bpf: Move skb->len == 0 checks into __bpf_redirect
[platform/kernel/linux-rpi.git] / net / core / filter.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *      Jay Schulist <jschlst@samba.org>
13  *      Alexei Starovoitov <ast@plumgrid.com>
14  *      Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19
20 #include <linux/atomic.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/mm.h>
24 #include <linux/fcntl.h>
25 #include <linux/socket.h>
26 #include <linux/sock_diag.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/netdevice.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_arp.h>
32 #include <linux/gfp.h>
33 #include <net/inet_common.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <linux/skmsg.h>
39 #include <net/sock.h>
40 #include <net/flow_dissector.h>
41 #include <linux/errno.h>
42 #include <linux/timer.h>
43 #include <linux/uaccess.h>
44 #include <asm/unaligned.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80 #include <net/xdp.h>
81
82 static const struct bpf_func_proto *
83 bpf_sk_base_func_proto(enum bpf_func_id func_id);
84
85 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
86 {
87         if (in_compat_syscall()) {
88                 struct compat_sock_fprog f32;
89
90                 if (len != sizeof(f32))
91                         return -EINVAL;
92                 if (copy_from_sockptr(&f32, src, sizeof(f32)))
93                         return -EFAULT;
94                 memset(dst, 0, sizeof(*dst));
95                 dst->len = f32.len;
96                 dst->filter = compat_ptr(f32.filter);
97         } else {
98                 if (len != sizeof(*dst))
99                         return -EINVAL;
100                 if (copy_from_sockptr(dst, src, sizeof(*dst)))
101                         return -EFAULT;
102         }
103
104         return 0;
105 }
106 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
107
108 /**
109  *      sk_filter_trim_cap - run a packet through a socket filter
110  *      @sk: sock associated with &sk_buff
111  *      @skb: buffer to filter
112  *      @cap: limit on how short the eBPF program may trim the packet
113  *
114  * Run the eBPF program and then cut skb->data to correct size returned by
115  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
116  * than pkt_len we keep whole skb->data. This is the socket level
117  * wrapper to bpf_prog_run. It returns 0 if the packet should
118  * be accepted or -EPERM if the packet should be tossed.
119  *
120  */
121 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
122 {
123         int err;
124         struct sk_filter *filter;
125
126         /*
127          * If the skb was allocated from pfmemalloc reserves, only
128          * allow SOCK_MEMALLOC sockets to use it as this socket is
129          * helping free memory
130          */
131         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
132                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
133                 return -ENOMEM;
134         }
135         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
136         if (err)
137                 return err;
138
139         err = security_sock_rcv_skb(sk, skb);
140         if (err)
141                 return err;
142
143         rcu_read_lock();
144         filter = rcu_dereference(sk->sk_filter);
145         if (filter) {
146                 struct sock *save_sk = skb->sk;
147                 unsigned int pkt_len;
148
149                 skb->sk = sk;
150                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
151                 skb->sk = save_sk;
152                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
153         }
154         rcu_read_unlock();
155
156         return err;
157 }
158 EXPORT_SYMBOL(sk_filter_trim_cap);
159
160 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
161 {
162         return skb_get_poff(skb);
163 }
164
165 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
166 {
167         struct nlattr *nla;
168
169         if (skb_is_nonlinear(skb))
170                 return 0;
171
172         if (skb->len < sizeof(struct nlattr))
173                 return 0;
174
175         if (a > skb->len - sizeof(struct nlattr))
176                 return 0;
177
178         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
179         if (nla)
180                 return (void *) nla - (void *) skb->data;
181
182         return 0;
183 }
184
185 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
186 {
187         struct nlattr *nla;
188
189         if (skb_is_nonlinear(skb))
190                 return 0;
191
192         if (skb->len < sizeof(struct nlattr))
193                 return 0;
194
195         if (a > skb->len - sizeof(struct nlattr))
196                 return 0;
197
198         nla = (struct nlattr *) &skb->data[a];
199         if (nla->nla_len > skb->len - a)
200                 return 0;
201
202         nla = nla_find_nested(nla, x);
203         if (nla)
204                 return (void *) nla - (void *) skb->data;
205
206         return 0;
207 }
208
209 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
210            data, int, headlen, int, offset)
211 {
212         u8 tmp, *ptr;
213         const int len = sizeof(tmp);
214
215         if (offset >= 0) {
216                 if (headlen - offset >= len)
217                         return *(u8 *)(data + offset);
218                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
219                         return tmp;
220         } else {
221                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
222                 if (likely(ptr))
223                         return *(u8 *)ptr;
224         }
225
226         return -EFAULT;
227 }
228
229 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
230            int, offset)
231 {
232         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
233                                          offset);
234 }
235
236 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
237            data, int, headlen, int, offset)
238 {
239         u16 tmp, *ptr;
240         const int len = sizeof(tmp);
241
242         if (offset >= 0) {
243                 if (headlen - offset >= len)
244                         return get_unaligned_be16(data + offset);
245                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
246                         return be16_to_cpu(tmp);
247         } else {
248                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
249                 if (likely(ptr))
250                         return get_unaligned_be16(ptr);
251         }
252
253         return -EFAULT;
254 }
255
256 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
257            int, offset)
258 {
259         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
260                                           offset);
261 }
262
263 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
264            data, int, headlen, int, offset)
265 {
266         u32 tmp, *ptr;
267         const int len = sizeof(tmp);
268
269         if (likely(offset >= 0)) {
270                 if (headlen - offset >= len)
271                         return get_unaligned_be32(data + offset);
272                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
273                         return be32_to_cpu(tmp);
274         } else {
275                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
276                 if (likely(ptr))
277                         return get_unaligned_be32(ptr);
278         }
279
280         return -EFAULT;
281 }
282
283 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
284            int, offset)
285 {
286         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
287                                           offset);
288 }
289
290 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
291                               struct bpf_insn *insn_buf)
292 {
293         struct bpf_insn *insn = insn_buf;
294
295         switch (skb_field) {
296         case SKF_AD_MARK:
297                 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
298
299                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
300                                       offsetof(struct sk_buff, mark));
301                 break;
302
303         case SKF_AD_PKTTYPE:
304                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
305                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
306 #ifdef __BIG_ENDIAN_BITFIELD
307                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
308 #endif
309                 break;
310
311         case SKF_AD_QUEUE:
312                 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
313
314                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
315                                       offsetof(struct sk_buff, queue_mapping));
316                 break;
317
318         case SKF_AD_VLAN_TAG:
319                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
320
321                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
322                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
323                                       offsetof(struct sk_buff, vlan_tci));
324                 break;
325         case SKF_AD_VLAN_TAG_PRESENT:
326                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
327                 if (PKT_VLAN_PRESENT_BIT)
328                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
329                 if (PKT_VLAN_PRESENT_BIT < 7)
330                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
331                 break;
332         }
333
334         return insn - insn_buf;
335 }
336
337 static bool convert_bpf_extensions(struct sock_filter *fp,
338                                    struct bpf_insn **insnp)
339 {
340         struct bpf_insn *insn = *insnp;
341         u32 cnt;
342
343         switch (fp->k) {
344         case SKF_AD_OFF + SKF_AD_PROTOCOL:
345                 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
346
347                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
348                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
349                                       offsetof(struct sk_buff, protocol));
350                 /* A = ntohs(A) [emitting a nop or swap16] */
351                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
352                 break;
353
354         case SKF_AD_OFF + SKF_AD_PKTTYPE:
355                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
356                 insn += cnt - 1;
357                 break;
358
359         case SKF_AD_OFF + SKF_AD_IFINDEX:
360         case SKF_AD_OFF + SKF_AD_HATYPE:
361                 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
362                 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
363
364                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
365                                       BPF_REG_TMP, BPF_REG_CTX,
366                                       offsetof(struct sk_buff, dev));
367                 /* if (tmp != 0) goto pc + 1 */
368                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
369                 *insn++ = BPF_EXIT_INSN();
370                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
371                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
372                                             offsetof(struct net_device, ifindex));
373                 else
374                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
375                                             offsetof(struct net_device, type));
376                 break;
377
378         case SKF_AD_OFF + SKF_AD_MARK:
379                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
380                 insn += cnt - 1;
381                 break;
382
383         case SKF_AD_OFF + SKF_AD_RXHASH:
384                 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
385
386                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
387                                     offsetof(struct sk_buff, hash));
388                 break;
389
390         case SKF_AD_OFF + SKF_AD_QUEUE:
391                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
392                 insn += cnt - 1;
393                 break;
394
395         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
396                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
397                                          BPF_REG_A, BPF_REG_CTX, insn);
398                 insn += cnt - 1;
399                 break;
400
401         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
402                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
403                                          BPF_REG_A, BPF_REG_CTX, insn);
404                 insn += cnt - 1;
405                 break;
406
407         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
408                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
409
410                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
411                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
412                                       offsetof(struct sk_buff, vlan_proto));
413                 /* A = ntohs(A) [emitting a nop or swap16] */
414                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
415                 break;
416
417         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
418         case SKF_AD_OFF + SKF_AD_NLATTR:
419         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
420         case SKF_AD_OFF + SKF_AD_CPU:
421         case SKF_AD_OFF + SKF_AD_RANDOM:
422                 /* arg1 = CTX */
423                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
424                 /* arg2 = A */
425                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
426                 /* arg3 = X */
427                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
428                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
429                 switch (fp->k) {
430                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
431                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
432                         break;
433                 case SKF_AD_OFF + SKF_AD_NLATTR:
434                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
435                         break;
436                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
437                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
438                         break;
439                 case SKF_AD_OFF + SKF_AD_CPU:
440                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
441                         break;
442                 case SKF_AD_OFF + SKF_AD_RANDOM:
443                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
444                         bpf_user_rnd_init_once();
445                         break;
446                 }
447                 break;
448
449         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
450                 /* A ^= X */
451                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
452                 break;
453
454         default:
455                 /* This is just a dummy call to avoid letting the compiler
456                  * evict __bpf_call_base() as an optimization. Placed here
457                  * where no-one bothers.
458                  */
459                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
460                 return false;
461         }
462
463         *insnp = insn;
464         return true;
465 }
466
467 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
468 {
469         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
470         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
471         bool endian = BPF_SIZE(fp->code) == BPF_H ||
472                       BPF_SIZE(fp->code) == BPF_W;
473         bool indirect = BPF_MODE(fp->code) == BPF_IND;
474         const int ip_align = NET_IP_ALIGN;
475         struct bpf_insn *insn = *insnp;
476         int offset = fp->k;
477
478         if (!indirect &&
479             ((unaligned_ok && offset >= 0) ||
480              (!unaligned_ok && offset >= 0 &&
481               offset + ip_align >= 0 &&
482               offset + ip_align % size == 0))) {
483                 bool ldx_off_ok = offset <= S16_MAX;
484
485                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
486                 if (offset)
487                         *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
488                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
489                                       size, 2 + endian + (!ldx_off_ok * 2));
490                 if (ldx_off_ok) {
491                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
492                                               BPF_REG_D, offset);
493                 } else {
494                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
495                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
496                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
497                                               BPF_REG_TMP, 0);
498                 }
499                 if (endian)
500                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
501                 *insn++ = BPF_JMP_A(8);
502         }
503
504         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
505         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
506         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
507         if (!indirect) {
508                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
509         } else {
510                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
511                 if (fp->k)
512                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
513         }
514
515         switch (BPF_SIZE(fp->code)) {
516         case BPF_B:
517                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
518                 break;
519         case BPF_H:
520                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
521                 break;
522         case BPF_W:
523                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
524                 break;
525         default:
526                 return false;
527         }
528
529         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
530         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
531         *insn   = BPF_EXIT_INSN();
532
533         *insnp = insn;
534         return true;
535 }
536
537 /**
538  *      bpf_convert_filter - convert filter program
539  *      @prog: the user passed filter program
540  *      @len: the length of the user passed filter program
541  *      @new_prog: allocated 'struct bpf_prog' or NULL
542  *      @new_len: pointer to store length of converted program
543  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
544  *
545  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
546  * style extended BPF (eBPF).
547  * Conversion workflow:
548  *
549  * 1) First pass for calculating the new program length:
550  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
551  *
552  * 2) 2nd pass to remap in two passes: 1st pass finds new
553  *    jump offsets, 2nd pass remapping:
554  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
555  */
556 static int bpf_convert_filter(struct sock_filter *prog, int len,
557                               struct bpf_prog *new_prog, int *new_len,
558                               bool *seen_ld_abs)
559 {
560         int new_flen = 0, pass = 0, target, i, stack_off;
561         struct bpf_insn *new_insn, *first_insn = NULL;
562         struct sock_filter *fp;
563         int *addrs = NULL;
564         u8 bpf_src;
565
566         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
567         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
568
569         if (len <= 0 || len > BPF_MAXINSNS)
570                 return -EINVAL;
571
572         if (new_prog) {
573                 first_insn = new_prog->insnsi;
574                 addrs = kcalloc(len, sizeof(*addrs),
575                                 GFP_KERNEL | __GFP_NOWARN);
576                 if (!addrs)
577                         return -ENOMEM;
578         }
579
580 do_pass:
581         new_insn = first_insn;
582         fp = prog;
583
584         /* Classic BPF related prologue emission. */
585         if (new_prog) {
586                 /* Classic BPF expects A and X to be reset first. These need
587                  * to be guaranteed to be the first two instructions.
588                  */
589                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
590                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
591
592                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
593                  * In eBPF case it's done by the compiler, here we need to
594                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
595                  */
596                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
597                 if (*seen_ld_abs) {
598                         /* For packet access in classic BPF, cache skb->data
599                          * in callee-saved BPF R8 and skb->len - skb->data_len
600                          * (headlen) in BPF R9. Since classic BPF is read-only
601                          * on CTX, we only need to cache it once.
602                          */
603                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
604                                                   BPF_REG_D, BPF_REG_CTX,
605                                                   offsetof(struct sk_buff, data));
606                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
607                                                   offsetof(struct sk_buff, len));
608                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
609                                                   offsetof(struct sk_buff, data_len));
610                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
611                 }
612         } else {
613                 new_insn += 3;
614         }
615
616         for (i = 0; i < len; fp++, i++) {
617                 struct bpf_insn tmp_insns[32] = { };
618                 struct bpf_insn *insn = tmp_insns;
619
620                 if (addrs)
621                         addrs[i] = new_insn - first_insn;
622
623                 switch (fp->code) {
624                 /* All arithmetic insns and skb loads map as-is. */
625                 case BPF_ALU | BPF_ADD | BPF_X:
626                 case BPF_ALU | BPF_ADD | BPF_K:
627                 case BPF_ALU | BPF_SUB | BPF_X:
628                 case BPF_ALU | BPF_SUB | BPF_K:
629                 case BPF_ALU | BPF_AND | BPF_X:
630                 case BPF_ALU | BPF_AND | BPF_K:
631                 case BPF_ALU | BPF_OR | BPF_X:
632                 case BPF_ALU | BPF_OR | BPF_K:
633                 case BPF_ALU | BPF_LSH | BPF_X:
634                 case BPF_ALU | BPF_LSH | BPF_K:
635                 case BPF_ALU | BPF_RSH | BPF_X:
636                 case BPF_ALU | BPF_RSH | BPF_K:
637                 case BPF_ALU | BPF_XOR | BPF_X:
638                 case BPF_ALU | BPF_XOR | BPF_K:
639                 case BPF_ALU | BPF_MUL | BPF_X:
640                 case BPF_ALU | BPF_MUL | BPF_K:
641                 case BPF_ALU | BPF_DIV | BPF_X:
642                 case BPF_ALU | BPF_DIV | BPF_K:
643                 case BPF_ALU | BPF_MOD | BPF_X:
644                 case BPF_ALU | BPF_MOD | BPF_K:
645                 case BPF_ALU | BPF_NEG:
646                 case BPF_LD | BPF_ABS | BPF_W:
647                 case BPF_LD | BPF_ABS | BPF_H:
648                 case BPF_LD | BPF_ABS | BPF_B:
649                 case BPF_LD | BPF_IND | BPF_W:
650                 case BPF_LD | BPF_IND | BPF_H:
651                 case BPF_LD | BPF_IND | BPF_B:
652                         /* Check for overloaded BPF extension and
653                          * directly convert it if found, otherwise
654                          * just move on with mapping.
655                          */
656                         if (BPF_CLASS(fp->code) == BPF_LD &&
657                             BPF_MODE(fp->code) == BPF_ABS &&
658                             convert_bpf_extensions(fp, &insn))
659                                 break;
660                         if (BPF_CLASS(fp->code) == BPF_LD &&
661                             convert_bpf_ld_abs(fp, &insn)) {
662                                 *seen_ld_abs = true;
663                                 break;
664                         }
665
666                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
667                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
668                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
669                                 /* Error with exception code on div/mod by 0.
670                                  * For cBPF programs, this was always return 0.
671                                  */
672                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
673                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
674                                 *insn++ = BPF_EXIT_INSN();
675                         }
676
677                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
678                         break;
679
680                 /* Jump transformation cannot use BPF block macros
681                  * everywhere as offset calculation and target updates
682                  * require a bit more work than the rest, i.e. jump
683                  * opcodes map as-is, but offsets need adjustment.
684                  */
685
686 #define BPF_EMIT_JMP                                                    \
687         do {                                                            \
688                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
689                 s32 off;                                                \
690                                                                         \
691                 if (target >= len || target < 0)                        \
692                         goto err;                                       \
693                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
694                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
695                 off -= insn - tmp_insns;                                \
696                 /* Reject anything not fitting into insn->off. */       \
697                 if (off < off_min || off > off_max)                     \
698                         goto err;                                       \
699                 insn->off = off;                                        \
700         } while (0)
701
702                 case BPF_JMP | BPF_JA:
703                         target = i + fp->k + 1;
704                         insn->code = fp->code;
705                         BPF_EMIT_JMP;
706                         break;
707
708                 case BPF_JMP | BPF_JEQ | BPF_K:
709                 case BPF_JMP | BPF_JEQ | BPF_X:
710                 case BPF_JMP | BPF_JSET | BPF_K:
711                 case BPF_JMP | BPF_JSET | BPF_X:
712                 case BPF_JMP | BPF_JGT | BPF_K:
713                 case BPF_JMP | BPF_JGT | BPF_X:
714                 case BPF_JMP | BPF_JGE | BPF_K:
715                 case BPF_JMP | BPF_JGE | BPF_X:
716                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
717                                 /* BPF immediates are signed, zero extend
718                                  * immediate into tmp register and use it
719                                  * in compare insn.
