len, dev_len;
6026         int mtu;
6027
6028         if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6029                 return -EINVAL;
6030
6031         if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6032                 return -EINVAL;
6033
6034         dev = __dev_via_ifindex(dev, ifindex);
6035         if (unlikely(!dev))
6036                 return -ENODEV;
6037
6038         mtu = READ_ONCE(dev->mtu);
6039
6040         dev_len = mtu + dev->hard_header_len;
6041
6042         /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6043         skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6044
6045         skb_len += len_diff; /* minus result pass check */
6046         if (skb_len <= dev_len) {
6047                 ret = BPF_MTU_CHK_RET_SUCCESS;
6048                 goto out;
6049         }
6050         /* At this point, skb->len exceed MTU, but as it include length of all
6051          * segments, it can still be below MTU.  The SKB can possibly get
6052          * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6053          * must choose if segs are to be MTU checked.
6054          */
6055         if (skb_is_gso(skb)) {
6056                 ret = BPF_MTU_CHK_RET_SUCCESS;
6057
6058                 if (flags & BPF_MTU_CHK_SEGS &&
6059                     !skb_gso_validate_network_len(skb, mtu))
6060                         ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6061         }
6062 out:
6063         /* BPF verifier guarantees valid pointer */
6064         *mtu_len = mtu;
6065
6066         return ret;
6067 }
6068
6069 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6070            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6071 {
6072         struct net_device *dev = xdp->rxq->dev;
6073         int xdp_len = xdp->data_end - xdp->data;
6074         int ret = BPF_MTU_CHK_RET_SUCCESS;
6075         int mtu, dev_len;
6076
6077         /* XDP variant doesn't support multi-buffer segment check (yet) */
6078         if (unlikely(flags))
6079                 return -EINVAL;
6080
6081         dev = __dev_via_ifindex(dev, ifindex);
6082         if (unlikely(!dev))
6083                 return -ENODEV;
6084
6085         mtu = READ_ONCE(dev->mtu);
6086
6087         /* Add L2-header as dev MTU is L3 size */
6088         dev_len = mtu + dev->hard_header_len;
6089
6090         /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6091         if (*mtu_len)
6092                 xdp_len = *mtu_len + dev->hard_header_len;
6093
6094         xdp_len += len_diff; /* minus result pass check */
6095         if (xdp_len > dev_len)
6096                 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6097
6098         /* BPF verifier guarantees valid pointer */
6099         *mtu_len = mtu;
6100
6101         return ret;
6102 }
6103
6104 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6105         .func           = bpf_skb_check_mtu,
6106         .gpl_only       = true,
6107         .ret_type       = RET_INTEGER,
6108         .arg1_type      = ARG_PTR_TO_CTX,
6109         .arg2_type      = ARG_ANYTHING,
6110         .arg3_type      = ARG_PTR_TO_INT,
6111         .arg4_type      = ARG_ANYTHING,
6112         .arg5_type      = ARG_ANYTHING,
6113 };
6114
6115 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6116         .func           = bpf_xdp_check_mtu,
6117         .gpl_only       = true,
6118         .ret_type       = RET_INTEGER,
6119         .arg1_type      = ARG_PTR_TO_CTX,
6120         .arg2_type      = ARG_ANYTHING,
6121         .arg3_type      = ARG_PTR_TO_INT,
6122         .arg4_type      = ARG_ANYTHING,
6123         .arg5_type      = ARG_ANYTHING,
6124 };
6125
6126 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6127 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6128 {
6129         int err;
6130         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6131
6132         if (!seg6_validate_srh(srh, len, false))
6133                 return -EINVAL;
6134
6135         switch (type) {
6136         case BPF_LWT_ENCAP_SEG6_INLINE:
6137                 if (skb->protocol != htons(ETH_P_IPV6))
6138                         return -EBADMSG;
6139
6140                 err = seg6_do_srh_inline(skb, srh);
6141                 break;
6142         case BPF_LWT_ENCAP_SEG6:
6143                 skb_reset_inner_headers(skb);
6144                 skb->encapsulation = 1;
6145                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6146                 break;
6147         default:
6148                 return -EINVAL;
6149         }
6150
6151         bpf_compute_data_pointers(skb);
6152         if (err)
6153                 return err;
6154
6155         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6156
6157         return seg6_lookup_nexthop(skb, NULL, 0);
6158 }
6159 #endif /* CONFIG_IPV6_SEG6_BPF */
6160
6161 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6162 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6163                              bool ingress)
6164 {
6165         return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6166 }
6167 #endif
6168
6169 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6170            u32, len)
6171 {
6172         switch (type) {
6173 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6174         case BPF_LWT_ENCAP_SEG6:
6175         case BPF_LWT_ENCAP_SEG6_INLINE:
6176                 return bpf_push_seg6_encap(skb, type, hdr, len);
6177 #endif
6178 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6179         case BPF_LWT_ENCAP_IP:
6180                 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6181 #endif
6182         default:
6183                 return -EINVAL;
6184         }
6185 }
6186
6187 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6188            void *, hdr, u32, len)
6189 {
6190         switch (type) {
6191 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6192         case BPF_LWT_ENCAP_IP:
6193                 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6194 #endif
6195         default:
6196                 return -EINVAL;
6197         }
6198 }
6199
6200 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6201         .func           = bpf_lwt_in_push_encap,
6202         .gpl_only       = false,
6203         .ret_type       = RET_INTEGER,
6204         .arg1_type      = ARG_PTR_TO_CTX,
6205         .arg2_type      = ARG_ANYTHING,
6206         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6207         .arg4_type      = ARG_CONST_SIZE
6208 };
6209
6210 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6211         .func           = bpf_lwt_xmit_push_encap,
6212         .gpl_only       = false,
6213         .ret_type       = RET_INTEGER,
6214         .arg1_type      = ARG_PTR_TO_CTX,
6215         .arg2_type      = ARG_ANYTHING,
6216         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6217         .arg4_type      = ARG_CONST_SIZE
6218 };
6219
6220 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6221 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6222            const void *, from, u32, len)
6223 {
6224         struct seg6_bpf_srh_state *srh_state =
6225                 this_cpu_ptr(&seg6_bpf_srh_states);
6226         struct ipv6_sr_hdr *srh = srh_state->srh;
6227         void *srh_tlvs, *srh_end, *ptr;
6228         int srhoff = 0;
6229
6230         if (srh == NULL)
6231                 return -EINVAL;
6232
6233         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6234         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6235
6236         ptr = skb->data + offset;
6237         if (ptr >= srh_tlvs && ptr + len <= srh_end)
6238                 srh_state->valid = false;
6239         else if (ptr < (void *)&srh->flags ||
6240                  ptr + len > (void *)&srh->segments)
6241                 return -EFAULT;
6242
6243         if (unlikely(bpf_try_make_writable(skb, offset + len)))
6244                 return -EFAULT;
6245         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6246                 return -EINVAL;
6247         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6248
6249         memcpy(skb->data + offset, from, len);
6250         return 0;
6251 }
6252
6253 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6254         .func           = bpf_lwt_seg6_store_bytes,
6255         .gpl_only       = false,
6256         .ret_type       = RET_INTEGER,
6257         .arg1_type      = ARG_PTR_TO_CTX,
6258         .arg2_type      = ARG_ANYTHING,
6259         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6260         .arg4_type      = ARG_CONST_SIZE
6261 };
6262
6263 static void bpf_update_srh_state(struct sk_buff *skb)
6264 {
6265         struct seg6_bpf_srh_state *srh_state =
6266                 this_cpu_ptr(&seg6_bpf_srh_states);
6267         int srhoff = 0;
6268
6269         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6270                 srh_state->srh = NULL;
6271         } else {
6272                 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6273                 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6274                 srh_state->valid = true;
6275         }
6276 }
6277
6278 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6279            u32, action, void *, param, u32, param_len)
6280 {
6281         struct seg6_bpf_srh_state *srh_state =
6282                 this_cpu_ptr(&seg6_bpf_srh_states);
6283         int hdroff = 0;
6284         int err;
6285
6286         switch (action) {
6287         case SEG6_LOCAL_ACTION_END_X:
6288                 if (!seg6_bpf_has_valid_srh(skb))
6289                         return -EBADMSG;
6290                 if (param_len != sizeof(struct in6_addr))
6291                         return -EINVAL;
6292                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6293         case SEG6_LOCAL_ACTION_END_T:
6294                 if (!seg6_bpf_has_valid_srh(skb))
6295                         return -EBADMSG;
6296                 if (param_len != sizeof(int))
6297                         return -EINVAL;
6298                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6299         case SEG6_LOCAL_ACTION_END_DT6:
6300                 if (!seg6_bpf_has_valid_srh(skb))
6301                         return -EBADMSG;
6302                 if (param_len != sizeof(int))
6303                         return -EINVAL;
6304
6305                 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6306                         return -EBADMSG;
6307                 if (!pskb_pull(skb, hdroff))
6308                         return -EBADMSG;
6309
6310                 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6311                 skb_reset_network_header(skb);
6312                 skb_reset_transport_header(skb);
6313                 skb->encapsulation = 0;
6314
6315                 bpf_compute_data_pointers(skb);
6316                 bpf_update_srh_state(skb);
6317                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6318         case SEG6_LOCAL_ACTION_END_B6:
6319                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6320                         return -EBADMSG;
6321                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6322                                           param, param_len);
6323                 if (!err)
6324                         bpf_update_srh_state(skb);
6325
6326                 return err;
6327         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6328                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6329                         return -EBADMSG;
6330                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6331                                           param, param_len);
6332                 if (!err)
6333                         bpf_update_srh_state(skb);
6334
6335                 return err;
6336         default:
6337                 return -EINVAL;
6338         }
6339 }
6340
6341 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6342         .func           = bpf_lwt_seg6_action,
6343         .gpl_only       = false,
6344         .ret_type       = RET_INTEGER,
6345         .arg1_type      = ARG_PTR_TO_CTX,
6346         .arg2_type      = ARG_ANYTHING,
6347         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6348         .arg4_type      = ARG_CONST_SIZE
6349 };
6350
6351 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6352            s32, len)
6353 {
6354         struct seg6_bpf_srh_state *srh_state =
6355                 this_cpu_ptr(&seg6_bpf_srh_states);
6356         struct ipv6_sr_hdr *srh = srh_state->srh;
6357         void *srh_end, *srh_tlvs, *ptr;
6358         struct ipv6hdr *hdr;
6359         int srhoff = 0;
6360         int ret;
6361
6362         if (unlikely(srh == NULL))
6363                 return -EINVAL;
6364
6365         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6366                         ((srh->first_segment + 1) << 4));
6367         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6368                         srh_state->hdrlen);
6369         ptr = skb->data + offset;
6370
6371         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6372                 return -EFAULT;
6373         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6374                 return -EFAULT;
6375
6376         if (len > 0) {
6377                 ret = skb_cow_head(skb, len);
6378                 if (unlikely(ret < 0))
6379                         return ret;
6380
6381                 ret = bpf_skb_net_hdr_push(skb, offset, len);
6382         } else {
6383                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6384         }
6385
6386         bpf_compute_data_pointers(skb);
6387         if (unlikely(ret < 0))
6388                 return ret;
6389
6390         hdr = (struct ipv6hdr *)skb->data;
6391         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6392
6393         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6394                 return -EINVAL;
6395         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6396         srh_state->hdrlen += len;
6397         srh_state->valid = false;
6398         return 0;
6399 }
6400
6401 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6402         .func           = bpf_lwt_seg6_adjust_srh,
6403         .gpl_only       = false,
6404         .ret_type       = RET_INTEGER,
6405         .arg1_type      = ARG_PTR_TO_CTX,
6406         .arg2_type      = ARG_ANYTHING,
6407         .arg3_type      = ARG_ANYTHING,
6408 };
6409 #endif /* CONFIG_IPV6_SEG6_BPF */
6410
6411 #ifdef CONFIG_INET
6412 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6413                               int dif, int sdif, u8 family, u8 proto)
6414 {
6415         struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6416         bool refcounted = false;
6417         struct sock *sk = NULL;
6418
6419         if (family == AF_INET) {
6420                 __be32 src4 = tuple->ipv4.saddr;
6421                 __be32 dst4 = tuple->ipv4.daddr;
6422
6423                 if (proto == IPPROTO_TCP)
6424                         sk = __inet_lookup(net, hinfo, NULL, 0,
6425                                            src4, tuple->ipv4.sport,
6426                                            dst4, tuple->ipv4.dport,
6427                                            dif, sdif, &refcounted);
6428                 else
6429                         sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6430                                                dst4, tuple->ipv4.dport,
6431                                                dif, sdif, &udp_table, NULL);
6432 #if IS_ENABLED(CONFIG_IPV6)
6433         } else {
6434                 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6435                 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6436
6437                 if (proto == IPPROTO_TCP)
6438                         sk = __inet6_lookup(net, hinfo, NULL, 0,
6439                                             src6, tuple->ipv6.sport,
6440                                             dst6, ntohs(tuple->ipv6.dport),
6441                                             dif, sdif, &refcounted);
6442                 else if (likely(ipv6_bpf_stub))
6443                         sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6444                                                             src6, tuple->ipv6.sport,
6445                                                             dst6, tuple->ipv6.dport,
6446                                                             dif, sdif,
6447                                                             &udp_table, NULL);
6448 #endif
6449         }
6450
6451         if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6452                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6453                 sk = NULL;
6454         }
6455         return sk;
6456 }
6457
6458 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6459  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6460  */
6461 static struct sock *
6462 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6463                  struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6464                  u64 flags)
6465 {
6466         struct sock *sk = NULL;
6467         struct net *net;
6468         u8 family;
6469         int sdif;
6470
6471         if (len == sizeof(tuple->ipv4))
6472                 family = AF_INET;
6473         else if (len == sizeof(tuple->ipv6))
6474                 family = AF_INET6;
6475         else
6476                 return NULL;
6477
6478         if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6479                 goto out;
6480
6481         if (family == AF_INET)
6482                 sdif = inet_sdif(skb);
6483         else
6484                 sdif = inet6_sdif(skb);
6485
6486         if ((s32)netns_id < 0) {
6487                 net = caller_net;
6488                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6489         } else {
6490                 net = get_net_ns_by_id(caller_net, netns_id);
6491                 if (unlikely(!net))
6492                         goto out;
6493                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6494                 put_net(net);
6495         }
6496
6497 out:
6498         return sk;
6499 }
6500
6501 static struct sock *
6502 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6503                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6504                 u64 flags)
6505 {
6506         struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6507                                            ifindex, proto, netns_id, flags);
6508
6509         if (sk) {
6510                 struct sock *sk2 = sk_to_full_sk(sk);
6511
6512                 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6513                  * sock refcnt is decremented to prevent a request_sock leak.
6514                  */
6515                 if (!sk_fullsock(sk2))
6516                         sk2 = NULL;
6517                 if (sk2 != sk) {
6518                         sock_gen_put(sk);
6519                         /* Ensure there is no need to bump sk2 refcnt */
6520                         if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6521                                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6522                                 return NULL;
6523                         }
6524                         sk = sk2;
6525                 }
6526         }
6527
6528         return sk;
6529 }
6530
6531 static struct sock *
6532 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6533                u8 proto, u64 netns_id, u64 flags)
6534 {
6535         struct net *caller_net;
6536         int ifindex;
6537
6538         if (skb->dev) {
6539                 caller_net = dev_net(skb->dev);
6540                 ifindex = skb->dev->ifindex;
6541         } else {
6542                 caller_net = sock_net(skb->sk);
6543                 ifindex = 0;
6544         }
6545
6546         return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6547                                 netns_id, flags);
6548 }
6549
6550 static struct sock *
6551 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6552               u8 proto, u64 netns_id, u64 flags)
6553 {
6554         struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6555                                          flags);
6556
6557         if (sk) {
6558                 struct sock *sk2 = sk_to_full_sk(sk);
6559
6560                 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6561                  * sock refcnt is decremented to prevent a request_sock leak.
6562                  */
6563                 if (!sk_fullsock(sk2))
6564                         sk2 = NULL;
6565                 if (sk2 != sk) {
6566                         sock_gen_put(sk);
6567                         /* Ensure there is no need to bump sk2 refcnt */
6568                         if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6569                                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6570                                 return NULL;
6571                         }
6572                         sk = sk2;
6573                 }
6574         }
6575
6576         return sk;
6577 }
6578
6579 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6580            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6581 {
6582         return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6583                                              netns_id, flags);
6584 }
6585
6586 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6587         .func           = bpf_skc_lookup_tcp,
6588         .gpl_only       = false,
6589         .pkt_access     = true,
6590         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6591         .arg1_type      = ARG_PTR_TO_CTX,
6592         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6593         .arg3_type      = ARG_CONST_SIZE,
6594         .arg4_type      = ARG_ANYTHING,
6595         .arg5_type      = ARG_ANYTHING,
6596 };
6597
6598 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6599            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6600 {
6601         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6602                                             netns_id, flags);
6603 }
6604
6605 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6606         .func           = bpf_sk_lookup_tcp,
6607         .gpl_only       = false,
6608         .pkt_access     = true,
6609         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6610         .arg1_type      = ARG_PTR_TO_CTX,
6611         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6612         .arg3_type      = ARG_CONST_SIZE,
6613         .arg4_type      = ARG_ANYTHING,
6614         .arg5_type      = ARG_ANYTHING,
6615 };
6616
6617 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6618            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6619 {
6620         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6621                                             netns_id, flags);
6622 }
6623
6624 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6625         .func           = bpf_sk_lookup_udp,
6626         .gpl_only       = false,
6627         .pkt_access     = true,
6628         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6629         .arg1_type      = ARG_PTR_TO_CTX,
6630         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6631         .arg3_type      = ARG_CONST_SIZE,
6632         .arg4_type      = ARG_ANYTHING,
6633         .arg5_type      = ARG_ANYTHING,
6634 };
6635
6636 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6637 {
6638         if (sk && sk_is_refcounted(sk))
6639                 sock_gen_put(sk);
6640         return 0;
6641 }
6642
6643 static const struct bpf_func_proto bpf_sk_release_proto = {
6644         .func           = bpf_sk_release,
6645         .gpl_only       = false,
6646         .ret_type       = RET_INTEGER,
6647         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6648 };
6649
6650 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6651            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6652 {
6653         struct net *caller_net = dev_net(ctx->rxq->dev);
6654         int ifindex = ctx->rxq->dev->ifindex;
6655
6656         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6657                                               ifindex, IPPROTO_UDP, netns_id,
6658                                               flags);
6659 }
6660
6661 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6662         .func           = bpf_xdp_sk_lookup_udp,
6663         .gpl_only       = false,
6664         .pkt_access     = true,
6665         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6666         .arg1_type      = ARG_PTR_TO_CTX,
6667         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6668         .arg3_type      = ARG_CONST_SIZE,
6669         .arg4_type      = ARG_ANYTHING,
6670         .arg5_type      = ARG_ANYTHING,
6671 };
6672
6673 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6674            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6675 {
6676         struct net *caller_net = dev_net(ctx->rxq->dev);
6677         int ifindex = ctx->rxq->dev->ifindex;
6678
6679         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6680                                                ifindex, IPPROTO_TCP, netns_id,
6681                                                flags);
6682 }
6683
6684 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6685         .func           = bpf_xdp_skc_lookup_tcp,
6686         .gpl_only       = false,
6687         .pkt_access     = true,
6688         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6689         .arg1_type      = ARG_PTR_TO_CTX,
6690         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6691         .arg3_type      = ARG_CONST_SIZE,
6692         .arg4_type      = ARG_ANYTHING,
6693         .arg5_type      = ARG_ANYTHING,
6694 };
6695
6696 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6697            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6698 {
6699         struct net *caller_net = dev_net(ctx->rxq->dev);
6700         int ifindex = ctx->rxq->dev->ifindex;
6701
6702         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6703                                               ifindex, IPPROTO_TCP, netns_id,
6704                                               flags);
6705 }
6706
