bpf: Add dummy type reference to nf_conn___init to fix type deduplication
[platform/kernel/linux-starfive.git] / net / core / filter.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *      Jay Schulist <jschlst@samba.org>
13  *      Alexei Starovoitov <ast@plumgrid.com>
14  *      Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84
85 static const struct bpf_func_proto *
86 bpf_sk_base_func_proto(enum bpf_func_id func_id);
87
88 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
89 {
90         if (in_compat_syscall()) {
91                 struct compat_sock_fprog f32;
92
93                 if (len != sizeof(f32))
94                         return -EINVAL;
95                 if (copy_from_sockptr(&f32, src, sizeof(f32)))
96                         return -EFAULT;
97                 memset(dst, 0, sizeof(*dst));
98                 dst->len = f32.len;
99                 dst->filter = compat_ptr(f32.filter);
100         } else {
101                 if (len != sizeof(*dst))
102                         return -EINVAL;
103                 if (copy_from_sockptr(dst, src, sizeof(*dst)))
104                         return -EFAULT;
105         }
106
107         return 0;
108 }
109 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
110
111 /**
112  *      sk_filter_trim_cap - run a packet through a socket filter
113  *      @sk: sock associated with &sk_buff
114  *      @skb: buffer to filter
115  *      @cap: limit on how short the eBPF program may trim the packet
116  *
117  * Run the eBPF program and then cut skb->data to correct size returned by
118  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
119  * than pkt_len we keep whole skb->data. This is the socket level
120  * wrapper to bpf_prog_run. It returns 0 if the packet should
121  * be accepted or -EPERM if the packet should be tossed.
122  *
123  */
124 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
125 {
126         int err;
127         struct sk_filter *filter;
128
129         /*
130          * If the skb was allocated from pfmemalloc reserves, only
131          * allow SOCK_MEMALLOC sockets to use it as this socket is
132          * helping free memory
133          */
134         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
135                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
136                 return -ENOMEM;
137         }
138         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
139         if (err)
140                 return err;
141
142         err = security_sock_rcv_skb(sk, skb);
143         if (err)
144                 return err;
145
146         rcu_read_lock();
147         filter = rcu_dereference(sk->sk_filter);
148         if (filter) {
149                 struct sock *save_sk = skb->sk;
150                 unsigned int pkt_len;
151
152                 skb->sk = sk;
153                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
154                 skb->sk = save_sk;
155                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
156         }
157         rcu_read_unlock();
158
159         return err;
160 }
161 EXPORT_SYMBOL(sk_filter_trim_cap);
162
163 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
164 {
165         return skb_get_poff(skb);
166 }
167
168 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
169 {
170         struct nlattr *nla;
171
172         if (skb_is_nonlinear(skb))
173                 return 0;
174
175         if (skb->len < sizeof(struct nlattr))
176                 return 0;
177
178         if (a > skb->len - sizeof(struct nlattr))
179                 return 0;
180
181         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
182         if (nla)
183                 return (void *) nla - (void *) skb->data;
184
185         return 0;
186 }
187
188 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
189 {
190         struct nlattr *nla;
191
192         if (skb_is_nonlinear(skb))
193                 return 0;
194
195         if (skb->len < sizeof(struct nlattr))
196                 return 0;
197
198         if (a > skb->len - sizeof(struct nlattr))
199                 return 0;
200
201         nla = (struct nlattr *) &skb->data[a];
202         if (nla->nla_len > skb->len - a)
203                 return 0;
204
205         nla = nla_find_nested(nla, x);
206         if (nla)
207                 return (void *) nla - (void *) skb->data;
208
209         return 0;
210 }
211
212 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
213            data, int, headlen, int, offset)
214 {
215         u8 tmp, *ptr;
216         const int len = sizeof(tmp);
217
218         if (offset >= 0) {
219                 if (headlen - offset >= len)
220                         return *(u8 *)(data + offset);
221                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
222                         return tmp;
223         } else {
224                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
225                 if (likely(ptr))
226                         return *(u8 *)ptr;
227         }
228
229         return -EFAULT;
230 }
231
232 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
233            int, offset)
234 {
235         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
236                                          offset);
237 }
238
239 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
240            data, int, headlen, int, offset)
241 {
242         __be16 tmp, *ptr;
243         const int len = sizeof(tmp);
244
245         if (offset >= 0) {
246                 if (headlen - offset >= len)
247                         return get_unaligned_be16(data + offset);
248                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
249                         return be16_to_cpu(tmp);
250         } else {
251                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
252                 if (likely(ptr))
253                         return get_unaligned_be16(ptr);
254         }
255
256         return -EFAULT;
257 }
258
259 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
260            int, offset)
261 {
262         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
263                                           offset);
264 }
265
266 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
267            data, int, headlen, int, offset)
268 {
269         __be32 tmp, *ptr;
270         const int len = sizeof(tmp);
271
272         if (likely(offset >= 0)) {
273                 if (headlen - offset >= len)
274                         return get_unaligned_be32(data + offset);
275                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
276                         return be32_to_cpu(tmp);
277         } else {
278                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
279                 if (likely(ptr))
280                         return get_unaligned_be32(ptr);
281         }
282
283         return -EFAULT;
284 }
285
286 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
287            int, offset)
288 {
289         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
290                                           offset);
291 }
292
293 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
294                               struct bpf_insn *insn_buf)
295 {
296         struct bpf_insn *insn = insn_buf;
297
298         switch (skb_field) {
299         case SKF_AD_MARK:
300                 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
301
302                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
303                                       offsetof(struct sk_buff, mark));
304                 break;
305
306         case SKF_AD_PKTTYPE:
307                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
308                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
309 #ifdef __BIG_ENDIAN_BITFIELD
310                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
311 #endif
312                 break;
313
314         case SKF_AD_QUEUE:
315                 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
316
317                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
318                                       offsetof(struct sk_buff, queue_mapping));
319                 break;
320
321         case SKF_AD_VLAN_TAG:
322                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
323
324                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
325                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
326                                       offsetof(struct sk_buff, vlan_tci));
327                 break;
328         case SKF_AD_VLAN_TAG_PRESENT:
329                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET);
330                 if (PKT_VLAN_PRESENT_BIT)
331                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
332                 if (PKT_VLAN_PRESENT_BIT < 7)
333                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
334                 break;
335         }
336
337         return insn - insn_buf;
338 }
339
340 static bool convert_bpf_extensions(struct sock_filter *fp,
341                                    struct bpf_insn **insnp)
342 {
343         struct bpf_insn *insn = *insnp;
344         u32 cnt;
345
346         switch (fp->k) {
347         case SKF_AD_OFF + SKF_AD_PROTOCOL:
348                 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
349
350                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
351                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
352                                       offsetof(struct sk_buff, protocol));
353                 /* A = ntohs(A) [emitting a nop or swap16] */
354                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
355                 break;
356
357         case SKF_AD_OFF + SKF_AD_PKTTYPE:
358                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
359                 insn += cnt - 1;
360                 break;
361
362         case SKF_AD_OFF + SKF_AD_IFINDEX:
363         case SKF_AD_OFF + SKF_AD_HATYPE:
364                 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
365                 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
366
367                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
368                                       BPF_REG_TMP, BPF_REG_CTX,
369                                       offsetof(struct sk_buff, dev));
370                 /* if (tmp != 0) goto pc + 1 */
371                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
372                 *insn++ = BPF_EXIT_INSN();
373                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
374                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
375                                             offsetof(struct net_device, ifindex));
376                 else
377                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
378                                             offsetof(struct net_device, type));
379                 break;
380
381         case SKF_AD_OFF + SKF_AD_MARK:
382                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
383                 insn += cnt - 1;
384                 break;
385
386         case SKF_AD_OFF + SKF_AD_RXHASH:
387                 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
388
389                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
390                                     offsetof(struct sk_buff, hash));
391                 break;
392
393         case SKF_AD_OFF + SKF_AD_QUEUE:
394                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
395                 insn += cnt - 1;
396                 break;
397
398         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
399                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
400                                          BPF_REG_A, BPF_REG_CTX, insn);
401                 insn += cnt - 1;
402                 break;
403
404         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
405                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
406                                          BPF_REG_A, BPF_REG_CTX, insn);
407                 insn += cnt - 1;
408                 break;
409
410         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
411                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
412
413                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
414                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
415                                       offsetof(struct sk_buff, vlan_proto));
416                 /* A = ntohs(A) [emitting a nop or swap16] */
417                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
418                 break;
419
420         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
421         case SKF_AD_OFF + SKF_AD_NLATTR:
422         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
423         case SKF_AD_OFF + SKF_AD_CPU:
424         case SKF_AD_OFF + SKF_AD_RANDOM:
425                 /* arg1 = CTX */
426                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
427                 /* arg2 = A */
428                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
429                 /* arg3 = X */
430                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
431                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
432                 switch (fp->k) {
433                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
434                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
435                         break;
436                 case SKF_AD_OFF + SKF_AD_NLATTR:
437                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
438                         break;
439                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
440                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
441                         break;
442                 case SKF_AD_OFF + SKF_AD_CPU:
443                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
444                         break;
445                 case SKF_AD_OFF + SKF_AD_RANDOM:
446                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
447                         bpf_user_rnd_init_once();
448                         break;
449                 }
450                 break;
451
452         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
453                 /* A ^= X */
454                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
455                 break;
456
457         default:
458                 /* This is just a dummy call to avoid letting the compiler
459                  * evict __bpf_call_base() as an optimization. Placed here
460                  * where no-one bothers.
461                  */
462                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
463                 return false;
464         }
465
466         *insnp = insn;
467         return true;
468 }
469
470 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
471 {
472         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
473         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
474         bool endian = BPF_SIZE(fp->code) == BPF_H ||
475                       BPF_SIZE(fp->code) == BPF_W;
476         bool indirect = BPF_MODE(fp->code) == BPF_IND;
477         const int ip_align = NET_IP_ALIGN;
478         struct bpf_insn *insn = *insnp;
479         int offset = fp->k;
480
481         if (!indirect &&
482             ((unaligned_ok && offset >= 0) ||
483              (!unaligned_ok && offset >= 0 &&
484               offset + ip_align >= 0 &&
485               offset + ip_align % size == 0))) {
486                 bool ldx_off_ok = offset <= S16_MAX;
487
488                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
489                 if (offset)
490                         *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
491                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
492                                       size, 2 + endian + (!ldx_off_ok * 2));
493                 if (ldx_off_ok) {
494                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
495                                               BPF_REG_D, offset);
496                 } else {
497                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
498                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
499                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
500                                               BPF_REG_TMP, 0);
501                 }
502                 if (endian)
503                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
504                 *insn++ = BPF_JMP_A(8);
505         }
506
507         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
508         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
509         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
510         if (!indirect) {
511                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
512         } else {
513                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
514                 if (fp->k)
515                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
516         }
517
518         switch (BPF_SIZE(fp->code)) {
519         case BPF_B:
520                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
521                 break;
522         case BPF_H:
523                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
524                 break;
525         case BPF_W:
526                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
527                 break;
528         default:
529                 return false;
530         }
531
532         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
533         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
534         *insn   = BPF_EXIT_INSN();
535
536         *insnp = insn;
537         return true;
538 }
539
540 /**
541  *      bpf_convert_filter - convert filter program
542  *      @prog: the user passed filter program
543  *      @len: the length of the user passed filter program
544  *      @new_prog: allocated 'struct bpf_prog' or NULL
545  *      @new_len: pointer to store length of converted program
546  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
547  *
548  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
549  * style extended BPF (eBPF).
550  * Conversion workflow:
551  *
552  * 1) First pass for calculating the new program length:
553  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
554  *
555  * 2) 2nd pass to remap in two passes: 1st pass finds new
556  *    jump offsets, 2nd pass remapping:
557  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
558  */
559 static int bpf_convert_filter(struct sock_filter *prog, int len,
560                               struct bpf_prog *new_prog, int *new_len,
561                               bool *seen_ld_abs)
562 {
563         int new_flen = 0, pass = 0, target, i, stack_off;
564         struct bpf_insn *new_insn, *first_insn = NULL;
565         struct sock_filter *fp;
566         int *addrs = NULL;
567         u8 bpf_src;
568
569         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
570         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
571
572         if (len <= 0 || len > BPF_MAXINSNS)
573                 return -EINVAL;
574
575         if (new_prog) {
576                 first_insn = new_prog->insnsi;
577                 addrs = kcalloc(len, sizeof(*addrs),
578                                 GFP_KERNEL | __GFP_NOWARN);
579                 if (!addrs)
580                         return -ENOMEM;
581         }
582
583 do_pass:
584         new_insn = first_insn;
585         fp = prog;
586
587         /* Classic BPF related prologue emission. */
588         if (new_prog) {
589                 /* Classic BPF expects A and X to be reset first. These need
590                  * to be guaranteed to be the first two instructions.
591                  */
592                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
593                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
594
595                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
596                  * In eBPF case it's done by the compiler, here we need to
597                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
598                  */
599                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
600                 if (*seen_ld_abs) {
601                         /* For packet access in classic BPF, cache skb->data
602                          * in callee-saved BPF R8 and skb->len - skb->data_len
603                          * (headlen) in BPF R9. Since classic BPF is read-only
604                          * on CTX, we only need to cache it once.
605                          */
606                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
607                                                   BPF_REG_D, BPF_REG_CTX,
608                                                   offsetof(struct sk_buff, data));
609                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
610                                                   offsetof(struct sk_buff, len));
611                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
612                                                   offsetof(struct sk_buff, data_len));
613                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
614                 }
615         } else {
616                 new_insn += 3;
617         }
618
619         for (i = 0; i < len; fp++, i++) {
620                 struct bpf_insn tmp_insns[32] = { };
621                 struct bpf_insn *insn = tmp_insns;
622
623                 if (addrs)
624                         addrs[i] = new_insn - first_insn;
625
626                 switch (fp->code) {
627                 /* All arithmetic insns and skb loads map as-is. */
628                 case BPF_ALU | BPF_ADD | BPF_X:
629                 case BPF_ALU | BPF_ADD | BPF_K:
630                 case BPF_ALU | BPF_SUB | BPF_X:
631                 case BPF_ALU | BPF_SUB | BPF_K:
632                 case BPF_ALU | BPF_AND | BPF_X:
633                 case BPF_ALU | BPF_AND | BPF_K:
634                 case BPF_ALU | BPF_OR | BPF_X:
635                 case BPF_ALU | BPF_OR | BPF_K:
636                 case BPF_ALU | BPF_LSH | BPF_X:
637                 case BPF_ALU | BPF_LSH | BPF_K:
638                 case BPF_ALU | BPF_RSH | BPF_X:
639                 case BPF_ALU | BPF_RSH | BPF_K:
640                 case BPF_ALU | BPF_XOR | BPF_X:
641                 case BPF_ALU | BPF_XOR | BPF_K:
642                 case BPF_ALU | BPF_MUL | BPF_X:
643                 case BPF_ALU | BPF_MUL | BPF_K:
644                 case BPF_ALU | BPF_DIV | BPF_X:
645                 case BPF_ALU | BPF_DIV | BPF_K:
646                 case BPF_ALU | BPF_MOD | BPF_X:
647                 case BPF_ALU | BPF_MOD | BPF_K:
648                 case BPF_ALU | BPF_NEG:
649                 case BPF_LD | BPF_ABS | BPF_W:
650                 case BPF_LD | BPF_ABS | BPF_H:
651                 case BPF_LD | BPF_ABS | BPF_B:
652                 case BPF_LD | BPF_IND | BPF_W:
653                 case BPF_LD | BPF_IND | BPF_H:
654                 case BPF_LD | BPF_IND | BPF_B:
655                         /* Check for overloaded BPF extension and
656                          * directly convert it if found, otherwise
657                          * just move on with mapping.
658                          */
659                         if (BPF_CLASS(fp->code) == BPF_LD &&
660                             BPF_MODE(fp->code) == BPF_ABS &&
661                             convert_bpf_extensions(fp, &insn))
662                                 break;
663                         if (BPF_CLASS(fp->code) == BPF_LD &&
664                             convert_bpf_ld_abs(fp, &insn)) {
665                                 *seen_ld_abs = true;
666                                 break;
667                         }
668
669                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
670                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
671                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
672                                 /* Error with exception code on div/mod by 0.
673                                  * For cBPF programs, this was always return 0.
674                                  */
675                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
676                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
677                                 *insn++ = BPF_EXIT_INSN();
678                         }
679
680                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
681                         break;
682
683                 /* Jump transformation cannot use BPF block macros
684                  * everywhere as offset calculation and target updates
685                  * require a bit more work than the rest, i.e. jump
686                  * opcodes map as-is, but offsets need adjustment.
687                  */
688
689 #define BPF_EMIT_JMP                                                    \
690         do {                                                            \
691                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
692                 s32 off;                                                \
693                                                                         \
694                 if (target >= len || target < 0)                        \
695                         goto err;                                       \
696                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
697                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
698                 off -= insn - tmp_insns;                                \
699                 /* Reject anything not fitting into insn->off. */       \
700                 if (off < off_min || off > off_max)                     \
701                         goto err;                                       \
702                 insn->off = off;                                        \
703         } while (0)
704
705                 case BPF_JMP | BPF_JA:
706                         target = i + fp->k + 1;
707                         insn->code = fp->code;
708                         BPF_EMIT_JMP;
709                         break;
710
711                 case BPF_JMP | BPF_JEQ | BPF_K:
712                 case BPF_JMP | BPF_JEQ | BPF_X:
713                 case BPF_JMP | BPF_JSET | BPF_K:
714                 case BPF_JMP | BPF_JSET | BPF_X:
715                 case BPF_JMP | BPF_JGT | BPF_K:
716                 case BPF_JMP | BPF_JGT | BPF_X:
717                 case BPF_JMP | BPF_JGE | BPF_K:
718                 case BPF_JMP | BPF_JGE | BPF_X:
719                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
720                                 /* BPF immediates are signed, zero extend
721                                  * immediate into tmp register and use it
722                                  * in compare insn.
723                                  */
724                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
725
726                                 insn->dst_reg = BPF_REG_A;
727                                 insn->src_reg = BPF_REG_TMP;
728                                 bpf_src = BPF_X;
729                         } else {
730                                 insn->dst_reg = BPF_REG_A;
731                                 insn->imm = fp->k;
732                                 bpf_src = BPF_SRC(fp->code);
733                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
734                         }
735
736                         /* Common case where 'jump_false' is next insn. */
737                         if (fp->jf == 0) {
738                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
739                                 target = i + fp->jt + 1;
740                                 BPF_EMIT_JMP;
741                                 break;
742                         }
743
744                         /* Convert some jumps when 'jump_true' is next insn. */
745                         if (fp->jt == 0) {
746                                 switch (BPF_OP(fp->code)) {
747                                 case BPF_JEQ:
748                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
749                                         break;
750                                 case BPF_JGT:
751                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
752                                         break;
753                                 case BPF_JGE:
754                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
755                                         break;
756                                 default:
757                                         goto jmp_rest;
758                                 }
759
760                                 target = i + fp->jf + 1;
761                                 BPF_EMIT_JMP;
762                                 break;
763                         }
764 jmp_rest:
765                         /* Other jumps are mapped into two insns: Jxx and JA. */
766                         target = i + fp->jt + 1;
767                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
768                         BPF_EMIT_JMP;
769                         insn++;
770
771                         insn->code = BPF_JMP | BPF_JA;
772                         target = i + fp->jf + 1;
773                         BPF_EMIT_JMP;
774                         break;
775
776                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
777                 case BPF_LDX | BPF_MSH | BPF_B: {
778                         struct sock_filter tmp = {
779                                 .code   = BPF_LD | BPF_ABS | BPF_B,
780                                 .k      = fp->k,
781                         };
782
783                         *seen_ld_abs = true;
784
785                         /* X = A */
786                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
787                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
788                         convert_bpf_ld_abs(&tmp, &insn);
789                         insn++;
790                         /* A &= 0xf */
791                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
792                         /* A <<= 2 */
793                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
794                         /* tmp = X */
795                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
796                         /* X = A */
797                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
798                         /* A = tmp */
799                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
800                         break;
801                 }
802                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
803                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
804                  */
805                 case BPF_RET | BPF_A:
806                 case BPF_RET | BPF_K:
807                         if (BPF_RVAL(fp->code) == BPF_K)
808                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
809                                                         0, fp->k);
810                         *insn = BPF_EXIT_INSN();
811                         break;
812
813                 /* Store to stack. */
814                 case BPF_ST:
815                 case BPF_STX:
816                         stack_off = fp->k * 4  + 4;
817                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
818                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
819                                             -stack_off);
820                         /* check_load_and_stores() verifies that classic BPF can
821                          * load from stack only after write, so tracking
822                          * stack_depth for ST|STX insns is enough
823                          */
824                         if (new_prog && new_prog->aux->stack_depth < stack_off)
825                                 new_prog->aux->stack_depth = stack_off;
826                         break;
827
828                 /* Load from stack. */
829                 case BPF_LD | BPF_MEM:
830                 case BPF_LDX | BPF_MEM:
831                         stack_off = fp->k * 4  + 4;
832                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
833                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
834                                             -stack_off);
835                         break;
836
837                 /* A = K or X = K */
838                 case BPF_LD | BPF_IMM:
839                 case BPF_LDX | BPF_IMM:
840                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
841                                               BPF_REG_A : BPF_REG_X, fp->k);
842                         break;
843
844                 /* X = A */
845                 case BPF_MISC | BPF_TAX:
846                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
847                         break;
848
849                 /* A = X */
850                 case BPF_MISC | BPF_TXA:
851                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
852                         break;
853
854                 /* A = skb->len or X = skb->len */
855                 case BPF_LD | BPF_W | BPF_LEN:
856                 case BPF_LDX | BPF_W | BPF_LEN:
857                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
858                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
859                                             offsetof(struct sk_buff, len));
860                         break;
861
862                 /* Access seccomp_data fields. */
863                 case BPF_LDX | BPF_ABS | BPF_W:
864                         /* A = *(u32 *) (ctx + K) */
865                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
866                         break;
867
868                 /* Unknown instruction. */
869                 default:
870                         goto err;
871                 }
872
873                 insn++;
874                 if (new_prog)
875                         memcpy(new_insn, tmp_insns,
876                                sizeof(*insn) * (insn - tmp_insns));
877                 new_insn += insn - tmp_insns;
878         }
879
880         if (!new_prog) {
881                 /* Only calculating new length. */
882                 *new_len = new_insn - first_insn;
883                 if (*seen_ld_abs)
884                         *new_len += 4; /* Prologue bits. */
885                 return 0;
886         }
887
888         pass++;
889         if (new_flen != new_insn - first_insn) {
890                 new_flen = new_insn - first_insn;
891                 if (pass > 2)
892                         goto err;
893                 goto do_pass;
894         }
895
896         kfree(addrs);
897         BUG_ON(*new_len != new_flen);
898         return 0;
899 err:
900         kfree(addrs);
901         return -EINVAL;
902 }
903
904 /* Security:
905  *
906  * As we dont want to clear mem[] array for each packet going through
907  * __bpf_prog_run(), we check that filter loaded by user never try to read
908  * a cell if not previously written, and we check all branches to be sure
909  * a malicious user doesn't try to abuse us.
910  */
911 static int check_load_and_stores(const struct sock_filter *filter, int flen)
912 {
913         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
914         int pc, ret = 0;
915
916         BUILD_BUG_ON(BPF_MEMWORDS > 16);
917
918         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
919         if (!masks)
920                 return -ENOMEM;
921
922         memset(masks, 0xff, flen * sizeof(*masks));
923
924         for (pc = 0; pc < flen; pc++) {
925                 memvalid &= masks[pc];
926
927                 switch (filter[pc].code) {
928                 case BPF_ST:
929                 case BPF_STX:
930                         memvalid |= (1 << filter[pc].k);
931                         break;
932                 case BPF_LD | BPF_MEM:
933                 case BPF_LDX | BPF_MEM:
934                         if (!(memvalid & (1 << filter[pc].k))) {
935                                 ret = -EINVAL;
936                                 goto error;
937                         }
938                         break;
939                 case BPF_JMP | BPF_JA:
940                         /* A jump must set masks on target */
941                         masks[pc + 1 + filter[pc].k] &= memvalid;
942                         memvalid = ~0;
943                         break;
944                 case BPF_JMP | BPF_JEQ | BPF_K:
945                 case BPF_JMP | BPF_JEQ | BPF_X:
946                 case BPF_JMP | BPF_JGE | BPF_K:
947                 case BPF_JMP | BPF_JGE | BPF_X:
948                 case BPF_JMP | BPF_JGT | BPF_K:
949                 case BPF_JMP | BPF_JGT | BPF_X:
950                 case BPF_JMP | BPF_JSET | BPF_K:
951                 case BPF_JMP | BPF_JSET | BPF_X:
952                         /* A jump must set masks on targets */
953                         masks[pc + 1 + filter[pc].jt] &= memvalid;
954                         masks[pc + 1 + filter[pc].jf] &= memvalid;
955                         memvalid = ~0;
956                         break;
957                 }
958         }
959 error:
960         kfree(masks);
961         return ret;
962 }
963
964 static bool chk_code_allowed(u16 code_to_probe)
965 {
966         static const bool codes[] = {
967                 /* 32 bit ALU operations */
968                 [BPF_ALU | BPF_ADD | BPF_K] = true,
969                 [BPF_ALU | BPF_ADD | BPF_X] = true,
970                 [BPF_ALU | BPF_SUB | BPF_K] = true,
971                 [BPF_ALU | BPF_SUB | BPF_X] = true,
972                 [BPF_ALU | BPF_MUL | BPF_K] = true,
973                 [BPF_ALU | BPF_MUL | BPF_X] = true,
974                 [BPF_ALU | BPF_DIV | BPF_K] = true,
975                 [BPF_ALU | BPF_DIV | BPF_X] = true,
976                 [BPF_ALU | BPF_MOD | BPF_K] = true,
977                 [BPF_ALU | BPF_MOD | BPF_X] = true,
978                 [BPF_ALU | BPF_AND | BPF_K] = true,
979                 [BPF_ALU | BPF_AND | BPF_X] = true,
980                 [BPF_ALU | BPF_OR | BPF_K] = true,
981                 [BPF_ALU | BPF_OR | BPF_X] = true,
982                 [BPF_ALU | BPF_XOR | BPF_K] = true,
983                 [BPF_ALU | BPF_XOR | BPF_X] = true,
984                 [BPF_ALU | BPF_LSH | BPF_K] = true,
985                 [BPF_ALU | BPF_LSH | BPF_X] = true,
986                 [BPF_ALU | BPF_RSH | BPF_K] = true,
987                 [BPF_ALU | BPF_RSH | BPF_X] = true,
988                 [BPF_ALU | BPF_NEG] = true,
989                 /* Load instructions */
990                 [BPF_LD | BPF_W | BPF_ABS] = true,
991                 [BPF_LD | BPF_H | BPF_ABS] = true,
992                 [BPF_LD | BPF_B | BPF_ABS] = true,
993                 [BPF_LD | BPF_W | BPF_LEN] = true,
994                 [BPF_LD | BPF_W | BPF_IND] = true,
995                 [BPF_LD | BPF_H | BPF_IND] = true,
996                 [BPF_LD | BPF_B | BPF_IND] = true,
997                 [BPF_LD | BPF_IMM] = true,
998                 [BPF_LD | BPF_MEM] = true,
999                 [BPF_LDX | BPF_W | BPF_LEN] = true,
1000                 [BPF_LDX | BPF_B | BPF_MSH] = true,
1001                 [BPF_LDX | BPF_IMM] = true,
1002                 [BPF_LDX | BPF_MEM] = true,
1003                 /* Store instructions */
1004                 [BPF_ST] = true,
1005                 [BPF_STX] = true,
1006                 /* Misc instructions */
1007                 [BPF_MISC | BPF_TAX] = true,
1008                 [BPF_MISC | BPF_TXA] = true,
1009                 /* Return instructions */
1010                 [BPF_RET | BPF_K] = true,
1011                 [BPF_RET | BPF_A] = true,
1012                 /* Jump instructions */
1013                 [BPF_JMP | BPF_JA] = true,
1014                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1015                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1016                 [BPF_JMP | BPF_JGE | BPF_K] = true,
1017                 [BPF_JMP | BPF_JGE | BPF_X] = true,
1018                 [BPF_JMP | BPF_JGT | BPF_K] = true,
1019                 [BPF_JMP | BPF_JGT | BPF_X] = true,
1020                 [BPF_JMP | BPF_JSET | BPF_K] = true,
1021                 [BPF_JMP | BPF_JSET | BPF_X] = true,
1022         };
1023
1024         if (code_to_probe >= ARRAY_SIZE(codes))
1025                 return false;
1026
1027         return codes[code_to_probe];
1028 }
1029
1030 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1031                                 unsigned int flen)
1032 {
1033         if (filter == NULL)
1034                 return false;
1035         if (flen == 0 || flen > BPF_MAXINSNS)
1036                 return false;
1037
1038         return true;
1039 }
1040
1041 /**
1042  *      bpf_check_classic - verify socket filter code
1043  *      @filter: filter to verify
1044  *      @flen: length of filter
1045  *
1046  * Check the user's filter code. If we let some ugly
1047  * filter code slip through kaboom! The filter must contain
1048  * no references or jumps that are out of range, no illegal
1049  * instructions, and must end with a RET instruction.
1050  *
1051  * All jumps are forward as they are not signed.
1052  *
1053  * Returns 0 if the rule set is legal or -EINVAL if not.
1054  */
1055 static int bpf_check_classic(const struct sock_filter *filter,
1056                              unsigned int flen)
1057 {
1058         bool anc_found;
1059         int pc;
1060
1061         /* Check the filter code now */
1062         for (pc = 0; pc < flen; pc++) {
1063                 const struct sock_filter *ftest = &filter[pc];
1064
1065                 /* May we actually operate on this code? */
1066                 if (!chk_code_allowed(ftest->code))
1067                         return -EINVAL;
1068
1069                 /* Some instructions need special checks */
1070                 switch (ftest->code) {
1071                 case BPF_ALU | BPF_DIV | BPF_K:
1072                 case BPF_ALU | BPF_MOD | BPF_K:
1073                         /* Check for division by zero */
1074                         if (ftest->k == 0)
1075                                 return -EINVAL;
1076                         break;
1077                 case BPF_ALU | BPF_LSH | BPF_K:
1078                 case BPF_ALU | BPF_RSH | BPF_K:
1079                         if (ftest->k >= 32)
1080                                 return -EINVAL;
1081                         break;
1082                 case BPF_LD | BPF_MEM:
1083                 case BPF_LDX | BPF_MEM:
1084                 case BPF_ST:
1085                 case BPF_STX:
1086                         /* Check for invalid memory addresses */
1087                         if (ftest->k >= BPF_MEMWORDS)
1088                                 return -EINVAL;
1089                         break;
1090                 case BPF_JMP | BPF_JA:
1091                         /* Note, the large ftest->k might cause loops.
1092                          * Compare this with conditional jumps below,
1093                          * where offsets are limited. --ANK (981016)
1094                          */
1095                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1096                                 return -EINVAL;
1097                         break;
1098                 case BPF_JMP | BPF_JEQ | BPF_K:
1099                 case BPF_JMP | BPF_JEQ | BPF_X:
1100                 case BPF_JMP | BPF_JGE | BPF_K:
1101                 case BPF_JMP | BPF_JGE | BPF_X:
1102                 case BPF_JMP | BPF_JGT | BPF_K:
1103                 case BPF_JMP | BPF_JGT | BPF_X:
1104                 case BPF_JMP | BPF_JSET | BPF_K:
1105                 case BPF_JMP | BPF_JSET | BPF_X:
1106                         /* Both conditionals must be safe */
1107                         if (pc + ftest->jt + 1 >= flen ||
1108                             pc + ftest->jf + 1 >= flen)
1109                                 return -EINVAL;
1110                         break;
1111                 case BPF_LD | BPF_W | BPF_ABS:
1112                 case BPF_LD | BPF_H | BPF_ABS:
1113                 case BPF_LD | BPF_B | BPF_ABS:
1114                         anc_found = false;
1115                         if (bpf_anc_helper(ftest) & BPF_ANC)
1116                                 anc_found = true;
1117                         /* Ancillary operation unknown or unsupported */
1118                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1119                                 return -EINVAL;
1120                 }
1121         }
1122
1123         /* Last instruction must be a RET code */
1124         switch (filter[flen - 1].code) {
1125         case BPF_RET | BPF_K:
1126         case BPF_RET | BPF_A:
1127                 return check_load_and_stores(filter, flen);
1128         }
1129
1130         return -EINVAL;
1131 }
1132
1133 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1134                                       const struct sock_fprog *fprog)
1135 {
1136         unsigned int fsize = bpf_classic_proglen(fprog);
1137         struct sock_fprog_kern *fkprog;
1138
1139         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1140         if (!fp->orig_prog)
1141                 return -ENOMEM;
1142
1143         fkprog = fp->orig_prog;
1144         fkprog->len = fprog->len;
1145
1146         fkprog->filter = kmemdup(fp->insns, fsize,
1147                                  GFP_KERNEL | __GFP_NOWARN);
1148         if (!fkprog->filter) {
1149                 kfree(fp->orig_prog);
1150                 return -ENOMEM;
1151         }
1152
1153         return 0;
1154 }
1155
1156 static void bpf_release_orig_filter(struct bpf_prog *fp)
1157 {
1158         struct sock_fprog_kern *fprog = fp->orig_prog;
1159
1160         if (fprog) {
1161                 kfree(fprog->filter);
1162                 kfree(fprog);
1163         }
1164 }
1165
1166 static void __bpf_prog_release(struct bpf_prog *prog)
1167 {
1168         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1169                 bpf_prog_put(prog);
1170         } else {
1171                 bpf_release_orig_filter(prog);
1172                 bpf_prog_free(prog);
1173         }
1174 }
1175
1176 static void __sk_filter_release(struct sk_filter *fp)
1177 {
1178         __bpf_prog_release(fp->prog);
1179         kfree(fp);
1180 }
1181
1182 /**
1183  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1184  *      @rcu: rcu_head that contains the sk_filter to free
1185  */
1186 static void sk_filter_release_rcu(struct rcu_head *rcu)
1187 {
1188         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1189
1190         __sk_filter_release(fp);
1191 }
1192
1193 /**
1194  *      sk_filter_release - release a socket filter
1195  *      @fp: filter to remove
1196  *
1197  *      Remove a filter from a socket and release its resources.
1198  */
1199 static void sk_filter_release(struct sk_filter *fp)
1200 {
1201         if (refcount_dec_and_test(&fp->refcnt))
1202                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1203 }
1204
1205 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1206 {
1207         u32 filter_size = bpf_prog_size(fp->prog->len);
1208
1209         atomic_sub(filter_size, &sk->sk_omem_alloc);
1210         sk_filter_release(fp);
1211 }
1212
1213 /* try to charge the socket memory if there is space available
1214  * return true on success
1215  */
1216 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1217 {
1218         u32 filter_size = bpf_prog_size(fp->prog->len);
1219         int optmem_max = READ_ONCE(sysctl_optmem_max);
1220
1221         /* same check as in sock_kmalloc() */
1222         if (filter_size <= optmem_max &&
1223             atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1224                 atomic_add(filter_size, &sk->sk_omem_alloc);
1225                 return true;
1226         }
1227         return false;
1228 }
1229
1230 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1231 {
1232         if (!refcount_inc_not_zero(&fp->refcnt))
1233                 return false;
1234
1235         if (!__sk_filter_charge(sk, fp)) {
1236                 sk_filter_release(fp);
1237                 return false;
1238         }
1239         return true;
1240 }
1241
1242 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1243 {
1244         struct sock_filter *old_prog;
1245         struct bpf_prog *old_fp;
1246         int err, new_len, old_len = fp->len;
1247         bool seen_ld_abs = false;
1248
1249         /* We are free to overwrite insns et al right here as it won't be used at
1250          * this point in time anymore internally after the migration to the eBPF
1251          * instruction representation.
1252          */
1253         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1254                      sizeof(struct bpf_insn));
1255
1256         /* Conversion cannot happen on overlapping memory areas,
1257          * so we need to keep the user BPF around until the 2nd
1258          * pass. At this time, the user BPF is stored in fp->insns.
1259          */
1260         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1261                            GFP_KERNEL | __GFP_NOWARN);
1262         if (!old_prog) {
1263                 err = -ENOMEM;
1264                 goto out_err;
1265         }
1266
1267         /* 1st pass: calculate the new program length. */
1268         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1269                                  &seen_ld_abs);
1270         if (err)
1271                 goto out_err_free;
1272
1273         /* Expand fp for appending the new filter representation. */
1274         old_fp = fp;
1275         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1276         if (!fp) {
1277                 /* The old_fp is still around in case we couldn't
1278                  * allocate new memory, so uncharge on that one.
1279                  */
1280                 fp = old_fp;
1281                 err = -ENOMEM;
1282                 goto out_err_free;
1283         }
1284
1285         fp->len = new_len;
1286
1287         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1288         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1289                                  &seen_ld_abs);
1290         if (err)
1291                 /* 2nd bpf_convert_filter() can fail only if it fails
1292                  * to allocate memory, remapping must succeed. Note,
1293                  * that at this time old_fp has already been released
1294                  * by krealloc().
1295                  */
1296                 goto out_err_free;
1297
1298         fp = bpf_prog_select_runtime(fp, &err);
1299         if (err)
1300                 goto out_err_free;
1301
1302         kfree(old_prog);
1303         return fp;
1304
1305 out_err_free:
1306         kfree(old_prog);
1307 out_err:
1308         __bpf_prog_release(fp);
1309         return ERR_PTR(err);
1310 }
1311
1312 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1313                                            bpf_aux_classic_check_t trans)
1314 {
1315         int err;
1316
1317         fp->bpf_func = NULL;
1318         fp->jited = 0;
1319
1320         err = bpf_check_classic(fp->insns, fp->len);
1321         if (err) {
1322                 __bpf_prog_release(fp);
1323                 return ERR_PTR(err);
1324         }
1325
1326         /* There might be additional checks and transformations
1327          * needed on classic filters, f.e. in case of seccomp.
1328          */
1329         if (trans) {
1330                 err = trans(fp->insns, fp->len);
1331                 if (err) {
1332                         __bpf_prog_release(fp);
1333                         return ERR_PTR(err);
1334                 }
1335         }
1336
1337         /* Probe if we can JIT compile the filter and if so, do
1338          * the compilation of the filter.
1339          */
1340         bpf_jit_compile(fp);
1341
1342         /* JIT compiler couldn't process this filter, so do the eBPF translation
1343          * for the optimized interpreter.
1344          */
1345         if (!fp->jited)
1346                 fp = bpf_migrate_filter(fp);
1347
1348         return fp;
1349 }
1350
1351 /**
1352  *      bpf_prog_create - create an unattached filter
1353  *      @pfp: the unattached filter that is created
1354  *      @fprog: the filter program
1355  *
1356  * Create a filter independent of any socket. We first run some
1357  * sanity checks on it to make sure it does not explode on us later.
1358  * If an error occurs or there is insufficient memory for the filter
1359  * a negative errno code is returned. On success the return is zero.
1360  */
1361 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1362 {
1363         unsigned int fsize = bpf_classic_proglen(fprog);
1364         struct bpf_prog *fp;
1365
1366         /* Make sure new filter is there and in the right amounts. */
1367         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1368                 return -EINVAL;
1369
1370         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1371         if (!fp)
1372                 return -ENOMEM;
1373
1374         memcpy(fp->insns, fprog->filter, fsize);
1375
1376         fp->len = fprog->len;
1377         /* Since unattached filters are not copied back to user
1378          * space through sk_get_filter(), we do not need to hold
1379          * a copy here, and can spare us the work.
1380          */
1381         fp->orig_prog = NULL;
1382
1383         /* bpf_prepare_filter() already takes care of freeing
1384          * memory in case something goes wrong.
1385          */
1386         fp = bpf_prepare_filter(fp, NULL);
1387         if (IS_ERR(fp))
1388                 return PTR_ERR(fp);
1389
1390         *pfp = fp;
1391         return 0;
1392 }
1393 EXPORT_SYMBOL_GPL(bpf_prog_create);
1394
1395 /**
1396  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1397  *      @pfp: the unattached filter that is created
1398  *      @fprog: the filter program
1399  *      @trans: post-classic verifier transformation handler
1400  *      @save_orig: save classic BPF program
1401  *
1402  * This function effectively does the same as bpf_prog_create(), only
1403  * that it builds up its insns buffer from user space provided buffer.
1404  * It also allows for passing a bpf_aux_classic_check_t handler.
1405  */
1406 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1407                               bpf_aux_classic_check_t trans, bool save_orig)
1408 {
1409         unsigned int fsize = bpf_classic_proglen(fprog);
1410         struct bpf_prog *fp;
1411         int err;
1412
1413         /* Make sure new filter is there and in the right amounts. */
1414         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1415                 return -EINVAL;
1416
1417         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1418         if (!fp)
1419                 return -ENOMEM;
1420
1421         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1422                 __bpf_prog_free(fp);
1423                 return -EFAULT;
1424         }
1425
1426         fp->len = fprog->len;
1427         fp->orig_prog = NULL;
1428
1429         if (save_orig) {
1430                 err = bpf_prog_store_orig_filter(fp, fprog);
1431                 if (err) {
1432                         __bpf_prog_free(fp);
1433                         return -ENOMEM;
1434                 }
1435         }
1436
1437         /* bpf_prepare_filter() already takes care of freeing
1438          * memory in case something goes wrong.
1439          */
1440         fp = bpf_prepare_filter(fp, trans);
1441         if (IS_ERR(fp))
1442                 return PTR_ERR(fp);
1443
1444         *pfp = fp;
1445         return 0;
1446 }
1447 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1448
1449 void bpf_prog_destroy(struct bpf_prog *fp)
1450 {
1451         __bpf_prog_release(fp);
1452 }
1453 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1454
1455 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1456 {
1457         struct sk_filter *fp, *old_fp;
1458
1459         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1460         if (!fp)
1461                 return -ENOMEM;
1462
1463         fp->prog = prog;
1464
1465         if (!__sk_filter_charge(sk, fp)) {
1466                 kfree(fp);
1467                 return -ENOMEM;
1468         }
1469         refcount_set(&fp->refcnt, 1);
1470
1471         old_fp = rcu_dereference_protected(sk->sk_filter,
1472                                            lockdep_sock_is_held(sk));
1473         rcu_assign_pointer(sk->sk_filter, fp);
1474
1475         if (old_fp)
1476                 sk_filter_uncharge(sk, old_fp);
1477
1478         return 0;
1479 }
1480
1481 static
1482 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1483 {
1484         unsigned int fsize = bpf_classic_proglen(fprog);
1485         struct bpf_prog *prog;
1486         int err;
1487
1488         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1489                 return ERR_PTR(-EPERM);
1490
1491         /* Make sure new filter is there and in the right amounts. */
1492         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1493                 return ERR_PTR(-EINVAL);
1494
1495         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1496         if (!prog)
1497                 return ERR_PTR(-ENOMEM);
1498
1499         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1500                 __bpf_prog_free(prog);
1501                 return ERR_PTR(-EFAULT);
1502         }
1503
1504         prog->len = fprog->len;
1505
1506         err = bpf_prog_store_orig_filter(prog, fprog);
1507         if (err) {
1508                 __bpf_prog_free(prog);
1509                 return ERR_PTR(-ENOMEM);
1510         }
1511
1512         /* bpf_prepare_filter() already takes care of freeing
1513          * memory in case something goes wrong.
1514          */
1515         return bpf_prepare_filter(prog, NULL);
1516 }
1517
1518 /**
1519  *      sk_attach_filter - attach a socket filter
1520  *      @fprog: the filter program
1521  *      @sk: the socket to use
1522  *
1523  * Attach the user's filter code. We first run some sanity checks on
1524  * it to make sure it does not explode on us later. If an error
1525  * occurs or there is insufficient memory for the filter a negative
1526  * errno code is returned. On success the return is zero.
1527  */
1528 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1529 {
1530         struct bpf_prog *prog = __get_filter(fprog, sk);
1531         int err;
1532
1533         if (IS_ERR(prog))
1534                 return PTR_ERR(prog);
1535
1536         err = __sk_attach_prog(prog, sk);
1537         if (err < 0) {
1538                 __bpf_prog_release(prog);
1539                 return err;
1540         }
1541
1542         return 0;
1543 }
1544 EXPORT_SYMBOL_GPL(sk_attach_filter);
1545
1546 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1547 {
1548         struct bpf_prog *prog = __get_filter(fprog, sk);
1549         int err;
1550
1551         if (IS_ERR(prog))
1552                 return PTR_ERR(prog);
1553
1554         if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1555                 err = -ENOMEM;
1556         else
1557                 err = reuseport_attach_prog(sk, prog);
1558
1559         if (err)
1560                 __bpf_prog_release(prog);
1561
1562         return err;
1563 }
1564
1565 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1566 {
1567         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1568                 return ERR_PTR(-EPERM);
1569
1570         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1571 }
1572
1573 int sk_attach_bpf(u32 ufd, struct sock *sk)
1574 {
1575         struct bpf_prog *prog = __get_bpf(ufd, sk);
1576         int err;
1577
1578         if (IS_ERR(prog))
1579                 return PTR_ERR(prog);
1580
1581         err = __sk_attach_prog(prog, sk);
1582         if (err < 0) {
1583                 bpf_prog_put(prog);
1584                 return err;
1585         }
1586
1587         return 0;
1588 }
1589
1590 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1591 {
1592         struct bpf_prog *prog;
1593         int err;
1594
1595         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1596                 return -EPERM;
1597
1598         prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1599         if (PTR_ERR(prog) == -EINVAL)
1600                 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1601         if (IS_ERR(prog))
1602                 return PTR_ERR(prog);
1603
1604         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1605                 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1606                  * bpf prog (e.g. sockmap).  It depends on the
1607                  * limitation imposed by bpf_prog_load().