720                                  */
721                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
722
723                                 insn->dst_reg = BPF_REG_A;
724                                 insn->src_reg = BPF_REG_TMP;
725                                 bpf_src = BPF_X;
726                         } else {
727                                 insn->dst_reg = BPF_REG_A;
728                                 insn->imm = fp->k;
729                                 bpf_src = BPF_SRC(fp->code);
730                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
731                         }
732
733                         /* Common case where 'jump_false' is next insn. */
734                         if (fp->jf == 0) {
735                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
736                                 target = i + fp->jt + 1;
737                                 BPF_EMIT_JMP;
738                                 break;
739                         }
740
741                         /* Convert some jumps when 'jump_true' is next insn. */
742                         if (fp->jt == 0) {
743                                 switch (BPF_OP(fp->code)) {
744                                 case BPF_JEQ:
745                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
746                                         break;
747                                 case BPF_JGT:
748                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
749                                         break;
750                                 case BPF_JGE:
751                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
752                                         break;
753                                 default:
754                                         goto jmp_rest;
755                                 }
756
757                                 target = i + fp->jf + 1;
758                                 BPF_EMIT_JMP;
759                                 break;
760                         }
761 jmp_rest:
762                         /* Other jumps are mapped into two insns: Jxx and JA. */
763                         target = i + fp->jt + 1;
764                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
765                         BPF_EMIT_JMP;
766                         insn++;
767
768                         insn->code = BPF_JMP | BPF_JA;
769                         target = i + fp->jf + 1;
770                         BPF_EMIT_JMP;
771                         break;
772
773                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
774                 case BPF_LDX | BPF_MSH | BPF_B: {
775                         struct sock_filter tmp = {
776                                 .code   = BPF_LD | BPF_ABS | BPF_B,
777                                 .k      = fp->k,
778                         };
779
780                         *seen_ld_abs = true;
781
782                         /* X = A */
783                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
784                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
785                         convert_bpf_ld_abs(&tmp, &insn);
786                         insn++;
787                         /* A &= 0xf */
788                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
789                         /* A <<= 2 */
790                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
791                         /* tmp = X */
792                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
793                         /* X = A */
794                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
795                         /* A = tmp */
796                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
797                         break;
798                 }
799                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
800                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
801                  */
802                 case BPF_RET | BPF_A:
803                 case BPF_RET | BPF_K:
804                         if (BPF_RVAL(fp->code) == BPF_K)
805                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
806                                                         0, fp->k);
807                         *insn = BPF_EXIT_INSN();
808                         break;
809
810                 /* Store to stack. */
811                 case BPF_ST:
812                 case BPF_STX:
813                         stack_off = fp->k * 4  + 4;
814                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
815                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
816                                             -stack_off);
817                         /* check_load_and_stores() verifies that classic BPF can
818                          * load from stack only after write, so tracking
819                          * stack_depth for ST|STX insns is enough
820                          */
821                         if (new_prog && new_prog->aux->stack_depth < stack_off)
822                                 new_prog->aux->stack_depth = stack_off;
823                         break;
824
825                 /* Load from stack. */
826                 case BPF_LD | BPF_MEM:
827                 case BPF_LDX | BPF_MEM:
828                         stack_off = fp->k * 4  + 4;
829                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
830                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
831                                             -stack_off);
832                         break;
833
834                 /* A = K or X = K */
835                 case BPF_LD | BPF_IMM:
836                 case BPF_LDX | BPF_IMM:
837                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
838                                               BPF_REG_A : BPF_REG_X, fp->k);
839                         break;
840
841                 /* X = A */
842                 case BPF_MISC | BPF_TAX:
843                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
844                         break;
845
846                 /* A = X */
847                 case BPF_MISC | BPF_TXA:
848                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
849                         break;
850
851                 /* A = skb->len or X = skb->len */
852                 case BPF_LD | BPF_W | BPF_LEN:
853                 case BPF_LDX | BPF_W | BPF_LEN:
854                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
855                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
856                                             offsetof(struct sk_buff, len));
857                         break;
858
859                 /* Access seccomp_data fields. */
860                 case BPF_LDX | BPF_ABS | BPF_W:
861                         /* A = *(u32 *) (ctx + K) */
862                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
863                         break;
864
865                 /* Unknown instruction. */
866                 default:
867                         goto err;
868                 }
869
870                 insn++;
871                 if (new_prog)
872                         memcpy(new_insn, tmp_insns,
873                                sizeof(*insn) * (insn - tmp_insns));
874                 new_insn += insn - tmp_insns;
875         }
876
877         if (!new_prog) {
878                 /* Only calculating new length. */
879                 *new_len = new_insn - first_insn;
880                 if (*seen_ld_abs)
881                         *new_len += 4; /* Prologue bits. */
882                 return 0;
883         }
884
885         pass++;
886         if (new_flen != new_insn - first_insn) {
887                 new_flen = new_insn - first_insn;
888                 if (pass > 2)
889                         goto err;
890                 goto do_pass;
891         }
892
893         kfree(addrs);
894         BUG_ON(*new_len != new_flen);
895         return 0;
896 err:
897         kfree(addrs);
898         return -EINVAL;
899 }
900
901 /* Security:
902  *
903  * As we dont want to clear mem[] array for each packet going through
904  * __bpf_prog_run(), we check that filter loaded by user never try to read
905  * a cell if not previously written, and we check all branches to be sure
906  * a malicious user doesn't try to abuse us.
907  */
908 static int check_load_and_stores(const struct sock_filter *filter, int flen)
909 {
910         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
911         int pc, ret = 0;
912
913         BUILD_BUG_ON(BPF_MEMWORDS > 16);
914
915         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
916         if (!masks)
917                 return -ENOMEM;
918
919         memset(masks, 0xff, flen * sizeof(*masks));
920
921         for (pc = 0; pc < flen; pc++) {
922                 memvalid &= masks[pc];
923
924                 switch (filter[pc].code) {
925                 case BPF_ST:
926                 case BPF_STX:
927                         memvalid |= (1 << filter[pc].k);
928                         break;
929                 case BPF_LD | BPF_MEM:
930                 case BPF_LDX | BPF_MEM:
931                         if (!(memvalid & (1 << filter[pc].k))) {
932                                 ret = -EINVAL;
933                                 goto error;
934                         }
935                         break;
936                 case BPF_JMP | BPF_JA:
937                         /* A jump must set masks on target */
938                         masks[pc + 1 + filter[pc].k] &= memvalid;
939                         memvalid = ~0;
940                         break;
941                 case BPF_JMP | BPF_JEQ | BPF_K:
942                 case BPF_JMP | BPF_JEQ | BPF_X:
943                 case BPF_JMP | BPF_JGE | BPF_K:
944                 case BPF_JMP | BPF_JGE | BPF_X:
945                 case BPF_JMP | BPF_JGT | BPF_K:
946                 case BPF_JMP | BPF_JGT | BPF_X:
947                 case BPF_JMP | BPF_JSET | BPF_K:
948                 case BPF_JMP | BPF_JSET | BPF_X:
949                         /* A jump must set masks on targets */
950                         masks[pc + 1 + filter[pc].jt] &= memvalid;
951                         masks[pc + 1 + filter[pc].jf] &= memvalid;
952                         memvalid = ~0;
953                         break;
954                 }
955         }
956 error:
957         kfree(masks);
958         return ret;
959 }
960
961 static bool chk_code_allowed(u16 code_to_probe)
962 {
963         static const bool codes[] = {
964                 /* 32 bit ALU operations */
965                 [BPF_ALU | BPF_ADD | BPF_K] = true,
966                 [BPF_ALU | BPF_ADD | BPF_X] = true,
967                 [BPF_ALU | BPF_SUB | BPF_K] = true,
968                 [BPF_ALU | BPF_SUB | BPF_X] = true,
969                 [BPF_ALU | BPF_MUL | BPF_K] = true,
970                 [BPF_ALU | BPF_MUL | BPF_X] = true,
971                 [BPF_ALU | BPF_DIV | BPF_K] = true,
972                 [BPF_ALU | BPF_DIV | BPF_X] = true,
973                 [BPF_ALU | BPF_MOD | BPF_K] = true,
974                 [BPF_ALU | BPF_MOD | BPF_X] = true,
975                 [BPF_ALU | BPF_AND | BPF_K] = true,
976                 [BPF_ALU | BPF_AND | BPF_X] = true,
977                 [BPF_ALU | BPF_OR | BPF_K] = true,
978                 [BPF_ALU | BPF_OR | BPF_X] = true,
979                 [BPF_ALU | BPF_XOR | BPF_K] = true,
980                 [BPF_ALU | BPF_XOR | BPF_X] = true,
981                 [BPF_ALU | BPF_LSH | BPF_K] = true,
982                 [BPF_ALU | BPF_LSH | BPF_X] = true,
983                 [BPF_ALU | BPF_RSH | BPF_K] = true,
984                 [BPF_ALU | BPF_RSH | BPF_X] = true,
985                 [BPF_ALU | BPF_NEG] = true,
986                 /* Load instructions */
987                 [BPF_LD | BPF_W | BPF_ABS] = true,
988                 [BPF_LD | BPF_H | BPF_ABS] = true,
989                 [BPF_LD | BPF_B | BPF_ABS] = true,
990                 [BPF_LD | BPF_W | BPF_LEN] = true,
991                 [BPF_LD | BPF_W | BPF_IND] = true,
992                 [BPF_LD | BPF_H | BPF_IND] = true,
993                 [BPF_LD | BPF_B | BPF_IND] = true,
994                 [BPF_LD | BPF_IMM] = true,
995                 [BPF_LD | BPF_MEM] = true,
996                 [BPF_LDX | BPF_W | BPF_LEN] = true,
997                 [BPF_LDX | BPF_B | BPF_MSH] = true,
998                 [BPF_LDX | BPF_IMM] = true,
999                 [BPF_LDX | BPF_MEM] = true,
1000                 /* Store instructions */
1001                 [BPF_ST] = true,
1002                 [BPF_STX] = true,
1003                 /* Misc instructions */
1004                 [BPF_MISC | BPF_TAX] = true,
1005                 [BPF_MISC | BPF_TXA] = true,
1006                 /* Return instructions */
1007                 [BPF_RET | BPF_K] = true,
1008                 [BPF_RET | BPF_A] = true,
1009                 /* Jump instructions */
1010                 [BPF_JMP | BPF_JA] = true,
1011                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1012                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1013                 [BPF_JMP | BPF_JGE | BPF_K] = true,
1014                 [BPF_JMP | BPF_JGE | BPF_X] = true,
1015                 [BPF_JMP | BPF_JGT | BPF_K] = true,
1016                 [BPF_JMP | BPF_JGT | BPF_X] = true,
1017                 [BPF_JMP | BPF_JSET | BPF_K] = true,
1018                 [BPF_JMP | BPF_JSET | BPF_X] = true,
1019         };
1020
1021         if (code_to_probe >= ARRAY_SIZE(codes))
1022                 return false;
1023
1024         return codes[code_to_probe];
1025 }
1026
1027 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1028                                 unsigned int flen)
1029 {
1030         if (filter == NULL)
1031                 return false;
1032         if (flen == 0 || flen > BPF_MAXINSNS)
1033                 return false;
1034
1035         return true;
1036 }
1037
1038 /**
1039  *      bpf_check_classic - verify socket filter code
1040  *      @filter: filter to verify
1041  *      @flen: length of filter
1042  *
1043  * Check the user's filter code. If we let some ugly
1044  * filter code slip through kaboom! The filter must contain
1045  * no references or jumps that are out of range, no illegal
1046  * instructions, and must end with a RET instruction.
1047  *
1048  * All jumps are forward as they are not signed.
1049  *
1050  * Returns 0 if the rule set is legal or -EINVAL if not.
1051  */
1052 static int bpf_check_classic(const struct sock_filter *filter,
1053                              unsigned int flen)
1054 {
1055         bool anc_found;
1056         int pc;
1057
1058         /* Check the filter code now */
1059         for (pc = 0; pc < flen; pc++) {
1060                 const struct sock_filter *ftest = &filter[pc];
1061
1062                 /* May we actually operate on this code? */
1063                 if (!chk_code_allowed(ftest->code))
1064                         return -EINVAL;
1065
1066                 /* Some instructions need special checks */
1067                 switch (ftest->code) {
1068                 case BPF_ALU | BPF_DIV | BPF_K:
1069                 case BPF_ALU | BPF_MOD | BPF_K:
1070                         /* Check for division by zero */
1071                         if (ftest->k == 0)
1072                                 return -EINVAL;
1073                         break;
1074                 case BPF_ALU | BPF_LSH | BPF_K:
1075                 case BPF_ALU | BPF_RSH | BPF_K:
1076                         if (ftest->k >= 32)
1077                                 return -EINVAL;
1078                         break;
1079                 case BPF_LD | BPF_MEM:
1080                 case BPF_LDX | BPF_MEM:
1081                 case BPF_ST:
1082                 case BPF_STX:
1083                         /* Check for invalid memory addresses */
1084                         if (ftest->k >= BPF_MEMWORDS)
1085                                 return -EINVAL;
1086                         break;
1087                 case BPF_JMP | BPF_JA:
1088                         /* Note, the large ftest->k might cause loops.
1089                          * Compare this with conditional jumps below,
1090                          * where offsets are limited. --ANK (981016)
1091                          */
1092                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1093                                 return -EINVAL;
1094                         break;
1095                 case BPF_JMP | BPF_JEQ | BPF_K:
1096                 case BPF_JMP | BPF_JEQ | BPF_X:
1097                 case BPF_JMP | BPF_JGE | BPF_K:
1098                 case BPF_JMP | BPF_JGE | BPF_X:
1099                 case BPF_JMP | BPF_JGT | BPF_K:
1100                 case BPF_JMP | BPF_JGT | BPF_X:
1101                 case BPF_JMP | BPF_JSET | BPF_K:
1102                 case BPF_JMP | BPF_JSET | BPF_X:
1103                         /* Both conditionals must be safe */
1104                         if (pc + ftest->jt + 1 >= flen ||
1105                             pc + ftest->jf + 1 >= flen)
1106                                 return -EINVAL;
1107                         break;
1108                 case BPF_LD | BPF_W | BPF_ABS:
1109                 case BPF_LD | BPF_H | BPF_ABS:
1110                 case BPF_LD | BPF_B | BPF_ABS:
1111                         anc_found = false;
1112                         if (bpf_anc_helper(ftest) & BPF_ANC)
1113                                 anc_found = true;
1114                         /* Ancillary operation unknown or unsupported */
1115                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1116                                 return -EINVAL;
1117                 }
1118         }
1119
1120         /* Last instruction must be a RET code */
1121         switch (filter[flen - 1].code) {
1122         case BPF_RET | BPF_K:
1123         case BPF_RET | BPF_A:
1124                 return check_load_and_stores(filter, flen);
1125         }
1126
1127         return -EINVAL;
1128 }
1129
1130 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1131                                       const struct sock_fprog *fprog)
1132 {
1133         unsigned int fsize = bpf_classic_proglen(fprog);
1134         struct sock_fprog_kern *fkprog;
1135
1136         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1137         if (!fp->orig_prog)
1138                 return -ENOMEM;
1139
1140         fkprog = fp->orig_prog;
1141         fkprog->len = fprog->len;
1142
1143         fkprog->filter = kmemdup(fp->insns, fsize,
1144                                  GFP_KERNEL | __GFP_NOWARN);
1145         if (!fkprog->filter) {
1146                 kfree(fp->orig_prog);
1147                 return -ENOMEM;
1148         }
1149
1150         return 0;
1151 }
1152
1153 static void bpf_release_orig_filter(struct bpf_prog *fp)
1154 {
1155         struct sock_fprog_kern *fprog = fp->orig_prog;
1156
1157         if (fprog) {
1158                 kfree(fprog->filter);
1159                 kfree(fprog);
1160         }
1161 }
1162
1163 static void __bpf_prog_release(struct bpf_prog *prog)
1164 {
1165         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1166                 bpf_prog_put(prog);
1167         } else {
1168                 bpf_release_orig_filter(prog);
1169                 bpf_prog_free(prog);
1170         }
1171 }
1172
1173 static void __sk_filter_release(struct sk_filter *fp)
1174 {
1175         __bpf_prog_release(fp->prog);
1176         kfree(fp);
1177 }
1178
1179 /**
1180  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1181  *      @rcu: rcu_head that contains the sk_filter to free
1182  */
1183 static void sk_filter_release_rcu(struct rcu_head *rcu)
1184 {
1185         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1186
1187         __sk_filter_release(fp);
1188 }
1189
1190 /**
1191  *      sk_filter_release - release a socket filter
1192  *      @fp: filter to remove
1193  *
1194  *      Remove a filter from a socket and release its resources.
1195  */
1196 static void sk_filter_release(struct sk_filter *fp)
1197 {
1198         if (refcount_dec_and_test(&fp->refcnt))
1199                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1200 }
1201
1202 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1203 {
1204         u32 filter_size = bpf_prog_size(fp->prog->len);
1205
1206         atomic_sub(filter_size, &sk->sk_omem_alloc);
1207         sk_filter_release(fp);
1208 }
1209
1210 /* try to charge the socket memory if there is space available
1211  * return true on success
1212  */
1213 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1214 {
1215         u32 filter_size = bpf_prog_size(fp->prog->len);
1216         int optmem_max = READ_ONCE(sysctl_optmem_max);
1217
1218         /* same check as in sock_kmalloc() */
1219         if (filter_size <= optmem_max &&
1220             atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1221                 atomic_add(filter_size, &sk->sk_omem_alloc);
1222                 return true;
1223         }
1224         return false;
1225 }
1226
1227 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1228 {
1229         if (!refcount_inc_not_zero(&fp->refcnt))
1230                 return false;
1231
1232         if (!__sk_filter_charge(sk, fp)) {
1233                 sk_filter_release(fp);
1234                 return false;
1235         }
1236         return true;
1237 }
1238
1239 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1240 {
1241         struct sock_filter *old_prog;
1242         struct bpf_prog *old_fp;
1243         int err, new_len, old_len = fp->len;
1244         bool seen_ld_abs = false;
1245
1246         /* We are free to overwrite insns et al right here as it
1247          * won't be used at this point in time anymore internally
1248          * after the migration to the internal BPF instruction
1249          * representation.
1250          */
1251         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1252                      sizeof(struct bpf_insn));
1253
1254         /* Conversion cannot happen on overlapping memory areas,
1255          * so we need to keep the user BPF around until the 2nd
1256          * pass. At this time, the user BPF is stored in fp->insns.
1257          */
1258         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1259                            GFP_KERNEL | __GFP_NOWARN);
1260         if (!old_prog) {
1261                 err = -ENOMEM;
1262                 goto out_err;
1263         }
1264
1265         /* 1st pass: calculate the new program length. */
1266         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1267                                  &seen_ld_abs);
1268         if (err)
1269                 goto out_err_free;
1270
1271         /* Expand fp for appending the new filter representation. */
1272         old_fp = fp;
1273         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1274         if (!fp) {
1275                 /* The old_fp is still around in case we couldn't
1276                  * allocate new memory, so uncharge on that one.
1277                  */
1278                 fp = old_fp;
1279                 err = -ENOMEM;
1280                 goto out_err_free;
1281         }
1282
1283         fp->len = new_len;
1284
1285         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1286         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1287                                  &seen_ld_abs);
1288         if (err)
1289                 /* 2nd bpf_convert_filter() can fail only if it fails
1290                  * to allocate memory, remapping must succeed. Note,
1291                  * that at this time old_fp has already been released
1292                  * by krealloc().
1293                  */
1294                 goto out_err_free;
1295
1296         fp = bpf_prog_select_runtime(fp, &err);
1297         if (err)
1298                 goto out_err_free;
1299
1300         kfree(old_prog);
1301         return fp;
1302
1303 out_err_free:
1304         kfree(old_prog);
1305 out_err:
1306         __bpf_prog_release(fp);
1307         return ERR_PTR(err);
1308 }
1309
1310 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1311                                            bpf_aux_classic_check_t trans)
1312 {
1313         int err;
1314
1315         fp->bpf_func = NULL;
1316         fp->jited = 0;
1317
1318         err = bpf_check_classic(fp->insns, fp->len);
1319         if (err) {
1320                 __bpf_prog_release(fp);
1321                 return ERR_PTR(err);
1322         }
1323
1324         /* There might be additional checks and transformations
1325          * needed on classic filters, f.e. in case of seccomp.
1326          */
1327         if (trans) {
1328                 err = trans(fp->insns, fp->len);
1329                 if (err) {
1330                         __bpf_prog_release(fp);
1331                         return ERR_PTR(err);
1332                 }
1333         }
1334
1335         /* Probe if we can JIT compile the filter and if so, do
1336          * the compilation of the filter.