6707 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6708         .func           = bpf_xdp_sk_lookup_tcp,
6709         .gpl_only       = false,
6710         .pkt_access     = true,
6711         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6712         .arg1_type      = ARG_PTR_TO_CTX,
6713         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6714         .arg3_type      = ARG_CONST_SIZE,
6715         .arg4_type      = ARG_ANYTHING,
6716         .arg5_type      = ARG_ANYTHING,
6717 };
6718
6719 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6720            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6721 {
6722         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6723                                                sock_net(ctx->sk), 0,
6724                                                IPPROTO_TCP, netns_id, flags);
6725 }
6726
6727 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6728         .func           = bpf_sock_addr_skc_lookup_tcp,
6729         .gpl_only       = false,
6730         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6731         .arg1_type      = ARG_PTR_TO_CTX,
6732         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6733         .arg3_type      = ARG_CONST_SIZE,
6734         .arg4_type      = ARG_ANYTHING,
6735         .arg5_type      = ARG_ANYTHING,
6736 };
6737
6738 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6739            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6740 {
6741         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6742                                               sock_net(ctx->sk), 0, IPPROTO_TCP,
6743                                               netns_id, flags);
6744 }
6745
6746 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6747         .func           = bpf_sock_addr_sk_lookup_tcp,
6748         .gpl_only       = false,
6749         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6750         .arg1_type      = ARG_PTR_TO_CTX,
6751         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6752         .arg3_type      = ARG_CONST_SIZE,
6753         .arg4_type      = ARG_ANYTHING,
6754         .arg5_type      = ARG_ANYTHING,
6755 };
6756
6757 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6758            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6759 {
6760         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6761                                               sock_net(ctx->sk), 0, IPPROTO_UDP,
6762                                               netns_id, flags);
6763 }
6764
6765 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6766         .func           = bpf_sock_addr_sk_lookup_udp,
6767         .gpl_only       = false,
6768         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6769         .arg1_type      = ARG_PTR_TO_CTX,
6770         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6771         .arg3_type      = ARG_CONST_SIZE,
6772         .arg4_type      = ARG_ANYTHING,
6773         .arg5_type      = ARG_ANYTHING,
6774 };
6775
6776 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6777                                   struct bpf_insn_access_aux *info)
6778 {
6779         if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6780                                           icsk_retransmits))
6781                 return false;
6782
6783         if (off % size != 0)
6784                 return false;
6785
6786         switch (off) {
6787         case offsetof(struct bpf_tcp_sock, bytes_received):
6788         case offsetof(struct bpf_tcp_sock, bytes_acked):
6789                 return size == sizeof(__u64);
6790         default:
6791                 return size == sizeof(__u32);
6792         }
6793 }
6794
6795 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6796                                     const struct bpf_insn *si,
6797                                     struct bpf_insn *insn_buf,
6798                                     struct bpf_prog *prog, u32 *target_size)
6799 {
6800         struct bpf_insn *insn = insn_buf;
6801
6802 #define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
6803         do {                                                            \
6804                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >     \
6805                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6806                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6807                                       si->dst_reg, si->src_reg,         \
6808                                       offsetof(struct tcp_sock, FIELD)); \
6809         } while (0)
6810
6811 #define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
6812         do {                                                            \
6813                 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,  \
6814                                           FIELD) >                      \
6815                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6816                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
6817                                         struct inet_connection_sock,    \
6818                                         FIELD),                         \
6819                                       si->dst_reg, si->src_reg,         \
6820                                       offsetof(                         \
6821                                         struct inet_connection_sock,    \
6822                                         FIELD));                        \
6823         } while (0)
6824
6825         if (insn > insn_buf)
6826                 return insn - insn_buf;
6827
6828         switch (si->off) {
6829         case offsetof(struct bpf_tcp_sock, rtt_min):
6830                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6831                              sizeof(struct minmax));
6832                 BUILD_BUG_ON(sizeof(struct minmax) <
6833                              sizeof(struct minmax_sample));
6834
6835                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6836                                       offsetof(struct tcp_sock, rtt_min) +
6837                                       offsetof(struct minmax_sample, v));
6838                 break;
6839         case offsetof(struct bpf_tcp_sock, snd_cwnd):
6840                 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6841                 break;
6842         case offsetof(struct bpf_tcp_sock, srtt_us):
6843                 BPF_TCP_SOCK_GET_COMMON(srtt_us);
6844                 break;
6845         case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6846                 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6847                 break;
6848         case offsetof(struct bpf_tcp_sock, rcv_nxt):
6849                 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6850                 break;
6851         case offsetof(struct bpf_tcp_sock, snd_nxt):
6852                 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6853                 break;
6854         case offsetof(struct bpf_tcp_sock, snd_una):
6855                 BPF_TCP_SOCK_GET_COMMON(snd_una);
6856                 break;
6857         case offsetof(struct bpf_tcp_sock, mss_cache):
6858                 BPF_TCP_SOCK_GET_COMMON(mss_cache);
6859                 break;
6860         case offsetof(struct bpf_tcp_sock, ecn_flags):
6861                 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6862                 break;
6863         case offsetof(struct bpf_tcp_sock, rate_delivered):
6864                 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6865                 break;
6866         case offsetof(struct bpf_tcp_sock, rate_interval_us):
6867                 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6868                 break;
6869         case offsetof(struct bpf_tcp_sock, packets_out):
6870                 BPF_TCP_SOCK_GET_COMMON(packets_out);
6871                 break;
6872         case offsetof(struct bpf_tcp_sock, retrans_out):
6873                 BPF_TCP_SOCK_GET_COMMON(retrans_out);
6874                 break;
6875         case offsetof(struct bpf_tcp_sock, total_retrans):
6876                 BPF_TCP_SOCK_GET_COMMON(total_retrans);
6877                 break;
6878         case offsetof(struct bpf_tcp_sock, segs_in):
6879                 BPF_TCP_SOCK_GET_COMMON(segs_in);
6880                 break;
6881         case offsetof(struct bpf_tcp_sock, data_segs_in):
6882                 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6883                 break;
6884         case offsetof(struct bpf_tcp_sock, segs_out):
6885                 BPF_TCP_SOCK_GET_COMMON(segs_out);
6886                 break;
6887         case offsetof(struct bpf_tcp_sock, data_segs_out):
6888                 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6889                 break;
6890         case offsetof(struct bpf_tcp_sock, lost_out):
6891                 BPF_TCP_SOCK_GET_COMMON(lost_out);
6892                 break;
6893         case offsetof(struct bpf_tcp_sock, sacked_out):
6894                 BPF_TCP_SOCK_GET_COMMON(sacked_out);
6895                 break;
6896         case offsetof(struct bpf_tcp_sock, bytes_received):
6897                 BPF_TCP_SOCK_GET_COMMON(bytes_received);
6898                 break;
6899         case offsetof(struct bpf_tcp_sock, bytes_acked):
6900                 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6901                 break;
6902         case offsetof(struct bpf_tcp_sock, dsack_dups):
6903                 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6904                 break;
6905         case offsetof(struct bpf_tcp_sock, delivered):
6906                 BPF_TCP_SOCK_GET_COMMON(delivered);
6907                 break;
6908         case offsetof(struct bpf_tcp_sock, delivered_ce):
6909                 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6910                 break;
6911         case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6912                 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6913                 break;
6914         }
6915
6916         return insn - insn_buf;
6917 }
6918
6919 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6920 {
6921         if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6922                 return (unsigned long)sk;
6923
6924         return (unsigned long)NULL;
6925 }
6926
6927 const struct bpf_func_proto bpf_tcp_sock_proto = {
6928         .func           = bpf_tcp_sock,
6929         .gpl_only       = false,
6930         .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
6931         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6932 };
6933
6934 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6935 {
6936         sk = sk_to_full_sk(sk);
6937
6938         if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6939                 return (unsigned long)sk;
6940
6941         return (unsigned long)NULL;
6942 }
6943
6944 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6945         .func           = bpf_get_listener_sock,
6946         .gpl_only       = false,
6947         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6948         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6949 };
6950
6951 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6952 {
6953         unsigned int iphdr_len;
6954
6955         switch (skb_protocol(skb, true)) {
6956         case cpu_to_be16(ETH_P_IP):
6957                 iphdr_len = sizeof(struct iphdr);
6958                 break;
6959         case cpu_to_be16(ETH_P_IPV6):
6960                 iphdr_len = sizeof(struct ipv6hdr);
6961                 break;
6962         default:
6963                 return 0;
6964         }
6965
6966         if (skb_headlen(skb) < iphdr_len)
6967                 return 0;
6968
6969         if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6970                 return 0;
6971
6972         return INET_ECN_set_ce(skb);
6973 }
6974
6975 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6976                                   struct bpf_insn_access_aux *info)
6977 {
6978         if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6979                 return false;
6980
6981         if (off % size != 0)
6982                 return false;
6983
6984         switch (off) {
6985         default:
6986                 return size == sizeof(__u32);
6987         }
6988 }
6989
6990 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6991                                     const struct bpf_insn *si,
6992                                     struct bpf_insn *insn_buf,
6993                                     struct bpf_prog *prog, u32 *target_size)
6994 {
6995         struct bpf_insn *insn = insn_buf;
6996
6997 #define BPF_XDP_SOCK_GET(FIELD)                                         \
6998         do {                                                            \
6999                 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >     \
7000                              sizeof_field(struct bpf_xdp_sock, FIELD)); \
7001                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7002                                       si->dst_reg, si->src_reg,         \
7003                                       offsetof(struct xdp_sock, FIELD)); \
7004         } while (0)
7005
7006         switch (si->off) {
7007         case offsetof(struct bpf_xdp_sock, queue_id):
7008                 BPF_XDP_SOCK_GET(queue_id);
7009                 break;
7010         }
7011
7012         return insn - insn_buf;
7013 }
7014
7015 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7016         .func           = bpf_skb_ecn_set_ce,
7017         .gpl_only       = false,
7018         .ret_type       = RET_INTEGER,
7019         .arg1_type      = ARG_PTR_TO_CTX,
7020 };
7021
7022 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7023            struct tcphdr *, th, u32, th_len)
7024 {
7025 #ifdef CONFIG_SYN_COOKIES
7026         u32 cookie;
7027         int ret;
7028
7029         if (unlikely(!sk || th_len < sizeof(*th)))
7030                 return -EINVAL;
7031
7032         /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7033         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7034                 return -EINVAL;
7035
7036         if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7037                 return -EINVAL;
7038
7039         if (!th->ack || th->rst || th->syn)
7040                 return -ENOENT;
7041
7042         if (unlikely(iph_len < sizeof(struct iphdr)))
7043                 return -EINVAL;
7044
7045         if (tcp_synq_no_recent_overflow(sk))
7046                 return -ENOENT;
7047
7048         cookie = ntohl(th->ack_seq) - 1;
7049
7050         /* Both struct iphdr and struct ipv6hdr have the version field at the
7051          * same offset so we can cast to the shorter header (struct iphdr).
7052          */
7053         switch (((struct iphdr *)iph)->version) {
7054         case 4:
7055                 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7056                         return -EINVAL;
7057
7058                 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7059                 break;
7060
7061 #if IS_BUILTIN(CONFIG_IPV6)
7062         case 6:
7063                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7064                         return -EINVAL;
7065
7066                 if (sk->sk_family != AF_INET6)
7067                         return -EINVAL;
7068
7069                 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7070                 break;
7071 #endif /* CONFIG_IPV6 */
7072
7073         default:
7074                 return -EPROTONOSUPPORT;
7075         }
7076
7077         if (ret > 0)
7078                 return 0;
7079
7080         return -ENOENT;
7081 #else
7082         return -ENOTSUPP;
7083 #endif
7084 }
7085
7086 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7087         .func           = bpf_tcp_check_syncookie,
7088         .gpl_only       = true,
7089         .pkt_access     = true,
7090         .ret_type       = RET_INTEGER,
7091         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7092         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7093         .arg3_type      = ARG_CONST_SIZE,
7094         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7095         .arg5_type      = ARG_CONST_SIZE,
7096 };
7097
7098 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7099            struct tcphdr *, th, u32, th_len)
7100 {
7101 #ifdef CONFIG_SYN_COOKIES
7102         u32 cookie;
7103         u16 mss;
7104
7105         if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7106                 return -EINVAL;
7107
7108         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7109                 return -EINVAL;
7110
7111         if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7112                 return -ENOENT;
7113
7114         if (!th->syn || th->ack || th->fin || th->rst)
7115                 return -EINVAL;
7116
7117         if (unlikely(iph_len < sizeof(struct iphdr)))
7118                 return -EINVAL;
7119
7120         /* Both struct iphdr and struct ipv6hdr have the version field at the
7121          * same offset so we can cast to the shorter header (struct iphdr).
7122          */
7123         switch (((struct iphdr *)iph)->version) {
7124         case 4:
7125                 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7126                         return -EINVAL;
7127
7128                 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7129                 break;
7130
7131 #if IS_BUILTIN(CONFIG_IPV6)
7132         case 6:
7133                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7134                         return -EINVAL;
7135
7136                 if (sk->sk_family != AF_INET6)
7137                         return -EINVAL;
7138
7139                 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7140                 break;
7141 #endif /* CONFIG_IPV6 */
7142
7143         default:
7144                 return -EPROTONOSUPPORT;
7145         }
7146         if (mss == 0)
7147                 return -ENOENT;
7148
7149         return cookie | ((u64)mss << 32);
7150 #else
7151         return -EOPNOTSUPP;
7152 #endif /* CONFIG_SYN_COOKIES */
7153 }
7154
7155 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7156         .func           = bpf_tcp_gen_syncookie,
7157         .gpl_only       = true, /* __cookie_v*_init_sequence() is GPL */
7158         .pkt_access     = true,
7159         .ret_type       = RET_INTEGER,
7160         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7161         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7162         .arg3_type      = ARG_CONST_SIZE,
7163         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7164         .arg5_type      = ARG_CONST_SIZE,
7165 };
7166
7167 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7168 {
7169         if (!sk || flags != 0)
7170                 return -EINVAL;
7171         if (!skb_at_tc_ingress(skb))
7172                 return -EOPNOTSUPP;
7173         if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7174                 return -ENETUNREACH;
7175         if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
7176                 return -ESOCKTNOSUPPORT;
7177         if (sk_is_refcounted(sk) &&
7178             unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7179                 return -ENOENT;
7180
7181         skb_orphan(skb);
7182         skb->sk = sk;
7183         skb->destructor = sock_pfree;
7184
7185         return 0;
7186 }
7187
7188 static const struct bpf_func_proto bpf_sk_assign_proto = {
7189         .func           = bpf_sk_assign,
7190         .gpl_only       = false,
7191         .ret_type       = RET_INTEGER,
7192         .arg1_type      = ARG_PTR_TO_CTX,
7193         .arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7194         .arg3_type      = ARG_ANYTHING,
7195 };
7196
7197 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7198                                     u8 search_kind, const u8 *magic,
7199                                     u8 magic_len, bool *eol)
7200 {
7201         u8 kind, kind_len;
7202
7203         *eol = false;
7204
7205         while (op < opend) {
7206                 kind = op[0];
7207
7208                 if (kind == TCPOPT_EOL) {
7209                         *eol = true;
7210                         return ERR_PTR(-ENOMSG);
7211                 } else if (kind == TCPOPT_NOP) {
7212                         op++;
7213                         continue;
7214                 }
7215
7216                 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7217                         /* Something is wrong in the received header.
7218                          * Follow the TCP stack's tcp_parse_options()
7219                          * and just bail here.
7220                          */
7221                         return ERR_PTR(-EFAULT);
7222
7223                 kind_len = op[1];
7224                 if (search_kind == kind) {
7225                         if (!magic_len)
7226                                 return op;
7227
7228                         if (magic_len > kind_len - 2)
7229                                 return ERR_PTR(-ENOMSG);
7230
7231                         if (!memcmp(&op[2], magic, magic_len))
7232                                 return op;
7233                 }
7234
7235                 op += kind_len;
7236         }
7237
7238         return ERR_PTR(-ENOMSG);
7239 }
7240
7241 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7242            void *, search_res, u32, len, u64, flags)
7243 {
7244         bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7245         const u8 *op, *opend, *magic, *search = search_res;
7246         u8 search_kind, search_len, copy_len, magic_len;
7247         int ret;
7248
7249         /* 2 byte is the minimal option len except TCPOPT_NOP and
7250          * TCPOPT_EOL which are useless for the bpf prog to learn
7251          * and this helper disallow loading them also.
7252          */
7253         if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7254                 return -EINVAL;
7255
7256         search_kind = search[0];
7257         search_len = search[1];
7258
7259         if (search_len > len || search_kind == TCPOPT_NOP ||
7260             search_kind == TCPOPT_EOL)
7261                 return -EINVAL;
7262
7263         if (search_kind == TCPOPT_EXP || search_kind == 253) {
7264                 /* 16 or 32 bit magic.  +2 for kind and kind length */
7265                 if (search_len != 4 && search_len != 6)
7266                         return -EINVAL;
7267                 magic = &search[2];
7268                 magic_len = search_len - 2;
7269         } else {
7270                 if (search_len)
7271                         return -EINVAL;
7272                 magic = NULL;
7273                 magic_len = 0;
7274         }
7275
7276         if (load_syn) {
7277                 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7278                 if (ret < 0)
7279                         return ret;
7280
7281                 opend = op + ret;
7282                 op += sizeof(struct tcphdr);
7283         } else {
7284                 if (!bpf_sock->skb ||
7285                     bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7286                         /* This bpf_sock->op cannot call this helper */
7287                         return -EPERM;
7288
7289                 opend = bpf_sock->skb_data_end;
7290                 op = bpf_sock->skb->data + sizeof(struct tcphdr);
7291         }
7292
7293         op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7294                                 &eol);
7295         if (IS_ERR(op))
7296                 return PTR_ERR(op);
7297
7298         copy_len = op[1];
7299         ret = copy_len;
7300         if (copy_len > len) {
7301                 ret = -ENOSPC;
7302                 copy_len = len;
7303         }
7304
7305         memcpy(search_res, op, copy_len);
7306         return ret;
7307 }
7308
7309 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7310         .func           = bpf_sock_ops_load_hdr_opt,
7311         .gpl_only       = false,
7312         .ret_type       = RET_INTEGER,
7313         .arg1_type      = ARG_PTR_TO_CTX,
7314         .arg2_type      = ARG_PTR_TO_MEM,
7315         .arg3_type      = ARG_CONST_SIZE,
7316         .arg4_type      = ARG_ANYTHING,
7317 };
7318
7319 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7320            const void *, from, u32, len, u64, flags)
7321 {
7322         u8 new_kind, new_kind_len, magic_len = 0, *opend;
7323         const u8 *op, *new_op, *magic = NULL;
7324         struct sk_buff *skb;
7325         bool eol;
7326
7327         if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7328                 return -EPERM;
7329
7330         if (len < 2 || flags)
7331                 return -EINVAL;
7332
7333         new_op = from;
7334         new_kind = new_op[0];
7335         new_kind_len = new_op[1];
7336
7337         if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7338             new_kind == TCPOPT_EOL)
7339                 return -EINVAL;
7340
7341         if (new_kind_len > bpf_sock->remaining_opt_len)
7342                 return -ENOSPC;
7343
7344         /* 253 is another experimental kind */
7345         if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7346                 if (new_kind_len < 4)
7347                         return -EINVAL;
7348                 /* Match for the 2 byte magic also.
7349                  * RFC 6994: the magic could be 2 or 4 bytes.
7350                  * Hence, matching by 2 byte only is on the
7351                  * conservative side but it is the right
7352                  * thing to do for the 'search-for-duplication'
7353                  * purpose.
7354                  */
7355                 magic = &new_op[2];
7356                 magic_len = 2;
7357         }
7358
7359         /* Check for duplication */
7360         skb = bpf_sock->skb;
7361         op = skb->data + sizeof(struct tcphdr);
7362         opend = bpf_sock->skb_data_end;
7363
7364         op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7365                                 &eol);
7366         if (!IS_ERR(op))
7367                 return -EEXIST;
7368
7369         if (PTR_ERR(op) != -ENOMSG)
7370                 return PTR_ERR(op);
7371
7372         if (eol)
7373                 /* The option has been ended.  Treat it as no more
7374                  * header option can be written.