1608                  * Hence, sysctl_optmem_max is not checked.
1609                  */
1610                 if ((sk->sk_type != SOCK_STREAM &&
1611                      sk->sk_type != SOCK_DGRAM) ||
1612                     (sk->sk_protocol != IPPROTO_UDP &&
1613                      sk->sk_protocol != IPPROTO_TCP) ||
1614                     (sk->sk_family != AF_INET &&
1615                      sk->sk_family != AF_INET6)) {
1616                         err = -ENOTSUPP;
1617                         goto err_prog_put;
1618                 }
1619         } else {
1620                 /* BPF_PROG_TYPE_SOCKET_FILTER */
1621                 if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1622                         err = -ENOMEM;
1623                         goto err_prog_put;
1624                 }
1625         }
1626
1627         err = reuseport_attach_prog(sk, prog);
1628 err_prog_put:
1629         if (err)
1630                 bpf_prog_put(prog);
1631
1632         return err;
1633 }
1634
1635 void sk_reuseport_prog_free(struct bpf_prog *prog)
1636 {
1637         if (!prog)
1638                 return;
1639
1640         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1641                 bpf_prog_put(prog);
1642         else
1643                 bpf_prog_destroy(prog);
1644 }
1645
1646 struct bpf_scratchpad {
1647         union {
1648                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1649                 u8     buff[MAX_BPF_STACK];
1650         };
1651 };
1652
1653 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1654
1655 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1656                                           unsigned int write_len)
1657 {
1658         return skb_ensure_writable(skb, write_len);
1659 }
1660
1661 static inline int bpf_try_make_writable(struct sk_buff *skb,
1662                                         unsigned int write_len)
1663 {
1664         int err = __bpf_try_make_writable(skb, write_len);
1665
1666         bpf_compute_data_pointers(skb);
1667         return err;
1668 }
1669
1670 static int bpf_try_make_head_writable(struct sk_buff *skb)
1671 {
1672         return bpf_try_make_writable(skb, skb_headlen(skb));
1673 }
1674
1675 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1676 {
1677         if (skb_at_tc_ingress(skb))
1678                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1679 }
1680
1681 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1682 {
1683         if (skb_at_tc_ingress(skb))
1684                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1685 }
1686
1687 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1688            const void *, from, u32, len, u64, flags)
1689 {
1690         void *ptr;
1691
1692         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1693                 return -EINVAL;
1694         if (unlikely(offset > INT_MAX))
1695                 return -EFAULT;
1696         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1697                 return -EFAULT;
1698
1699         ptr = skb->data + offset;
1700         if (flags & BPF_F_RECOMPUTE_CSUM)
1701                 __skb_postpull_rcsum(skb, ptr, len, offset);
1702
1703         memcpy(ptr, from, len);
1704
1705         if (flags & BPF_F_RECOMPUTE_CSUM)
1706                 __skb_postpush_rcsum(skb, ptr, len, offset);
1707         if (flags & BPF_F_INVALIDATE_HASH)
1708                 skb_clear_hash(skb);
1709
1710         return 0;
1711 }
1712
1713 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1714         .func           = bpf_skb_store_bytes,
1715         .gpl_only       = false,
1716         .ret_type       = RET_INTEGER,
1717         .arg1_type      = ARG_PTR_TO_CTX,
1718         .arg2_type      = ARG_ANYTHING,
1719         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
1720         .arg4_type      = ARG_CONST_SIZE,
1721         .arg5_type      = ARG_ANYTHING,
1722 };
1723
1724 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1725            void *, to, u32, len)
1726 {
1727         void *ptr;
1728
1729         if (unlikely(offset > INT_MAX))
1730                 goto err_clear;
1731
1732         ptr = skb_header_pointer(skb, offset, len, to);
1733         if (unlikely(!ptr))
1734                 goto err_clear;
1735         if (ptr != to)
1736                 memcpy(to, ptr, len);
1737
1738         return 0;
1739 err_clear:
1740         memset(to, 0, len);
1741         return -EFAULT;
1742 }
1743
1744 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1745         .func           = bpf_skb_load_bytes,
1746         .gpl_only       = false,
1747         .ret_type       = RET_INTEGER,
1748         .arg1_type      = ARG_PTR_TO_CTX,
1749         .arg2_type      = ARG_ANYTHING,
1750         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1751         .arg4_type      = ARG_CONST_SIZE,
1752 };
1753
1754 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1755            const struct bpf_flow_dissector *, ctx, u32, offset,
1756            void *, to, u32, len)
1757 {
1758         void *ptr;
1759
1760         if (unlikely(offset > 0xffff))
1761                 goto err_clear;
1762
1763         if (unlikely(!ctx->skb))
1764                 goto err_clear;
1765
1766         ptr = skb_header_pointer(ctx->skb, offset, len, to);
1767         if (unlikely(!ptr))
1768                 goto err_clear;
1769         if (ptr != to)
1770                 memcpy(to, ptr, len);
1771
1772         return 0;
1773 err_clear:
1774         memset(to, 0, len);
1775         return -EFAULT;
1776 }
1777
1778 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1779         .func           = bpf_flow_dissector_load_bytes,
1780         .gpl_only       = false,
1781         .ret_type       = RET_INTEGER,
1782         .arg1_type      = ARG_PTR_TO_CTX,
1783         .arg2_type      = ARG_ANYTHING,
1784         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1785         .arg4_type      = ARG_CONST_SIZE,
1786 };
1787
1788 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1789            u32, offset, void *, to, u32, len, u32, start_header)
1790 {
1791         u8 *end = skb_tail_pointer(skb);
1792         u8 *start, *ptr;
1793
1794         if (unlikely(offset > 0xffff))
1795                 goto err_clear;
1796
1797         switch (start_header) {
1798         case BPF_HDR_START_MAC:
1799                 if (unlikely(!skb_mac_header_was_set(skb)))
1800                         goto err_clear;
1801                 start = skb_mac_header(skb);
1802                 break;
1803         case BPF_HDR_START_NET:
1804                 start = skb_network_header(skb);
1805                 break;
1806         default:
1807                 goto err_clear;
1808         }
1809
1810         ptr = start + offset;
1811
1812         if (likely(ptr + len <= end)) {
1813                 memcpy(to, ptr, len);
1814                 return 0;
1815         }
1816
1817 err_clear:
1818         memset(to, 0, len);
1819         return -EFAULT;
1820 }
1821
1822 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1823         .func           = bpf_skb_load_bytes_relative,
1824         .gpl_only       = false,
1825         .ret_type       = RET_INTEGER,
1826         .arg1_type      = ARG_PTR_TO_CTX,
1827         .arg2_type      = ARG_ANYTHING,
1828         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1829         .arg4_type      = ARG_CONST_SIZE,
1830         .arg5_type      = ARG_ANYTHING,
1831 };
1832
1833 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1834 {
1835         /* Idea is the following: should the needed direct read/write
1836          * test fail during runtime, we can pull in more data and redo
1837          * again, since implicitly, we invalidate previous checks here.
1838          *
1839          * Or, since we know how much we need to make read/writeable,
1840          * this can be done once at the program beginning for direct
1841          * access case. By this we overcome limitations of only current
1842          * headroom being accessible.
1843          */
1844         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1845 }
1846
1847 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1848         .func           = bpf_skb_pull_data,
1849         .gpl_only       = false,
1850         .ret_type       = RET_INTEGER,
1851         .arg1_type      = ARG_PTR_TO_CTX,
1852         .arg2_type      = ARG_ANYTHING,
1853 };
1854
1855 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1856 {
1857         return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1858 }
1859
1860 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1861         .func           = bpf_sk_fullsock,
1862         .gpl_only       = false,
1863         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1864         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1865 };
1866
1867 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1868                                            unsigned int write_len)
1869 {
1870         return __bpf_try_make_writable(skb, write_len);
1871 }
1872
1873 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1874 {
1875         /* Idea is the following: should the needed direct read/write
1876          * test fail during runtime, we can pull in more data and redo
1877          * again, since implicitly, we invalidate previous checks here.
1878          *
1879          * Or, since we know how much we need to make read/writeable,
1880          * this can be done once at the program beginning for direct
1881          * access case. By this we overcome limitations of only current
1882          * headroom being accessible.
1883          */
1884         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1885 }
1886
1887 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1888         .func           = sk_skb_pull_data,
1889         .gpl_only       = false,
1890         .ret_type       = RET_INTEGER,
1891         .arg1_type      = ARG_PTR_TO_CTX,
1892         .arg2_type      = ARG_ANYTHING,
1893 };
1894
1895 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1896            u64, from, u64, to, u64, flags)
1897 {
1898         __sum16 *ptr;
1899
1900         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1901                 return -EINVAL;
1902         if (unlikely(offset > 0xffff || offset & 1))
1903                 return -EFAULT;
1904         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1905                 return -EFAULT;
1906
1907         ptr = (__sum16 *)(skb->data + offset);
1908         switch (flags & BPF_F_HDR_FIELD_MASK) {
1909         case 0:
1910                 if (unlikely(from != 0))
1911                         return -EINVAL;
1912
1913                 csum_replace_by_diff(ptr, to);
1914                 break;
1915         case 2:
1916                 csum_replace2(ptr, from, to);
1917                 break;
1918         case 4:
1919                 csum_replace4(ptr, from, to);
1920                 break;
1921         default:
1922                 return -EINVAL;
1923         }
1924
1925         return 0;
1926 }
1927
1928 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1929         .func           = bpf_l3_csum_replace,
1930         .gpl_only       = false,
1931         .ret_type       = RET_INTEGER,
1932         .arg1_type      = ARG_PTR_TO_CTX,
1933         .arg2_type      = ARG_ANYTHING,
1934         .arg3_type      = ARG_ANYTHING,
1935         .arg4_type      = ARG_ANYTHING,
1936         .arg5_type      = ARG_ANYTHING,
1937 };
1938
1939 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1940            u64, from, u64, to, u64, flags)
1941 {
1942         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1943         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1944         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1945         __sum16 *ptr;
1946
1947         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1948                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1949                 return -EINVAL;
1950         if (unlikely(offset > 0xffff || offset & 1))
1951                 return -EFAULT;
1952         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1953                 return -EFAULT;
1954
1955         ptr = (__sum16 *)(skb->data + offset);
1956         if (is_mmzero && !do_mforce && !*ptr)
1957                 return 0;
1958
1959         switch (flags & BPF_F_HDR_FIELD_MASK) {
1960         case 0:
1961                 if (unlikely(from != 0))
1962                         return -EINVAL;
1963
1964                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1965                 break;
1966         case 2:
1967                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1968                 break;
1969         case 4:
1970                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1971                 break;
1972         default:
1973                 return -EINVAL;
1974         }
1975
1976         if (is_mmzero && !*ptr)
1977                 *ptr = CSUM_MANGLED_0;
1978         return 0;
1979 }
1980
1981 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1982         .func           = bpf_l4_csum_replace,
1983         .gpl_only       = false,
1984         .ret_type       = RET_INTEGER,
1985         .arg1_type      = ARG_PTR_TO_CTX,
1986         .arg2_type      = ARG_ANYTHING,
1987         .arg3_type      = ARG_ANYTHING,
1988         .arg4_type      = ARG_ANYTHING,
1989         .arg5_type      = ARG_ANYTHING,
1990 };
1991
1992 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1993            __be32 *, to, u32, to_size, __wsum, seed)
1994 {
1995         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1996         u32 diff_size = from_size + to_size;
1997         int i, j = 0;
1998
1999         /* This is quite flexible, some examples:
2000          *
2001          * from_size == 0, to_size > 0,  seed := csum --> pushing data
2002          * from_size > 0,  to_size == 0, seed := csum --> pulling data
2003          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2004          *
2005          * Even for diffing, from_size and to_size don't need to be equal.
2006          */
2007         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2008                      diff_size > sizeof(sp->diff)))
2009                 return -EINVAL;
2010
2011         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2012                 sp->diff[j] = ~from[i];
2013         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2014                 sp->diff[j] = to[i];
2015
2016         return csum_partial(sp->diff, diff_size, seed);
2017 }
2018
2019 static const struct bpf_func_proto bpf_csum_diff_proto = {
2020         .func           = bpf_csum_diff,
2021         .gpl_only       = false,
2022         .pkt_access     = true,
2023         .ret_type       = RET_INTEGER,
2024         .arg1_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2025         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2026         .arg3_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2027         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2028         .arg5_type      = ARG_ANYTHING,
2029 };
2030
2031 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2032 {
2033         /* The interface is to be used in combination with bpf_csum_diff()
2034          * for direct packet writes. csum rotation for alignment as well
2035          * as emulating csum_sub() can be done from the eBPF program.
2036          */
2037         if (skb->ip_summed == CHECKSUM_COMPLETE)
2038                 return (skb->csum = csum_add(skb->csum, csum));
2039
2040         return -ENOTSUPP;
2041 }
2042
2043 static const struct bpf_func_proto bpf_csum_update_proto = {
2044         .func           = bpf_csum_update,
2045         .gpl_only       = false,
2046         .ret_type       = RET_INTEGER,
2047         .arg1_type      = ARG_PTR_TO_CTX,
2048         .arg2_type      = ARG_ANYTHING,
2049 };
2050
2051 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2052 {
2053         /* The interface is to be used in combination with bpf_skb_adjust_room()
2054          * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2055          * is passed as flags, for example.
2056          */
2057         switch (level) {
2058         case BPF_CSUM_LEVEL_INC:
2059                 __skb_incr_checksum_unnecessary(skb);
2060                 break;
2061         case BPF_CSUM_LEVEL_DEC:
2062                 __skb_decr_checksum_unnecessary(skb);
2063                 break;
2064         case BPF_CSUM_LEVEL_RESET:
2065                 __skb_reset_checksum_unnecessary(skb);
2066                 break;
2067         case BPF_CSUM_LEVEL_QUERY:
2068                 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2069                        skb->csum_level : -EACCES;
2070         default:
2071                 return -EINVAL;
2072         }
2073
2074         return 0;
2075 }
2076
2077 static const struct bpf_func_proto bpf_csum_level_proto = {
2078         .func           = bpf_csum_level,
2079         .gpl_only       = false,
2080         .ret_type       = RET_INTEGER,
2081         .arg1_type      = ARG_PTR_TO_CTX,
2082         .arg2_type      = ARG_ANYTHING,
2083 };
2084
2085 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2086 {
2087         return dev_forward_skb_nomtu(dev, skb);
2088 }
2089
2090 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2091                                       struct sk_buff *skb)
2092 {
2093         int ret = ____dev_forward_skb(dev, skb, false);
2094
2095         if (likely(!ret)) {
2096                 skb->dev = dev;
2097                 ret = netif_rx(skb);
2098         }
2099
2100         return ret;
2101 }
2102
2103 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2104 {
2105         int ret;
2106
2107         if (dev_xmit_recursion()) {
2108                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2109                 kfree_skb(skb);
2110                 return -ENETDOWN;
2111         }
2112
2113         skb->dev = dev;
2114         skb_clear_tstamp(skb);
2115
2116         dev_xmit_recursion_inc();
2117         ret = dev_queue_xmit(skb);
2118         dev_xmit_recursion_dec();
2119
2120         return ret;
2121 }
2122
2123 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2124                                  u32 flags)
2125 {
2126         unsigned int mlen = skb_network_offset(skb);
2127
2128         if (unlikely(skb->len <= mlen)) {
2129                 kfree_skb(skb);
2130                 return -ERANGE;
2131         }
2132
2133         if (mlen) {
2134                 __skb_pull(skb, mlen);
2135
2136                 /* At ingress, the mac header has already been pulled once.
2137                  * At egress, skb_pospull_rcsum has to be done in case that
2138                  * the skb is originated from ingress (i.e. a forwarded skb)
2139                  * to ensure that rcsum starts at net header.
2140                  */
2141                 if (!skb_at_tc_ingress(skb))
2142                         skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2143         }
2144         skb_pop_mac_header(skb);
2145         skb_reset_mac_len(skb);
2146         return flags & BPF_F_INGRESS ?
2147                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2148 }
2149
2150 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2151                                  u32 flags)
2152 {
2153         /* Verify that a link layer header is carried */
2154         if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2155                 kfree_skb(skb);
2156                 return -ERANGE;
2157         }
2158
2159         bpf_push_mac_rcsum(skb);
2160         return flags & BPF_F_INGRESS ?
2161                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2162 }
2163
2164 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2165                           u32 flags)
2166 {
2167         if (dev_is_mac_header_xmit(dev))
2168                 return __bpf_redirect_common(skb, dev, flags);
2169         else
2170                 return __bpf_redirect_no_mac(skb, dev, flags);
2171 }
2172
2173 #if IS_ENABLED(CONFIG_IPV6)
2174 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2175                             struct net_device *dev, struct bpf_nh_params *nh)
2176 {
2177         u32 hh_len = LL_RESERVED_SPACE(dev);
2178         const struct in6_addr *nexthop;
2179         struct dst_entry *dst = NULL;
2180         struct neighbour *neigh;
2181
2182         if (dev_xmit_recursion()) {
2183                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2184                 goto out_drop;
2185         }
2186
2187         skb->dev = dev;
2188         skb_clear_tstamp(skb);
2189
2190         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2191                 skb = skb_expand_head(skb, hh_len);
2192                 if (!skb)
2193                         return -ENOMEM;
2194         }
2195
2196         rcu_read_lock_bh();
2197         if (!nh) {
2198                 dst = skb_dst(skb);
2199                 nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2200                                       &ipv6_hdr(skb)->daddr);
2201         } else {
2202                 nexthop = &nh->ipv6_nh;
2203         }
2204         neigh = ip_neigh_gw6(dev, nexthop);
2205         if (likely(!IS_ERR(neigh))) {
2206                 int ret;
2207
2208                 sock_confirm_neigh(skb, neigh);
2209                 dev_xmit_recursion_inc();
2210                 ret = neigh_output(neigh, skb, false);
2211                 dev_xmit_recursion_dec();
2212                 rcu_read_unlock_bh();
2213                 return ret;
2214         }
2215         rcu_read_unlock_bh();
2216         if (dst)
2217                 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2218 out_drop:
2219         kfree_skb(skb);
2220         return -ENETDOWN;
2221 }
2222
2223 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2224                                    struct bpf_nh_params *nh)
2225 {
2226         const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2227         struct net *net = dev_net(dev);
2228         int err, ret = NET_XMIT_DROP;
2229
2230         if (!nh) {
2231                 struct dst_entry *dst;
2232                 struct flowi6 fl6 = {
2233                         .flowi6_flags = FLOWI_FLAG_ANYSRC,
2234                         .flowi6_mark  = skb->mark,
2235                         .flowlabel    = ip6_flowinfo(ip6h),
2236                         .flowi6_oif   = dev->ifindex,
2237                         .flowi6_proto = ip6h->nexthdr,
2238                         .daddr        = ip6h->daddr,
2239                         .saddr        = ip6h->saddr,
2240                 };
2241
2242                 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2243                 if (IS_ERR(dst))
2244                         goto out_drop;
2245
2246                 skb_dst_set(skb, dst);
2247         } else if (nh->nh_family != AF_INET6) {
2248                 goto out_drop;
2249         }
2250
2251         err = bpf_out_neigh_v6(net, skb, dev, nh);
2252         if (unlikely(net_xmit_eval(err)))
2253                 dev->stats.tx_errors++;
2254         else
2255                 ret = NET_XMIT_SUCCESS;
2256         goto out_xmit;
2257 out_drop:
2258         dev->stats.tx_errors++;
2259         kfree_skb(skb);
2260 out_xmit:
2261         return ret;
2262 }
2263 #else
2264 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2265                                    struct bpf_nh_params *nh)
2266 {
2267         kfree_skb(skb);
2268         return NET_XMIT_DROP;
2269 }
2270 #endif /* CONFIG_IPV6 */
2271
2272 #if IS_ENABLED(CONFIG_INET)
2273 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2274                             struct net_device *dev, struct bpf_nh_params *nh)
2275 {
2276         u32 hh_len = LL_RESERVED_SPACE(dev);
2277         struct neighbour *neigh;
2278         bool is_v6gw = false;
2279
2280         if (dev_xmit_recursion()) {
2281                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2282                 goto out_drop;
2283         }
2284
2285         skb->dev = dev;
2286         skb_clear_tstamp(skb);
2287
2288         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2289                 skb = skb_expand_head(skb, hh_len);
2290                 if (!skb)
2291                         return -ENOMEM;
2292         }
2293
2294         rcu_read_lock_bh();
2295         if (!nh) {
2296                 struct dst_entry *dst = skb_dst(skb);
2297                 struct rtable *rt = container_of(dst, struct rtable, dst);
2298
2299                 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2300         } else if (nh->nh_family == AF_INET6) {
2301                 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2302                 is_v6gw = true;
2303         } else if (nh->nh_family == AF_INET) {
2304                 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2305         } else {
2306                 rcu_read_unlock_bh();
2307                 goto out_drop;
2308         }
2309
2310         if (likely(!IS_ERR(neigh))) {
2311                 int ret;
2312
2313                 sock_confirm_neigh(skb, neigh);
2314                 dev_xmit_recursion_inc();
2315                 ret = neigh_output(neigh, skb, is_v6gw);
2316                 dev_xmit_recursion_dec();
2317                 rcu_read_unlock_bh();
2318                 return ret;
2319         }
2320         rcu_read_unlock_bh();
2321 out_drop:
2322         kfree_skb(skb);
2323         return -ENETDOWN;
2324 }
2325
2326 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2327                                    struct bpf_nh_params *nh)
2328 {
2329         const struct iphdr *ip4h = ip_hdr(skb);
2330         struct net *net = dev_net(dev);
2331         int err, ret = NET_XMIT_DROP;
2332
2333         if (!nh) {
2334                 struct flowi4 fl4 = {
2335                         .flowi4_flags = FLOWI_FLAG_ANYSRC,
2336                         .flowi4_mark  = skb->mark,
2337                         .flowi4_tos   = RT_TOS(ip4h->tos),
2338                         .flowi4_oif   = dev->ifindex,
2339                         .flowi4_proto = ip4h->protocol,
2340                         .daddr        = ip4h->daddr,
2341                         .saddr        = ip4h->saddr,
2342                 };
2343                 struct rtable *rt;
2344
2345                 rt = ip_route_output_flow(net, &fl4, NULL);
2346                 if (IS_ERR(rt))
2347                         goto out_drop;
2348                 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2349                         ip_rt_put(rt);
2350                         goto out_drop;
2351                 }
2352
2353                 skb_dst_set(skb, &rt->dst);
2354         }
2355
2356         err = bpf_out_neigh_v4(net, skb, dev, nh);
2357         if (unlikely(net_xmit_eval(err)))
2358                 dev->stats.tx_errors++;
2359         else
2360                 ret = NET_XMIT_SUCCESS;
2361         goto out_xmit;
2362 out_drop:
2363         dev->stats.tx_errors++;
2364         kfree_skb(skb);
2365 out_xmit:
2366         return ret;
2367 }
2368 #else
2369 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2370                                    struct bpf_nh_params *nh)
2371 {
2372         kfree_skb(skb);
2373         return NET_XMIT_DROP;
2374 }
2375 #endif /* CONFIG_INET */
2376
2377 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2378                                 struct bpf_nh_params *nh)
2379 {
2380         struct ethhdr *ethh = eth_hdr(skb);
2381
2382         if (unlikely(skb->mac_header >= skb->network_header))
2383                 goto out;
2384         bpf_push_mac_rcsum(skb);
2385         if (is_multicast_ether_addr(ethh->h_dest))
2386                 goto out;
2387
2388         skb_pull(skb, sizeof(*ethh));
2389         skb_unset_mac_header(skb);
2390         skb_reset_network_header(skb);
2391
2392         if (skb->protocol == htons(ETH_P_IP))
2393                 return __bpf_redirect_neigh_v4(skb, dev, nh);
2394         else if (skb->protocol == htons(ETH_P_IPV6))
2395                 return __bpf_redirect_neigh_v6(skb, dev, nh);
2396 out:
2397         kfree_skb(skb);
2398         return -ENOTSUPP;
2399 }
2400
2401 /* Internal, non-exposed redirect flags. */
2402 enum {
2403         BPF_F_NEIGH     = (1ULL << 1),
2404         BPF_F_PEER      = (1ULL << 2),
2405         BPF_F_NEXTHOP   = (1ULL << 3),
2406 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2407 };
2408
2409 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2410 {
2411         struct net_device *dev;
2412         struct sk_buff *clone;
2413         int ret;
2414
2415         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2416                 return -EINVAL;
2417
2418         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2419         if (unlikely(!dev))
2420                 return -EINVAL;
2421
2422         clone = skb_clone(skb, GFP_ATOMIC);
2423         if (unlikely(!clone))
2424                 return -ENOMEM;
2425
2426         /* For direct write, we need to keep the invariant that the skbs
2427          * we're dealing with need to be uncloned. Should uncloning fail
2428          * here, we need to free the just generated clone to unclone once
2429          * again.
2430          */
2431         ret = bpf_try_make_head_writable(skb);
2432         if (unlikely(ret)) {
2433                 kfree_skb(clone);
2434                 return -ENOMEM;
2435         }
2436
2437         return __bpf_redirect(clone, dev, flags);
2438 }
2439
2440 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2441         .func           = bpf_clone_redirect,
2442         .gpl_only       = false,
2443         .ret_type       = RET_INTEGER,
2444         .arg1_type      = ARG_PTR_TO_CTX,
2445         .arg2_type      = ARG_ANYTHING,
2446         .arg3_type      = ARG_ANYTHING,
2447 };
2448
2449 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2450 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2451
2452 int skb_do_redirect(struct sk_buff *skb)
2453 {
2454         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2455         struct net *net = dev_net(skb->dev);
2456         struct net_device *dev;
2457         u32 flags = ri->flags;
2458
2459         dev = dev_get_by_index_rcu(net, ri->tgt_index);
2460         ri->tgt_index = 0;
2461         ri->flags = 0;
2462         if (unlikely(!dev))
2463                 goto out_drop;
2464         if (flags & BPF_F_PEER) {
2465                 const struct net_device_ops *ops = dev->netdev_ops;
2466
2467                 if (unlikely(!ops->ndo_get_peer_dev ||
2468                              !skb_at_tc_ingress(skb)))
2469                         goto out_drop;
2470                 dev = ops->ndo_get_peer_dev(dev);
2471                 if (unlikely(!dev ||
2472                              !(dev->flags & IFF_UP) ||
2473                              net_eq(net, dev_net(dev))))
2474                         goto out_drop;
2475                 skb->dev = dev;
2476                 return -EAGAIN;
2477         }
2478         return flags & BPF_F_NEIGH ?
2479                __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2480                                     &ri->nh : NULL) :
2481                __bpf_redirect(skb, dev, flags);
2482 out_drop:
2483         kfree_skb(skb);
2484         return -EINVAL;
2485 }
2486
2487 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2488 {
2489         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2490
2491         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2492                 return TC_ACT_SHOT;
2493
2494         ri->flags = flags;
2495         ri->tgt_index = ifindex;
2496
2497         return TC_ACT_REDIRECT;
2498 }
2499
2500 static const struct bpf_func_proto bpf_redirect_proto = {
2501         .func           = bpf_redirect,
2502         .gpl_only       = false,
2503         .ret_type       = RET_INTEGER,
2504         .arg1_type      = ARG_ANYTHING,
2505         .arg2_type      = ARG_ANYTHING,
2506 };
2507
2508 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2509 {
2510         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2511
2512         if (unlikely(flags))
2513                 return TC_ACT_SHOT;
2514
2515         ri->flags = BPF_F_PEER;
2516         ri->tgt_index = ifindex;
2517
2518         return TC_ACT_REDIRECT;
2519 }
2520
2521 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2522         .func           = bpf_redirect_peer,
2523         .gpl_only       = false,
2524         .ret_type       = RET_INTEGER,
2525         .arg1_type      = ARG_ANYTHING,
2526         .arg2_type      = ARG_ANYTHING,
2527 };
2528
2529 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2530            int, plen, u64, flags)
2531 {
2532         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2533
2534         if (unlikely((plen && plen < sizeof(*params)) || flags))
2535                 return TC_ACT_SHOT;
2536
2537         ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2538         ri->tgt_index = ifindex;
2539
2540         BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2541         if (plen)
2542                 memcpy(&ri->nh, params, sizeof(ri->nh));
2543
2544         return TC_ACT_REDIRECT;
2545 }
2546
2547 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2548         .func           = bpf_redirect_neigh,
2549         .gpl_only       = false,
2550         .ret_type       = RET_INTEGER,
2551         .arg1_type      = ARG_ANYTHING,
2552         .arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2553         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2554         .arg4_type      = ARG_ANYTHING,
2555 };
2556
2557 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2558 {
2559         msg->apply_bytes = bytes;
2560         return 0;
2561 }
2562
2563 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2564         .func           = bpf_msg_apply_bytes,
2565         .gpl_only       = false,
2566         .ret_type       = RET_INTEGER,
2567         .arg1_type      = ARG_PTR_TO_CTX,
2568         .arg2_type      = ARG_ANYTHING,
2569 };
2570
2571 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2572 {
2573         msg->cork_bytes = bytes;
2574         return 0;
2575 }
2576
2577 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2578         .func           = bpf_msg_cork_bytes,
2579         .gpl_only       = false,
2580         .ret_type       = RET_INTEGER,
2581         .arg1_type      = ARG_PTR_TO_CTX,
2582         .arg2_type      = ARG_ANYTHING,
2583 };
2584
2585 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2586            u32, end, u64, flags)
2587 {
2588         u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2589         u32 first_sge, last_sge, i, shift, bytes_sg_total;
2590         struct scatterlist *sge;
2591         u8 *raw, *to, *from;
2592         struct page *page;
2593
2594         if (unlikely(flags || end <= start))
2595                 return -EINVAL;
2596
2597         /* First find the starting scatterlist element */
2598         i = msg->sg.start;
2599         do {
2600                 offset += len;
2601                 len = sk_msg_elem(msg, i)->length;
2602                 if (start < offset + len)
2603                         break;
2604                 sk_msg_iter_var_next(i);
2605         } while (i != msg->sg.end);
2606
2607         if (unlikely(start >= offset + len))
2608                 return -EINVAL;
2609
2610         first_sge = i;
2611         /* The start may point into the sg element so we need to also
2612          * account for the headroom.
2613          */
2614         bytes_sg_total = start - offset + bytes;
2615         if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2616                 goto out;
2617
2618         /* At this point we need to linearize multiple scatterlist
2619          * elements or a single shared page. Either way we need to
2620          * copy into a linear buffer exclusively owned by BPF. Then
2621          * place the buffer in the scatterlist and fixup the original
2622          * entries by removing the entries now in the linear buffer
2623          * and shifting the remaining entries. For now we do not try
2624          * to copy partial entries to avoid complexity of running out
2625          * of sg_entry slots. The downside is reading a single byte
2626          * will copy the entire sg entry.
2627          */
2628         do {
2629                 copy += sk_msg_elem(msg, i)->length;
2630                 sk_msg_iter_var_next(i);
2631                 if (bytes_sg_total <= copy)
2632                         break;
2633         } while (i != msg->sg.end);
2634         last_sge = i;
2635
2636         if (unlikely(bytes_sg_total > copy))
2637                 return -EINVAL;
2638
2639         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2640                            get_order(copy));
2641         if (unlikely(!page))
2642                 return -ENOMEM;
2643
2644         raw = page_address(page);
2645         i = first_sge;
2646         do {
2647                 sge = sk_msg_elem(msg, i);
2648                 from = sg_virt(sge);
2649                 len = sge->length;
2650                 to = raw + poffset;
2651
2652                 memcpy(to, from, len);
2653                 poffset += len;
2654                 sge->length = 0;
2655                 put_page(sg_page(sge));
2656
2657                 sk_msg_iter_var_next(i);
2658         } while (i != last_sge);
2659
2660         sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2661
2662         /* To repair sg ring we need to shift entries. If we only
2663          * had a single entry though we can just replace it and
2664          * be done. Otherwise walk the ring and shift the entries.
2665          */
2666         WARN_ON_ONCE(last_sge == first_sge);
2667         shift = last_sge > first_sge ?
2668                 last_sge - first_sge - 1 :
2669                 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2670         if (!shift)
2671                 goto out;
2672
2673         i = first_sge;
2674         sk_msg_iter_var_next(i);
2675         do {
2676                 u32 move_from;
2677
2678                 if (i + shift >= NR_MSG_FRAG_IDS)
2679                         move_from = i + shift - NR_MSG_FRAG_IDS;
2680                 else
2681                         move_from = i + shift;
2682                 if (move_from == msg->sg.end)
2683                         break;
2684
2685                 msg->sg.data[i] = msg->sg.data[move_from];
2686                 msg->sg.data[move_from].length = 0;
2687                 msg->sg.data[move_from].page_link = 0;
2688                 msg->sg.data[move_from].offset = 0;
2689                 sk_msg_iter_var_next(i);
2690         } while (1);
2691
2692         msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2693                       msg->sg.end - shift + NR_MSG_FRAG_IDS :
2694                       msg->sg.end - shift;
2695 out:
2696         msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2697         msg->data_end = msg->data + bytes;
2698         return 0;
2699 }
2700
2701 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2702         .func           = bpf_msg_pull_data,
2703         .gpl_only       = false,
2704         .ret_type       = RET_INTEGER,
2705         .arg1_type      = ARG_PTR_TO_CTX,
2706         .arg2_type      = ARG_ANYTHING,
2707         .arg3_type      = ARG_ANYTHING,
2708         .arg4_type      = ARG_ANYTHING,
2709 };
2710
2711 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2712            u32, len, u64, flags)
2713 {
2714         struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2715         u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2716         u8 *raw, *to, *from;
2717         struct page *page;
2718
2719         if (unlikely(flags))
2720                 return -EINVAL;
2721
2722         if (unlikely(len == 0))
2723                 return 0;
2724
2725         /* First find the starting scatterlist element */
2726         i = msg->sg.start;
2727         do {
2728                 offset += l;
2729                 l = sk_msg_elem(msg, i)->length;
2730
2731                 if (start < offset + l)
2732                         break;
2733                 sk_msg_iter_var_next(i);
2734         } while (i != msg->sg.end);
2735
2736         if (start >= offset + l)
2737                 return -EINVAL;
2738
2739         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2740
2741         /* If no space available will fallback to copy, we need at
2742          * least one scatterlist elem available to push data into
2743          * when start aligns to the beginning of an element or two
2744          * when it falls inside an element. We handle the start equals
2745          * offset case because its the common case for inserting a
2746          * header.
2747          */
2748         if (!space || (space == 1 && start != offset))
2749                 copy = msg->sg.data[i].length;
2750
2751         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2752                            get_order(copy + len));
2753         if (unlikely(!page))
2754                 return -ENOMEM;
2755
2756         if (copy) {
2757                 int front, back;
2758
2759                 raw = page_address(page);
2760
2761                 psge = sk_msg_elem(msg, i);
2762                 front = start - offset;
2763                 back = psge->length - front;
2764                 from = sg_virt(psge);
2765
2766                 if (front)
2767                         memcpy(raw, from, front);
2768
2769                 if (back) {
2770                         from += front;
2771                         to = raw + front + len;
2772
2773                         memcpy(to, from, back);
2774                 }
2775
2776                 put_page(sg_page(psge));
2777         } else if (start - offset) {
2778                 psge = sk_msg_elem(msg, i);
2779                 rsge = sk_msg_elem_cpy(msg, i);
2780
2781                 psge->length = start - offset;
2782                 rsge.length -= psge->length;
2783                 rsge.offset += start;
2784
2785                 sk_msg_iter_var_next(i);
2786                 sg_unmark_end(psge);
2787                 sg_unmark_end(&rsge);
2788                 sk_msg_iter_next(msg, end);
2789         }
2790
2791         /* Slot(s) to place newly allocated data */
2792         new = i;
2793
2794         /* Shift one or two slots as needed */
2795         if (!copy) {
2796                 sge = sk_msg_elem_cpy(msg, i);
2797
2798                 sk_msg_iter_var_next(i);
2799                 sg_unmark_end(&sge);
2800                 sk_msg_iter_next(msg, end);
2801
2802                 nsge = sk_msg_elem_cpy(msg, i);
2803                 if (rsge.length) {
2804                         sk_msg_iter_var_next(i);
2805                         nnsge = sk_msg_elem_cpy(msg, i);
2806                 }
2807
2808                 while (i != msg->sg.end) {
2809                         msg->sg.data[i] = sge;
2810                         sge = nsge;
2811                         sk_msg_iter_var_next(i);
2812                         if (rsge.length) {
2813                                 nsge = nnsge;
2814                                 nnsge = sk_msg_elem_cpy(msg, i);
2815                         } else {
2816                                 nsge = sk_msg_elem_cpy(msg, i);
2817                         }
2818                 }
2819         }
2820
2821         /* Place newly allocated data buffer */
2822         sk_mem_charge(msg->sk, len);
2823         msg->sg.size += len;
2824         __clear_bit(new, msg->sg.copy);
2825         sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2826         if (rsge.length) {
2827                 get_page(sg_page(&rsge));
2828                 sk_msg_iter_var_next(new);
2829                 msg->sg.data[new] = rsge;
2830         }
2831
2832         sk_msg_compute_data_pointers(msg);
2833         return 0;
2834 }
2835
2836 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2837         .func           = bpf_msg_push_data,
2838         .gpl_only       = false,
2839         .ret_type       = RET_INTEGER,
2840         .arg1_type      = ARG_PTR_TO_CTX,
2841         .arg2_type      = ARG_ANYTHING,
2842         .arg3_type      = ARG_ANYTHING,
2843         .arg4_type      = ARG_ANYTHING,
2844 };
2845
2846 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2847 {
2848         int prev;
2849
2850         do {
2851                 prev = i;
2852                 sk_msg_iter_var_next(i);
2853                 msg->sg.data[prev] = msg->sg.data[i];
2854         } while (i != msg->sg.end);
2855
2856         sk_msg_iter_prev(msg, end);
2857 }
2858
2859 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2860 {
2861         struct scatterlist tmp, sge;
2862
2863         sk_msg_iter_next(msg, end);
2864         sge = sk_msg_elem_cpy(msg, i);
2865         sk_msg_iter_var_next(i);
2866         tmp = sk_msg_elem_cpy(msg, i);
2867
2868         while (i != msg->sg.end) {
2869                 msg->sg.data[i] = sge;
2870                 sk_msg_iter_var_next(i);
2871                 sge = tmp;
2872                 tmp = sk_msg_elem_cpy(msg, i);
2873         }
2874 }
2875
2876 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2877            u32, len, u64, flags)
2878 {
2879         u32 i = 0, l = 0, space, offset = 0;
2880         u64 last = start + len;
2881         int pop;
2882
2883         if (unlikely(flags))
2884                 return -EINVAL;
2885
2886         /* First find the starting scatterlist element */
2887         i = msg->sg.start;
2888         do {
2889                 offset += l;
2890                 l = sk_msg_elem(msg, i)->length;
2891
2892                 if (start < offset + l)
2893                         break;
2894                 sk_msg_iter_var_next(i);
2895         } while (i != msg->sg.end);
2896
2897         /* Bounds checks: start and pop must be inside message */
2898         if (start >= offset + l || last >= msg->sg.size)
2899                 return -EINVAL;
2900
2901         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2902
2903         pop = len;
2904         /* --------------| offset
2905          * -| start      |-------- len -------|
2906          *
2907          *  |----- a ----|-------- pop -------|----- b ----|
2908          *  |______________________________________________| length
2909          *
2910          *
2911          * a:   region at front of scatter element to save
2912          * b:   region at back of scatter element to save when length > A + pop
2913          * pop: region to pop from element, same as input 'pop' here will be
2914          *      decremented below per iteration.
2915          *
2916          * Two top-level cases to handle when start != offset, first B is non
2917          * zero and second B is zero corresponding to when a pop includes more
2918          * than one element.
2919          *
2920          * Then if B is non-zero AND there is no space allocate space and
2921          * compact A, B regions into page. If there is space shift ring to
2922          * the rigth free'ing the next element in ring to place B, leaving
2923          * A untouched except to reduce length.
2924          */
2925         if (start != offset) {
2926                 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2927                 int a = start;
2928                 int b = sge->length - pop - a;
2929
2930                 sk_msg_iter_var_next(i);
2931
2932                 if (pop < sge->length - a) {
2933                         if (space) {
2934                                 sge->length = a;
2935                                 sk_msg_shift_right(msg, i);
2936                                 nsge = sk_msg_elem(msg, i);
2937                                 get_page(sg_page(sge));
2938                                 sg_set_page(nsge,
2939                                             sg_page(sge),
2940                                             b, sge->offset + pop + a);
2941                         } else {
2942                                 struct page *page, *orig;
2943                                 u8 *to, *from;
2944
2945                                 page = alloc_pages(__GFP_NOWARN |
2946                                                    __GFP_COMP   | GFP_ATOMIC,
2947                                                    get_order(a + b));
2948                                 if (unlikely(!page))
2949                                         return -ENOMEM;
2950
2951                                 sge->length = a;
2952                                 orig = sg_page(sge);
2953                                 from = sg_virt(sge);
2954                                 to = page_address(page);
2955                                 memcpy(to, from, a);
2956                                 memcpy(to + a, from + a + pop, b);
2957                                 sg_set_page(sge, page, a + b, 0);
2958                                 put_page(orig);
2959                         }
2960                         pop = 0;
2961                 } else if (pop >= sge->length - a) {
2962                         pop -= (sge->length - a);
2963                         sge->length = a;
2964                 }
2965         }
2966
2967         /* From above the current layout _must_ be as follows,
2968          *
2969          * -| offset
2970          * -| start
2971          *
2972          *  |---- pop ---|---------------- b ------------|
2973          *  |____________________________________________| length
2974          *
2975          * Offset and start of the current msg elem are equal because in the
2976          * previous case we handled offset != start and either consumed the
2977          * entire element and advanced to the next element OR pop == 0.
2978          *
2979          * Two cases to handle here are first pop is less than the length
2980          * leaving some remainder b above. Simply adjust the element's layout
2981          * in this case. Or pop >= length of the element so that b = 0. In this
2982          * case advance to next element decrementing pop.
2983          */
2984         while (pop) {
2985                 struct scatterlist *sge = sk_msg_elem(msg, i);
2986
2987                 if (pop < sge->length) {
2988                         sge->length -= pop;
2989                         sge->offset += pop;
2990                         pop = 0;
2991                 } else {
2992                         pop -= sge->length;
2993                         sk_msg_shift_left(msg, i);
2994                 }
2995                 sk_msg_iter_var_next(i);
2996         }
2997
2998         sk_mem_uncharge(msg->sk, len - pop);
2999         msg->sg.size -= (len - pop);
3000         sk_msg_compute_data_pointers(msg);
3001         return 0;
3002 }
3003
3004 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3005         .func           = bpf_msg_pop_data,
3006         .gpl_only       = false,
3007         .ret_type       = RET_INTEGER,
3008         .arg1_type      = ARG_PTR_TO_CTX,
3009         .arg2_type      = ARG_ANYTHING,
3010         .arg3_type      = ARG_ANYTHING,
3011         .arg4_type      = ARG_ANYTHING,
3012 };
3013
3014 #ifdef CONFIG_CGROUP_NET_CLASSID
3015 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3016 {
3017         return __task_get_classid(current);
3018 }
3019
3020 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3021         .func           = bpf_get_cgroup_classid_curr,
3022         .gpl_only       = false,
3023         .ret_type       = RET_INTEGER,
3024 };
3025
3026 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3027 {
3028         struct sock *sk = skb_to_full_sk(skb);
3029
3030         if (!sk || !sk_fullsock(sk))
3031                 return 0;
3032
3033         return sock_cgroup_classid(&sk->sk_cgrp_data);
3034 }
3035
3036 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3037         .func           = bpf_skb_cgroup_classid,
3038         .gpl_only       = false,
3039         .ret_type       = RET_INTEGER,
3040         .arg1_type      = ARG_PTR_TO_CTX,
3041 };
3042 #endif
3043
3044 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3045 {
3046         return task_get_classid(skb);
3047 }
3048
3049 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3050         .func           = bpf_get_cgroup_classid,
3051         .gpl_only       = false,
3052         .ret_type       = RET_INTEGER,
3053         .arg1_type      = ARG_PTR_TO_CTX,
3054 };
3055
3056 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3057 {
3058         return dst_tclassid(skb);
3059 }
3060
3061 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3062         .func           = bpf_get_route_realm,
3063         .gpl_only       = false,
3064         .ret_type       = RET_INTEGER,
3065         .arg1_type      = ARG_PTR_TO_CTX,
3066 };
3067
3068 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3069 {
3070         /* If skb_clear_hash() was called due to mangling, we can
3071          * trigger SW recalculation here. Later access to hash
3072          * can then use the inline skb->hash via context directly
3073          * instead of calling this helper again.