1337          */
1338         bpf_jit_compile(fp);
1339
1340         /* JIT compiler couldn't process this filter, so do the
1341          * internal BPF translation for the optimized interpreter.
1342          */
1343         if (!fp->jited)
1344                 fp = bpf_migrate_filter(fp);
1345
1346         return fp;
1347 }
1348
1349 /**
1350  *      bpf_prog_create - create an unattached filter
1351  *      @pfp: the unattached filter that is created
1352  *      @fprog: the filter program
1353  *
1354  * Create a filter independent of any socket. We first run some
1355  * sanity checks on it to make sure it does not explode on us later.
1356  * If an error occurs or there is insufficient memory for the filter
1357  * a negative errno code is returned. On success the return is zero.
1358  */
1359 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1360 {
1361         unsigned int fsize = bpf_classic_proglen(fprog);
1362         struct bpf_prog *fp;
1363
1364         /* Make sure new filter is there and in the right amounts. */
1365         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1366                 return -EINVAL;
1367
1368         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1369         if (!fp)
1370                 return -ENOMEM;
1371
1372         memcpy(fp->insns, fprog->filter, fsize);
1373
1374         fp->len = fprog->len;
1375         /* Since unattached filters are not copied back to user
1376          * space through sk_get_filter(), we do not need to hold
1377          * a copy here, and can spare us the work.
1378          */
1379         fp->orig_prog = NULL;
1380
1381         /* bpf_prepare_filter() already takes care of freeing
1382          * memory in case something goes wrong.
1383          */
1384         fp = bpf_prepare_filter(fp, NULL);
1385         if (IS_ERR(fp))
1386                 return PTR_ERR(fp);
1387
1388         *pfp = fp;
1389         return 0;
1390 }
1391 EXPORT_SYMBOL_GPL(bpf_prog_create);
1392
1393 /**
1394  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1395  *      @pfp: the unattached filter that is created
1396  *      @fprog: the filter program
1397  *      @trans: post-classic verifier transformation handler
1398  *      @save_orig: save classic BPF program
1399  *
1400  * This function effectively does the same as bpf_prog_create(), only
1401  * that it builds up its insns buffer from user space provided buffer.
1402  * It also allows for passing a bpf_aux_classic_check_t handler.
1403  */
1404 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1405                               bpf_aux_classic_check_t trans, bool save_orig)
1406 {
1407         unsigned int fsize = bpf_classic_proglen(fprog);
1408         struct bpf_prog *fp;
1409         int err;
1410
1411         /* Make sure new filter is there and in the right amounts. */
1412         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1413                 return -EINVAL;
1414
1415         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1416         if (!fp)
1417                 return -ENOMEM;
1418
1419         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1420                 __bpf_prog_free(fp);
1421                 return -EFAULT;
1422         }
1423
1424         fp->len = fprog->len;
1425         fp->orig_prog = NULL;
1426
1427         if (save_orig) {
1428                 err = bpf_prog_store_orig_filter(fp, fprog);
1429                 if (err) {
1430                         __bpf_prog_free(fp);
1431                         return -ENOMEM;
1432                 }
1433         }
1434
1435         /* bpf_prepare_filter() already takes care of freeing
1436          * memory in case something goes wrong.
1437          */
1438         fp = bpf_prepare_filter(fp, trans);
1439         if (IS_ERR(fp))
1440                 return PTR_ERR(fp);
1441
1442         *pfp = fp;
1443         return 0;
1444 }
1445 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1446
1447 void bpf_prog_destroy(struct bpf_prog *fp)
1448 {
1449         __bpf_prog_release(fp);
1450 }
1451 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1452
1453 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1454 {
1455         struct sk_filter *fp, *old_fp;
1456
1457         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1458         if (!fp)
1459                 return -ENOMEM;
1460
1461         fp->prog = prog;
1462
1463         if (!__sk_filter_charge(sk, fp)) {
1464                 kfree(fp);
1465                 return -ENOMEM;
1466         }
1467         refcount_set(&fp->refcnt, 1);
1468
1469         old_fp = rcu_dereference_protected(sk->sk_filter,
1470                                            lockdep_sock_is_held(sk));
1471         rcu_assign_pointer(sk->sk_filter, fp);
1472
1473         if (old_fp)
1474                 sk_filter_uncharge(sk, old_fp);
1475
1476         return 0;
1477 }
1478
1479 static
1480 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1481 {
1482         unsigned int fsize = bpf_classic_proglen(fprog);
1483         struct bpf_prog *prog;
1484         int err;
1485
1486         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1487                 return ERR_PTR(-EPERM);
1488
1489         /* Make sure new filter is there and in the right amounts. */
1490         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1491                 return ERR_PTR(-EINVAL);
1492
1493         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1494         if (!prog)
1495                 return ERR_PTR(-ENOMEM);
1496
1497         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1498                 __bpf_prog_free(prog);
1499                 return ERR_PTR(-EFAULT);
1500         }
1501
1502         prog->len = fprog->len;
1503
1504         err = bpf_prog_store_orig_filter(prog, fprog);
1505         if (err) {
1506                 __bpf_prog_free(prog);
1507                 return ERR_PTR(-ENOMEM);
1508         }
1509
1510         /* bpf_prepare_filter() already takes care of freeing
1511          * memory in case something goes wrong.
1512          */
1513         return bpf_prepare_filter(prog, NULL);
1514 }
1515
1516 /**
1517  *      sk_attach_filter - attach a socket filter
1518  *      @fprog: the filter program
1519  *      @sk: the socket to use
1520  *
1521  * Attach the user's filter code. We first run some sanity checks on
1522  * it to make sure it does not explode on us later. If an error
1523  * occurs or there is insufficient memory for the filter a negative
1524  * errno code is returned. On success the return is zero.
1525  */
1526 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1527 {
1528         struct bpf_prog *prog = __get_filter(fprog, sk);
1529         int err;
1530
1531         if (IS_ERR(prog))
1532                 return PTR_ERR(prog);
1533
1534         err = __sk_attach_prog(prog, sk);
1535         if (err < 0) {
1536                 __bpf_prog_release(prog);
1537                 return err;
1538         }
1539
1540         return 0;
1541 }
1542 EXPORT_SYMBOL_GPL(sk_attach_filter);
1543
1544 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1545 {
1546         struct bpf_prog *prog = __get_filter(fprog, sk);
1547         int err;
1548
1549         if (IS_ERR(prog))
1550                 return PTR_ERR(prog);
1551
1552         if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1553                 err = -ENOMEM;
1554         else
1555                 err = reuseport_attach_prog(sk, prog);
1556
1557         if (err)
1558                 __bpf_prog_release(prog);
1559
1560         return err;
1561 }
1562
1563 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1564 {
1565         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1566                 return ERR_PTR(-EPERM);
1567
1568         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1569 }
1570
1571 int sk_attach_bpf(u32 ufd, struct sock *sk)
1572 {
1573         struct bpf_prog *prog = __get_bpf(ufd, sk);
1574         int err;
1575
1576         if (IS_ERR(prog))
1577                 return PTR_ERR(prog);
1578
1579         err = __sk_attach_prog(prog, sk);
1580         if (err < 0) {
1581                 bpf_prog_put(prog);
1582                 return err;
1583         }
1584
1585         return 0;
1586 }
1587
1588 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1589 {
1590         struct bpf_prog *prog;
1591         int err;
1592
1593         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1594                 return -EPERM;
1595
1596         prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1597         if (PTR_ERR(prog) == -EINVAL)
1598                 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1599         if (IS_ERR(prog))
1600                 return PTR_ERR(prog);
1601
1602         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1603                 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1604                  * bpf prog (e.g. sockmap).  It depends on the
1605                  * limitation imposed by bpf_prog_load().
1606                  * Hence, sysctl_optmem_max is not checked.
1607                  */
1608                 if ((sk->sk_type != SOCK_STREAM &&
1609                      sk->sk_type != SOCK_DGRAM) ||
1610                     (sk->sk_protocol != IPPROTO_UDP &&
1611                      sk->sk_protocol != IPPROTO_TCP) ||
1612                     (sk->sk_family != AF_INET &&
1613                      sk->sk_family != AF_INET6)) {
1614                         err = -ENOTSUPP;
1615                         goto err_prog_put;
1616                 }
1617         } else {
1618                 /* BPF_PROG_TYPE_SOCKET_FILTER */
1619                 if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1620                         err = -ENOMEM;
1621                         goto err_prog_put;
1622                 }
1623         }
1624
1625         err = reuseport_attach_prog(sk, prog);
1626 err_prog_put:
1627         if (err)
1628                 bpf_prog_put(prog);
1629
1630         return err;
1631 }
1632
1633 void sk_reuseport_prog_free(struct bpf_prog *prog)
1634 {
1635         if (!prog)
1636                 return;
1637
1638         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1639                 bpf_prog_put(prog);
1640         else
1641                 bpf_prog_destroy(prog);
1642 }
1643
1644 struct bpf_scratchpad {
1645         union {
1646                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1647                 u8     buff[MAX_BPF_STACK];
1648         };
1649 };
1650
1651 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1652
1653 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1654                                           unsigned int write_len)
1655 {
1656         return skb_ensure_writable(skb, write_len);
1657 }
1658
1659 static inline int bpf_try_make_writable(struct sk_buff *skb,
1660                                         unsigned int write_len)
1661 {
1662         int err = __bpf_try_make_writable(skb, write_len);
1663
1664         bpf_compute_data_pointers(skb);
1665         return err;
1666 }
1667
1668 static int bpf_try_make_head_writable(struct sk_buff *skb)
1669 {
1670         return bpf_try_make_writable(skb, skb_headlen(skb));
1671 }
1672
1673 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1674 {
1675         if (skb_at_tc_ingress(skb))
1676                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1677 }
1678
1679 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1680 {
1681         if (skb_at_tc_ingress(skb))
1682                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1683 }
1684
1685 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1686            const void *, from, u32, len, u64, flags)
1687 {
1688         void *ptr;
1689
1690         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1691                 return -EINVAL;
1692         if (unlikely(offset > INT_MAX))
1693                 return -EFAULT;
1694         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1695                 return -EFAULT;
1696
1697         ptr = skb->data + offset;
1698         if (flags & BPF_F_RECOMPUTE_CSUM)
1699                 __skb_postpull_rcsum(skb, ptr, len, offset);
1700
1701         memcpy(ptr, from, len);
1702
1703         if (flags & BPF_F_RECOMPUTE_CSUM)
1704                 __skb_postpush_rcsum(skb, ptr, len, offset);
1705         if (flags & BPF_F_INVALIDATE_HASH)
1706                 skb_clear_hash(skb);
1707
1708         return 0;
1709 }
1710
1711 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1712         .func           = bpf_skb_store_bytes,
1713         .gpl_only       = false,
1714         .ret_type       = RET_INTEGER,
1715         .arg1_type      = ARG_PTR_TO_CTX,
1716         .arg2_type      = ARG_ANYTHING,
1717         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
1718         .arg4_type      = ARG_CONST_SIZE,
1719         .arg5_type      = ARG_ANYTHING,
1720 };
1721
1722 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1723            void *, to, u32, len)
1724 {
1725         void *ptr;
1726
1727         if (unlikely(offset > INT_MAX))
1728                 goto err_clear;
1729
1730         ptr = skb_header_pointer(skb, offset, len, to);
1731         if (unlikely(!ptr))
1732                 goto err_clear;
1733         if (ptr != to)
1734                 memcpy(to, ptr, len);
1735
1736         return 0;
1737 err_clear:
1738         memset(to, 0, len);
1739         return -EFAULT;
1740 }
1741
1742 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1743         .func           = bpf_skb_load_bytes,
1744         .gpl_only       = false,
1745         .ret_type       = RET_INTEGER,
1746         .arg1_type      = ARG_PTR_TO_CTX,
1747         .arg2_type      = ARG_ANYTHING,
1748         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1749         .arg4_type      = ARG_CONST_SIZE,
1750 };
1751
1752 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1753            const struct bpf_flow_dissector *, ctx, u32, offset,
1754            void *, to, u32, len)
1755 {
1756         void *ptr;
1757
1758         if (unlikely(offset > 0xffff))
1759                 goto err_clear;
1760
1761         if (unlikely(!ctx->skb))
1762                 goto err_clear;
1763
1764         ptr = skb_header_pointer(ctx->skb, offset, len, to);
1765         if (unlikely(!ptr))
1766                 goto err_clear;
1767         if (ptr != to)
1768                 memcpy(to, ptr, len);
1769
1770         return 0;
1771 err_clear:
1772         memset(to, 0, len);
1773         return -EFAULT;
1774 }
1775
1776 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1777         .func           = bpf_flow_dissector_load_bytes,
1778         .gpl_only       = false,
1779         .ret_type       = RET_INTEGER,
1780         .arg1_type      = ARG_PTR_TO_CTX,
1781         .arg2_type      = ARG_ANYTHING,
1782         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1783         .arg4_type      = ARG_CONST_SIZE,
1784 };
1785
1786 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1787            u32, offset, void *, to, u32, len, u32, start_header)
1788 {
1789         u8 *end = skb_tail_pointer(skb);
1790         u8 *start, *ptr;
1791
1792         if (unlikely(offset > 0xffff))
1793                 goto err_clear;
1794
1795         switch (start_header) {
1796         case BPF_HDR_START_MAC:
1797                 if (unlikely(!skb_mac_header_was_set(skb)))
1798                         goto err_clear;
1799                 start = skb_mac_header(skb);
1800                 break;
1801         case BPF_HDR_START_NET:
1802                 start = skb_network_header(skb);
1803                 break;
1804         default:
1805                 goto err_clear;
1806         }
1807
1808         ptr = start + offset;
1809
1810         if (likely(ptr + len <= end)) {
1811                 memcpy(to, ptr, len);
1812                 return 0;
1813         }
1814
1815 err_clear:
1816         memset(to, 0, len);
1817         return -EFAULT;
1818 }
1819
1820 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1821         .func           = bpf_skb_load_bytes_relative,
1822         .gpl_only       = false,
1823         .ret_type       = RET_INTEGER,
1824         .arg1_type      = ARG_PTR_TO_CTX,
1825         .arg2_type      = ARG_ANYTHING,
1826         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1827         .arg4_type      = ARG_CONST_SIZE,
1828         .arg5_type      = ARG_ANYTHING,
1829 };
1830
1831 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1832 {
1833         /* Idea is the following: should the needed direct read/write
1834          * test fail during runtime, we can pull in more data and redo
1835          * again, since implicitly, we invalidate previous checks here.
1836          *
1837          * Or, since we know how much we need to make read/writeable,
1838          * this can be done once at the program beginning for direct
1839          * access case. By this we overcome limitations of only current
1840          * headroom being accessible.
1841          */
1842         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1843 }
1844
1845 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1846         .func           = bpf_skb_pull_data,
1847         .gpl_only       = false,
1848         .ret_type       = RET_INTEGER,
1849         .arg1_type      = ARG_PTR_TO_CTX,
1850         .arg2_type      = ARG_ANYTHING,
1851 };
1852
1853 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1854 {
1855         return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1856 }
1857
1858 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1859         .func           = bpf_sk_fullsock,
1860         .gpl_only       = false,
1861         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1862         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1863 };
1864
1865 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1866                                            unsigned int write_len)
1867 {
1868         return __bpf_try_make_writable(skb, write_len);
1869 }
1870
1871 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1872 {
1873         /* Idea is the following: should the needed direct read/write
1874          * test fail during runtime, we can pull in more data and redo
1875          * again, since implicitly, we invalidate previous checks here.
1876          *
1877          * Or, since we know how much we need to make read/writeable,
1878          * this can be done once at the program beginning for direct
1879          * access case. By this we overcome limitations of only current
1880          * headroom being accessible.
1881          */
1882         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1883 }
1884
1885 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1886         .func           = sk_skb_pull_data,
1887         .gpl_only       = false,
1888         .ret_type       = RET_INTEGER,
1889         .arg1_type      = ARG_PTR_TO_CTX,
1890         .arg2_type      = ARG_ANYTHING,
1891 };
1892
1893 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1894            u64, from, u64, to, u64, flags)
1895 {
1896         __sum16 *ptr;
1897
1898         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1899                 return -EINVAL;
1900         if (unlikely(offset > 0xffff || offset & 1))
1901                 return -EFAULT;
1902         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1903                 return -EFAULT;
1904
1905         ptr = (__sum16 *)(skb->data + offset);
1906         switch (flags & BPF_F_HDR_FIELD_MASK) {
1907         case 0:
1908                 if (unlikely(from != 0))
1909                         return -EINVAL;
1910
1911                 csum_replace_by_diff(ptr, to);
1912                 break;
1913         case 2:
1914                 csum_replace2(ptr, from, to);
1915                 break;
1916         case 4:
1917                 csum_replace4(ptr, from, to);
1918                 break;
1919         default:
1920                 return -EINVAL;
1921         }
1922
1923         return 0;
1924 }
1925
1926 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1927         .func           = bpf_l3_csum_replace,
1928         .gpl_only       = false,
1929         .ret_type       = RET_INTEGER,
1930         .arg1_type      = ARG_PTR_TO_CTX,
1931         .arg2_type      = ARG_ANYTHING,
1932         .arg3_type      = ARG_ANYTHING,
1933         .arg4_type      = ARG_ANYTHING,
1934         .arg5_type      = ARG_ANYTHING,
1935 };
1936
1937 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1938            u64, from, u64, to, u64, flags)
1939 {
1940         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1941         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1942         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1943         __sum16 *ptr;
1944
1945         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1946                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1947                 return -EINVAL;
1948         if (unlikely(offset > 0xffff || offset & 1))
1949                 return -EFAULT;
1950         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1951                 return -EFAULT;
1952
1953         ptr = (__sum16 *)(skb->data + offset);
1954         if (is_mmzero && !do_mforce && !*ptr)
1955                 return 0;
1956
1957         switch (flags & BPF_F_HDR_FIELD_MASK) {
1958         case 0:
1959                 if (unlikely(from != 0))
1960                         return -EINVAL;
1961
1962                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1963                 break;
1964         case 2:
1965                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1966                 break;
1967         case 4:
1968                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1969                 break;
1970         default:
1971                 return -EINVAL;
1972         }
1973
1974         if (is_mmzero && !*ptr)
1975                 *ptr = CSUM_MANGLED_0;
1976         return 0;
1977 }
1978
1979 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1980         .func           = bpf_l4_csum_replace,
1981         .gpl_only       = false,
1982         .ret_type       = RET_INTEGER,
1983         .arg1_type      = ARG_PTR_TO_CTX,
1984         .arg2_type      = ARG_ANYTHING,
1985         .arg3_type      = ARG_ANYTHING,
1986         .arg4_type      = ARG_ANYTHING,
1987         .arg5_type      = ARG_ANYTHING,
1988 };
1989
1990 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1991            __be32 *, to, u32, to_size, __wsum, seed)
1992 {
1993         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1994         u32 diff_size = from_size + to_size;
1995         int i, j = 0;
1996
1997         /* This is quite flexible, some examples:
1998          *
1999          * from_size == 0, to_size > 0,  seed := csum --> pushing data
2000          * from_size > 0,  to_size == 0, seed := csum --> pulling data
2001          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2002          *
2003          * Even for diffing, from_size and to_size don't need to be equal.