7375                  */
7376                 return -ENOSPC;
7377
7378         /* No duplication found.  Store the header option. */
7379         memcpy(opend, from, new_kind_len);
7380
7381         bpf_sock->remaining_opt_len -= new_kind_len;
7382         bpf_sock->skb_data_end += new_kind_len;
7383
7384         return 0;
7385 }
7386
7387 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7388         .func           = bpf_sock_ops_store_hdr_opt,
7389         .gpl_only       = false,
7390         .ret_type       = RET_INTEGER,
7391         .arg1_type      = ARG_PTR_TO_CTX,
7392         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7393         .arg3_type      = ARG_CONST_SIZE,
7394         .arg4_type      = ARG_ANYTHING,
7395 };
7396
7397 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7398            u32, len, u64, flags)
7399 {
7400         if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7401                 return -EPERM;
7402
7403         if (flags || len < 2)
7404                 return -EINVAL;
7405
7406         if (len > bpf_sock->remaining_opt_len)
7407                 return -ENOSPC;
7408
7409         bpf_sock->remaining_opt_len -= len;
7410
7411         return 0;
7412 }
7413
7414 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7415         .func           = bpf_sock_ops_reserve_hdr_opt,
7416         .gpl_only       = false,
7417         .ret_type       = RET_INTEGER,
7418         .arg1_type      = ARG_PTR_TO_CTX,
7419         .arg2_type      = ARG_ANYTHING,
7420         .arg3_type      = ARG_ANYTHING,
7421 };
7422
7423 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7424            u64, tstamp, u32, tstamp_type)
7425 {
7426         /* skb_clear_delivery_time() is done for inet protocol */
7427         if (skb->protocol != htons(ETH_P_IP) &&
7428             skb->protocol != htons(ETH_P_IPV6))
7429                 return -EOPNOTSUPP;
7430
7431         switch (tstamp_type) {
7432         case BPF_SKB_TSTAMP_DELIVERY_MONO:
7433                 if (!tstamp)
7434                         return -EINVAL;
7435                 skb->tstamp = tstamp;
7436                 skb->mono_delivery_time = 1;
7437                 break;
7438         case BPF_SKB_TSTAMP_UNSPEC:
7439                 if (tstamp)
7440                         return -EINVAL;
7441                 skb->tstamp = 0;
7442                 skb->mono_delivery_time = 0;
7443                 break;
7444         default:
7445                 return -EINVAL;
7446         }
7447
7448         return 0;
7449 }
7450
7451 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7452         .func           = bpf_skb_set_tstamp,
7453         .gpl_only       = false,
7454         .ret_type       = RET_INTEGER,
7455         .arg1_type      = ARG_PTR_TO_CTX,
7456         .arg2_type      = ARG_ANYTHING,
7457         .arg3_type      = ARG_ANYTHING,
7458 };
7459
7460 #ifdef CONFIG_SYN_COOKIES
7461 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7462            struct tcphdr *, th, u32, th_len)
7463 {
7464         u32 cookie;
7465         u16 mss;
7466
7467         if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7468                 return -EINVAL;
7469
7470         mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7471         cookie = __cookie_v4_init_sequence(iph, th, &mss);
7472
7473         return cookie | ((u64)mss << 32);
7474 }
7475
7476 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7477         .func           = bpf_tcp_raw_gen_syncookie_ipv4,
7478         .gpl_only       = true, /* __cookie_v4_init_sequence() is GPL */
7479         .pkt_access     = true,
7480         .ret_type       = RET_INTEGER,
7481         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7482         .arg1_size      = sizeof(struct iphdr),
7483         .arg2_type      = ARG_PTR_TO_MEM,
7484         .arg3_type      = ARG_CONST_SIZE,
7485 };
7486
7487 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7488            struct tcphdr *, th, u32, th_len)
7489 {
7490 #if IS_BUILTIN(CONFIG_IPV6)
7491         const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7492                 sizeof(struct ipv6hdr);
7493         u32 cookie;
7494         u16 mss;
7495
7496         if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7497                 return -EINVAL;
7498
7499         mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7500         cookie = __cookie_v6_init_sequence(iph, th, &mss);
7501
7502         return cookie | ((u64)mss << 32);
7503 #else
7504         return -EPROTONOSUPPORT;
7505 #endif
7506 }
7507
7508 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7509         .func           = bpf_tcp_raw_gen_syncookie_ipv6,
7510         .gpl_only       = true, /* __cookie_v6_init_sequence() is GPL */
7511         .pkt_access     = true,
7512         .ret_type       = RET_INTEGER,
7513         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7514         .arg1_size      = sizeof(struct ipv6hdr),
7515         .arg2_type      = ARG_PTR_TO_MEM,
7516         .arg3_type      = ARG_CONST_SIZE,
7517 };
7518
7519 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7520            struct tcphdr *, th)
7521 {
7522         u32 cookie = ntohl(th->ack_seq) - 1;
7523
7524         if (__cookie_v4_check(iph, th, cookie) > 0)
7525                 return 0;
7526
7527         return -EACCES;
7528 }
7529
7530 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7531         .func           = bpf_tcp_raw_check_syncookie_ipv4,
7532         .gpl_only       = true, /* __cookie_v4_check is GPL */
7533         .pkt_access     = true,
7534         .ret_type       = RET_INTEGER,
7535         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7536         .arg1_size      = sizeof(struct iphdr),
7537         .arg2_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7538         .arg2_size      = sizeof(struct tcphdr),
7539 };
7540
7541 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7542            struct tcphdr *, th)
7543 {
7544 #if IS_BUILTIN(CONFIG_IPV6)
7545         u32 cookie = ntohl(th->ack_seq) - 1;
7546
7547         if (__cookie_v6_check(iph, th, cookie) > 0)
7548                 return 0;
7549
7550         return -EACCES;
7551 #else
7552         return -EPROTONOSUPPORT;
7553 #endif
7554 }
7555
7556 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7557         .func           = bpf_tcp_raw_check_syncookie_ipv6,
7558         .gpl_only       = true, /* __cookie_v6_check is GPL */
7559         .pkt_access     = true,
7560         .ret_type       = RET_INTEGER,
7561         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7562         .arg1_size      = sizeof(struct ipv6hdr),
7563         .arg2_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7564         .arg2_size      = sizeof(struct tcphdr),
7565 };
7566 #endif /* CONFIG_SYN_COOKIES */
7567
7568 #endif /* CONFIG_INET */
7569
7570 bool bpf_helper_changes_pkt_data(void *func)
7571 {
7572         if (func == bpf_skb_vlan_push ||
7573             func == bpf_skb_vlan_pop ||
7574             func == bpf_skb_store_bytes ||
7575             func == bpf_skb_change_proto ||
7576             func == bpf_skb_change_head ||
7577             func == sk_skb_change_head ||
7578             func == bpf_skb_change_tail ||
7579             func == sk_skb_change_tail ||
7580             func == bpf_skb_adjust_room ||
7581             func == sk_skb_adjust_room ||
7582             func == bpf_skb_pull_data ||
7583             func == sk_skb_pull_data ||
7584             func == bpf_clone_redirect ||
7585             func == bpf_l3_csum_replace ||
7586             func == bpf_l4_csum_replace ||
7587             func == bpf_xdp_adjust_head ||
7588             func == bpf_xdp_adjust_meta ||
7589             func == bpf_msg_pull_data ||
7590             func == bpf_msg_push_data ||
7591             func == bpf_msg_pop_data ||
7592             func == bpf_xdp_adjust_tail ||
7593 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7594             func == bpf_lwt_seg6_store_bytes ||
7595             func == bpf_lwt_seg6_adjust_srh ||
7596             func == bpf_lwt_seg6_action ||
7597 #endif
7598 #ifdef CONFIG_INET
7599             func == bpf_sock_ops_store_hdr_opt ||
7600 #endif
7601             func == bpf_lwt_in_push_encap ||
7602             func == bpf_lwt_xmit_push_encap)
7603                 return true;
7604
7605         return false;
7606 }
7607
7608 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7609 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7610
7611 static const struct bpf_func_proto *
7612 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7613 {
7614         const struct bpf_func_proto *func_proto;
7615
7616         func_proto = cgroup_common_func_proto(func_id, prog);
7617         if (func_proto)
7618                 return func_proto;
7619
7620         func_proto = cgroup_current_func_proto(func_id, prog);
7621         if (func_proto)
7622                 return func_proto;
7623
7624         switch (func_id) {
7625         case BPF_FUNC_get_socket_cookie:
7626                 return &bpf_get_socket_cookie_sock_proto;
7627         case BPF_FUNC_get_netns_cookie:
7628                 return &bpf_get_netns_cookie_sock_proto;
7629         case BPF_FUNC_perf_event_output:
7630                 return &bpf_event_output_data_proto;
7631         case BPF_FUNC_sk_storage_get:
7632                 return &bpf_sk_storage_get_cg_sock_proto;
7633         case BPF_FUNC_ktime_get_coarse_ns:
7634                 return &bpf_ktime_get_coarse_ns_proto;
7635         default:
7636                 return bpf_base_func_proto(func_id);
7637         }
7638 }
7639
7640 static const struct bpf_func_proto *
7641 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7642 {
7643         const struct bpf_func_proto *func_proto;
7644
7645         func_proto = cgroup_common_func_proto(func_id, prog);
7646         if (func_proto)
7647                 return func_proto;
7648
7649         func_proto = cgroup_current_func_proto(func_id, prog);
7650         if (func_proto)
7651                 return func_proto;
7652
7653         switch (func_id) {
7654         case BPF_FUNC_bind:
7655                 switch (prog->expected_attach_type) {
7656                 case BPF_CGROUP_INET4_CONNECT:
7657                 case BPF_CGROUP_INET6_CONNECT:
7658                         return &bpf_bind_proto;
7659                 default:
7660                         return NULL;
7661                 }
7662         case BPF_FUNC_get_socket_cookie:
7663                 return &bpf_get_socket_cookie_sock_addr_proto;
7664         case BPF_FUNC_get_netns_cookie:
7665                 return &bpf_get_netns_cookie_sock_addr_proto;
7666         case BPF_FUNC_perf_event_output:
7667                 return &bpf_event_output_data_proto;
7668 #ifdef CONFIG_INET
7669         case BPF_FUNC_sk_lookup_tcp:
7670                 return &bpf_sock_addr_sk_lookup_tcp_proto;
7671         case BPF_FUNC_sk_lookup_udp:
7672                 return &bpf_sock_addr_sk_lookup_udp_proto;
7673         case BPF_FUNC_sk_release:
7674                 return &bpf_sk_release_proto;
7675         case BPF_FUNC_skc_lookup_tcp:
7676                 return &bpf_sock_addr_skc_lookup_tcp_proto;
7677 #endif /* CONFIG_INET */
7678         case BPF_FUNC_sk_storage_get:
7679                 return &bpf_sk_storage_get_proto;
7680         case BPF_FUNC_sk_storage_delete:
7681                 return &bpf_sk_storage_delete_proto;
7682         case BPF_FUNC_setsockopt:
7683                 switch (prog->expected_attach_type) {
7684                 case BPF_CGROUP_INET4_BIND:
7685                 case BPF_CGROUP_INET6_BIND:
7686                 case BPF_CGROUP_INET4_CONNECT:
7687                 case BPF_CGROUP_INET6_CONNECT:
7688                 case BPF_CGROUP_UDP4_RECVMSG:
7689                 case BPF_CGROUP_UDP6_RECVMSG:
7690                 case BPF_CGROUP_UDP4_SENDMSG:
7691                 case BPF_CGROUP_UDP6_SENDMSG:
7692                 case BPF_CGROUP_INET4_GETPEERNAME:
7693                 case BPF_CGROUP_INET6_GETPEERNAME:
7694                 case BPF_CGROUP_INET4_GETSOCKNAME:
7695                 case BPF_CGROUP_INET6_GETSOCKNAME:
7696                         return &bpf_sock_addr_setsockopt_proto;
7697                 default:
7698                         return NULL;
7699                 }
7700         case BPF_FUNC_getsockopt:
7701                 switch (prog->expected_attach_type) {
7702                 case BPF_CGROUP_INET4_BIND:
7703                 case BPF_CGROUP_INET6_BIND:
7704                 case BPF_CGROUP_INET4_CONNECT:
7705                 case BPF_CGROUP_INET6_CONNECT:
7706                 case BPF_CGROUP_UDP4_RECVMSG:
7707                 case BPF_CGROUP_UDP6_RECVMSG:
7708                 case BPF_CGROUP_UDP4_SENDMSG:
7709                 case BPF_CGROUP_UDP6_SENDMSG:
7710                 case BPF_CGROUP_INET4_GETPEERNAME:
7711                 case BPF_CGROUP_INET6_GETPEERNAME:
7712                 case BPF_CGROUP_INET4_GETSOCKNAME:
7713                 case BPF_CGROUP_INET6_GETSOCKNAME:
7714                         return &bpf_sock_addr_getsockopt_proto;
7715                 default:
7716                         return NULL;
7717                 }
7718         default:
7719                 return bpf_sk_base_func_proto(func_id);
7720         }
7721 }
7722
7723 static const struct bpf_func_proto *
7724 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7725 {
7726         switch (func_id) {
7727         case BPF_FUNC_skb_load_bytes:
7728                 return &bpf_skb_load_bytes_proto;
7729         case BPF_FUNC_skb_load_bytes_relative:
7730                 return &bpf_skb_load_bytes_relative_proto;
7731         case BPF_FUNC_get_socket_cookie:
7732                 return &bpf_get_socket_cookie_proto;
7733         case BPF_FUNC_get_socket_uid:
7734                 return &bpf_get_socket_uid_proto;
7735         case BPF_FUNC_perf_event_output:
7736                 return &bpf_skb_event_output_proto;
7737         default:
7738                 return bpf_sk_base_func_proto(func_id);
7739         }
7740 }
7741
7742 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7743 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7744
7745 static const struct bpf_func_proto *
7746 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7747 {
7748         const struct bpf_func_proto *func_proto;
7749
7750         func_proto = cgroup_common_func_proto(func_id, prog);
7751         if (func_proto)
7752                 return func_proto;
7753
7754         switch (func_id) {
7755         case BPF_FUNC_sk_fullsock:
7756                 return &bpf_sk_fullsock_proto;
7757         case BPF_FUNC_sk_storage_get:
7758                 return &bpf_sk_storage_get_proto;
7759         case BPF_FUNC_sk_storage_delete:
7760                 return &bpf_sk_storage_delete_proto;
7761         case BPF_FUNC_perf_event_output:
7762                 return &bpf_skb_event_output_proto;
7763 #ifdef CONFIG_SOCK_CGROUP_DATA
7764         case BPF_FUNC_skb_cgroup_id:
7765                 return &bpf_skb_cgroup_id_proto;
7766         case BPF_FUNC_skb_ancestor_cgroup_id:
7767                 return &bpf_skb_ancestor_cgroup_id_proto;
7768         case BPF_FUNC_sk_cgroup_id:
7769                 return &bpf_sk_cgroup_id_proto;
7770         case BPF_FUNC_sk_ancestor_cgroup_id:
7771                 return &bpf_sk_ancestor_cgroup_id_proto;
7772 #endif
7773 #ifdef CONFIG_INET
7774         case BPF_FUNC_sk_lookup_tcp:
7775                 return &bpf_sk_lookup_tcp_proto;
7776         case BPF_FUNC_sk_lookup_udp:
7777                 return &bpf_sk_lookup_udp_proto;
7778         case BPF_FUNC_sk_release:
7779                 return &bpf_sk_release_proto;
7780         case BPF_FUNC_skc_lookup_tcp:
7781                 return &bpf_skc_lookup_tcp_proto;
7782         case BPF_FUNC_tcp_sock:
7783                 return &bpf_tcp_sock_proto;
7784         case BPF_FUNC_get_listener_sock:
7785                 return &bpf_get_listener_sock_proto;
7786         case BPF_FUNC_skb_ecn_set_ce:
7787                 return &bpf_skb_ecn_set_ce_proto;
7788 #endif
7789         default:
7790                 return sk_filter_func_proto(func_id, prog);
7791         }
7792 }
7793
7794 static const struct bpf_func_proto *
7795 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7796 {
7797         switch (func_id) {
7798         case BPF_FUNC_skb_store_bytes:
7799                 return &bpf_skb_store_bytes_proto;
7800         case BPF_FUNC_skb_load_bytes:
7801                 return &bpf_skb_load_bytes_proto;
7802         case BPF_FUNC_skb_load_bytes_relative:
7803                 return &bpf_skb_load_bytes_relative_proto;
7804         case BPF_FUNC_skb_pull_data:
7805                 return &bpf_skb_pull_data_proto;
7806         case BPF_FUNC_csum_diff:
7807                 return &bpf_csum_diff_proto;
7808         case BPF_FUNC_csum_update:
7809                 return &bpf_csum_update_proto;
7810         case BPF_FUNC_csum_level:
7811                 return &bpf_csum_level_proto;
7812         case BPF_FUNC_l3_csum_replace:
7813                 return &bpf_l3_csum_replace_proto;
7814         case BPF_FUNC_l4_csum_replace:
7815                 return &bpf_l4_csum_replace_proto;
7816         case BPF_FUNC_clone_redirect:
7817                 return &bpf_clone_redirect_proto;
7818         case BPF_FUNC_get_cgroup_classid:
7819                 return &bpf_get_cgroup_classid_proto;
7820         case BPF_FUNC_skb_vlan_push:
7821                 return &bpf_skb_vlan_push_proto;
7822         case BPF_FUNC_skb_vlan_pop:
7823                 return &bpf_skb_vlan_pop_proto;
7824         case BPF_FUNC_skb_change_proto:
7825                 return &bpf_skb_change_proto_proto;
7826         case BPF_FUNC_skb_change_type:
7827                 return &bpf_skb_change_type_proto;
7828         case BPF_FUNC_skb_adjust_room:
7829                 return &bpf_skb_adjust_room_proto;
7830         case BPF_FUNC_skb_change_tail:
7831                 return &bpf_skb_change_tail_proto;
7832         case BPF_FUNC_skb_change_head:
7833                 return &bpf_skb_change_head_proto;
7834         case BPF_FUNC_skb_get_tunnel_key:
7835                 return &bpf_skb_get_tunnel_key_proto;
7836         case BPF_FUNC_skb_set_tunnel_key:
7837                 return bpf_get_skb_set_tunnel_proto(func_id);
7838         case BPF_FUNC_skb_get_tunnel_opt:
7839                 return &bpf_skb_get_tunnel_opt_proto;
7840         case BPF_FUNC_skb_set_tunnel_opt:
7841                 return bpf_get_skb_set_tunnel_proto(func_id);
7842         case BPF_FUNC_redirect:
7843                 return &bpf_redirect_proto;
7844         case BPF_FUNC_redirect_neigh:
7845                 return &bpf_redirect_neigh_proto;
7846         case BPF_FUNC_redirect_peer:
7847                 return &bpf_redirect_peer_proto;
7848         case BPF_FUNC_get_route_realm:
7849                 return &bpf_get_route_realm_proto;
7850         case BPF_FUNC_get_hash_recalc:
7851                 return &bpf_get_hash_recalc_proto;
7852         case BPF_FUNC_set_hash_invalid:
7853                 return &bpf_set_hash_invalid_proto;
7854         case BPF_FUNC_set_hash:
7855                 return &bpf_set_hash_proto;
7856         case BPF_FUNC_perf_event_output:
7857                 return &bpf_skb_event_output_proto;
7858         case BPF_FUNC_get_smp_processor_id:
7859                 return &bpf_get_smp_processor_id_proto;
7860         case BPF_FUNC_skb_under_cgroup:
7861                 return &bpf_skb_under_cgroup_proto;
7862         case BPF_FUNC_get_socket_cookie:
7863                 return &bpf_get_socket_cookie_proto;
7864         case BPF_FUNC_get_socket_uid:
7865                 return &bpf_get_socket_uid_proto;
7866         case BPF_FUNC_fib_lookup:
7867                 return &bpf_skb_fib_lookup_proto;
7868         case BPF_FUNC_check_mtu:
7869                 return &bpf_skb_check_mtu_proto;
7870         case BPF_FUNC_sk_fullsock:
7871                 return &bpf_sk_fullsock_proto;
7872         case BPF_FUNC_sk_storage_get:
7873                 return &bpf_sk_storage_get_proto;
7874         case BPF_FUNC_sk_storage_delete:
7875                 return &bpf_sk_storage_delete_proto;
7876 #ifdef CONFIG_XFRM
7877         case BPF_FUNC_skb_get_xfrm_state:
7878                 return &bpf_skb_get_xfrm_state_proto;
7879 #endif
7880 #ifdef CONFIG_CGROUP_NET_CLASSID
7881         case BPF_FUNC_skb_cgroup_classid:
7882                 return &bpf_skb_cgroup_classid_proto;
7883 #endif
7884 #ifdef CONFIG_SOCK_CGROUP_DATA
7885         case BPF_FUNC_skb_cgroup_id:
7886                 return &bpf_skb_cgroup_id_proto;
7887         case BPF_FUNC_skb_ancestor_cgroup_id:
7888                 return &bpf_skb_ancestor_cgroup_id_proto;
7889 #endif
7890 #ifdef CONFIG_INET
7891         case BPF_FUNC_sk_lookup_tcp:
7892                 return &bpf_sk_lookup_tcp_proto;
7893         case BPF_FUNC_sk_lookup_udp:
7894                 return &bpf_sk_lookup_udp_proto;
7895         case BPF_FUNC_sk_release:
7896                 return &bpf_sk_release_proto;
7897         case BPF_FUNC_tcp_sock:
7898                 return &bpf_tcp_sock_proto;
7899         case BPF_FUNC_get_listener_sock:
7900                 return &bpf_get_listener_sock_proto;
7901         case BPF_FUNC_skc_lookup_tcp:
7902                 return &bpf_skc_lookup_tcp_proto;
7903         case BPF_FUNC_tcp_check_syncookie:
7904                 return &bpf_tcp_check_syncookie_proto;
7905         case BPF_FUNC_skb_ecn_set_ce:
7906                 return &bpf_skb_ecn_set_ce_proto;
7907         case BPF_FUNC_tcp_gen_syncookie:
7908                 return &bpf_tcp_gen_syncookie_proto;
7909         case BPF_FUNC_sk_assign:
7910                 return &bpf_sk_assign_proto;
7911         case BPF_FUNC_skb_set_tstamp:
7912                 return &bpf_skb_set_tstamp_proto;
7913 #ifdef CONFIG_SYN_COOKIES
7914         case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
7915                 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
7916         case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
7917                 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
7918         case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
7919                 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
7920         case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
7921                 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
7922 #endif
7923 #endif
7924         default:
7925                 return bpf_sk_base_func_proto(func_id);
7926         }
7927 }
7928
7929 static const struct bpf_func_proto *
7930 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7931 {
7932         switch (func_id) {
7933         case BPF_FUNC_perf_event_output:
7934                 return &bpf_xdp_event_output_proto;
7935         case BPF_FUNC_get_smp_processor_id:
7936                 return &bpf_get_smp_processor_id_proto;
7937         case BPF_FUNC_csum_diff:
7938                 return &bpf_csum_diff_proto;
7939         case BPF_FUNC_xdp_adjust_head:
7940                 return &bpf_xdp_adjust_head_proto;
7941         case BPF_FUNC_xdp_adjust_meta:
7942                 return &bpf_xdp_adjust_meta_proto;
7943         case BPF_FUNC_redirect:
7944                 return &bpf_xdp_redirect_proto;
7945         case BPF_FUNC_redirect_map:
7946                 return &bpf_xdp_redirect_map_proto;
7947         case BPF_FUNC_xdp_adjust_tail:
7948                 return &bpf_xdp_adjust_tail_proto;
7949         case BPF_FUNC_xdp_get_buff_len:
7950                 return &bpf_xdp_get_buff_len_proto;
7951         case BPF_FUNC_xdp_load_bytes:
7952                 return &bpf_xdp_load_bytes_proto;
7953         case BPF_FUNC_xdp_store_bytes:
7954                 return &bpf_xdp_store_bytes_proto;
7955         case BPF_FUNC_fib_lookup:
7956                 return &bpf_xdp_fib_lookup_proto;
7957         case BPF_FUNC_check_mtu:
7958                 return &bpf_xdp_check_mtu_proto;
7959 #ifdef CONFIG_INET
7960         case BPF_FUNC_sk_lookup_udp:
7961                 return &bpf_xdp_sk_lookup_udp_proto;
7962         case BPF_FUNC_sk_lookup_tcp:
7963                 return &bpf_xdp_sk_lookup_tcp_proto;
7964         case BPF_FUNC_sk_release:
7965                 return &bpf_sk_release_proto;
7966         case BPF_FUNC_skc_lookup_tcp:
7967                 return &bpf_xdp_skc_lookup_tcp_proto;
7968         case BPF_FUNC_tcp_check_syncookie:
7969                 return &bpf_tcp_check_syncookie_proto;
7970         case BPF_FUNC_tcp_gen_syncookie:
7971                 return &bpf_tcp_gen_syncookie_proto;
7972 #ifdef CONFIG_SYN_COOKIES
7973         case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
7974                 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
7975         case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
7976                 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
7977         case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
7978                 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
7979         case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
7980                 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
7981 #endif
7982 #endif
7983         default:
7984                 return bpf_sk_base_func_proto(func_id);
7985         }
7986 }
7987
7988 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7989 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7990
7991 static const struct bpf_func_proto *
7992 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7993 {
7994         const struct bpf_func_proto *func_proto;
7995
7996         func_proto = cgroup_common_func_proto(func_id, prog);
7997         if (func_proto)
7998                 return func_proto;
7999
8000         switch (func_id) {
8001         case BPF_FUNC_setsockopt:
8002                 return &bpf_sock_ops_setsockopt_proto;
8003         case BPF_FUNC_getsockopt:
8004                 return &bpf_sock_ops_getsockopt_proto;
8005         case BPF_FUNC_sock_ops_cb_flags_set:
8006                 return &bpf_sock_ops_cb_flags_set_proto;
8007         case BPF_FUNC_sock_map_update:
8008                 return &bpf_sock_map_update_proto;
8009         case BPF_FUNC_sock_hash_update:
8010                 return &bpf_sock_hash_update_proto;
8011         case BPF_FUNC_get_socket_cookie:
8012                 return &bpf_get_socket_cookie_sock_ops_proto;
8013         case BPF_FUNC_perf_event_output:
8014                 return &bpf_event_output_data_proto;
8015         case BPF_FUNC_sk_storage_get:
8016                 return &bpf_sk_storage_get_proto;
8017         case BPF_FUNC_sk_storage_delete:
8018                 return &bpf_sk_storage_delete_proto;
8019         case BPF_FUNC_get_netns_cookie:
8020                 return &bpf_get_netns_cookie_sock_ops_proto;
8021 #ifdef CONFIG_INET
8022         case BPF_FUNC_load_hdr_opt:
8023                 return &bpf_sock_ops_load_hdr_opt_proto;
8024         case BPF_FUNC_store_hdr_opt:
8025                 return &bpf_sock_ops_store_hdr_opt_proto;
8026         case BPF_FUNC_reserve_hdr_opt:
8027                 return &bpf_sock_ops_reserve_hdr_opt_proto;
8028         case BPF_FUNC_tcp_sock:
8029                 return &bpf_tcp_sock_proto;
8030 #endif /* CONFIG_INET */
8031         default:
8032                 return bpf_sk_base_func_proto(func_id);
8033         }
8034 }
8035
8036 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8037 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8038
8039 static const struct bpf_func_proto *
8040 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8041 {
8042         switch (func_id) {
8043         case BPF_FUNC_msg_redirect_map:
8044                 return &bpf_msg_redirect_map_proto;
8045         case BPF_FUNC_msg_redirect_hash:
8046                 return &bpf_msg_redirect_hash_proto;
8047         case BPF_FUNC_msg_apply_bytes:
8048                 return &bpf_msg_apply_bytes_proto;
8049         case BPF_FUNC_msg_cork_bytes:
8050                 return &bpf_msg_cork_bytes_proto;
8051         case BPF_FUNC_msg_pull_data:
8052                 return &bpf_msg_pull_data_proto;
8053         case BPF_FUNC_msg_push_data:
8054                 return &bpf_msg_push_data_proto;
8055         case BPF_FUNC_msg_pop_data:
8056                 return &bpf_msg_pop_data_proto;
8057         case BPF_FUNC_perf_event_output:
8058                 return &bpf_event_output_data_proto;
8059         case BPF_FUNC_get_current_uid_gid:
8060                 return &bpf_get_current_uid_gid_proto;
8061         case BPF_FUNC_get_current_pid_tgid:
8062                 return &bpf_get_current_pid_tgid_proto;
8063         case BPF_FUNC_sk_storage_get:
8064                 return &bpf_sk_storage_get_proto;
8065         case BPF_FUNC_sk_storage_delete:
8066                 return &bpf_sk_storage_delete_proto;
8067         case BPF_FUNC_get_netns_cookie:
8068                 return &bpf_get_netns_cookie_sk_msg_proto;
8069 #ifdef CONFIG_CGROUPS
8070         case BPF_FUNC_get_current_cgroup_id:
8071                 return &bpf_get_current_cgroup_id_proto;
8072         case BPF_FUNC_get_current_ancestor_cgroup_id:
8073                 return &bpf_get_current_ancestor_cgroup_id_proto;
8074 #endif
8075 #ifdef CONFIG_CGROUP_NET_CLASSID
8076         case BPF_FUNC_get_cgroup_classid:
8077                 return &bpf_get_cgroup_classid_curr_proto;
8078 #endif
8079         default:
8080                 return bpf_sk_base_func_proto(func_id);
8081         }
8082 }
8083
8084 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8085 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8086
8087 static const struct bpf_func_proto *
8088 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8089 {
8090         switch (func_id) {
8091         case BPF_FUNC_skb_store_bytes:
8092                 return &bpf_skb_store_bytes_proto;
8093         case BPF_FUNC_skb_load_bytes:
8094                 return &bpf_skb_load_bytes_proto;
8095         case BPF_FUNC_skb_pull_data:
8096                 return &sk_skb_pull_data_proto;
8097         case BPF_FUNC_skb_change_tail:
8098                 return &sk_skb_change_tail_proto;
8099         case BPF_FUNC_skb_change_head:
8100                 return &sk_skb_change_head_proto;
8101         case BPF_FUNC_skb_adjust_room:
8102                 return &sk_skb_adjust_room_proto;
8103         case BPF_FUNC_get_socket_cookie:
8104                 return &bpf_get_socket_cookie_proto;
8105         case BPF_FUNC_get_socket_uid:
8106                 return &bpf_get_socket_uid_proto;
8107         case BPF_FUNC_sk_redirect_map:
8108                 return &bpf_sk_redirect_map_proto;
8109         case BPF_FUNC_sk_redirect_hash:
8110                 return &bpf_sk_redirect_hash_proto;
8111         case BPF_FUNC_perf_event_output:
8112                 return &bpf_skb_event_output_proto;
8113 #ifdef CONFIG_INET
8114         case BPF_FUNC_sk_lookup_tcp:
8115                 return &bpf_sk_lookup_tcp_proto;
8116         case BPF_FUNC_sk_lookup_udp:
8117                 return &bpf_sk_lookup_udp_proto;
8118         case BPF_FUNC_sk_release:
8119                 return &bpf_sk_release_proto;
8120         case BPF_FUNC_skc_lookup_tcp:
8121                 return &bpf_skc_lookup_tcp_proto;
8122 #endif
8123         default:
8124                 return bpf_sk_base_func_proto(func_id);
8125         }
8126 }
8127
8128 static const struct bpf_func_proto *
8129 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8130 {
8131         switch (func_id) {
8132         case BPF_FUNC_skb_load_bytes:
8133                 return &bpf_flow_dissector_load_bytes_proto;
8134         default:
8135                 return bpf_sk_base_func_proto(func_id);
8136         }
8137 }
8138
8139 static const struct bpf_func_proto *
8140 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8141 {
8142         switch (func_id) {
8143         case BPF_FUNC_skb_load_bytes:
8144                 return &bpf_skb_load_bytes_proto;
8145         case BPF_FUNC_skb_pull_data:
8146                 return &bpf_skb_pull_data_proto;
8147         case BPF_FUNC_csum_diff:
8148                 return &bpf_csum_diff_proto;
8149         case BPF_FUNC_get_cgroup_classid:
8150                 return &bpf_get_cgroup_classid_proto;
8151         case BPF_FUNC_get_route_realm:
8152                 return &bpf_get_route_realm_proto;
8153         case BPF_FUNC_get_hash_recalc:
8154                 return &bpf_get_hash_recalc_proto;
8155         case BPF_FUNC_perf_event_output:
8156                 return &bpf_skb_event_output_proto;
8157         case BPF_FUNC_get_smp_processor_id:
8158                 return &bpf_get_smp_processor_id_proto;
8159         case BPF_FUNC_skb_under_cgroup:
8160                 return &bpf_skb_under_cgroup_proto;
8161         default:
8162                 return bpf_sk_base_func_proto(func_id);
8163         }
8164 }
8165
8166 static const struct bpf_func_proto *
8167 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8168 {
8169         switch (func_id) {
8170         case BPF_FUNC_lwt_push_encap:
8171                 return &bpf_lwt_in_push_encap_proto;
8172         default:
8173                 return lwt_out_func_proto(func_id, prog);
8174         }
8175 }
8176
8177 static const struct bpf_func_proto *
8178 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8179 {
8180         switch (func_id) {
8181         case BPF_FUNC_skb_get_tunnel_key:
8182                 return &bpf_skb_get_tunnel_key_proto;
8183         case BPF_FUNC_skb_set_tunnel_key:
8184                 return bpf_get_skb_set_tunnel_proto(func_id);
8185         case BPF_FUNC_skb_get_tunnel_opt:
8186                 return &bpf_skb_get_tunnel_opt_proto;
8187         case BPF_FUNC_skb_set_tunnel_opt:
8188                 return bpf_get_skb_set_tunnel_proto(func_id);
8189         case BPF_FUNC_redirect:
8190                 return &bpf_redirect_proto;
8191         case BPF_FUNC_clone_redirect:
8192                 return &bpf_clone_redirect_proto;
8193         case BPF_FUNC_skb_change_tail:
8194                 return &bpf_skb_change_tail_proto;
8195         case BPF_FUNC_skb_change_head:
8196                 return &bpf_skb_change_head_proto;
8197         case BPF_FUNC_skb_store_bytes:
8198                 return &bpf_skb_store_bytes_proto;
8199         case BPF_FUNC_csum_update:
8200                 return &bpf_csum_update_proto;
8201         case BPF_FUNC_csum_level:
8202                 return &bpf_csum_level_proto;
8203         case BPF_FUNC_l3_csum_replace:
8204                 return &bpf_l3_csum_replace_proto;
8205         case BPF_FUNC_l4_csum_replace:
8206                 return &bpf_l4_csum_replace_proto;
8207         case BPF_FUNC_set_hash_invalid:
8208                 return &bpf_set_hash_invalid_proto;
8209         case BPF_FUNC_lwt_push_encap:
8210                 return &bpf_lwt_xmit_push_encap_proto;
8211         default:
8212                 return lwt_out_func_proto(func_id, prog);
8213         }
8214 }
8215
8216 static const struct bpf_func_proto *
8217 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8218 {
8219         switch (func_id) {
8220 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8221         case BPF_FUNC_lwt_seg6_store_bytes:
8222                 return &bpf_lwt_seg6_store_bytes_proto;
8223         case BPF_FUNC_lwt_seg6_action:
8224                 return &bpf_lwt_seg6_action_proto;
8225         case BPF_FUNC_lwt_seg6_adjust_srh:
8226                 return &bpf_lwt_seg6_adjust_srh_proto;
8227 #endif
8228         default:
8229                 return lwt_out_func_proto(func_id, prog);
8230         }
8231 }
8232
8233 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8234                                     const struct bpf_prog *prog,
8235                                     struct bpf_insn_access_aux *info)
8236 {
8237         const int size_default = sizeof(__u32);
8238
8239         if (off < 0 || off >= sizeof(struct __sk_buff))
8240                 return false;
8241
8242         /* The verifier guarantees that size > 0. */
8243         if (off % size != 0)
8244                 return false;
8245
8246         switch (off) {
8247         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8248                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
8249                         return false;
8250                 break;
8251         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8252         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8253         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8254         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8255         case bpf_ctx_range(struct __sk_buff, data):
8256         case bpf_ctx_range(struct __sk_buff, data_meta):
8257         case bpf_ctx_range(struct __sk_buff, data_end):
8258                 if (size != size_default)
8259                         return false;
8260                 break;
8261         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8262                 return false;
8263         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8264                 if (type == BPF_WRITE || size != sizeof(__u64))
8265                         return false;
8266                 break;
8267         case bpf_ctx_range(struct __sk_buff, tstamp):
8268                 if (size != sizeof(__u64))
8269                         return false;
8270                 break;
8271         case offsetof(struct __sk_buff, sk):
8272                 if (type == BPF_WRITE || size != sizeof(__u64))
8273                         return false;
8274                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8275                 break;
8276         case offsetof(struct __sk_buff, tstamp_type):
8277                 return false;
8278         case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8279                 /* Explicitly prohibit access to padding in __sk_buff. */
8280                 return false;
8281         default:
8282                 /* Only narrow read access allowed for now. */
8283                 if (type == BPF_WRITE) {
8284                         if (size != size_default)
8285                                 return false;
8286                 } else {
8287                         bpf_ctx_record_field_size(info, size_default);
8288                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8289                                 return false;
8290                 }
8291         }
8292
8293         return true;
8294 }
8295
8296 static bool sk_filter_is_valid_access(int off, int size,
8297                                       enum bpf_access_type type,
8298                                       const struct bpf_prog *prog,
8299                                       struct bpf_insn_access_aux *info)
8300 {
8301         switch (off) {
8302         case bpf_ctx_range(struct __sk_buff, tc_classid):
8303         case bpf_ctx_range(struct __sk_buff, data):
8304         case bpf_ctx_range(struct __sk_buff, data_meta):
8305         case bpf_ctx_range(struct __sk_buff, data_end):
8306         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8307         case bpf_ctx_range(struct __sk_buff, tstamp):
8308         case bpf_ctx_range(struct __sk_buff, wire_len):
8309         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8310                 return false;
8311         }
8312
8313         if (type == BPF_WRITE) {
8314                 switch (off) {
8315                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8316                         break;
8317                 default:
8318                         return false;
8319                 }
8320         }
8321
8322         return bpf_skb_is_valid_access(off, size, type, prog, info);
8323 }
8324
8325 static bool cg_skb_is_valid_access(int off, int size,
8326                                    enum bpf_access_type type,
8327                                    const struct bpf_prog *prog,
8328                                    struct bpf_insn_access_aux *info)
8329 {
8330         switch (off) {
8331         case bpf_ctx_range(struct __sk_buff, tc_classid):
8332         case bpf_ctx_range(struct __sk_buff, data_meta):
8333         case bpf_ctx_range(struct __sk_buff, wire_len):
8334                 return false;
8335         case bpf_ctx_range(struct __sk_buff, data):
8336         case bpf_ctx_range(struct __sk_buff, data_end):
8337                 if (!bpf_capable())
8338                         return false;
8339                 break;
8340         }
8341
8342         if (type == BPF_WRITE) {
8343                 switch (off) {
8344                 case bpf_ctx_range(struct __sk_buff, mark):
8345                 case bpf_ctx_range(struct __sk_buff, priority):
8346                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8347                         break;
8348                 case bpf_ctx_range(struct __sk_buff, tstamp):
8349                         if (!bpf_capable())
8350                                 return false;
8351                         break;
8352                 default:
8353                         return false;
8354                 }
8355         }
8356
8357         switch (off) {
8358         case bpf_ctx_range(struct __sk_buff, data):
8359                 info->reg_type = PTR_TO_PACKET;
8360                 break;
8361         case bpf_ctx_range(struct __sk_buff, data_end):
8362                 info->reg_type = PTR_TO_PACKET_END;
8363                 break;
8364         }
8365
8366         return bpf_skb_is_valid_access(off, size, type, prog, info);
8367 }
8368
8369 static bool lwt_is_valid_access(int off, int size,
8370                                 enum bpf_access_type type,
8371                                 const struct bpf_prog *prog,
8372                                 struct bpf_insn_access_aux *info)
8373 {
8374         switch (off) {
8375         case bpf_ctx_range(struct __sk_buff, tc_classid):
8376         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8377         case bpf_ctx_range(struct __sk_buff, data_meta):
8378         case bpf_ctx_range(struct __sk_buff, tstamp):
8379         case bpf_ctx_range(struct __sk_buff, wire_len):
8380         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8381                 return false;
8382         }
8383
8384         if (type == BPF_WRITE) {
8385                 switch (off) {
8386                 case bpf_ctx_range(struct __sk_buff, mark):
8387                 case bpf_ctx_range(struct __sk_buff, priority):
8388                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8389                         break;
8390                 default:
8391                         return false;
8392                 }
8393         }
8394
8395         switch (off) {
8396         case bpf_ctx_range(struct __sk_buff, data):
8397                 info->reg_type = PTR_TO_PACKET;
8398                 break;
8399         case bpf_ctx_range(struct __sk_buff, data_end):
8400                 info->reg_type = PTR_TO_PACKET_END;
8401                 break;
8402         }
8403
8404         return bpf_skb_is_valid_access(off, size, type, prog, info);
8405 }
8406
8407 /* Attach type specific accesses */
8408 static bool __sock_filter_check_attach_type(int off,
8409                                             enum bpf_access_type access_type,
8410                                             enum bpf_attach_type attach_type)
8411 {
8412         switch (off) {
8413         case offsetof(struct bpf_sock, bound_dev_if):
8414         case offsetof(struct bpf_sock, mark):
8415         case offsetof(struct bpf_sock, priority):
8416                 switch (attach_type) {
8417                 case BPF_CGROUP_INET_SOCK_CREATE:
8418                 case BPF_CGROUP_INET_SOCK_RELEASE:
8419                         goto full_access;
8420                 default:
8421                         return false;
8422                 }
8423         case bpf_ctx_range(struct bpf_sock, src_ip4):
8424                 switch (attach_type) {
8425                 case BPF_CGROUP_INET4_POST_BIND:
8426                         goto read_only;
8427                 default:
8428                         return false;
8429                 }
8430         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8431                 switch (attach_type) {
8432                 case BPF_CGROUP_INET6_POST_BIND:
8433                         goto read_only;
8434                 default:
8435                         return false;
8436                 }
8437         case bpf_ctx_range(struct bpf_sock, src_port):
8438                 switch (attach_type) {
8439                 case BPF_CGROUP_INET4_POST_BIND:
8440                 case BPF_CGROUP_INET6_POST_BIND:
8441                         goto read_only;
8442                 default:
8443                         return false;
8444                 }
8445         }
8446 read_only:
8447         return access_type == BPF_READ;
8448 full_access:
8449         return true;
8450 }
8451
8452 bool bpf_sock_common_is_valid_access(int off, int size,
8453                                      enum bpf_access_type type,
8454                                      struct bpf_insn_access_aux *info)
8455 {
8456         switch (off) {
8457         case bpf_ctx_range_till(struct bpf_sock, type, priority):
8458                 return false;
8459         default:
8460                 return bpf_sock_is_valid_access(off, size, type, info);
8461         }
8462 }
8463
8464 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8465                               struct bpf_insn_access_aux *info)
8466 {
8467         const int size_default = sizeof(__u32);
8468         int field_size;
8469
8470         if (off < 0 || off >= sizeof(struct bpf_sock))
8471                 return false;
8472         if (off % size != 0)
8473                 return false;
8474
8475         switch (off) {
8476         case offsetof(struct bpf_sock, state):
8477         case offsetof(struct bpf_sock, family):
8478         case offsetof(struct bpf_sock, type):
8479         case offsetof(struct bpf_sock, protocol):
8480         case offsetof(struct bpf_sock, src_port):
8481         case offsetof(struct bpf_sock, rx_queue_mapping):
8482         case bpf_ctx_range(struct bpf_sock, src_ip4):
8483         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8484         case bpf_ctx_range(struct bpf_sock, dst_ip4):
8485         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8486                 bpf_ctx_record_field_size(info, size_default);
8487                 return bpf_ctx_narrow_access_ok(off, size, size_default);
8488         case bpf_ctx_range(struct bpf_sock, dst_port):
8489                 field_size = size == size_default ?
8490                         size_default : sizeof_field(struct bpf_sock, dst_port);
8491                 bpf_ctx_record_field_size(info, field_size);
8492                 return bpf_ctx_narrow_access_ok(off, size, field_size);
8493         case offsetofend(struct bpf_sock, dst_port) ...
8494              offsetof(struct bpf_sock, dst_ip4) - 1:
8495                 return false;
8496         }
8497
8498         return size == size_default;
8499 }
8500
8501 static bool sock_filter_is_valid_access(int off, int size,
8502                                         enum bpf_access_type type,
8503                                         const struct bpf_prog *prog,
8504                                         struct bpf_insn_access_aux *info)
8505 {
8506         if (!bpf_sock_is_valid_access(off, size, type, info))
8507                 return false;
8508         return __sock_filter_check_attach_type(off, type,
8509                                                prog->expected_attach_type);
8510 }
8511
8512 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8513                              const struct bpf_prog *prog)
8514 {
8515         /* Neither direct read nor direct write requires any preliminary
8516          * action.
8517          */
8518         return 0;
8519 }
8520
8521 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8522                                 const struct bpf_prog *prog, int drop_verdict)
8523 {
8524         struct bpf_insn *insn = insn_buf;
8525
8526         if (!direct_write)
8527                 return 0;
8528
8529         /* if (!skb->cloned)
8530          *       goto start;
8531          *
8532          * (Fast-path, otherwise approximation that we might be
8533          *  a clone, do the rest in helper.)
8534          */
8535         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8536         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8537         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8538
8539         /* ret = bpf_skb_pull_data(skb, 0); */
8540         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8541         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8542         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8543                                BPF_FUNC_skb_pull_data);
8544         /* if (!ret)
8545          *      goto restore;
8546          * return TC_ACT_SHOT;
8547          */
8548         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8549         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8550         *insn++ = BPF_EXIT_INSN();
8551
8552         /* restore: */
8553         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8554         /* start: */
8555         *insn++ = prog->insnsi[0];
8556
8557         return insn - insn_buf;
8558 }
8559
8560 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8561                           struct bpf_insn *insn_buf)
8562 {
8563         bool indirect = BPF_MODE(orig->code) == BPF_IND;
8564         struct bpf_insn *insn = insn_buf;
8565
8566         if (!indirect) {
8567                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8568         } else {
8569                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8570                 if (orig->imm)
8571                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8572         }
8573         /* We're guaranteed here that CTX is in R6. */
8574         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8575
8576         switch (BPF_SIZE(orig->code)) {
8577         case BPF_B:
8578                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8579                 break;
8580         case BPF_H:
8581                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8582                 break;
8583         case BPF_W:
8584                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8585                 break;
8586         }
8587
8588         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8589         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8590         *insn++ = BPF_EXIT_INSN();
8591
8592         return insn - insn_buf;
8593 }
8594
8595 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8596                                const struct bpf_prog *prog)
8597 {
8598         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8599 }
8600
8601 static bool tc_cls_act_is_valid_access(int off, int size,
8602                                        enum bpf_access_type type,
8603                                        const struct bpf_prog *prog,
8604                                        struct bpf_insn_access_aux *info)
8605 {
8606         if (type == BPF_WRITE) {
8607                 switch (off) {
8608                 case bpf_ctx_range(struct __sk_buff, mark):
8609                 case bpf_ctx_range(struct __sk_buff, tc_index):
8610                 case bpf_ctx_range(struct __sk_buff, priority):
8611                 case bpf_ctx_range(struct __sk_buff, tc_classid):
8612                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8613                 case bpf_ctx_range(struct __sk_buff, tstamp):
8614                 case bpf_ctx_range(struct __sk_buff, queue_mapping):
8615                         break;
8616                 default:
8617                         return false;
8618                 }
8619         }
8620
8621         switch (off) {
8622         case bpf_ctx_range(struct __sk_buff, data):
8623                 info->reg_type = PTR_TO_PACKET;
8624                 break;
8625         case bpf_ctx_range(struct __sk_buff, data_meta):
8626                 info->reg_type = PTR_TO_PACKET_META;
8627                 break;
8628         case bpf_ctx_range(struct __sk_buff, data_end):
8629                 info->reg_type = PTR_TO_PACKET_END;
8630                 break;
8631         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8632                 return false;
8633         case offsetof(struct __sk_buff, tstamp_type):
8634                 /* The convert_ctx_access() on reading and writing
8635                  * __sk_buff->tstamp depends on whether the bpf prog
8636                  * has used __sk_buff->tstamp_type or not.
8637                  * Thus, we need to set prog->tstamp_type_access
8638                  * earlier during is_valid_access() here.