3074          */
3075         return skb_get_hash(skb);
3076 }
3077
3078 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3079         .func           = bpf_get_hash_recalc,
3080         .gpl_only       = false,
3081         .ret_type       = RET_INTEGER,
3082         .arg1_type      = ARG_PTR_TO_CTX,
3083 };
3084
3085 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3086 {
3087         /* After all direct packet write, this can be used once for
3088          * triggering a lazy recalc on next skb_get_hash() invocation.
3089          */
3090         skb_clear_hash(skb);
3091         return 0;
3092 }
3093
3094 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3095         .func           = bpf_set_hash_invalid,
3096         .gpl_only       = false,
3097         .ret_type       = RET_INTEGER,
3098         .arg1_type      = ARG_PTR_TO_CTX,
3099 };
3100
3101 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3102 {
3103         /* Set user specified hash as L4(+), so that it gets returned
3104          * on skb_get_hash() call unless BPF prog later on triggers a
3105          * skb_clear_hash().
3106          */
3107         __skb_set_sw_hash(skb, hash, true);
3108         return 0;
3109 }
3110
3111 static const struct bpf_func_proto bpf_set_hash_proto = {
3112         .func           = bpf_set_hash,
3113         .gpl_only       = false,
3114         .ret_type       = RET_INTEGER,
3115         .arg1_type      = ARG_PTR_TO_CTX,
3116         .arg2_type      = ARG_ANYTHING,
3117 };
3118
3119 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3120            u16, vlan_tci)
3121 {
3122         int ret;
3123
3124         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3125                      vlan_proto != htons(ETH_P_8021AD)))
3126                 vlan_proto = htons(ETH_P_8021Q);
3127
3128         bpf_push_mac_rcsum(skb);
3129         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3130         bpf_pull_mac_rcsum(skb);
3131
3132         bpf_compute_data_pointers(skb);
3133         return ret;
3134 }
3135
3136 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3137         .func           = bpf_skb_vlan_push,
3138         .gpl_only       = false,
3139         .ret_type       = RET_INTEGER,
3140         .arg1_type      = ARG_PTR_TO_CTX,
3141         .arg2_type      = ARG_ANYTHING,
3142         .arg3_type      = ARG_ANYTHING,
3143 };
3144
3145 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3146 {
3147         int ret;
3148
3149         bpf_push_mac_rcsum(skb);
3150         ret = skb_vlan_pop(skb);
3151         bpf_pull_mac_rcsum(skb);
3152
3153         bpf_compute_data_pointers(skb);
3154         return ret;
3155 }
3156
3157 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3158         .func           = bpf_skb_vlan_pop,
3159         .gpl_only       = false,
3160         .ret_type       = RET_INTEGER,
3161         .arg1_type      = ARG_PTR_TO_CTX,
3162 };
3163
3164 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3165 {
3166         /* Caller already did skb_cow() with len as headroom,
3167          * so no need to do it here.
3168          */
3169         skb_push(skb, len);
3170         memmove(skb->data, skb->data + len, off);
3171         memset(skb->data + off, 0, len);
3172
3173         /* No skb_postpush_rcsum(skb, skb->data + off, len)
3174          * needed here as it does not change the skb->csum
3175          * result for checksum complete when summing over
3176          * zeroed blocks.
3177          */
3178         return 0;
3179 }
3180
3181 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3182 {
3183         /* skb_ensure_writable() is not needed here, as we're
3184          * already working on an uncloned skb.
3185          */
3186         if (unlikely(!pskb_may_pull(skb, off + len)))
3187                 return -ENOMEM;
3188
3189         skb_postpull_rcsum(skb, skb->data + off, len);
3190         memmove(skb->data + len, skb->data, off);
3191         __skb_pull(skb, len);
3192
3193         return 0;
3194 }
3195
3196 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3197 {
3198         bool trans_same = skb->transport_header == skb->network_header;
3199         int ret;
3200
3201         /* There's no need for __skb_push()/__skb_pull() pair to
3202          * get to the start of the mac header as we're guaranteed
3203          * to always start from here under eBPF.
3204          */
3205         ret = bpf_skb_generic_push(skb, off, len);
3206         if (likely(!ret)) {
3207                 skb->mac_header -= len;
3208                 skb->network_header -= len;
3209                 if (trans_same)
3210                         skb->transport_header = skb->network_header;
3211         }
3212
3213         return ret;
3214 }
3215
3216 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3217 {
3218         bool trans_same = skb->transport_header == skb->network_header;
3219         int ret;
3220
3221         /* Same here, __skb_push()/__skb_pull() pair not needed. */
3222         ret = bpf_skb_generic_pop(skb, off, len);
3223         if (likely(!ret)) {
3224                 skb->mac_header += len;
3225                 skb->network_header += len;
3226                 if (trans_same)
3227                         skb->transport_header = skb->network_header;
3228         }
3229
3230         return ret;
3231 }
3232
3233 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3234 {
3235         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3236         u32 off = skb_mac_header_len(skb);
3237         int ret;
3238
3239         ret = skb_cow(skb, len_diff);
3240         if (unlikely(ret < 0))
3241                 return ret;
3242
3243         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3244         if (unlikely(ret < 0))
3245                 return ret;
3246
3247         if (skb_is_gso(skb)) {
3248                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3249
3250                 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3251                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3252                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
3253                         shinfo->gso_type |=  SKB_GSO_TCPV6;
3254                 }
3255         }
3256
3257         skb->protocol = htons(ETH_P_IPV6);
3258         skb_clear_hash(skb);
3259
3260         return 0;
3261 }
3262
3263 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3264 {
3265         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3266         u32 off = skb_mac_header_len(skb);
3267         int ret;
3268
3269         ret = skb_unclone(skb, GFP_ATOMIC);
3270         if (unlikely(ret < 0))
3271                 return ret;
3272
3273         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3274         if (unlikely(ret < 0))
3275                 return ret;
3276
3277         if (skb_is_gso(skb)) {
3278                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3279
3280                 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3281                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3282                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
3283                         shinfo->gso_type |=  SKB_GSO_TCPV4;
3284                 }
3285         }
3286
3287         skb->protocol = htons(ETH_P_IP);
3288         skb_clear_hash(skb);
3289
3290         return 0;
3291 }
3292
3293 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3294 {
3295         __be16 from_proto = skb->protocol;
3296
3297         if (from_proto == htons(ETH_P_IP) &&
3298               to_proto == htons(ETH_P_IPV6))
3299                 return bpf_skb_proto_4_to_6(skb);
3300
3301         if (from_proto == htons(ETH_P_IPV6) &&
3302               to_proto == htons(ETH_P_IP))
3303                 return bpf_skb_proto_6_to_4(skb);
3304
3305         return -ENOTSUPP;
3306 }
3307
3308 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3309            u64, flags)
3310 {
3311         int ret;
3312
3313         if (unlikely(flags))
3314                 return -EINVAL;
3315
3316         /* General idea is that this helper does the basic groundwork
3317          * needed for changing the protocol, and eBPF program fills the
3318          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3319          * and other helpers, rather than passing a raw buffer here.
3320          *
3321          * The rationale is to keep this minimal and without a need to
3322          * deal with raw packet data. F.e. even if we would pass buffers
3323          * here, the program still needs to call the bpf_lX_csum_replace()
3324          * helpers anyway. Plus, this way we keep also separation of
3325          * concerns, since f.e. bpf_skb_store_bytes() should only take
3326          * care of stores.
3327          *
3328          * Currently, additional options and extension header space are
3329          * not supported, but flags register is reserved so we can adapt
3330          * that. For offloads, we mark packet as dodgy, so that headers
3331          * need to be verified first.
3332          */
3333         ret = bpf_skb_proto_xlat(skb, proto);
3334         bpf_compute_data_pointers(skb);
3335         return ret;
3336 }
3337
3338 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3339         .func           = bpf_skb_change_proto,
3340         .gpl_only       = false,
3341         .ret_type       = RET_INTEGER,
3342         .arg1_type      = ARG_PTR_TO_CTX,
3343         .arg2_type      = ARG_ANYTHING,
3344         .arg3_type      = ARG_ANYTHING,
3345 };
3346
3347 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3348 {
3349         /* We only allow a restricted subset to be changed for now. */
3350         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3351                      !skb_pkt_type_ok(pkt_type)))
3352                 return -EINVAL;
3353
3354         skb->pkt_type = pkt_type;
3355         return 0;
3356 }
3357
3358 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3359         .func           = bpf_skb_change_type,
3360         .gpl_only       = false,
3361         .ret_type       = RET_INTEGER,
3362         .arg1_type      = ARG_PTR_TO_CTX,
3363         .arg2_type      = ARG_ANYTHING,
3364 };
3365
3366 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3367 {
3368         switch (skb->protocol) {
3369         case htons(ETH_P_IP):
3370                 return sizeof(struct iphdr);
3371         case htons(ETH_P_IPV6):
3372                 return sizeof(struct ipv6hdr);
3373         default:
3374                 return ~0U;
3375         }
3376 }
3377
3378 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3379                                          BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3380
3381 #define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3382                                          BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3383                                          BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3384                                          BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3385                                          BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3386                                          BPF_F_ADJ_ROOM_ENCAP_L2( \
3387                                           BPF_ADJ_ROOM_ENCAP_L2_MASK))
3388
3389 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3390                             u64 flags)
3391 {
3392         u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3393         bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3394         u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3395         unsigned int gso_type = SKB_GSO_DODGY;
3396         int ret;
3397
3398         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3399                 /* udp gso_size delineates datagrams, only allow if fixed */
3400                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3401                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3402                         return -ENOTSUPP;
3403         }
3404
3405         ret = skb_cow_head(skb, len_diff);
3406         if (unlikely(ret < 0))
3407                 return ret;
3408
3409         if (encap) {
3410                 if (skb->protocol != htons(ETH_P_IP) &&
3411                     skb->protocol != htons(ETH_P_IPV6))
3412                         return -ENOTSUPP;
3413
3414                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3415                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3416                         return -EINVAL;
3417
3418                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3419                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3420                         return -EINVAL;
3421
3422                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3423                     inner_mac_len < ETH_HLEN)
3424                         return -EINVAL;
3425
3426                 if (skb->encapsulation)
3427                         return -EALREADY;
3428
3429                 mac_len = skb->network_header - skb->mac_header;
3430                 inner_net = skb->network_header;
3431                 if (inner_mac_len > len_diff)
3432                         return -EINVAL;
3433                 inner_trans = skb->transport_header;
3434         }
3435
3436         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3437         if (unlikely(ret < 0))
3438                 return ret;
3439
3440         if (encap) {
3441                 skb->inner_mac_header = inner_net - inner_mac_len;
3442                 skb->inner_network_header = inner_net;
3443                 skb->inner_transport_header = inner_trans;
3444
3445                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3446                         skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3447                 else
3448                         skb_set_inner_protocol(skb, skb->protocol);
3449
3450                 skb->encapsulation = 1;
3451                 skb_set_network_header(skb, mac_len);
3452
3453                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3454                         gso_type |= SKB_GSO_UDP_TUNNEL;
3455                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3456                         gso_type |= SKB_GSO_GRE;
3457                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3458                         gso_type |= SKB_GSO_IPXIP6;
3459                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3460                         gso_type |= SKB_GSO_IPXIP4;
3461
3462                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3463                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3464                         int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3465                                         sizeof(struct ipv6hdr) :
3466                                         sizeof(struct iphdr);
3467
3468                         skb_set_transport_header(skb, mac_len + nh_len);
3469                 }
3470
3471                 /* Match skb->protocol to new outer l3 protocol */
3472                 if (skb->protocol == htons(ETH_P_IP) &&
3473                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3474                         skb->protocol = htons(ETH_P_IPV6);
3475                 else if (skb->protocol == htons(ETH_P_IPV6) &&
3476                          flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3477                         skb->protocol = htons(ETH_P_IP);
3478         }
3479
3480         if (skb_is_gso(skb)) {
3481                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3482
3483                 /* Due to header grow, MSS needs to be downgraded. */
3484                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3485                         skb_decrease_gso_size(shinfo, len_diff);
3486
3487                 /* Header must be checked, and gso_segs recomputed. */
3488                 shinfo->gso_type |= gso_type;
3489                 shinfo->gso_segs = 0;
3490         }
3491
3492         return 0;
3493 }
3494
3495 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3496                               u64 flags)
3497 {
3498         int ret;
3499
3500         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3501                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3502                 return -EINVAL;
3503
3504         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3505                 /* udp gso_size delineates datagrams, only allow if fixed */
3506                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3507                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3508                         return -ENOTSUPP;
3509         }
3510
3511         ret = skb_unclone(skb, GFP_ATOMIC);
3512         if (unlikely(ret < 0))
3513                 return ret;
3514
3515         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3516         if (unlikely(ret < 0))
3517                 return ret;
3518
3519         if (skb_is_gso(skb)) {
3520                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3521
3522                 /* Due to header shrink, MSS can be upgraded. */
3523                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3524                         skb_increase_gso_size(shinfo, len_diff);
3525
3526                 /* Header must be checked, and gso_segs recomputed. */
3527                 shinfo->gso_type |= SKB_GSO_DODGY;
3528                 shinfo->gso_segs = 0;
3529         }
3530
3531         return 0;
3532 }
3533
3534 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3535
3536 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3537            u32, mode, u64, flags)
3538 {
3539         u32 len_diff_abs = abs(len_diff);
3540         bool shrink = len_diff < 0;
3541         int ret = 0;
3542
3543         if (unlikely(flags || mode))
3544                 return -EINVAL;
3545         if (unlikely(len_diff_abs > 0xfffU))
3546                 return -EFAULT;
3547
3548         if (!shrink) {
3549                 ret = skb_cow(skb, len_diff);
3550                 if (unlikely(ret < 0))
3551                         return ret;
3552                 __skb_push(skb, len_diff_abs);
3553                 memset(skb->data, 0, len_diff_abs);
3554         } else {
3555                 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3556                         return -ENOMEM;
3557                 __skb_pull(skb, len_diff_abs);
3558         }
3559         if (tls_sw_has_ctx_rx(skb->sk)) {
3560                 struct strp_msg *rxm = strp_msg(skb);
3561
3562                 rxm->full_len += len_diff;
3563         }
3564         return ret;
3565 }
3566
3567 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3568         .func           = sk_skb_adjust_room,
3569         .gpl_only       = false,
3570         .ret_type       = RET_INTEGER,
3571         .arg1_type      = ARG_PTR_TO_CTX,
3572         .arg2_type      = ARG_ANYTHING,
3573         .arg3_type      = ARG_ANYTHING,
3574         .arg4_type      = ARG_ANYTHING,
3575 };
3576
3577 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3578            u32, mode, u64, flags)
3579 {
3580         u32 len_cur, len_diff_abs = abs(len_diff);
3581         u32 len_min = bpf_skb_net_base_len(skb);
3582         u32 len_max = BPF_SKB_MAX_LEN;
3583         __be16 proto = skb->protocol;
3584         bool shrink = len_diff < 0;
3585         u32 off;
3586         int ret;
3587
3588         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3589                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3590                 return -EINVAL;
3591         if (unlikely(len_diff_abs > 0xfffU))
3592                 return -EFAULT;
3593         if (unlikely(proto != htons(ETH_P_IP) &&
3594                      proto != htons(ETH_P_IPV6)))
3595                 return -ENOTSUPP;
3596
3597         off = skb_mac_header_len(skb);
3598         switch (mode) {
3599         case BPF_ADJ_ROOM_NET:
3600                 off += bpf_skb_net_base_len(skb);
3601                 break;
3602         case BPF_ADJ_ROOM_MAC:
3603                 break;
3604         default:
3605                 return -ENOTSUPP;
3606         }
3607
3608         len_cur = skb->len - skb_network_offset(skb);
3609         if ((shrink && (len_diff_abs >= len_cur ||
3610                         len_cur - len_diff_abs < len_min)) ||
3611             (!shrink && (skb->len + len_diff_abs > len_max &&
3612                          !skb_is_gso(skb))))
3613                 return -ENOTSUPP;
3614
3615         ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3616                        bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3617         if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3618                 __skb_reset_checksum_unnecessary(skb);
3619
3620         bpf_compute_data_pointers(skb);
3621         return ret;
3622 }
3623
3624 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3625         .func           = bpf_skb_adjust_room,
3626         .gpl_only       = false,
3627         .ret_type       = RET_INTEGER,
3628         .arg1_type      = ARG_PTR_TO_CTX,
3629         .arg2_type      = ARG_ANYTHING,
3630         .arg3_type      = ARG_ANYTHING,
3631         .arg4_type      = ARG_ANYTHING,
3632 };
3633
3634 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3635 {
3636         u32 min_len = skb_network_offset(skb);
3637
3638         if (skb_transport_header_was_set(skb))
3639                 min_len = skb_transport_offset(skb);
3640         if (skb->ip_summed == CHECKSUM_PARTIAL)
3641                 min_len = skb_checksum_start_offset(skb) +
3642                           skb->csum_offset + sizeof(__sum16);
3643         return min_len;
3644 }
3645
3646 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3647 {
3648         unsigned int old_len = skb->len;
3649         int ret;
3650
3651         ret = __skb_grow_rcsum(skb, new_len);
3652         if (!ret)
3653                 memset(skb->data + old_len, 0, new_len - old_len);
3654         return ret;
3655 }
3656
3657 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3658 {
3659         return __skb_trim_rcsum(skb, new_len);
3660 }
3661
3662 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3663                                         u64 flags)
3664 {
3665         u32 max_len = BPF_SKB_MAX_LEN;
3666         u32 min_len = __bpf_skb_min_len(skb);
3667         int ret;
3668
3669         if (unlikely(flags || new_len > max_len || new_len < min_len))
3670                 return -EINVAL;
3671         if (skb->encapsulation)
3672                 return -ENOTSUPP;
3673
3674         /* The basic idea of this helper is that it's performing the
3675          * needed work to either grow or trim an skb, and eBPF program
3676          * rewrites the rest via helpers like bpf_skb_store_bytes(),
3677          * bpf_lX_csum_replace() and others rather than passing a raw
3678          * buffer here. This one is a slow path helper and intended
3679          * for replies with control messages.
3680          *
3681          * Like in bpf_skb_change_proto(), we want to keep this rather
3682          * minimal and without protocol specifics so that we are able
3683          * to separate concerns as in bpf_skb_store_bytes() should only
3684          * be the one responsible for writing buffers.
3685          *
3686          * It's really expected to be a slow path operation here for
3687          * control message replies, so we're implicitly linearizing,
3688          * uncloning and drop offloads from the skb by this.
3689          */
3690         ret = __bpf_try_make_writable(skb, skb->len);
3691         if (!ret) {
3692                 if (new_len > skb->len)
3693                         ret = bpf_skb_grow_rcsum(skb, new_len);
3694                 else if (new_len < skb->len)
3695                         ret = bpf_skb_trim_rcsum(skb, new_len);
3696                 if (!ret && skb_is_gso(skb))
3697                         skb_gso_reset(skb);
3698         }
3699         return ret;
3700 }
3701
3702 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3703            u64, flags)
3704 {
3705         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3706
3707         bpf_compute_data_pointers(skb);
3708         return ret;
3709 }
3710
3711 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3712         .func           = bpf_skb_change_tail,
3713         .gpl_only       = false,
3714         .ret_type       = RET_INTEGER,
3715         .arg1_type      = ARG_PTR_TO_CTX,
3716         .arg2_type      = ARG_ANYTHING,
3717         .arg3_type      = ARG_ANYTHING,
3718 };
3719
3720 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3721            u64, flags)
3722 {
3723         return __bpf_skb_change_tail(skb, new_len, flags);
3724 }
3725
3726 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3727         .func           = sk_skb_change_tail,
3728         .gpl_only       = false,
3729         .ret_type       = RET_INTEGER,
3730         .arg1_type      = ARG_PTR_TO_CTX,
3731         .arg2_type      = ARG_ANYTHING,
3732         .arg3_type      = ARG_ANYTHING,
3733 };
3734
3735 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3736                                         u64 flags)
3737 {
3738         u32 max_len = BPF_SKB_MAX_LEN;
3739         u32 new_len = skb->len + head_room;
3740         int ret;
3741
3742         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3743                      new_len < skb->len))
3744                 return -EINVAL;
3745
3746         ret = skb_cow(skb, head_room);
3747         if (likely(!ret)) {
3748                 /* Idea for this helper is that we currently only
3749                  * allow to expand on mac header. This means that
3750                  * skb->protocol network header, etc, stay as is.
3751                  * Compared to bpf_skb_change_tail(), we're more
3752                  * flexible due to not needing to linearize or
3753                  * reset GSO. Intention for this helper is to be
3754                  * used by an L3 skb that needs to push mac header
3755                  * for redirection into L2 device.
3756                  */
3757                 __skb_push(skb, head_room);
3758                 memset(skb->data, 0, head_room);
3759                 skb_reset_mac_header(skb);
3760                 skb_reset_mac_len(skb);
3761         }
3762
3763         return ret;
3764 }
3765
3766 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3767            u64, flags)
3768 {
3769         int ret = __bpf_skb_change_head(skb, head_room, flags);
3770
3771         bpf_compute_data_pointers(skb);
3772         return ret;
3773 }
3774
3775 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3776         .func           = bpf_skb_change_head,
3777         .gpl_only       = false,
3778         .ret_type       = RET_INTEGER,
3779         .arg1_type      = ARG_PTR_TO_CTX,
3780         .arg2_type      = ARG_ANYTHING,
3781         .arg3_type      = ARG_ANYTHING,
3782 };
3783
3784 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3785            u64, flags)
3786 {
3787         return __bpf_skb_change_head(skb, head_room, flags);
3788 }
3789
3790 static const struct bpf_func_proto sk_skb_change_head_proto = {
3791         .func           = sk_skb_change_head,
3792         .gpl_only       = false,
3793         .ret_type       = RET_INTEGER,
3794         .arg1_type      = ARG_PTR_TO_CTX,
3795         .arg2_type      = ARG_ANYTHING,
3796         .arg3_type      = ARG_ANYTHING,
3797 };
3798
3799 BPF_CALL_1(bpf_xdp_get_buff_len, struct  xdp_buff*, xdp)
3800 {
3801         return xdp_get_buff_len(xdp);
3802 }
3803
3804 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3805         .func           = bpf_xdp_get_buff_len,
3806         .gpl_only       = false,
3807         .ret_type       = RET_INTEGER,
3808         .arg1_type      = ARG_PTR_TO_CTX,
3809 };
3810
3811 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3812
3813 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3814         .func           = bpf_xdp_get_buff_len,
3815         .gpl_only       = false,
3816         .arg1_type      = ARG_PTR_TO_BTF_ID,
3817         .arg1_btf_id    = &bpf_xdp_get_buff_len_bpf_ids[0],
3818 };
3819
3820 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3821 {
3822         return xdp_data_meta_unsupported(xdp) ? 0 :
3823                xdp->data - xdp->data_meta;
3824 }
3825
3826 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3827 {
3828         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3829         unsigned long metalen = xdp_get_metalen(xdp);
3830         void *data_start = xdp_frame_end + metalen;
3831         void *data = xdp->data + offset;
3832
3833         if (unlikely(data < data_start ||
3834                      data > xdp->data_end - ETH_HLEN))
3835                 return -EINVAL;
3836
3837         if (metalen)
3838                 memmove(xdp->data_meta + offset,
3839                         xdp->data_meta, metalen);
3840         xdp->data_meta += offset;
3841         xdp->data = data;
3842
3843         return 0;
3844 }
3845
3846 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3847         .func           = bpf_xdp_adjust_head,
3848         .gpl_only       = false,
3849         .ret_type       = RET_INTEGER,
3850         .arg1_type      = ARG_PTR_TO_CTX,
3851         .arg2_type      = ARG_ANYTHING,
3852 };
3853
3854 static void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3855                              void *buf, unsigned long len, bool flush)
3856 {
3857         unsigned long ptr_len, ptr_off = 0;
3858         skb_frag_t *next_frag, *end_frag;
3859         struct skb_shared_info *sinfo;
3860         void *src, *dst;
3861         u8 *ptr_buf;
3862
3863         if (likely(xdp->data_end - xdp->data >= off + len)) {
3864                 src = flush ? buf : xdp->data + off;
3865                 dst = flush ? xdp->data + off : buf;
3866                 memcpy(dst, src, len);
3867                 return;
3868         }
3869
3870         sinfo = xdp_get_shared_info_from_buff(xdp);
3871         end_frag = &sinfo->frags[sinfo->nr_frags];
3872         next_frag = &sinfo->frags[0];
3873
3874         ptr_len = xdp->data_end - xdp->data;
3875         ptr_buf = xdp->data;
3876
3877         while (true) {
3878                 if (off < ptr_off + ptr_len) {
3879                         unsigned long copy_off = off - ptr_off;
3880                         unsigned long copy_len = min(len, ptr_len - copy_off);
3881
3882                         src = flush ? buf : ptr_buf + copy_off;
3883                         dst = flush ? ptr_buf + copy_off : buf;
3884                         memcpy(dst, src, copy_len);
3885
3886                         off += copy_len;
3887                         len -= copy_len;
3888                         buf += copy_len;
3889                 }
3890
3891                 if (!len || next_frag == end_frag)
3892                         break;
3893
3894                 ptr_off += ptr_len;
3895                 ptr_buf = skb_frag_address(next_frag);
3896                 ptr_len = skb_frag_size(next_frag);
3897                 next_frag++;
3898         }
3899 }
3900
3901 static void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3902 {
3903         struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3904         u32 size = xdp->data_end - xdp->data;
3905         void *addr = xdp->data;
3906         int i;
3907
3908         if (unlikely(offset > 0xffff || len > 0xffff))
3909                 return ERR_PTR(-EFAULT);
3910
3911         if (offset + len > xdp_get_buff_len(xdp))
3912                 return ERR_PTR(-EINVAL);
3913
3914         if (offset < size) /* linear area */
3915                 goto out;
3916
3917         offset -= size;
3918         for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
3919                 u32 frag_size = skb_frag_size(&sinfo->frags[i]);
3920
3921                 if  (offset < frag_size) {
3922                         addr = skb_frag_address(&sinfo->frags[i]);
3923                         size = frag_size;
3924                         break;
3925                 }
3926                 offset -= frag_size;
3927         }
3928 out:
3929         return offset + len <= size ? addr + offset : NULL;
3930 }
3931
3932 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
3933            void *, buf, u32, len)
3934 {
3935         void *ptr;
3936
3937         ptr = bpf_xdp_pointer(xdp, offset, len);
3938         if (IS_ERR(ptr))
3939                 return PTR_ERR(ptr);
3940
3941         if (!ptr)
3942                 bpf_xdp_copy_buf(xdp, offset, buf, len, false);
3943         else
3944                 memcpy(buf, ptr, len);
3945
3946         return 0;
3947 }
3948
3949 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
3950         .func           = bpf_xdp_load_bytes,
3951         .gpl_only       = false,
3952         .ret_type       = RET_INTEGER,
3953         .arg1_type      = ARG_PTR_TO_CTX,
3954         .arg2_type      = ARG_ANYTHING,
3955         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
3956         .arg4_type      = ARG_CONST_SIZE,
3957 };
3958
3959 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
3960            void *, buf, u32, len)
3961 {
3962         void *ptr;
3963
3964         ptr = bpf_xdp_pointer(xdp, offset, len);
3965         if (IS_ERR(ptr))
3966                 return PTR_ERR(ptr);
3967
3968         if (!ptr)
3969                 bpf_xdp_copy_buf(xdp, offset, buf, len, true);
3970         else
3971                 memcpy(ptr, buf, len);
3972
3973         return 0;
3974 }
3975
3976 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
3977         .func           = bpf_xdp_store_bytes,
3978         .gpl_only       = false,
3979         .ret_type       = RET_INTEGER,
3980         .arg1_type      = ARG_PTR_TO_CTX,
3981         .arg2_type      = ARG_ANYTHING,
3982         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
3983         .arg4_type      = ARG_CONST_SIZE,
3984 };
3985
3986 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
3987 {
3988         struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3989         skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
3990         struct xdp_rxq_info *rxq = xdp->rxq;
3991         unsigned int tailroom;
3992
3993         if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
3994                 return -EOPNOTSUPP;
3995
3996         tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
3997         if (unlikely(offset > tailroom))
3998                 return -EINVAL;
3999
4000         memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4001         skb_frag_size_add(frag, offset);
4002         sinfo->xdp_frags_size += offset;
4003
4004         return 0;
4005 }
4006
4007 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4008 {
4009         struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4010         int i, n_frags_free = 0, len_free = 0;
4011
4012         if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4013                 return -EINVAL;
4014
4015         for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4016                 skb_frag_t *frag = &sinfo->frags[i];
4017                 int shrink = min_t(int, offset, skb_frag_size(frag));
4018
4019                 len_free += shrink;
4020                 offset -= shrink;
4021
4022                 if (skb_frag_size(frag) == shrink) {
4023                         struct page *page = skb_frag_page(frag);
4024
4025                         __xdp_return(page_address(page), &xdp->rxq->mem,
4026                                      false, NULL);
4027                         n_frags_free++;
4028                 } else {
4029                         skb_frag_size_sub(frag, shrink);
4030                         break;
4031                 }
4032         }
4033         sinfo->nr_frags -= n_frags_free;
4034         sinfo->xdp_frags_size -= len_free;
4035
4036         if (unlikely(!sinfo->nr_frags)) {
4037                 xdp_buff_clear_frags_flag(xdp);
4038                 xdp->data_end -= offset;
4039         }
4040
4041         return 0;
4042 }
4043
4044 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4045 {
4046         void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4047         void *data_end = xdp->data_end + offset;
4048
4049         if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4050                 if (offset < 0)
4051                         return bpf_xdp_frags_shrink_tail(xdp, -offset);
4052
4053                 return bpf_xdp_frags_increase_tail(xdp, offset);
4054         }
4055
4056         /* Notice that xdp_data_hard_end have reserved some tailroom */
4057         if (unlikely(data_end > data_hard_end))
4058                 return -EINVAL;
4059
4060         /* ALL drivers MUST init xdp->frame_sz, chicken check below */
4061         if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
4062                 WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
4063                 return -EINVAL;
4064         }
4065
4066         if (unlikely(data_end < xdp->data + ETH_HLEN))
4067                 return -EINVAL;
4068
4069         /* Clear memory area on grow, can contain uninit kernel memory */
4070         if (offset > 0)
4071                 memset(xdp->data_end, 0, offset);
4072
4073         xdp->data_end = data_end;
4074
4075         return 0;
4076 }
4077
4078 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4079         .func           = bpf_xdp_adjust_tail,
4080         .gpl_only       = false,
4081         .ret_type       = RET_INTEGER,
4082         .arg1_type      = ARG_PTR_TO_CTX,
4083         .arg2_type      = ARG_ANYTHING,
4084 };
4085
4086 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4087 {
4088         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4089         void *meta = xdp->data_meta + offset;
4090         unsigned long metalen = xdp->data - meta;
4091
4092         if (xdp_data_meta_unsupported(xdp))
4093                 return -ENOTSUPP;
4094         if (unlikely(meta < xdp_frame_end ||
4095                      meta > xdp->data))
4096                 return -EINVAL;
4097         if (unlikely(xdp_metalen_invalid(metalen)))
4098                 return -EACCES;
4099
4100         xdp->data_meta = meta;
4101
4102         return 0;
4103 }
4104
4105 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4106         .func           = bpf_xdp_adjust_meta,
4107         .gpl_only       = false,
4108         .ret_type       = RET_INTEGER,
4109         .arg1_type      = ARG_PTR_TO_CTX,
4110         .arg2_type      = ARG_ANYTHING,
4111 };
4112
4113 /* XDP_REDIRECT works by a three-step process, implemented in the functions
4114  * below:
4115  *
4116  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4117  *    of the redirect and store it (along with some other metadata) in a per-CPU
4118  *    struct bpf_redirect_info.
4119  *
4120  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4121  *    call xdp_do_redirect() which will use the information in struct
4122  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4123  *    bulk queue structure.
4124  *
4125  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
4126  *    which will flush all the different bulk queues, thus completing the
4127  *    redirect.
4128  *
4129  * Pointers to the map entries will be kept around for this whole sequence of
4130  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4131  * the core code; instead, the RCU protection relies on everything happening
4132  * inside a single NAPI poll sequence, which means it's between a pair of calls
4133  * to local_bh_disable()/local_bh_enable().
4134  *
4135  * The map entries are marked as __rcu and the map code makes sure to
4136  * dereference those pointers with rcu_dereference_check() in a way that works
4137  * for both sections that to hold an rcu_read_lock() and sections that are
4138  * called from NAPI without a separate rcu_read_lock(). The code below does not
4139  * use RCU annotations, but relies on those in the map code.
4140  */
4141 void xdp_do_flush(void)
4142 {
4143         __dev_flush();
4144         __cpu_map_flush();
4145         __xsk_map_flush();
4146 }
4147 EXPORT_SYMBOL_GPL(xdp_do_flush);
4148
4149 void bpf_clear_redirect_map(struct bpf_map *map)
4150 {
4151         struct bpf_redirect_info *ri;
4152         int cpu;
4153
4154         for_each_possible_cpu(cpu) {
4155                 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4156                 /* Avoid polluting remote cacheline due to writes if
4157                  * not needed. Once we pass this test, we need the
4158                  * cmpxchg() to make sure it hasn't been changed in
4159                  * the meantime by remote CPU.
4160                  */
4161                 if (unlikely(READ_ONCE(ri->map) == map))
4162                         cmpxchg(&ri->map, map, NULL);
4163         }
4164 }
4165
4166 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4167 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4168
4169 u32 xdp_master_redirect(struct xdp_buff *xdp)
4170 {
4171         struct net_device *master, *slave;
4172         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4173
4174         master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4175         slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4176         if (slave && slave != xdp->rxq->dev) {
4177                 /* The target device is different from the receiving device, so
4178                  * redirect it to the new device.
4179                  * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4180                  * drivers to unmap the packet from their rx ring.
4181                  */
4182                 ri->tgt_index = slave->ifindex;
4183                 ri->map_id = INT_MAX;
4184                 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4185                 return XDP_REDIRECT;
4186         }
4187         return XDP_TX;
4188 }
4189 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4190
4191 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4192                                         struct net_device *dev,
4193                                         struct xdp_buff *xdp,
4194                                         struct bpf_prog *xdp_prog)
4195 {
4196         enum bpf_map_type map_type = ri->map_type;
4197         void *fwd = ri->tgt_value;
4198         u32 map_id = ri->map_id;
4199         int err;
4200
4201         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4202         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4203
4204         err = __xsk_map_redirect(fwd, xdp);
4205         if (unlikely(err))
4206                 goto err;
4207
4208         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4209         return 0;
4210 err:
4211         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4212         return err;
4213 }
4214
4215 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4216                                                    struct net_device *dev,
4217                                                    struct xdp_frame *xdpf,
4218                                                    struct bpf_prog *xdp_prog)
4219 {
4220         enum bpf_map_type map_type = ri->map_type;
4221         void *fwd = ri->tgt_value;
4222         u32 map_id = ri->map_id;
4223         struct bpf_map *map;
4224         int err;
4225
4226         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4227         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4228
4229         if (unlikely(!xdpf)) {
4230                 err = -EOVERFLOW;
4231                 goto err;
4232         }
4233
4234         switch (map_type) {
4235         case BPF_MAP_TYPE_DEVMAP:
4236                 fallthrough;
4237         case BPF_MAP_TYPE_DEVMAP_HASH:
4238                 map = READ_ONCE(ri->map);
4239                 if (unlikely(map)) {
4240                         WRITE_ONCE(ri->map, NULL);
4241                         err = dev_map_enqueue_multi(xdpf, dev, map,
4242                                                     ri->flags & BPF_F_EXCLUDE_INGRESS);
4243                 } else {
4244                         err = dev_map_enqueue(fwd, xdpf, dev);
4245                 }
4246                 break;
4247         case BPF_MAP_TYPE_CPUMAP:
4248                 err = cpu_map_enqueue(fwd, xdpf, dev);
4249                 break;
4250         case BPF_MAP_TYPE_UNSPEC:
4251                 if (map_id == INT_MAX) {
4252                         fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4253                         if (unlikely(!fwd)) {
4254                                 err = -EINVAL;
4255                                 break;
4256                         }
4257                         err = dev_xdp_enqueue(fwd, xdpf, dev);
4258                         break;
4259                 }
4260                 fallthrough;
4261         default:
4262                 err = -EBADRQC;
4263         }
4264
4265         if (unlikely(err))
4266                 goto err;
4267
4268         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4269         return 0;
4270 err:
4271         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4272         return err;
4273 }
4274
4275 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4276                     struct bpf_prog *xdp_prog)
4277 {
4278         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4279         enum bpf_map_type map_type = ri->map_type;
4280
4281         /* XDP_REDIRECT is not fully supported yet for xdp frags since
4282          * not all XDP capable drivers can map non-linear xdp_frame in
4283          * ndo_xdp_xmit.
4284          */
4285         if (unlikely(xdp_buff_has_frags(xdp) &&
4286                      map_type != BPF_MAP_TYPE_CPUMAP))
4287                 return -EOPNOTSUPP;
4288
4289         if (map_type == BPF_MAP_TYPE_XSKMAP)
4290                 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4291
4292         return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4293                                        xdp_prog);
4294 }
4295 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4296
4297 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4298                           struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4299 {
4300         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4301         enum bpf_map_type map_type = ri->map_type;
4302
4303         if (map_type == BPF_MAP_TYPE_XSKMAP)
4304                 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4305
4306         return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4307 }
4308 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4309
4310 static int xdp_do_generic_redirect_map(struct net_device *dev,
4311                                        struct sk_buff *skb,
4312                                        struct xdp_buff *xdp,
4313                                        struct bpf_prog *xdp_prog,
4314                                        void *fwd,
4315                                        enum bpf_map_type map_type, u32 map_id)
4316 {
4317         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4318         struct bpf_map *map;
4319         int err;
4320
4321         switch (map_type) {
4322         case BPF_MAP_TYPE_DEVMAP:
4323                 fallthrough;
4324         case BPF_MAP_TYPE_DEVMAP_HASH:
4325                 map = READ_ONCE(ri->map);
4326                 if (unlikely(map)) {
4327                         WRITE_ONCE(ri->map, NULL);
4328                         err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4329                                                      ri->flags & BPF_F_EXCLUDE_INGRESS);
4330                 } else {
4331                         err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4332                 }
4333                 if (unlikely(err))
4334                         goto err;
4335                 break;
4336         case BPF_MAP_TYPE_XSKMAP:
4337                 err = xsk_generic_rcv(fwd, xdp);
4338                 if (err)
4339                         goto err;
4340                 consume_skb(skb);
4341                 break;
4342         case BPF_MAP_TYPE_CPUMAP:
4343                 err = cpu_map_generic_redirect(fwd, skb);
4344                 if (unlikely(err))
4345                         goto err;
4346                 break;
4347         default:
4348                 err = -EBADRQC;
4349                 goto err;
4350         }
4351
4352         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4353         return 0;
4354 err:
4355         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4356         return err;
4357 }
4358
4359 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4360                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4361 {
4362         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4363         enum bpf_map_type map_type = ri->map_type;
4364         void *fwd = ri->tgt_value;
4365         u32 map_id = ri->map_id;
4366         int err;
4367
4368         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4369         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4370
4371         if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4372                 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4373                 if (unlikely(!fwd)) {
4374                         err = -EINVAL;
4375                         goto err;
4376                 }
4377
4378                 err = xdp_ok_fwd_dev(fwd, skb->len);
4379                 if (unlikely(err))
4380                         goto err;
4381
4382                 skb->dev = fwd;
4383                 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4384                 generic_xdp_tx(skb, xdp_prog);
4385                 return 0;
4386         }
4387
4388         return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4389 err:
4390         _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4391         return err;
4392 }
4393
4394 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4395 {
4396         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4397
4398         if (unlikely(flags))
4399                 return XDP_ABORTED;
4400
4401         /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4402          * by map_idr) is used for ifindex based XDP redirect.
4403          */
4404         ri->tgt_index = ifindex;
4405         ri->map_id = INT_MAX;
4406         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4407
4408         return XDP_REDIRECT;
4409 }
4410
4411 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4412         .func           = bpf_xdp_redirect,
4413         .gpl_only       = false,
4414         .ret_type       = RET_INTEGER,
4415         .arg1_type      = ARG_ANYTHING,
4416         .arg2_type      = ARG_ANYTHING,
4417 };
4418
4419 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4420            u64, flags)
4421 {
4422         return map->ops->map_redirect(map, ifindex, flags);
4423 }
4424
4425 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4426         .func           = bpf_xdp_redirect_map,
4427         .gpl_only       = false,
4428         .ret_type       = RET_INTEGER,
4429         .arg1_type      = ARG_CONST_MAP_PTR,
4430         .arg2_type      = ARG_ANYTHING,
4431         .arg3_type      = ARG_ANYTHING,
4432 };
4433
4434 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4435                                   unsigned long off, unsigned long len)
4436 {
4437         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4438
4439         if (unlikely(!ptr))
4440                 return len;
4441         if (ptr != dst_buff)
4442                 memcpy(dst_buff, ptr, len);
4443
4444         return 0;
4445 }
4446
4447 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4448            u64, flags, void *, meta, u64, meta_size)
4449 {
4450         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4451
4452         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4453                 return -EINVAL;
4454         if (unlikely(!skb || skb_size > skb->len))
4455                 return -EFAULT;
4456
4457         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4458                                 bpf_skb_copy);
4459 }
4460
4461 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4462         .func           = bpf_skb_event_output,
4463         .gpl_only       = true,
4464         .ret_type       = RET_INTEGER,
4465         .arg1_type      = ARG_PTR_TO_CTX,
4466         .arg2_type      = ARG_CONST_MAP_PTR,
4467         .arg3_type      = ARG_ANYTHING,
4468         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4469         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4470 };
4471
4472 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4473
4474 const struct bpf_func_proto bpf_skb_output_proto = {
4475         .func           = bpf_skb_event_output,
4476         .gpl_only       = true,
4477         .ret_type       = RET_INTEGER,
4478         .arg1_type      = ARG_PTR_TO_BTF_ID,
4479         .arg1_btf_id    = &bpf_skb_output_btf_ids[0],
4480         .arg2_type      = ARG_CONST_MAP_PTR,
4481         .arg3_type      = ARG_ANYTHING,
4482         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4483         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4484 };
4485
4486 static unsigned short bpf_tunnel_key_af(u64 flags)
4487 {
4488         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4489 }
4490
4491 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4492            u32, size, u64, flags)
4493 {
4494         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4495         u8 compat[sizeof(struct bpf_tunnel_key)];
4496         void *to_orig = to;
4497         int err;
4498
4499         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4500                                          BPF_F_TUNINFO_FLAGS)))) {
4501                 err = -EINVAL;
4502                 goto err_clear;
4503         }
4504         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4505                 err = -EPROTO;
4506                 goto err_clear;
4507         }
4508         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4509                 err = -EINVAL;
4510                 switch (size) {
4511                 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4512                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4513                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4514                         goto set_compat;
4515                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4516                         /* Fixup deprecated structure layouts here, so we have
4517                          * a common path later on.
4518                          */
4519                         if (ip_tunnel_info_af(info) != AF_INET)
4520                                 goto err_clear;
4521 set_compat:
4522                         to = (struct bpf_tunnel_key *)compat;
4523                         break;
4524                 default:
4525                         goto err_clear;
4526                 }
4527         }
4528
4529         to->tunnel_id = be64_to_cpu(info->key.tun_id);
4530         to->tunnel_tos = info->key.tos;
4531         to->tunnel_ttl = info->key.ttl;
4532         if (flags & BPF_F_TUNINFO_FLAGS)
4533                 to->tunnel_flags = info->key.tun_flags;
4534         else
4535                 to->tunnel_ext = 0;
4536
4537         if (flags & BPF_F_TUNINFO_IPV6) {
4538                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4539                        sizeof(to->remote_ipv6));
4540                 memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4541                        sizeof(to->local_ipv6));
4542                 to->tunnel_label = be32_to_cpu(info->key.label);
4543         } else {
4544                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4545                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4546                 to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4547                 memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4548                 to->tunnel_label = 0;
4549         }
4550
4551         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4552                 memcpy(to_orig, to, size);
4553
4554         return 0;
4555 err_clear:
4556         memset(to_orig, 0, size);
4557         return err;
4558 }
4559
4560 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4561         .func           = bpf_skb_get_tunnel_key,
4562         .gpl_only       = false,
4563         .ret_type       = RET_INTEGER,
4564         .arg1_type      = ARG_PTR_TO_CTX,
4565         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4566         .arg3_type      = ARG_CONST_SIZE,
4567         .arg4_type      = ARG_ANYTHING,
4568 };
4569
4570 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4571 {
4572         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4573         int err;
4574
4575         if (unlikely(!info ||
4576                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4577                 err = -ENOENT;
4578                 goto err_clear;
4579         }
4580         if (unlikely(size < info->options_len)) {
4581                 err = -ENOMEM;
4582                 goto err_clear;
4583         }
4584
4585         ip_tunnel_info_opts_get(to, info);
4586         if (size > info->options_len)
4587                 memset(to + info->options_len, 0, size - info->options_len);
4588
4589         return info->options_len;
4590 err_clear:
4591         memset(to, 0, size);
4592         return err;
4593 }
4594
4595 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4596         .func           = bpf_skb_get_tunnel_opt,
4597         .gpl_only       = false,
4598         .ret_type       = RET_INTEGER,
4599         .arg1_type      = ARG_PTR_TO_CTX,
4600         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4601         .arg3_type      = ARG_CONST_SIZE,
4602 };
4603
4604 static struct metadata_dst __percpu *md_dst;
4605
4606 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4607            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4608 {
4609         struct metadata_dst *md = this_cpu_ptr(md_dst);
4610         u8 compat[sizeof(struct bpf_tunnel_key)];
4611         struct ip_tunnel_info *info;
4612
4613         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4614                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4615                 return -EINVAL;
4616         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4617                 switch (size) {
4618                 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4619                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4620                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4621                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4622                         /* Fixup deprecated structure layouts here, so we have
4623                          * a common path later on.