2004          */
2005         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2006                      diff_size > sizeof(sp->diff)))
2007                 return -EINVAL;
2008
2009         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2010                 sp->diff[j] = ~from[i];
2011         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2012                 sp->diff[j] = to[i];
2013
2014         return csum_partial(sp->diff, diff_size, seed);
2015 }
2016
2017 static const struct bpf_func_proto bpf_csum_diff_proto = {
2018         .func           = bpf_csum_diff,
2019         .gpl_only       = false,
2020         .pkt_access     = true,
2021         .ret_type       = RET_INTEGER,
2022         .arg1_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2023         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2024         .arg3_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2025         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2026         .arg5_type      = ARG_ANYTHING,
2027 };
2028
2029 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2030 {
2031         /* The interface is to be used in combination with bpf_csum_diff()
2032          * for direct packet writes. csum rotation for alignment as well
2033          * as emulating csum_sub() can be done from the eBPF program.
2034          */
2035         if (skb->ip_summed == CHECKSUM_COMPLETE)
2036                 return (skb->csum = csum_add(skb->csum, csum));
2037
2038         return -ENOTSUPP;
2039 }
2040
2041 static const struct bpf_func_proto bpf_csum_update_proto = {
2042         .func           = bpf_csum_update,
2043         .gpl_only       = false,
2044         .ret_type       = RET_INTEGER,
2045         .arg1_type      = ARG_PTR_TO_CTX,
2046         .arg2_type      = ARG_ANYTHING,
2047 };
2048
2049 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2050 {
2051         /* The interface is to be used in combination with bpf_skb_adjust_room()
2052          * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2053          * is passed as flags, for example.
2054          */
2055         switch (level) {
2056         case BPF_CSUM_LEVEL_INC:
2057                 __skb_incr_checksum_unnecessary(skb);
2058                 break;
2059         case BPF_CSUM_LEVEL_DEC:
2060                 __skb_decr_checksum_unnecessary(skb);
2061                 break;
2062         case BPF_CSUM_LEVEL_RESET:
2063                 __skb_reset_checksum_unnecessary(skb);
2064                 break;
2065         case BPF_CSUM_LEVEL_QUERY:
2066                 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2067                        skb->csum_level : -EACCES;
2068         default:
2069                 return -EINVAL;
2070         }
2071
2072         return 0;
2073 }
2074
2075 static const struct bpf_func_proto bpf_csum_level_proto = {
2076         .func           = bpf_csum_level,
2077         .gpl_only       = false,
2078         .ret_type       = RET_INTEGER,
2079         .arg1_type      = ARG_PTR_TO_CTX,
2080         .arg2_type      = ARG_ANYTHING,
2081 };
2082
2083 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2084 {
2085         return dev_forward_skb_nomtu(dev, skb);
2086 }
2087
2088 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2089                                       struct sk_buff *skb)
2090 {
2091         int ret = ____dev_forward_skb(dev, skb, false);
2092
2093         if (likely(!ret)) {
2094                 skb->dev = dev;
2095                 ret = netif_rx(skb);
2096         }
2097
2098         return ret;
2099 }
2100
2101 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2102 {
2103         int ret;
2104
2105         if (dev_xmit_recursion()) {
2106                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2107                 kfree_skb(skb);
2108                 return -ENETDOWN;
2109         }
2110
2111         skb->dev = dev;
2112         skb->tstamp = 0;
2113
2114         dev_xmit_recursion_inc();
2115         ret = dev_queue_xmit(skb);
2116         dev_xmit_recursion_dec();
2117
2118         return ret;
2119 }
2120
2121 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2122                                  u32 flags)
2123 {
2124         unsigned int mlen = skb_network_offset(skb);
2125
2126         if (unlikely(skb->len <= mlen)) {
2127                 kfree_skb(skb);
2128                 return -ERANGE;
2129         }
2130
2131         if (mlen) {
2132                 __skb_pull(skb, mlen);
2133
2134                 /* At ingress, the mac header has already been pulled once.
2135                  * At egress, skb_pospull_rcsum has to be done in case that
2136                  * the skb is originated from ingress (i.e. a forwarded skb)
2137                  * to ensure that rcsum starts at net header.
2138                  */
2139                 if (!skb_at_tc_ingress(skb))
2140                         skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2141         }
2142         skb_pop_mac_header(skb);
2143         skb_reset_mac_len(skb);
2144         return flags & BPF_F_INGRESS ?
2145                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2146 }
2147
2148 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2149                                  u32 flags)
2150 {
2151         /* Verify that a link layer header is carried */
2152         if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2153                 kfree_skb(skb);
2154                 return -ERANGE;
2155         }
2156
2157         bpf_push_mac_rcsum(skb);
2158         return flags & BPF_F_INGRESS ?
2159                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2160 }
2161
2162 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2163                           u32 flags)
2164 {
2165         if (dev_is_mac_header_xmit(dev))
2166                 return __bpf_redirect_common(skb, dev, flags);
2167         else
2168                 return __bpf_redirect_no_mac(skb, dev, flags);
2169 }
2170
2171 #if IS_ENABLED(CONFIG_IPV6)
2172 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2173                             struct net_device *dev, struct bpf_nh_params *nh)
2174 {
2175         u32 hh_len = LL_RESERVED_SPACE(dev);
2176         const struct in6_addr *nexthop;
2177         struct dst_entry *dst = NULL;
2178         struct neighbour *neigh;
2179
2180         if (dev_xmit_recursion()) {
2181                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2182                 goto out_drop;
2183         }
2184
2185         skb->dev = dev;
2186         skb->tstamp = 0;
2187
2188         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2189                 skb = skb_expand_head(skb, hh_len);
2190                 if (!skb)
2191                         return -ENOMEM;
2192         }
2193
2194         rcu_read_lock_bh();
2195         if (!nh) {
2196                 dst = skb_dst(skb);
2197                 nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2198                                       &ipv6_hdr(skb)->daddr);
2199         } else {
2200                 nexthop = &nh->ipv6_nh;
2201         }
2202         neigh = ip_neigh_gw6(dev, nexthop);
2203         if (likely(!IS_ERR(neigh))) {
2204                 int ret;
2205
2206                 sock_confirm_neigh(skb, neigh);
2207                 dev_xmit_recursion_inc();
2208                 ret = neigh_output(neigh, skb, false);
2209                 dev_xmit_recursion_dec();
2210                 rcu_read_unlock_bh();
2211                 return ret;
2212         }
2213         rcu_read_unlock_bh();
2214         if (dst)
2215                 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2216 out_drop:
2217         kfree_skb(skb);
2218         return -ENETDOWN;
2219 }
2220
2221 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2222                                    struct bpf_nh_params *nh)
2223 {
2224         const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2225         struct net *net = dev_net(dev);
2226         int err, ret = NET_XMIT_DROP;
2227
2228         if (!nh) {
2229                 struct dst_entry *dst;
2230                 struct flowi6 fl6 = {
2231                         .flowi6_flags = FLOWI_FLAG_ANYSRC,
2232                         .flowi6_mark  = skb->mark,
2233                         .flowlabel    = ip6_flowinfo(ip6h),
2234                         .flowi6_oif   = dev->ifindex,
2235                         .flowi6_proto = ip6h->nexthdr,
2236                         .daddr        = ip6h->daddr,
2237                         .saddr        = ip6h->saddr,
2238                 };
2239
2240                 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2241                 if (IS_ERR(dst))
2242                         goto out_drop;
2243
2244                 skb_dst_set(skb, dst);
2245         } else if (nh->nh_family != AF_INET6) {
2246                 goto out_drop;
2247         }
2248
2249         err = bpf_out_neigh_v6(net, skb, dev, nh);
2250         if (unlikely(net_xmit_eval(err)))
2251                 dev->stats.tx_errors++;
2252         else
2253                 ret = NET_XMIT_SUCCESS;
2254         goto out_xmit;
2255 out_drop:
2256         dev->stats.tx_errors++;
2257         kfree_skb(skb);
2258 out_xmit:
2259         return ret;
2260 }
2261 #else
2262 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2263                                    struct bpf_nh_params *nh)
2264 {
2265         kfree_skb(skb);
2266         return NET_XMIT_DROP;
2267 }
2268 #endif /* CONFIG_IPV6 */
2269
2270 #if IS_ENABLED(CONFIG_INET)
2271 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2272                             struct net_device *dev, struct bpf_nh_params *nh)
2273 {
2274         u32 hh_len = LL_RESERVED_SPACE(dev);
2275         struct neighbour *neigh;
2276         bool is_v6gw = false;
2277
2278         if (dev_xmit_recursion()) {
2279                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2280                 goto out_drop;
2281         }
2282
2283         skb->dev = dev;
2284         skb->tstamp = 0;
2285
2286         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2287                 skb = skb_expand_head(skb, hh_len);
2288                 if (!skb)
2289                         return -ENOMEM;
2290         }
2291
2292         rcu_read_lock_bh();
2293         if (!nh) {
2294                 struct dst_entry *dst = skb_dst(skb);
2295                 struct rtable *rt = container_of(dst, struct rtable, dst);
2296
2297                 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2298         } else if (nh->nh_family == AF_INET6) {
2299                 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2300                 is_v6gw = true;
2301         } else if (nh->nh_family == AF_INET) {
2302                 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2303         } else {
2304                 rcu_read_unlock_bh();
2305                 goto out_drop;
2306         }
2307
2308         if (likely(!IS_ERR(neigh))) {
2309                 int ret;
2310
2311                 sock_confirm_neigh(skb, neigh);
2312                 dev_xmit_recursion_inc();
2313                 ret = neigh_output(neigh, skb, is_v6gw);
2314                 dev_xmit_recursion_dec();
2315                 rcu_read_unlock_bh();
2316                 return ret;
2317         }
2318         rcu_read_unlock_bh();
2319 out_drop:
2320         kfree_skb(skb);
2321         return -ENETDOWN;
2322 }
2323
2324 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2325                                    struct bpf_nh_params *nh)
2326 {
2327         const struct iphdr *ip4h = ip_hdr(skb);
2328         struct net *net = dev_net(dev);
2329         int err, ret = NET_XMIT_DROP;
2330
2331         if (!nh) {
2332                 struct flowi4 fl4 = {
2333                         .flowi4_flags = FLOWI_FLAG_ANYSRC,
2334                         .flowi4_mark  = skb->mark,
2335                         .flowi4_tos   = RT_TOS(ip4h->tos),
2336                         .flowi4_oif   = dev->ifindex,
2337                         .flowi4_proto = ip4h->protocol,
2338                         .daddr        = ip4h->daddr,
2339                         .saddr        = ip4h->saddr,
2340                 };
2341                 struct rtable *rt;
2342
2343                 rt = ip_route_output_flow(net, &fl4, NULL);
2344                 if (IS_ERR(rt))
2345                         goto out_drop;
2346                 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2347                         ip_rt_put(rt);
2348                         goto out_drop;
2349                 }
2350
2351                 skb_dst_set(skb, &rt->dst);
2352         }
2353
2354         err = bpf_out_neigh_v4(net, skb, dev, nh);
2355         if (unlikely(net_xmit_eval(err)))
2356                 dev->stats.tx_errors++;
2357         else
2358                 ret = NET_XMIT_SUCCESS;
2359         goto out_xmit;
2360 out_drop:
2361         dev->stats.tx_errors++;
2362         kfree_skb(skb);
2363 out_xmit:
2364         return ret;
2365 }
2366 #else
2367 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2368                                    struct bpf_nh_params *nh)
2369 {
2370         kfree_skb(skb);
2371         return NET_XMIT_DROP;
2372 }
2373 #endif /* CONFIG_INET */
2374
2375 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2376                                 struct bpf_nh_params *nh)
2377 {
2378         struct ethhdr *ethh = eth_hdr(skb);
2379
2380         if (unlikely(skb->mac_header >= skb->network_header))
2381                 goto out;
2382         bpf_push_mac_rcsum(skb);
2383         if (is_multicast_ether_addr(ethh->h_dest))
2384                 goto out;
2385
2386         skb_pull(skb, sizeof(*ethh));
2387         skb_unset_mac_header(skb);
2388         skb_reset_network_header(skb);
2389
2390         if (skb->protocol == htons(ETH_P_IP))
2391                 return __bpf_redirect_neigh_v4(skb, dev, nh);
2392         else if (skb->protocol == htons(ETH_P_IPV6))
2393                 return __bpf_redirect_neigh_v6(skb, dev, nh);
2394 out:
2395         kfree_skb(skb);
2396         return -ENOTSUPP;
2397 }
2398
2399 /* Internal, non-exposed redirect flags. */
2400 enum {
2401         BPF_F_NEIGH     = (1ULL << 1),
2402         BPF_F_PEER      = (1ULL << 2),
2403         BPF_F_NEXTHOP   = (1ULL << 3),
2404 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2405 };
2406
2407 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2408 {
2409         struct net_device *dev;
2410         struct sk_buff *clone;
2411         int ret;
2412
2413         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2414                 return -EINVAL;
2415
2416         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2417         if (unlikely(!dev))
2418                 return -EINVAL;
2419
2420         clone = skb_clone(skb, GFP_ATOMIC);
2421         if (unlikely(!clone))
2422                 return -ENOMEM;
2423
2424         /* For direct write, we need to keep the invariant that the skbs
2425          * we're dealing with need to be uncloned. Should uncloning fail
2426          * here, we need to free the just generated clone to unclone once
2427          * again.
2428          */
2429         ret = bpf_try_make_head_writable(skb);
2430         if (unlikely(ret)) {
2431                 kfree_skb(clone);
2432                 return -ENOMEM;
2433         }
2434
2435         return __bpf_redirect(clone, dev, flags);
2436 }
2437
2438 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2439         .func           = bpf_clone_redirect,
2440         .gpl_only       = false,
2441         .ret_type       = RET_INTEGER,
2442         .arg1_type      = ARG_PTR_TO_CTX,
2443         .arg2_type      = ARG_ANYTHING,
2444         .arg3_type      = ARG_ANYTHING,
2445 };
2446
2447 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2448 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2449
2450 int skb_do_redirect(struct sk_buff *skb)
2451 {
2452         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2453         struct net *net = dev_net(skb->dev);
2454         struct net_device *dev;
2455         u32 flags = ri->flags;
2456
2457         dev = dev_get_by_index_rcu(net, ri->tgt_index);
2458         ri->tgt_index = 0;
2459         ri->flags = 0;
2460         if (unlikely(!dev))
2461                 goto out_drop;
2462         if (flags & BPF_F_PEER) {
2463                 const struct net_device_ops *ops = dev->netdev_ops;
2464
2465                 if (unlikely(!ops->ndo_get_peer_dev ||
2466                              !skb_at_tc_ingress(skb)))
2467                         goto out_drop;
2468                 dev = ops->ndo_get_peer_dev(dev);
2469                 if (unlikely(!dev ||
2470                              !(dev->flags & IFF_UP) ||
2471                              net_eq(net, dev_net(dev))))
2472                         goto out_drop;
2473                 skb->dev = dev;
2474                 return -EAGAIN;
2475         }
2476         return flags & BPF_F_NEIGH ?
2477                __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2478                                     &ri->nh : NULL) :
2479                __bpf_redirect(skb, dev, flags);
2480 out_drop:
2481         kfree_skb(skb);
2482         return -EINVAL;
2483 }
2484
2485 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2486 {
2487         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2488
2489         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2490                 return TC_ACT_SHOT;
2491
2492         ri->flags = flags;
2493         ri->tgt_index = ifindex;
2494
2495         return TC_ACT_REDIRECT;
2496 }
2497
2498 static const struct bpf_func_proto bpf_redirect_proto = {
2499         .func           = bpf_redirect,
2500         .gpl_only       = false,
2501         .ret_type       = RET_INTEGER,
2502         .arg1_type      = ARG_ANYTHING,
2503         .arg2_type      = ARG_ANYTHING,
2504 };
2505
2506 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2507 {
2508         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2509
2510         if (unlikely(flags))
2511                 return TC_ACT_SHOT;
2512
2513         ri->flags = BPF_F_PEER;
2514         ri->tgt_index = ifindex;
2515
2516         return TC_ACT_REDIRECT;
2517 }
2518
2519 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2520         .func           = bpf_redirect_peer,
2521         .gpl_only       = false,
2522         .ret_type       = RET_INTEGER,
2523         .arg1_type      = ARG_ANYTHING,
2524         .arg2_type      = ARG_ANYTHING,
2525 };
2526
2527 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2528            int, plen, u64, flags)
2529 {
2530         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2531
2532         if (unlikely((plen && plen < sizeof(*params)) || flags))
2533                 return TC_ACT_SHOT;
2534
2535         ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2536         ri->tgt_index = ifindex;
2537
2538         BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2539         if (plen)
2540                 memcpy(&ri->nh, params, sizeof(ri->nh));
2541
2542         return TC_ACT_REDIRECT;
2543 }
2544
2545 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2546         .func           = bpf_redirect_neigh,
2547         .gpl_only       = false,
2548         .ret_type       = RET_INTEGER,
2549         .arg1_type      = ARG_ANYTHING,
2550         .arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2551         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2552         .arg4_type      = ARG_ANYTHING,
2553 };
2554
2555 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2556 {
2557         msg->apply_bytes = bytes;
2558         return 0;
2559 }
2560
2561 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2562         .func           = bpf_msg_apply_bytes,
2563         .gpl_only       = false,
2564         .ret_type       = RET_INTEGER,
2565         .arg1_type      = ARG_PTR_TO_CTX,
2566         .arg2_type      = ARG_ANYTHING,
2567 };
2568
2569 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2570 {
2571         msg->cork_bytes = bytes;
2572         return 0;
2573 }
2574
2575 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2576         .func           = bpf_msg_cork_bytes,
2577         .gpl_only       = false,
2578         .ret_type       = RET_INTEGER,
2579         .arg1_type      = ARG_PTR_TO_CTX,
2580         .arg2_type      = ARG_ANYTHING,
2581 };
2582
2583 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2584            u32, end, u64, flags)
2585 {
2586         u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2587         u32 first_sge, last_sge, i, shift, bytes_sg_total;
2588         struct scatterlist *sge;
2589         u8 *raw, *to, *from;
2590         struct page *page;
2591
2592         if (unlikely(flags || end <= start))
2593                 return -EINVAL;
2594
2595         /* First find the starting scatterlist element */
2596         i = msg->sg.start;
2597         do {
2598                 offset += len;
2599                 len = sk_msg_elem(msg, i)->length;
2600                 if (start < offset + len)
2601                         break;
2602                 sk_msg_iter_var_next(i);
2603         } while (i != msg->sg.end);
2604
2605         if (unlikely(start >= offset + len))
2606                 return -EINVAL;
2607
2608         first_sge = i;
2609         /* The start may point into the sg element so we need to also
2610          * account for the headroom.
2611          */
2612         bytes_sg_total = start - offset + bytes;
2613         if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2614                 goto out;
2615
2616         /* At this point we need to linearize multiple scatterlist
2617          * elements or a single shared page. Either way we need to
2618          * copy into a linear buffer exclusively owned by BPF. Then
2619          * place the buffer in the scatterlist and fixup the original
2620          * entries by removing the entries now in the linear buffer
2621          * and shifting the remaining entries. For now we do not try
2622          * to copy partial entries to avoid complexity of running out
2623          * of sg_entry slots. The downside is reading a single byte
2624          * will copy the entire sg entry.
2625          */
2626         do {
2627                 copy += sk_msg_elem(msg, i)->length;
2628                 sk_msg_iter_var_next(i);
2629                 if (bytes_sg_total <= copy)
2630                         break;
2631         } while (i != msg->sg.end);
2632         last_sge = i;
2633
2634         if (unlikely(bytes_sg_total > copy))
2635                 return -EINVAL;
2636
2637         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2638                            get_order(copy));
2639         if (unlikely(!page))
2640                 return -ENOMEM;
2641
2642         raw = page_address(page);
2643         i = first_sge;
2644         do {
2645                 sge = sk_msg_elem(msg, i);
2646                 from = sg_virt(sge);
2647                 len = sge->length;
2648                 to = raw + poffset;
2649
2650                 memcpy(to, from, len);
2651                 poffset += len;
2652                 sge->length = 0;
2653                 put_page(sg_page(sge));
2654
2655                 sk_msg_iter_var_next(i);
2656         } while (i != last_sge);
2657
2658         sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2659
2660         /* To repair sg ring we need to shift entries. If we only
2661          * had a single entry though we can just replace it and
2662          * be done. Otherwise walk the ring and shift the entries.