8639                  */
8640                 ((struct bpf_prog *)prog)->tstamp_type_access = 1;
8641                 return size == sizeof(__u8);
8642         }
8643
8644         return bpf_skb_is_valid_access(off, size, type, prog, info);
8645 }
8646
8647 DEFINE_MUTEX(nf_conn_btf_access_lock);
8648 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
8649
8650 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log, const struct btf *btf,
8651                               const struct btf_type *t, int off, int size,
8652                               enum bpf_access_type atype, u32 *next_btf_id,
8653                               enum bpf_type_flag *flag);
8654 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
8655
8656 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
8657                                         const struct btf *btf,
8658                                         const struct btf_type *t, int off,
8659                                         int size, enum bpf_access_type atype,
8660                                         u32 *next_btf_id,
8661                                         enum bpf_type_flag *flag)
8662 {
8663         int ret = -EACCES;
8664
8665         if (atype == BPF_READ)
8666                 return btf_struct_access(log, btf, t, off, size, atype, next_btf_id,
8667                                          flag);
8668
8669         mutex_lock(&nf_conn_btf_access_lock);
8670         if (nfct_btf_struct_access)
8671                 ret = nfct_btf_struct_access(log, btf, t, off, size, atype, next_btf_id, flag);
8672         mutex_unlock(&nf_conn_btf_access_lock);
8673
8674         return ret;
8675 }
8676
8677 static bool __is_valid_xdp_access(int off, int size)
8678 {
8679         if (off < 0 || off >= sizeof(struct xdp_md))
8680                 return false;
8681         if (off % size != 0)
8682                 return false;
8683         if (size != sizeof(__u32))
8684                 return false;
8685
8686         return true;
8687 }
8688
8689 static bool xdp_is_valid_access(int off, int size,
8690                                 enum bpf_access_type type,
8691                                 const struct bpf_prog *prog,
8692                                 struct bpf_insn_access_aux *info)
8693 {
8694         if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8695                 switch (off) {
8696                 case offsetof(struct xdp_md, egress_ifindex):
8697                         return false;
8698                 }
8699         }
8700
8701         if (type == BPF_WRITE) {
8702                 if (bpf_prog_is_dev_bound(prog->aux)) {
8703                         switch (off) {
8704                         case offsetof(struct xdp_md, rx_queue_index):
8705                                 return __is_valid_xdp_access(off, size);
8706                         }
8707                 }
8708                 return false;
8709         }
8710
8711         switch (off) {
8712         case offsetof(struct xdp_md, data):
8713                 info->reg_type = PTR_TO_PACKET;
8714                 break;
8715         case offsetof(struct xdp_md, data_meta):
8716                 info->reg_type = PTR_TO_PACKET_META;
8717                 break;
8718         case offsetof(struct xdp_md, data_end):
8719                 info->reg_type = PTR_TO_PACKET_END;
8720                 break;
8721         }
8722
8723         return __is_valid_xdp_access(off, size);
8724 }
8725
8726 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8727 {
8728         const u32 act_max = XDP_REDIRECT;
8729
8730         pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
8731                      act > act_max ? "Illegal" : "Driver unsupported",
8732                      act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
8733 }
8734 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8735
8736 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
8737                                  const struct btf *btf,
8738                                  const struct btf_type *t, int off,
8739                                  int size, enum bpf_access_type atype,
8740                                  u32 *next_btf_id,
8741                                  enum bpf_type_flag *flag)
8742 {
8743         int ret = -EACCES;
8744
8745         if (atype == BPF_READ)
8746                 return btf_struct_access(log, btf, t, off, size, atype, next_btf_id,
8747                                          flag);
8748
8749         mutex_lock(&nf_conn_btf_access_lock);
8750         if (nfct_btf_struct_access)
8751                 ret = nfct_btf_struct_access(log, btf, t, off, size, atype, next_btf_id, flag);
8752         mutex_unlock(&nf_conn_btf_access_lock);
8753
8754         return ret;
8755 }
8756
8757 static bool sock_addr_is_valid_access(int off, int size,
8758                                       enum bpf_access_type type,
8759                                       const struct bpf_prog *prog,
8760                                       struct bpf_insn_access_aux *info)
8761 {
8762         const int size_default = sizeof(__u32);
8763
8764         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8765                 return false;
8766         if (off % size != 0)
8767                 return false;
8768
8769         /* Disallow access to IPv6 fields from IPv4 contex and vise
8770          * versa.
8771          */
8772         switch (off) {
8773         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8774                 switch (prog->expected_attach_type) {
8775                 case BPF_CGROUP_INET4_BIND:
8776                 case BPF_CGROUP_INET4_CONNECT:
8777                 case BPF_CGROUP_INET4_GETPEERNAME:
8778                 case BPF_CGROUP_INET4_GETSOCKNAME:
8779                 case BPF_CGROUP_UDP4_SENDMSG:
8780                 case BPF_CGROUP_UDP4_RECVMSG:
8781                         break;
8782                 default:
8783                         return false;
8784                 }
8785                 break;
8786         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8787                 switch (prog->expected_attach_type) {
8788                 case BPF_CGROUP_INET6_BIND:
8789                 case BPF_CGROUP_INET6_CONNECT:
8790                 case BPF_CGROUP_INET6_GETPEERNAME:
8791                 case BPF_CGROUP_INET6_GETSOCKNAME:
8792                 case BPF_CGROUP_UDP6_SENDMSG:
8793                 case BPF_CGROUP_UDP6_RECVMSG:
8794                         break;
8795                 default:
8796                         return false;
8797                 }
8798                 break;
8799         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8800                 switch (prog->expected_attach_type) {
8801                 case BPF_CGROUP_UDP4_SENDMSG:
8802                         break;
8803                 default:
8804                         return false;
8805                 }
8806                 break;
8807         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8808                                 msg_src_ip6[3]):
8809                 switch (prog->expected_attach_type) {
8810                 case BPF_CGROUP_UDP6_SENDMSG:
8811                         break;
8812                 default:
8813                         return false;
8814                 }
8815                 break;
8816         }
8817
8818         switch (off) {
8819         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8820         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8821         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8822         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8823                                 msg_src_ip6[3]):
8824         case bpf_ctx_range(struct bpf_sock_addr, user_port):
8825                 if (type == BPF_READ) {
8826                         bpf_ctx_record_field_size(info, size_default);
8827
8828                         if (bpf_ctx_wide_access_ok(off, size,
8829                                                    struct bpf_sock_addr,
8830                                                    user_ip6))
8831                                 return true;
8832
8833                         if (bpf_ctx_wide_access_ok(off, size,
8834                                                    struct bpf_sock_addr,
8835                                                    msg_src_ip6))
8836                                 return true;
8837
8838                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8839                                 return false;
8840                 } else {
8841                         if (bpf_ctx_wide_access_ok(off, size,
8842                                                    struct bpf_sock_addr,
8843                                                    user_ip6))
8844                                 return true;
8845
8846                         if (bpf_ctx_wide_access_ok(off, size,
8847                                                    struct bpf_sock_addr,
8848                                                    msg_src_ip6))
8849                                 return true;
8850
8851                         if (size != size_default)
8852                                 return false;
8853                 }
8854                 break;
8855         case offsetof(struct bpf_sock_addr, sk):
8856                 if (type != BPF_READ)
8857                         return false;
8858                 if (size != sizeof(__u64))
8859                         return false;
8860                 info->reg_type = PTR_TO_SOCKET;
8861                 break;
8862         default:
8863                 if (type == BPF_READ) {
8864                         if (size != size_default)
8865                                 return false;
8866                 } else {
8867                         return false;
8868                 }
8869         }
8870
8871         return true;
8872 }
8873
8874 static bool sock_ops_is_valid_access(int off, int size,
8875                                      enum bpf_access_type type,
8876                                      const struct bpf_prog *prog,
8877                                      struct bpf_insn_access_aux *info)
8878 {
8879         const int size_default = sizeof(__u32);
8880
8881         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8882                 return false;
8883
8884         /* The verifier guarantees that size > 0. */
8885         if (off % size != 0)
8886                 return false;
8887
8888         if (type == BPF_WRITE) {
8889                 switch (off) {
8890                 case offsetof(struct bpf_sock_ops, reply):
8891                 case offsetof(struct bpf_sock_ops, sk_txhash):
8892                         if (size != size_default)
8893                                 return false;
8894                         break;
8895                 default:
8896                         return false;
8897                 }
8898         } else {
8899                 switch (off) {
8900                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8901                                         bytes_acked):
8902                         if (size != sizeof(__u64))
8903                                 return false;
8904                         break;
8905                 case offsetof(struct bpf_sock_ops, sk):
8906                         if (size != sizeof(__u64))
8907                                 return false;
8908                         info->reg_type = PTR_TO_SOCKET_OR_NULL;
8909                         break;
8910                 case offsetof(struct bpf_sock_ops, skb_data):
8911                         if (size != sizeof(__u64))
8912                                 return false;
8913                         info->reg_type = PTR_TO_PACKET;
8914                         break;
8915                 case offsetof(struct bpf_sock_ops, skb_data_end):
8916                         if (size != sizeof(__u64))
8917                                 return false;
8918                         info->reg_type = PTR_TO_PACKET_END;
8919                         break;
8920                 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8921                         bpf_ctx_record_field_size(info, size_default);
8922                         return bpf_ctx_narrow_access_ok(off, size,
8923                                                         size_default);
8924                 default:
8925                         if (size != size_default)
8926                                 return false;
8927                         break;
8928                 }
8929         }
8930
8931         return true;
8932 }
8933
8934 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8935                            const struct bpf_prog *prog)
8936 {
8937         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8938 }
8939
8940 static bool sk_skb_is_valid_access(int off, int size,
8941                                    enum bpf_access_type type,
8942                                    const struct bpf_prog *prog,
8943                                    struct bpf_insn_access_aux *info)
8944 {
8945         switch (off) {
8946         case bpf_ctx_range(struct __sk_buff, tc_classid):
8947         case bpf_ctx_range(struct __sk_buff, data_meta):
8948         case bpf_ctx_range(struct __sk_buff, tstamp):
8949         case bpf_ctx_range(struct __sk_buff, wire_len):
8950         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8951                 return false;
8952         }
8953
8954         if (type == BPF_WRITE) {
8955                 switch (off) {
8956                 case bpf_ctx_range(struct __sk_buff, tc_index):
8957                 case bpf_ctx_range(struct __sk_buff, priority):
8958                         break;
8959                 default:
8960                         return false;
8961                 }
8962         }
8963
8964         switch (off) {
8965         case bpf_ctx_range(struct __sk_buff, mark):
8966                 return false;
8967         case bpf_ctx_range(struct __sk_buff, data):
8968                 info->reg_type = PTR_TO_PACKET;
8969                 break;
8970         case bpf_ctx_range(struct __sk_buff, data_end):
8971                 info->reg_type = PTR_TO_PACKET_END;
8972                 break;
8973         }
8974
8975         return bpf_skb_is_valid_access(off, size, type, prog, info);
8976 }
8977
8978 static bool sk_msg_is_valid_access(int off, int size,
8979                                    enum bpf_access_type type,
8980                                    const struct bpf_prog *prog,
8981                                    struct bpf_insn_access_aux *info)
8982 {
8983         if (type == BPF_WRITE)
8984                 return false;
8985
8986         if (off % size != 0)
8987                 return false;
8988
8989         switch (off) {
8990         case offsetof(struct sk_msg_md, data):
8991                 info->reg_type = PTR_TO_PACKET;
8992                 if (size != sizeof(__u64))
8993                         return false;
8994                 break;
8995         case offsetof(struct sk_msg_md, data_end):
8996                 info->reg_type = PTR_TO_PACKET_END;
8997                 if (size != sizeof(__u64))
8998                         return false;
8999                 break;
9000         case offsetof(struct sk_msg_md, sk):
9001                 if (size != sizeof(__u64))
9002                         return false;
9003                 info->reg_type = PTR_TO_SOCKET;
9004                 break;
9005         case bpf_ctx_range(struct sk_msg_md, family):
9006         case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9007         case bpf_ctx_range(struct sk_msg_md, local_ip4):
9008         case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9009         case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9010         case bpf_ctx_range(struct sk_msg_md, remote_port):
9011         case bpf_ctx_range(struct sk_msg_md, local_port):
9012         case bpf_ctx_range(struct sk_msg_md, size):
9013                 if (size != sizeof(__u32))
9014                         return false;
9015                 break;
9016         default:
9017                 return false;
9018         }
9019         return true;
9020 }
9021
9022 static bool flow_dissector_is_valid_access(int off, int size,
9023                                            enum bpf_access_type type,
9024                                            const struct bpf_prog *prog,
9025                                            struct bpf_insn_access_aux *info)
9026 {
9027         const int size_default = sizeof(__u32);
9028
9029         if (off < 0 || off >= sizeof(struct __sk_buff))
9030                 return false;
9031
9032         if (type == BPF_WRITE)
9033                 return false;
9034
9035         switch (off) {
9036         case bpf_ctx_range(struct __sk_buff, data):
9037                 if (size != size_default)
9038                         return false;
9039                 info->reg_type = PTR_TO_PACKET;
9040                 return true;
9041         case bpf_ctx_range(struct __sk_buff, data_end):
9042                 if (size != size_default)
9043                         return false;
9044                 info->reg_type = PTR_TO_PACKET_END;
9045                 return true;
9046         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9047                 if (size != sizeof(__u64))
9048                         return false;
9049                 info->reg_type = PTR_TO_FLOW_KEYS;
9050                 return true;
9051         default:
9052                 return false;
9053         }
9054 }
9055
9056 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9057                                              const struct bpf_insn *si,
9058                                              struct bpf_insn *insn_buf,
9059                                              struct bpf_prog *prog,
9060                                              u32 *target_size)
9061
9062 {
9063         struct bpf_insn *insn = insn_buf;
9064
9065         switch (si->off) {
9066         case offsetof(struct __sk_buff, data):
9067                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9068                                       si->dst_reg, si->src_reg,
9069                                       offsetof(struct bpf_flow_dissector, data));
9070                 break;
9071
9072         case offsetof(struct __sk_buff, data_end):
9073                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9074                                       si->dst_reg, si->src_reg,
9075                                       offsetof(struct bpf_flow_dissector, data_end));
9076                 break;
9077
9078         case offsetof(struct __sk_buff, flow_keys):
9079                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9080                                       si->dst_reg, si->src_reg,
9081                                       offsetof(struct bpf_flow_dissector, flow_keys));
9082                 break;
9083         }
9084
9085         return insn - insn_buf;
9086 }
9087
9088 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9089                                                      struct bpf_insn *insn)
9090 {
9091         __u8 value_reg = si->dst_reg;
9092         __u8 skb_reg = si->src_reg;
9093         /* AX is needed because src_reg and dst_reg could be the same */
9094         __u8 tmp_reg = BPF_REG_AX;
9095
9096         *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9097                               PKT_VLAN_PRESENT_OFFSET);
9098         *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9099                                 SKB_MONO_DELIVERY_TIME_MASK, 2);
9100         *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9101         *insn++ = BPF_JMP_A(1);
9102         *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9103
9104         return insn;
9105 }
9106
9107 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
9108                                                   struct bpf_insn *insn)
9109 {
9110         /* si->dst_reg = skb_shinfo(SKB); */
9111 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9112         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9113                               BPF_REG_AX, si->src_reg,
9114                               offsetof(struct sk_buff, end));
9115         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9116                               si->dst_reg, si->src_reg,
9117                               offsetof(struct sk_buff, head));
9118         *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
9119 #else
9120         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9121                               si->dst_reg, si->src_reg,
9122                               offsetof(struct sk_buff, end));
9123 #endif
9124
9125         return insn;
9126 }
9127
9128 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9129                                                 const struct bpf_insn *si,
9130                                                 struct bpf_insn *insn)
9131 {
9132         __u8 value_reg = si->dst_reg;
9133         __u8 skb_reg = si->src_reg;
9134
9135 #ifdef CONFIG_NET_CLS_ACT
9136         /* If the tstamp_type is read,
9137          * the bpf prog is aware the tstamp could have delivery time.
9138          * Thus, read skb->tstamp as is if tstamp_type_access is true.
9139          */
9140         if (!prog->tstamp_type_access) {
9141                 /* AX is needed because src_reg and dst_reg could be the same */
9142                 __u8 tmp_reg = BPF_REG_AX;
9143
9144                 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9145                 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9146                                         TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9147                 *insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9148                                         TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9149                 /* skb->tc_at_ingress && skb->mono_delivery_time,
9150                  * read 0 as the (rcv) timestamp.
9151                  */
9152                 *insn++ = BPF_MOV64_IMM(value_reg, 0);
9153                 *insn++ = BPF_JMP_A(1);
9154         }
9155 #endif
9156
9157         *insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9158                               offsetof(struct sk_buff, tstamp));
9159         return insn;
9160 }
9161
9162 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9163                                                  const struct bpf_insn *si,
9164                                                  struct bpf_insn *insn)
9165 {
9166         __u8 value_reg = si->src_reg;
9167         __u8 skb_reg = si->dst_reg;
9168
9169 #ifdef CONFIG_NET_CLS_ACT
9170         /* If the tstamp_type is read,
9171          * the bpf prog is aware the tstamp could have delivery time.
9172          * Thus, write skb->tstamp as is if tstamp_type_access is true.
9173          * Otherwise, writing at ingress will have to clear the
9174          * mono_delivery_time bit also.
9175          */
9176         if (!prog->tstamp_type_access) {
9177                 __u8 tmp_reg = BPF_REG_AX;
9178
9179                 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9180                 /* Writing __sk_buff->tstamp as ingress, goto <clear> */
9181                 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9182                 /* goto <store> */
9183                 *insn++ = BPF_JMP_A(2);
9184                 /* <clear>: mono_delivery_time */
9185                 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9186                 *insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, PKT_VLAN_PRESENT_OFFSET);
9187         }
9188 #endif
9189
9190         /* <store>: skb->tstamp = tstamp */
9191         *insn++ = BPF_STX_MEM(BPF_DW, skb_reg, value_reg,
9192                               offsetof(struct sk_buff, tstamp));
9193         return insn;
9194 }
9195
9196 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9197                                   const struct bpf_insn *si,
9198                                   struct bpf_insn *insn_buf,
9199                                   struct bpf_prog *prog, u32 *target_size)
9200 {
9201         struct bpf_insn *insn = insn_buf;
9202         int off;
9203
9204         switch (si->off) {
9205         case offsetof(struct __sk_buff, len):
9206                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9207                                       bpf_target_off(struct sk_buff, len, 4,
9208                                                      target_size));
9209                 break;
9210
9211         case offsetof(struct __sk_buff, protocol):
9212                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9213                                       bpf_target_off(struct sk_buff, protocol, 2,
9214                                                      target_size));
9215                 break;
9216
9217         case offsetof(struct __sk_buff, vlan_proto):
9218                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9219                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
9220                                                      target_size));
9221                 break;
9222
9223         case offsetof(struct __sk_buff, priority):
9224                 if (type == BPF_WRITE)
9225                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9226                                               bpf_target_off(struct sk_buff, priority, 4,
9227                                                              target_size));
9228                 else
9229                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9230                                               bpf_target_off(struct sk_buff, priority, 4,
9231                                                              target_size));
9232                 break;
9233
9234         case offsetof(struct __sk_buff, ingress_ifindex):
9235                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9236                                       bpf_target_off(struct sk_buff, skb_iif, 4,
9237                                                      target_size));
9238                 break;
9239
9240         case offsetof(struct __sk_buff, ifindex):
9241                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9242                                       si->dst_reg, si->src_reg,
9243                                       offsetof(struct sk_buff, dev));
9244                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9245                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9246                                       bpf_target_off(struct net_device, ifindex, 4,
9247                                                      target_size));
9248                 break;
9249
9250         case offsetof(struct __sk_buff, hash):
9251                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9252                                       bpf_target_off(struct sk_buff, hash, 4,
9253                                                      target_size));
9254                 break;
9255
9256         case offsetof(struct __sk_buff, mark):
9257                 if (type == BPF_WRITE)
9258                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9259                                               bpf_target_off(struct sk_buff, mark, 4,
9260                                                              target_size));
9261                 else
9262                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9263                                               bpf_target_off(struct sk_buff, mark, 4,
9264                                                              target_size));
9265                 break;
9266
9267         case offsetof(struct __sk_buff, pkt_type):
9268                 *target_size = 1;
9269                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9270                                       PKT_TYPE_OFFSET);
9271                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9272 #ifdef __BIG_ENDIAN_BITFIELD
9273                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9274 #endif
9275                 break;
9276
9277         case offsetof(struct __sk_buff, queue_mapping):
9278                 if (type == BPF_WRITE) {
9279                         *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9280                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9281                                               bpf_target_off(struct sk_buff,
9282                                                              queue_mapping,
9283                                                              2, target_size));
9284                 } else {
9285                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9286                                               bpf_target_off(struct sk_buff,
9287                                                              queue_mapping,
9288                                                              2, target_size));
9289                 }
9290                 break;
9291
9292         case offsetof(struct __sk_buff, vlan_present):
9293                 *target_size = 1;
9294                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9295                                       PKT_VLAN_PRESENT_OFFSET);
9296                 if (PKT_VLAN_PRESENT_BIT)
9297                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
9298                 if (PKT_VLAN_PRESENT_BIT < 7)
9299                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
9300                 break;
9301
9302         case offsetof(struct __sk_buff, vlan_tci):
9303                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9304                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
9305                                                      target_size));
9306                 break;
9307
9308         case offsetof(struct __sk_buff, cb[0]) ...
9309              offsetofend(struct __sk_buff, cb[4]) - 1:
9310                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9311                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9312                               offsetof(struct qdisc_skb_cb, data)) %
9313                              sizeof(__u64));
9314
9315                 prog->cb_access = 1;
9316                 off  = si->off;
9317                 off -= offsetof(struct __sk_buff, cb[0]);
9318                 off += offsetof(struct sk_buff, cb);
9319                 off += offsetof(struct qdisc_skb_cb, data);
9320                 if (type == BPF_WRITE)
9321                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9322                                               si->src_reg, off);
9323                 else
9324                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9325                                               si->src_reg, off);
9326                 break;
9327
9328         case offsetof(struct __sk_buff, tc_classid):
9329                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9330
9331                 off  = si->off;
9332                 off -= offsetof(struct __sk_buff, tc_classid);
9333                 off += offsetof(struct sk_buff, cb);
9334                 off += offsetof(struct qdisc_skb_cb, tc_classid);
9335                 *target_size = 2;
9336                 if (type == BPF_WRITE)
9337                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
9338                                               si->src_reg, off);
9339                 else
9340                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9341                                               si->src_reg, off);
9342                 break;
9343
9344         case offsetof(struct __sk_buff, data):
9345                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9346                                       si->dst_reg, si->src_reg,
9347                                       offsetof(struct sk_buff, data));
9348                 break;
9349
9350         case offsetof(struct __sk_buff, data_meta):
9351                 off  = si->off;
9352                 off -= offsetof(struct __sk_buff, data_meta);
9353                 off += offsetof(struct sk_buff, cb);
9354                 off += offsetof(struct bpf_skb_data_end, data_meta);
9355                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9356                                       si->src_reg, off);
9357                 break;
9358
9359         case offsetof(struct __sk_buff, data_end):
9360                 off  = si->off;
9361                 off -= offsetof(struct __sk_buff, data_end);
9362                 off += offsetof(struct sk_buff, cb);
9363                 off += offsetof(struct bpf_skb_data_end, data_end);
9364                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9365                                       si->src_reg, off);
9366                 break;
9367
9368         case offsetof(struct __sk_buff, tc_index):
9369 #ifdef CONFIG_NET_SCHED
9370                 if (type == BPF_WRITE)
9371                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9372                                               bpf_target_off(struct sk_buff, tc_index, 2,
9373                                                              target_size));
9374                 else
9375                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9376                                               bpf_target_off(struct sk_buff, tc_index, 2,
9377                                                              target_size));
9378 #else
9379                 *target_size = 2;
9380                 if (type == BPF_WRITE)
9381                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9382                 else
9383                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9384 #endif
9385                 break;
9386
9387         case offsetof(struct __sk_buff, napi_id):
9388 #if defined(CONFIG_NET_RX_BUSY_POLL)
9389                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9390                                       bpf_target_off(struct sk_buff, napi_id, 4,
9391                                                      target_size));
9392                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9393                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9394 #else
9395                 *target_size = 4;
9396                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9397 #endif
9398                 break;
9399         case offsetof(struct __sk_buff, family):
9400                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9401
9402                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9403                                       si->dst_reg, si->src_reg,
9404                                       offsetof(struct sk_buff, sk));
9405                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9406                                       bpf_target_off(struct sock_common,
9407                                                      skc_family,
9408                                                      2, target_size));
9409                 break;
9410         case offsetof(struct __sk_buff, remote_ip4):
9411                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9412
9413                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9414                                       si->dst_reg, si->src_reg,
9415                                       offsetof(struct sk_buff, sk));
9416                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9417                                       bpf_target_off(struct sock_common,
9418                                                      skc_daddr,
9419                                                      4, target_size));
9420                 break;
9421         case offsetof(struct __sk_buff, local_ip4):
9422                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9423                                           skc_rcv_saddr) != 4);
9424
9425                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9426                                       si->dst_reg, si->src_reg,
9427                                       offsetof(struct sk_buff, sk));
9428                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9429                                       bpf_target_off(struct sock_common,
9430                                                      skc_rcv_saddr,
9431                                                      4, target_size));
9432                 break;
9433         case offsetof(struct __sk_buff, remote_ip6[0]) ...