4624                          */
4625                         memcpy(compat, from, size);
4626                         memset(compat + size, 0, sizeof(compat) - size);
4627                         from = (const struct bpf_tunnel_key *) compat;
4628                         break;
4629                 default:
4630                         return -EINVAL;
4631                 }
4632         }
4633         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4634                      from->tunnel_ext))
4635                 return -EINVAL;
4636
4637         skb_dst_drop(skb);
4638         dst_hold((struct dst_entry *) md);
4639         skb_dst_set(skb, (struct dst_entry *) md);
4640
4641         info = &md->u.tun_info;
4642         memset(info, 0, sizeof(*info));
4643         info->mode = IP_TUNNEL_INFO_TX;
4644
4645         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4646         if (flags & BPF_F_DONT_FRAGMENT)
4647                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4648         if (flags & BPF_F_ZERO_CSUM_TX)
4649                 info->key.tun_flags &= ~TUNNEL_CSUM;
4650         if (flags & BPF_F_SEQ_NUMBER)
4651                 info->key.tun_flags |= TUNNEL_SEQ;
4652
4653         info->key.tun_id = cpu_to_be64(from->tunnel_id);
4654         info->key.tos = from->tunnel_tos;
4655         info->key.ttl = from->tunnel_ttl;
4656
4657         if (flags & BPF_F_TUNINFO_IPV6) {
4658                 info->mode |= IP_TUNNEL_INFO_IPV6;
4659                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4660                        sizeof(from->remote_ipv6));
4661                 memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4662                        sizeof(from->local_ipv6));
4663                 info->key.label = cpu_to_be32(from->tunnel_label) &
4664                                   IPV6_FLOWLABEL_MASK;
4665         } else {
4666                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4667                 info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4668                 info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4669         }
4670
4671         return 0;
4672 }
4673
4674 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4675         .func           = bpf_skb_set_tunnel_key,
4676         .gpl_only       = false,
4677         .ret_type       = RET_INTEGER,
4678         .arg1_type      = ARG_PTR_TO_CTX,
4679         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4680         .arg3_type      = ARG_CONST_SIZE,
4681         .arg4_type      = ARG_ANYTHING,
4682 };
4683
4684 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4685            const u8 *, from, u32, size)
4686 {
4687         struct ip_tunnel_info *info = skb_tunnel_info(skb);
4688         const struct metadata_dst *md = this_cpu_ptr(md_dst);
4689
4690         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4691                 return -EINVAL;
4692         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4693                 return -ENOMEM;
4694
4695         ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4696
4697         return 0;
4698 }
4699
4700 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4701         .func           = bpf_skb_set_tunnel_opt,
4702         .gpl_only       = false,
4703         .ret_type       = RET_INTEGER,
4704         .arg1_type      = ARG_PTR_TO_CTX,
4705         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4706         .arg3_type      = ARG_CONST_SIZE,
4707 };
4708
4709 static const struct bpf_func_proto *
4710 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4711 {
4712         if (!md_dst) {
4713                 struct metadata_dst __percpu *tmp;
4714
4715                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4716                                                 METADATA_IP_TUNNEL,
4717                                                 GFP_KERNEL);
4718                 if (!tmp)
4719                         return NULL;
4720                 if (cmpxchg(&md_dst, NULL, tmp))
4721                         metadata_dst_free_percpu(tmp);
4722         }
4723
4724         switch (which) {
4725         case BPF_FUNC_skb_set_tunnel_key:
4726                 return &bpf_skb_set_tunnel_key_proto;
4727         case BPF_FUNC_skb_set_tunnel_opt:
4728                 return &bpf_skb_set_tunnel_opt_proto;
4729         default:
4730                 return NULL;
4731         }
4732 }
4733
4734 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4735            u32, idx)
4736 {
4737         struct bpf_array *array = container_of(map, struct bpf_array, map);
4738         struct cgroup *cgrp;
4739         struct sock *sk;
4740
4741         sk = skb_to_full_sk(skb);
4742         if (!sk || !sk_fullsock(sk))
4743                 return -ENOENT;
4744         if (unlikely(idx >= array->map.max_entries))
4745                 return -E2BIG;
4746
4747         cgrp = READ_ONCE(array->ptrs[idx]);
4748         if (unlikely(!cgrp))
4749                 return -EAGAIN;
4750
4751         return sk_under_cgroup_hierarchy(sk, cgrp);
4752 }
4753
4754 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4755         .func           = bpf_skb_under_cgroup,
4756         .gpl_only       = false,
4757         .ret_type       = RET_INTEGER,
4758         .arg1_type      = ARG_PTR_TO_CTX,
4759         .arg2_type      = ARG_CONST_MAP_PTR,
4760         .arg3_type      = ARG_ANYTHING,
4761 };
4762
4763 #ifdef CONFIG_SOCK_CGROUP_DATA
4764 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4765 {
4766         struct cgroup *cgrp;
4767
4768         sk = sk_to_full_sk(sk);
4769         if (!sk || !sk_fullsock(sk))
4770                 return 0;
4771
4772         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4773         return cgroup_id(cgrp);
4774 }
4775
4776 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4777 {
4778         return __bpf_sk_cgroup_id(skb->sk);
4779 }
4780
4781 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4782         .func           = bpf_skb_cgroup_id,
4783         .gpl_only       = false,
4784         .ret_type       = RET_INTEGER,
4785         .arg1_type      = ARG_PTR_TO_CTX,
4786 };
4787
4788 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4789                                               int ancestor_level)
4790 {
4791         struct cgroup *ancestor;
4792         struct cgroup *cgrp;
4793
4794         sk = sk_to_full_sk(sk);
4795         if (!sk || !sk_fullsock(sk))
4796                 return 0;
4797
4798         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4799         ancestor = cgroup_ancestor(cgrp, ancestor_level);
4800         if (!ancestor)
4801                 return 0;
4802
4803         return cgroup_id(ancestor);
4804 }
4805
4806 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4807            ancestor_level)
4808 {
4809         return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4810 }
4811
4812 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4813         .func           = bpf_skb_ancestor_cgroup_id,
4814         .gpl_only       = false,
4815         .ret_type       = RET_INTEGER,
4816         .arg1_type      = ARG_PTR_TO_CTX,
4817         .arg2_type      = ARG_ANYTHING,
4818 };
4819
4820 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4821 {
4822         return __bpf_sk_cgroup_id(sk);
4823 }
4824
4825 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4826         .func           = bpf_sk_cgroup_id,
4827         .gpl_only       = false,
4828         .ret_type       = RET_INTEGER,
4829         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4830 };
4831
4832 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4833 {
4834         return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4835 }
4836
4837 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4838         .func           = bpf_sk_ancestor_cgroup_id,
4839         .gpl_only       = false,
4840         .ret_type       = RET_INTEGER,
4841         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4842         .arg2_type      = ARG_ANYTHING,
4843 };
4844 #endif
4845
4846 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4847                                   unsigned long off, unsigned long len)
4848 {
4849         struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4850
4851         bpf_xdp_copy_buf(xdp, off, dst, len, false);
4852         return 0;
4853 }
4854
4855 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4856            u64, flags, void *, meta, u64, meta_size)
4857 {
4858         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4859
4860         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4861                 return -EINVAL;
4862
4863         if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4864                 return -EFAULT;
4865
4866         return bpf_event_output(map, flags, meta, meta_size, xdp,
4867                                 xdp_size, bpf_xdp_copy);
4868 }
4869
4870 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4871         .func           = bpf_xdp_event_output,
4872         .gpl_only       = true,
4873         .ret_type       = RET_INTEGER,
4874         .arg1_type      = ARG_PTR_TO_CTX,
4875         .arg2_type      = ARG_CONST_MAP_PTR,
4876         .arg3_type      = ARG_ANYTHING,
4877         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4878         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4879 };
4880
4881 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4882
4883 const struct bpf_func_proto bpf_xdp_output_proto = {
4884         .func           = bpf_xdp_event_output,
4885         .gpl_only       = true,
4886         .ret_type       = RET_INTEGER,
4887         .arg1_type      = ARG_PTR_TO_BTF_ID,
4888         .arg1_btf_id    = &bpf_xdp_output_btf_ids[0],
4889         .arg2_type      = ARG_CONST_MAP_PTR,
4890         .arg3_type      = ARG_ANYTHING,
4891         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4892         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4893 };
4894
4895 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4896 {
4897         return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4898 }
4899
4900 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4901         .func           = bpf_get_socket_cookie,
4902         .gpl_only       = false,
4903         .ret_type       = RET_INTEGER,
4904         .arg1_type      = ARG_PTR_TO_CTX,
4905 };
4906
4907 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4908 {
4909         return __sock_gen_cookie(ctx->sk);
4910 }
4911
4912 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4913         .func           = bpf_get_socket_cookie_sock_addr,
4914         .gpl_only       = false,
4915         .ret_type       = RET_INTEGER,
4916         .arg1_type      = ARG_PTR_TO_CTX,
4917 };
4918
4919 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4920 {
4921         return __sock_gen_cookie(ctx);
4922 }
4923
4924 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4925         .func           = bpf_get_socket_cookie_sock,
4926         .gpl_only       = false,
4927         .ret_type       = RET_INTEGER,
4928         .arg1_type      = ARG_PTR_TO_CTX,
4929 };
4930
4931 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4932 {
4933         return sk ? sock_gen_cookie(sk) : 0;
4934 }
4935
4936 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4937         .func           = bpf_get_socket_ptr_cookie,
4938         .gpl_only       = false,
4939         .ret_type       = RET_INTEGER,
4940         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4941 };
4942
4943 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4944 {
4945         return __sock_gen_cookie(ctx->sk);
4946 }
4947
4948 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4949         .func           = bpf_get_socket_cookie_sock_ops,
4950         .gpl_only       = false,
4951         .ret_type       = RET_INTEGER,
4952         .arg1_type      = ARG_PTR_TO_CTX,
4953 };
4954
4955 static u64 __bpf_get_netns_cookie(struct sock *sk)
4956 {
4957         const struct net *net = sk ? sock_net(sk) : &init_net;
4958
4959         return net->net_cookie;
4960 }
4961
4962 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4963 {
4964         return __bpf_get_netns_cookie(ctx);
4965 }
4966
4967 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4968         .func           = bpf_get_netns_cookie_sock,
4969         .gpl_only       = false,
4970         .ret_type       = RET_INTEGER,
4971         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4972 };
4973
4974 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4975 {
4976         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4977 }
4978
4979 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4980         .func           = bpf_get_netns_cookie_sock_addr,
4981         .gpl_only       = false,
4982         .ret_type       = RET_INTEGER,
4983         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4984 };
4985
4986 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4987 {
4988         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4989 }
4990
4991 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
4992         .func           = bpf_get_netns_cookie_sock_ops,
4993         .gpl_only       = false,
4994         .ret_type       = RET_INTEGER,
4995         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4996 };
4997
4998 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
4999 {
5000         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5001 }
5002
5003 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5004         .func           = bpf_get_netns_cookie_sk_msg,
5005         .gpl_only       = false,
5006         .ret_type       = RET_INTEGER,
5007         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
5008 };
5009
5010 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5011 {
5012         struct sock *sk = sk_to_full_sk(skb->sk);
5013         kuid_t kuid;
5014
5015         if (!sk || !sk_fullsock(sk))
5016                 return overflowuid;
5017         kuid = sock_net_uid(sock_net(sk), sk);
5018         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5019 }
5020
5021 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5022         .func           = bpf_get_socket_uid,
5023         .gpl_only       = false,
5024         .ret_type       = RET_INTEGER,
5025         .arg1_type      = ARG_PTR_TO_CTX,
5026 };
5027
5028 static int sol_socket_sockopt(struct sock *sk, int optname,
5029                               char *optval, int *optlen,
5030                               bool getopt)
5031 {
5032         switch (optname) {
5033         case SO_REUSEADDR:
5034         case SO_SNDBUF:
5035         case SO_RCVBUF:
5036         case SO_KEEPALIVE:
5037         case SO_PRIORITY:
5038         case SO_REUSEPORT:
5039         case SO_RCVLOWAT:
5040         case SO_MARK:
5041         case SO_MAX_PACING_RATE:
5042         case SO_BINDTOIFINDEX:
5043         case SO_TXREHASH:
5044                 if (*optlen != sizeof(int))
5045                         return -EINVAL;
5046                 break;
5047         case SO_BINDTODEVICE:
5048                 break;
5049         default:
5050                 return -EINVAL;
5051         }
5052
5053         if (getopt) {
5054                 if (optname == SO_BINDTODEVICE)
5055                         return -EINVAL;
5056                 return sk_getsockopt(sk, SOL_SOCKET, optname,
5057                                      KERNEL_SOCKPTR(optval),
5058                                      KERNEL_SOCKPTR(optlen));
5059         }
5060
5061         return sk_setsockopt(sk, SOL_SOCKET, optname,
5062                              KERNEL_SOCKPTR(optval), *optlen);
5063 }
5064
5065 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5066                                   char *optval, int optlen)
5067 {
5068         struct tcp_sock *tp = tcp_sk(sk);
5069         unsigned long timeout;
5070         int val;
5071
5072         if (optlen != sizeof(int))
5073                 return -EINVAL;
5074
5075         val = *(int *)optval;
5076
5077         /* Only some options are supported */
5078         switch (optname) {
5079         case TCP_BPF_IW:
5080                 if (val <= 0 || tp->data_segs_out > tp->syn_data)
5081                         return -EINVAL;
5082                 tcp_snd_cwnd_set(tp, val);
5083                 break;
5084         case TCP_BPF_SNDCWND_CLAMP:
5085                 if (val <= 0)
5086                         return -EINVAL;
5087                 tp->snd_cwnd_clamp = val;
5088                 tp->snd_ssthresh = val;
5089                 break;
5090         case TCP_BPF_DELACK_MAX:
5091                 timeout = usecs_to_jiffies(val);
5092                 if (timeout > TCP_DELACK_MAX ||
5093                     timeout < TCP_TIMEOUT_MIN)
5094                         return -EINVAL;
5095                 inet_csk(sk)->icsk_delack_max = timeout;
5096                 break;
5097         case TCP_BPF_RTO_MIN:
5098                 timeout = usecs_to_jiffies(val);
5099                 if (timeout > TCP_RTO_MIN ||
5100                     timeout < TCP_TIMEOUT_MIN)
5101                         return -EINVAL;
5102                 inet_csk(sk)->icsk_rto_min = timeout;
5103                 break;
5104         default:
5105                 return -EINVAL;
5106         }
5107
5108         return 0;
5109 }
5110
5111 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5112                                       int *optlen, bool getopt)
5113 {
5114         struct tcp_sock *tp;
5115         int ret;
5116
5117         if (*optlen < 2)
5118                 return -EINVAL;
5119
5120         if (getopt) {
5121                 if (!inet_csk(sk)->icsk_ca_ops)
5122                         return -EINVAL;
5123                 /* BPF expects NULL-terminated tcp-cc string */
5124                 optval[--(*optlen)] = '\0';
5125                 return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5126                                          KERNEL_SOCKPTR(optval),
5127                                          KERNEL_SOCKPTR(optlen));
5128         }
5129
5130         /* "cdg" is the only cc that alloc a ptr
5131          * in inet_csk_ca area.  The bpf-tcp-cc may
5132          * overwrite this ptr after switching to cdg.
5133          */
5134         if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5135                 return -ENOTSUPP;
5136
5137         /* It stops this looping
5138          *
5139          * .init => bpf_setsockopt(tcp_cc) => .init =>
5140          * bpf_setsockopt(tcp_cc)" => .init => ....
5141          *
5142          * The second bpf_setsockopt(tcp_cc) is not allowed
5143          * in order to break the loop when both .init
5144          * are the same bpf prog.
5145          *
5146          * This applies even the second bpf_setsockopt(tcp_cc)
5147          * does not cause a loop.  This limits only the first
5148          * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5149          * pick a fallback cc (eg. peer does not support ECN)
5150          * and the second '.init' cannot fallback to
5151          * another.
5152          */
5153         tp = tcp_sk(sk);
5154         if (tp->bpf_chg_cc_inprogress)
5155                 return -EBUSY;
5156
5157         tp->bpf_chg_cc_inprogress = 1;
5158         ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5159                                 KERNEL_SOCKPTR(optval), *optlen);
5160         tp->bpf_chg_cc_inprogress = 0;
5161         return ret;
5162 }
5163
5164 static int sol_tcp_sockopt(struct sock *sk, int optname,
5165                            char *optval, int *optlen,
5166                            bool getopt)
5167 {
5168         if (sk->sk_prot->setsockopt != tcp_setsockopt)
5169                 return -EINVAL;
5170
5171         switch (optname) {
5172         case TCP_NODELAY:
5173         case TCP_MAXSEG:
5174         case TCP_KEEPIDLE:
5175         case TCP_KEEPINTVL:
5176         case TCP_KEEPCNT:
5177         case TCP_SYNCNT:
5178         case TCP_WINDOW_CLAMP:
5179         case TCP_THIN_LINEAR_TIMEOUTS:
5180         case TCP_USER_TIMEOUT:
5181         case TCP_NOTSENT_LOWAT:
5182         case TCP_SAVE_SYN:
5183                 if (*optlen != sizeof(int))
5184                         return -EINVAL;
5185                 break;
5186         case TCP_CONGESTION:
5187                 return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5188         case TCP_SAVED_SYN:
5189                 if (*optlen < 1)
5190                         return -EINVAL;
5191                 break;
5192         default:
5193                 if (getopt)
5194                         return -EINVAL;
5195                 return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5196         }
5197
5198         if (getopt) {
5199                 if (optname == TCP_SAVED_SYN) {
5200                         struct tcp_sock *tp = tcp_sk(sk);
5201
5202                         if (!tp->saved_syn ||
5203                             *optlen > tcp_saved_syn_len(tp->saved_syn))
5204                                 return -EINVAL;
5205                         memcpy(optval, tp->saved_syn->data, *optlen);
5206                         /* It cannot free tp->saved_syn here because it
5207                          * does not know if the user space still needs it.
5208                          */
5209                         return 0;
5210                 }
5211
5212                 return do_tcp_getsockopt(sk, SOL_TCP, optname,
5213                                          KERNEL_SOCKPTR(optval),
5214                                          KERNEL_SOCKPTR(optlen));
5215         }
5216
5217         return do_tcp_setsockopt(sk, SOL_TCP, optname,
5218                                  KERNEL_SOCKPTR(optval), *optlen);
5219 }
5220
5221 static int sol_ip_sockopt(struct sock *sk, int optname,
5222                           char *optval, int *optlen,
5223                           bool getopt)
5224 {
5225         if (sk->sk_family != AF_INET)
5226                 return -EINVAL;
5227
5228         switch (optname) {
5229         case IP_TOS:
5230                 if (*optlen != sizeof(int))
5231                         return -EINVAL;
5232                 break;
5233         default:
5234                 return -EINVAL;
5235         }
5236
5237         if (getopt)
5238                 return do_ip_getsockopt(sk, SOL_IP, optname,
5239                                         KERNEL_SOCKPTR(optval),
5240                                         KERNEL_SOCKPTR(optlen));
5241
5242         return do_ip_setsockopt(sk, SOL_IP, optname,
5243                                 KERNEL_SOCKPTR(optval), *optlen);
5244 }
5245
5246 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5247                             char *optval, int *optlen,
5248                             bool getopt)
5249 {
5250         if (sk->sk_family != AF_INET6)
5251                 return -EINVAL;
5252
5253         switch (optname) {
5254         case IPV6_TCLASS:
5255         case IPV6_AUTOFLOWLABEL:
5256                 if (*optlen != sizeof(int))
5257                         return -EINVAL;
5258                 break;
5259         default:
5260                 return -EINVAL;
5261         }
5262
5263         if (getopt)
5264                 return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5265                                                       KERNEL_SOCKPTR(optval),
5266                                                       KERNEL_SOCKPTR(optlen));
5267
5268         return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5269                                               KERNEL_SOCKPTR(optval), *optlen);
5270 }
5271
5272 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5273                             char *optval, int optlen)
5274 {
5275         if (!sk_fullsock(sk))
5276                 return -EINVAL;
5277
5278         if (level == SOL_SOCKET)
5279                 return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5280         else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5281                 return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5282         else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5283                 return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5284         else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5285                 return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5286
5287         return -EINVAL;
5288 }
5289
5290 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5291                            char *optval, int optlen)
5292 {
5293         if (sk_fullsock(sk))
5294                 sock_owned_by_me(sk);
5295         return __bpf_setsockopt(sk, level, optname, optval, optlen);
5296 }
5297
5298 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5299                             char *optval, int optlen)
5300 {
5301         int err, saved_optlen = optlen;
5302
5303         if (!sk_fullsock(sk)) {
5304                 err = -EINVAL;
5305                 goto done;
5306         }
5307
5308         if (level == SOL_SOCKET)
5309                 err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5310         else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5311                 err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5312         else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5313                 err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5314         else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5315                 err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5316         else
5317                 err = -EINVAL;
5318
5319 done:
5320         if (err)
5321                 optlen = 0;
5322         if (optlen < saved_optlen)
5323                 memset(optval + optlen, 0, saved_optlen - optlen);
5324         return err;
5325 }
5326
5327 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5328                            char *optval, int optlen)
5329 {
5330         if (sk_fullsock(sk))
5331                 sock_owned_by_me(sk);
5332         return __bpf_getsockopt(sk, level, optname, optval, optlen);
5333 }
5334
5335 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5336            int, optname, char *, optval, int, optlen)
5337 {
5338         return _bpf_setsockopt(sk, level, optname, optval, optlen);
5339 }
5340
5341 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5342         .func           = bpf_sk_setsockopt,
5343         .gpl_only       = false,
5344         .ret_type       = RET_INTEGER,
5345         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5346         .arg2_type      = ARG_ANYTHING,
5347         .arg3_type      = ARG_ANYTHING,
5348         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5349         .arg5_type      = ARG_CONST_SIZE,
5350 };
5351
5352 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5353            int, optname, char *, optval, int, optlen)
5354 {
5355         return _bpf_getsockopt(sk, level, optname, optval, optlen);
5356 }
5357
5358 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5359         .func           = bpf_sk_getsockopt,
5360         .gpl_only       = false,
5361         .ret_type       = RET_INTEGER,
5362         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5363         .arg2_type      = ARG_ANYTHING,
5364         .arg3_type      = ARG_ANYTHING,
5365         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5366         .arg5_type      = ARG_CONST_SIZE,
5367 };
5368
5369 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5370            int, optname, char *, optval, int, optlen)
5371 {
5372         return __bpf_setsockopt(sk, level, optname, optval, optlen);
5373 }
5374
5375 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5376         .func           = bpf_unlocked_sk_setsockopt,
5377         .gpl_only       = false,
5378         .ret_type       = RET_INTEGER,
5379         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5380         .arg2_type      = ARG_ANYTHING,
5381         .arg3_type      = ARG_ANYTHING,
5382         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5383         .arg5_type      = ARG_CONST_SIZE,
5384 };
5385
5386 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5387            int, optname, char *, optval, int, optlen)
5388 {
5389         return __bpf_getsockopt(sk, level, optname, optval, optlen);
5390 }
5391
5392 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5393         .func           = bpf_unlocked_sk_getsockopt,
5394         .gpl_only       = false,
5395         .ret_type       = RET_INTEGER,
5396         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5397         .arg2_type      = ARG_ANYTHING,
5398         .arg3_type      = ARG_ANYTHING,
5399         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5400         .arg5_type      = ARG_CONST_SIZE,
5401 };
5402
5403 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5404            int, level, int, optname, char *, optval, int, optlen)
5405 {
5406         return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5407 }
5408
5409 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5410         .func           = bpf_sock_addr_setsockopt,
5411         .gpl_only       = false,
5412         .ret_type       = RET_INTEGER,
5413         .arg1_type      = ARG_PTR_TO_CTX,
5414         .arg2_type      = ARG_ANYTHING,
5415         .arg3_type      = ARG_ANYTHING,
5416         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5417         .arg5_type      = ARG_CONST_SIZE,
5418 };
5419
5420 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5421            int, level, int, optname, char *, optval, int, optlen)
5422 {
5423         return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5424 }
5425
5426 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5427         .func           = bpf_sock_addr_getsockopt,
5428         .gpl_only       = false,
5429         .ret_type       = RET_INTEGER,
5430         .arg1_type      = ARG_PTR_TO_CTX,
5431         .arg2_type      = ARG_ANYTHING,
5432         .arg3_type      = ARG_ANYTHING,
5433         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5434         .arg5_type      = ARG_CONST_SIZE,
5435 };
5436
5437 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5438            int, level, int, optname, char *, optval, int, optlen)
5439 {
5440         return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5441 }
5442
5443 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5444         .func           = bpf_sock_ops_setsockopt,
5445         .gpl_only       = false,
5446         .ret_type       = RET_INTEGER,
5447         .arg1_type      = ARG_PTR_TO_CTX,
5448         .arg2_type      = ARG_ANYTHING,
5449         .arg3_type      = ARG_ANYTHING,
5450         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5451         .arg5_type      = ARG_CONST_SIZE,
5452 };
5453
5454 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5455                                 int optname, const u8 **start)
5456 {
5457         struct sk_buff *syn_skb = bpf_sock->syn_skb;
5458         const u8 *hdr_start;
5459         int ret;
5460
5461         if (syn_skb) {
5462                 /* sk is a request_sock here */
5463
5464                 if (optname == TCP_BPF_SYN) {
5465                         hdr_start = syn_skb->data;
5466                         ret = tcp_hdrlen(syn_skb);
5467                 } else if (optname == TCP_BPF_SYN_IP) {
5468                         hdr_start = skb_network_header(syn_skb);
5469                         ret = skb_network_header_len(syn_skb) +
5470                                 tcp_hdrlen(syn_skb);
5471                 } else {
5472                         /* optname == TCP_BPF_SYN_MAC */
5473                         hdr_start = skb_mac_header(syn_skb);
5474                         ret = skb_mac_header_len(syn_skb) +
5475                                 skb_network_header_len(syn_skb) +
5476                                 tcp_hdrlen(syn_skb);
5477                 }
5478         } else {
5479                 struct sock *sk = bpf_sock->sk;
5480                 struct saved_syn *saved_syn;
5481
5482                 if (sk->sk_state == TCP_NEW_SYN_RECV)
5483                         /* synack retransmit. bpf_sock->syn_skb will
5484                          * not be available.  It has to resort to
5485                          * saved_syn (if it is saved).
5486                          */
5487                         saved_syn = inet_reqsk(sk)->saved_syn;
5488                 else
5489                         saved_syn = tcp_sk(sk)->saved_syn;
5490
5491                 if (!saved_syn)
5492                         return -ENOENT;
5493
5494                 if (optname == TCP_BPF_SYN) {
5495                         hdr_start = saved_syn->data +
5496                                 saved_syn->mac_hdrlen +
5497                                 saved_syn->network_hdrlen;
5498                         ret = saved_syn->tcp_hdrlen;
5499                 } else if (optname == TCP_BPF_SYN_IP) {
5500                         hdr_start = saved_syn->data +
5501                                 saved_syn->mac_hdrlen;
5502                         ret = saved_syn->network_hdrlen +
5503                                 saved_syn->tcp_hdrlen;
5504                 } else {
5505                         /* optname == TCP_BPF_SYN_MAC */
5506
5507                         /* TCP_SAVE_SYN may not have saved the mac hdr */
5508                         if (!saved_syn->mac_hdrlen)
5509                                 return -ENOENT;
5510
5511                         hdr_start = saved_syn->data;
5512                         ret = saved_syn->mac_hdrlen +
5513                                 saved_syn->network_hdrlen +
5514                                 saved_syn->tcp_hdrlen;
5515                 }
5516         }
5517
5518         *start = hdr_start;
5519         return ret;
5520 }
5521
5522 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5523            int, level, int, optname, char *, optval, int, optlen)
5524 {
5525         if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5526             optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5527                 int ret, copy_len = 0;
5528                 const u8 *start;
5529
5530                 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5531                 if (ret > 0) {
5532                         copy_len = ret;
5533                         if (optlen < copy_len) {
5534                                 copy_len = optlen;
5535                                 ret = -ENOSPC;
5536                         }
5537
5538                         memcpy(optval, start, copy_len);
5539                 }
5540
5541                 /* Zero out unused buffer at the end */
5542                 memset(optval + copy_len, 0, optlen - copy_len);
5543
5544                 return ret;
5545         }
5546
5547         return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5548 }
5549
5550 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5551         .func           = bpf_sock_ops_getsockopt,
5552         .gpl_only       = false,
5553         .ret_type       = RET_INTEGER,
5554         .arg1_type      = ARG_PTR_TO_CTX,
5555         .arg2_type      = ARG_ANYTHING,
5556         .arg3_type      = ARG_ANYTHING,
5557         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5558         .arg5_type      = ARG_CONST_SIZE,
5559 };
5560
5561 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5562            int, argval)
5563 {
5564         struct sock *sk = bpf_sock->sk;
5565         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5566
5567         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5568                 return -EINVAL;
5569
5570         tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5571
5572         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5573 }
5574
5575 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5576         .func           = bpf_sock_ops_cb_flags_set,
5577         .gpl_only       = false,
5578         .ret_type       = RET_INTEGER,
5579         .arg1_type      = ARG_PTR_TO_CTX,
5580         .arg2_type      = ARG_ANYTHING,
5581 };
5582
5583 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5584 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5585
5586 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5587            int, addr_len)
5588 {
5589 #ifdef CONFIG_INET
5590         struct sock *sk = ctx->sk;
5591         u32 flags = BIND_FROM_BPF;
5592         int err;
5593
5594         err = -EINVAL;
5595         if (addr_len < offsetofend(struct sockaddr, sa_family))
5596                 return err;
5597         if (addr->sa_family == AF_INET) {
5598                 if (addr_len < sizeof(struct sockaddr_in))
5599                         return err;
5600                 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5601                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5602                 return __inet_bind(sk, addr, addr_len, flags);
5603 #if IS_ENABLED(CONFIG_IPV6)
5604         } else if (addr->sa_family == AF_INET6) {
5605                 if (addr_len < SIN6_LEN_RFC2133)
5606                         return err;
5607                 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5608                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5609                 /* ipv6_bpf_stub cannot be NULL, since it's called from
5610                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5611                  */
5612                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5613 #endif /* CONFIG_IPV6 */
5614         }
5615 #endif /* CONFIG_INET */
5616
5617         return -EAFNOSUPPORT;
5618 }
5619
5620 static const struct bpf_func_proto bpf_bind_proto = {
5621         .func           = bpf_bind,
5622         .gpl_only       = false,
5623         .ret_type       = RET_INTEGER,
5624         .arg1_type      = ARG_PTR_TO_CTX,
5625         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5626         .arg3_type      = ARG_CONST_SIZE,
5627 };
5628
5629 #ifdef CONFIG_XFRM
5630 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5631            struct bpf_xfrm_state *, to, u32, size, u64, flags)
5632 {
5633         const struct sec_path *sp = skb_sec_path(skb);
5634         const struct xfrm_state *x;
5635
5636         if (!sp || unlikely(index >= sp->len || flags))
5637                 goto err_clear;
5638
5639         x = sp->xvec[index];
5640
5641         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5642                 goto err_clear;
5643
5644         to->reqid = x->props.reqid;
5645         to->spi = x->id.spi;
5646         to->family = x->props.family;
5647         to->ext = 0;
5648
5649         if (to->family == AF_INET6) {
5650                 memcpy(to->remote_ipv6, x->props.saddr.a6,
5651                        sizeof(to->remote_ipv6));
5652         } else {
5653                 to->remote_ipv4 = x->props.saddr.a4;
5654                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5655         }
5656
5657         return 0;
5658 err_clear:
5659         memset(to, 0, size);
5660         return -EINVAL;
5661 }
5662
5663 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5664         .func           = bpf_skb_get_xfrm_state,
5665         .gpl_only       = false,
5666         .ret_type       = RET_INTEGER,
5667         .arg1_type      = ARG_PTR_TO_CTX,
5668         .arg2_type      = ARG_ANYTHING,
5669         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
5670         .arg4_type      = ARG_CONST_SIZE,
5671         .arg5_type      = ARG_ANYTHING,
5672 };
5673 #endif
5674
5675 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5676 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5677                                   const struct neighbour *neigh,
5678                                   const struct net_device *dev, u32 mtu)
5679 {
5680         memcpy(params->dmac, neigh->ha, ETH_ALEN);
5681         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5682         params->h_vlan_TCI = 0;
5683         params->h_vlan_proto = 0;
5684         if (mtu)
5685                 params->mtu_result = mtu; /* union with tot_len */
5686
5687         return 0;
5688 }
5689 #endif
5690
5691 #if IS_ENABLED(CONFIG_INET)
5692 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5693                                u32 flags, bool check_mtu)
5694 {
5695         struct fib_nh_common *nhc;
5696         struct in_device *in_dev;
5697         struct neighbour *neigh;
5698         struct net_device *dev;
5699         struct fib_result res;
5700         struct flowi4 fl4;
5701         u32 mtu = 0;
5702         int err;
5703
5704         dev = dev_get_by_index_rcu(net, params->ifindex);
5705         if (unlikely(!dev))
5706                 return -ENODEV;
5707
5708         /* verify forwarding is enabled on this interface */
5709         in_dev = __in_dev_get_rcu(dev);
5710         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5711                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5712
5713         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5714                 fl4.flowi4_iif = 1;
5715                 fl4.flowi4_oif = params->ifindex;
5716         } else {
5717                 fl4.flowi4_iif = params->ifindex;
5718                 fl4.flowi4_oif = 0;
5719         }
5720         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5721         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5722         fl4.flowi4_flags = 0;
5723
5724         fl4.flowi4_proto = params->l4_protocol;
5725         fl4.daddr = params->ipv4_dst;
5726         fl4.saddr = params->ipv4_src;
5727         fl4.fl4_sport = params->sport;
5728         fl4.fl4_dport = params->dport;
5729         fl4.flowi4_multipath_hash = 0;
5730
5731         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5732                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5733                 struct fib_table *tb;
5734
5735                 tb = fib_get_table(net, tbid);
5736                 if (unlikely(!tb))
5737                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5738
5739                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5740         } else {
5741                 fl4.flowi4_mark = 0;
5742                 fl4.flowi4_secid = 0;
5743                 fl4.flowi4_tun_key.tun_id = 0;
5744                 fl4.flowi4_uid = sock_net_uid(net, NULL);
5745
5746                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5747         }
5748
5749         if (err) {
5750                 /* map fib lookup errors to RTN_ type */
5751                 if (err == -EINVAL)
5752                         return BPF_FIB_LKUP_RET_BLACKHOLE;
5753                 if (err == -EHOSTUNREACH)
5754                         return BPF_FIB_LKUP_RET_UNREACHABLE;
5755                 if (err == -EACCES)
5756                         return BPF_FIB_LKUP_RET_PROHIBIT;
5757
5758                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5759         }
5760
5761         if (res.type != RTN_UNICAST)
5762                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5763
5764         if (fib_info_num_path(res.fi) > 1)
5765                 fib_select_path(net, &res, &fl4, NULL);
5766
5767         if (check_mtu) {
5768                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5769                 if (params->tot_len > mtu) {
5770                         params->mtu_result = mtu; /* union with tot_len */
5771                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5772                 }
5773         }
5774
5775         nhc = res.nhc;
5776
5777         /* do not handle lwt encaps right now */
5778         if (nhc->nhc_lwtstate)
5779                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5780
5781         dev = nhc->nhc_dev;
5782
5783         params->rt_metric = res.fi->fib_priority;
5784         params->ifindex = dev->ifindex;
5785
5786         /* xdp and cls_bpf programs are run in RCU-bh so
5787          * rcu_read_lock_bh is not needed here
5788          */
5789         if (likely(nhc->nhc_gw_family != AF_INET6)) {
5790                 if (nhc->nhc_gw_family)
5791                         params->ipv4_dst = nhc->nhc_gw.ipv4;
5792
5793                 neigh = __ipv4_neigh_lookup_noref(dev,
5794                                                  (__force u32)params->ipv4_dst);
5795         } else {
5796                 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5797
5798                 params->family = AF_INET6;
5799                 *dst = nhc->nhc_gw.ipv6;
5800                 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5801         }
5802
5803         if (!neigh)
5804                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5805
5806         return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5807 }
5808 #endif
5809
5810 #if IS_ENABLED(CONFIG_IPV6)
5811 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5812                                u32 flags, bool check_mtu)
5813 {
5814         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5815         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5816         struct fib6_result res = {};
5817         struct neighbour *neigh;
5818         struct net_device *dev;
5819         struct inet6_dev *idev;
5820         struct flowi6 fl6;
5821         int strict = 0;
5822         int oif, err;
5823         u32 mtu = 0;
5824
5825         /* link local addresses are never forwarded */
5826         if (rt6_need_strict(dst) || rt6_need_strict(src))
5827                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5828
5829         dev = dev_get_by_index_rcu(net, params->ifindex);
5830         if (unlikely(!dev))
5831                 return -ENODEV;
5832
5833         idev = __in6_dev_get_safely(dev);
5834         if (unlikely(!idev || !idev->cnf.forwarding))
5835                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5836
5837         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5838                 fl6.flowi6_iif = 1;
5839                 oif = fl6.flowi6_oif = params->ifindex;
5840         } else {
5841                 oif = fl6.flowi6_iif = params->ifindex;
5842                 fl6.flowi6_oif = 0;
5843                 strict = RT6_LOOKUP_F_HAS_SADDR;
5844         }
5845         fl6.flowlabel = params->flowinfo;
5846         fl6.flowi6_scope = 0;
5847         fl6.flowi6_flags = 0;
5848         fl6.mp_hash = 0;
5849
5850         fl6.flowi6_proto = params->l4_protocol;
5851         fl6.daddr = *dst;
5852         fl6.saddr = *src;
5853         fl6.fl6_sport = params->sport;
5854         fl6.fl6_dport = params->dport;
5855
5856         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5857                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5858                 struct fib6_table *tb;
5859
5860                 tb = ipv6_stub->fib6_get_table(net, tbid);
5861                 if (unlikely(!tb))
5862                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5863
5864                 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5865                                                    strict);
5866         } else {
5867                 fl6.flowi6_mark = 0;
5868                 fl6.flowi6_secid = 0;
5869                 fl6.flowi6_tun_key.tun_id = 0;
5870                 fl6.flowi6_uid = sock_net_uid(net, NULL);
5871
5872                 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5873         }
5874
5875         if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5876                      res.f6i == net->ipv6.fib6_null_entry))
5877                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5878
5879         switch (res.fib6_type) {
5880         /* only unicast is forwarded */
5881         case RTN_UNICAST:
5882                 break;
5883         case RTN_BLACKHOLE:
5884                 return BPF_FIB_LKUP_RET_BLACKHOLE;
5885         case RTN_UNREACHABLE:
5886                 return BPF_FIB_LKUP_RET_UNREACHABLE;
5887         case RTN_PROHIBIT:
5888                 return BPF_FIB_LKUP_RET_PROHIBIT;
5889         default:
5890                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5891         }
5892
5893         ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5894                                     fl6.flowi6_oif != 0, NULL, strict);
5895
5896         if (check_mtu) {
5897                 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5898                 if (params->tot_len > mtu) {
5899                         params->mtu_result = mtu; /* union with tot_len */
5900                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5901                 }
5902         }
5903
5904         if (res.nh->fib_nh_lws)
5905                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5906
5907         if (res.nh->fib_nh_gw_family)
5908                 *dst = res.nh->fib_nh_gw6;
5909
5910         dev = res.nh->fib_nh_dev;
5911         params->rt_metric = res.f6i->fib6_metric;
5912         params->ifindex = dev->ifindex;
5913
5914         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5915          * not needed here.
5916          */
5917         neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5918         if (!neigh)
5919                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5920
5921         return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5922 }
5923 #endif
5924
5925 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5926            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5927 {
5928         if (plen < sizeof(*params))
5929                 return -EINVAL;
5930
5931         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5932                 return -EINVAL;
5933
5934         switch (params->family) {
5935 #if IS_ENABLED(CONFIG_INET)
5936         case AF_INET:
5937                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5938                                            flags, true);
5939 #endif
5940 #if IS_ENABLED(CONFIG_IPV6)
5941         case AF_INET6:
5942                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5943                                            flags, true);
5944 #endif
5945         }
5946         return -EAFNOSUPPORT;
5947 }
5948
5949 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5950         .func           = bpf_xdp_fib_lookup,
5951         .gpl_only       = true,
5952         .ret_type       = RET_INTEGER,
5953         .arg1_type      = ARG_PTR_TO_CTX,
5954         .arg2_type      = ARG_PTR_TO_MEM,
5955         .arg3_type      = ARG_CONST_SIZE,
5956         .arg4_type      = ARG_ANYTHING,
5957 };
5958
5959 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5960            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5961 {
5962         struct net *net = dev_net(skb->dev);
5963         int rc = -EAFNOSUPPORT;
5964         bool check_mtu = false;
5965
5966         if (plen < sizeof(*params))
5967                 return -EINVAL;
5968
5969         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5970                 return -EINVAL;
5971
5972         if (params->tot_len)
5973                 check_mtu = true;
5974
5975         switch (params->family) {
5976 #if IS_ENABLED(CONFIG_INET)
5977         case AF_INET:
5978                 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5979                 break;
5980 #endif
5981 #if IS_ENABLED(CONFIG_IPV6)
5982         case AF_INET6:
5983                 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5984                 break;
5985 #endif
5986         }
5987
5988         if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
5989                 struct net_device *dev;
5990
5991                 /* When tot_len isn't provided by user, check skb
5992                  * against MTU of FIB lookup resulting net_device
5993                  */
5994                 dev = dev_get_by_index_rcu(net, params->ifindex);
5995                 if (!is_skb_forwardable(dev, skb))
5996                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5997
5998                 params->mtu_result = dev->mtu; /* union with tot_len */
5999         }
6000
6001         return rc;
6002 }
6003
6004 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6005         .func           = bpf_skb_fib_lookup,
6006         .gpl_only       = true,
6007         .ret_type       = RET_INTEGER,
6008         .arg1_type      = ARG_PTR_TO_CTX,
6009         .arg2_type      = ARG_PTR_TO_MEM,
6010         .arg3_type      = ARG_CONST_SIZE,
6011         .arg4_type      = ARG_ANYTHING,
6012 };
6013
6014 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6015                                             u32 ifindex)
6016 {
6017         struct net *netns = dev_net(dev_curr);
6018
6019         /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6020         if (ifindex == 0)
6021                 return dev_curr;
6022
6023         return dev_get_by_index_rcu(netns, ifindex);
6024 }
6025
6026 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6027            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6028 {
6029         int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6030         struct net_device *dev = skb->dev;
6031         int skb_len, dev_len;
6032         int mtu;
6033
6034         if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6035                 return -EINVAL;
6036
6037         if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6038                 return -EINVAL;
6039
6040         dev = __dev_via_ifindex(dev, ifindex);
6041         if (unlikely(!dev))
6042                 return -ENODEV;
6043
6044         mtu = READ_ONCE(dev->mtu);
6045
6046         dev_len = mtu + dev->hard_header_len;
6047
6048         /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6049         skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6050
6051         skb_len += len_diff; /* minus result pass check */
6052         if (skb_len <= dev_len) {
6053                 ret = BPF_MTU_CHK_RET_SUCCESS;
6054                 goto out;
6055         }
6056         /* At this point, skb->len exceed MTU, but as it include length of all
6057          * segments, it can still be below MTU.  The SKB can possibly get
6058          * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6059          * must choose if segs are to be MTU checked.