2663          */
2664         WARN_ON_ONCE(last_sge == first_sge);
2665         shift = last_sge > first_sge ?
2666                 last_sge - first_sge - 1 :
2667                 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2668         if (!shift)
2669                 goto out;
2670
2671         i = first_sge;
2672         sk_msg_iter_var_next(i);
2673         do {
2674                 u32 move_from;
2675
2676                 if (i + shift >= NR_MSG_FRAG_IDS)
2677                         move_from = i + shift - NR_MSG_FRAG_IDS;
2678                 else
2679                         move_from = i + shift;
2680                 if (move_from == msg->sg.end)
2681                         break;
2682
2683                 msg->sg.data[i] = msg->sg.data[move_from];
2684                 msg->sg.data[move_from].length = 0;
2685                 msg->sg.data[move_from].page_link = 0;
2686                 msg->sg.data[move_from].offset = 0;
2687                 sk_msg_iter_var_next(i);
2688         } while (1);
2689
2690         msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2691                       msg->sg.end - shift + NR_MSG_FRAG_IDS :
2692                       msg->sg.end - shift;
2693 out:
2694         msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2695         msg->data_end = msg->data + bytes;
2696         return 0;
2697 }
2698
2699 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2700         .func           = bpf_msg_pull_data,
2701         .gpl_only       = false,
2702         .ret_type       = RET_INTEGER,
2703         .arg1_type      = ARG_PTR_TO_CTX,
2704         .arg2_type      = ARG_ANYTHING,
2705         .arg3_type      = ARG_ANYTHING,
2706         .arg4_type      = ARG_ANYTHING,
2707 };
2708
2709 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2710            u32, len, u64, flags)
2711 {
2712         struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2713         u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2714         u8 *raw, *to, *from;
2715         struct page *page;
2716
2717         if (unlikely(flags))
2718                 return -EINVAL;
2719
2720         if (unlikely(len == 0))
2721                 return 0;
2722
2723         /* First find the starting scatterlist element */
2724         i = msg->sg.start;
2725         do {
2726                 offset += l;
2727                 l = sk_msg_elem(msg, i)->length;
2728
2729                 if (start < offset + l)
2730                         break;
2731                 sk_msg_iter_var_next(i);
2732         } while (i != msg->sg.end);
2733
2734         if (start >= offset + l)
2735                 return -EINVAL;
2736
2737         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2738
2739         /* If no space available will fallback to copy, we need at
2740          * least one scatterlist elem available to push data into
2741          * when start aligns to the beginning of an element or two
2742          * when it falls inside an element. We handle the start equals
2743          * offset case because its the common case for inserting a
2744          * header.
2745          */
2746         if (!space || (space == 1 && start != offset))
2747                 copy = msg->sg.data[i].length;
2748
2749         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2750                            get_order(copy + len));
2751         if (unlikely(!page))
2752                 return -ENOMEM;
2753
2754         if (copy) {
2755                 int front, back;
2756
2757                 raw = page_address(page);
2758
2759                 psge = sk_msg_elem(msg, i);
2760                 front = start - offset;
2761                 back = psge->length - front;
2762                 from = sg_virt(psge);
2763
2764                 if (front)
2765                         memcpy(raw, from, front);
2766
2767                 if (back) {
2768                         from += front;
2769                         to = raw + front + len;
2770
2771                         memcpy(to, from, back);
2772                 }
2773
2774                 put_page(sg_page(psge));
2775         } else if (start - offset) {
2776                 psge = sk_msg_elem(msg, i);
2777                 rsge = sk_msg_elem_cpy(msg, i);
2778
2779                 psge->length = start - offset;
2780                 rsge.length -= psge->length;
2781                 rsge.offset += start;
2782
2783                 sk_msg_iter_var_next(i);
2784                 sg_unmark_end(psge);
2785                 sg_unmark_end(&rsge);
2786                 sk_msg_iter_next(msg, end);
2787         }
2788
2789         /* Slot(s) to place newly allocated data */
2790         new = i;
2791
2792         /* Shift one or two slots as needed */
2793         if (!copy) {
2794                 sge = sk_msg_elem_cpy(msg, i);
2795
2796                 sk_msg_iter_var_next(i);
2797                 sg_unmark_end(&sge);
2798                 sk_msg_iter_next(msg, end);
2799
2800                 nsge = sk_msg_elem_cpy(msg, i);
2801                 if (rsge.length) {
2802                         sk_msg_iter_var_next(i);
2803                         nnsge = sk_msg_elem_cpy(msg, i);
2804                 }
2805
2806                 while (i != msg->sg.end) {
2807                         msg->sg.data[i] = sge;
2808                         sge = nsge;
2809                         sk_msg_iter_var_next(i);
2810                         if (rsge.length) {
2811                                 nsge = nnsge;
2812                                 nnsge = sk_msg_elem_cpy(msg, i);
2813                         } else {
2814                                 nsge = sk_msg_elem_cpy(msg, i);
2815                         }
2816                 }
2817         }
2818
2819         /* Place newly allocated data buffer */
2820         sk_mem_charge(msg->sk, len);
2821         msg->sg.size += len;
2822         __clear_bit(new, &msg->sg.copy);
2823         sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2824         if (rsge.length) {
2825                 get_page(sg_page(&rsge));
2826                 sk_msg_iter_var_next(new);
2827                 msg->sg.data[new] = rsge;
2828         }
2829
2830         sk_msg_compute_data_pointers(msg);
2831         return 0;
2832 }
2833
2834 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2835         .func           = bpf_msg_push_data,
2836         .gpl_only       = false,
2837         .ret_type       = RET_INTEGER,
2838         .arg1_type      = ARG_PTR_TO_CTX,
2839         .arg2_type      = ARG_ANYTHING,
2840         .arg3_type      = ARG_ANYTHING,
2841         .arg4_type      = ARG_ANYTHING,
2842 };
2843
2844 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2845 {
2846         int prev;
2847
2848         do {
2849                 prev = i;
2850                 sk_msg_iter_var_next(i);
2851                 msg->sg.data[prev] = msg->sg.data[i];
2852         } while (i != msg->sg.end);
2853
2854         sk_msg_iter_prev(msg, end);
2855 }
2856
2857 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2858 {
2859         struct scatterlist tmp, sge;
2860
2861         sk_msg_iter_next(msg, end);
2862         sge = sk_msg_elem_cpy(msg, i);
2863         sk_msg_iter_var_next(i);
2864         tmp = sk_msg_elem_cpy(msg, i);
2865
2866         while (i != msg->sg.end) {
2867                 msg->sg.data[i] = sge;
2868                 sk_msg_iter_var_next(i);
2869                 sge = tmp;
2870                 tmp = sk_msg_elem_cpy(msg, i);
2871         }
2872 }
2873
2874 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2875            u32, len, u64, flags)
2876 {
2877         u32 i = 0, l = 0, space, offset = 0;
2878         u64 last = start + len;
2879         int pop;
2880
2881         if (unlikely(flags))
2882                 return -EINVAL;
2883
2884         /* First find the starting scatterlist element */
2885         i = msg->sg.start;
2886         do {
2887                 offset += l;
2888                 l = sk_msg_elem(msg, i)->length;
2889
2890                 if (start < offset + l)
2891                         break;
2892                 sk_msg_iter_var_next(i);
2893         } while (i != msg->sg.end);
2894
2895         /* Bounds checks: start and pop must be inside message */
2896         if (start >= offset + l || last >= msg->sg.size)
2897                 return -EINVAL;
2898
2899         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2900
2901         pop = len;
2902         /* --------------| offset
2903          * -| start      |-------- len -------|
2904          *
2905          *  |----- a ----|-------- pop -------|----- b ----|
2906          *  |______________________________________________| length
2907          *
2908          *
2909          * a:   region at front of scatter element to save
2910          * b:   region at back of scatter element to save when length > A + pop
2911          * pop: region to pop from element, same as input 'pop' here will be
2912          *      decremented below per iteration.
2913          *
2914          * Two top-level cases to handle when start != offset, first B is non
2915          * zero and second B is zero corresponding to when a pop includes more
2916          * than one element.
2917          *
2918          * Then if B is non-zero AND there is no space allocate space and
2919          * compact A, B regions into page. If there is space shift ring to
2920          * the rigth free'ing the next element in ring to place B, leaving
2921          * A untouched except to reduce length.
2922          */
2923         if (start != offset) {
2924                 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2925                 int a = start;
2926                 int b = sge->length - pop - a;
2927
2928                 sk_msg_iter_var_next(i);
2929
2930                 if (pop < sge->length - a) {
2931                         if (space) {
2932                                 sge->length = a;
2933                                 sk_msg_shift_right(msg, i);
2934                                 nsge = sk_msg_elem(msg, i);
2935                                 get_page(sg_page(sge));
2936                                 sg_set_page(nsge,
2937                                             sg_page(sge),
2938                                             b, sge->offset + pop + a);
2939                         } else {
2940                                 struct page *page, *orig;
2941                                 u8 *to, *from;
2942
2943                                 page = alloc_pages(__GFP_NOWARN |
2944                                                    __GFP_COMP   | GFP_ATOMIC,
2945                                                    get_order(a + b));
2946                                 if (unlikely(!page))
2947                                         return -ENOMEM;
2948
2949                                 sge->length = a;
2950                                 orig = sg_page(sge);
2951                                 from = sg_virt(sge);
2952                                 to = page_address(page);
2953                                 memcpy(to, from, a);
2954                                 memcpy(to + a, from + a + pop, b);
2955                                 sg_set_page(sge, page, a + b, 0);
2956                                 put_page(orig);
2957                         }
2958                         pop = 0;
2959                 } else if (pop >= sge->length - a) {
2960                         pop -= (sge->length - a);
2961                         sge->length = a;
2962                 }
2963         }
2964
2965         /* From above the current layout _must_ be as follows,
2966          *
2967          * -| offset
2968          * -| start
2969          *
2970          *  |---- pop ---|---------------- b ------------|
2971          *  |____________________________________________| length
2972          *
2973          * Offset and start of the current msg elem are equal because in the
2974          * previous case we handled offset != start and either consumed the
2975          * entire element and advanced to the next element OR pop == 0.
2976          *
2977          * Two cases to handle here are first pop is less than the length
2978          * leaving some remainder b above. Simply adjust the element's layout
2979          * in this case. Or pop >= length of the element so that b = 0. In this
2980          * case advance to next element decrementing pop.
2981          */
2982         while (pop) {
2983                 struct scatterlist *sge = sk_msg_elem(msg, i);
2984
2985                 if (pop < sge->length) {
2986                         sge->length -= pop;
2987                         sge->offset += pop;
2988                         pop = 0;
2989                 } else {
2990                         pop -= sge->length;
2991                         sk_msg_shift_left(msg, i);
2992                 }
2993                 sk_msg_iter_var_next(i);
2994         }
2995
2996         sk_mem_uncharge(msg->sk, len - pop);
2997         msg->sg.size -= (len - pop);
2998         sk_msg_compute_data_pointers(msg);
2999         return 0;
3000 }
3001
3002 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3003         .func           = bpf_msg_pop_data,
3004         .gpl_only       = false,
3005         .ret_type       = RET_INTEGER,
3006         .arg1_type      = ARG_PTR_TO_CTX,
3007         .arg2_type      = ARG_ANYTHING,
3008         .arg3_type      = ARG_ANYTHING,
3009         .arg4_type      = ARG_ANYTHING,
3010 };
3011
3012 #ifdef CONFIG_CGROUP_NET_CLASSID
3013 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3014 {
3015         return __task_get_classid(current);
3016 }
3017
3018 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3019         .func           = bpf_get_cgroup_classid_curr,
3020         .gpl_only       = false,
3021         .ret_type       = RET_INTEGER,
3022 };
3023
3024 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3025 {
3026         struct sock *sk = skb_to_full_sk(skb);
3027
3028         if (!sk || !sk_fullsock(sk))
3029                 return 0;
3030
3031         return sock_cgroup_classid(&sk->sk_cgrp_data);
3032 }
3033
3034 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3035         .func           = bpf_skb_cgroup_classid,
3036         .gpl_only       = false,
3037         .ret_type       = RET_INTEGER,
3038         .arg1_type      = ARG_PTR_TO_CTX,
3039 };
3040 #endif
3041
3042 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3043 {
3044         return task_get_classid(skb);
3045 }
3046
3047 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3048         .func           = bpf_get_cgroup_classid,
3049         .gpl_only       = false,
3050         .ret_type       = RET_INTEGER,
3051         .arg1_type      = ARG_PTR_TO_CTX,
3052 };
3053
3054 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3055 {
3056         return dst_tclassid(skb);
3057 }
3058
3059 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3060         .func           = bpf_get_route_realm,
3061         .gpl_only       = false,
3062         .ret_type       = RET_INTEGER,
3063         .arg1_type      = ARG_PTR_TO_CTX,
3064 };
3065
3066 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3067 {
3068         /* If skb_clear_hash() was called due to mangling, we can
3069          * trigger SW recalculation here. Later access to hash
3070          * can then use the inline skb->hash via context directly
3071          * instead of calling this helper again.
3072          */
3073         return skb_get_hash(skb);
3074 }
3075
3076 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3077         .func           = bpf_get_hash_recalc,
3078         .gpl_only       = false,
3079         .ret_type       = RET_INTEGER,
3080         .arg1_type      = ARG_PTR_TO_CTX,
3081 };
3082
3083 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3084 {
3085         /* After all direct packet write, this can be used once for
3086          * triggering a lazy recalc on next skb_get_hash() invocation.
3087          */
3088         skb_clear_hash(skb);
3089         return 0;
3090 }
3091
3092 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3093         .func           = bpf_set_hash_invalid,
3094         .gpl_only       = false,
3095         .ret_type       = RET_INTEGER,
3096         .arg1_type      = ARG_PTR_TO_CTX,
3097 };
3098
3099 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3100 {
3101         /* Set user specified hash as L4(+), so that it gets returned
3102          * on skb_get_hash() call unless BPF prog later on triggers a
3103          * skb_clear_hash().
3104          */
3105         __skb_set_sw_hash(skb, hash, true);
3106         return 0;
3107 }
3108
3109 static const struct bpf_func_proto bpf_set_hash_proto = {
3110         .func           = bpf_set_hash,
3111         .gpl_only       = false,
3112         .ret_type       = RET_INTEGER,
3113         .arg1_type      = ARG_PTR_TO_CTX,
3114         .arg2_type      = ARG_ANYTHING,
3115 };
3116
3117 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3118            u16, vlan_tci)
3119 {
3120         int ret;
3121
3122         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3123                      vlan_proto != htons(ETH_P_8021AD)))
3124                 vlan_proto = htons(ETH_P_8021Q);
3125
3126         bpf_push_mac_rcsum(skb);
3127         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3128         bpf_pull_mac_rcsum(skb);
3129
3130         bpf_compute_data_pointers(skb);
3131         return ret;
3132 }
3133
3134 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3135         .func           = bpf_skb_vlan_push,
3136         .gpl_only       = false,
3137         .ret_type       = RET_INTEGER,
3138         .arg1_type      = ARG_PTR_TO_CTX,
3139         .arg2_type      = ARG_ANYTHING,
3140         .arg3_type      = ARG_ANYTHING,
3141 };
3142
3143 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3144 {
3145         int ret;
3146
3147         bpf_push_mac_rcsum(skb);
3148         ret = skb_vlan_pop(skb);
3149         bpf_pull_mac_rcsum(skb);
3150
3151         bpf_compute_data_pointers(skb);
3152         return ret;
3153 }
3154
3155 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3156         .func           = bpf_skb_vlan_pop,
3157         .gpl_only       = false,
3158         .ret_type       = RET_INTEGER,
3159         .arg1_type      = ARG_PTR_TO_CTX,
3160 };
3161
3162 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3163 {
3164         /* Caller already did skb_cow() with len as headroom,
3165          * so no need to do it here.
3166          */
3167         skb_push(skb, len);
3168         memmove(skb->data, skb->data + len, off);
3169         memset(skb->data + off, 0, len);
3170
3171         /* No skb_postpush_rcsum(skb, skb->data + off, len)
3172          * needed here as it does not change the skb->csum
3173          * result for checksum complete when summing over
3174          * zeroed blocks.
3175          */
3176         return 0;
3177 }
3178
3179 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3180 {
3181         /* skb_ensure_writable() is not needed here, as we're
3182          * already working on an uncloned skb.
3183          */
3184         if (unlikely(!pskb_may_pull(skb, off + len)))
3185                 return -ENOMEM;
3186
3187         skb_postpull_rcsum(skb, skb->data + off, len);
3188         memmove(skb->data + len, skb->data, off);
3189         __skb_pull(skb, len);
3190
3191         return 0;
3192 }
3193
3194 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3195 {
3196         bool trans_same = skb->transport_header == skb->network_header;
3197         int ret;
3198
3199         /* There's no need for __skb_push()/__skb_pull() pair to
3200          * get to the start of the mac header as we're guaranteed
3201          * to always start from here under eBPF.
3202          */
3203         ret = bpf_skb_generic_push(skb, off, len);
3204         if (likely(!ret)) {
3205                 skb->mac_header -= len;
3206                 skb->network_header -= len;
3207                 if (trans_same)
3208                         skb->transport_header = skb->network_header;
3209         }
3210
3211         return ret;
3212 }
3213
3214 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3215 {
3216         bool trans_same = skb->transport_header == skb->network_header;
3217         int ret;
3218
3219         /* Same here, __skb_push()/__skb_pull() pair not needed. */
3220         ret = bpf_skb_generic_pop(skb, off, len);
3221         if (likely(!ret)) {
3222                 skb->mac_header += len;
3223                 skb->network_header += len;
3224                 if (trans_same)
3225                         skb->transport_header = skb->network_header;
3226         }
3227
3228         return ret;
3229 }
3230
3231 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3232 {
3233         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3234         u32 off = skb_mac_header_len(skb);
3235         int ret;
3236
3237         ret = skb_cow(skb, len_diff);
3238         if (unlikely(ret < 0))
3239                 return ret;
3240
3241         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3242         if (unlikely(ret < 0))
3243                 return ret;
3244
3245         if (skb_is_gso(skb)) {
3246                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3247
3248                 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3249                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3250                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
3251                         shinfo->gso_type |=  SKB_GSO_TCPV6;
3252                 }
3253         }
3254
3255         skb->protocol = htons(ETH_P_IPV6);
3256         skb_clear_hash(skb);
3257
3258         return 0;
3259 }
3260
3261 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3262 {
3263         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3264         u32 off = skb_mac_header_len(skb);
3265         int ret;
3266
3267         ret = skb_unclone(skb, GFP_ATOMIC);
3268         if (unlikely(ret < 0))
3269                 return ret;
3270
3271         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3272         if (unlikely(ret < 0))
3273                 return ret;
3274
3275         if (skb_is_gso(skb)) {
3276                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3277
3278                 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3279                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3280                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
3281                         shinfo->gso_type |=  SKB_GSO_TCPV4;
3282                 }
3283         }
3284
3285         skb->protocol = htons(ETH_P_IP);
3286         skb_clear_hash(skb);
3287
3288         return 0;
3289 }
3290
3291 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3292 {
3293         __be16 from_proto = skb->protocol;
3294
3295         if (from_proto == htons(ETH_P_IP) &&
3296               to_proto == htons(ETH_P_IPV6))
3297                 return bpf_skb_proto_4_to_6(skb);
3298
3299         if (from_proto == htons(ETH_P_IPV6) &&
3300               to_proto == htons(ETH_P_IP))
3301                 return bpf_skb_proto_6_to_4(skb);
3302
3303         return -ENOTSUPP;
3304 }
3305
3306 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3307            u64, flags)
3308 {
3309         int ret;
3310
3311         if (unlikely(flags))
3312                 return -EINVAL;
3313
3314         /* General idea is that this helper does the basic groundwork
3315          * needed for changing the protocol, and eBPF program fills the
3316          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3317          * and other helpers, rather than passing a raw buffer here.