9434              offsetof(struct __sk_buff, remote_ip6[3]):
9435 #if IS_ENABLED(CONFIG_IPV6)
9436                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9437                                           skc_v6_daddr.s6_addr32[0]) != 4);
9438
9439                 off = si->off;
9440                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
9441
9442                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9443                                       si->dst_reg, si->src_reg,
9444                                       offsetof(struct sk_buff, sk));
9445                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9446                                       offsetof(struct sock_common,
9447                                                skc_v6_daddr.s6_addr32[0]) +
9448                                       off);
9449 #else
9450                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9451 #endif
9452                 break;
9453         case offsetof(struct __sk_buff, local_ip6[0]) ...
9454              offsetof(struct __sk_buff, local_ip6[3]):
9455 #if IS_ENABLED(CONFIG_IPV6)
9456                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9457                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9458
9459                 off = si->off;
9460                 off -= offsetof(struct __sk_buff, local_ip6[0]);
9461
9462                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9463                                       si->dst_reg, si->src_reg,
9464                                       offsetof(struct sk_buff, sk));
9465                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9466                                       offsetof(struct sock_common,
9467                                                skc_v6_rcv_saddr.s6_addr32[0]) +
9468                                       off);
9469 #else
9470                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9471 #endif
9472                 break;
9473
9474         case offsetof(struct __sk_buff, remote_port):
9475                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9476
9477                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9478                                       si->dst_reg, si->src_reg,
9479                                       offsetof(struct sk_buff, sk));
9480                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9481                                       bpf_target_off(struct sock_common,
9482                                                      skc_dport,
9483                                                      2, target_size));
9484 #ifndef __BIG_ENDIAN_BITFIELD
9485                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9486 #endif
9487                 break;
9488
9489         case offsetof(struct __sk_buff, local_port):
9490                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9491
9492                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9493                                       si->dst_reg, si->src_reg,
9494                                       offsetof(struct sk_buff, sk));
9495                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9496                                       bpf_target_off(struct sock_common,
9497                                                      skc_num, 2, target_size));
9498                 break;
9499
9500         case offsetof(struct __sk_buff, tstamp):
9501                 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9502
9503                 if (type == BPF_WRITE)
9504                         insn = bpf_convert_tstamp_write(prog, si, insn);
9505                 else
9506                         insn = bpf_convert_tstamp_read(prog, si, insn);
9507                 break;
9508
9509         case offsetof(struct __sk_buff, tstamp_type):
9510                 insn = bpf_convert_tstamp_type_read(si, insn);
9511                 break;
9512
9513         case offsetof(struct __sk_buff, gso_segs):
9514                 insn = bpf_convert_shinfo_access(si, insn);
9515                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9516                                       si->dst_reg, si->dst_reg,
9517                                       bpf_target_off(struct skb_shared_info,
9518                                                      gso_segs, 2,
9519                                                      target_size));
9520                 break;
9521         case offsetof(struct __sk_buff, gso_size):
9522                 insn = bpf_convert_shinfo_access(si, insn);
9523                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9524                                       si->dst_reg, si->dst_reg,
9525                                       bpf_target_off(struct skb_shared_info,
9526                                                      gso_size, 2,
9527                                                      target_size));
9528                 break;
9529         case offsetof(struct __sk_buff, wire_len):
9530                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9531
9532                 off = si->off;
9533                 off -= offsetof(struct __sk_buff, wire_len);
9534                 off += offsetof(struct sk_buff, cb);
9535                 off += offsetof(struct qdisc_skb_cb, pkt_len);
9536                 *target_size = 4;
9537                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9538                 break;
9539
9540         case offsetof(struct __sk_buff, sk):
9541                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9542                                       si->dst_reg, si->src_reg,
9543                                       offsetof(struct sk_buff, sk));
9544                 break;
9545         case offsetof(struct __sk_buff, hwtstamp):
9546                 BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9547                 BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9548
9549                 insn = bpf_convert_shinfo_access(si, insn);
9550                 *insn++ = BPF_LDX_MEM(BPF_DW,
9551                                       si->dst_reg, si->dst_reg,
9552                                       bpf_target_off(struct skb_shared_info,
9553                                                      hwtstamps, 8,
9554                                                      target_size));
9555                 break;
9556         }
9557
9558         return insn - insn_buf;
9559 }
9560
9561 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9562                                 const struct bpf_insn *si,
9563                                 struct bpf_insn *insn_buf,
9564                                 struct bpf_prog *prog, u32 *target_size)
9565 {
9566         struct bpf_insn *insn = insn_buf;
9567         int off;
9568
9569         switch (si->off) {
9570         case offsetof(struct bpf_sock, bound_dev_if):
9571                 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9572
9573                 if (type == BPF_WRITE)
9574                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9575                                         offsetof(struct sock, sk_bound_dev_if));
9576                 else
9577                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9578                                       offsetof(struct sock, sk_bound_dev_if));
9579                 break;
9580
9581         case offsetof(struct bpf_sock, mark):
9582                 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9583
9584                 if (type == BPF_WRITE)
9585                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9586                                         offsetof(struct sock, sk_mark));
9587                 else
9588                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9589                                       offsetof(struct sock, sk_mark));
9590                 break;
9591
9592         case offsetof(struct bpf_sock, priority):
9593                 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9594
9595                 if (type == BPF_WRITE)
9596                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9597                                         offsetof(struct sock, sk_priority));
9598                 else
9599                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9600                                       offsetof(struct sock, sk_priority));
9601                 break;
9602
9603         case offsetof(struct bpf_sock, family):
9604                 *insn++ = BPF_LDX_MEM(
9605                         BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9606                         si->dst_reg, si->src_reg,
9607                         bpf_target_off(struct sock_common,
9608                                        skc_family,
9609                                        sizeof_field(struct sock_common,
9610                                                     skc_family),
9611                                        target_size));
9612                 break;
9613
9614         case offsetof(struct bpf_sock, type):
9615                 *insn++ = BPF_LDX_MEM(
9616                         BPF_FIELD_SIZEOF(struct sock, sk_type),
9617                         si->dst_reg, si->src_reg,
9618                         bpf_target_off(struct sock, sk_type,
9619                                        sizeof_field(struct sock, sk_type),
9620                                        target_size));
9621                 break;
9622
9623         case offsetof(struct bpf_sock, protocol):
9624                 *insn++ = BPF_LDX_MEM(
9625                         BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9626                         si->dst_reg, si->src_reg,
9627                         bpf_target_off(struct sock, sk_protocol,
9628                                        sizeof_field(struct sock, sk_protocol),
9629                                        target_size));
9630                 break;
9631
9632         case offsetof(struct bpf_sock, src_ip4):
9633                 *insn++ = BPF_LDX_MEM(
9634                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9635                         bpf_target_off(struct sock_common, skc_rcv_saddr,
9636                                        sizeof_field(struct sock_common,
9637                                                     skc_rcv_saddr),
9638                                        target_size));
9639                 break;
9640
9641         case offsetof(struct bpf_sock, dst_ip4):
9642                 *insn++ = BPF_LDX_MEM(
9643                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9644                         bpf_target_off(struct sock_common, skc_daddr,
9645                                        sizeof_field(struct sock_common,
9646                                                     skc_daddr),
9647                                        target_size));
9648                 break;
9649
9650         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9651 #if IS_ENABLED(CONFIG_IPV6)
9652                 off = si->off;
9653                 off -= offsetof(struct bpf_sock, src_ip6[0]);
9654                 *insn++ = BPF_LDX_MEM(
9655                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9656                         bpf_target_off(
9657                                 struct sock_common,
9658                                 skc_v6_rcv_saddr.s6_addr32[0],
9659                                 sizeof_field(struct sock_common,
9660                                              skc_v6_rcv_saddr.s6_addr32[0]),
9661                                 target_size) + off);
9662 #else
9663                 (void)off;
9664                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9665 #endif
9666                 break;
9667
9668         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9669 #if IS_ENABLED(CONFIG_IPV6)
9670                 off = si->off;
9671                 off -= offsetof(struct bpf_sock, dst_ip6[0]);
9672                 *insn++ = BPF_LDX_MEM(
9673                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9674                         bpf_target_off(struct sock_common,
9675                                        skc_v6_daddr.s6_addr32[0],
9676                                        sizeof_field(struct sock_common,
9677                                                     skc_v6_daddr.s6_addr32[0]),
9678                                        target_size) + off);
9679 #else
9680                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9681                 *target_size = 4;
9682 #endif
9683                 break;
9684
9685         case offsetof(struct bpf_sock, src_port):
9686                 *insn++ = BPF_LDX_MEM(
9687                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9688                         si->dst_reg, si->src_reg,
9689                         bpf_target_off(struct sock_common, skc_num,
9690                                        sizeof_field(struct sock_common,
9691                                                     skc_num),
9692                                        target_size));
9693                 break;
9694
9695         case offsetof(struct bpf_sock, dst_port):
9696                 *insn++ = BPF_LDX_MEM(
9697                         BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9698                         si->dst_reg, si->src_reg,
9699                         bpf_target_off(struct sock_common, skc_dport,
9700                                        sizeof_field(struct sock_common,
9701                                                     skc_dport),
9702                                        target_size));
9703                 break;
9704
9705         case offsetof(struct bpf_sock, state):
9706                 *insn++ = BPF_LDX_MEM(
9707                         BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9708                         si->dst_reg, si->src_reg,
9709                         bpf_target_off(struct sock_common, skc_state,
9710                                        sizeof_field(struct sock_common,
9711                                                     skc_state),
9712                                        target_size));
9713                 break;
9714         case offsetof(struct bpf_sock, rx_queue_mapping):
9715 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9716                 *insn++ = BPF_LDX_MEM(
9717                         BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9718                         si->dst_reg, si->src_reg,
9719                         bpf_target_off(struct sock, sk_rx_queue_mapping,
9720                                        sizeof_field(struct sock,
9721                                                     sk_rx_queue_mapping),
9722                                        target_size));
9723                 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9724                                       1);
9725                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9726 #else
9727                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9728                 *target_size = 2;
9729 #endif
9730                 break;
9731         }
9732
9733         return insn - insn_buf;
9734 }
9735
9736 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9737                                          const struct bpf_insn *si,
9738                                          struct bpf_insn *insn_buf,
9739                                          struct bpf_prog *prog, u32 *target_size)
9740 {
9741         struct bpf_insn *insn = insn_buf;
9742
9743         switch (si->off) {
9744         case offsetof(struct __sk_buff, ifindex):
9745                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9746                                       si->dst_reg, si->src_reg,
9747                                       offsetof(struct sk_buff, dev));
9748                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9749                                       bpf_target_off(struct net_device, ifindex, 4,
9750                                                      target_size));
9751                 break;
9752         default:
9753                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9754                                               target_size);
9755         }
9756
9757         return insn - insn_buf;
9758 }
9759
9760 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9761                                   const struct bpf_insn *si,
9762                                   struct bpf_insn *insn_buf,
9763                                   struct bpf_prog *prog, u32 *target_size)
9764 {
9765         struct bpf_insn *insn = insn_buf;
9766
9767         switch (si->off) {
9768         case offsetof(struct xdp_md, data):
9769                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9770                                       si->dst_reg, si->src_reg,
9771                                       offsetof(struct xdp_buff, data));
9772                 break;
9773         case offsetof(struct xdp_md, data_meta):
9774                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9775                                       si->dst_reg, si->src_reg,
9776                                       offsetof(struct xdp_buff, data_meta));
9777                 break;
9778         case offsetof(struct xdp_md, data_end):
9779                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9780                                       si->dst_reg, si->src_reg,
9781                                       offsetof(struct xdp_buff, data_end));
9782                 break;
9783         case offsetof(struct xdp_md, ingress_ifindex):
9784                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9785                                       si->dst_reg, si->src_reg,
9786                                       offsetof(struct xdp_buff, rxq));
9787                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9788                                       si->dst_reg, si->dst_reg,
9789                                       offsetof(struct xdp_rxq_info, dev));
9790                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9791                                       offsetof(struct net_device, ifindex));
9792                 break;
9793         case offsetof(struct xdp_md, rx_queue_index):
9794                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9795                                       si->dst_reg, si->src_reg,
9796                                       offsetof(struct xdp_buff, rxq));
9797                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9798                                       offsetof(struct xdp_rxq_info,
9799                                                queue_index));
9800                 break;
9801         case offsetof(struct xdp_md, egress_ifindex):
9802                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9803                                       si->dst_reg, si->src_reg,
9804                                       offsetof(struct xdp_buff, txq));
9805                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9806                                       si->dst_reg, si->dst_reg,
9807                                       offsetof(struct xdp_txq_info, dev));
9808                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9809                                       offsetof(struct net_device, ifindex));
9810                 break;
9811         }
9812
9813         return insn - insn_buf;
9814 }
9815
9816 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9817  * context Structure, F is Field in context structure that contains a pointer
9818  * to Nested Structure of type NS that has the field NF.
9819  *
9820  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9821  * sure that SIZE is not greater than actual size of S.F.NF.
9822  *
9823  * If offset OFF is provided, the load happens from that offset relative to
9824  * offset of NF.
9825  */
9826 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
9827         do {                                                                   \
9828                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9829                                       si->src_reg, offsetof(S, F));            \
9830                 *insn++ = BPF_LDX_MEM(                                         \
9831                         SIZE, si->dst_reg, si->dst_reg,                        \
9832                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9833                                        target_size)                            \
9834                                 + OFF);                                        \
9835         } while (0)
9836
9837 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
9838         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
9839                                              BPF_FIELD_SIZEOF(NS, NF), 0)
9840
9841 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9842  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9843  *
9844  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9845  * "register" since two registers available in convert_ctx_access are not
9846  * enough: we can't override neither SRC, since it contains value to store, nor
9847  * DST since it contains pointer to context that may be used by later
9848  * instructions. But we need a temporary place to save pointer to nested
9849  * structure whose field we want to store to.
9850  */
9851 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
9852         do {                                                                   \
9853                 int tmp_reg = BPF_REG_9;                                       \
9854                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9855                         --tmp_reg;                                             \
9856                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9857                         --tmp_reg;                                             \
9858                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
9859                                       offsetof(S, TF));                        \
9860                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
9861                                       si->dst_reg, offsetof(S, F));            \
9862                 *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,              \
9863                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9864                                        target_size)                            \
9865                                 + OFF);                                        \
9866                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
9867                                       offsetof(S, TF));                        \
9868         } while (0)
9869
9870 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9871                                                       TF)                      \
9872         do {                                                                   \
9873                 if (type == BPF_WRITE) {                                       \
9874                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9875                                                          OFF, TF);             \
9876                 } else {                                                       \
9877                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
9878                                 S, NS, F, NF, SIZE, OFF);  \
9879                 }                                                              \
9880         } while (0)
9881
9882 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
9883         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
9884                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9885
9886 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9887                                         const struct bpf_insn *si,
9888                                         struct bpf_insn *insn_buf,
9889                                         struct bpf_prog *prog, u32 *target_size)
9890 {
9891         int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9892         struct bpf_insn *insn = insn_buf;
9893
9894         switch (si->off) {
9895         case offsetof(struct bpf_sock_addr, user_family):
9896                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9897                                             struct sockaddr, uaddr, sa_family);
9898                 break;
9899
9900         case offsetof(struct bpf_sock_addr, user_ip4):
9901                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9902                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9903                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9904                 break;
9905
9906         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9907                 off = si->off;
9908                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9909                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9910                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9911                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9912                         tmp_reg);
9913                 break;
9914
9915         case offsetof(struct bpf_sock_addr, user_port):
9916                 /* To get port we need to know sa_family first and then treat
9917                  * sockaddr as either sockaddr_in or sockaddr_in6.
9918                  * Though we can simplify since port field has same offset and
9919                  * size in both structures.
9920                  * Here we check this invariant and use just one of the
9921                  * structures if it's true.
9922                  */
9923                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9924                              offsetof(struct sockaddr_in6, sin6_port));
9925                 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9926                              sizeof_field(struct sockaddr_in6, sin6_port));
9927                 /* Account for sin6_port being smaller than user_port. */
9928                 port_size = min(port_size, BPF_LDST_BYTES(si));
9929                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9930                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9931                         sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9932                 break;
9933
9934         case offsetof(struct bpf_sock_addr, family):
9935                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9936                                             struct sock, sk, sk_family);
9937                 break;
9938
9939         case offsetof(struct bpf_sock_addr, type):
9940                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9941                                             struct sock, sk, sk_type);
9942                 break;
9943
9944         case offsetof(struct bpf_sock_addr, protocol):
9945                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9946                                             struct sock, sk, sk_protocol);
9947                 break;
9948
9949         case offsetof(struct bpf_sock_addr, msg_src_ip4):
9950                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
9951                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9952                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9953                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9954                 break;
9955
9956         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9957                                 msg_src_ip6[3]):
9958                 off = si->off;
9959                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9960                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9961                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9962                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9963                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9964                 break;
9965         case offsetof(struct bpf_sock_addr, sk):
9966                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9967                                       si->dst_reg, si->src_reg,
9968                                       offsetof(struct bpf_sock_addr_kern, sk));
9969                 break;
9970         }
9971
9972         return insn - insn_buf;
9973 }
9974
9975 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9976                                        const struct bpf_insn *si,
9977                                        struct bpf_insn *insn_buf,
9978                                        struct bpf_prog *prog,
9979                                        u32 *target_size)
9980 {
9981         struct bpf_insn *insn = insn_buf;
9982         int off;
9983
9984 /* Helper macro for adding read access to tcp_sock or sock fields. */
9985 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
9986         do {                                                                  \
9987                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9988                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
9989                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9990                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9991                         reg--;                                                \
9992                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9993                         reg--;                                                \
9994                 if (si->dst_reg == si->src_reg) {                             \
9995                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
9996                                           offsetof(struct bpf_sock_ops_kern,  \
9997                                           temp));                             \
9998                         fullsock_reg = reg;                                   \
9999                         jmp += 2;                                             \
10000                 }                                                             \
10001                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10002                                                 struct bpf_sock_ops_kern,     \
10003                                                 is_fullsock),                 \
10004                                       fullsock_reg, si->src_reg,              \
10005                                       offsetof(struct bpf_sock_ops_kern,      \
10006                                                is_fullsock));                 \
10007                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
10008                 if (si->dst_reg == si->src_reg)                               \
10009                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10010                                       offsetof(struct bpf_sock_ops_kern,      \
10011                                       temp));                                 \
10012                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10013                                                 struct bpf_sock_ops_kern, sk),\
10014                                       si->dst_reg, si->src_reg,               \
10015                                       offsetof(struct bpf_sock_ops_kern, sk));\
10016                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
10017                                                        OBJ_FIELD),            \
10018                                       si->dst_reg, si->dst_reg,               \
10019                                       offsetof(OBJ, OBJ_FIELD));              \
10020                 if (si->dst_reg == si->src_reg) {                             \
10021                         *insn++ = BPF_JMP_A(1);                               \
10022                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10023                                       offsetof(struct bpf_sock_ops_kern,      \
10024                                       temp));                                 \
10025                 }                                                             \
10026         } while (0)
10027
10028 #define SOCK_OPS_GET_SK()                                                             \
10029         do {                                                                  \
10030                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10031                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10032                         reg--;                                                \
10033                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10034                         reg--;                                                \
10035                 if (si->dst_reg == si->src_reg) {                             \
10036                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
10037                                           offsetof(struct bpf_sock_ops_kern,  \
10038                                           temp));                             \
10039                         fullsock_reg = reg;                                   \
10040                         jmp += 2;                                             \
10041                 }                                                             \
10042                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10043                                                 struct bpf_sock_ops_kern,     \
10044                                                 is_fullsock),                 \
10045                                       fullsock_reg, si->src_reg,              \
10046                                       offsetof(struct bpf_sock_ops_kern,      \
10047                                                is_fullsock));                 \
10048                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
10049                 if (si->dst_reg == si->src_reg)                               \
10050                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10051                                       offsetof(struct bpf_sock_ops_kern,      \
10052                                       temp));                                 \
10053                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10054                                                 struct bpf_sock_ops_kern, sk),\
10055                                       si->dst_reg, si->src_reg,               \
10056                                       offsetof(struct bpf_sock_ops_kern, sk));\
10057                 if (si->dst_reg == si->src_reg) {                             \
10058                         *insn++ = BPF_JMP_A(1);                               \
10059                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10060                                       offsetof(struct bpf_sock_ops_kern,      \
10061                                       temp));                                 \
10062                 }                                                             \
10063         } while (0)
10064
10065 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10066                 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10067
10068 /* Helper macro for adding write access to tcp_sock or sock fields.
10069  * The macro is called with two registers, dst_reg which contains a pointer
10070  * to ctx (context) and src_reg which contains the value that should be
10071  * stored. However, we need an additional register since we cannot overwrite
10072  * dst_reg because it may be used later in the program.
10073  * Instead we "borrow" one of the other register. We first save its value
10074  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10075  * it at the end of the macro.