6060          */
6061         if (skb_is_gso(skb)) {
6062                 ret = BPF_MTU_CHK_RET_SUCCESS;
6063
6064                 if (flags & BPF_MTU_CHK_SEGS &&
6065                     !skb_gso_validate_network_len(skb, mtu))
6066                         ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6067         }
6068 out:
6069         /* BPF verifier guarantees valid pointer */
6070         *mtu_len = mtu;
6071
6072         return ret;
6073 }
6074
6075 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6076            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6077 {
6078         struct net_device *dev = xdp->rxq->dev;
6079         int xdp_len = xdp->data_end - xdp->data;
6080         int ret = BPF_MTU_CHK_RET_SUCCESS;
6081         int mtu, dev_len;
6082
6083         /* XDP variant doesn't support multi-buffer segment check (yet) */
6084         if (unlikely(flags))
6085                 return -EINVAL;
6086
6087         dev = __dev_via_ifindex(dev, ifindex);
6088         if (unlikely(!dev))
6089                 return -ENODEV;
6090
6091         mtu = READ_ONCE(dev->mtu);
6092
6093         /* Add L2-header as dev MTU is L3 size */
6094         dev_len = mtu + dev->hard_header_len;
6095
6096         /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6097         if (*mtu_len)
6098                 xdp_len = *mtu_len + dev->hard_header_len;
6099
6100         xdp_len += len_diff; /* minus result pass check */
6101         if (xdp_len > dev_len)
6102                 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6103
6104         /* BPF verifier guarantees valid pointer */
6105         *mtu_len = mtu;
6106
6107         return ret;
6108 }
6109
6110 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6111         .func           = bpf_skb_check_mtu,
6112         .gpl_only       = true,
6113         .ret_type       = RET_INTEGER,
6114         .arg1_type      = ARG_PTR_TO_CTX,
6115         .arg2_type      = ARG_ANYTHING,
6116         .arg3_type      = ARG_PTR_TO_INT,
6117         .arg4_type      = ARG_ANYTHING,
6118         .arg5_type      = ARG_ANYTHING,
6119 };
6120
6121 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6122         .func           = bpf_xdp_check_mtu,
6123         .gpl_only       = true,
6124         .ret_type       = RET_INTEGER,
6125         .arg1_type      = ARG_PTR_TO_CTX,
6126         .arg2_type      = ARG_ANYTHING,
6127         .arg3_type      = ARG_PTR_TO_INT,
6128         .arg4_type      = ARG_ANYTHING,
6129         .arg5_type      = ARG_ANYTHING,
6130 };
6131
6132 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6133 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6134 {
6135         int err;
6136         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6137
6138         if (!seg6_validate_srh(srh, len, false))
6139                 return -EINVAL;
6140
6141         switch (type) {
6142         case BPF_LWT_ENCAP_SEG6_INLINE:
6143                 if (skb->protocol != htons(ETH_P_IPV6))
6144                         return -EBADMSG;
6145
6146                 err = seg6_do_srh_inline(skb, srh);
6147                 break;
6148         case BPF_LWT_ENCAP_SEG6:
6149                 skb_reset_inner_headers(skb);
6150                 skb->encapsulation = 1;
6151                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6152                 break;
6153         default:
6154                 return -EINVAL;
6155         }
6156
6157         bpf_compute_data_pointers(skb);
6158         if (err)
6159                 return err;
6160
6161         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6162
6163         return seg6_lookup_nexthop(skb, NULL, 0);
6164 }
6165 #endif /* CONFIG_IPV6_SEG6_BPF */
6166
6167 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6168 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6169                              bool ingress)
6170 {
6171         return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6172 }
6173 #endif
6174
6175 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6176            u32, len)
6177 {
6178         switch (type) {
6179 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6180         case BPF_LWT_ENCAP_SEG6:
6181         case BPF_LWT_ENCAP_SEG6_INLINE:
6182                 return bpf_push_seg6_encap(skb, type, hdr, len);
6183 #endif
6184 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6185         case BPF_LWT_ENCAP_IP:
6186                 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6187 #endif
6188         default:
6189                 return -EINVAL;
6190         }
6191 }
6192
6193 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6194            void *, hdr, u32, len)
6195 {
6196         switch (type) {
6197 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6198         case BPF_LWT_ENCAP_IP:
6199                 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6200 #endif
6201         default:
6202                 return -EINVAL;
6203         }
6204 }
6205
6206 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6207         .func           = bpf_lwt_in_push_encap,
6208         .gpl_only       = false,
6209         .ret_type       = RET_INTEGER,
6210         .arg1_type      = ARG_PTR_TO_CTX,
6211         .arg2_type      = ARG_ANYTHING,
6212         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6213         .arg4_type      = ARG_CONST_SIZE
6214 };
6215
6216 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6217         .func           = bpf_lwt_xmit_push_encap,
6218         .gpl_only       = false,
6219         .ret_type       = RET_INTEGER,
6220         .arg1_type      = ARG_PTR_TO_CTX,
6221         .arg2_type      = ARG_ANYTHING,
6222         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6223         .arg4_type      = ARG_CONST_SIZE
6224 };
6225
6226 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6227 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6228            const void *, from, u32, len)
6229 {
6230         struct seg6_bpf_srh_state *srh_state =
6231                 this_cpu_ptr(&seg6_bpf_srh_states);
6232         struct ipv6_sr_hdr *srh = srh_state->srh;
6233         void *srh_tlvs, *srh_end, *ptr;
6234         int srhoff = 0;
6235
6236         if (srh == NULL)
6237                 return -EINVAL;
6238
6239         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6240         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6241
6242         ptr = skb->data + offset;
6243         if (ptr >= srh_tlvs && ptr + len <= srh_end)
6244                 srh_state->valid = false;
6245         else if (ptr < (void *)&srh->flags ||
6246                  ptr + len > (void *)&srh->segments)
6247                 return -EFAULT;
6248
6249         if (unlikely(bpf_try_make_writable(skb, offset + len)))
6250                 return -EFAULT;
6251         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6252                 return -EINVAL;
6253         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6254
6255         memcpy(skb->data + offset, from, len);
6256         return 0;
6257 }
6258
6259 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6260         .func           = bpf_lwt_seg6_store_bytes,
6261         .gpl_only       = false,
6262         .ret_type       = RET_INTEGER,
6263         .arg1_type      = ARG_PTR_TO_CTX,
6264         .arg2_type      = ARG_ANYTHING,
6265         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6266         .arg4_type      = ARG_CONST_SIZE
6267 };
6268
6269 static void bpf_update_srh_state(struct sk_buff *skb)
6270 {
6271         struct seg6_bpf_srh_state *srh_state =
6272                 this_cpu_ptr(&seg6_bpf_srh_states);
6273         int srhoff = 0;
6274
6275         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6276                 srh_state->srh = NULL;
6277         } else {
6278                 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6279                 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6280                 srh_state->valid = true;
6281         }
6282 }
6283
6284 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6285            u32, action, void *, param, u32, param_len)
6286 {
6287         struct seg6_bpf_srh_state *srh_state =
6288                 this_cpu_ptr(&seg6_bpf_srh_states);
6289         int hdroff = 0;
6290         int err;
6291
6292         switch (action) {
6293         case SEG6_LOCAL_ACTION_END_X:
6294                 if (!seg6_bpf_has_valid_srh(skb))
6295                         return -EBADMSG;
6296                 if (param_len != sizeof(struct in6_addr))
6297                         return -EINVAL;
6298                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6299         case SEG6_LOCAL_ACTION_END_T:
6300                 if (!seg6_bpf_has_valid_srh(skb))
6301                         return -EBADMSG;
6302                 if (param_len != sizeof(int))
6303                         return -EINVAL;
6304                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6305         case SEG6_LOCAL_ACTION_END_DT6:
6306                 if (!seg6_bpf_has_valid_srh(skb))
6307                         return -EBADMSG;
6308                 if (param_len != sizeof(int))
6309                         return -EINVAL;
6310
6311                 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6312                         return -EBADMSG;
6313                 if (!pskb_pull(skb, hdroff))
6314                         return -EBADMSG;
6315
6316                 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6317                 skb_reset_network_header(skb);
6318                 skb_reset_transport_header(skb);
6319                 skb->encapsulation = 0;
6320
6321                 bpf_compute_data_pointers(skb);
6322                 bpf_update_srh_state(skb);
6323                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6324         case SEG6_LOCAL_ACTION_END_B6:
6325                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6326                         return -EBADMSG;
6327                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6328                                           param, param_len);
6329                 if (!err)
6330                         bpf_update_srh_state(skb);
6331
6332                 return err;
6333         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6334                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6335                         return -EBADMSG;
6336                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6337                                           param, param_len);
6338                 if (!err)
6339                         bpf_update_srh_state(skb);
6340
6341                 return err;
6342         default:
6343                 return -EINVAL;
6344         }
6345 }
6346
6347 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6348         .func           = bpf_lwt_seg6_action,
6349         .gpl_only       = false,
6350         .ret_type       = RET_INTEGER,
6351         .arg1_type      = ARG_PTR_TO_CTX,
6352         .arg2_type      = ARG_ANYTHING,
6353         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6354         .arg4_type      = ARG_CONST_SIZE
6355 };
6356
6357 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6358            s32, len)
6359 {
6360         struct seg6_bpf_srh_state *srh_state =
6361                 this_cpu_ptr(&seg6_bpf_srh_states);
6362         struct ipv6_sr_hdr *srh = srh_state->srh;
6363         void *srh_end, *srh_tlvs, *ptr;
6364         struct ipv6hdr *hdr;
6365         int srhoff = 0;
6366         int ret;
6367
6368         if (unlikely(srh == NULL))
6369                 return -EINVAL;
6370
6371         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6372                         ((srh->first_segment + 1) << 4));
6373         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6374                         srh_state->hdrlen);
6375         ptr = skb->data + offset;
6376
6377         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6378                 return -EFAULT;
6379         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6380                 return -EFAULT;
6381
6382         if (len > 0) {
6383                 ret = skb_cow_head(skb, len);
6384                 if (unlikely(ret < 0))
6385                         return ret;
6386
6387                 ret = bpf_skb_net_hdr_push(skb, offset, len);
6388         } else {
6389                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6390         }
6391
6392         bpf_compute_data_pointers(skb);
6393         if (unlikely(ret < 0))
6394                 return ret;
6395
6396         hdr = (struct ipv6hdr *)skb->data;
6397         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6398
6399         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6400                 return -EINVAL;
6401         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6402         srh_state->hdrlen += len;
6403         srh_state->valid = false;
6404         return 0;
6405 }
6406
6407 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6408         .func           = bpf_lwt_seg6_adjust_srh,
6409         .gpl_only       = false,
6410         .ret_type       = RET_INTEGER,
6411         .arg1_type      = ARG_PTR_TO_CTX,
6412         .arg2_type      = ARG_ANYTHING,
6413         .arg3_type      = ARG_ANYTHING,
6414 };
6415 #endif /* CONFIG_IPV6_SEG6_BPF */
6416
6417 #ifdef CONFIG_INET
6418 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6419                               int dif, int sdif, u8 family, u8 proto)
6420 {
6421         struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6422         bool refcounted = false;
6423         struct sock *sk = NULL;
6424
6425         if (family == AF_INET) {
6426                 __be32 src4 = tuple->ipv4.saddr;
6427                 __be32 dst4 = tuple->ipv4.daddr;
6428
6429                 if (proto == IPPROTO_TCP)
6430                         sk = __inet_lookup(net, hinfo, NULL, 0,
6431                                            src4, tuple->ipv4.sport,
6432                                            dst4, tuple->ipv4.dport,
6433                                            dif, sdif, &refcounted);
6434                 else
6435                         sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6436                                                dst4, tuple->ipv4.dport,
6437                                                dif, sdif, &udp_table, NULL);
6438 #if IS_ENABLED(CONFIG_IPV6)
6439         } else {
6440                 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6441                 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6442
6443                 if (proto == IPPROTO_TCP)
6444                         sk = __inet6_lookup(net, hinfo, NULL, 0,
6445                                             src6, tuple->ipv6.sport,
6446                                             dst6, ntohs(tuple->ipv6.dport),
6447                                             dif, sdif, &refcounted);
6448                 else if (likely(ipv6_bpf_stub))
6449                         sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6450                                                             src6, tuple->ipv6.sport,
6451                                                             dst6, tuple->ipv6.dport,
6452                                                             dif, sdif,
6453                                                             &udp_table, NULL);
6454 #endif
6455         }
6456
6457         if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6458                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6459                 sk = NULL;
6460         }
6461         return sk;
6462 }
6463
6464 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6465  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6466  */
6467 static struct sock *
6468 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6469                  struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6470                  u64 flags)
6471 {
6472         struct sock *sk = NULL;
6473         struct net *net;
6474         u8 family;
6475         int sdif;
6476
6477         if (len == sizeof(tuple->ipv4))
6478                 family = AF_INET;
6479         else if (len == sizeof(tuple->ipv6))
6480                 family = AF_INET6;
6481         else
6482                 return NULL;
6483
6484         if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6485                 goto out;
6486
6487         if (family == AF_INET)
6488                 sdif = inet_sdif(skb);
6489         else
6490                 sdif = inet6_sdif(skb);
6491
6492         if ((s32)netns_id < 0) {
6493                 net = caller_net;
6494                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6495         } else {
6496                 net = get_net_ns_by_id(caller_net, netns_id);
6497                 if (unlikely(!net))
6498                         goto out;
6499                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6500                 put_net(net);
6501         }
6502
6503 out:
6504         return sk;
6505 }
6506
6507 static struct sock *
6508 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6509                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6510                 u64 flags)
6511 {
6512         struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6513                                            ifindex, proto, netns_id, flags);
6514
6515         if (sk) {
6516                 struct sock *sk2 = sk_to_full_sk(sk);
6517
6518                 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6519                  * sock refcnt is decremented to prevent a request_sock leak.
6520                  */
6521                 if (!sk_fullsock(sk2))
6522                         sk2 = NULL;
6523                 if (sk2 != sk) {
6524                         sock_gen_put(sk);
6525                         /* Ensure there is no need to bump sk2 refcnt */
6526                         if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6527                                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6528                                 return NULL;
6529                         }
6530                         sk = sk2;
6531                 }
6532         }
6533
6534         return sk;
6535 }
6536
6537 static struct sock *
6538 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6539                u8 proto, u64 netns_id, u64 flags)
6540 {
6541         struct net *caller_net;
6542         int ifindex;
6543
6544         if (skb->dev) {
6545                 caller_net = dev_net(skb->dev);
6546                 ifindex = skb->dev->ifindex;
6547         } else {
6548                 caller_net = sock_net(skb->sk);
6549                 ifindex = 0;
6550         }
6551
6552         return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6553                                 netns_id, flags);
6554 }
6555
6556 static struct sock *
6557 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6558               u8 proto, u64 netns_id, u64 flags)
6559 {
6560         struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6561                                          flags);
6562
6563         if (sk) {
6564                 struct sock *sk2 = sk_to_full_sk(sk);
6565
6566                 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6567                  * sock refcnt is decremented to prevent a request_sock leak.
6568                  */
6569                 if (!sk_fullsock(sk2))
6570                         sk2 = NULL;
6571                 if (sk2 != sk) {
6572                         sock_gen_put(sk);
6573                         /* Ensure there is no need to bump sk2 refcnt */
6574                         if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6575                                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6576                                 return NULL;
6577                         }
6578                         sk = sk2;
6579                 }
6580         }
6581
6582         return sk;
6583 }
6584
6585 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6586            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6587 {
6588         return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6589                                              netns_id, flags);
6590 }
6591
6592 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6593         .func           = bpf_skc_lookup_tcp,
6594         .gpl_only       = false,
6595         .pkt_access     = true,
6596         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6597         .arg1_type      = ARG_PTR_TO_CTX,
6598         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6599         .arg3_type      = ARG_CONST_SIZE,
6600         .arg4_type      = ARG_ANYTHING,
6601         .arg5_type      = ARG_ANYTHING,
6602 };
6603
6604 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6605            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6606 {
6607         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6608                                             netns_id, flags);
6609 }
6610
6611 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6612         .func           = bpf_sk_lookup_tcp,
6613         .gpl_only       = false,
6614         .pkt_access     = true,
6615         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6616         .arg1_type      = ARG_PTR_TO_CTX,
6617         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6618         .arg3_type      = ARG_CONST_SIZE,
6619         .arg4_type      = ARG_ANYTHING,
6620         .arg5_type      = ARG_ANYTHING,
6621 };
6622
6623 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6624            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6625 {
6626         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6627                                             netns_id, flags);
6628 }
6629
6630 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6631         .func           = bpf_sk_lookup_udp,
6632         .gpl_only       = false,
6633         .pkt_access     = true,
6634         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6635         .arg1_type      = ARG_PTR_TO_CTX,
6636         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6637         .arg3_type      = ARG_CONST_SIZE,
6638         .arg4_type      = ARG_ANYTHING,
6639         .arg5_type      = ARG_ANYTHING,
6640 };
6641
6642 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6643 {
6644         if (sk && sk_is_refcounted(sk))
6645                 sock_gen_put(sk);
6646         return 0;
6647 }
6648
6649 static const struct bpf_func_proto bpf_sk_release_proto = {
6650         .func           = bpf_sk_release,
6651         .gpl_only       = false,
6652         .ret_type       = RET_INTEGER,
6653         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6654 };
6655
6656 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6657            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6658 {
6659         struct net *caller_net = dev_net(ctx->rxq->dev);
6660         int ifindex = ctx->rxq->dev->ifindex;
6661
6662         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6663                                               ifindex, IPPROTO_UDP, netns_id,
6664                                               flags);
6665 }
6666
6667 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6668         .func           = bpf_xdp_sk_lookup_udp,
6669         .gpl_only       = false,
6670         .pkt_access     = true,
6671         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6672         .arg1_type      = ARG_PTR_TO_CTX,
6673         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6674         .arg3_type      = ARG_CONST_SIZE,
6675         .arg4_type      = ARG_ANYTHING,
6676         .arg5_type      = ARG_ANYTHING,
6677 };
6678
6679 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6680            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6681 {
6682         struct net *caller_net = dev_net(ctx->rxq->dev);
6683         int ifindex = ctx->rxq->dev->ifindex;
6684
6685         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6686                                                ifindex, IPPROTO_TCP, netns_id,
6687                                                flags);
6688 }
6689
6690 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6691         .func           = bpf_xdp_skc_lookup_tcp,
6692         .gpl_only       = false,
6693         .pkt_access     = true,
6694         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6695         .arg1_type      = ARG_PTR_TO_CTX,
6696         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6697         .arg3_type      = ARG_CONST_SIZE,
6698         .arg4_type      = ARG_ANYTHING,
6699         .arg5_type      = ARG_ANYTHING,
6700 };
6701
6702 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6703            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6704 {
6705         struct net *caller_net = dev_net(ctx->rxq->dev);
6706         int ifindex = ctx->rxq->dev->ifindex;
6707
6708         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6709                                               ifindex, IPPROTO_TCP, netns_id,
6710                                               flags);
6711 }
6712
6713 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6714         .func           = bpf_xdp_sk_lookup_tcp,
6715         .gpl_only       = false,
6716         .pkt_access     = true,
6717         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6718         .arg1_type      = ARG_PTR_TO_CTX,
6719         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6720         .arg3_type      = ARG_CONST_SIZE,
6721         .arg4_type      = ARG_ANYTHING,
6722         .arg5_type      = ARG_ANYTHING,
6723 };
6724
6725 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6726            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6727 {
6728         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6729                                                sock_net(ctx->sk), 0,
6730                                                IPPROTO_TCP, netns_id, flags);
6731 }
6732
6733 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6734         .func           = bpf_sock_addr_skc_lookup_tcp,
6735         .gpl_only       = false,
6736         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6737         .arg1_type      = ARG_PTR_TO_CTX,
6738         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6739         .arg3_type      = ARG_CONST_SIZE,
6740         .arg4_type      = ARG_ANYTHING,
6741         .arg5_type      = ARG_ANYTHING,
6742 };
6743
6744 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6745            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6746 {
6747         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6748                                               sock_net(ctx->sk), 0, IPPROTO_TCP,
6749                                               netns_id, flags);
6750 }
6751
6752 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6753         .func           = bpf_sock_addr_sk_lookup_tcp,
6754         .gpl_only       = false,
6755         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6756         .arg1_type      = ARG_PTR_TO_CTX,
6757         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6758         .arg3_type      = ARG_CONST_SIZE,
6759         .arg4_type      = ARG_ANYTHING,
6760         .arg5_type      = ARG_ANYTHING,
6761 };
6762
6763 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6764            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6765 {
6766         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6767                                               sock_net(ctx->sk), 0, IPPROTO_UDP,
6768                                               netns_id, flags);
6769 }
6770
6771 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6772         .func           = bpf_sock_addr_sk_lookup_udp,
6773         .gpl_only       = false,
6774         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6775         .arg1_type      = ARG_PTR_TO_CTX,
6776         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6777         .arg3_type      = ARG_CONST_SIZE,
6778         .arg4_type      = ARG_ANYTHING,
6779         .arg5_type      = ARG_ANYTHING,
6780 };
6781
6782 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6783                                   struct bpf_insn_access_aux *info)
6784 {
6785         if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6786                                           icsk_retransmits))
6787                 return false;
6788
6789         if (off % size != 0)
6790                 return false;
6791
6792         switch (off) {
6793         case offsetof(struct bpf_tcp_sock, bytes_received):
6794         case offsetof(struct bpf_tcp_sock, bytes_acked):
6795                 return size == sizeof(__u64);
6796         default:
6797                 return size == sizeof(__u32);
6798         }
6799 }
6800
6801 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6802                                     const struct bpf_insn *si,
6803                                     struct bpf_insn *insn_buf,
6804                                     struct bpf_prog *prog, u32 *target_size)
6805 {
6806         struct bpf_insn *insn = insn_buf;
6807
6808 #define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
6809         do {                                                            \
6810                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >     \
6811                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6812                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6813                                       si->dst_reg, si->src_reg,         \
6814                                       offsetof(struct tcp_sock, FIELD)); \
6815         } while (0)
6816
6817 #define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
6818         do {                                                            \
6819                 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,  \
6820                                           FIELD) >                      \
6821                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6822                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
6823                                         struct inet_connection_sock,    \
6824                                         FIELD),                         \
6825                                       si->dst_reg, si->src_reg,         \
6826                                       offsetof(                         \
6827                                         struct inet_connection_sock,    \
6828                                         FIELD));                        \
6829         } while (0)
6830
6831         if (insn > insn_buf)
6832                 return insn - insn_buf;
6833
6834         switch (si->off) {
6835         case offsetof(struct bpf_tcp_sock, rtt_min):
6836                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6837                              sizeof(struct minmax));
6838                 BUILD_BUG_ON(sizeof(struct minmax) <
6839                              sizeof(struct minmax_sample));
6840
6841                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6842                                       offsetof(struct tcp_sock, rtt_min) +
6843                                       offsetof(struct minmax_sample, v));
6844                 break;
6845         case offsetof(struct bpf_tcp_sock, snd_cwnd):
6846                 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6847                 break;
6848         case offsetof(struct bpf_tcp_sock, srtt_us):
6849                 BPF_TCP_SOCK_GET_COMMON(srtt_us);
6850                 break;
6851         case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6852                 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6853                 break;
6854         case offsetof(struct bpf_tcp_sock, rcv_nxt):
6855                 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6856                 break;
6857         case offsetof(struct bpf_tcp_sock, snd_nxt):
6858                 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6859                 break;
6860         case offsetof(struct bpf_tcp_sock, snd_una):
6861                 BPF_TCP_SOCK_GET_COMMON(snd_una);
6862                 break;
6863         case offsetof(struct bpf_tcp_sock, mss_cache):
6864                 BPF_TCP_SOCK_GET_COMMON(mss_cache);
6865                 break;
6866         case offsetof(struct bpf_tcp_sock, ecn_flags):
6867                 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6868                 break;
6869         case offsetof(struct bpf_tcp_sock, rate_delivered):
6870                 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6871                 break;
6872         case offsetof(struct bpf_tcp_sock, rate_interval_us):
6873                 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6874                 break;
6875         case offsetof(struct bpf_tcp_sock, packets_out):
6876                 BPF_TCP_SOCK_GET_COMMON(packets_out);
6877                 break;
6878         case offsetof(struct bpf_tcp_sock, retrans_out):
6879                 BPF_TCP_SOCK_GET_COMMON(retrans_out);
6880                 break;
6881         case offsetof(struct bpf_tcp_sock, total_retrans):
6882                 BPF_TCP_SOCK_GET_COMMON(total_retrans);
6883                 break;
6884         case offsetof(struct bpf_tcp_sock, segs_in):
6885                 BPF_TCP_SOCK_GET_COMMON(segs_in);
6886                 break;
6887         case offsetof(struct bpf_tcp_sock, data_segs_in):
6888                 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6889                 break;
6890         case offsetof(struct bpf_tcp_sock, segs_out):
6891                 BPF_TCP_SOCK_GET_COMMON(segs_out);
6892                 break;
6893         case offsetof(struct bpf_tcp_sock, data_segs_out):
6894                 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6895                 break;
6896         case offsetof(struct bpf_tcp_sock, lost_out):
6897                 BPF_TCP_SOCK_GET_COMMON(lost_out);
6898                 break;
6899         case offsetof(struct bpf_tcp_sock, sacked_out):
6900                 BPF_TCP_SOCK_GET_COMMON(sacked_out);
6901                 break;
6902         case offsetof(struct bpf_tcp_sock, bytes_received):
6903                 BPF_TCP_SOCK_GET_COMMON(bytes_received);
6904                 break;
6905         case offsetof(struct bpf_tcp_sock, bytes_acked):
6906                 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6907                 break;
6908         case offsetof(struct bpf_tcp_sock, dsack_dups):
6909                 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6910                 break;
6911         case offsetof(struct bpf_tcp_sock, delivered):
6912                 BPF_TCP_SOCK_GET_COMMON(delivered);
6913                 break;
6914         case offsetof(struct bpf_tcp_sock, delivered_ce):
6915                 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6916                 break;
6917         case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6918                 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6919                 break;
6920         }
6921
6922         return insn - insn_buf;
6923 }
6924
6925 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6926 {
6927         if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6928                 return (unsigned long)sk;
6929
6930         return (unsigned long)NULL;
6931 }
6932
6933 const struct bpf_func_proto bpf_tcp_sock_proto = {
6934         .func           = bpf_tcp_sock,
6935         .gpl_only       = false,
6936         .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
6937         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6938 };
6939
6940 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6941 {
6942         sk = sk_to_full_sk(sk);
6943
6944         if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6945                 return (unsigned long)sk;
6946
6947         return (unsigned long)NULL;
6948 }
6949
6950 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6951         .func           = bpf_get_listener_sock,
6952         .gpl_only       = false,
6953         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6954         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6955 };
6956
6957 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6958 {
6959         unsigned int iphdr_len;
6960
6961         switch (skb_protocol(skb, true)) {
6962         case cpu_to_be16(ETH_P_IP):
6963                 iphdr_len = sizeof(struct iphdr);
6964                 break;
6965         case cpu_to_be16(ETH_P_IPV6):
6966                 iphdr_len = sizeof(struct ipv6hdr);
6967                 break;
6968         default:
6969                 return 0;
6970         }
6971
6972         if (skb_headlen(skb) < iphdr_len)
6973                 return 0;
6974
6975         if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6976                 return 0;
6977
6978         return INET_ECN_set_ce(skb);
6979 }
6980
6981 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6982                                   struct bpf_insn_access_aux *info)
6983 {
6984         if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6985                 return false;
6986
6987         if (off % size != 0)
6988                 return false;
6989
6990         switch (off) {
6991         default:
6992                 return size == sizeof(__u32);
6993         }
6994 }
6995
6996 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6997                                     const struct bpf_insn *si,
6998                                     struct bpf_insn *insn_buf,
6999                                     struct bpf_prog *prog, u32 *target_size)
7000 {
7001         struct bpf_insn *insn = insn_buf;
7002
7003 #define BPF_XDP_SOCK_GET(FIELD)                                         \
7004         do {                                                            \
7005                 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >     \
7006                              sizeof_field(struct bpf_xdp_sock, FIELD)); \
7007                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7008                                       si->dst_reg, si->src_reg,         \
7009                                       offsetof(struct xdp_sock, FIELD)); \
7010         } while (0)
7011
7012         switch (si->off) {
7013         case offsetof(struct bpf_xdp_sock, queue_id):
7014                 BPF_XDP_SOCK_GET(queue_id);
7015                 break;
7016         }
7017
7018         return insn - insn_buf;
7019 }
7020
7021 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7022         .func           = bpf_skb_ecn_set_ce,
7023         .gpl_only       = false,
7024         .ret_type       = RET_INTEGER,
7025         .arg1_type      = ARG_PTR_TO_CTX,
7026 };
7027
7028 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7029            struct tcphdr *, th, u32, th_len)
7030 {
7031 #ifdef CONFIG_SYN_COOKIES
7032         u32 cookie;
7033         int ret;
7034
7035         if (unlikely(!sk || th_len < sizeof(*th)))
7036                 return -EINVAL;
7037
7038         /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7039         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7040                 return -EINVAL;
7041
7042         if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7043                 return -EINVAL;
7044
7045         if (!th->ack || th->rst || th->syn)
7046                 return -ENOENT;
7047
7048         if (unlikely(iph_len < sizeof(struct iphdr)))
7049                 return -EINVAL;
7050
7051         if (tcp_synq_no_recent_overflow(sk))
7052                 return -ENOENT;
7053
7054         cookie = ntohl(th->ack_seq) - 1;
7055
7056         /* Both struct iphdr and struct ipv6hdr have the version field at the
7057          * same offset so we can cast to the shorter header (struct iphdr).
7058          */
7059         switch (((struct iphdr *)iph)->version) {
7060         case 4:
7061                 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7062                         return -EINVAL;
7063
7064                 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7065                 break;
7066
7067 #if IS_BUILTIN(CONFIG_IPV6)
7068         case 6:
7069                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7070                         return -EINVAL;
7071
7072                 if (sk->sk_family != AF_INET6)
7073                         return -EINVAL;
7074
7075                 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7076                 break;
7077 #endif /* CONFIG_IPV6 */
7078
7079         default:
7080                 return -EPROTONOSUPPORT;
7081         }
7082
7083         if (ret > 0)
7084                 return 0;
7085
7086         return -ENOENT;
7087 #else
7088         return -ENOTSUPP;
7089 #endif
7090 }
7091
7092 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7093         .func           = bpf_tcp_check_syncookie,
7094         .gpl_only       = true,
7095         .pkt_access     = true,
7096         .ret_type       = RET_INTEGER,
7097         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7098         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7099         .arg3_type      = ARG_CONST_SIZE,
7100         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7101         .arg5_type      = ARG_CONST_SIZE,
7102 };
7103
7104 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7105            struct tcphdr *, th, u32, th_len)
7106 {
7107 #ifdef CONFIG_SYN_COOKIES
7108         u32 cookie;
7109         u16 mss;
7110
7111         if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7112                 return -EINVAL;
7113
7114         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7115                 return -EINVAL;
7116
7117         if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7118                 return -ENOENT;
7119
7120         if (!th->syn || th->ack || th->fin || th->rst)
7121                 return -EINVAL;
7122
7123         if (unlikely(iph_len < sizeof(struct iphdr)))
7124                 return -EINVAL;
7125
7126         /* Both struct iphdr and struct ipv6hdr have the version field at the
7127          * same offset so we can cast to the shorter header (struct iphdr).
7128          */
7129         switch (((struct iphdr *)iph)->version) {
7130         case 4:
7131                 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7132                         return -EINVAL;
7133
7134                 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7135                 break;
7136
7137 #if IS_BUILTIN(CONFIG_IPV6)
7138         case 6:
7139                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7140                         return -EINVAL;
7141
7142                 if (sk->sk_family != AF_INET6)
7143                         return -EINVAL;
7144
7145                 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7146                 break;
7147 #endif /* CONFIG_IPV6 */
7148
7149         default:
7150                 return -EPROTONOSUPPORT;
7151         }
7152         if (mss == 0)
7153                 return -ENOENT;
7154
7155         return cookie | ((u64)mss << 32);
7156 #else
7157         return -EOPNOTSUPP;
7158 #endif /* CONFIG_SYN_COOKIES */
7159 }
7160
7161 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7162         .func           = bpf_tcp_gen_syncookie,
7163         .gpl_only       = true, /* __cookie_v*_init_sequence() is GPL */
7164         .pkt_access     = true,
7165         .ret_type       = RET_INTEGER,
7166         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7167         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7168         .arg3_type      = ARG_CONST_SIZE,
7169         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7170         .arg5_type      = ARG_CONST_SIZE,
7171 };
7172
7173 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7174 {
7175         if (!sk || flags != 0)
7176                 return -EINVAL;
7177         if (!skb_at_tc_ingress(skb))
7178                 return -EOPNOTSUPP;
7179         if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7180                 return -ENETUNREACH;
7181         if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
7182                 return -ESOCKTNOSUPPORT;
7183         if (sk_is_refcounted(sk) &&
7184             unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7185                 return -ENOENT;
7186
7187         skb_orphan(skb);
7188         skb->sk = sk;
7189         skb->destructor = sock_pfree;
7190
7191         return 0;
7192 }
7193
7194 static const struct bpf_func_proto bpf_sk_assign_proto = {
7195         .func           = bpf_sk_assign,
7196         .gpl_only       = false,
7197         .ret_type       = RET_INTEGER,
7198         .arg1_type      = ARG_PTR_TO_CTX,
7199         .arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7200         .arg3_type      = ARG_ANYTHING,
7201 };
7202
7203 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7204                                     u8 search_kind, const u8 *magic,
7205                                     u8 magic_len, bool *eol)
7206 {
7207         u8 kind, kind_len;
7208
7209         *eol = false;
7210
7211         while (op < opend) {
7212                 kind = op[0];
7213
7214                 if (kind == TCPOPT_EOL) {
7215                         *eol = true;
7216                         return ERR_PTR(-ENOMSG);
7217                 } else if (kind == TCPOPT_NOP) {
7218                         op++;
7219                         continue;
7220                 }
7221
7222                 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7223                         /* Something is wrong in the received header.
7224                          * Follow the TCP stack's tcp_parse_options()
7225                          * and just bail here.
7226                          */
7227                         return ERR_PTR(-EFAULT);
7228
7229                 kind_len = op[1];
7230                 if (search_kind == kind) {
7231                         if (!magic_len)
7232                                 return op;
7233
7234                         if (magic_len > kind_len - 2)
7235                                 return ERR_PTR(-ENOMSG);
7236
7237                         if (!memcmp(&op[2], magic, magic_len))
7238                                 return op;
7239                 }
7240
7241                 op += kind_len;
7242         }
7243
7244         return ERR_PTR(-ENOMSG);
7245 }
7246
7247 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7248            void *, search_res, u32, len, u64, flags)
7249 {
7250         bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7251         const u8 *op, *opend, *magic, *search = search_res;
7252         u8 search_kind, search_len, copy_len, magic_len;
7253         int ret;
7254
7255         /* 2 byte is the minimal option len except TCPOPT_NOP and
7256          * TCPOPT_EOL which are useless for the bpf prog to learn
7257          * and this helper disallow loading them also.
7258          */
7259         if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7260                 return -EINVAL;
7261
7262         search_kind = search[0];
7263         search_len = search[1];
7264
7265         if (search_len > len || search_kind == TCPOPT_NOP ||
7266             search_kind == TCPOPT_EOL)
7267                 return -EINVAL;
7268
7269         if (search_kind == TCPOPT_EXP || search_kind == 253) {
7270                 /* 16 or 32 bit magic.  +2 for kind and kind length */
7271                 if (search_len != 4 && search_len != 6)
7272                         return -EINVAL;
7273                 magic = &search[2];
7274                 magic_len = search_len - 2;
7275         } else {
7276                 if (search_len)
7277                         return -EINVAL;
7278                 magic = NULL;
7279                 magic_len = 0;
7280         }
7281
7282         if (load_syn) {
7283                 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7284                 if (ret < 0)
7285                         return ret;
7286
7287                 opend = op + ret;
7288                 op += sizeof(struct tcphdr);
7289         } else {
7290                 if (!bpf_sock->skb ||
7291                     bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7292                         /* This bpf_sock->op cannot call this helper */
7293                         return -EPERM;
7294
7295                 opend = bpf_sock->skb_data_end;
7296                 op = bpf_sock->skb->data + sizeof(struct tcphdr);
7297         }
7298
7299         op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7300                                 &eol);
7301         if (IS_ERR(op))
7302                 return PTR_ERR(op);
7303
7304         copy_len = op[1];
7305         ret = copy_len;
7306         if (copy_len > len) {
7307                 ret = -ENOSPC;
7308                 copy_len = len;
7309         }
7310
7311         memcpy(search_res, op, copy_len);
7312         return ret;
7313 }
7314
7315 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7316         .func           = bpf_sock_ops_load_hdr_opt,
7317         .gpl_only       = false,
7318         .ret_type       = RET_INTEGER,
7319         .arg1_type      = ARG_PTR_TO_CTX,
7320         .arg2_type      = ARG_PTR_TO_MEM,
7321         .arg3_type      = ARG_CONST_SIZE,
7322         .arg4_type      = ARG_ANYTHING,
7323 };
7324
7325 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7326            const void *, from, u32, len, u64, flags)
7327 {
7328         u8 new_kind, new_kind_len, magic_len = 0, *opend;
7329         const u8 *op, *new_op, *magic = NULL;
7330         struct sk_buff *skb;
7331         bool eol;
7332
7333         if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7334                 return -EPERM;
7335
7336         if (len < 2 || flags)
7337                 return -EINVAL;
7338
7339         new_op = from;
7340         new_kind = new_op[0];
7341         new_kind_len = new_op[1];
7342
7343         if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7344             new_kind == TCPOPT_EOL)
7345                 return -EINVAL;
7346
7347         if (new_kind_len > bpf_sock->remaining_opt_len)
7348                 return -ENOSPC;
7349
7350         /* 253 is another experimental kind */
7351         if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7352                 if (new_kind_len < 4)
7353                         return -EINVAL;
7354                 /* Match for the 2 byte magic also.
7355                  * RFC 6994: the magic could be 2 or 4 bytes.
7356                  * Hence, matching by 2 byte only is on the
7357                  * conservative side but it is the right
7358                  * thing to do for the 'search-for-duplication'
7359                  * purpose.
7360                  */
7361                 magic = &new_op[2];
7362                 magic_len = 2;
7363         }
7364
7365         /* Check for duplication */
7366         skb = bpf_sock->skb;
7367         op = skb->data + sizeof(struct tcphdr);
7368         opend = bpf_sock->skb_data_end;
7369
7370         op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7371                                 &eol);
7372         if (!IS_ERR(op))
7373                 return -EEXIST;
7374
7375         if (PTR_ERR(op) != -ENOMSG)
7376                 return PTR_ERR(op);
7377
7378         if (eol)
7379                 /* The option has been ended.  Treat it as no more
7380                  * header option can be written.