3318          *
3319          * The rationale is to keep this minimal and without a need to
3320          * deal with raw packet data. F.e. even if we would pass buffers
3321          * here, the program still needs to call the bpf_lX_csum_replace()
3322          * helpers anyway. Plus, this way we keep also separation of
3323          * concerns, since f.e. bpf_skb_store_bytes() should only take
3324          * care of stores.
3325          *
3326          * Currently, additional options and extension header space are
3327          * not supported, but flags register is reserved so we can adapt
3328          * that. For offloads, we mark packet as dodgy, so that headers
3329          * need to be verified first.
3330          */
3331         ret = bpf_skb_proto_xlat(skb, proto);
3332         bpf_compute_data_pointers(skb);
3333         return ret;
3334 }
3335
3336 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3337         .func           = bpf_skb_change_proto,
3338         .gpl_only       = false,
3339         .ret_type       = RET_INTEGER,
3340         .arg1_type      = ARG_PTR_TO_CTX,
3341         .arg2_type      = ARG_ANYTHING,
3342         .arg3_type      = ARG_ANYTHING,
3343 };
3344
3345 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3346 {
3347         /* We only allow a restricted subset to be changed for now. */
3348         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3349                      !skb_pkt_type_ok(pkt_type)))
3350                 return -EINVAL;
3351
3352         skb->pkt_type = pkt_type;
3353         return 0;
3354 }
3355
3356 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3357         .func           = bpf_skb_change_type,
3358         .gpl_only       = false,
3359         .ret_type       = RET_INTEGER,
3360         .arg1_type      = ARG_PTR_TO_CTX,
3361         .arg2_type      = ARG_ANYTHING,
3362 };
3363
3364 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3365 {
3366         switch (skb->protocol) {
3367         case htons(ETH_P_IP):
3368                 return sizeof(struct iphdr);
3369         case htons(ETH_P_IPV6):
3370                 return sizeof(struct ipv6hdr);
3371         default:
3372                 return ~0U;
3373         }
3374 }
3375
3376 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3377                                          BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3378
3379 #define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3380                                          BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3381                                          BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3382                                          BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3383                                          BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3384                                          BPF_F_ADJ_ROOM_ENCAP_L2( \
3385                                           BPF_ADJ_ROOM_ENCAP_L2_MASK))
3386
3387 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3388                             u64 flags)
3389 {
3390         u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3391         bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3392         u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3393         unsigned int gso_type = SKB_GSO_DODGY;
3394         int ret;
3395
3396         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3397                 /* udp gso_size delineates datagrams, only allow if fixed */
3398                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3399                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3400                         return -ENOTSUPP;
3401         }
3402
3403         ret = skb_cow_head(skb, len_diff);
3404         if (unlikely(ret < 0))
3405                 return ret;
3406
3407         if (encap) {
3408                 if (skb->protocol != htons(ETH_P_IP) &&
3409                     skb->protocol != htons(ETH_P_IPV6))
3410                         return -ENOTSUPP;
3411
3412                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3413                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3414                         return -EINVAL;
3415
3416                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3417                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3418                         return -EINVAL;
3419
3420                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3421                     inner_mac_len < ETH_HLEN)
3422                         return -EINVAL;
3423
3424                 if (skb->encapsulation)
3425                         return -EALREADY;
3426
3427                 mac_len = skb->network_header - skb->mac_header;
3428                 inner_net = skb->network_header;
3429                 if (inner_mac_len > len_diff)
3430                         return -EINVAL;
3431                 inner_trans = skb->transport_header;
3432         }
3433
3434         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3435         if (unlikely(ret < 0))
3436                 return ret;
3437
3438         if (encap) {
3439                 skb->inner_mac_header = inner_net - inner_mac_len;
3440                 skb->inner_network_header = inner_net;
3441                 skb->inner_transport_header = inner_trans;
3442
3443                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3444                         skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3445                 else
3446                         skb_set_inner_protocol(skb, skb->protocol);
3447
3448                 skb->encapsulation = 1;
3449                 skb_set_network_header(skb, mac_len);
3450
3451                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3452                         gso_type |= SKB_GSO_UDP_TUNNEL;
3453                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3454                         gso_type |= SKB_GSO_GRE;
3455                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3456                         gso_type |= SKB_GSO_IPXIP6;
3457                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3458                         gso_type |= SKB_GSO_IPXIP4;
3459
3460                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3461                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3462                         int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3463                                         sizeof(struct ipv6hdr) :
3464                                         sizeof(struct iphdr);
3465
3466                         skb_set_transport_header(skb, mac_len + nh_len);
3467                 }
3468
3469                 /* Match skb->protocol to new outer l3 protocol */
3470                 if (skb->protocol == htons(ETH_P_IP) &&
3471                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3472                         skb->protocol = htons(ETH_P_IPV6);
3473                 else if (skb->protocol == htons(ETH_P_IPV6) &&
3474                          flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3475                         skb->protocol = htons(ETH_P_IP);
3476         }
3477
3478         if (skb_is_gso(skb)) {
3479                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3480
3481                 /* Due to header grow, MSS needs to be downgraded. */
3482                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3483                         skb_decrease_gso_size(shinfo, len_diff);
3484
3485                 /* Header must be checked, and gso_segs recomputed. */
3486                 shinfo->gso_type |= gso_type;
3487                 shinfo->gso_segs = 0;
3488         }
3489
3490         return 0;
3491 }
3492
3493 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3494                               u64 flags)
3495 {
3496         int ret;
3497
3498         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3499                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3500                 return -EINVAL;
3501
3502         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3503                 /* udp gso_size delineates datagrams, only allow if fixed */
3504                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3505                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3506                         return -ENOTSUPP;
3507         }
3508
3509         ret = skb_unclone(skb, GFP_ATOMIC);
3510         if (unlikely(ret < 0))
3511                 return ret;
3512
3513         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3514         if (unlikely(ret < 0))
3515                 return ret;
3516
3517         if (skb_is_gso(skb)) {
3518                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3519
3520                 /* Due to header shrink, MSS can be upgraded. */
3521                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3522                         skb_increase_gso_size(shinfo, len_diff);
3523
3524                 /* Header must be checked, and gso_segs recomputed. */
3525                 shinfo->gso_type |= SKB_GSO_DODGY;
3526                 shinfo->gso_segs = 0;
3527         }
3528
3529         return 0;
3530 }
3531
3532 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3533
3534 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3535            u32, mode, u64, flags)
3536 {
3537         u32 len_diff_abs = abs(len_diff);
3538         bool shrink = len_diff < 0;
3539         int ret = 0;
3540
3541         if (unlikely(flags || mode))
3542                 return -EINVAL;
3543         if (unlikely(len_diff_abs > 0xfffU))
3544                 return -EFAULT;
3545
3546         if (!shrink) {
3547                 ret = skb_cow(skb, len_diff);
3548                 if (unlikely(ret < 0))
3549                         return ret;
3550                 __skb_push(skb, len_diff_abs);
3551                 memset(skb->data, 0, len_diff_abs);
3552         } else {
3553                 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3554                         return -ENOMEM;
3555                 __skb_pull(skb, len_diff_abs);
3556         }
3557         if (tls_sw_has_ctx_rx(skb->sk)) {
3558                 struct strp_msg *rxm = strp_msg(skb);
3559
3560                 rxm->full_len += len_diff;
3561         }
3562         return ret;
3563 }
3564
3565 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3566         .func           = sk_skb_adjust_room,
3567         .gpl_only       = false,
3568         .ret_type       = RET_INTEGER,
3569         .arg1_type      = ARG_PTR_TO_CTX,
3570         .arg2_type      = ARG_ANYTHING,
3571         .arg3_type      = ARG_ANYTHING,
3572         .arg4_type      = ARG_ANYTHING,
3573 };
3574
3575 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3576            u32, mode, u64, flags)
3577 {
3578         u32 len_cur, len_diff_abs = abs(len_diff);
3579         u32 len_min = bpf_skb_net_base_len(skb);
3580         u32 len_max = BPF_SKB_MAX_LEN;
3581         __be16 proto = skb->protocol;
3582         bool shrink = len_diff < 0;
3583         u32 off;
3584         int ret;
3585
3586         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3587                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3588                 return -EINVAL;
3589         if (unlikely(len_diff_abs > 0xfffU))
3590                 return -EFAULT;
3591         if (unlikely(proto != htons(ETH_P_IP) &&
3592                      proto != htons(ETH_P_IPV6)))
3593                 return -ENOTSUPP;
3594
3595         off = skb_mac_header_len(skb);
3596         switch (mode) {
3597         case BPF_ADJ_ROOM_NET:
3598                 off += bpf_skb_net_base_len(skb);
3599                 break;
3600         case BPF_ADJ_ROOM_MAC:
3601                 break;
3602         default:
3603                 return -ENOTSUPP;
3604         }
3605
3606         len_cur = skb->len - skb_network_offset(skb);
3607         if ((shrink && (len_diff_abs >= len_cur ||
3608                         len_cur - len_diff_abs < len_min)) ||
3609             (!shrink && (skb->len + len_diff_abs > len_max &&
3610                          !skb_is_gso(skb))))
3611                 return -ENOTSUPP;
3612
3613         ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3614                        bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3615         if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3616                 __skb_reset_checksum_unnecessary(skb);
3617
3618         bpf_compute_data_pointers(skb);
3619         return ret;
3620 }
3621
3622 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3623         .func           = bpf_skb_adjust_room,
3624         .gpl_only       = false,
3625         .ret_type       = RET_INTEGER,
3626         .arg1_type      = ARG_PTR_TO_CTX,
3627         .arg2_type      = ARG_ANYTHING,
3628         .arg3_type      = ARG_ANYTHING,
3629         .arg4_type      = ARG_ANYTHING,
3630 };
3631
3632 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3633 {
3634         u32 min_len = skb_network_offset(skb);
3635
3636         if (skb_transport_header_was_set(skb))
3637                 min_len = skb_transport_offset(skb);
3638         if (skb->ip_summed == CHECKSUM_PARTIAL)
3639                 min_len = skb_checksum_start_offset(skb) +
3640                           skb->csum_offset + sizeof(__sum16);
3641         return min_len;
3642 }
3643
3644 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3645 {
3646         unsigned int old_len = skb->len;
3647         int ret;
3648
3649         ret = __skb_grow_rcsum(skb, new_len);
3650         if (!ret)
3651                 memset(skb->data + old_len, 0, new_len - old_len);
3652         return ret;
3653 }
3654
3655 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3656 {
3657         return __skb_trim_rcsum(skb, new_len);
3658 }
3659
3660 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3661                                         u64 flags)
3662 {
3663         u32 max_len = BPF_SKB_MAX_LEN;
3664         u32 min_len = __bpf_skb_min_len(skb);
3665         int ret;
3666
3667         if (unlikely(flags || new_len > max_len || new_len < min_len))
3668                 return -EINVAL;
3669         if (skb->encapsulation)
3670                 return -ENOTSUPP;
3671
3672         /* The basic idea of this helper is that it's performing the
3673          * needed work to either grow or trim an skb, and eBPF program
3674          * rewrites the rest via helpers like bpf_skb_store_bytes(),
3675          * bpf_lX_csum_replace() and others rather than passing a raw
3676          * buffer here. This one is a slow path helper and intended
3677          * for replies with control messages.
3678          *
3679          * Like in bpf_skb_change_proto(), we want to keep this rather
3680          * minimal and without protocol specifics so that we are able
3681          * to separate concerns as in bpf_skb_store_bytes() should only
3682          * be the one responsible for writing buffers.
3683          *
3684          * It's really expected to be a slow path operation here for
3685          * control message replies, so we're implicitly linearizing,
3686          * uncloning and drop offloads from the skb by this.
3687          */
3688         ret = __bpf_try_make_writable(skb, skb->len);
3689         if (!ret) {
3690                 if (new_len > skb->len)
3691                         ret = bpf_skb_grow_rcsum(skb, new_len);
3692                 else if (new_len < skb->len)
3693                         ret = bpf_skb_trim_rcsum(skb, new_len);
3694                 if (!ret && skb_is_gso(skb))
3695                         skb_gso_reset(skb);
3696         }
3697         return ret;
3698 }
3699
3700 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3701            u64, flags)
3702 {
3703         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3704
3705         bpf_compute_data_pointers(skb);
3706         return ret;
3707 }
3708
3709 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3710         .func           = bpf_skb_change_tail,
3711         .gpl_only       = false,
3712         .ret_type       = RET_INTEGER,
3713         .arg1_type      = ARG_PTR_TO_CTX,
3714         .arg2_type      = ARG_ANYTHING,
3715         .arg3_type      = ARG_ANYTHING,
3716 };
3717
3718 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3719            u64, flags)
3720 {
3721         return __bpf_skb_change_tail(skb, new_len, flags);
3722 }
3723
3724 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3725         .func           = sk_skb_change_tail,
3726         .gpl_only       = false,
3727         .ret_type       = RET_INTEGER,
3728         .arg1_type      = ARG_PTR_TO_CTX,
3729         .arg2_type      = ARG_ANYTHING,
3730         .arg3_type      = ARG_ANYTHING,
3731 };
3732
3733 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3734                                         u64 flags)
3735 {
3736         u32 max_len = BPF_SKB_MAX_LEN;
3737         u32 new_len = skb->len + head_room;
3738         int ret;
3739
3740         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3741                      new_len < skb->len))
3742                 return -EINVAL;
3743
3744         ret = skb_cow(skb, head_room);
3745         if (likely(!ret)) {
3746                 /* Idea for this helper is that we currently only
3747                  * allow to expand on mac header. This means that
3748                  * skb->protocol network header, etc, stay as is.
3749                  * Compared to bpf_skb_change_tail(), we're more
3750                  * flexible due to not needing to linearize or
3751                  * reset GSO. Intention for this helper is to be
3752                  * used by an L3 skb that needs to push mac header
3753                  * for redirection into L2 device.
3754                  */
3755                 __skb_push(skb, head_room);
3756                 memset(skb->data, 0, head_room);
3757                 skb_reset_mac_header(skb);
3758                 skb_reset_mac_len(skb);
3759         }
3760
3761         return ret;
3762 }
3763
3764 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3765            u64, flags)
3766 {
3767         int ret = __bpf_skb_change_head(skb, head_room, flags);
3768
3769         bpf_compute_data_pointers(skb);
3770         return ret;
3771 }
3772
3773 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3774         .func           = bpf_skb_change_head,
3775         .gpl_only       = false,
3776         .ret_type       = RET_INTEGER,
3777         .arg1_type      = ARG_PTR_TO_CTX,
3778         .arg2_type      = ARG_ANYTHING,
3779         .arg3_type      = ARG_ANYTHING,
3780 };
3781
3782 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3783            u64, flags)
3784 {
3785         return __bpf_skb_change_head(skb, head_room, flags);
3786 }
3787
3788 static const struct bpf_func_proto sk_skb_change_head_proto = {
3789         .func           = sk_skb_change_head,
3790         .gpl_only       = false,
3791         .ret_type       = RET_INTEGER,
3792         .arg1_type      = ARG_PTR_TO_CTX,
3793         .arg2_type      = ARG_ANYTHING,
3794         .arg3_type      = ARG_ANYTHING,
3795 };
3796 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3797 {
3798         return xdp_data_meta_unsupported(xdp) ? 0 :
3799                xdp->data - xdp->data_meta;
3800 }
3801
3802 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3803 {
3804         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3805         unsigned long metalen = xdp_get_metalen(xdp);
3806         void *data_start = xdp_frame_end + metalen;
3807         void *data = xdp->data + offset;
3808
3809         if (unlikely(data < data_start ||
3810                      data > xdp->data_end - ETH_HLEN))
3811                 return -EINVAL;
3812
3813         if (metalen)
3814                 memmove(xdp->data_meta + offset,
3815                         xdp->data_meta, metalen);
3816         xdp->data_meta += offset;
3817         xdp->data = data;
3818
3819         return 0;
3820 }
3821
3822 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3823         .func           = bpf_xdp_adjust_head,
3824         .gpl_only       = false,
3825         .ret_type       = RET_INTEGER,
3826         .arg1_type      = ARG_PTR_TO_CTX,
3827         .arg2_type      = ARG_ANYTHING,
3828 };
3829
3830 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3831 {
3832         void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
3833         void *data_end = xdp->data_end + offset;
3834
3835         /* Notice that xdp_data_hard_end have reserved some tailroom */
3836         if (unlikely(data_end > data_hard_end))
3837                 return -EINVAL;
3838
3839         /* ALL drivers MUST init xdp->frame_sz, chicken check below */
3840         if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
3841                 WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
3842                 return -EINVAL;
3843         }
3844
3845         if (unlikely(data_end < xdp->data + ETH_HLEN))
3846                 return -EINVAL;
3847
3848         /* Clear memory area on grow, can contain uninit kernel memory */
3849         if (offset > 0)
3850                 memset(xdp->data_end, 0, offset);
3851
3852         xdp->data_end = data_end;
3853
3854         return 0;
3855 }
3856
3857 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3858         .func           = bpf_xdp_adjust_tail,
3859         .gpl_only       = false,
3860         .ret_type       = RET_INTEGER,
3861         .arg1_type      = ARG_PTR_TO_CTX,
3862         .arg2_type      = ARG_ANYTHING,
3863 };
3864
3865 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3866 {
3867         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3868         void *meta = xdp->data_meta + offset;
3869         unsigned long metalen = xdp->data - meta;
3870
3871         if (xdp_data_meta_unsupported(xdp))
3872                 return -ENOTSUPP;
3873         if (unlikely(meta < xdp_frame_end ||
3874                      meta > xdp->data))
3875                 return -EINVAL;
3876         if (unlikely(xdp_metalen_invalid(metalen)))
3877                 return -EACCES;
3878
3879         xdp->data_meta = meta;
3880
3881         return 0;
3882 }
3883
3884 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3885         .func           = bpf_xdp_adjust_meta,
3886         .gpl_only       = false,
3887         .ret_type       = RET_INTEGER,
3888         .arg1_type      = ARG_PTR_TO_CTX,
3889         .arg2_type      = ARG_ANYTHING,
3890 };
3891
3892 /* XDP_REDIRECT works by a three-step process, implemented in the functions
3893  * below:
3894  *
3895  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
3896  *    of the redirect and store it (along with some other metadata) in a per-CPU
3897  *    struct bpf_redirect_info.
3898  *
3899  * 2. When the program returns the XDP_REDIRECT return code, the driver will
3900  *    call xdp_do_redirect() which will use the information in struct
3901  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
3902  *    bulk queue structure.
3903  *
3904  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
3905  *    which will flush all the different bulk queues, thus completing the
3906  *    redirect.