10076  */
10077 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
10078         do {                                                                  \
10079                 int reg = BPF_REG_9;                                          \
10080                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
10081                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10082                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10083                         reg--;                                                \
10084                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10085                         reg--;                                                \
10086                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
10087                                       offsetof(struct bpf_sock_ops_kern,      \
10088                                                temp));                        \
10089                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10090                                                 struct bpf_sock_ops_kern,     \
10091                                                 is_fullsock),                 \
10092                                       reg, si->dst_reg,                       \
10093                                       offsetof(struct bpf_sock_ops_kern,      \
10094                                                is_fullsock));                 \
10095                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
10096                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10097                                                 struct bpf_sock_ops_kern, sk),\
10098                                       reg, si->dst_reg,                       \
10099                                       offsetof(struct bpf_sock_ops_kern, sk));\
10100                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
10101                                       reg, si->src_reg,                       \
10102                                       offsetof(OBJ, OBJ_FIELD));              \
10103                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
10104                                       offsetof(struct bpf_sock_ops_kern,      \
10105                                                temp));                        \
10106         } while (0)
10107
10108 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
10109         do {                                                                  \
10110                 if (TYPE == BPF_WRITE)                                        \
10111                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
10112                 else                                                          \
10113                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
10114         } while (0)
10115
10116         if (insn > insn_buf)
10117                 return insn - insn_buf;
10118
10119         switch (si->off) {
10120         case offsetof(struct bpf_sock_ops, op):
10121                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10122                                                        op),
10123                                       si->dst_reg, si->src_reg,
10124                                       offsetof(struct bpf_sock_ops_kern, op));
10125                 break;
10126
10127         case offsetof(struct bpf_sock_ops, replylong[0]) ...
10128              offsetof(struct bpf_sock_ops, replylong[3]):
10129                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10130                              sizeof_field(struct bpf_sock_ops_kern, reply));
10131                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10132                              sizeof_field(struct bpf_sock_ops_kern, replylong));
10133                 off = si->off;
10134                 off -= offsetof(struct bpf_sock_ops, replylong[0]);
10135                 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10136                 if (type == BPF_WRITE)
10137                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
10138                                               off);
10139                 else
10140                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10141                                               off);
10142                 break;
10143
10144         case offsetof(struct bpf_sock_ops, family):
10145                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10146
10147                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10148                                               struct bpf_sock_ops_kern, sk),
10149                                       si->dst_reg, si->src_reg,
10150                                       offsetof(struct bpf_sock_ops_kern, sk));
10151                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10152                                       offsetof(struct sock_common, skc_family));
10153                 break;
10154
10155         case offsetof(struct bpf_sock_ops, remote_ip4):
10156                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10157
10158                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10159                                                 struct bpf_sock_ops_kern, sk),
10160                                       si->dst_reg, si->src_reg,
10161                                       offsetof(struct bpf_sock_ops_kern, sk));
10162                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10163                                       offsetof(struct sock_common, skc_daddr));
10164                 break;
10165
10166         case offsetof(struct bpf_sock_ops, local_ip4):
10167                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10168                                           skc_rcv_saddr) != 4);
10169
10170                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10171                                               struct bpf_sock_ops_kern, sk),
10172                                       si->dst_reg, si->src_reg,
10173                                       offsetof(struct bpf_sock_ops_kern, sk));
10174                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10175                                       offsetof(struct sock_common,
10176                                                skc_rcv_saddr));
10177                 break;
10178
10179         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10180              offsetof(struct bpf_sock_ops, remote_ip6[3]):
10181 #if IS_ENABLED(CONFIG_IPV6)
10182                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10183                                           skc_v6_daddr.s6_addr32[0]) != 4);
10184
10185                 off = si->off;
10186                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10187                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10188                                                 struct bpf_sock_ops_kern, sk),
10189                                       si->dst_reg, si->src_reg,
10190                                       offsetof(struct bpf_sock_ops_kern, sk));
10191                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10192                                       offsetof(struct sock_common,
10193                                                skc_v6_daddr.s6_addr32[0]) +
10194                                       off);
10195 #else
10196                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10197 #endif
10198                 break;
10199
10200         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10201              offsetof(struct bpf_sock_ops, local_ip6[3]):
10202 #if IS_ENABLED(CONFIG_IPV6)
10203                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10204                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10205
10206                 off = si->off;
10207                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10208                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10209                                                 struct bpf_sock_ops_kern, sk),
10210                                       si->dst_reg, si->src_reg,
10211                                       offsetof(struct bpf_sock_ops_kern, sk));
10212                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10213                                       offsetof(struct sock_common,
10214                                                skc_v6_rcv_saddr.s6_addr32[0]) +
10215                                       off);
10216 #else
10217                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10218 #endif
10219                 break;
10220
10221         case offsetof(struct bpf_sock_ops, remote_port):
10222                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10223
10224                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10225                                                 struct bpf_sock_ops_kern, sk),
10226                                       si->dst_reg, si->src_reg,
10227                                       offsetof(struct bpf_sock_ops_kern, sk));
10228                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10229                                       offsetof(struct sock_common, skc_dport));
10230 #ifndef __BIG_ENDIAN_BITFIELD
10231                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10232 #endif
10233                 break;
10234
10235         case offsetof(struct bpf_sock_ops, local_port):
10236                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10237
10238                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10239                                                 struct bpf_sock_ops_kern, sk),
10240                                       si->dst_reg, si->src_reg,
10241                                       offsetof(struct bpf_sock_ops_kern, sk));
10242                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10243                                       offsetof(struct sock_common, skc_num));
10244                 break;
10245
10246         case offsetof(struct bpf_sock_ops, is_fullsock):
10247                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10248                                                 struct bpf_sock_ops_kern,
10249                                                 is_fullsock),
10250                                       si->dst_reg, si->src_reg,
10251                                       offsetof(struct bpf_sock_ops_kern,
10252                                                is_fullsock));
10253                 break;
10254
10255         case offsetof(struct bpf_sock_ops, state):
10256                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10257
10258                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10259                                                 struct bpf_sock_ops_kern, sk),
10260                                       si->dst_reg, si->src_reg,
10261                                       offsetof(struct bpf_sock_ops_kern, sk));
10262                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10263                                       offsetof(struct sock_common, skc_state));
10264                 break;
10265
10266         case offsetof(struct bpf_sock_ops, rtt_min):
10267                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10268                              sizeof(struct minmax));
10269                 BUILD_BUG_ON(sizeof(struct minmax) <
10270                              sizeof(struct minmax_sample));
10271
10272                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10273                                                 struct bpf_sock_ops_kern, sk),
10274                                       si->dst_reg, si->src_reg,
10275                                       offsetof(struct bpf_sock_ops_kern, sk));
10276                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10277                                       offsetof(struct tcp_sock, rtt_min) +
10278                                       sizeof_field(struct minmax_sample, t));
10279                 break;
10280
10281         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10282                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10283                                    struct tcp_sock);
10284                 break;
10285
10286         case offsetof(struct bpf_sock_ops, sk_txhash):
10287                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10288                                           struct sock, type);
10289                 break;
10290         case offsetof(struct bpf_sock_ops, snd_cwnd):
10291                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10292                 break;
10293         case offsetof(struct bpf_sock_ops, srtt_us):
10294                 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10295                 break;
10296         case offsetof(struct bpf_sock_ops, snd_ssthresh):
10297                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10298                 break;
10299         case offsetof(struct bpf_sock_ops, rcv_nxt):
10300                 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10301                 break;
10302         case offsetof(struct bpf_sock_ops, snd_nxt):
10303                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10304                 break;
10305         case offsetof(struct bpf_sock_ops, snd_una):
10306                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10307                 break;
10308         case offsetof(struct bpf_sock_ops, mss_cache):
10309                 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10310                 break;
10311         case offsetof(struct bpf_sock_ops, ecn_flags):
10312                 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10313                 break;
10314         case offsetof(struct bpf_sock_ops, rate_delivered):
10315                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10316                 break;
10317         case offsetof(struct bpf_sock_ops, rate_interval_us):
10318                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10319                 break;
10320         case offsetof(struct bpf_sock_ops, packets_out):
10321                 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10322                 break;
10323         case offsetof(struct bpf_sock_ops, retrans_out):
10324                 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10325                 break;
10326         case offsetof(struct bpf_sock_ops, total_retrans):
10327                 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10328                 break;
10329         case offsetof(struct bpf_sock_ops, segs_in):
10330                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10331                 break;
10332         case offsetof(struct bpf_sock_ops, data_segs_in):
10333                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10334                 break;
10335         case offsetof(struct bpf_sock_ops, segs_out):
10336                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10337                 break;
10338         case offsetof(struct bpf_sock_ops, data_segs_out):
10339                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10340                 break;
10341         case offsetof(struct bpf_sock_ops, lost_out):
10342                 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10343                 break;
10344         case offsetof(struct bpf_sock_ops, sacked_out):
10345                 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10346                 break;
10347         case offsetof(struct bpf_sock_ops, bytes_received):
10348                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10349                 break;
10350         case offsetof(struct bpf_sock_ops, bytes_acked):
10351                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10352                 break;
10353         case offsetof(struct bpf_sock_ops, sk):
10354                 SOCK_OPS_GET_SK();
10355                 break;
10356         case offsetof(struct bpf_sock_ops, skb_data_end):
10357                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10358                                                        skb_data_end),
10359                                       si->dst_reg, si->src_reg,
10360                                       offsetof(struct bpf_sock_ops_kern,
10361                                                skb_data_end));
10362                 break;
10363         case offsetof(struct bpf_sock_ops, skb_data):
10364                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10365                                                        skb),
10366                                       si->dst_reg, si->src_reg,
10367                                       offsetof(struct bpf_sock_ops_kern,
10368                                                skb));
10369                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10370                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10371                                       si->dst_reg, si->dst_reg,
10372                                       offsetof(struct sk_buff, data));
10373                 break;
10374         case offsetof(struct bpf_sock_ops, skb_len):
10375                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10376                                                        skb),
10377                                       si->dst_reg, si->src_reg,
10378                                       offsetof(struct bpf_sock_ops_kern,
10379                                                skb));
10380                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10381                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10382                                       si->dst_reg, si->dst_reg,
10383                                       offsetof(struct sk_buff, len));
10384                 break;
10385         case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10386                 off = offsetof(struct sk_buff, cb);
10387                 off += offsetof(struct tcp_skb_cb, tcp_flags);
10388                 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10389                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10390                                                        skb),
10391                                       si->dst_reg, si->src_reg,
10392                                       offsetof(struct bpf_sock_ops_kern,
10393                                                skb));
10394                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10395                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10396                                                        tcp_flags),
10397                                       si->dst_reg, si->dst_reg, off);
10398                 break;
10399         }
10400         return insn - insn_buf;
10401 }
10402
10403 /* data_end = skb->data + skb_headlen() */
10404 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10405                                                     struct bpf_insn *insn)
10406 {
10407         int reg;
10408         int temp_reg_off = offsetof(struct sk_buff, cb) +
10409                            offsetof(struct sk_skb_cb, temp_reg);
10410
10411         if (si->src_reg == si->dst_reg) {
10412                 /* We need an extra register, choose and save a register. */
10413                 reg = BPF_REG_9;
10414                 if (si->src_reg == reg || si->dst_reg == reg)
10415                         reg--;
10416                 if (si->src_reg == reg || si->dst_reg == reg)
10417                         reg--;
10418                 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10419         } else {
10420                 reg = si->dst_reg;
10421         }
10422
10423         /* reg = skb->data */
10424         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10425                               reg, si->src_reg,
10426                               offsetof(struct sk_buff, data));
10427         /* AX = skb->len */
10428         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10429                               BPF_REG_AX, si->src_reg,
10430                               offsetof(struct sk_buff, len));
10431         /* reg = skb->data + skb->len */
10432         *insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10433         /* AX = skb->data_len */
10434         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10435                               BPF_REG_AX, si->src_reg,
10436                               offsetof(struct sk_buff, data_len));
10437
10438         /* reg = skb->data + skb->len - skb->data_len */
10439         *insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10440
10441         if (si->src_reg == si->dst_reg) {
10442                 /* Restore the saved register */
10443                 *insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10444                 *insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10445                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10446         }
10447
10448         return insn;
10449 }
10450
10451 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10452                                      const struct bpf_insn *si,
10453                                      struct bpf_insn *insn_buf,
10454                                      struct bpf_prog *prog, u32 *target_size)
10455 {
10456         struct bpf_insn *insn = insn_buf;
10457         int off;
10458
10459         switch (si->off) {
10460         case offsetof(struct __sk_buff, data_end):
10461                 insn = bpf_convert_data_end_access(si, insn);
10462                 break;
10463         case offsetof(struct __sk_buff, cb[0]) ...
10464              offsetofend(struct __sk_buff, cb[4]) - 1:
10465                 BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10466                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10467                               offsetof(struct sk_skb_cb, data)) %
10468                              sizeof(__u64));
10469
10470                 prog->cb_access = 1;
10471                 off  = si->off;
10472                 off -= offsetof(struct __sk_buff, cb[0]);
10473                 off += offsetof(struct sk_buff, cb);
10474                 off += offsetof(struct sk_skb_cb, data);
10475                 if (type == BPF_WRITE)
10476                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
10477                                               si->src_reg, off);
10478                 else
10479                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10480                                               si->src_reg, off);
10481                 break;
10482
10483
10484         default:
10485                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10486                                               target_size);
10487         }
10488
10489         return insn - insn_buf;
10490 }
10491
10492 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10493                                      const struct bpf_insn *si,
10494                                      struct bpf_insn *insn_buf,
10495                                      struct bpf_prog *prog, u32 *target_size)
10496 {
10497         struct bpf_insn *insn = insn_buf;
10498 #if IS_ENABLED(CONFIG_IPV6)
10499         int off;
10500 #endif
10501
10502         /* convert ctx uses the fact sg element is first in struct */
10503         BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10504
10505         switch (si->off) {
10506         case offsetof(struct sk_msg_md, data):
10507                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10508                                       si->dst_reg, si->src_reg,
10509                                       offsetof(struct sk_msg, data));
10510                 break;
10511         case offsetof(struct sk_msg_md, data_end):
10512                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10513                                       si->dst_reg, si->src_reg,
10514                                       offsetof(struct sk_msg, data_end));
10515                 break;
10516         case offsetof(struct sk_msg_md, family):
10517                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10518
10519                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10520                                               struct sk_msg, sk),
10521                                       si->dst_reg, si->src_reg,
10522                                       offsetof(struct sk_msg, sk));
10523                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10524                                       offsetof(struct sock_common, skc_family));
10525                 break;
10526
10527         case offsetof(struct sk_msg_md, remote_ip4):
10528                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10529
10530                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10531                                                 struct sk_msg, sk),
10532                                       si->dst_reg, si->src_reg,
10533                                       offsetof(struct sk_msg, sk));
10534                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10535                                       offsetof(struct sock_common, skc_daddr));
10536                 break;
10537
10538         case offsetof(struct sk_msg_md, local_ip4):
10539                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10540                                           skc_rcv_saddr) != 4);
10541
10542                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10543                                               struct sk_msg, sk),
10544                                       si->dst_reg, si->src_reg,
10545                                       offsetof(struct sk_msg, sk));
10546                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10547                                       offsetof(struct sock_common,
10548                                                skc_rcv_saddr));
10549                 break;
10550
10551         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10552              offsetof(struct sk_msg_md, remote_ip6[3]):
10553 #if IS_ENABLED(CONFIG_IPV6)
10554                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10555                                           skc_v6_daddr.s6_addr32[0]) != 4);
10556
10557                 off = si->off;
10558                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10559                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10560                                                 struct sk_msg, sk),
10561                                       si->dst_reg, si->src_reg,
10562                                       offsetof(struct sk_msg, sk));
10563                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10564                                       offsetof(struct sock_common,
10565                                                skc_v6_daddr.s6_addr32[0]) +
10566                                       off);
10567 #else
10568                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10569 #endif
10570                 break;
10571
10572         case offsetof(struct sk_msg_md, local_ip6[0]) ...
10573              offsetof(struct sk_msg_md, local_ip6[3]):
10574 #if IS_ENABLED(CONFIG_IPV6)
10575                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10576                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10577
10578                 off = si->off;
10579                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
10580                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10581                                                 struct sk_msg, sk),
10582                                       si->dst_reg, si->src_reg,
10583                                       offsetof(struct sk_msg, sk));
10584                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10585                                       offsetof(struct sock_common,
10586                                                skc_v6_rcv_saddr.s6_addr32[0]) +
10587                                       off);
10588 #else
10589                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10590 #endif
10591                 break;
10592
10593         case offsetof(struct sk_msg_md, remote_port):
10594                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10595
10596                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10597                                                 struct sk_msg, sk),
10598                                       si->dst_reg, si->src_reg,
10599                                       offsetof(struct sk_msg, sk));
10600                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10601                                       offsetof(struct sock_common, skc_dport));
10602 #ifndef __BIG_ENDIAN_BITFIELD
10603                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10604 #endif
10605                 break;
10606
10607         case offsetof(struct sk_msg_md, local_port):
10608                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10609
10610                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10611                                                 struct sk_msg, sk),
10612                                       si->dst_reg, si->src_reg,
10613                                       offsetof(struct sk_msg, sk));
10614                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10615                                       offsetof(struct sock_common, skc_num));
10616                 break;
10617
10618         case offsetof(struct sk_msg_md, size):
10619                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10620                                       si->dst_reg, si->src_reg,
10621                                       offsetof(struct sk_msg_sg, size));
10622                 break;
10623
10624         case offsetof(struct sk_msg_md, sk):
10625                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10626                                       si->dst_reg, si->src_reg,
10627                                       offsetof(struct sk_msg, sk));
10628                 break;
10629         }
10630
10631         return insn - insn_buf;
10632 }
10633
10634 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10635         .get_func_proto         = sk_filter_func_proto,
10636         .is_valid_access        = sk_filter_is_valid_access,
10637         .convert_ctx_access     = bpf_convert_ctx_access,
10638         .gen_ld_abs             = bpf_gen_ld_abs,
10639 };
10640
10641 const struct bpf_prog_ops sk_filter_prog_ops = {
10642         .test_run               = bpf_prog_test_run_skb,
10643 };
10644
10645 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10646         .get_func_proto         = tc_cls_act_func_proto,
10647         .is_valid_access        = tc_cls_act_is_valid_access,
10648         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
10649         .gen_prologue           = tc_cls_act_prologue,
10650         .gen_ld_abs             = bpf_gen_ld_abs,
10651         .btf_struct_access      = tc_cls_act_btf_struct_access,
10652 };
10653
10654 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10655         .test_run               = bpf_prog_test_run_skb,
10656 };
10657
10658 const struct bpf_verifier_ops xdp_verifier_ops = {
10659         .get_func_proto         = xdp_func_proto,
10660         .is_valid_access        = xdp_is_valid_access,
10661         .convert_ctx_access     = xdp_convert_ctx_access,
10662         .gen_prologue           = bpf_noop_prologue,
10663         .btf_struct_access      = xdp_btf_struct_access,
10664 };
10665
10666 const struct bpf_prog_ops xdp_prog_ops = {
10667         .test_run               = bpf_prog_test_run_xdp,
10668 };
10669
10670 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10671         .get_func_proto         = cg_skb_func_proto,
10672         .is_valid_access        = cg_skb_is_valid_access,
10673         .convert_ctx_access     = bpf_convert_ctx_access,
10674 };
10675
10676 const struct bpf_prog_ops cg_skb_prog_ops = {
10677         .test_run               = bpf_prog_test_run_skb,
10678 };
10679
10680 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10681         .get_func_proto         = lwt_in_func_proto,
10682         .is_valid_access        = lwt_is_valid_access,
10683         .convert_ctx_access     = bpf_convert_ctx_access,
10684 };
10685
10686 const struct bpf_prog_ops lwt_in_prog_ops = {
10687         .test_run               = bpf_prog_test_run_skb,
10688 };
10689
10690 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10691         .get_func_proto         = lwt_out_func_proto,
10692         .is_valid_access        = lwt_is_valid_access,
10693         .convert_ctx_access     = bpf_convert_ctx_access,
10694 };
10695
10696 const struct bpf_prog_ops lwt_out_prog_ops = {
10697         .test_run               = bpf_prog_test_run_skb,
10698 };
10699
10700 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10701         .get_func_proto         = lwt_xmit_func_proto,
10702         .is_valid_access        = lwt_is_valid_access,
10703         .convert_ctx_access     = bpf_convert_ctx_access,
10704         .gen_prologue           = tc_cls_act_prologue,
10705 };
10706
10707 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10708         .test_run               = bpf_prog_test_run_skb,
10709 };
10710
10711 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10712         .get_func_proto         = lwt_seg6local_func_proto,
10713         .is_valid_access        = lwt_is_valid_access,
10714         .convert_ctx_access     = bpf_convert_ctx_access,
10715 };
10716
10717 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10718         .test_run               = bpf_prog_test_run_skb,
10719 };
10720
10721 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10722         .get_func_proto         = sock_filter_func_proto,
10723         .is_valid_access        = sock_filter_is_valid_access,
10724         .convert_ctx_access     = bpf_sock_convert_ctx_access,
10725 };
10726
10727 const struct bpf_prog_ops cg_sock_prog_ops = {
10728 };
10729
10730 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10731         .get_func_proto         = sock_addr_func_proto,
10732         .is_valid_access        = sock_addr_is_valid_access,
10733         .convert_ctx_access     = sock_addr_convert_ctx_access,
10734 };
10735
10736 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10737 };
10738
10739 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10740         .get_func_proto         = sock_ops_func_proto,
10741         .is_valid_access        = sock_ops_is_valid_access,
10742         .convert_ctx_access     = sock_ops_convert_ctx_access,
10743 };
10744
10745 const struct bpf_prog_ops sock_ops_prog_ops = {
10746 };
10747
10748 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10749         .get_func_proto         = sk_skb_func_proto,
10750         .is_valid_access        = sk_skb_is_valid_access,
10751         .convert_ctx_access     = sk_skb_convert_ctx_access,
10752         .gen_prologue           = sk_skb_prologue,
10753 };
10754
10755 const struct bpf_prog_ops sk_skb_prog_ops = {
10756 };
10757
10758 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10759         .get_func_proto         = sk_msg_func_proto,
10760         .is_valid_access        = sk_msg_is_valid_access,
10761         .convert_ctx_access     = sk_msg_convert_ctx_access,
10762         .gen_prologue           = bpf_noop_prologue,
10763 };
10764
10765 const struct bpf_prog_ops sk_msg_prog_ops = {
10766 };
10767
10768 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10769         .get_func_proto         = flow_dissector_func_proto,
10770         .is_valid_access        = flow_dissector_is_valid_access,
10771         .convert_ctx_access     = flow_dissector_convert_ctx_access,
10772 };
10773
10774 const struct bpf_prog_ops flow_dissector_prog_ops = {
10775         .test_run               = bpf_prog_test_run_flow_dissector,
10776 };
10777
10778 int sk_detach_filter(struct sock *sk)
10779 {
10780         int ret = -ENOENT;
10781         struct sk_filter *filter;
10782
10783         if (sock_flag(sk, SOCK_FILTER_LOCKED))
10784                 return -EPERM;
10785
10786         filter = rcu_dereference_protected(sk->sk_filter,
10787                                            lockdep_sock_is_held(sk));
10788         if (filter) {
10789                 RCU_INIT_POINTER(sk->sk_filter, NULL);
10790                 sk_filter_uncharge(sk, filter);
10791                 ret = 0;
10792         }
10793
10794         return ret;
10795 }
10796 EXPORT_SYMBOL_GPL(sk_detach_filter);
10797
10798 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
10799 {
10800         struct sock_fprog_kern *fprog;
10801         struct sk_filter *filter;
10802         int ret = 0;
10803
10804         sockopt_lock_sock(sk);
10805         filter = rcu_dereference_protected(sk->sk_filter,
10806                                            lockdep_sock_is_held(sk));
10807         if (!filter)
10808                 goto out;
10809
10810         /* We're copying the filter that has been originally attached,
10811          * so no conversion/decode needed anymore. eBPF programs that
10812          * have no original program cannot be dumped through this.