7381                  */
7382                 return -ENOSPC;
7383
7384         /* No duplication found.  Store the header option. */
7385         memcpy(opend, from, new_kind_len);
7386
7387         bpf_sock->remaining_opt_len -= new_kind_len;
7388         bpf_sock->skb_data_end += new_kind_len;
7389
7390         return 0;
7391 }
7392
7393 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7394         .func           = bpf_sock_ops_store_hdr_opt,
7395         .gpl_only       = false,
7396         .ret_type       = RET_INTEGER,
7397         .arg1_type      = ARG_PTR_TO_CTX,
7398         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7399         .arg3_type      = ARG_CONST_SIZE,
7400         .arg4_type      = ARG_ANYTHING,
7401 };
7402
7403 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7404            u32, len, u64, flags)
7405 {
7406         if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7407                 return -EPERM;
7408
7409         if (flags || len < 2)
7410                 return -EINVAL;
7411
7412         if (len > bpf_sock->remaining_opt_len)
7413                 return -ENOSPC;
7414
7415         bpf_sock->remaining_opt_len -= len;
7416
7417         return 0;
7418 }
7419
7420 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7421         .func           = bpf_sock_ops_reserve_hdr_opt,
7422         .gpl_only       = false,
7423         .ret_type       = RET_INTEGER,
7424         .arg1_type      = ARG_PTR_TO_CTX,
7425         .arg2_type      = ARG_ANYTHING,
7426         .arg3_type      = ARG_ANYTHING,
7427 };
7428
7429 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7430            u64, tstamp, u32, tstamp_type)
7431 {
7432         /* skb_clear_delivery_time() is done for inet protocol */
7433         if (skb->protocol != htons(ETH_P_IP) &&
7434             skb->protocol != htons(ETH_P_IPV6))
7435                 return -EOPNOTSUPP;
7436
7437         switch (tstamp_type) {
7438         case BPF_SKB_TSTAMP_DELIVERY_MONO:
7439                 if (!tstamp)
7440                         return -EINVAL;
7441                 skb->tstamp = tstamp;
7442                 skb->mono_delivery_time = 1;
7443                 break;
7444         case BPF_SKB_TSTAMP_UNSPEC:
7445                 if (tstamp)
7446                         return -EINVAL;
7447                 skb->tstamp = 0;
7448                 skb->mono_delivery_time = 0;
7449                 break;
7450         default:
7451                 return -EINVAL;
7452         }
7453
7454         return 0;
7455 }
7456
7457 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7458         .func           = bpf_skb_set_tstamp,
7459         .gpl_only       = false,
7460         .ret_type       = RET_INTEGER,
7461         .arg1_type      = ARG_PTR_TO_CTX,
7462         .arg2_type      = ARG_ANYTHING,
7463         .arg3_type      = ARG_ANYTHING,
7464 };
7465
7466 #ifdef CONFIG_SYN_COOKIES
7467 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7468            struct tcphdr *, th, u32, th_len)
7469 {
7470         u32 cookie;
7471         u16 mss;
7472
7473         if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7474                 return -EINVAL;
7475
7476         mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7477         cookie = __cookie_v4_init_sequence(iph, th, &mss);
7478
7479         return cookie | ((u64)mss << 32);
7480 }
7481
7482 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7483         .func           = bpf_tcp_raw_gen_syncookie_ipv4,
7484         .gpl_only       = true, /* __cookie_v4_init_sequence() is GPL */
7485         .pkt_access     = true,
7486         .ret_type       = RET_INTEGER,
7487         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7488         .arg1_size      = sizeof(struct iphdr),
7489         .arg2_type      = ARG_PTR_TO_MEM,
7490         .arg3_type      = ARG_CONST_SIZE,
7491 };
7492
7493 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7494            struct tcphdr *, th, u32, th_len)
7495 {
7496 #if IS_BUILTIN(CONFIG_IPV6)
7497         const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7498                 sizeof(struct ipv6hdr);
7499         u32 cookie;
7500         u16 mss;
7501
7502         if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7503                 return -EINVAL;
7504
7505         mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7506         cookie = __cookie_v6_init_sequence(iph, th, &mss);
7507
7508         return cookie | ((u64)mss << 32);
7509 #else
7510         return -EPROTONOSUPPORT;
7511 #endif
7512 }
7513
7514 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7515         .func           = bpf_tcp_raw_gen_syncookie_ipv6,
7516         .gpl_only       = true, /* __cookie_v6_init_sequence() is GPL */
7517         .pkt_access     = true,
7518         .ret_type       = RET_INTEGER,
7519         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7520         .arg1_size      = sizeof(struct ipv6hdr),
7521         .arg2_type      = ARG_PTR_TO_MEM,
7522         .arg3_type      = ARG_CONST_SIZE,
7523 };
7524
7525 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7526            struct tcphdr *, th)
7527 {
7528         u32 cookie = ntohl(th->ack_seq) - 1;
7529
7530         if (__cookie_v4_check(iph, th, cookie) > 0)
7531                 return 0;
7532
7533         return -EACCES;
7534 }
7535
7536 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7537         .func           = bpf_tcp_raw_check_syncookie_ipv4,
7538         .gpl_only       = true, /* __cookie_v4_check is GPL */
7539         .pkt_access     = true,
7540         .ret_type       = RET_INTEGER,
7541         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7542         .arg1_size      = sizeof(struct iphdr),
7543         .arg2_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7544         .arg2_size      = sizeof(struct tcphdr),
7545 };
7546
7547 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7548            struct tcphdr *, th)
7549 {
7550 #if IS_BUILTIN(CONFIG_IPV6)
7551         u32 cookie = ntohl(th->ack_seq) - 1;
7552
7553         if (__cookie_v6_check(iph, th, cookie) > 0)
7554                 return 0;
7555
7556         return -EACCES;
7557 #else
7558         return -EPROTONOSUPPORT;
7559 #endif
7560 }
7561
7562 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7563         .func           = bpf_tcp_raw_check_syncookie_ipv6,
7564         .gpl_only       = true, /* __cookie_v6_check is GPL */
7565         .pkt_access     = true,
7566         .ret_type       = RET_INTEGER,
7567         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7568         .arg1_size      = sizeof(struct ipv6hdr),
7569         .arg2_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7570         .arg2_size      = sizeof(struct tcphdr),
7571 };
7572 #endif /* CONFIG_SYN_COOKIES */
7573
7574 #endif /* CONFIG_INET */
7575
7576 bool bpf_helper_changes_pkt_data(void *func)
7577 {
7578         if (func == bpf_skb_vlan_push ||
7579             func == bpf_skb_vlan_pop ||
7580             func == bpf_skb_store_bytes ||
7581             func == bpf_skb_change_proto ||
7582             func == bpf_skb_change_head ||
7583             func == sk_skb_change_head ||
7584             func == bpf_skb_change_tail ||
7585             func == sk_skb_change_tail ||
7586             func == bpf_skb_adjust_room ||
7587             func == sk_skb_adjust_room ||
7588             func == bpf_skb_pull_data ||
7589             func == sk_skb_pull_data ||
7590             func == bpf_clone_redirect ||
7591             func == bpf_l3_csum_replace ||
7592             func == bpf_l4_csum_replace ||
7593             func == bpf_xdp_adjust_head ||
7594             func == bpf_xdp_adjust_meta ||
7595             func == bpf_msg_pull_data ||
7596             func == bpf_msg_push_data ||
7597             func == bpf_msg_pop_data ||
7598             func == bpf_xdp_adjust_tail ||
7599 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7600             func == bpf_lwt_seg6_store_bytes ||
7601             func == bpf_lwt_seg6_adjust_srh ||
7602             func == bpf_lwt_seg6_action ||
7603 #endif
7604 #ifdef CONFIG_INET
7605             func == bpf_sock_ops_store_hdr_opt ||
7606 #endif
7607             func == bpf_lwt_in_push_encap ||
7608             func == bpf_lwt_xmit_push_encap)
7609                 return true;
7610
7611         return false;
7612 }
7613
7614 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7615 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7616
7617 static const struct bpf_func_proto *
7618 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7619 {
7620         const struct bpf_func_proto *func_proto;
7621
7622         func_proto = cgroup_common_func_proto(func_id, prog);
7623         if (func_proto)
7624                 return func_proto;
7625
7626         func_proto = cgroup_current_func_proto(func_id, prog);
7627         if (func_proto)
7628                 return func_proto;
7629
7630         switch (func_id) {
7631         case BPF_FUNC_get_socket_cookie:
7632                 return &bpf_get_socket_cookie_sock_proto;
7633         case BPF_FUNC_get_netns_cookie:
7634                 return &bpf_get_netns_cookie_sock_proto;
7635         case BPF_FUNC_perf_event_output:
7636                 return &bpf_event_output_data_proto;
7637         case BPF_FUNC_sk_storage_get:
7638                 return &bpf_sk_storage_get_cg_sock_proto;
7639         case BPF_FUNC_ktime_get_coarse_ns:
7640                 return &bpf_ktime_get_coarse_ns_proto;
7641         default:
7642                 return bpf_base_func_proto(func_id);
7643         }
7644 }
7645
7646 static const struct bpf_func_proto *
7647 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7648 {
7649         const struct bpf_func_proto *func_proto;
7650
7651         func_proto = cgroup_common_func_proto(func_id, prog);
7652         if (func_proto)
7653                 return func_proto;
7654
7655         func_proto = cgroup_current_func_proto(func_id, prog);
7656         if (func_proto)
7657                 return func_proto;
7658
7659         switch (func_id) {
7660         case BPF_FUNC_bind:
7661                 switch (prog->expected_attach_type) {
7662                 case BPF_CGROUP_INET4_CONNECT:
7663                 case BPF_CGROUP_INET6_CONNECT:
7664                         return &bpf_bind_proto;
7665                 default:
7666                         return NULL;
7667                 }
7668         case BPF_FUNC_get_socket_cookie:
7669                 return &bpf_get_socket_cookie_sock_addr_proto;
7670         case BPF_FUNC_get_netns_cookie:
7671                 return &bpf_get_netns_cookie_sock_addr_proto;
7672         case BPF_FUNC_perf_event_output:
7673                 return &bpf_event_output_data_proto;
7674 #ifdef CONFIG_INET
7675         case BPF_FUNC_sk_lookup_tcp:
7676                 return &bpf_sock_addr_sk_lookup_tcp_proto;
7677         case BPF_FUNC_sk_lookup_udp:
7678                 return &bpf_sock_addr_sk_lookup_udp_proto;
7679         case BPF_FUNC_sk_release:
7680                 return &bpf_sk_release_proto;
7681         case BPF_FUNC_skc_lookup_tcp:
7682                 return &bpf_sock_addr_skc_lookup_tcp_proto;
7683 #endif /* CONFIG_INET */
7684         case BPF_FUNC_sk_storage_get:
7685                 return &bpf_sk_storage_get_proto;
7686         case BPF_FUNC_sk_storage_delete:
7687                 return &bpf_sk_storage_delete_proto;
7688         case BPF_FUNC_setsockopt:
7689                 switch (prog->expected_attach_type) {
7690                 case BPF_CGROUP_INET4_BIND:
7691                 case BPF_CGROUP_INET6_BIND:
7692                 case BPF_CGROUP_INET4_CONNECT:
7693                 case BPF_CGROUP_INET6_CONNECT:
7694                 case BPF_CGROUP_UDP4_RECVMSG:
7695                 case BPF_CGROUP_UDP6_RECVMSG:
7696                 case BPF_CGROUP_UDP4_SENDMSG:
7697                 case BPF_CGROUP_UDP6_SENDMSG:
7698                 case BPF_CGROUP_INET4_GETPEERNAME:
7699                 case BPF_CGROUP_INET6_GETPEERNAME:
7700                 case BPF_CGROUP_INET4_GETSOCKNAME:
7701                 case BPF_CGROUP_INET6_GETSOCKNAME:
7702                         return &bpf_sock_addr_setsockopt_proto;
7703                 default:
7704                         return NULL;
7705                 }
7706         case BPF_FUNC_getsockopt:
7707                 switch (prog->expected_attach_type) {
7708                 case BPF_CGROUP_INET4_BIND:
7709                 case BPF_CGROUP_INET6_BIND:
7710                 case BPF_CGROUP_INET4_CONNECT:
7711                 case BPF_CGROUP_INET6_CONNECT:
7712                 case BPF_CGROUP_UDP4_RECVMSG:
7713                 case BPF_CGROUP_UDP6_RECVMSG:
7714                 case BPF_CGROUP_UDP4_SENDMSG:
7715                 case BPF_CGROUP_UDP6_SENDMSG:
7716                 case BPF_CGROUP_INET4_GETPEERNAME:
7717                 case BPF_CGROUP_INET6_GETPEERNAME:
7718                 case BPF_CGROUP_INET4_GETSOCKNAME:
7719                 case BPF_CGROUP_INET6_GETSOCKNAME:
7720                         return &bpf_sock_addr_getsockopt_proto;
7721                 default:
7722                         return NULL;
7723                 }
7724         default:
7725                 return bpf_sk_base_func_proto(func_id);
7726         }
7727 }
7728
7729 static const struct bpf_func_proto *
7730 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7731 {
7732         switch (func_id) {
7733         case BPF_FUNC_skb_load_bytes:
7734                 return &bpf_skb_load_bytes_proto;
7735         case BPF_FUNC_skb_load_bytes_relative:
7736                 return &bpf_skb_load_bytes_relative_proto;
7737         case BPF_FUNC_get_socket_cookie:
7738                 return &bpf_get_socket_cookie_proto;
7739         case BPF_FUNC_get_socket_uid:
7740                 return &bpf_get_socket_uid_proto;
7741         case BPF_FUNC_perf_event_output:
7742                 return &bpf_skb_event_output_proto;
7743         default:
7744                 return bpf_sk_base_func_proto(func_id);
7745         }
7746 }
7747
7748 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7749 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7750
7751 static const struct bpf_func_proto *
7752 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7753 {
7754         const struct bpf_func_proto *func_proto;
7755
7756         func_proto = cgroup_common_func_proto(func_id, prog);
7757         if (func_proto)
7758                 return func_proto;
7759
7760         switch (func_id) {
7761         case BPF_FUNC_sk_fullsock:
7762                 return &bpf_sk_fullsock_proto;
7763         case BPF_FUNC_sk_storage_get:
7764                 return &bpf_sk_storage_get_proto;
7765         case BPF_FUNC_sk_storage_delete:
7766                 return &bpf_sk_storage_delete_proto;
7767         case BPF_FUNC_perf_event_output:
7768                 return &bpf_skb_event_output_proto;
7769 #ifdef CONFIG_SOCK_CGROUP_DATA
7770         case BPF_FUNC_skb_cgroup_id:
7771                 return &bpf_skb_cgroup_id_proto;
7772         case BPF_FUNC_skb_ancestor_cgroup_id:
7773                 return &bpf_skb_ancestor_cgroup_id_proto;
7774         case BPF_FUNC_sk_cgroup_id:
7775                 return &bpf_sk_cgroup_id_proto;
7776         case BPF_FUNC_sk_ancestor_cgroup_id:
7777                 return &bpf_sk_ancestor_cgroup_id_proto;
7778 #endif
7779 #ifdef CONFIG_INET
7780         case BPF_FUNC_sk_lookup_tcp:
7781                 return &bpf_sk_lookup_tcp_proto;
7782         case BPF_FUNC_sk_lookup_udp:
7783                 return &bpf_sk_lookup_udp_proto;
7784         case BPF_FUNC_sk_release:
7785                 return &bpf_sk_release_proto;
7786         case BPF_FUNC_skc_lookup_tcp:
7787                 return &bpf_skc_lookup_tcp_proto;
7788         case BPF_FUNC_tcp_sock:
7789                 return &bpf_tcp_sock_proto;
7790         case BPF_FUNC_get_listener_sock:
7791                 return &bpf_get_listener_sock_proto;
7792         case BPF_FUNC_skb_ecn_set_ce:
7793                 return &bpf_skb_ecn_set_ce_proto;
7794 #endif
7795         default:
7796                 return sk_filter_func_proto(func_id, prog);
7797         }
7798 }
7799
7800 static const struct bpf_func_proto *
7801 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7802 {
7803         switch (func_id) {
7804         case BPF_FUNC_skb_store_bytes:
7805                 return &bpf_skb_store_bytes_proto;
7806         case BPF_FUNC_skb_load_bytes:
7807                 return &bpf_skb_load_bytes_proto;
7808         case BPF_FUNC_skb_load_bytes_relative:
7809                 return &bpf_skb_load_bytes_relative_proto;
7810         case BPF_FUNC_skb_pull_data:
7811                 return &bpf_skb_pull_data_proto;
7812         case BPF_FUNC_csum_diff:
7813                 return &bpf_csum_diff_proto;
7814         case BPF_FUNC_csum_update:
7815                 return &bpf_csum_update_proto;
7816         case BPF_FUNC_csum_level:
7817                 return &bpf_csum_level_proto;
7818         case BPF_FUNC_l3_csum_replace:
7819                 return &bpf_l3_csum_replace_proto;
7820         case BPF_FUNC_l4_csum_replace:
7821                 return &bpf_l4_csum_replace_proto;
7822         case BPF_FUNC_clone_redirect:
7823                 return &bpf_clone_redirect_proto;
7824         case BPF_FUNC_get_cgroup_classid:
7825                 return &bpf_get_cgroup_classid_proto;
7826         case BPF_FUNC_skb_vlan_push:
7827                 return &bpf_skb_vlan_push_proto;
7828         case BPF_FUNC_skb_vlan_pop:
7829                 return &bpf_skb_vlan_pop_proto;
7830         case BPF_FUNC_skb_change_proto:
7831                 return &bpf_skb_change_proto_proto;
7832         case BPF_FUNC_skb_change_type:
7833                 return &bpf_skb_change_type_proto;
7834         case BPF_FUNC_skb_adjust_room:
7835                 return &bpf_skb_adjust_room_proto;
7836         case BPF_FUNC_skb_change_tail:
7837                 return &bpf_skb_change_tail_proto;
7838         case BPF_FUNC_skb_change_head:
7839                 return &bpf_skb_change_head_proto;
7840         case BPF_FUNC_skb_get_tunnel_key:
7841                 return &bpf_skb_get_tunnel_key_proto;
7842         case BPF_FUNC_skb_set_tunnel_key:
7843                 return bpf_get_skb_set_tunnel_proto(func_id);
7844         case BPF_FUNC_skb_get_tunnel_opt:
7845                 return &bpf_skb_get_tunnel_opt_proto;
7846         case BPF_FUNC_skb_set_tunnel_opt:
7847                 return bpf_get_skb_set_tunnel_proto(func_id);
7848         case BPF_FUNC_redirect:
7849                 return &bpf_redirect_proto;
7850         case BPF_FUNC_redirect_neigh:
7851                 return &bpf_redirect_neigh_proto;
7852         case BPF_FUNC_redirect_peer:
7853                 return &bpf_redirect_peer_proto;
7854         case BPF_FUNC_get_route_realm:
7855                 return &bpf_get_route_realm_proto;
7856         case BPF_FUNC_get_hash_recalc:
7857                 return &bpf_get_hash_recalc_proto;
7858         case BPF_FUNC_set_hash_invalid:
7859                 return &bpf_set_hash_invalid_proto;
7860         case BPF_FUNC_set_hash:
7861                 return &bpf_set_hash_proto;
7862         case BPF_FUNC_perf_event_output:
7863                 return &bpf_skb_event_output_proto;
7864         case BPF_FUNC_get_smp_processor_id:
7865                 return &bpf_get_smp_processor_id_proto;
7866         case BPF_FUNC_skb_under_cgroup:
7867                 return &bpf_skb_under_cgroup_proto;
7868         case BPF_FUNC_get_socket_cookie:
7869                 return &bpf_get_socket_cookie_proto;
7870         case BPF_FUNC_get_socket_uid:
7871                 return &bpf_get_socket_uid_proto;
7872         case BPF_FUNC_fib_lookup:
7873                 return &bpf_skb_fib_lookup_proto;
7874         case BPF_FUNC_check_mtu:
7875                 return &bpf_skb_check_mtu_proto;
7876         case BPF_FUNC_sk_fullsock:
7877                 return &bpf_sk_fullsock_proto;
7878         case BPF_FUNC_sk_storage_get:
7879                 return &bpf_sk_storage_get_proto;
7880         case BPF_FUNC_sk_storage_delete:
7881                 return &bpf_sk_storage_delete_proto;
7882 #ifdef CONFIG_XFRM
7883         case BPF_FUNC_skb_get_xfrm_state:
7884                 return &bpf_skb_get_xfrm_state_proto;
7885 #endif
7886 #ifdef CONFIG_CGROUP_NET_CLASSID
7887         case BPF_FUNC_skb_cgroup_classid:
7888                 return &bpf_skb_cgroup_classid_proto;
7889 #endif
7890 #ifdef CONFIG_SOCK_CGROUP_DATA
7891         case BPF_FUNC_skb_cgroup_id:
7892                 return &bpf_skb_cgroup_id_proto;
7893         case BPF_FUNC_skb_ancestor_cgroup_id:
7894                 return &bpf_skb_ancestor_cgroup_id_proto;
7895 #endif
7896 #ifdef CONFIG_INET
7897         case BPF_FUNC_sk_lookup_tcp:
7898                 return &bpf_sk_lookup_tcp_proto;
7899         case BPF_FUNC_sk_lookup_udp:
7900                 return &bpf_sk_lookup_udp_proto;
7901         case BPF_FUNC_sk_release:
7902                 return &bpf_sk_release_proto;
7903         case BPF_FUNC_tcp_sock:
7904                 return &bpf_tcp_sock_proto;
7905         case BPF_FUNC_get_listener_sock:
7906                 return &bpf_get_listener_sock_proto;
7907         case BPF_FUNC_skc_lookup_tcp:
7908                 return &bpf_skc_lookup_tcp_proto;
7909         case BPF_FUNC_tcp_check_syncookie:
7910                 return &bpf_tcp_check_syncookie_proto;
7911         case BPF_FUNC_skb_ecn_set_ce:
7912                 return &bpf_skb_ecn_set_ce_proto;
7913         case BPF_FUNC_tcp_gen_syncookie:
7914                 return &bpf_tcp_gen_syncookie_proto;
7915         case BPF_FUNC_sk_assign:
7916                 return &bpf_sk_assign_proto;
7917         case BPF_FUNC_skb_set_tstamp:
7918                 return &bpf_skb_set_tstamp_proto;
7919 #ifdef CONFIG_SYN_COOKIES
7920         case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
7921                 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
7922         case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
7923                 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
7924         case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
7925                 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
7926         case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
7927                 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
7928 #endif
7929 #endif
7930         default:
7931                 return bpf_sk_base_func_proto(func_id);
7932         }
7933 }
7934
7935 static const struct bpf_func_proto *
7936 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7937 {
7938         switch (func_id) {
7939         case BPF_FUNC_perf_event_output:
7940                 return &bpf_xdp_event_output_proto;
7941         case BPF_FUNC_get_smp_processor_id:
7942                 return &bpf_get_smp_processor_id_proto;
7943         case BPF_FUNC_csum_diff:
7944                 return &bpf_csum_diff_proto;
7945         case BPF_FUNC_xdp_adjust_head:
7946                 return &bpf_xdp_adjust_head_proto;
7947         case BPF_FUNC_xdp_adjust_meta:
7948                 return &bpf_xdp_adjust_meta_proto;
7949         case BPF_FUNC_redirect:
7950                 return &bpf_xdp_redirect_proto;
7951         case BPF_FUNC_redirect_map:
7952                 return &bpf_xdp_redirect_map_proto;
7953         case BPF_FUNC_xdp_adjust_tail:
7954                 return &bpf_xdp_adjust_tail_proto;
7955         case BPF_FUNC_xdp_get_buff_len:
7956                 return &bpf_xdp_get_buff_len_proto;
7957         case BPF_FUNC_xdp_load_bytes:
7958                 return &bpf_xdp_load_bytes_proto;
7959         case BPF_FUNC_xdp_store_bytes:
7960                 return &bpf_xdp_store_bytes_proto;
7961         case BPF_FUNC_fib_lookup:
7962                 return &bpf_xdp_fib_lookup_proto;
7963         case BPF_FUNC_check_mtu:
7964                 return &bpf_xdp_check_mtu_proto;
7965 #ifdef CONFIG_INET
7966         case BPF_FUNC_sk_lookup_udp:
7967                 return &bpf_xdp_sk_lookup_udp_proto;
7968         case BPF_FUNC_sk_lookup_tcp:
7969                 return &bpf_xdp_sk_lookup_tcp_proto;
7970         case BPF_FUNC_sk_release:
7971                 return &bpf_sk_release_proto;
7972         case BPF_FUNC_skc_lookup_tcp:
7973                 return &bpf_xdp_skc_lookup_tcp_proto;
7974         case BPF_FUNC_tcp_check_syncookie:
7975                 return &bpf_tcp_check_syncookie_proto;
7976         case BPF_FUNC_tcp_gen_syncookie:
7977                 return &bpf_tcp_gen_syncookie_proto;
7978 #ifdef CONFIG_SYN_COOKIES
7979         case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
7980                 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
7981         case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
7982                 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
7983         case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
7984                 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
7985         case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
7986                 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
7987 #endif
7988 #endif
7989         default:
7990                 return bpf_sk_base_func_proto(func_id);
7991         }
7992
7993 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
7994         /* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
7995          * kfuncs are defined in two different modules, and we want to be able
7996          * to use them interchangably with the same BTF type ID. Because modules
7997          * can't de-duplicate BTF IDs between each other, we need the type to be
7998          * referenced in the vmlinux BTF or the verifier will get confused about
7999          * the different types. So we add this dummy type reference which will
8000          * be included in vmlinux BTF, allowing both modules to refer to the
8001          * same type ID.
8002          */
8003         BTF_TYPE_EMIT(struct nf_conn___init);
8004 #endif
8005 }
8006
8007 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8008 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8009
8010 static const struct bpf_func_proto *
8011 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8012 {
8013         const struct bpf_func_proto *func_proto;
8014
8015         func_proto = cgroup_common_func_proto(func_id, prog);
8016         if (func_proto)
8017                 return func_proto;
8018
8019         switch (func_id) {
8020         case BPF_FUNC_setsockopt:
8021                 return &bpf_sock_ops_setsockopt_proto;
8022         case BPF_FUNC_getsockopt:
8023                 return &bpf_sock_ops_getsockopt_proto;
8024         case BPF_FUNC_sock_ops_cb_flags_set:
8025                 return &bpf_sock_ops_cb_flags_set_proto;
8026         case BPF_FUNC_sock_map_update:
8027                 return &bpf_sock_map_update_proto;
8028         case BPF_FUNC_sock_hash_update:
8029                 return &bpf_sock_hash_update_proto;
8030         case BPF_FUNC_get_socket_cookie:
8031                 return &bpf_get_socket_cookie_sock_ops_proto;
8032         case BPF_FUNC_perf_event_output:
8033                 return &bpf_event_output_data_proto;
8034         case BPF_FUNC_sk_storage_get:
8035                 return &bpf_sk_storage_get_proto;
8036         case BPF_FUNC_sk_storage_delete:
8037                 return &bpf_sk_storage_delete_proto;
8038         case BPF_FUNC_get_netns_cookie:
8039                 return &bpf_get_netns_cookie_sock_ops_proto;
8040 #ifdef CONFIG_INET
8041         case BPF_FUNC_load_hdr_opt:
8042                 return &bpf_sock_ops_load_hdr_opt_proto;
8043         case BPF_FUNC_store_hdr_opt:
8044                 return &bpf_sock_ops_store_hdr_opt_proto;
8045         case BPF_FUNC_reserve_hdr_opt:
8046                 return &bpf_sock_ops_reserve_hdr_opt_proto;
8047         case BPF_FUNC_tcp_sock:
8048                 return &bpf_tcp_sock_proto;
8049 #endif /* CONFIG_INET */
8050         default:
8051                 return bpf_sk_base_func_proto(func_id);
8052         }
8053 }
8054
8055 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8056 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8057
8058 static const struct bpf_func_proto *
8059 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8060 {
8061         switch (func_id) {
8062         case BPF_FUNC_msg_redirect_map:
8063                 return &bpf_msg_redirect_map_proto;
8064         case BPF_FUNC_msg_redirect_hash:
8065                 return &bpf_msg_redirect_hash_proto;
8066         case BPF_FUNC_msg_apply_bytes:
8067                 return &bpf_msg_apply_bytes_proto;
8068         case BPF_FUNC_msg_cork_bytes:
8069                 return &bpf_msg_cork_bytes_proto;
8070         case BPF_FUNC_msg_pull_data:
8071                 return &bpf_msg_pull_data_proto;
8072         case BPF_FUNC_msg_push_data:
8073                 return &bpf_msg_push_data_proto;
8074         case BPF_FUNC_msg_pop_data:
8075                 return &bpf_msg_pop_data_proto;
8076         case BPF_FUNC_perf_event_output:
8077                 return &bpf_event_output_data_proto;
8078         case BPF_FUNC_get_current_uid_gid:
8079                 return &bpf_get_current_uid_gid_proto;
8080         case BPF_FUNC_get_current_pid_tgid:
8081                 return &bpf_get_current_pid_tgid_proto;
8082         case BPF_FUNC_sk_storage_get:
8083                 return &bpf_sk_storage_get_proto;
8084         case BPF_FUNC_sk_storage_delete:
8085                 return &bpf_sk_storage_delete_proto;
8086         case BPF_FUNC_get_netns_cookie:
8087                 return &bpf_get_netns_cookie_sk_msg_proto;
8088 #ifdef CONFIG_CGROUPS
8089         case BPF_FUNC_get_current_cgroup_id:
8090                 return &bpf_get_current_cgroup_id_proto;
8091         case BPF_FUNC_get_current_ancestor_cgroup_id:
8092                 return &bpf_get_current_ancestor_cgroup_id_proto;
8093 #endif
8094 #ifdef CONFIG_CGROUP_NET_CLASSID
8095         case BPF_FUNC_get_cgroup_classid:
8096                 return &bpf_get_cgroup_classid_curr_proto;
8097 #endif
8098         default:
8099                 return bpf_sk_base_func_proto(func_id);
8100         }
8101 }
8102
8103 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8104 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8105
8106 static const struct bpf_func_proto *
8107 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8108 {
8109         switch (func_id) {
8110         case BPF_FUNC_skb_store_bytes:
8111                 return &bpf_skb_store_bytes_proto;
8112         case BPF_FUNC_skb_load_bytes:
8113                 return &bpf_skb_load_bytes_proto;
8114         case BPF_FUNC_skb_pull_data:
8115                 return &sk_skb_pull_data_proto;
8116         case BPF_FUNC_skb_change_tail:
8117                 return &sk_skb_change_tail_proto;
8118         case BPF_FUNC_skb_change_head:
8119                 return &sk_skb_change_head_proto;
8120         case BPF_FUNC_skb_adjust_room:
8121                 return &sk_skb_adjust_room_proto;
8122         case BPF_FUNC_get_socket_cookie:
8123                 return &bpf_get_socket_cookie_proto;
8124         case BPF_FUNC_get_socket_uid:
8125                 return &bpf_get_socket_uid_proto;
8126         case BPF_FUNC_sk_redirect_map:
8127                 return &bpf_sk_redirect_map_proto;
8128         case BPF_FUNC_sk_redirect_hash:
8129                 return &bpf_sk_redirect_hash_proto;
8130         case BPF_FUNC_perf_event_output:
8131                 return &bpf_skb_event_output_proto;
8132 #ifdef CONFIG_INET
8133         case BPF_FUNC_sk_lookup_tcp:
8134                 return &bpf_sk_lookup_tcp_proto;
8135         case BPF_FUNC_sk_lookup_udp:
8136                 return &bpf_sk_lookup_udp_proto;
8137         case BPF_FUNC_sk_release:
8138                 return &bpf_sk_release_proto;
8139         case BPF_FUNC_skc_lookup_tcp:
8140                 return &bpf_skc_lookup_tcp_proto;
8141 #endif
8142         default:
8143                 return bpf_sk_base_func_proto(func_id);
8144         }
8145 }
8146
8147 static const struct bpf_func_proto *
8148 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8149 {
8150         switch (func_id) {
8151         case BPF_FUNC_skb_load_bytes:
8152                 return &bpf_flow_dissector_load_bytes_proto;
8153         default:
8154                 return bpf_sk_base_func_proto(func_id);
8155         }
8156 }
8157
8158 static const struct bpf_func_proto *
8159 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8160 {
8161         switch (func_id) {
8162         case BPF_FUNC_skb_load_bytes:
8163                 return &bpf_skb_load_bytes_proto;
8164         case BPF_FUNC_skb_pull_data:
8165                 return &bpf_skb_pull_data_proto;
8166         case BPF_FUNC_csum_diff:
8167                 return &bpf_csum_diff_proto;
8168         case BPF_FUNC_get_cgroup_classid:
8169                 return &bpf_get_cgroup_classid_proto;
8170         case BPF_FUNC_get_route_realm:
8171                 return &bpf_get_route_realm_proto;
8172         case BPF_FUNC_get_hash_recalc:
8173                 return &bpf_get_hash_recalc_proto;
8174         case BPF_FUNC_perf_event_output:
8175                 return &bpf_skb_event_output_proto;
8176         case BPF_FUNC_get_smp_processor_id:
8177                 return &bpf_get_smp_processor_id_proto;
8178         case BPF_FUNC_skb_under_cgroup:
8179                 return &bpf_skb_under_cgroup_proto;
8180         default:
8181                 return bpf_sk_base_func_proto(func_id);
8182         }
8183 }
8184
8185 static const struct bpf_func_proto *
8186 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8187 {
8188         switch (func_id) {
8189         case BPF_FUNC_lwt_push_encap:
8190                 return &bpf_lwt_in_push_encap_proto;
8191         default:
8192                 return lwt_out_func_proto(func_id, prog);
8193         }
8194 }
8195
8196 static const struct bpf_func_proto *
8197 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8198 {
8199         switch (func_id) {
8200         case BPF_FUNC_skb_get_tunnel_key:
8201                 return &bpf_skb_get_tunnel_key_proto;
8202         case BPF_FUNC_skb_set_tunnel_key:
8203                 return bpf_get_skb_set_tunnel_proto(func_id);
8204         case BPF_FUNC_skb_get_tunnel_opt:
8205                 return &bpf_skb_get_tunnel_opt_proto;
8206         case BPF_FUNC_skb_set_tunnel_opt:
8207                 return bpf_get_skb_set_tunnel_proto(func_id);
8208         case BPF_FUNC_redirect:
8209                 return &bpf_redirect_proto;
8210         case BPF_FUNC_clone_redirect:
8211                 return &bpf_clone_redirect_proto;
8212         case BPF_FUNC_skb_change_tail:
8213                 return &bpf_skb_change_tail_proto;
8214         case BPF_FUNC_skb_change_head:
8215                 return &bpf_skb_change_head_proto;
8216         case BPF_FUNC_skb_store_bytes:
8217                 return &bpf_skb_store_bytes_proto;
8218         case BPF_FUNC_csum_update:
8219                 return &bpf_csum_update_proto;
8220         case BPF_FUNC_csum_level:
8221                 return &bpf_csum_level_proto;
8222         case BPF_FUNC_l3_csum_replace:
8223                 return &bpf_l3_csum_replace_proto;
8224         case BPF_FUNC_l4_csum_replace:
8225                 return &bpf_l4_csum_replace_proto;
8226         case BPF_FUNC_set_hash_invalid:
8227                 return &bpf_set_hash_invalid_proto;
8228         case BPF_FUNC_lwt_push_encap:
8229                 return &bpf_lwt_xmit_push_encap_proto;
8230         default:
8231                 return lwt_out_func_proto(func_id, prog);
8232         }
8233 }
8234
8235 static const struct bpf_func_proto *
8236 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8237 {
8238         switch (func_id) {
8239 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8240         case BPF_FUNC_lwt_seg6_store_bytes:
8241                 return &bpf_lwt_seg6_store_bytes_proto;
8242         case BPF_FUNC_lwt_seg6_action:
8243                 return &bpf_lwt_seg6_action_proto;
8244         case BPF_FUNC_lwt_seg6_adjust_srh:
8245                 return &bpf_lwt_seg6_adjust_srh_proto;
8246 #endif
8247         default:
8248                 return lwt_out_func_proto(func_id, prog);
8249         }
8250 }
8251
8252 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8253                                     const struct bpf_prog *prog,
8254                                     struct bpf_insn_access_aux *info)
8255 {
8256         const int size_default = sizeof(__u32);
8257
8258         if (off < 0 || off >= sizeof(struct __sk_buff))
8259                 return false;
8260
8261         /* The verifier guarantees that size > 0. */
8262         if (off % size != 0)
8263                 return false;
8264
8265         switch (off) {
8266         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8267                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
8268                         return false;
8269                 break;
8270         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8271         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8272         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8273         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8274         case bpf_ctx_range(struct __sk_buff, data):
8275         case bpf_ctx_range(struct __sk_buff, data_meta):
8276         case bpf_ctx_range(struct __sk_buff, data_end):
8277                 if (size != size_default)
8278                         return false;
8279                 break;
8280         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8281                 return false;
8282         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8283                 if (type == BPF_WRITE || size != sizeof(__u64))
8284                         return false;
8285                 break;
8286         case bpf_ctx_range(struct __sk_buff, tstamp):
8287                 if (size != sizeof(__u64))
8288                         return false;
8289                 break;
8290         case offsetof(struct __sk_buff, sk):
8291                 if (type == BPF_WRITE || size != sizeof(__u64))
8292                         return false;
8293                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8294                 break;
8295         case offsetof(struct __sk_buff, tstamp_type):
8296                 return false;
8297         case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8298                 /* Explicitly prohibit access to padding in __sk_buff. */
8299                 return false;
8300         default:
8301                 /* Only narrow read access allowed for now. */
8302                 if (type == BPF_WRITE) {
8303                         if (size != size_default)
8304                                 return false;
8305                 } else {
8306                         bpf_ctx_record_field_size(info, size_default);
8307                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8308                                 return false;
8309                 }
8310         }
8311
8312         return true;
8313 }
8314
8315 static bool sk_filter_is_valid_access(int off, int size,
8316                                       enum bpf_access_type type,
8317                                       const struct bpf_prog *prog,
8318                                       struct bpf_insn_access_aux *info)
8319 {
8320         switch (off) {
8321         case bpf_ctx_range(struct __sk_buff, tc_classid):
8322         case bpf_ctx_range(struct __sk_buff, data):
8323         case bpf_ctx_range(struct __sk_buff, data_meta):
8324         case bpf_ctx_range(struct __sk_buff, data_end):
8325         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8326         case bpf_ctx_range(struct __sk_buff, tstamp):
8327         case bpf_ctx_range(struct __sk_buff, wire_len):
8328         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8329                 return false;
8330         }
8331
8332         if (type == BPF_WRITE) {
8333                 switch (off) {
8334                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8335                         break;
8336                 default:
8337                         return false;
8338                 }
8339         }
8340
8341         return bpf_skb_is_valid_access(off, size, type, prog, info);
8342 }
8343
8344 static bool cg_skb_is_valid_access(int off, int size,
8345                                    enum bpf_access_type type,
8346                                    const struct bpf_prog *prog,
8347                                    struct bpf_insn_access_aux *info)
8348 {
8349         switch (off) {
8350         case bpf_ctx_range(struct __sk_buff, tc_classid):
8351         case bpf_ctx_range(struct __sk_buff, data_meta):
8352         case bpf_ctx_range(struct __sk_buff, wire_len):
8353                 return false;
8354         case bpf_ctx_range(struct __sk_buff, data):
8355         case bpf_ctx_range(struct __sk_buff, data_end):
8356                 if (!bpf_capable())
8357                         return false;
8358                 break;
8359         }
8360
8361         if (type == BPF_WRITE) {
8362                 switch (off) {
8363                 case bpf_ctx_range(struct __sk_buff, mark):
8364                 case bpf_ctx_range(struct __sk_buff, priority):
8365                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8366                         break;
8367                 case bpf_ctx_range(struct __sk_buff, tstamp):
8368                         if (!bpf_capable())
8369                                 return false;
8370                         break;
8371                 default:
8372                         return false;
8373                 }
8374         }
8375
8376         switch (off) {
8377         case bpf_ctx_range(struct __sk_buff, data):
8378                 info->reg_type = PTR_TO_PACKET;
8379                 break;
8380         case bpf_ctx_range(struct __sk_buff, data_end):
8381                 info->reg_type = PTR_TO_PACKET_END;
8382                 break;
8383         }
8384
8385         return bpf_skb_is_valid_access(off, size, type, prog, info);
8386 }
8387
8388 static bool lwt_is_valid_access(int off, int size,
8389                                 enum bpf_access_type type,
8390                                 const struct bpf_prog *prog,
8391                                 struct bpf_insn_access_aux *info)
8392 {
8393         switch (off) {
8394         case bpf_ctx_range(struct __sk_buff, tc_classid):
8395         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8396         case bpf_ctx_range(struct __sk_buff, data_meta):
8397         case bpf_ctx_range(struct __sk_buff, tstamp):
8398         case bpf_ctx_range(struct __sk_buff, wire_len):
8399         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8400                 return false;
8401         }
8402
8403         if (type == BPF_WRITE) {
8404                 switch (off) {
8405                 case bpf_ctx_range(struct __sk_buff, mark):
8406                 case bpf_ctx_range(struct __sk_buff, priority):
8407                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8408                         break;
8409                 default:
8410                         return false;
8411                 }
8412         }
8413
8414         switch (off) {
8415         case bpf_ctx_range(struct __sk_buff, data):
8416                 info->reg_type = PTR_TO_PACKET;
8417                 break;
8418         case bpf_ctx_range(struct __sk_buff, data_end):
8419                 info->reg_type = PTR_TO_PACKET_END;
8420                 break;
8421         }
8422
8423         return bpf_skb_is_valid_access(off, size, type, prog, info);
8424 }
8425
8426 /* Attach type specific accesses */
8427 static bool __sock_filter_check_attach_type(int off,
8428                                             enum bpf_access_type access_type,
8429                                             enum bpf_attach_type attach_type)
8430 {
8431         switch (off) {
8432         case offsetof(struct bpf_sock, bound_dev_if):
8433         case offsetof(struct bpf_sock, mark):
8434         case offsetof(struct bpf_sock, priority):
8435                 switch (attach_type) {
8436                 case BPF_CGROUP_INET_SOCK_CREATE:
8437                 case BPF_CGROUP_INET_SOCK_RELEASE:
8438                         goto full_access;
8439                 default:
8440                         return false;
8441                 }
8442         case bpf_ctx_range(struct bpf_sock, src_ip4):
8443                 switch (attach_type) {
8444                 case BPF_CGROUP_INET4_POST_BIND:
8445                         goto read_only;
8446                 default:
8447                         return false;
8448                 }
8449         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8450                 switch (attach_type) {
8451                 case BPF_CGROUP_INET6_POST_BIND:
8452                         goto read_only;
8453                 default:
8454                         return false;
8455                 }
8456         case bpf_ctx_range(struct bpf_sock, src_port):
8457                 switch (attach_type) {
8458                 case BPF_CGROUP_INET4_POST_BIND:
8459                 case BPF_CGROUP_INET6_POST_BIND:
8460                         goto read_only;
8461                 default:
8462                         return false;
8463                 }
8464         }
8465 read_only:
8466         return access_type == BPF_READ;
8467 full_access:
8468         return true;
8469 }
8470
8471 bool bpf_sock_common_is_valid_access(int off, int size,
8472                                      enum bpf_access_type type,
8473                                      struct bpf_insn_access_aux *info)
8474 {
8475         switch (off) {
8476         case bpf_ctx_range_till(struct bpf_sock, type, priority):
8477                 return false;
8478         default:
8479                 return bpf_sock_is_valid_access(off, size, type, info);
8480         }
8481 }
8482
8483 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8484                               struct bpf_insn_access_aux *info)
8485 {
8486         const int size_default = sizeof(__u32);
8487         int field_size;
8488
8489         if (off < 0 || off >= sizeof(struct bpf_sock))
8490                 return false;
8491         if (off % size != 0)
8492                 return false;
8493
8494         switch (off) {
8495         case offsetof(struct bpf_sock, state):
8496         case offsetof(struct bpf_sock, family):
8497         case offsetof(struct bpf_sock, type):
8498         case offsetof(struct bpf_sock, protocol):
8499         case offsetof(struct bpf_sock, src_port):
8500         case offsetof(struct bpf_sock, rx_queue_mapping):
8501         case bpf_ctx_range(struct bpf_sock, src_ip4):
8502         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8503         case bpf_ctx_range(struct bpf_sock, dst_ip4):
8504         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8505                 bpf_ctx_record_field_size(info, size_default);
8506                 return bpf_ctx_narrow_access_ok(off, size, size_default);
8507         case bpf_ctx_range(struct bpf_sock, dst_port):
8508                 field_size = size == size_default ?
8509                         size_default : sizeof_field(struct bpf_sock, dst_port);
8510                 bpf_ctx_record_field_size(info, field_size);
8511                 return bpf_ctx_narrow_access_ok(off, size, field_size);
8512         case offsetofend(struct bpf_sock, dst_port) ...
8513              offsetof(struct bpf_sock, dst_ip4) - 1:
8514                 return false;
8515         }
8516
8517         return size == size_default;
8518 }
8519
8520 static bool sock_filter_is_valid_access(int off, int size,
8521                                         enum bpf_access_type type,
8522                                         const struct bpf_prog *prog,
8523                                         struct bpf_insn_access_aux *info)
8524 {
8525         if (!bpf_sock_is_valid_access(off, size, type, info))
8526                 return false;
8527         return __sock_filter_check_attach_type(off, type,
8528                                                prog->expected_attach_type);
8529 }
8530
8531 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8532                              const struct bpf_prog *prog)
8533 {
8534         /* Neither direct read nor direct write requires any preliminary
8535          * action.
8536          */
8537         return 0;
8538 }
8539
8540 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8541                                 const struct bpf_prog *prog, int drop_verdict)
8542 {
8543         struct bpf_insn *insn = insn_buf;
8544
8545         if (!direct_write)
8546                 return 0;
8547
8548         /* if (!skb->cloned)
8549          *       goto start;
8550          *
8551          * (Fast-path, otherwise approximation that we might be
8552          *  a clone, do the rest in helper.)
8553          */
8554         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8555         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8556         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8557
8558         /* ret = bpf_skb_pull_data(skb, 0); */
8559         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8560         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8561         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8562                                BPF_FUNC_skb_pull_data);
8563         /* if (!ret)
8564          *      goto restore;
8565          * return TC_ACT_SHOT;
8566          */
8567         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8568         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8569         *insn++ = BPF_EXIT_INSN();
8570
8571         /* restore: */
8572         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8573         /* start: */
8574         *insn++ = prog->insnsi[0];
8575
8576         return insn - insn_buf;
8577 }
8578
8579 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8580                           struct bpf_insn *insn_buf)
8581 {
8582         bool indirect = BPF_MODE(orig->code) == BPF_IND;
8583         struct bpf_insn *insn = insn_buf;
8584
8585         if (!indirect) {
8586                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8587         } else {
8588                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8589                 if (orig->imm)
8590                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8591         }
8592         /* We're guaranteed here that CTX is in R6. */
8593         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8594
8595         switch (BPF_SIZE(orig->code)) {
8596         case BPF_B:
8597                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8598                 break;
8599         case BPF_H:
8600                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8601                 break;
8602         case BPF_W:
8603                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8604                 break;
8605         }
8606
8607         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8608         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8609         *insn++ = BPF_EXIT_INSN();
8610
8611         return insn - insn_buf;
8612 }
8613
8614 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8615                                const struct bpf_prog *prog)
8616 {
8617         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8618 }
8619
8620 static bool tc_cls_act_is_valid_access(int off, int size,
8621                                        enum bpf_access_type type,
8622                                        const struct bpf_prog *prog,
8623                                        struct bpf_insn_access_aux *info)
8624 {
8625         if (type == BPF_WRITE) {
8626                 switch (off) {
8627                 case bpf_ctx_range(struct __sk_buff, mark):
8628                 case bpf_ctx_range(struct __sk_buff, tc_index):
8629                 case bpf_ctx_range(struct __sk_buff, priority):
8630                 case bpf_ctx_range(struct __sk_buff, tc_classid):
8631                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8632                 case bpf_ctx_range(struct __sk_buff, tstamp):
8633                 case bpf_ctx_range(struct __sk_buff, queue_mapping):
8634                         break;
8635                 default:
8636                         return false;
8637                 }
8638         }
8639
8640         switch (off) {
8641         case bpf_ctx_range(struct __sk_buff, data):
8642                 info->reg_type = PTR_TO_PACKET;
8643                 break;
8644         case bpf_ctx_range(struct __sk_buff, data_meta):
8645                 info->reg_type = PTR_TO_PACKET_META;
8646                 break;
8647         case bpf_ctx_range(struct __sk_buff, data_end):
8648                 info->reg_type = PTR_TO_PACKET_END;
8649                 break;
8650         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8651                 return false;
8652         case offsetof(struct __sk_buff, tstamp_type):
8653                 /* The convert_ctx_access() on reading and writing
8654                  * __sk_buff->tstamp depends on whether the bpf prog
8655                  * has used __sk_buff->tstamp_type or not.
8656                  * Thus, we need to set prog->tstamp_type_access
8657                  * earlier during is_valid_access() here.