3907  *
3908  * Pointers to the map entries will be kept around for this whole sequence of
3909  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
3910  * the core code; instead, the RCU protection relies on everything happening
3911  * inside a single NAPI poll sequence, which means it's between a pair of calls
3912  * to local_bh_disable()/local_bh_enable().
3913  *
3914  * The map entries are marked as __rcu and the map code makes sure to
3915  * dereference those pointers with rcu_dereference_check() in a way that works
3916  * for both sections that to hold an rcu_read_lock() and sections that are
3917  * called from NAPI without a separate rcu_read_lock(). The code below does not
3918  * use RCU annotations, but relies on those in the map code.
3919  */
3920 void xdp_do_flush(void)
3921 {
3922         __dev_flush();
3923         __cpu_map_flush();
3924         __xsk_map_flush();
3925 }
3926 EXPORT_SYMBOL_GPL(xdp_do_flush);
3927
3928 void bpf_clear_redirect_map(struct bpf_map *map)
3929 {
3930         struct bpf_redirect_info *ri;
3931         int cpu;
3932
3933         for_each_possible_cpu(cpu) {
3934                 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3935                 /* Avoid polluting remote cacheline due to writes if
3936                  * not needed. Once we pass this test, we need the
3937                  * cmpxchg() to make sure it hasn't been changed in
3938                  * the meantime by remote CPU.
3939                  */
3940                 if (unlikely(READ_ONCE(ri->map) == map))
3941                         cmpxchg(&ri->map, map, NULL);
3942         }
3943 }
3944
3945 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
3946 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
3947
3948 u32 xdp_master_redirect(struct xdp_buff *xdp)
3949 {
3950         struct net_device *master, *slave;
3951         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3952
3953         master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
3954         slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
3955         if (slave && slave != xdp->rxq->dev) {
3956                 /* The target device is different from the receiving device, so
3957                  * redirect it to the new device.
3958                  * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
3959                  * drivers to unmap the packet from their rx ring.
3960                  */
3961                 ri->tgt_index = slave->ifindex;
3962                 ri->map_id = INT_MAX;
3963                 ri->map_type = BPF_MAP_TYPE_UNSPEC;
3964                 return XDP_REDIRECT;
3965         }
3966         return XDP_TX;
3967 }
3968 EXPORT_SYMBOL_GPL(xdp_master_redirect);
3969
3970 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3971                     struct bpf_prog *xdp_prog)
3972 {
3973         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3974         enum bpf_map_type map_type = ri->map_type;
3975         void *fwd = ri->tgt_value;
3976         u32 map_id = ri->map_id;
3977         struct bpf_map *map;
3978         int err;
3979
3980         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
3981         ri->map_type = BPF_MAP_TYPE_UNSPEC;
3982
3983         switch (map_type) {
3984         case BPF_MAP_TYPE_DEVMAP:
3985                 fallthrough;
3986         case BPF_MAP_TYPE_DEVMAP_HASH:
3987                 map = READ_ONCE(ri->map);
3988                 if (unlikely(map)) {
3989                         WRITE_ONCE(ri->map, NULL);
3990                         err = dev_map_enqueue_multi(xdp, dev, map,
3991                                                     ri->flags & BPF_F_EXCLUDE_INGRESS);
3992                 } else {
3993                         err = dev_map_enqueue(fwd, xdp, dev);
3994                 }
3995                 break;
3996         case BPF_MAP_TYPE_CPUMAP:
3997                 err = cpu_map_enqueue(fwd, xdp, dev);
3998                 break;
3999         case BPF_MAP_TYPE_XSKMAP:
4000                 err = __xsk_map_redirect(fwd, xdp);
4001                 break;
4002         case BPF_MAP_TYPE_UNSPEC:
4003                 if (map_id == INT_MAX) {
4004                         fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4005                         if (unlikely(!fwd)) {
4006                                 err = -EINVAL;
4007                                 break;
4008                         }
4009                         err = dev_xdp_enqueue(fwd, xdp, dev);
4010                         break;
4011                 }
4012                 fallthrough;
4013         default:
4014                 err = -EBADRQC;
4015         }
4016
4017         if (unlikely(err))
4018                 goto err;
4019
4020         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4021         return 0;
4022 err:
4023         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4024         return err;
4025 }
4026 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4027
4028 static int xdp_do_generic_redirect_map(struct net_device *dev,
4029                                        struct sk_buff *skb,
4030                                        struct xdp_buff *xdp,
4031                                        struct bpf_prog *xdp_prog,
4032                                        void *fwd,
4033                                        enum bpf_map_type map_type, u32 map_id)
4034 {
4035         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4036         struct bpf_map *map;
4037         int err;
4038
4039         switch (map_type) {
4040         case BPF_MAP_TYPE_DEVMAP:
4041                 fallthrough;
4042         case BPF_MAP_TYPE_DEVMAP_HASH:
4043                 map = READ_ONCE(ri->map);
4044                 if (unlikely(map)) {
4045                         WRITE_ONCE(ri->map, NULL);
4046                         err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4047                                                      ri->flags & BPF_F_EXCLUDE_INGRESS);
4048                 } else {
4049                         err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4050                 }
4051                 if (unlikely(err))
4052                         goto err;
4053                 break;
4054         case BPF_MAP_TYPE_XSKMAP:
4055                 err = xsk_generic_rcv(fwd, xdp);
4056                 if (err)
4057                         goto err;
4058                 consume_skb(skb);
4059                 break;
4060         case BPF_MAP_TYPE_CPUMAP:
4061                 err = cpu_map_generic_redirect(fwd, skb);
4062                 if (unlikely(err))
4063                         goto err;
4064                 break;
4065         default:
4066                 err = -EBADRQC;
4067                 goto err;
4068         }
4069
4070         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4071         return 0;
4072 err:
4073         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4074         return err;
4075 }
4076
4077 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4078                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4079 {
4080         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4081         enum bpf_map_type map_type = ri->map_type;
4082         void *fwd = ri->tgt_value;
4083         u32 map_id = ri->map_id;
4084         int err;
4085
4086         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4087         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4088
4089         if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4090                 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4091                 if (unlikely(!fwd)) {
4092                         err = -EINVAL;
4093                         goto err;
4094                 }
4095
4096                 err = xdp_ok_fwd_dev(fwd, skb->len);
4097                 if (unlikely(err))
4098                         goto err;
4099
4100                 skb->dev = fwd;
4101                 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4102                 generic_xdp_tx(skb, xdp_prog);
4103                 return 0;
4104         }
4105
4106         return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4107 err:
4108         _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4109         return err;
4110 }
4111
4112 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4113 {
4114         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4115
4116         if (unlikely(flags))
4117                 return XDP_ABORTED;
4118
4119         /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4120          * by map_idr) is used for ifindex based XDP redirect.
4121          */
4122         ri->tgt_index = ifindex;
4123         ri->map_id = INT_MAX;
4124         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4125
4126         return XDP_REDIRECT;
4127 }
4128
4129 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4130         .func           = bpf_xdp_redirect,
4131         .gpl_only       = false,
4132         .ret_type       = RET_INTEGER,
4133         .arg1_type      = ARG_ANYTHING,
4134         .arg2_type      = ARG_ANYTHING,
4135 };
4136
4137 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4138            u64, flags)
4139 {
4140         return map->ops->map_redirect(map, ifindex, flags);
4141 }
4142
4143 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4144         .func           = bpf_xdp_redirect_map,
4145         .gpl_only       = false,
4146         .ret_type       = RET_INTEGER,
4147         .arg1_type      = ARG_CONST_MAP_PTR,
4148         .arg2_type      = ARG_ANYTHING,
4149         .arg3_type      = ARG_ANYTHING,
4150 };
4151
4152 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4153                                   unsigned long off, unsigned long len)
4154 {
4155         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4156
4157         if (unlikely(!ptr))
4158                 return len;
4159         if (ptr != dst_buff)
4160                 memcpy(dst_buff, ptr, len);
4161
4162         return 0;
4163 }
4164
4165 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4166            u64, flags, void *, meta, u64, meta_size)
4167 {
4168         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4169
4170         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4171                 return -EINVAL;
4172         if (unlikely(!skb || skb_size > skb->len))
4173                 return -EFAULT;
4174
4175         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4176                                 bpf_skb_copy);
4177 }
4178
4179 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4180         .func           = bpf_skb_event_output,
4181         .gpl_only       = true,
4182         .ret_type       = RET_INTEGER,
4183         .arg1_type      = ARG_PTR_TO_CTX,
4184         .arg2_type      = ARG_CONST_MAP_PTR,
4185         .arg3_type      = ARG_ANYTHING,
4186         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4187         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4188 };
4189
4190 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4191
4192 const struct bpf_func_proto bpf_skb_output_proto = {
4193         .func           = bpf_skb_event_output,
4194         .gpl_only       = true,
4195         .ret_type       = RET_INTEGER,
4196         .arg1_type      = ARG_PTR_TO_BTF_ID,
4197         .arg1_btf_id    = &bpf_skb_output_btf_ids[0],
4198         .arg2_type      = ARG_CONST_MAP_PTR,
4199         .arg3_type      = ARG_ANYTHING,
4200         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4201         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4202 };
4203
4204 static unsigned short bpf_tunnel_key_af(u64 flags)
4205 {
4206         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4207 }
4208
4209 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4210            u32, size, u64, flags)
4211 {
4212         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4213         u8 compat[sizeof(struct bpf_tunnel_key)];
4214         void *to_orig = to;
4215         int err;
4216
4217         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4218                 err = -EINVAL;
4219                 goto err_clear;
4220         }
4221         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4222                 err = -EPROTO;
4223                 goto err_clear;
4224         }
4225         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4226                 err = -EINVAL;
4227                 switch (size) {
4228                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4229                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4230                         goto set_compat;
4231                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4232                         /* Fixup deprecated structure layouts here, so we have
4233                          * a common path later on.
4234                          */
4235                         if (ip_tunnel_info_af(info) != AF_INET)
4236                                 goto err_clear;
4237 set_compat:
4238                         to = (struct bpf_tunnel_key *)compat;
4239                         break;
4240                 default:
4241                         goto err_clear;
4242                 }
4243         }
4244
4245         to->tunnel_id = be64_to_cpu(info->key.tun_id);
4246         to->tunnel_tos = info->key.tos;
4247         to->tunnel_ttl = info->key.ttl;
4248         to->tunnel_ext = 0;
4249
4250         if (flags & BPF_F_TUNINFO_IPV6) {
4251                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4252                        sizeof(to->remote_ipv6));
4253                 to->tunnel_label = be32_to_cpu(info->key.label);
4254         } else {
4255                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4256                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4257                 to->tunnel_label = 0;
4258         }
4259
4260         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4261                 memcpy(to_orig, to, size);
4262
4263         return 0;
4264 err_clear:
4265         memset(to_orig, 0, size);
4266         return err;
4267 }
4268
4269 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4270         .func           = bpf_skb_get_tunnel_key,
4271         .gpl_only       = false,
4272         .ret_type       = RET_INTEGER,
4273         .arg1_type      = ARG_PTR_TO_CTX,
4274         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4275         .arg3_type      = ARG_CONST_SIZE,
4276         .arg4_type      = ARG_ANYTHING,
4277 };
4278
4279 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4280 {
4281         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4282         int err;
4283
4284         if (unlikely(!info ||
4285                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4286                 err = -ENOENT;
4287                 goto err_clear;
4288         }
4289         if (unlikely(size < info->options_len)) {
4290                 err = -ENOMEM;
4291                 goto err_clear;
4292         }
4293
4294         ip_tunnel_info_opts_get(to, info);
4295         if (size > info->options_len)
4296                 memset(to + info->options_len, 0, size - info->options_len);
4297
4298         return info->options_len;
4299 err_clear:
4300         memset(to, 0, size);
4301         return err;
4302 }
4303
4304 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4305         .func           = bpf_skb_get_tunnel_opt,
4306         .gpl_only       = false,
4307         .ret_type       = RET_INTEGER,
4308         .arg1_type      = ARG_PTR_TO_CTX,
4309         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4310         .arg3_type      = ARG_CONST_SIZE,
4311 };
4312
4313 static struct metadata_dst __percpu *md_dst;
4314
4315 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4316            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4317 {
4318         struct metadata_dst *md = this_cpu_ptr(md_dst);
4319         u8 compat[sizeof(struct bpf_tunnel_key)];
4320         struct ip_tunnel_info *info;
4321
4322         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4323                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4324                 return -EINVAL;
4325         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4326                 switch (size) {
4327                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4328                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4329                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4330                         /* Fixup deprecated structure layouts here, so we have
4331                          * a common path later on.
4332                          */
4333                         memcpy(compat, from, size);
4334                         memset(compat + size, 0, sizeof(compat) - size);
4335                         from = (const struct bpf_tunnel_key *) compat;
4336                         break;
4337                 default:
4338                         return -EINVAL;
4339                 }
4340         }
4341         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4342                      from->tunnel_ext))
4343                 return -EINVAL;
4344
4345         skb_dst_drop(skb);
4346         dst_hold((struct dst_entry *) md);
4347         skb_dst_set(skb, (struct dst_entry *) md);
4348
4349         info = &md->u.tun_info;
4350         memset(info, 0, sizeof(*info));
4351         info->mode = IP_TUNNEL_INFO_TX;
4352
4353         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4354         if (flags & BPF_F_DONT_FRAGMENT)
4355                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4356         if (flags & BPF_F_ZERO_CSUM_TX)
4357                 info->key.tun_flags &= ~TUNNEL_CSUM;
4358         if (flags & BPF_F_SEQ_NUMBER)
4359                 info->key.tun_flags |= TUNNEL_SEQ;
4360
4361         info->key.tun_id = cpu_to_be64(from->tunnel_id);
4362         info->key.tos = from->tunnel_tos;
4363         info->key.ttl = from->tunnel_ttl;
4364
4365         if (flags & BPF_F_TUNINFO_IPV6) {
4366                 info->mode |= IP_TUNNEL_INFO_IPV6;
4367                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4368                        sizeof(from->remote_ipv6));
4369                 info->key.label = cpu_to_be32(from->tunnel_label) &
4370                                   IPV6_FLOWLABEL_MASK;
4371         } else {
4372                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4373         }
4374
4375         return 0;
4376 }
4377
4378 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4379         .func           = bpf_skb_set_tunnel_key,
4380         .gpl_only       = false,
4381         .ret_type       = RET_INTEGER,
4382         .arg1_type      = ARG_PTR_TO_CTX,
4383         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4384         .arg3_type      = ARG_CONST_SIZE,
4385         .arg4_type      = ARG_ANYTHING,
4386 };
4387
4388 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4389            const u8 *, from, u32, size)
4390 {
4391         struct ip_tunnel_info *info = skb_tunnel_info(skb);
4392         const struct metadata_dst *md = this_cpu_ptr(md_dst);
4393
4394         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4395                 return -EINVAL;
4396         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4397                 return -ENOMEM;
4398
4399         ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4400
4401         return 0;
4402 }
4403
4404 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4405         .func           = bpf_skb_set_tunnel_opt,
4406         .gpl_only       = false,
4407         .ret_type       = RET_INTEGER,
4408         .arg1_type      = ARG_PTR_TO_CTX,
4409         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4410         .arg3_type      = ARG_CONST_SIZE,
4411 };
4412
4413 static const struct bpf_func_proto *
4414 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4415 {
4416         if (!md_dst) {
4417                 struct metadata_dst __percpu *tmp;
4418
4419                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4420                                                 METADATA_IP_TUNNEL,
4421                                                 GFP_KERNEL);
4422                 if (!tmp)
4423                         return NULL;
4424                 if (cmpxchg(&md_dst, NULL, tmp))
4425                         metadata_dst_free_percpu(tmp);
4426         }
4427
4428         switch (which) {
4429         case BPF_FUNC_skb_set_tunnel_key:
4430                 return &bpf_skb_set_tunnel_key_proto;
4431         case BPF_FUNC_skb_set_tunnel_opt:
4432                 return &bpf_skb_set_tunnel_opt_proto;
4433         default:
4434                 return NULL;
4435         }
4436 }
4437
4438 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4439            u32, idx)
4440 {
4441         struct bpf_array *array = container_of(map, struct bpf_array, map);
4442         struct cgroup *cgrp;
4443         struct sock *sk;
4444
4445         sk = skb_to_full_sk(skb);
4446         if (!sk || !sk_fullsock(sk))
4447                 return -ENOENT;
4448         if (unlikely(idx >= array->map.max_entries))
4449                 return -E2BIG;
4450
4451         cgrp = READ_ONCE(array->ptrs[idx]);
4452         if (unlikely(!cgrp))
4453                 return -EAGAIN;
4454
4455         return sk_under_cgroup_hierarchy(sk, cgrp);
4456 }
4457
4458 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4459         .func           = bpf_skb_under_cgroup,
4460         .gpl_only       = false,
4461         .ret_type       = RET_INTEGER,
4462         .arg1_type      = ARG_PTR_TO_CTX,
4463         .arg2_type      = ARG_CONST_MAP_PTR,
4464         .arg3_type      = ARG_ANYTHING,
4465 };
4466
4467 #ifdef CONFIG_SOCK_CGROUP_DATA
4468 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4469 {
4470         struct cgroup *cgrp;
4471
4472         sk = sk_to_full_sk(sk);
4473         if (!sk || !sk_fullsock(sk))
4474                 return 0;
4475
4476         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4477         return cgroup_id(cgrp);
4478 }
4479
4480 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4481 {
4482         return __bpf_sk_cgroup_id(skb->sk);
4483 }
4484
4485 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4486         .func           = bpf_skb_cgroup_id,
4487         .gpl_only       = false,
4488         .ret_type       = RET_INTEGER,
4489         .arg1_type      = ARG_PTR_TO_CTX,
4490 };
4491
4492 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4493                                               int ancestor_level)
4494 {
4495         struct cgroup *ancestor;
4496         struct cgroup *cgrp;
4497
4498         sk = sk_to_full_sk(sk);
4499         if (!sk || !sk_fullsock(sk))
4500                 return 0;
4501
4502         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4503         ancestor = cgroup_ancestor(cgrp, ancestor_level);
4504         if (!ancestor)
4505                 return 0;
4506
4507         return cgroup_id(ancestor);
4508 }
4509
4510 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4511            ancestor_level)
4512 {
4513         return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4514 }
4515
4516 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4517         .func           = bpf_skb_ancestor_cgroup_id,
4518         .gpl_only       = false,
4519         .ret_type       = RET_INTEGER,
4520         .arg1_type      = ARG_PTR_TO_CTX,
4521         .arg2_type      = ARG_ANYTHING,
4522 };
4523
4524 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4525 {
4526         return __bpf_sk_cgroup_id(sk);
4527 }
4528
4529 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4530         .func           = bpf_sk_cgroup_id,
4531         .gpl_only       = false,
4532         .ret_type       = RET_INTEGER,
4533         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4534 };
4535
4536 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4537 {
4538         return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4539 }
4540
4541 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4542         .func           = bpf_sk_ancestor_cgroup_id,
4543         .gpl_only       = false,
4544         .ret_type       = RET_INTEGER,
4545         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4546         .arg2_type      = ARG_ANYTHING,
4547 };
4548 #endif
4549
4550 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4551                                   unsigned long off, unsigned long len)
4552 {
4553         memcpy(dst_buff, src_buff + off, len);
4554         return 0;
4555 }
4556
4557 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4558            u64, flags, void *, meta, u64, meta_size)
4559 {
4560         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4561
4562         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4563                 return -EINVAL;
4564         if (unlikely(!xdp ||
4565                      xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4566                 return -EFAULT;
4567
4568         return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4569                                 xdp_size, bpf_xdp_copy);
4570 }
4571
4572 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4573         .func           = bpf_xdp_event_output,
4574         .gpl_only       = true,
4575         .ret_type       = RET_INTEGER,
4576         .arg1_type      = ARG_PTR_TO_CTX,
4577         .arg2_type      = ARG_CONST_MAP_PTR,
4578         .arg3_type      = ARG_ANYTHING,
4579         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4580         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4581 };
4582
4583 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4584
4585 const struct bpf_func_proto bpf_xdp_output_proto = {
4586         .func           = bpf_xdp_event_output,
4587         .gpl_only       = true,
4588         .ret_type       = RET_INTEGER,
4589         .arg1_type      = ARG_PTR_TO_BTF_ID,
4590         .arg1_btf_id    = &bpf_xdp_output_btf_ids[0],
4591         .arg2_type      = ARG_CONST_MAP_PTR,
4592         .arg3_type      = ARG_ANYTHING,
4593         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4594         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4595 };
4596
4597 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4598 {
4599         return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4600 }
4601
4602 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4603         .func           = bpf_get_socket_cookie,
4604         .gpl_only       = false,
4605         .ret_type       = RET_INTEGER,
4606         .arg1_type      = ARG_PTR_TO_CTX,
4607 };
4608
4609 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4610 {
4611         return __sock_gen_cookie(ctx->sk);
4612 }
4613
4614 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4615         .func           = bpf_get_socket_cookie_sock_addr,
4616         .gpl_only       = false,
4617         .ret_type       = RET_INTEGER,
4618         .arg1_type      = ARG_PTR_TO_CTX,
4619 };
4620
4621 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4622 {
4623         return __sock_gen_cookie(ctx);
4624 }
4625
4626 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4627         .func           = bpf_get_socket_cookie_sock,
4628         .gpl_only       = false,
4629         .ret_type       = RET_INTEGER,
4630         .arg1_type      = ARG_PTR_TO_CTX,
4631 };
4632
4633 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4634 {
4635         return sk ? sock_gen_cookie(sk) : 0;
4636 }
4637
4638 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4639         .func           = bpf_get_socket_ptr_cookie,
4640         .gpl_only       = false,
4641         .ret_type       = RET_INTEGER,
4642         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4643 };
4644
4645 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4646 {
4647         return __sock_gen_cookie(ctx->sk);
4648 }
4649
4650 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4651         .func           = bpf_get_socket_cookie_sock_ops,
4652         .gpl_only       = false,
4653         .ret_type       = RET_INTEGER,
4654         .arg1_type      = ARG_PTR_TO_CTX,
4655 };
4656
4657 static u64 __bpf_get_netns_cookie(struct sock *sk)
4658 {
4659         const struct net *net = sk ? sock_net(sk) : &init_net;
4660
4661         return net->net_cookie;
4662 }
4663
4664 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4665 {
4666         return __bpf_get_netns_cookie(ctx);
4667 }
4668
4669 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4670         .func           = bpf_get_netns_cookie_sock,
4671         .gpl_only       = false,
4672         .ret_type       = RET_INTEGER,
4673         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4674 };
4675
4676 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4677 {
4678         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4679 }
4680
4681 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4682         .func           = bpf_get_netns_cookie_sock_addr,
4683         .gpl_only       = false,
4684         .ret_type       = RET_INTEGER,
4685         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4686 };
4687
4688 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4689 {
4690         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4691 }
4692
4693 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
4694         .func           = bpf_get_netns_cookie_sock_ops,
4695         .gpl_only       = false,
4696         .ret_type       = RET_INTEGER,
4697         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4698 };
4699
4700 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
4701 {
4702         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4703 }
4704
4705 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
4706         .func           = bpf_get_netns_cookie_sk_msg,
4707         .gpl_only       = false,
4708         .ret_type       = RET_INTEGER,
4709         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4710 };
4711
4712 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4713 {
4714         struct sock *sk = sk_to_full_sk(skb->sk);
4715         kuid_t kuid;
4716
4717         if (!sk || !sk_fullsock(sk))
4718                 return overflowuid;
4719         kuid = sock_net_uid(sock_net(sk), sk);
4720         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4721 }
4722
4723 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4724         .func           = bpf_get_socket_uid,
4725         .gpl_only       = false,
4726         .ret_type       = RET_INTEGER,
4727         .arg1_type      = ARG_PTR_TO_CTX,
4728 };
4729
4730 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
4731                            char *optval, int optlen)
4732 {
4733         char devname[IFNAMSIZ];
4734         int val, valbool;
4735         struct net *net;
4736         int ifindex;
4737         int ret = 0;
4738
4739         if (!sk_fullsock(sk))
4740                 return -EINVAL;
4741
4742         sock_owned_by_me(sk);
4743
4744         if (level == SOL_SOCKET) {
4745                 if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
4746                         return -EINVAL;
4747                 val = *((int *)optval);
4748                 valbool = val ? 1 : 0;
4749
4750                 /* Only some socketops are supported */
4751                 switch (optname) {
4752                 case SO_RCVBUF:
4753                         val = min_t(u32, val, READ_ONCE(sysctl_rmem_max));
4754                         val = min_t(int, val, INT_MAX / 2);
4755                         sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4756                         WRITE_ONCE(sk->sk_rcvbuf,
4757                                    max_t(int, val * 2, SOCK_MIN_RCVBUF));
4758                         break;
4759                 case SO_SNDBUF:
4760                         val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
4761                         val = min_t(int, val, INT_MAX / 2);
4762                         sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4763                         WRITE_ONCE(sk->sk_sndbuf,
4764                                    max_t(int, val * 2, SOCK_MIN_SNDBUF));
4765                         break;
4766                 case SO_MAX_PACING_RATE: /* 32bit version */
4767                         if (val != ~0U)
4768                                 cmpxchg(&sk->sk_pacing_status,
4769                                         SK_PACING_NONE,
4770                                         SK_PACING_NEEDED);
4771                         sk->sk_max_pacing_rate = (val == ~0U) ?