10813          */
10814         ret = -EACCES;
10815         fprog = filter->prog->orig_prog;
10816         if (!fprog)
10817                 goto out;
10818
10819         ret = fprog->len;
10820         if (!len)
10821                 /* User space only enquires number of filter blocks. */
10822                 goto out;
10823
10824         ret = -EINVAL;
10825         if (len < fprog->len)
10826                 goto out;
10827
10828         ret = -EFAULT;
10829         if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
10830                 goto out;
10831
10832         /* Instead of bytes, the API requests to return the number
10833          * of filter blocks.
10834          */
10835         ret = fprog->len;
10836 out:
10837         sockopt_release_sock(sk);
10838         return ret;
10839 }
10840
10841 #ifdef CONFIG_INET
10842 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10843                                     struct sock_reuseport *reuse,
10844                                     struct sock *sk, struct sk_buff *skb,
10845                                     struct sock *migrating_sk,
10846                                     u32 hash)
10847 {
10848         reuse_kern->skb = skb;
10849         reuse_kern->sk = sk;
10850         reuse_kern->selected_sk = NULL;
10851         reuse_kern->migrating_sk = migrating_sk;
10852         reuse_kern->data_end = skb->data + skb_headlen(skb);
10853         reuse_kern->hash = hash;
10854         reuse_kern->reuseport_id = reuse->reuseport_id;
10855         reuse_kern->bind_inany = reuse->bind_inany;
10856 }
10857
10858 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10859                                   struct bpf_prog *prog, struct sk_buff *skb,
10860                                   struct sock *migrating_sk,
10861                                   u32 hash)
10862 {
10863         struct sk_reuseport_kern reuse_kern;
10864         enum sk_action action;
10865
10866         bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10867         action = bpf_prog_run(prog, &reuse_kern);
10868
10869         if (action == SK_PASS)
10870                 return reuse_kern.selected_sk;
10871         else
10872                 return ERR_PTR(-ECONNREFUSED);
10873 }
10874
10875 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10876            struct bpf_map *, map, void *, key, u32, flags)
10877 {
10878         bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10879         struct sock_reuseport *reuse;
10880         struct sock *selected_sk;
10881
10882         selected_sk = map->ops->map_lookup_elem(map, key);
10883         if (!selected_sk)
10884                 return -ENOENT;
10885
10886         reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10887         if (!reuse) {
10888                 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10889                 if (sk_is_refcounted(selected_sk))
10890                         sock_put(selected_sk);
10891
10892                 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
10893                  * The only (!reuse) case here is - the sk has already been
10894                  * unhashed (e.g. by close()), so treat it as -ENOENT.
10895                  *
10896                  * Other maps (e.g. sock_map) do not provide this guarantee and
10897                  * the sk may never be in the reuseport group to begin with.
10898                  */
10899                 return is_sockarray ? -ENOENT : -EINVAL;
10900         }
10901
10902         if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10903                 struct sock *sk = reuse_kern->sk;
10904
10905                 if (sk->sk_protocol != selected_sk->sk_protocol)
10906                         return -EPROTOTYPE;
10907                 else if (sk->sk_family != selected_sk->sk_family)
10908                         return -EAFNOSUPPORT;
10909
10910                 /* Catch all. Likely bound to a different sockaddr. */
10911                 return -EBADFD;
10912         }
10913
10914         reuse_kern->selected_sk = selected_sk;
10915
10916         return 0;
10917 }
10918
10919 static const struct bpf_func_proto sk_select_reuseport_proto = {
10920         .func           = sk_select_reuseport,
10921         .gpl_only       = false,
10922         .ret_type       = RET_INTEGER,
10923         .arg1_type      = ARG_PTR_TO_CTX,
10924         .arg2_type      = ARG_CONST_MAP_PTR,
10925         .arg3_type      = ARG_PTR_TO_MAP_KEY,
10926         .arg4_type      = ARG_ANYTHING,
10927 };
10928
10929 BPF_CALL_4(sk_reuseport_load_bytes,
10930            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10931            void *, to, u32, len)
10932 {
10933         return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10934 }
10935
10936 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10937         .func           = sk_reuseport_load_bytes,
10938         .gpl_only       = false,
10939         .ret_type       = RET_INTEGER,
10940         .arg1_type      = ARG_PTR_TO_CTX,
10941         .arg2_type      = ARG_ANYTHING,
10942         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
10943         .arg4_type      = ARG_CONST_SIZE,
10944 };
10945
10946 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10947            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10948            void *, to, u32, len, u32, start_header)
10949 {
10950         return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10951                                                len, start_header);
10952 }
10953
10954 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10955         .func           = sk_reuseport_load_bytes_relative,
10956         .gpl_only       = false,
10957         .ret_type       = RET_INTEGER,
10958         .arg1_type      = ARG_PTR_TO_CTX,
10959         .arg2_type      = ARG_ANYTHING,
10960         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
10961         .arg4_type      = ARG_CONST_SIZE,
10962         .arg5_type      = ARG_ANYTHING,
10963 };
10964
10965 static const struct bpf_func_proto *
10966 sk_reuseport_func_proto(enum bpf_func_id func_id,
10967                         const struct bpf_prog *prog)
10968 {
10969         switch (func_id) {
10970         case BPF_FUNC_sk_select_reuseport:
10971                 return &sk_select_reuseport_proto;
10972         case BPF_FUNC_skb_load_bytes:
10973                 return &sk_reuseport_load_bytes_proto;
10974         case BPF_FUNC_skb_load_bytes_relative:
10975                 return &sk_reuseport_load_bytes_relative_proto;
10976         case BPF_FUNC_get_socket_cookie:
10977                 return &bpf_get_socket_ptr_cookie_proto;
10978         case BPF_FUNC_ktime_get_coarse_ns:
10979                 return &bpf_ktime_get_coarse_ns_proto;
10980         default:
10981                 return bpf_base_func_proto(func_id);
10982         }
10983 }
10984
10985 static bool
10986 sk_reuseport_is_valid_access(int off, int size,
10987                              enum bpf_access_type type,
10988                              const struct bpf_prog *prog,
10989                              struct bpf_insn_access_aux *info)
10990 {
10991         const u32 size_default = sizeof(__u32);
10992
10993         if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
10994             off % size || type != BPF_READ)
10995                 return false;
10996
10997         switch (off) {
10998         case offsetof(struct sk_reuseport_md, data):
10999                 info->reg_type = PTR_TO_PACKET;
11000                 return size == sizeof(__u64);
11001
11002         case offsetof(struct sk_reuseport_md, data_end):
11003                 info->reg_type = PTR_TO_PACKET_END;
11004                 return size == sizeof(__u64);
11005
11006         case offsetof(struct sk_reuseport_md, hash):
11007                 return size == size_default;
11008
11009         case offsetof(struct sk_reuseport_md, sk):
11010                 info->reg_type = PTR_TO_SOCKET;
11011                 return size == sizeof(__u64);
11012
11013         case offsetof(struct sk_reuseport_md, migrating_sk):
11014                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11015                 return size == sizeof(__u64);
11016
11017         /* Fields that allow narrowing */
11018         case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11019                 if (size < sizeof_field(struct sk_buff, protocol))
11020                         return false;
11021                 fallthrough;
11022         case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11023         case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11024         case bpf_ctx_range(struct sk_reuseport_md, len):
11025                 bpf_ctx_record_field_size(info, size_default);
11026                 return bpf_ctx_narrow_access_ok(off, size, size_default);
11027
11028         default:
11029                 return false;
11030         }
11031 }
11032
11033 #define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
11034         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11035                               si->dst_reg, si->src_reg,                 \
11036                               bpf_target_off(struct sk_reuseport_kern, F, \
11037                                              sizeof_field(struct sk_reuseport_kern, F), \
11038                                              target_size));             \
11039         })
11040
11041 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
11042         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
11043                                     struct sk_buff,                     \
11044                                     skb,                                \
11045                                     SKB_FIELD)
11046
11047 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)                            \
11048         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
11049                                     struct sock,                        \
11050                                     sk,                                 \
11051                                     SK_FIELD)
11052
11053 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11054                                            const struct bpf_insn *si,
11055                                            struct bpf_insn *insn_buf,
11056                                            struct bpf_prog *prog,
11057                                            u32 *target_size)
11058 {
11059         struct bpf_insn *insn = insn_buf;
11060
11061         switch (si->off) {
11062         case offsetof(struct sk_reuseport_md, data):
11063                 SK_REUSEPORT_LOAD_SKB_FIELD(data);
11064                 break;
11065
11066         case offsetof(struct sk_reuseport_md, len):
11067                 SK_REUSEPORT_LOAD_SKB_FIELD(len);
11068                 break;
11069
11070         case offsetof(struct sk_reuseport_md, eth_protocol):
11071                 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11072                 break;
11073
11074         case offsetof(struct sk_reuseport_md, ip_protocol):
11075                 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11076                 break;
11077
11078         case offsetof(struct sk_reuseport_md, data_end):
11079                 SK_REUSEPORT_LOAD_FIELD(data_end);
11080                 break;
11081
11082         case offsetof(struct sk_reuseport_md, hash):
11083                 SK_REUSEPORT_LOAD_FIELD(hash);
11084                 break;
11085
11086         case offsetof(struct sk_reuseport_md, bind_inany):
11087                 SK_REUSEPORT_LOAD_FIELD(bind_inany);
11088                 break;
11089
11090         case offsetof(struct sk_reuseport_md, sk):
11091                 SK_REUSEPORT_LOAD_FIELD(sk);
11092                 break;
11093
11094         case offsetof(struct sk_reuseport_md, migrating_sk):
11095                 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11096                 break;
11097         }
11098
11099         return insn - insn_buf;
11100 }
11101
11102 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11103         .get_func_proto         = sk_reuseport_func_proto,
11104         .is_valid_access        = sk_reuseport_is_valid_access,
11105         .convert_ctx_access     = sk_reuseport_convert_ctx_access,
11106 };
11107
11108 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11109 };
11110
11111 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11112 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11113
11114 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11115            struct sock *, sk, u64, flags)
11116 {
11117         if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11118                                BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11119                 return -EINVAL;
11120         if (unlikely(sk && sk_is_refcounted(sk)))
11121                 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11122         if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11123                 return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11124         if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11125                 return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11126
11127         /* Check if socket is suitable for packet L3/L4 protocol */
11128         if (sk && sk->sk_protocol != ctx->protocol)
11129                 return -EPROTOTYPE;
11130         if (sk && sk->sk_family != ctx->family &&
11131             (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11132                 return -EAFNOSUPPORT;
11133
11134         if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11135                 return -EEXIST;
11136
11137         /* Select socket as lookup result */
11138         ctx->selected_sk = sk;
11139         ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11140         return 0;
11141 }
11142
11143 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11144         .func           = bpf_sk_lookup_assign,
11145         .gpl_only       = false,
11146         .ret_type       = RET_INTEGER,
11147         .arg1_type      = ARG_PTR_TO_CTX,
11148         .arg2_type      = ARG_PTR_TO_SOCKET_OR_NULL,
11149         .arg3_type      = ARG_ANYTHING,
11150 };
11151
11152 static const struct bpf_func_proto *
11153 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11154 {
11155         switch (func_id) {
11156         case BPF_FUNC_perf_event_output:
11157                 return &bpf_event_output_data_proto;
11158         case BPF_FUNC_sk_assign:
11159                 return &bpf_sk_lookup_assign_proto;
11160         case BPF_FUNC_sk_release:
11161                 return &bpf_sk_release_proto;
11162         default:
11163                 return bpf_sk_base_func_proto(func_id);
11164         }
11165 }
11166
11167 static bool sk_lookup_is_valid_access(int off, int size,
11168                                       enum bpf_access_type type,
11169                                       const struct bpf_prog *prog,
11170                                       struct bpf_insn_access_aux *info)
11171 {
11172         if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11173                 return false;
11174         if (off % size != 0)
11175                 return false;
11176         if (type != BPF_READ)
11177                 return false;
11178
11179         switch (off) {
11180         case offsetof(struct bpf_sk_lookup, sk):
11181                 info->reg_type = PTR_TO_SOCKET_OR_NULL;
11182                 return size == sizeof(__u64);
11183
11184         case bpf_ctx_range(struct bpf_sk_lookup, family):
11185         case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11186         case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11187         case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11188         case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11189         case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11190         case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11191         case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11192                 bpf_ctx_record_field_size(info, sizeof(__u32));
11193                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11194
11195         case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11196                 /* Allow 4-byte access to 2-byte field for backward compatibility */
11197                 if (size == sizeof(__u32))
11198                         return true;
11199                 bpf_ctx_record_field_size(info, sizeof(__be16));
11200                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11201
11202         case offsetofend(struct bpf_sk_lookup, remote_port) ...
11203              offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11204                 /* Allow access to zero padding for backward compatibility */
11205                 bpf_ctx_record_field_size(info, sizeof(__u16));
11206                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11207
11208         default:
11209                 return false;
11210         }
11211 }
11212
11213 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11214                                         const struct bpf_insn *si,
11215                                         struct bpf_insn *insn_buf,
11216                                         struct bpf_prog *prog,
11217                                         u32 *target_size)
11218 {
11219         struct bpf_insn *insn = insn_buf;
11220
11221         switch (si->off) {
11222         case offsetof(struct bpf_sk_lookup, sk):
11223                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11224                                       offsetof(struct bpf_sk_lookup_kern, selected_sk));
11225                 break;
11226
11227         case offsetof(struct bpf_sk_lookup, family):
11228                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11229                                       bpf_target_off(struct bpf_sk_lookup_kern,
11230                                                      family, 2, target_size));
11231                 break;
11232
11233         case offsetof(struct bpf_sk_lookup, protocol):
11234                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11235                                       bpf_target_off(struct bpf_sk_lookup_kern,
11236                                                      protocol, 2, target_size));
11237                 break;
11238
11239         case offsetof(struct bpf_sk_lookup, remote_ip4):
11240                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11241                                       bpf_target_off(struct bpf_sk_lookup_kern,
11242                                                      v4.saddr, 4, target_size));
11243                 break;
11244
11245         case offsetof(struct bpf_sk_lookup, local_ip4):
11246                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11247                                       bpf_target_off(struct bpf_sk_lookup_kern,
11248                                                      v4.daddr, 4, target_size));
11249                 break;
11250
11251         case bpf_ctx_range_till(struct bpf_sk_lookup,
11252                                 remote_ip6[0], remote_ip6[3]): {
11253 #if IS_ENABLED(CONFIG_IPV6)
11254                 int off = si->off;
11255
11256                 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11257                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11258                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11259                                       offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11260                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11261                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11262 #else
11263                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11264 #endif
11265                 break;
11266         }
11267         case bpf_ctx_range_till(struct bpf_sk_lookup,
11268                                 local_ip6[0], local_ip6[3]): {
11269 #if IS_ENABLED(CONFIG_IPV6)
11270                 int off = si->off;
11271
11272                 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11273                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11274                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11275                                       offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11276                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11277                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11278 #else
11279                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11280 #endif
11281                 break;
11282         }
11283         case offsetof(struct bpf_sk_lookup, remote_port):
11284                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11285                                       bpf_target_off(struct bpf_sk_lookup_kern,
11286                                                      sport, 2, target_size));
11287                 break;
11288
11289         case offsetofend(struct bpf_sk_lookup, remote_port):
11290                 *target_size = 2;
11291                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11292                 break;
11293
11294         case offsetof(struct bpf_sk_lookup, local_port):
11295                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11296                                       bpf_target_off(struct bpf_sk_lookup_kern,
11297                                                      dport, 2, target_size));
11298                 break;
11299
11300         case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11301                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11302                                       bpf_target_off(struct bpf_sk_lookup_kern,
11303                                                      ingress_ifindex, 4, target_size));
11304                 break;
11305         }
11306
11307         return insn - insn_buf;
11308 }
11309
11310 const struct bpf_prog_ops sk_lookup_prog_ops = {
11311         .test_run = bpf_prog_test_run_sk_lookup,
11312 };
11313
11314 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11315         .get_func_proto         = sk_lookup_func_proto,
11316         .is_valid_access        = sk_lookup_is_valid_access,
11317         .convert_ctx_access     = sk_lookup_convert_ctx_access,
11318 };
11319
11320 #endif /* CONFIG_INET */
11321
11322 DEFINE_BPF_DISPATCHER(xdp)
11323
11324 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11325 {
11326         bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11327 }
11328
11329 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11330 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11331 BTF_SOCK_TYPE_xxx
11332 #undef BTF_SOCK_TYPE
11333
11334 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11335 {
11336         /* tcp6_sock type is not generated in dwarf and hence btf,
11337          * trigger an explicit type generation here.
11338          */
11339         BTF_TYPE_EMIT(struct tcp6_sock);
11340         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11341             sk->sk_family == AF_INET6)
11342                 return (unsigned long)sk;
11343
11344         return (unsigned long)NULL;
11345 }
11346
11347 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11348         .func                   = bpf_skc_to_tcp6_sock,
11349         .gpl_only               = false,
11350         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11351         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11352         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11353 };
11354
11355 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11356 {
11357         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11358                 return (unsigned long)sk;
11359
11360         return (unsigned long)NULL;
11361 }
11362
11363 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11364         .func                   = bpf_skc_to_tcp_sock,
11365         .gpl_only               = false,
11366         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11367         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11368         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11369 };
11370
11371 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11372 {
11373         /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11374          * generated if CONFIG_INET=n. Trigger an explicit generation here.
11375          */
11376         BTF_TYPE_EMIT(struct inet_timewait_sock);
11377         BTF_TYPE_EMIT(struct tcp_timewait_sock);
11378
11379 #ifdef CONFIG_INET
11380         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11381                 return (unsigned long)sk;
11382 #endif
11383
11384 #if IS_BUILTIN(CONFIG_IPV6)
11385         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11386                 return (unsigned long)sk;
11387 #endif
11388
11389         return (unsigned long)NULL;
11390 }
11391
11392 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11393         .func                   = bpf_skc_to_tcp_timewait_sock,
11394         .gpl_only               = false,
11395         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11396         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11397         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11398 };
11399
11400 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11401 {
11402 #ifdef CONFIG_INET
11403         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11404                 return (unsigned long)sk;
11405 #endif
11406
11407 #if IS_BUILTIN(CONFIG_IPV6)
11408         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11409                 return (unsigned long)sk;
11410 #endif
11411
11412         return (unsigned long)NULL;
11413 }
11414
11415 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11416         .func                   = bpf_skc_to_tcp_request_sock,
11417         .gpl_only               = false,
11418         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11419         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11420         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11421 };
11422
11423 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11424 {
11425         /* udp6_sock type is not generated in dwarf and hence btf,
11426          * trigger an explicit type generation here.
11427          */
11428         BTF_TYPE_EMIT(struct udp6_sock);
11429         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11430             sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11431                 return (unsigned long)sk;
11432
11433         return (unsigned long)NULL;
11434 }
11435
11436 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11437         .func                   = bpf_skc_to_udp6_sock,
11438         .gpl_only               = false,
11439         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11440         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11441         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11442 };
11443
11444 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11445 {
11446         /* unix_sock type is not generated in dwarf and hence btf,
11447          * trigger an explicit type generation here.
11448          */
11449         BTF_TYPE_EMIT(struct unix_sock);
11450         if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11451                 return (unsigned long)sk;
11452
11453         return (unsigned long)NULL;
11454 }
11455
11456 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11457         .func                   = bpf_skc_to_unix_sock,
11458         .gpl_only               = false,
11459         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11460         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11461         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11462 };
11463
11464 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11465 {
11466         BTF_TYPE_EMIT(struct mptcp_sock);
11467         return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11468 }
11469
11470 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11471         .func           = bpf_skc_to_mptcp_sock,
11472         .gpl_only       = false,
11473         .ret_type       = RET_PTR_TO_BTF_ID_OR_NULL,
11474         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
11475         .ret_btf_id     = &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11476 };
11477
11478 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11479 {
11480         return (unsigned long)sock_from_file(file);
11481 }
11482
11483 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11484 BTF_ID(struct, socket)
11485 BTF_ID(struct, file)
11486
11487 const struct bpf_func_proto bpf_sock_from_file_proto = {
11488         .func           = bpf_sock_from_file,
11489         .gpl_only       = false,
11490         .ret_type       = RET_PTR_TO_BTF_ID_OR_NULL,
11491         .ret_btf_id     = &bpf_sock_from_file_btf_ids[0],
11492         .arg1_type      = ARG_PTR_TO_BTF_ID,
11493         .arg1_btf_id    = &bpf_sock_from_file_btf_ids[1],
11494 };
11495
11496 static const struct bpf_func_proto *
11497 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11498 {
11499         const struct bpf_func_proto *func;
11500
11501         switch (func_id) {
11502         case BPF_FUNC_skc_to_tcp6_sock:
11503                 func = &bpf_skc_to_tcp6_sock_proto;
11504                 break;
11505         case BPF_FUNC_skc_to_tcp_sock:
11506                 func = &bpf_skc_to_tcp_sock_proto;
11507                 break;
11508         case BPF_FUNC_skc_to_tcp_timewait_sock:
11509                 func = &bpf_skc_to_tcp_timewait_sock_proto;
11510                 break;
11511         case BPF_FUNC_skc_to_tcp_request_sock:
11512                 func = &bpf_skc_to_tcp_request_sock_proto;
11513                 break;
11514         case BPF_FUNC_skc_to_udp6_sock:
11515                 func = &bpf_skc_to_udp6_sock_proto;
11516                 break;
11517         case BPF_FUNC_skc_to_unix_sock:
11518                 func = &bpf_skc_to_unix_sock_proto;
11519                 break;
11520         case BPF_FUNC_skc_to_mptcp_sock:
11521                 func = &bpf_skc_to_mptcp_sock_proto;
11522                 break;
11523         case BPF_FUNC_ktime_get_coarse_ns:
11524                 return &bpf_ktime_get_coarse_ns_proto;
11525         default:
11526                 return bpf_base_func_proto(func_id);
11527         }
11528
11529         if (!perfmon_capable())
11530                 return NULL;
11531
11532         return func;
11533 }