8658                  */
8659                 ((struct bpf_prog *)prog)->tstamp_type_access = 1;
8660                 return size == sizeof(__u8);
8661         }
8662
8663         return bpf_skb_is_valid_access(off, size, type, prog, info);
8664 }
8665
8666 DEFINE_MUTEX(nf_conn_btf_access_lock);
8667 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
8668
8669 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log, const struct btf *btf,
8670                               const struct btf_type *t, int off, int size,
8671                               enum bpf_access_type atype, u32 *next_btf_id,
8672                               enum bpf_type_flag *flag);
8673 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
8674
8675 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
8676                                         const struct btf *btf,
8677                                         const struct btf_type *t, int off,
8678                                         int size, enum bpf_access_type atype,
8679                                         u32 *next_btf_id,
8680                                         enum bpf_type_flag *flag)
8681 {
8682         int ret = -EACCES;
8683
8684         if (atype == BPF_READ)
8685                 return btf_struct_access(log, btf, t, off, size, atype, next_btf_id,
8686                                          flag);
8687
8688         mutex_lock(&nf_conn_btf_access_lock);
8689         if (nfct_btf_struct_access)
8690                 ret = nfct_btf_struct_access(log, btf, t, off, size, atype, next_btf_id, flag);
8691         mutex_unlock(&nf_conn_btf_access_lock);
8692
8693         return ret;
8694 }
8695
8696 static bool __is_valid_xdp_access(int off, int size)
8697 {
8698         if (off < 0 || off >= sizeof(struct xdp_md))
8699                 return false;
8700         if (off % size != 0)
8701                 return false;
8702         if (size != sizeof(__u32))
8703                 return false;
8704
8705         return true;
8706 }
8707
8708 static bool xdp_is_valid_access(int off, int size,
8709                                 enum bpf_access_type type,
8710                                 const struct bpf_prog *prog,
8711                                 struct bpf_insn_access_aux *info)
8712 {
8713         if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8714                 switch (off) {
8715                 case offsetof(struct xdp_md, egress_ifindex):
8716                         return false;
8717                 }
8718         }
8719
8720         if (type == BPF_WRITE) {
8721                 if (bpf_prog_is_dev_bound(prog->aux)) {
8722                         switch (off) {
8723                         case offsetof(struct xdp_md, rx_queue_index):
8724                                 return __is_valid_xdp_access(off, size);
8725                         }
8726                 }
8727                 return false;
8728         }
8729
8730         switch (off) {
8731         case offsetof(struct xdp_md, data):
8732                 info->reg_type = PTR_TO_PACKET;
8733                 break;
8734         case offsetof(struct xdp_md, data_meta):
8735                 info->reg_type = PTR_TO_PACKET_META;
8736                 break;
8737         case offsetof(struct xdp_md, data_end):
8738                 info->reg_type = PTR_TO_PACKET_END;
8739                 break;
8740         }
8741
8742         return __is_valid_xdp_access(off, size);
8743 }
8744
8745 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8746 {
8747         const u32 act_max = XDP_REDIRECT;
8748
8749         pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
8750                      act > act_max ? "Illegal" : "Driver unsupported",
8751                      act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
8752 }
8753 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8754
8755 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
8756                                  const struct btf *btf,
8757                                  const struct btf_type *t, int off,
8758                                  int size, enum bpf_access_type atype,
8759                                  u32 *next_btf_id,
8760                                  enum bpf_type_flag *flag)
8761 {
8762         int ret = -EACCES;
8763
8764         if (atype == BPF_READ)
8765                 return btf_struct_access(log, btf, t, off, size, atype, next_btf_id,
8766                                          flag);
8767
8768         mutex_lock(&nf_conn_btf_access_lock);
8769         if (nfct_btf_struct_access)
8770                 ret = nfct_btf_struct_access(log, btf, t, off, size, atype, next_btf_id, flag);
8771         mutex_unlock(&nf_conn_btf_access_lock);
8772
8773         return ret;
8774 }
8775
8776 static bool sock_addr_is_valid_access(int off, int size,
8777                                       enum bpf_access_type type,
8778                                       const struct bpf_prog *prog,
8779                                       struct bpf_insn_access_aux *info)
8780 {
8781         const int size_default = sizeof(__u32);
8782
8783         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8784                 return false;
8785         if (off % size != 0)
8786                 return false;
8787
8788         /* Disallow access to IPv6 fields from IPv4 contex and vise
8789          * versa.
8790          */
8791         switch (off) {
8792         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8793                 switch (prog->expected_attach_type) {
8794                 case BPF_CGROUP_INET4_BIND:
8795                 case BPF_CGROUP_INET4_CONNECT:
8796                 case BPF_CGROUP_INET4_GETPEERNAME:
8797                 case BPF_CGROUP_INET4_GETSOCKNAME:
8798                 case BPF_CGROUP_UDP4_SENDMSG:
8799                 case BPF_CGROUP_UDP4_RECVMSG:
8800                         break;
8801                 default:
8802                         return false;
8803                 }
8804                 break;
8805         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8806                 switch (prog->expected_attach_type) {
8807                 case BPF_CGROUP_INET6_BIND:
8808                 case BPF_CGROUP_INET6_CONNECT:
8809                 case BPF_CGROUP_INET6_GETPEERNAME:
8810                 case BPF_CGROUP_INET6_GETSOCKNAME:
8811                 case BPF_CGROUP_UDP6_SENDMSG:
8812                 case BPF_CGROUP_UDP6_RECVMSG:
8813                         break;
8814                 default:
8815                         return false;
8816                 }
8817                 break;
8818         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8819                 switch (prog->expected_attach_type) {
8820                 case BPF_CGROUP_UDP4_SENDMSG:
8821                         break;
8822                 default:
8823                         return false;
8824                 }
8825                 break;
8826         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8827                                 msg_src_ip6[3]):
8828                 switch (prog->expected_attach_type) {
8829                 case BPF_CGROUP_UDP6_SENDMSG:
8830                         break;
8831                 default:
8832                         return false;
8833                 }
8834                 break;
8835         }
8836
8837         switch (off) {
8838         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8839         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8840         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8841         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8842                                 msg_src_ip6[3]):
8843         case bpf_ctx_range(struct bpf_sock_addr, user_port):
8844                 if (type == BPF_READ) {
8845                         bpf_ctx_record_field_size(info, size_default);
8846
8847                         if (bpf_ctx_wide_access_ok(off, size,
8848                                                    struct bpf_sock_addr,
8849                                                    user_ip6))
8850                                 return true;
8851
8852                         if (bpf_ctx_wide_access_ok(off, size,
8853                                                    struct bpf_sock_addr,
8854                                                    msg_src_ip6))
8855                                 return true;
8856
8857                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8858                                 return false;
8859                 } else {
8860                         if (bpf_ctx_wide_access_ok(off, size,
8861                                                    struct bpf_sock_addr,
8862                                                    user_ip6))
8863                                 return true;
8864
8865                         if (bpf_ctx_wide_access_ok(off, size,
8866                                                    struct bpf_sock_addr,
8867                                                    msg_src_ip6))
8868                                 return true;
8869
8870                         if (size != size_default)
8871                                 return false;
8872                 }
8873                 break;
8874         case offsetof(struct bpf_sock_addr, sk):
8875                 if (type != BPF_READ)
8876                         return false;
8877                 if (size != sizeof(__u64))
8878                         return false;
8879                 info->reg_type = PTR_TO_SOCKET;
8880                 break;
8881         default:
8882                 if (type == BPF_READ) {
8883                         if (size != size_default)
8884                                 return false;
8885                 } else {
8886                         return false;
8887                 }
8888         }
8889
8890         return true;
8891 }
8892
8893 static bool sock_ops_is_valid_access(int off, int size,
8894                                      enum bpf_access_type type,
8895                                      const struct bpf_prog *prog,
8896                                      struct bpf_insn_access_aux *info)
8897 {
8898         const int size_default = sizeof(__u32);
8899
8900         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8901                 return false;
8902
8903         /* The verifier guarantees that size > 0. */
8904         if (off % size != 0)
8905                 return false;
8906
8907         if (type == BPF_WRITE) {
8908                 switch (off) {
8909                 case offsetof(struct bpf_sock_ops, reply):
8910                 case offsetof(struct bpf_sock_ops, sk_txhash):
8911                         if (size != size_default)
8912                                 return false;
8913                         break;
8914                 default:
8915                         return false;
8916                 }
8917         } else {
8918                 switch (off) {
8919                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8920                                         bytes_acked):
8921                         if (size != sizeof(__u64))
8922                                 return false;
8923                         break;
8924                 case offsetof(struct bpf_sock_ops, sk):
8925                         if (size != sizeof(__u64))
8926                                 return false;
8927                         info->reg_type = PTR_TO_SOCKET_OR_NULL;
8928                         break;
8929                 case offsetof(struct bpf_sock_ops, skb_data):
8930                         if (size != sizeof(__u64))
8931                                 return false;
8932                         info->reg_type = PTR_TO_PACKET;
8933                         break;
8934                 case offsetof(struct bpf_sock_ops, skb_data_end):
8935                         if (size != sizeof(__u64))
8936                                 return false;
8937                         info->reg_type = PTR_TO_PACKET_END;
8938                         break;
8939                 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8940                         bpf_ctx_record_field_size(info, size_default);
8941                         return bpf_ctx_narrow_access_ok(off, size,
8942                                                         size_default);
8943                 default:
8944                         if (size != size_default)
8945                                 return false;
8946                         break;
8947                 }
8948         }
8949
8950         return true;
8951 }
8952
8953 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8954                            const struct bpf_prog *prog)
8955 {
8956         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8957 }
8958
8959 static bool sk_skb_is_valid_access(int off, int size,
8960                                    enum bpf_access_type type,
8961                                    const struct bpf_prog *prog,
8962                                    struct bpf_insn_access_aux *info)
8963 {
8964         switch (off) {
8965         case bpf_ctx_range(struct __sk_buff, tc_classid):
8966         case bpf_ctx_range(struct __sk_buff, data_meta):
8967         case bpf_ctx_range(struct __sk_buff, tstamp):
8968         case bpf_ctx_range(struct __sk_buff, wire_len):
8969         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8970                 return false;
8971         }
8972
8973         if (type == BPF_WRITE) {
8974                 switch (off) {
8975                 case bpf_ctx_range(struct __sk_buff, tc_index):
8976                 case bpf_ctx_range(struct __sk_buff, priority):
8977                         break;
8978                 default:
8979                         return false;
8980                 }
8981         }
8982
8983         switch (off) {
8984         case bpf_ctx_range(struct __sk_buff, mark):
8985                 return false;
8986         case bpf_ctx_range(struct __sk_buff, data):
8987                 info->reg_type = PTR_TO_PACKET;
8988                 break;
8989         case bpf_ctx_range(struct __sk_buff, data_end):
8990                 info->reg_type = PTR_TO_PACKET_END;
8991                 break;
8992         }
8993
8994         return bpf_skb_is_valid_access(off, size, type, prog, info);
8995 }
8996
8997 static bool sk_msg_is_valid_access(int off, int size,
8998                                    enum bpf_access_type type,
8999                                    const struct bpf_prog *prog,
9000                                    struct bpf_insn_access_aux *info)
9001 {
9002         if (type == BPF_WRITE)
9003                 return false;
9004
9005         if (off % size != 0)
9006                 return false;
9007
9008         switch (off) {
9009         case offsetof(struct sk_msg_md, data):
9010                 info->reg_type = PTR_TO_PACKET;
9011                 if (size != sizeof(__u64))
9012                         return false;
9013                 break;
9014         case offsetof(struct sk_msg_md, data_end):
9015                 info->reg_type = PTR_TO_PACKET_END;
9016                 if (size != sizeof(__u64))
9017                         return false;
9018                 break;
9019         case offsetof(struct sk_msg_md, sk):
9020                 if (size != sizeof(__u64))
9021                         return false;
9022                 info->reg_type = PTR_TO_SOCKET;
9023                 break;
9024         case bpf_ctx_range(struct sk_msg_md, family):
9025         case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9026         case bpf_ctx_range(struct sk_msg_md, local_ip4):
9027         case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9028         case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9029         case bpf_ctx_range(struct sk_msg_md, remote_port):
9030         case bpf_ctx_range(struct sk_msg_md, local_port):
9031         case bpf_ctx_range(struct sk_msg_md, size):
9032                 if (size != sizeof(__u32))
9033                         return false;
9034                 break;
9035         default:
9036                 return false;
9037         }
9038         return true;
9039 }
9040
9041 static bool flow_dissector_is_valid_access(int off, int size,
9042                                            enum bpf_access_type type,
9043                                            const struct bpf_prog *prog,
9044                                            struct bpf_insn_access_aux *info)
9045 {
9046         const int size_default = sizeof(__u32);
9047
9048         if (off < 0 || off >= sizeof(struct __sk_buff))
9049                 return false;
9050
9051         if (type == BPF_WRITE)
9052                 return false;
9053
9054         switch (off) {
9055         case bpf_ctx_range(struct __sk_buff, data):
9056                 if (size != size_default)
9057                         return false;
9058                 info->reg_type = PTR_TO_PACKET;
9059                 return true;
9060         case bpf_ctx_range(struct __sk_buff, data_end):
9061                 if (size != size_default)
9062                         return false;
9063                 info->reg_type = PTR_TO_PACKET_END;
9064                 return true;
9065         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9066                 if (size != sizeof(__u64))
9067                         return false;
9068                 info->reg_type = PTR_TO_FLOW_KEYS;
9069                 return true;
9070         default:
9071                 return false;
9072         }
9073 }
9074
9075 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9076                                              const struct bpf_insn *si,
9077                                              struct bpf_insn *insn_buf,
9078                                              struct bpf_prog *prog,
9079                                              u32 *target_size)
9080
9081 {
9082         struct bpf_insn *insn = insn_buf;
9083
9084         switch (si->off) {
9085         case offsetof(struct __sk_buff, data):
9086                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9087                                       si->dst_reg, si->src_reg,
9088                                       offsetof(struct bpf_flow_dissector, data));
9089                 break;
9090
9091         case offsetof(struct __sk_buff, data_end):
9092                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9093                                       si->dst_reg, si->src_reg,
9094                                       offsetof(struct bpf_flow_dissector, data_end));
9095                 break;
9096
9097         case offsetof(struct __sk_buff, flow_keys):
9098                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9099                                       si->dst_reg, si->src_reg,
9100                                       offsetof(struct bpf_flow_dissector, flow_keys));
9101                 break;
9102         }
9103
9104         return insn - insn_buf;
9105 }
9106
9107 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9108                                                      struct bpf_insn *insn)
9109 {
9110         __u8 value_reg = si->dst_reg;
9111         __u8 skb_reg = si->src_reg;
9112         /* AX is needed because src_reg and dst_reg could be the same */
9113         __u8 tmp_reg = BPF_REG_AX;
9114
9115         *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9116                               PKT_VLAN_PRESENT_OFFSET);
9117         *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9118                                 SKB_MONO_DELIVERY_TIME_MASK, 2);
9119         *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9120         *insn++ = BPF_JMP_A(1);
9121         *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9122
9123         return insn;
9124 }
9125
9126 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
9127                                                   struct bpf_insn *insn)
9128 {
9129         /* si->dst_reg = skb_shinfo(SKB); */
9130 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9131         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9132                               BPF_REG_AX, si->src_reg,
9133                               offsetof(struct sk_buff, end));
9134         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9135                               si->dst_reg, si->src_reg,
9136                               offsetof(struct sk_buff, head));
9137         *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
9138 #else
9139         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9140                               si->dst_reg, si->src_reg,
9141                               offsetof(struct sk_buff, end));
9142 #endif
9143
9144         return insn;
9145 }
9146
9147 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9148                                                 const struct bpf_insn *si,
9149                                                 struct bpf_insn *insn)
9150 {
9151         __u8 value_reg = si->dst_reg;
9152         __u8 skb_reg = si->src_reg;
9153
9154 #ifdef CONFIG_NET_CLS_ACT
9155         /* If the tstamp_type is read,
9156          * the bpf prog is aware the tstamp could have delivery time.
9157          * Thus, read skb->tstamp as is if tstamp_type_access is true.
9158          */
9159         if (!prog->tstamp_type_access) {
9160                 /* AX is needed because src_reg and dst_reg could be the same */
9161                 __u8 tmp_reg = BPF_REG_AX;
9162
9163                 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9164                 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9165                                         TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9166                 *insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9167                                         TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9168                 /* skb->tc_at_ingress && skb->mono_delivery_time,
9169                  * read 0 as the (rcv) timestamp.
9170                  */
9171                 *insn++ = BPF_MOV64_IMM(value_reg, 0);
9172                 *insn++ = BPF_JMP_A(1);
9173         }
9174 #endif
9175
9176         *insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9177                               offsetof(struct sk_buff, tstamp));
9178         return insn;
9179 }
9180
9181 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9182                                                  const struct bpf_insn *si,
9183                                                  struct bpf_insn *insn)
9184 {
9185         __u8 value_reg = si->src_reg;
9186         __u8 skb_reg = si->dst_reg;
9187
9188 #ifdef CONFIG_NET_CLS_ACT
9189         /* If the tstamp_type is read,
9190          * the bpf prog is aware the tstamp could have delivery time.
9191          * Thus, write skb->tstamp as is if tstamp_type_access is true.
9192          * Otherwise, writing at ingress will have to clear the
9193          * mono_delivery_time bit also.
9194          */
9195         if (!prog->tstamp_type_access) {
9196                 __u8 tmp_reg = BPF_REG_AX;
9197
9198                 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9199                 /* Writing __sk_buff->tstamp as ingress, goto <clear> */
9200                 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9201                 /* goto <store> */
9202                 *insn++ = BPF_JMP_A(2);
9203                 /* <clear>: mono_delivery_time */
9204                 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9205                 *insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, PKT_VLAN_PRESENT_OFFSET);
9206         }
9207 #endif
9208
9209         /* <store>: skb->tstamp = tstamp */
9210         *insn++ = BPF_STX_MEM(BPF_DW, skb_reg, value_reg,
9211                               offsetof(struct sk_buff, tstamp));
9212         return insn;
9213 }
9214
9215 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9216                                   const struct bpf_insn *si,
9217                                   struct bpf_insn *insn_buf,
9218                                   struct bpf_prog *prog, u32 *target_size)
9219 {
9220         struct bpf_insn *insn = insn_buf;
9221         int off;
9222
9223         switch (si->off) {
9224         case offsetof(struct __sk_buff, len):
9225                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9226                                       bpf_target_off(struct sk_buff, len, 4,
9227                                                      target_size));
9228                 break;
9229
9230         case offsetof(struct __sk_buff, protocol):
9231                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9232                                       bpf_target_off(struct sk_buff, protocol, 2,
9233                                                      target_size));
9234                 break;
9235
9236         case offsetof(struct __sk_buff, vlan_proto):
9237                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9238                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
9239                                                      target_size));
9240                 break;
9241
9242         case offsetof(struct __sk_buff, priority):
9243                 if (type == BPF_WRITE)
9244                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9245                                               bpf_target_off(struct sk_buff, priority, 4,
9246                                                              target_size));
9247                 else
9248                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9249                                               bpf_target_off(struct sk_buff, priority, 4,
9250                                                              target_size));
9251                 break;
9252
9253         case offsetof(struct __sk_buff, ingress_ifindex):
9254                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9255                                       bpf_target_off(struct sk_buff, skb_iif, 4,
9256                                                      target_size));
9257                 break;
9258
9259         case offsetof(struct __sk_buff, ifindex):
9260                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9261                                       si->dst_reg, si->src_reg,
9262                                       offsetof(struct sk_buff, dev));
9263                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9264                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9265                                       bpf_target_off(struct net_device, ifindex, 4,
9266                                                      target_size));
9267                 break;
9268
9269         case offsetof(struct __sk_buff, hash):
9270                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9271                                       bpf_target_off(struct sk_buff, hash, 4,
9272                                                      target_size));
9273                 break;
9274
9275         case offsetof(struct __sk_buff, mark):
9276                 if (type == BPF_WRITE)
9277                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9278                                               bpf_target_off(struct sk_buff, mark, 4,
9279                                                              target_size));
9280                 else
9281                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9282                                               bpf_target_off(struct sk_buff, mark, 4,
9283                                                              target_size));
9284                 break;
9285
9286         case offsetof(struct __sk_buff, pkt_type):
9287                 *target_size = 1;
9288                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9289                                       PKT_TYPE_OFFSET);
9290                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9291 #ifdef __BIG_ENDIAN_BITFIELD
9292                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9293 #endif
9294                 break;
9295
9296         case offsetof(struct __sk_buff, queue_mapping):
9297                 if (type == BPF_WRITE) {
9298                         *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9299                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9300                                               bpf_target_off(struct sk_buff,
9301                                                              queue_mapping,
9302                                                              2, target_size));
9303                 } else {
9304                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9305                                               bpf_target_off(struct sk_buff,
9306                                                              queue_mapping,
9307                                                              2, target_size));
9308                 }
9309                 break;
9310
9311         case offsetof(struct __sk_buff, vlan_present):
9312                 *target_size = 1;
9313                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9314                                       PKT_VLAN_PRESENT_OFFSET);
9315                 if (PKT_VLAN_PRESENT_BIT)
9316                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
9317                 if (PKT_VLAN_PRESENT_BIT < 7)
9318                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
9319                 break;
9320
9321         case offsetof(struct __sk_buff, vlan_tci):
9322                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9323                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
9324                                                      target_size));
9325                 break;
9326
9327         case offsetof(struct __sk_buff, cb[0]) ...
9328              offsetofend(struct __sk_buff, cb[4]) - 1:
9329                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9330                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9331                               offsetof(struct qdisc_skb_cb, data)) %
9332                              sizeof(__u64));
9333
9334                 prog->cb_access = 1;
9335                 off  = si->off;
9336                 off -= offsetof(struct __sk_buff, cb[0]);
9337                 off += offsetof(struct sk_buff, cb);
9338                 off += offsetof(struct qdisc_skb_cb, data);
9339                 if (type == BPF_WRITE)
9340                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9341                                               si->src_reg, off);
9342                 else
9343                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9344                                               si->src_reg, off);
9345                 break;
9346
9347         case offsetof(struct __sk_buff, tc_classid):
9348                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9349
9350                 off  = si->off;
9351                 off -= offsetof(struct __sk_buff, tc_classid);
9352                 off += offsetof(struct sk_buff, cb);
9353                 off += offsetof(struct qdisc_skb_cb, tc_classid);
9354                 *target_size = 2;
9355                 if (type == BPF_WRITE)
9356                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
9357                                               si->src_reg, off);
9358                 else
9359                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9360                                               si->src_reg, off);
9361                 break;
9362
9363         case offsetof(struct __sk_buff, data):
9364                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9365                                       si->dst_reg, si->src_reg,
9366                                       offsetof(struct sk_buff, data));
9367                 break;
9368
9369         case offsetof(struct __sk_buff, data_meta):
9370                 off  = si->off;
9371                 off -= offsetof(struct __sk_buff, data_meta);
9372                 off += offsetof(struct sk_buff, cb);
9373                 off += offsetof(struct bpf_skb_data_end, data_meta);
9374                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9375                                       si->src_reg, off);
9376                 break;
9377
9378         case offsetof(struct __sk_buff, data_end):
9379                 off  = si->off;
9380                 off -= offsetof(struct __sk_buff, data_end);
9381                 off += offsetof(struct sk_buff, cb);
9382                 off += offsetof(struct bpf_skb_data_end, data_end);
9383                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9384                                       si->src_reg, off);
9385                 break;
9386
9387         case offsetof(struct __sk_buff, tc_index):
9388 #ifdef CONFIG_NET_SCHED
9389                 if (type == BPF_WRITE)
9390                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9391                                               bpf_target_off(struct sk_buff, tc_index, 2,
9392                                                              target_size));
9393                 else
9394                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9395                                               bpf_target_off(struct sk_buff, tc_index, 2,
9396                                                              target_size));
9397 #else
9398                 *target_size = 2;
9399                 if (type == BPF_WRITE)
9400                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9401                 else
9402                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9403 #endif
9404                 break;
9405
9406         case offsetof(struct __sk_buff, napi_id):
9407 #if defined(CONFIG_NET_RX_BUSY_POLL)
9408                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9409                                       bpf_target_off(struct sk_buff, napi_id, 4,
9410                                                      target_size));
9411                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9412                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9413 #else
9414                 *target_size = 4;
9415                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9416 #endif
9417                 break;
9418         case offsetof(struct __sk_buff, family):
9419                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9420
9421                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9422                                       si->dst_reg, si->src_reg,
9423                                       offsetof(struct sk_buff, sk));
9424                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9425                                       bpf_target_off(struct sock_common,
9426                                                      skc_family,
9427                                                      2, target_size));
9428                 break;
9429         case offsetof(struct __sk_buff, remote_ip4):
9430                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9431
9432                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9433                                       si->dst_reg, si->src_reg,
9434                                       offsetof(struct sk_buff, sk));
9435                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9436                                       bpf_target_off(struct sock_common,
9437                                                      skc_daddr,
9438                                                      4, target_size));
9439                 break;
9440         case offsetof(struct __sk_buff, local_ip4):
9441                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9442                                           skc_rcv_saddr) != 4);
9443
9444                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9445                                       si->dst_reg, si->src_reg,
9446                                       offsetof(struct sk_buff, sk));
9447                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9448                                       bpf_target_off(struct sock_common,
9449                                                      skc_rcv_saddr,
9450                                                      4, target_size));
9451                 break;
9452         case offsetof(struct __sk_buff, remote_ip6[0]) ...
9453              offsetof(struct __sk_buff, remote_ip6[3]):
9454 #if IS_ENABLED(CONFIG_IPV6)
9455                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9456                                           skc_v6_daddr.s6_addr32[0]) != 4);
9457
9458                 off = si->off;
9459                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
9460
9461                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9462                                       si->dst_reg, si->src_reg,
9463                                       offsetof(struct sk_buff, sk));
9464                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9465                                       offsetof(struct sock_common,
9466                                                skc_v6_daddr.s6_addr32[0]) +
9467                                       off);
9468 #else
9469                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9470 #endif
9471                 break;
9472         case offsetof(struct __sk_buff, local_ip6[0]) ...
9473              offsetof(struct __sk_buff, local_ip6[3]):
9474 #if IS_ENABLED(CONFIG_IPV6)
9475                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9476                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9477
9478                 off = si->off;
9479                 off -= offsetof(struct __sk_buff, local_ip6[0]);
9480
9481                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9482                                       si->dst_reg, si->src_reg,
9483                                       offsetof(struct sk_buff, sk));
9484                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9485                                       offsetof(struct sock_common,
9486                                                skc_v6_rcv_saddr.s6_addr32[0]) +
9487                                       off);
9488 #else
9489                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9490 #endif
9491                 break;
9492
9493         case offsetof(struct __sk_buff, remote_port):
9494                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9495
9496                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9497                                       si->dst_reg, si->src_reg,
9498                                       offsetof(struct sk_buff, sk));
9499                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9500                                       bpf_target_off(struct sock_common,
9501                                                      skc_dport,
9502                                                      2, target_size));
9503 #ifndef __BIG_ENDIAN_BITFIELD
9504                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9505 #endif
9506                 break;
9507
9508         case offsetof(struct __sk_buff, local_port):
9509                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9510
9511                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9512                                       si->dst_reg, si->src_reg,
9513                                       offsetof(struct sk_buff, sk));
9514                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9515                                       bpf_target_off(struct sock_common,
9516                                                      skc_num, 2, target_size));
9517                 break;
9518
9519         case offsetof(struct __sk_buff, tstamp):
9520                 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9521
9522                 if (type == BPF_WRITE)
9523                         insn = bpf_convert_tstamp_write(prog, si, insn);
9524                 else
9525                         insn = bpf_convert_tstamp_read(prog, si, insn);
9526                 break;
9527
9528         case offsetof(struct __sk_buff, tstamp_type):
9529                 insn = bpf_convert_tstamp_type_read(si, insn);
9530                 break;
9531
9532         case offsetof(struct __sk_buff, gso_segs):
9533                 insn = bpf_convert_shinfo_access(si, insn);
9534                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9535                                       si->dst_reg, si->dst_reg,
9536                                       bpf_target_off(struct skb_shared_info,
9537                                                      gso_segs, 2,
9538                                                      target_size));
9539                 break;
9540         case offsetof(struct __sk_buff, gso_size):
9541                 insn = bpf_convert_shinfo_access(si, insn);
9542                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9543                                       si->dst_reg, si->dst_reg,
9544                                       bpf_target_off(struct skb_shared_info,
9545                                                      gso_size, 2,
9546                                                      target_size));
9547                 break;
9548         case offsetof(struct __sk_buff, wire_len):
9549                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9550
9551                 off = si->off;
9552                 off -= offsetof(struct __sk_buff, wire_len);
9553                 off += offsetof(struct sk_buff, cb);
9554                 off += offsetof(struct qdisc_skb_cb, pkt_len);
9555                 *target_size = 4;
9556                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9557                 break;
9558
9559         case offsetof(struct __sk_buff, sk):
9560                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9561                                       si->dst_reg, si->src_reg,
9562                                       offsetof(struct sk_buff, sk));
9563                 break;
9564         case offsetof(struct __sk_buff, hwtstamp):
9565                 BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9566                 BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9567
9568                 insn = bpf_convert_shinfo_access(si, insn);
9569                 *insn++ = BPF_LDX_MEM(BPF_DW,
9570                                       si->dst_reg, si->dst_reg,
9571                                       bpf_target_off(struct skb_shared_info,
9572                                                      hwtstamps, 8,
9573                                                      target_size));
9574                 break;
9575         }
9576
9577         return insn - insn_buf;
9578 }
9579
9580 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9581                                 const struct bpf_insn *si,
9582                                 struct bpf_insn *insn_buf,
9583                                 struct bpf_prog *prog, u32 *target_size)
9584 {
9585         struct bpf_insn *insn = insn_buf;
9586         int off;
9587
9588         switch (si->off) {
9589         case offsetof(struct bpf_sock, bound_dev_if):
9590                 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9591
9592                 if (type == BPF_WRITE)
9593                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9594                                         offsetof(struct sock, sk_bound_dev_if));
9595                 else
9596                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9597                                       offsetof(struct sock, sk_bound_dev_if));
9598                 break;
9599
9600         case offsetof(struct bpf_sock, mark):
9601                 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9602
9603                 if (type == BPF_WRITE)
9604                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9605                                         offsetof(struct sock, sk_mark));
9606                 else
9607                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9608                                       offsetof(struct sock, sk_mark));
9609                 break;
9610
9611         case offsetof(struct bpf_sock, priority):
9612                 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9613
9614                 if (type == BPF_WRITE)
9615                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9616                                         offsetof(struct sock, sk_priority));
9617                 else
9618                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9619                                       offsetof(struct sock, sk_priority));
9620                 break;
9621
9622         case offsetof(struct bpf_sock, family):
9623                 *insn++ = BPF_LDX_MEM(
9624                         BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9625                         si->dst_reg, si->src_reg,
9626                         bpf_target_off(struct sock_common,
9627                                        skc_family,
9628                                        sizeof_field(struct sock_common,
9629                                                     skc_family),
9630                                        target_size));
9631                 break;
9632
9633         case offsetof(struct bpf_sock, type):
9634                 *insn++ = BPF_LDX_MEM(
9635                         BPF_FIELD_SIZEOF(struct sock, sk_type),
9636                         si->dst_reg, si->src_reg,
9637                         bpf_target_off(struct sock, sk_type,
9638                                        sizeof_field(struct sock, sk_type),
9639                                        target_size));
9640                 break;
9641
9642         case offsetof(struct bpf_sock, protocol):
9643                 *insn++ = BPF_LDX_MEM(
9644                         BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9645                         si->dst_reg, si->src_reg,
9646                         bpf_target_off(struct sock, sk_protocol,
9647                                        sizeof_field(struct sock, sk_protocol),
9648                                        target_size));
9649                 break;
9650
9651         case offsetof(struct bpf_sock, src_ip4):
9652                 *insn++ = BPF_LDX_MEM(
9653                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9654                         bpf_target_off(struct sock_common, skc_rcv_saddr,
9655                                        sizeof_field(struct sock_common,
9656                                                     skc_rcv_saddr),
9657                                        target_size));
9658                 break;
9659
9660         case offsetof(struct bpf_sock, dst_ip4):
9661                 *insn++ = BPF_LDX_MEM(
9662                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9663                         bpf_target_off(struct sock_common, skc_daddr,
9664                                        sizeof_field(struct sock_common,
9665                                                     skc_daddr),
9666                                        target_size));
9667                 break;
9668
9669         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9670 #if IS_ENABLED(CONFIG_IPV6)
9671                 off = si->off;
9672                 off -= offsetof(struct bpf_sock, src_ip6[0]);
9673                 *insn++ = BPF_LDX_MEM(
9674                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9675                         bpf_target_off(
9676                                 struct sock_common,
9677                                 skc_v6_rcv_saddr.s6_addr32[0],
9678                                 sizeof_field(struct sock_common,
9679                                              skc_v6_rcv_saddr.s6_addr32[0]),
9680                                 target_size) + off);
9681 #else
9682                 (void)off;
9683                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9684 #endif
9685                 break;
9686
9687         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9688 #if IS_ENABLED(CONFIG_IPV6)
9689                 off = si->off;
9690                 off -= offsetof(struct bpf_sock, dst_ip6[0]);
9691                 *insn++ = BPF_LDX_MEM(
9692                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9693                         bpf_target_off(struct sock_common,
9694                                        skc_v6_daddr.s6_addr32[0],
9695                                        sizeof_field(struct sock_common,
9696                                                     skc_v6_daddr.s6_addr32[0]),
9697                                        target_size) + off);
9698 #else
9699                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9700                 *target_size = 4;
9701 #endif
9702                 break;
9703
9704         case offsetof(struct bpf_sock, src_port):
9705                 *insn++ = BPF_LDX_MEM(
9706                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9707                         si->dst_reg, si->src_reg,
9708                         bpf_target_off(struct sock_common, skc_num,
9709                                        sizeof_field(struct sock_common,
9710                                                     skc_num),
9711                                        target_size));
9712                 break;
9713
9714         case offsetof(struct bpf_sock, dst_port):
9715                 *insn++ = BPF_LDX_MEM(
9716                         BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9717                         si->dst_reg, si->src_reg,
9718                         bpf_target_off(struct sock_common, skc_dport,
9719                                        sizeof_field(struct sock_common,
9720                                                     skc_dport),
9721                                        target_size));
9722                 break;
9723
9724         case offsetof(struct bpf_sock, state):
9725                 *insn++ = BPF_LDX_MEM(
9726                         BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9727                         si->dst_reg, si->src_reg,
9728                         bpf_target_off(struct sock_common, skc_state,
9729                                        sizeof_field(struct sock_common,
9730                                                     skc_state),
9731                                        target_size));
9732                 break;
9733         case offsetof(struct bpf_sock, rx_queue_mapping):
9734 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9735                 *insn++ = BPF_LDX_MEM(
9736                         BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9737                         si->dst_reg, si->src_reg,
9738                         bpf_target_off(struct sock, sk_rx_queue_mapping,
9739                                        sizeof_field(struct sock,
9740                                                     sk_rx_queue_mapping),
9741                                        target_size));
9742                 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9743                                       1);
9744                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9745 #else
9746                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9747                 *target_size = 2;
9748 #endif
9749                 break;
9750         }
9751
9752         return insn - insn_buf;
9753 }
9754
9755 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9756                                          const struct bpf_insn *si,
9757                                          struct bpf_insn *insn_buf,
9758                                          struct bpf_prog *prog, u32 *target_size)
9759 {
9760         struct bpf_insn *insn = insn_buf;
9761
9762         switch (si->off) {
9763         case offsetof(struct __sk_buff, ifindex):
9764                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9765                                       si->dst_reg, si->src_reg,
9766                                       offsetof(struct sk_buff, dev));
9767                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9768                                       bpf_target_off(struct net_device, ifindex, 4,
9769                                                      target_size));
9770                 break;
9771         default:
9772                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9773                                               target_size);
9774         }
9775
9776         return insn - insn_buf;
9777 }
9778
9779 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9780                                   const struct bpf_insn *si,
9781                                   struct bpf_insn *insn_buf,
9782                                   struct bpf_prog *prog, u32 *target_size)
9783 {
9784         struct bpf_insn *insn = insn_buf;
9785
9786         switch (si->off) {
9787         case offsetof(struct xdp_md, data):
9788                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9789                                       si->dst_reg, si->src_reg,
9790                                       offsetof(struct xdp_buff, data));
9791                 break;
9792         case offsetof(struct xdp_md, data_meta):
9793                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9794                                       si->dst_reg, si->src_reg,
9795                                       offsetof(struct xdp_buff, data_meta));
9796                 break;
9797         case offsetof(struct xdp_md, data_end):
9798                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9799                                       si->dst_reg, si->src_reg,
9800                                       offsetof(struct xdp_buff, data_end));
9801                 break;
9802         case offsetof(struct xdp_md, ingress_ifindex):
9803                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9804                                       si->dst_reg, si->src_reg,
9805                                       offsetof(struct xdp_buff, rxq));
9806                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9807                                       si->dst_reg, si->dst_reg,
9808                                       offsetof(struct xdp_rxq_info, dev));
9809                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9810                                       offsetof(struct net_device, ifindex));
9811                 break;
9812         case offsetof(struct xdp_md, rx_queue_index):
9813                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9814                                       si->dst_reg, si->src_reg,
9815                                       offsetof(struct xdp_buff, rxq));
9816                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9817                                       offsetof(struct xdp_rxq_info,
9818                                                queue_index));
9819                 break;
9820         case offsetof(struct xdp_md, egress_ifindex):
9821                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9822                                       si->dst_reg, si->src_reg,
9823                                       offsetof(struct xdp_buff, txq));
9824                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9825                                       si->dst_reg, si->dst_reg,
9826                                       offsetof(struct xdp_txq_info, dev));
9827                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9828                                       offsetof(struct net_device, ifindex));
9829                 break;
9830         }
9831
9832         return insn - insn_buf;
9833 }
9834
9835 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9836  * context Structure, F is Field in context structure that contains a pointer
9837  * to Nested Structure of type NS that has the field NF.
9838  *
9839  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9840  * sure that SIZE is not greater than actual size of S.F.NF.
9841  *
9842  * If offset OFF is provided, the load happens from that offset relative to
9843  * offset of NF.
9844  */
9845 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
9846         do {                                                                   \
9847                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9848                                       si->src_reg, offsetof(S, F));            \
9849                 *insn++ = BPF_LDX_MEM(                                         \
9850                         SIZE, si->dst_reg, si->dst_reg,                        \
9851                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9852                                        target_size)                            \
9853                                 + OFF);                                        \
9854         } while (0)
9855
9856 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
9857         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
9858                                              BPF_FIELD_SIZEOF(NS, NF), 0)
9859
9860 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9861  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9862  *
9863  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9864  * "register" since two registers available in convert_ctx_access are not
9865  * enough: we can't override neither SRC, since it contains value to store, nor
9866  * DST since it contains pointer to context that may be used by later
9867  * instructions. But we need a temporary place to save pointer to nested
9868  * structure whose field we want to store to.
9869  */
9870 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
9871         do {                                                                   \
9872                 int tmp_reg = BPF_REG_9;                                       \
9873                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9874                         --tmp_reg;                                             \
9875                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9876                         --tmp_reg;                                             \
9877                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
9878                                       offsetof(S, TF));                        \
9879                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
9880                                       si->dst_reg, offsetof(S, F));            \
9881                 *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,              \
9882                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9883                                        target_size)                            \
9884                                 + OFF);                                        \
9885                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
9886                                       offsetof(S, TF));                        \
9887         } while (0)
9888
9889 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9890                                                       TF)                      \
9891         do {                                                                   \
9892                 if (type == BPF_WRITE) {                                       \
9893                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9894                                                          OFF, TF);             \
9895                 } else {                                                       \
9896                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
9897                                 S, NS, F, NF, SIZE, OFF);  \
9898                 }                                                              \
9899         } while (0)
9900
9901 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
9902         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
9903                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9904
9905 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9906                                         const struct bpf_insn *si,
9907                                         struct bpf_insn *insn_buf,
9908                                         struct bpf_prog *prog, u32 *target_size)
9909 {
9910         int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9911         struct bpf_insn *insn = insn_buf;
9912
9913         switch (si->off) {
9914         case offsetof(struct bpf_sock_addr, user_family):
9915                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9916                                             struct sockaddr, uaddr, sa_family);
9917                 break;
9918
9919         case offsetof(struct bpf_sock_addr, user_ip4):
9920                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9921                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9922                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9923                 break;
9924
9925         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9926                 off = si->off;
9927                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9928                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9929                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9930                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9931                         tmp_reg);
9932                 break;
9933
9934         case offsetof(struct bpf_sock_addr, user_port):
9935                 /* To get port we need to know sa_family first and then treat
9936                  * sockaddr as either sockaddr_in or sockaddr_in6.
9937                  * Though we can simplify since port field has same offset and
9938                  * size in both structures.
9939                  * Here we check this invariant and use just one of the
9940                  * structures if it's true.
9941                  */
9942                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9943                              offsetof(struct sockaddr_in6, sin6_port));
9944                 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9945                              sizeof_field(struct sockaddr_in6, sin6_port));
9946                 /* Account for sin6_port being smaller than user_port. */
9947                 port_size = min(port_size, BPF_LDST_BYTES(si));
9948                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9949                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9950                         sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9951                 break;
9952
9953         case offsetof(struct bpf_sock_addr, family):
9954                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9955                                             struct sock, sk, sk_family);
9956                 break;
9957
9958         case offsetof(struct bpf_sock_addr, type):
9959                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9960                                             struct sock, sk, sk_type);
9961                 break;
9962
9963         case offsetof(struct bpf_sock_addr, protocol):
9964                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9965                                             struct sock, sk, sk_protocol);
9966                 break;
9967
9968         case offsetof(struct bpf_sock_addr, msg_src_ip4):
9969                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
9970                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9971                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9972                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9973                 break;
9974
9975         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9976                                 msg_src_ip6[3]):
9977                 off = si->off;
9978                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9979                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9980                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9981                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9982                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9983                 break;
9984         case offsetof(struct bpf_sock_addr, sk):
9985                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9986                                       si->dst_reg, si->src_reg,
9987                                       offsetof(struct bpf_sock_addr_kern, sk));
9988                 break;
9989         }
9990
9991         return insn - insn_buf;
9992 }
9993
9994 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9995                                        const struct bpf_insn *si,
9996                                        struct bpf_insn *insn_buf,
9997                                        struct bpf_prog *prog,
9998                                        u32 *target_size)
9999 {
10000         struct bpf_insn *insn = insn_buf;
10001         int off;
10002
10003 /* Helper macro for adding read access to tcp_sock or sock fields. */
10004 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
10005         do {                                                                  \
10006                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10007                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
10008                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10009                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10010                         reg--;                                                \
10011                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10012                         reg--;                                                \
10013                 if (si->dst_reg == si->src_reg) {                             \
10014                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
10015                                           offsetof(struct bpf_sock_ops_kern,  \
10016                                           temp));                             \
10017                         fullsock_reg = reg;                                   \
10018                         jmp += 2;                                             \
10019                 }                                                             \
10020                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10021                                                 struct bpf_sock_ops_kern,     \
10022                                                 is_fullsock),                 \
10023                                       fullsock_reg, si->src_reg,              \
10024                                       offsetof(struct bpf_sock_ops_kern,      \
10025                                                is_fullsock));                 \
10026                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
10027                 if (si->dst_reg == si->src_reg)                               \
10028                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10029                                       offsetof(struct bpf_sock_ops_kern,      \
10030                                       temp));                                 \
10031                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10032                                                 struct bpf_sock_ops_kern, sk),\
10033                                       si->dst_reg, si->src_reg,               \
10034                                       offsetof(struct bpf_sock_ops_kern, sk));\
10035                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
10036                                                        OBJ_FIELD),            \
10037                                       si->dst_reg, si->dst_reg,               \
10038                                       offsetof(OBJ, OBJ_FIELD));              \
10039                 if (si->dst_reg == si->src_reg) {                             \
10040                         *insn++ = BPF_JMP_A(1);                               \
10041                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10042                                       offsetof(struct bpf_sock_ops_kern,      \
10043                                       temp));                                 \
10044                 }                                                             \
10045         } while (0)
10046
10047 #define SOCK_OPS_GET_SK()                                                             \
10048         do {                                                                  \
10049                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10050                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10051                         reg--;                                                \
10052                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10053                         reg--;                                                \
10054                 if (si->dst_reg == si->src_reg) {                             \
10055                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
10056                                           offsetof(struct bpf_sock_ops_kern,  \
10057                                           temp));                             \
10058                         fullsock_reg = reg;                                   \
10059                         jmp += 2;                                             \
10060                 }                                                             \
10061                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10062                                                 struct bpf_sock_ops_kern,     \
10063                                                 is_fullsock),                 \
10064                                       fullsock_reg, si->src_reg,              \
10065                                       offsetof(struct bpf_sock_ops_kern,      \
10066                                                is_fullsock));                 \
10067                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
10068                 if (si->dst_reg == si->src_reg)                               \
10069                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10070                                       offsetof(struct bpf_sock_ops_kern,      \
10071                                       temp));                                 \
10072                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10073                                                 struct bpf_sock_ops_kern, sk),\
10074                                       si->dst_reg, si->src_reg,               \
10075                                       offsetof(struct bpf_sock_ops_kern, sk));\
10076                 if (si->dst_reg == si->src_reg) {                             \
10077                         *insn++ = BPF_JMP_A(1);                               \
10078                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
10079                                       offsetof(struct bpf_sock_ops_kern,      \
10080                                       temp));                                 \
10081                 }                                                             \
10082         } while (0)
10083
10084 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10085                 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10086
10087 /* Helper macro for adding write access to tcp_sock or sock fields.
10088  * The macro is called with two registers, dst_reg which contains a pointer
10089  * to ctx (context) and src_reg which contains the value that should be
10090  * stored. However, we need an additional register since we cannot overwrite
10091  * dst_reg because it may be used later in the program.
10092  * Instead we "borrow" one of the other register. We first save its value
10093  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10094  * it at the end of the macro.
10095  */
10096 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
10097         do {                                                                  \
10098                 int reg = BPF_REG_9;                                          \
10099                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
10100                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10101                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10102                         reg--;                                                \
10103                 if (si->dst_reg == reg || si->src_reg == reg)                 \
10104                         reg--;                                                \
10105                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
10106                                       offsetof(struct bpf_sock_ops_kern,      \
10107                                                temp));                        \
10108                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10109                                                 struct bpf_sock_ops_kern,     \
10110                                                 is_fullsock),                 \
10111                                       reg, si->dst_reg,                       \
10112                                       offsetof(struct bpf_sock_ops_kern,      \
10113                                                is_fullsock));                 \
10114                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
10115                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10116                                                 struct bpf_sock_ops_kern, sk),\
10117                                       reg, si->dst_reg,                       \
10118                                       offsetof(struct bpf_sock_ops_kern, sk));\
10119                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
10120                                       reg, si->src_reg,                       \
10121                                       offsetof(OBJ, OBJ_FIELD));              \
10122                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
10123                                       offsetof(struct bpf_sock_ops_kern,      \
10124                                                temp));                        \
10125         } while (0)
10126
10127 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
10128         do {                                                                  \
10129                 if (TYPE == BPF_WRITE)                                        \
10130                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
10131                 else                                                          \
10132                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
10133         } while (0)
10134
10135         if (insn > insn_buf)
10136                 return insn - insn_buf;
10137
10138         switch (si->off) {
10139         case offsetof(struct bpf_sock_ops, op):
10140                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10141                                                        op),
10142                                       si->dst_reg, si->src_reg,
10143                                       offsetof(struct bpf_sock_ops_kern, op));
10144                 break;
10145
10146         case offsetof(struct bpf_sock_ops, replylong[0]) ...
10147              offsetof(struct bpf_sock_ops, replylong[3]):
10148                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10149                              sizeof_field(struct bpf_sock_ops_kern, reply));
10150                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10151                              sizeof_field(struct bpf_sock_ops_kern, replylong));
10152                 off = si->off;
10153                 off -= offsetof(struct bpf_sock_ops, replylong[0]);
10154                 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10155                 if (type == BPF_WRITE)
10156                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
10157                                               off);
10158                 else
10159                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10160                                               off);
10161                 break;
10162
10163         case offsetof(struct bpf_sock_ops, family):
10164                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10165
10166                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10167                                               struct bpf_sock_ops_kern, sk),
10168                                       si->dst_reg, si->src_reg,
10169                                       offsetof(struct bpf_sock_ops_kern, sk));
10170                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10171                                       offsetof(struct sock_common, skc_family));
10172                 break;
10173
10174         case offsetof(struct bpf_sock_ops, remote_ip4):
10175                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10176
10177                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10178                                                 struct bpf_sock_ops_kern, sk),
10179                                       si->dst_reg, si->src_reg,
10180                                       offsetof(struct bpf_sock_ops_kern, sk));
10181                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10182                                       offsetof(struct sock_common, skc_daddr));
10183                 break;
10184
10185         case offsetof(struct bpf_sock_ops, local_ip4):
10186                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10187                                           skc_rcv_saddr) != 4);
10188
10189                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10190                                               struct bpf_sock_ops_kern, sk),
10191                                       si->dst_reg, si->src_reg,
10192                                       offsetof(struct bpf_sock_ops_kern, sk));
10193                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10194                                       offsetof(struct sock_common,
10195                                                skc_rcv_saddr));
10196                 break;
10197
10198         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10199              offsetof(struct bpf_sock_ops, remote_ip6[3]):
10200 #if IS_ENABLED(CONFIG_IPV6)
10201                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10202                                           skc_v6_daddr.s6_addr32[0]) != 4);
10203
10204                 off = si->off;
10205                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10206                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10207                                                 struct bpf_sock_ops_kern, sk),
10208                                       si->dst_reg, si->src_reg,
10209                                       offsetof(struct bpf_sock_ops_kern, sk));
10210                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10211                                       offsetof(struct sock_common,
10212                                                skc_v6_daddr.s6_addr32[0]) +
10213                                       off);
10214 #else
10215                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10216 #endif
10217                 break;
10218
10219         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10220              offsetof(struct bpf_sock_ops, local_ip6[3]):
10221 #if IS_ENABLED(CONFIG_IPV6)
10222                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10223                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10224
10225                 off = si->off;
10226                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10227                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10228                                                 struct bpf_sock_ops_kern, sk),
10229                                       si->dst_reg, si->src_reg,
10230                                       offsetof(struct bpf_sock_ops_kern, sk));
10231                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10232                                       offsetof(struct sock_common,
10233                                                skc_v6_rcv_saddr.s6_addr32[0]) +
10234                                       off);
10235 #else
10236                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10237 #endif
10238                 break;
10239
10240         case offsetof(struct bpf_sock_ops, remote_port):
10241                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10242
10243                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10244                                                 struct bpf_sock_ops_kern, sk),
10245                                       si->dst_reg, si->src_reg,
10246                                       offsetof(struct bpf_sock_ops_kern, sk));
10247                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10248                                       offsetof(struct sock_common, skc_dport));
10249 #ifndef __BIG_ENDIAN_BITFIELD
10250                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10251 #endif
10252                 break;
10253
10254         case offsetof(struct bpf_sock_ops, local_port):
10255                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10256
10257                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10258                                                 struct bpf_sock_ops_kern, sk),
10259                                       si->dst_reg, si->src_reg,
10260                                       offsetof(struct bpf_sock_ops_kern, sk));
10261                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10262                                       offsetof(struct sock_common, skc_num));
10263                 break;
10264
10265         case offsetof(struct bpf_sock_ops, is_fullsock):
10266                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10267                                                 struct bpf_sock_ops_kern,
10268                                                 is_fullsock),
10269                                       si->dst_reg, si->src_reg,
10270                                       offsetof(struct bpf_sock_ops_kern,
10271                                                is_fullsock));
10272                 break;
10273
10274         case offsetof(struct bpf_sock_ops, state):
10275                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10276
10277                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10278                                                 struct bpf_sock_ops_kern, sk),
10279                                       si->dst_reg, si->src_reg,
10280                                       offsetof(struct bpf_sock_ops_kern, sk));
10281                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10282                                       offsetof(struct sock_common, skc_state));
10283                 break;
10284
10285         case offsetof(struct bpf_sock_ops, rtt_min):
10286                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10287                              sizeof(struct minmax));
10288                 BUILD_BUG_ON(sizeof(struct minmax) <
10289                              sizeof(struct minmax_sample));
10290
10291                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10292                                                 struct bpf_sock_ops_kern, sk),
10293                                       si->dst_reg, si->src_reg,
10294                                       offsetof(struct bpf_sock_ops_kern, sk));
10295                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10296                                       offsetof(struct tcp_sock, rtt_min) +
10297                                       sizeof_field(struct minmax_sample, t));
10298                 break;
10299
10300         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10301                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10302                                    struct tcp_sock);
10303                 break;
10304
10305         case offsetof(struct bpf_sock_ops, sk_txhash):
10306                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10307                                           struct sock, type);
10308                 break;
10309         case offsetof(struct bpf_sock_ops, snd_cwnd):
10310                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10311                 break;
10312         case offsetof(struct bpf_sock_ops, srtt_us):
10313                 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10314                 break;
10315         case offsetof(struct bpf_sock_ops, snd_ssthresh):
10316                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10317                 break;
10318         case offsetof(struct bpf_sock_ops, rcv_nxt):
10319                 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10320                 break;
10321         case offsetof(struct bpf_sock_ops, snd_nxt):
10322                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10323                 break;
10324         case offsetof(struct bpf_sock_ops, snd_una):
10325                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10326                 break;
10327         case offsetof(struct bpf_sock_ops, mss_cache):
10328                 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10329                 break;
10330         case offsetof(struct bpf_sock_ops, ecn_flags):
10331                 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10332                 break;
10333         case offsetof(struct bpf_sock_ops, rate_delivered):
10334                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10335                 break;
10336         case offsetof(struct bpf_sock_ops, rate_interval_us):
10337                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10338                 break;
10339         case offsetof(struct bpf_sock_ops, packets_out):
10340                 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10341                 break;
10342         case offsetof(struct bpf_sock_ops, retrans_out):
10343                 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10344                 break;
10345         case offsetof(struct bpf_sock_ops, total_retrans):
10346                 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10347                 break;
10348         case offsetof(struct bpf_sock_ops, segs_in):
10349                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10350                 break;
10351         case offsetof(struct bpf_sock_ops, data_segs_in):
10352                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10353                 break;
10354         case offsetof(struct bpf_sock_ops, segs_out):
10355                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10356                 break;
10357         case offsetof(struct bpf_sock_ops, data_segs_out):
10358                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10359                 break;
10360         case offsetof(struct bpf_sock_ops, lost_out):
10361                 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10362                 break;
10363         case offsetof(struct bpf_sock_ops, sacked_out):
10364                 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10365                 break;
10366         case offsetof(struct bpf_sock_ops, bytes_received):
10367                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10368                 break;
10369         case offsetof(struct bpf_sock_ops, bytes_acked):
10370                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10371                 break;
10372         case offsetof(struct bpf_sock_ops, sk):
10373                 SOCK_OPS_GET_SK();
10374                 break;
10375         case offsetof(struct bpf_sock_ops, skb_data_end):
10376                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10377                                                        skb_data_end),
10378                                       si->dst_reg, si->src_reg,
10379                                       offsetof(struct bpf_sock_ops_kern,
10380                                                skb_data_end));
10381                 break;
10382         case offsetof(struct bpf_sock_ops, skb_data):
10383                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10384                                                        skb),
10385                                       si->dst_reg, si->src_reg,
10386                                       offsetof(struct bpf_sock_ops_kern,
10387                                                skb));
10388                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10389                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10390                                       si->dst_reg, si->dst_reg,
10391                                       offsetof(struct sk_buff, data));
10392                 break;
10393         case offsetof(struct bpf_sock_ops, skb_len):
10394                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10395                                                        skb),
10396                                       si->dst_reg, si->src_reg,
10397                                       offsetof(struct bpf_sock_ops_kern,
10398                                                skb));
10399                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10400                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10401                                       si->dst_reg, si->dst_reg,
10402                                       offsetof(struct sk_buff, len));
10403                 break;
10404         case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10405                 off = offsetof(struct sk_buff, cb);
10406                 off += offsetof(struct tcp_skb_cb, tcp_flags);
10407                 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10408                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10409                                                        skb),
10410                                       si->dst_reg, si->src_reg,
10411                                       offsetof(struct bpf_sock_ops_kern,
10412                                                skb));
10413                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10414                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10415                                                        tcp_flags),
10416                                       si->dst_reg, si->dst_reg, off);
10417                 break;
10418         }
10419         return insn - insn_buf;
10420 }
10421
10422 /* data_end = skb->data + skb_headlen() */
10423 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10424                                                     struct bpf_insn *insn)
10425 {
10426         int reg;
10427         int temp_reg_off = offsetof(struct sk_buff, cb) +
10428                            offsetof(struct sk_skb_cb, temp_reg);
10429
10430         if (si->src_reg == si->dst_reg) {
10431                 /* We need an extra register, choose and save a register. */
10432                 reg = BPF_REG_9;
10433                 if (si->src_reg == reg || si->dst_reg == reg)
10434                         reg--;
10435                 if (si->src_reg == reg || si->dst_reg == reg)
10436                         reg--;
10437                 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10438         } else {
10439                 reg = si->dst_reg;
10440         }
10441
10442         /* reg = skb->data */
10443         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10444                               reg, si->src_reg,
10445                               offsetof(struct sk_buff, data));
10446         /* AX = skb->len */
10447         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10448                               BPF_REG_AX, si->src_reg,
10449                               offsetof(struct sk_buff, len));
10450         /* reg = skb->data + skb->len */
10451         *insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10452         /* AX = skb->data_len */
10453         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10454                               BPF_REG_AX, si->src_reg,
10455                               offsetof(struct sk_buff, data_len));
10456
10457         /* reg = skb->data + skb->len - skb->data_len */
10458         *insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10459
10460         if (si->src_reg == si->dst_reg) {
10461                 /* Restore the saved register */
10462                 *insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10463                 *insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10464                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10465         }
10466
10467         return insn;
10468 }
10469
10470 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10471                                      const struct bpf_insn *si,
10472                                      struct bpf_insn *insn_buf,
10473                                      struct bpf_prog *prog, u32 *target_size)
10474 {
10475         struct bpf_insn *insn = insn_buf;
10476         int off;
10477
10478         switch (si->off) {
10479         case offsetof(struct __sk_buff, data_end):
10480                 insn = bpf_convert_data_end_access(si, insn);
10481                 break;
10482         case offsetof(struct __sk_buff, cb[0]) ...
10483              offsetofend(struct __sk_buff, cb[4]) - 1:
10484                 BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10485                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10486                               offsetof(struct sk_skb_cb, data)) %
10487                              sizeof(__u64));
10488
10489                 prog->cb_access = 1;
10490                 off  = si->off;
10491                 off -= offsetof(struct __sk_buff, cb[0]);
10492                 off += offsetof(struct sk_buff, cb);
10493                 off += offsetof(struct sk_skb_cb, data);
10494                 if (type == BPF_WRITE)
10495                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
10496                                               si->src_reg, off);
10497                 else
10498                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10499                                               si->src_reg, off);
10500                 break;
10501
10502
10503         default:
10504                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10505                                               target_size);
10506         }
10507
10508         return insn - insn_buf;
10509 }
10510
10511 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10512                                      const struct bpf_insn *si,
10513                                      struct bpf_insn *insn_buf,
10514                                      struct bpf_prog *prog, u32 *target_size)
10515 {
10516         struct bpf_insn *insn = insn_buf;
10517 #if IS_ENABLED(CONFIG_IPV6)
10518         int off;
10519 #endif
10520
10521         /* convert ctx uses the fact sg element is first in struct */
10522         BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10523
10524         switch (si->off) {
10525         case offsetof(struct sk_msg_md, data):
10526                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10527                                       si->dst_reg, si->src_reg,
10528                                       offsetof(struct sk_msg, data));
10529                 break;
10530         case offsetof(struct sk_msg_md, data_end):
10531                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10532                                       si->dst_reg, si->src_reg,
10533                                       offsetof(struct sk_msg, data_end));
10534                 break;
10535         case offsetof(struct sk_msg_md, family):
10536                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10537
10538                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10539                                               struct sk_msg, sk),
10540                                       si->dst_reg, si->src_reg,
10541                                       offsetof(struct sk_msg, sk));
10542                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10543                                       offsetof(struct sock_common, skc_family));
10544                 break;
10545
10546         case offsetof(struct sk_msg_md, remote_ip4):
10547                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10548
10549                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10550                                                 struct sk_msg, sk),
10551                                       si->dst_reg, si->src_reg,
10552                                       offsetof(struct sk_msg, sk));
10553                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10554                                       offsetof(struct sock_common, skc_daddr));
10555                 break;
10556
10557         case offsetof(struct sk_msg_md, local_ip4):
10558                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10559                                           skc_rcv_saddr) != 4);
10560
10561                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10562                                               struct sk_msg, sk),
10563                                       si->dst_reg, si->src_reg,
10564                                       offsetof(struct sk_msg, sk));
10565                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10566                                       offsetof(struct sock_common,
10567                                                skc_rcv_saddr));
10568                 break;
10569
10570         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10571              offsetof(struct sk_msg_md, remote_ip6[3]):
10572 #if IS_ENABLED(CONFIG_IPV6)
10573                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10574                                           skc_v6_daddr.s6_addr32[0]) != 4);
10575
10576                 off = si->off;
10577                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10578                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10579                                                 struct sk_msg, sk),
10580                                       si->dst_reg, si->src_reg,
10581                                       offsetof(struct sk_msg, sk));
10582                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10583                                       offsetof(struct sock_common,
10584                                                skc_v6_daddr.s6_addr32[0]) +
10585                                       off);
10586 #else
10587                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10588 #endif
10589                 break;
10590
10591         case offsetof(struct sk_msg_md, local_ip6[0]) ...
10592              offsetof(struct sk_msg_md, local_ip6[3]):
10593 #if IS_ENABLED(CONFIG_IPV6)
10594                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10595                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10596
10597                 off = si->off;
10598                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
10599                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10600                                                 struct sk_msg, sk),
10601                                       si->dst_reg, si->src_reg,
10602                                       offsetof(struct sk_msg, sk));
10603                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10604                                       offsetof(struct sock_common,
10605                                                skc_v6_rcv_saddr.s6_addr32[0]) +
10606                                       off);
10607 #else
10608                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10609 #endif
10610                 break;
10611
10612         case offsetof(struct sk_msg_md, remote_port):
10613                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10614
10615                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10616                                                 struct sk_msg, sk),
10617                                       si->dst_reg, si->src_reg,
10618                                       offsetof(struct sk_msg, sk));
10619                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10620                                       offsetof(struct sock_common, skc_dport));
10621 #ifndef __BIG_ENDIAN_BITFIELD
10622                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10623 #endif
10624                 break;
10625
10626         case offsetof(struct sk_msg_md, local_port):
10627                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10628
10629                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10630                                                 struct sk_msg, sk),
10631                                       si->dst_reg, si->src_reg,
10632                                       offsetof(struct sk_msg, sk));
10633                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10634                                       offsetof(struct sock_common, skc_num));
10635                 break;
10636
10637         case offsetof(struct sk_msg_md, size):
10638                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10639                                       si->dst_reg, si->src_reg,
10640                                       offsetof(struct sk_msg_sg, size));
10641                 break;
10642
10643         case offsetof(struct sk_msg_md, sk):
10644                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10645                                       si->dst_reg, si->src_reg,
10646                                       offsetof(struct sk_msg, sk));
10647                 break;
10648         }
10649
10650         return insn - insn_buf;
10651 }
10652
10653 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10654         .get_func_proto         = sk_filter_func_proto,
10655         .is_valid_access        = sk_filter_is_valid_access,
10656         .convert_ctx_access     = bpf_convert_ctx_access,
10657         .gen_ld_abs             = bpf_gen_ld_abs,
10658 };
10659
10660 const struct bpf_prog_ops sk_filter_prog_ops = {
10661         .test_run               = bpf_prog_test_run_skb,
10662 };
10663
10664 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10665         .get_func_proto         = tc_cls_act_func_proto,
10666         .is_valid_access        = tc_cls_act_is_valid_access,
10667         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
10668         .gen_prologue           = tc_cls_act_prologue,
10669         .gen_ld_abs             = bpf_gen_ld_abs,
10670         .btf_struct_access      = tc_cls_act_btf_struct_access,
10671 };
10672
10673 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10674         .test_run               = bpf_prog_test_run_skb,
10675 };
10676
10677 const struct bpf_verifier_ops xdp_verifier_ops = {
10678         .get_func_proto         = xdp_func_proto,
10679         .is_valid_access        = xdp_is_valid_access,
10680         .convert_ctx_access     = xdp_convert_ctx_access,
10681         .gen_prologue           = bpf_noop_prologue,
10682         .btf_struct_access      = xdp_btf_struct_access,
10683 };
10684
10685 const struct bpf_prog_ops xdp_prog_ops = {
10686         .test_run               = bpf_prog_test_run_xdp,
10687 };
10688
10689 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10690         .get_func_proto         = cg_skb_func_proto,
10691         .is_valid_access        = cg_skb_is_valid_access,
10692         .convert_ctx_access     = bpf_convert_ctx_access,
10693 };
10694
10695 const struct bpf_prog_ops cg_skb_prog_ops = {
10696         .test_run               = bpf_prog_test_run_skb,
10697 };
10698
10699 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10700         .get_func_proto         = lwt_in_func_proto,
10701         .is_valid_access        = lwt_is_valid_access,
10702         .convert_ctx_access     = bpf_convert_ctx_access,
10703 };
10704
10705 const struct bpf_prog_ops lwt_in_prog_ops = {
10706         .test_run               = bpf_prog_test_run_skb,
10707 };
10708
10709 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10710         .get_func_proto         = lwt_out_func_proto,
10711         .is_valid_access        = lwt_is_valid_access,
10712         .convert_ctx_access     = bpf_convert_ctx_access,
10713 };
10714
10715 const struct bpf_prog_ops lwt_out_prog_ops = {
10716         .test_run               = bpf_prog_test_run_skb,
10717 };
10718
10719 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10720         .get_func_proto         = lwt_xmit_func_proto,
10721         .is_valid_access        = lwt_is_valid_access,
10722         .convert_ctx_access     = bpf_convert_ctx_access,
10723         .gen_prologue           = tc_cls_act_prologue,
10724 };
10725
10726 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10727         .test_run               = bpf_prog_test_run_skb,
10728 };
10729
10730 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10731         .get_func_proto         = lwt_seg6local_func_proto,
10732         .is_valid_access        = lwt_is_valid_access,
10733         .convert_ctx_access     = bpf_convert_ctx_access,
10734 };
10735
10736 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10737         .test_run               = bpf_prog_test_run_skb,
10738 };
10739
10740 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10741         .get_func_proto         = sock_filter_func_proto,
10742         .is_valid_access        = sock_filter_is_valid_access,
10743         .convert_ctx_access     = bpf_sock_convert_ctx_access,
10744 };
10745
10746 const struct bpf_prog_ops cg_sock_prog_ops = {
10747 };
10748
10749 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10750         .get_func_proto         = sock_addr_func_proto,
10751         .is_valid_access        = sock_addr_is_valid_access,
10752         .convert_ctx_access     = sock_addr_convert_ctx_access,
10753 };
10754
10755 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10756 };
10757
10758 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10759         .get_func_proto         = sock_ops_func_proto,
10760         .is_valid_access        = sock_ops_is_valid_access,
10761         .convert_ctx_access     = sock_ops_convert_ctx_access,
10762 };
10763
10764 const struct bpf_prog_ops sock_ops_prog_ops = {
10765 };
10766
10767 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10768         .get_func_proto         = sk_skb_func_proto,
10769         .is_valid_access        = sk_skb_is_valid_access,
10770         .convert_ctx_access     = sk_skb_convert_ctx_access,
10771         .gen_prologue           = sk_skb_prologue,
10772 };
10773
10774 const struct bpf_prog_ops sk_skb_prog_ops = {
10775 };
10776
10777 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10778         .get_func_proto         = sk_msg_func_proto,
10779         .is_valid_access        = sk_msg_is_valid_access,
10780         .convert_ctx_access     = sk_msg_convert_ctx_access,
10781         .gen_prologue           = bpf_noop_prologue,
10782 };
10783
10784 const struct bpf_prog_ops sk_msg_prog_ops = {
10785 };
10786
10787 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10788         .get_func_proto         = flow_dissector_func_proto,
10789         .is_valid_access        = flow_dissector_is_valid_access,
10790         .convert_ctx_access     = flow_dissector_convert_ctx_access,
10791 };
10792
10793 const struct bpf_prog_ops flow_dissector_prog_ops = {
10794         .test_run               = bpf_prog_test_run_flow_dissector,
10795 };
10796
10797 int sk_detach_filter(struct sock *sk)
10798 {
10799         int ret = -ENOENT;
10800         struct sk_filter *filter;
10801
10802         if (sock_flag(sk, SOCK_FILTER_LOCKED))
10803                 return -EPERM;
10804
10805         filter = rcu_dereference_protected(sk->sk_filter,
10806                                            lockdep_sock_is_held(sk));
10807         if (filter) {
10808                 RCU_INIT_POINTER(sk->sk_filter, NULL);
10809                 sk_filter_uncharge(sk, filter);
10810                 ret = 0;
10811         }
10812
10813         return ret;
10814 }
10815 EXPORT_SYMBOL_GPL(sk_detach_filter);
10816
10817 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
10818 {
10819         struct sock_fprog_kern *fprog;
10820         struct sk_filter *filter;
10821         int ret = 0;
10822
10823         sockopt_lock_sock(sk);
10824         filter = rcu_dereference_protected(sk->sk_filter,
10825                                            lockdep_sock_is_held(sk));
10826         if (!filter)
10827                 goto out;
10828
10829         /* We're copying the filter that has been originally attached,
10830          * so no conversion/decode needed anymore. eBPF programs that
10831          * have no original program cannot be dumped through this.
10832          */
10833         ret = -EACCES;
10834         fprog = filter->prog->orig_prog;
10835         if (!fprog)
10836                 goto out;
10837
10838         ret = fprog->len;
10839         if (!len)
10840                 /* User space only enquires number of filter blocks. */
10841                 goto out;
10842
10843         ret = -EINVAL;
10844         if (len < fprog->len)
10845                 goto out;
10846
10847         ret = -EFAULT;
10848         if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
10849                 goto out;
10850
10851         /* Instead of bytes, the API requests to return the number
10852          * of filter blocks.
10853          */
10854         ret = fprog->len;
10855 out:
10856         sockopt_release_sock(sk);
10857         return ret;
10858 }
10859
10860 #ifdef CONFIG_INET
10861 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10862                                     struct sock_reuseport *reuse,
10863                                     struct sock *sk, struct sk_buff *skb,
10864                                     struct sock *migrating_sk,
10865                                     u32 hash)
10866 {
10867         reuse_kern->skb = skb;
10868         reuse_kern->sk = sk;
10869         reuse_kern->selected_sk = NULL;
10870         reuse_kern->migrating_sk = migrating_sk;
10871         reuse_kern->data_end = skb->data + skb_headlen(skb);
10872         reuse_kern->hash = hash;
10873         reuse_kern->reuseport_id = reuse->reuseport_id;
10874         reuse_kern->bind_inany = reuse->bind_inany;
10875 }
10876
10877 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10878                                   struct bpf_prog *prog, struct sk_buff *skb,
10879                                   struct sock *migrating_sk,
10880                                   u32 hash)
10881 {
10882         struct sk_reuseport_kern reuse_kern;
10883         enum sk_action action;
10884
10885         bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10886         action = bpf_prog_run(prog, &reuse_kern);
10887
10888         if (action == SK_PASS)
10889                 return reuse_kern.selected_sk;
10890         else
10891                 return ERR_PTR(-ECONNREFUSED);
10892 }
10893
10894 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10895            struct bpf_map *, map, void *, key, u32, flags)
10896 {
10897         bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10898         struct sock_reuseport *reuse;
10899         struct sock *selected_sk;
10900
10901         selected_sk = map->ops->map_lookup_elem(map, key);
10902         if (!selected_sk)
10903                 return -ENOENT;
10904
10905         reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10906         if (!reuse) {
10907                 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10908                 if (sk_is_refcounted(selected_sk))
10909                         sock_put(selected_sk);
10910
10911                 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
10912                  * The only (!reuse) case here is - the sk has already been
10913                  * unhashed (e.g. by close()), so treat it as -ENOENT.
10914                  *
10915                  * Other maps (e.g. sock_map) do not provide this guarantee and
10916                  * the sk may never be in the reuseport group to begin with.
10917                  */
10918                 return is_sockarray ? -ENOENT : -EINVAL;
10919         }
10920
10921         if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10922                 struct sock *sk = reuse_kern->sk;
10923
10924                 if (sk->sk_protocol != selected_sk->sk_protocol)
10925                         return -EPROTOTYPE;
10926                 else if (sk->sk_family != selected_sk->sk_family)
10927                         return -EAFNOSUPPORT;
10928
10929                 /* Catch all. Likely bound to a different sockaddr. */
10930                 return -EBADFD;
10931         }
10932
10933         reuse_kern->selected_sk = selected_sk;
10934
10935         return 0;
10936 }
10937
10938 static const struct bpf_func_proto sk_select_reuseport_proto = {
10939         .func           = sk_select_reuseport,
10940         .gpl_only       = false,
10941         .ret_type       = RET_INTEGER,
10942         .arg1_type      = ARG_PTR_TO_CTX,
10943         .arg2_type      = ARG_CONST_MAP_PTR,
10944         .arg3_type      = ARG_PTR_TO_MAP_KEY,
10945         .arg4_type      = ARG_ANYTHING,
10946 };
10947
10948 BPF_CALL_4(sk_reuseport_load_bytes,
10949            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10950            void *, to, u32, len)
10951 {
10952         return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10953 }
10954
10955 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10956         .func           = sk_reuseport_load_bytes,
10957         .gpl_only       = false,
10958         .ret_type       = RET_INTEGER,
10959         .arg1_type      = ARG_PTR_TO_CTX,
10960         .arg2_type      = ARG_ANYTHING,
10961         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
10962         .arg4_type      = ARG_CONST_SIZE,
10963 };
10964
10965 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10966            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10967            void *, to, u32, len, u32, start_header)
10968 {
10969         return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10970                                                len, start_header);
10971 }
10972
10973 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10974         .func           = sk_reuseport_load_bytes_relative,
10975         .gpl_only       = false,
10976         .ret_type       = RET_INTEGER,
10977         .arg1_type      = ARG_PTR_TO_CTX,
10978         .arg2_type      = ARG_ANYTHING,
10979         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
10980         .arg4_type      = ARG_CONST_SIZE,
10981         .arg5_type      = ARG_ANYTHING,
10982 };
10983
10984 static const struct bpf_func_proto *
10985 sk_reuseport_func_proto(enum bpf_func_id func_id,
10986                         const struct bpf_prog *prog)
10987 {
10988         switch (func_id) {
10989         case BPF_FUNC_sk_select_reuseport:
10990                 return &sk_select_reuseport_proto;
10991         case BPF_FUNC_skb_load_bytes:
10992                 return &sk_reuseport_load_bytes_proto;
10993         case BPF_FUNC_skb_load_bytes_relative:
10994                 return &sk_reuseport_load_bytes_relative_proto;
10995         case BPF_FUNC_get_socket_cookie:
10996                 return &bpf_get_socket_ptr_cookie_proto;
10997         case BPF_FUNC_ktime_get_coarse_ns:
10998                 return &bpf_ktime_get_coarse_ns_proto;
10999         default:
11000                 return bpf_base_func_proto(func_id);
11001         }
11002 }
11003
11004 static bool
11005 sk_reuseport_is_valid_access(int off, int size,
11006                              enum bpf_access_type type,
11007                              const struct bpf_prog *prog,
11008                              struct bpf_insn_access_aux *info)
11009 {
11010         const u32 size_default = sizeof(__u32);
11011
11012         if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11013             off % size || type != BPF_READ)
11014                 return false;
11015
11016         switch (off) {
11017         case offsetof(struct sk_reuseport_md, data):
11018                 info->reg_type = PTR_TO_PACKET;
11019                 return size == sizeof(__u64);
11020
11021         case offsetof(struct sk_reuseport_md, data_end):
11022                 info->reg_type = PTR_TO_PACKET_END;
11023                 return size == sizeof(__u64);
11024
11025         case offsetof(struct sk_reuseport_md, hash):
11026                 return size == size_default;
11027
11028         case offsetof(struct sk_reuseport_md, sk):
11029                 info->reg_type = PTR_TO_SOCKET;
11030                 return size == sizeof(__u64);
11031
11032         case offsetof(struct sk_reuseport_md, migrating_sk):
11033                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11034                 return size == sizeof(__u64);
11035
11036         /* Fields that allow narrowing */
11037         case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11038                 if (size < sizeof_field(struct sk_buff, protocol))
11039                         return false;
11040                 fallthrough;
11041         case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11042         case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11043         case bpf_ctx_range(struct sk_reuseport_md, len):
11044                 bpf_ctx_record_field_size(info, size_default);
11045                 return bpf_ctx_narrow_access_ok(off, size, size_default);
11046
11047         default:
11048                 return false;
11049         }
11050 }
11051
11052 #define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
11053         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11054                               si->dst_reg, si->src_reg,                 \
11055                               bpf_target_off(struct sk_reuseport_kern, F, \
11056                                              sizeof_field(struct sk_reuseport_kern, F), \
11057                                              target_size));             \
11058         })
11059
11060 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
11061         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
11062                                     struct sk_buff,                     \
11063                                     skb,                                \
11064                                     SKB_FIELD)
11065
11066 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)                            \
11067         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
11068                                     struct sock,                        \
11069                                     sk,                                 \
11070                                     SK_FIELD)
11071
11072 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11073                                            const struct bpf_insn *si,
11074                                            struct bpf_insn *insn_buf,
11075                                            struct bpf_prog *prog,
11076                                            u32 *target_size)
11077 {
11078         struct bpf_insn *insn = insn_buf;
11079
11080         switch (si->off) {
11081         case offsetof(struct sk_reuseport_md, data):
11082                 SK_REUSEPORT_LOAD_SKB_FIELD(data);
11083                 break;
11084
11085         case offsetof(struct sk_reuseport_md, len):
11086                 SK_REUSEPORT_LOAD_SKB_FIELD(len);
11087                 break;
11088
11089         case offsetof(struct sk_reuseport_md, eth_protocol):
11090                 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11091                 break;
11092
11093         case offsetof(struct sk_reuseport_md, ip_protocol):
11094                 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11095                 break;
11096
11097         case offsetof(struct sk_reuseport_md, data_end):
11098                 SK_REUSEPORT_LOAD_FIELD(data_end);
11099                 break;
11100
11101         case offsetof(struct sk_reuseport_md, hash):
11102                 SK_REUSEPORT_LOAD_FIELD(hash);
11103                 break;
11104
11105         case offsetof(struct sk_reuseport_md, bind_inany):
11106                 SK_REUSEPORT_LOAD_FIELD(bind_inany);
11107                 break;
11108
11109         case offsetof(struct sk_reuseport_md, sk):
11110                 SK_REUSEPORT_LOAD_FIELD(sk);
11111                 break;
11112
11113         case offsetof(struct sk_reuseport_md, migrating_sk):
11114                 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11115                 break;
11116         }
11117
11118         return insn - insn_buf;
11119 }
11120
11121 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11122         .get_func_proto         = sk_reuseport_func_proto,
11123         .is_valid_access        = sk_reuseport_is_valid_access,
11124         .convert_ctx_access     = sk_reuseport_convert_ctx_access,
11125 };
11126
11127 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11128 };
11129
11130 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11131 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11132
11133 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11134            struct sock *, sk, u64, flags)
11135 {
11136         if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11137                                BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11138                 return -EINVAL;
11139         if (unlikely(sk && sk_is_refcounted(sk)))
11140                 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11141         if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11142                 return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11143         if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11144                 return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11145
11146         /* Check if socket is suitable for packet L3/L4 protocol */
11147         if (sk && sk->sk_protocol != ctx->protocol)
11148                 return -EPROTOTYPE;
11149         if (sk && sk->sk_family != ctx->family &&
11150             (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11151                 return -EAFNOSUPPORT;
11152
11153         if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11154                 return -EEXIST;
11155
11156         /* Select socket as lookup result */
11157         ctx->selected_sk = sk;
11158         ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11159         return 0;
11160 }
11161
11162 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11163         .func           = bpf_sk_lookup_assign,
11164         .gpl_only       = false,
11165         .ret_type       = RET_INTEGER,
11166         .arg1_type      = ARG_PTR_TO_CTX,
11167         .arg2_type      = ARG_PTR_TO_SOCKET_OR_NULL,
11168         .arg3_type      = ARG_ANYTHING,
11169 };
11170
11171 static const struct bpf_func_proto *
11172 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11173 {
11174         switch (func_id) {
11175         case BPF_FUNC_perf_event_output:
11176                 return &bpf_event_output_data_proto;
11177         case BPF_FUNC_sk_assign:
11178                 return &bpf_sk_lookup_assign_proto;
11179         case BPF_FUNC_sk_release:
11180                 return &bpf_sk_release_proto;
11181         default:
11182                 return bpf_sk_base_func_proto(func_id);
11183         }
11184 }
11185
11186 static bool sk_lookup_is_valid_access(int off, int size,
11187                                       enum bpf_access_type type,
11188                                       const struct bpf_prog *prog,
11189                                       struct bpf_insn_access_aux *info)
11190 {
11191         if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11192                 return false;
11193         if (off % size != 0)
11194                 return false;
11195         if (type != BPF_READ)
11196                 return false;
11197
11198         switch (off) {
11199         case offsetof(struct bpf_sk_lookup, sk):
11200                 info->reg_type = PTR_TO_SOCKET_OR_NULL;
11201                 return size == sizeof(__u64);
11202
11203         case bpf_ctx_range(struct bpf_sk_lookup, family):
11204         case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11205         case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11206         case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11207         case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11208         case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11209         case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11210         case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11211                 bpf_ctx_record_field_size(info, sizeof(__u32));
11212                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11213
11214         case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11215                 /* Allow 4-byte access to 2-byte field for backward compatibility */
11216                 if (size == sizeof(__u32))
11217                         return true;
11218                 bpf_ctx_record_field_size(info, sizeof(__be16));
11219                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11220
11221         case offsetofend(struct bpf_sk_lookup, remote_port) ...
11222              offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11223                 /* Allow access to zero padding for backward compatibility */
11224                 bpf_ctx_record_field_size(info, sizeof(__u16));
11225                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11226
11227         default:
11228                 return false;
11229         }
11230 }
11231
11232 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11233                                         const struct bpf_insn *si,
11234                                         struct bpf_insn *insn_buf,
11235                                         struct bpf_prog *prog,
11236                                         u32 *target_size)
11237 {
11238         struct bpf_insn *insn = insn_buf;
11239
11240         switch (si->off) {
11241         case offsetof(struct bpf_sk_lookup, sk):
11242                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11243                                       offsetof(struct bpf_sk_lookup_kern, selected_sk));
11244                 break;
11245
11246         case offsetof(struct bpf_sk_lookup, family):
11247                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11248                                       bpf_target_off(struct bpf_sk_lookup_kern,
11249                                                      family, 2, target_size));
11250                 break;
11251
11252         case offsetof(struct bpf_sk_lookup, protocol):
11253                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11254                                       bpf_target_off(struct bpf_sk_lookup_kern,
11255                                                      protocol, 2, target_size));
11256                 break;
11257
11258         case offsetof(struct bpf_sk_lookup, remote_ip4):
11259                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11260                                       bpf_target_off(struct bpf_sk_lookup_kern,
11261                                                      v4.saddr, 4, target_size));
11262                 break;
11263
11264         case offsetof(struct bpf_sk_lookup, local_ip4):
11265                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11266                                       bpf_target_off(struct bpf_sk_lookup_kern,
11267                                                      v4.daddr, 4, target_size));
11268                 break;
11269
11270         case bpf_ctx_range_till(struct bpf_sk_lookup,
11271                                 remote_ip6[0], remote_ip6[3]): {
11272 #if IS_ENABLED(CONFIG_IPV6)
11273                 int off = si->off;
11274
11275                 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11276                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11277                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11278                                       offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11279                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11280                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11281 #else
11282                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11283 #endif
11284                 break;
11285         }
11286         case bpf_ctx_range_till(struct bpf_sk_lookup,
11287                                 local_ip6[0], local_ip6[3]): {
11288 #if IS_ENABLED(CONFIG_IPV6)
11289                 int off = si->off;
11290
11291                 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11292                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11293                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11294                                       offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11295                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11296                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11297 #else
11298                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11299 #endif
11300                 break;
11301         }
11302         case offsetof(struct bpf_sk_lookup, remote_port):
11303                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11304                                       bpf_target_off(struct bpf_sk_lookup_kern,
11305                                                      sport, 2, target_size));
11306                 break;
11307
11308         case offsetofend(struct bpf_sk_lookup, remote_port):
11309                 *target_size = 2;
11310                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11311                 break;
11312
11313         case offsetof(struct bpf_sk_lookup, local_port):
11314                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11315                                       bpf_target_off(struct bpf_sk_lookup_kern,
11316                                                      dport, 2, target_size));
11317                 break;
11318
11319         case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11320                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11321                                       bpf_target_off(struct bpf_sk_lookup_kern,
11322                                                      ingress_ifindex, 4, target_size));
11323                 break;
11324         }
11325
11326         return insn - insn_buf;
11327 }
11328
11329 const struct bpf_prog_ops sk_lookup_prog_ops = {
11330         .test_run = bpf_prog_test_run_sk_lookup,
11331 };
11332
11333 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11334         .get_func_proto         = sk_lookup_func_proto,
11335         .is_valid_access        = sk_lookup_is_valid_access,
11336         .convert_ctx_access     = sk_lookup_convert_ctx_access,
11337 };
11338
11339 #endif /* CONFIG_INET */
11340
11341 DEFINE_BPF_DISPATCHER(xdp)
11342
11343 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11344 {
11345         bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11346 }
11347
11348 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11349 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11350 BTF_SOCK_TYPE_xxx
11351 #undef BTF_SOCK_TYPE
11352
11353 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11354 {
11355         /* tcp6_sock type is not generated in dwarf and hence btf,
11356          * trigger an explicit type generation here.
11357          */
11358         BTF_TYPE_EMIT(struct tcp6_sock);
11359         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11360             sk->sk_family == AF_INET6)
11361                 return (unsigned long)sk;
11362
11363         return (unsigned long)NULL;
11364 }
11365
11366 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11367         .func                   = bpf_skc_to_tcp6_sock,
11368         .gpl_only               = false,
11369         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11370         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11371         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11372 };
11373
11374 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11375 {
11376         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11377                 return (unsigned long)sk;
11378
11379         return (unsigned long)NULL;
11380 }
11381
11382 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11383         .func                   = bpf_skc_to_tcp_sock,
11384         .gpl_only               = false,
11385         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11386         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11387         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11388 };
11389
11390 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11391 {
11392         /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11393          * generated if CONFIG_INET=n. Trigger an explicit generation here.
11394          */
11395         BTF_TYPE_EMIT(struct inet_timewait_sock);
11396         BTF_TYPE_EMIT(struct tcp_timewait_sock);
11397
11398 #ifdef CONFIG_INET
11399         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11400                 return (unsigned long)sk;
11401 #endif
11402
11403 #if IS_BUILTIN(CONFIG_IPV6)
11404         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11405                 return (unsigned long)sk;
11406 #endif
11407
11408         return (unsigned long)NULL;
11409 }
11410
11411 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11412         .func                   = bpf_skc_to_tcp_timewait_sock,
11413         .gpl_only               = false,
11414         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11415         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11416         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11417 };
11418
11419 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11420 {
11421 #ifdef CONFIG_INET
11422         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11423                 return (unsigned long)sk;
11424 #endif
11425
11426 #if IS_BUILTIN(CONFIG_IPV6)
11427         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11428                 return (unsigned long)sk;
11429 #endif
11430
11431         return (unsigned long)NULL;
11432 }
11433
11434 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11435         .func                   = bpf_skc_to_tcp_request_sock,
11436         .gpl_only               = false,
11437         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11438         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11439         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11440 };
11441
11442 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11443 {
11444         /* udp6_sock type is not generated in dwarf and hence btf,
11445          * trigger an explicit type generation here.
11446          */
11447         BTF_TYPE_EMIT(struct udp6_sock);
11448         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11449             sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11450                 return (unsigned long)sk;
11451
11452         return (unsigned long)NULL;
11453 }
11454
11455 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11456         .func                   = bpf_skc_to_udp6_sock,
11457         .gpl_only               = false,
11458         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11459         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11460         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11461 };
11462
11463 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11464 {
11465         /* unix_sock type is not generated in dwarf and hence btf,
11466          * trigger an explicit type generation here.
11467          */
11468         BTF_TYPE_EMIT(struct unix_sock);
11469         if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11470                 return (unsigned long)sk;
11471
11472         return (unsigned long)NULL;
11473 }
11474
11475 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11476         .func                   = bpf_skc_to_unix_sock,
11477         .gpl_only               = false,
11478         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11479         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11480         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11481 };
11482
11483 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11484 {
11485         BTF_TYPE_EMIT(struct mptcp_sock);
11486         return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11487 }
11488
11489 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11490         .func           = bpf_skc_to_mptcp_sock,
11491         .gpl_only       = false,
11492         .ret_type       = RET_PTR_TO_BTF_ID_OR_NULL,
11493         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
11494         .ret_btf_id     = &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11495 };
11496
11497 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11498 {
11499         return (unsigned long)sock_from_file(file);
11500 }
11501
11502 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11503 BTF_ID(struct, socket)
11504 BTF_ID(struct, file)
11505
11506 const struct bpf_func_proto bpf_sock_from_file_proto = {
11507         .func           = bpf_sock_from_file,
11508         .gpl_only       = false,
11509         .ret_type       = RET_PTR_TO_BTF_ID_OR_NULL,
11510         .ret_btf_id     = &bpf_sock_from_file_btf_ids[0],
11511         .arg1_type      = ARG_PTR_TO_BTF_ID,
11512         .arg1_btf_id    = &bpf_sock_from_file_btf_ids[1],
11513 };
11514
11515 static const struct bpf_func_proto *
11516 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11517 {
11518         const struct bpf_func_proto *func;
11519
11520         switch (func_id) {
11521         case BPF_FUNC_skc_to_tcp6_sock:
11522                 func = &bpf_skc_to_tcp6_sock_proto;
11523                 break;
11524         case BPF_FUNC_skc_to_tcp_sock:
11525                 func = &bpf_skc_to_tcp_sock_proto;
11526                 break;
11527         case BPF_FUNC_skc_to_tcp_timewait_sock:
11528                 func = &bpf_skc_to_tcp_timewait_sock_proto;
11529                 break;
11530         case BPF_FUNC_skc_to_tcp_request_sock:
11531                 func = &bpf_skc_to_tcp_request_sock_proto;
11532                 break;
11533         case BPF_FUNC_skc_to_udp6_sock:
11534                 func = &bpf_skc_to_udp6_sock_proto;
11535                 break;
11536         case BPF_FUNC_skc_to_unix_sock:
11537                 func = &bpf_skc_to_unix_sock_proto;
11538                 break;
11539         case BPF_FUNC_skc_to_mptcp_sock:
11540                 func = &bpf_skc_to_mptcp_sock_proto;
11541                 break;
11542         case BPF_FUNC_ktime_get_coarse_ns:
11543                 return &bpf_ktime_get_coarse_ns_proto;
11544         default:
11545                 return bpf_base_func_proto(func_id);
11546         }
11547
11548         if (!perfmon_capable())
11549                 return NULL;
11550
11551         return func;
11552 }