4772                                                  ~0UL : (unsigned int)val;
4773                         sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4774                                                  sk->sk_max_pacing_rate);
4775                         break;
4776                 case SO_PRIORITY:
4777                         sk->sk_priority = val;
4778                         break;
4779                 case SO_RCVLOWAT:
4780                         if (val < 0)
4781                                 val = INT_MAX;
4782                         WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4783                         break;
4784                 case SO_MARK:
4785                         if (sk->sk_mark != val) {
4786                                 sk->sk_mark = val;
4787                                 sk_dst_reset(sk);
4788                         }
4789                         break;
4790                 case SO_BINDTODEVICE:
4791                         optlen = min_t(long, optlen, IFNAMSIZ - 1);
4792                         strncpy(devname, optval, optlen);
4793                         devname[optlen] = 0;
4794
4795                         ifindex = 0;
4796                         if (devname[0] != '\0') {
4797                                 struct net_device *dev;
4798
4799                                 ret = -ENODEV;
4800
4801                                 net = sock_net(sk);
4802                                 dev = dev_get_by_name(net, devname);
4803                                 if (!dev)
4804                                         break;
4805                                 ifindex = dev->ifindex;
4806                                 dev_put(dev);
4807                         }
4808                         fallthrough;
4809                 case SO_BINDTOIFINDEX:
4810                         if (optname == SO_BINDTOIFINDEX)
4811                                 ifindex = val;
4812                         ret = sock_bindtoindex(sk, ifindex, false);
4813                         break;
4814                 case SO_KEEPALIVE:
4815                         if (sk->sk_prot->keepalive)
4816                                 sk->sk_prot->keepalive(sk, valbool);
4817                         sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
4818                         break;
4819                 case SO_REUSEPORT:
4820                         sk->sk_reuseport = valbool;
4821                         break;
4822                 default:
4823                         ret = -EINVAL;
4824                 }
4825 #ifdef CONFIG_INET
4826         } else if (level == SOL_IP) {
4827                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4828                         return -EINVAL;
4829
4830                 val = *((int *)optval);
4831                 /* Only some options are supported */
4832                 switch (optname) {
4833                 case IP_TOS:
4834                         if (val < -1 || val > 0xff) {
4835                                 ret = -EINVAL;
4836                         } else {
4837                                 struct inet_sock *inet = inet_sk(sk);
4838
4839                                 if (val == -1)
4840                                         val = 0;
4841                                 inet->tos = val;
4842                         }
4843                         break;
4844                 default:
4845                         ret = -EINVAL;
4846                 }
4847 #if IS_ENABLED(CONFIG_IPV6)
4848         } else if (level == SOL_IPV6) {
4849                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4850                         return -EINVAL;
4851
4852                 val = *((int *)optval);
4853                 /* Only some options are supported */
4854                 switch (optname) {
4855                 case IPV6_TCLASS:
4856                         if (val < -1 || val > 0xff) {
4857                                 ret = -EINVAL;
4858                         } else {
4859                                 struct ipv6_pinfo *np = inet6_sk(sk);
4860
4861                                 if (val == -1)
4862                                         val = 0;
4863                                 np->tclass = val;
4864                         }
4865                         break;
4866                 default:
4867                         ret = -EINVAL;
4868                 }
4869 #endif
4870         } else if (level == SOL_TCP &&
4871                    sk->sk_prot->setsockopt == tcp_setsockopt) {
4872                 if (optname == TCP_CONGESTION) {
4873                         char name[TCP_CA_NAME_MAX];
4874
4875                         strncpy(name, optval, min_t(long, optlen,
4876                                                     TCP_CA_NAME_MAX-1));
4877                         name[TCP_CA_NAME_MAX-1] = 0;
4878                         ret = tcp_set_congestion_control(sk, name, false, true);
4879                 } else {
4880                         struct inet_connection_sock *icsk = inet_csk(sk);
4881                         struct tcp_sock *tp = tcp_sk(sk);
4882                         unsigned long timeout;
4883
4884                         if (optlen != sizeof(int))
4885                                 return -EINVAL;
4886
4887                         val = *((int *)optval);
4888                         /* Only some options are supported */
4889                         switch (optname) {
4890                         case TCP_BPF_IW:
4891                                 if (val <= 0 || tp->data_segs_out > tp->syn_data)
4892                                         ret = -EINVAL;
4893                                 else
4894                                         tcp_snd_cwnd_set(tp, val);
4895                                 break;
4896                         case TCP_BPF_SNDCWND_CLAMP:
4897                                 if (val <= 0) {
4898                                         ret = -EINVAL;
4899                                 } else {
4900                                         tp->snd_cwnd_clamp = val;
4901                                         tp->snd_ssthresh = val;
4902                                 }
4903                                 break;
4904                         case TCP_BPF_DELACK_MAX:
4905                                 timeout = usecs_to_jiffies(val);
4906                                 if (timeout > TCP_DELACK_MAX ||
4907                                     timeout < TCP_TIMEOUT_MIN)
4908                                         return -EINVAL;
4909                                 inet_csk(sk)->icsk_delack_max = timeout;
4910                                 break;
4911                         case TCP_BPF_RTO_MIN:
4912                                 timeout = usecs_to_jiffies(val);
4913                                 if (timeout > TCP_RTO_MIN ||
4914                                     timeout < TCP_TIMEOUT_MIN)
4915                                         return -EINVAL;
4916                                 inet_csk(sk)->icsk_rto_min = timeout;
4917                                 break;
4918                         case TCP_SAVE_SYN:
4919                                 if (val < 0 || val > 1)
4920                                         ret = -EINVAL;
4921                                 else
4922                                         tp->save_syn = val;
4923                                 break;
4924                         case TCP_KEEPIDLE:
4925                                 ret = tcp_sock_set_keepidle_locked(sk, val);
4926                                 break;
4927                         case TCP_KEEPINTVL:
4928                                 if (val < 1 || val > MAX_TCP_KEEPINTVL)
4929                                         ret = -EINVAL;
4930                                 else
4931                                         tp->keepalive_intvl = val * HZ;
4932                                 break;
4933                         case TCP_KEEPCNT:
4934                                 if (val < 1 || val > MAX_TCP_KEEPCNT)
4935                                         ret = -EINVAL;
4936                                 else
4937                                         tp->keepalive_probes = val;
4938                                 break;
4939                         case TCP_SYNCNT:
4940                                 if (val < 1 || val > MAX_TCP_SYNCNT)
4941                                         ret = -EINVAL;
4942                                 else
4943                                         icsk->icsk_syn_retries = val;
4944                                 break;
4945                         case TCP_USER_TIMEOUT:
4946                                 if (val < 0)
4947                                         ret = -EINVAL;
4948                                 else
4949                                         icsk->icsk_user_timeout = val;
4950                                 break;
4951                         case TCP_NOTSENT_LOWAT:
4952                                 tp->notsent_lowat = val;
4953                                 sk->sk_write_space(sk);
4954                                 break;
4955                         case TCP_WINDOW_CLAMP:
4956                                 ret = tcp_set_window_clamp(sk, val);
4957                                 break;
4958                         default:
4959                                 ret = -EINVAL;
4960                         }
4961                 }
4962 #endif
4963         } else {
4964                 ret = -EINVAL;
4965         }
4966         return ret;
4967 }
4968
4969 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
4970                            char *optval, int optlen)
4971 {
4972         if (!sk_fullsock(sk))
4973                 goto err_clear;
4974
4975         sock_owned_by_me(sk);
4976
4977         if (level == SOL_SOCKET) {
4978                 if (optlen != sizeof(int))
4979                         goto err_clear;
4980
4981                 switch (optname) {
4982                 case SO_MARK:
4983                         *((int *)optval) = sk->sk_mark;
4984                         break;
4985                 case SO_PRIORITY:
4986                         *((int *)optval) = sk->sk_priority;
4987                         break;
4988                 case SO_BINDTOIFINDEX:
4989                         *((int *)optval) = sk->sk_bound_dev_if;
4990                         break;
4991                 case SO_REUSEPORT:
4992                         *((int *)optval) = sk->sk_reuseport;
4993                         break;
4994                 default:
4995                         goto err_clear;
4996                 }
4997 #ifdef CONFIG_INET
4998         } else if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4999                 struct inet_connection_sock *icsk;
5000                 struct tcp_sock *tp;
5001
5002                 switch (optname) {
5003                 case TCP_CONGESTION:
5004                         icsk = inet_csk(sk);
5005
5006                         if (!icsk->icsk_ca_ops || optlen <= 1)
5007                                 goto err_clear;
5008                         strncpy(optval, icsk->icsk_ca_ops->name, optlen);
5009                         optval[optlen - 1] = 0;
5010                         break;
5011                 case TCP_SAVED_SYN:
5012                         tp = tcp_sk(sk);
5013
5014                         if (optlen <= 0 || !tp->saved_syn ||
5015                             optlen > tcp_saved_syn_len(tp->saved_syn))
5016                                 goto err_clear;
5017                         memcpy(optval, tp->saved_syn->data, optlen);
5018                         break;
5019                 default:
5020                         goto err_clear;
5021                 }
5022         } else if (level == SOL_IP) {
5023                 struct inet_sock *inet = inet_sk(sk);
5024
5025                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
5026                         goto err_clear;
5027
5028                 /* Only some options are supported */
5029                 switch (optname) {
5030                 case IP_TOS:
5031                         *((int *)optval) = (int)inet->tos;
5032                         break;
5033                 default:
5034                         goto err_clear;
5035                 }
5036 #if IS_ENABLED(CONFIG_IPV6)
5037         } else if (level == SOL_IPV6) {
5038                 struct ipv6_pinfo *np = inet6_sk(sk);
5039
5040                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
5041                         goto err_clear;
5042
5043                 /* Only some options are supported */
5044                 switch (optname) {
5045                 case IPV6_TCLASS:
5046                         *((int *)optval) = (int)np->tclass;
5047                         break;
5048                 default:
5049                         goto err_clear;
5050                 }
5051 #endif
5052 #endif
5053         } else {
5054                 goto err_clear;
5055         }
5056         return 0;
5057 err_clear:
5058         memset(optval, 0, optlen);
5059         return -EINVAL;
5060 }
5061
5062 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5063            int, optname, char *, optval, int, optlen)
5064 {
5065         if (level == SOL_TCP && optname == TCP_CONGESTION) {
5066                 if (optlen >= sizeof("cdg") - 1 &&
5067                     !strncmp("cdg", optval, optlen))
5068                         return -ENOTSUPP;
5069         }
5070
5071         return _bpf_setsockopt(sk, level, optname, optval, optlen);
5072 }
5073
5074 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5075         .func           = bpf_sk_setsockopt,
5076         .gpl_only       = false,
5077         .ret_type       = RET_INTEGER,
5078         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5079         .arg2_type      = ARG_ANYTHING,
5080         .arg3_type      = ARG_ANYTHING,
5081         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5082         .arg5_type      = ARG_CONST_SIZE,
5083 };
5084
5085 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5086            int, optname, char *, optval, int, optlen)
5087 {
5088         return _bpf_getsockopt(sk, level, optname, optval, optlen);
5089 }
5090
5091 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5092         .func           = bpf_sk_getsockopt,
5093         .gpl_only       = false,
5094         .ret_type       = RET_INTEGER,
5095         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5096         .arg2_type      = ARG_ANYTHING,
5097         .arg3_type      = ARG_ANYTHING,
5098         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5099         .arg5_type      = ARG_CONST_SIZE,
5100 };
5101
5102 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5103            int, level, int, optname, char *, optval, int, optlen)
5104 {
5105         return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5106 }
5107
5108 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5109         .func           = bpf_sock_addr_setsockopt,
5110         .gpl_only       = false,
5111         .ret_type       = RET_INTEGER,
5112         .arg1_type      = ARG_PTR_TO_CTX,
5113         .arg2_type      = ARG_ANYTHING,
5114         .arg3_type      = ARG_ANYTHING,
5115         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5116         .arg5_type      = ARG_CONST_SIZE,
5117 };
5118
5119 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5120            int, level, int, optname, char *, optval, int, optlen)
5121 {
5122         return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5123 }
5124
5125 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5126         .func           = bpf_sock_addr_getsockopt,
5127         .gpl_only       = false,
5128         .ret_type       = RET_INTEGER,
5129         .arg1_type      = ARG_PTR_TO_CTX,
5130         .arg2_type      = ARG_ANYTHING,
5131         .arg3_type      = ARG_ANYTHING,
5132         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5133         .arg5_type      = ARG_CONST_SIZE,
5134 };
5135
5136 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5137            int, level, int, optname, char *, optval, int, optlen)
5138 {
5139         return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5140 }
5141
5142 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5143         .func           = bpf_sock_ops_setsockopt,
5144         .gpl_only       = false,
5145         .ret_type       = RET_INTEGER,
5146         .arg1_type      = ARG_PTR_TO_CTX,
5147         .arg2_type      = ARG_ANYTHING,
5148         .arg3_type      = ARG_ANYTHING,
5149         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5150         .arg5_type      = ARG_CONST_SIZE,
5151 };
5152
5153 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5154                                 int optname, const u8 **start)
5155 {
5156         struct sk_buff *syn_skb = bpf_sock->syn_skb;
5157         const u8 *hdr_start;
5158         int ret;
5159
5160         if (syn_skb) {
5161                 /* sk is a request_sock here */
5162
5163                 if (optname == TCP_BPF_SYN) {
5164                         hdr_start = syn_skb->data;
5165                         ret = tcp_hdrlen(syn_skb);
5166                 } else if (optname == TCP_BPF_SYN_IP) {
5167                         hdr_start = skb_network_header(syn_skb);
5168                         ret = skb_network_header_len(syn_skb) +
5169                                 tcp_hdrlen(syn_skb);
5170                 } else {
5171                         /* optname == TCP_BPF_SYN_MAC */
5172                         hdr_start = skb_mac_header(syn_skb);
5173                         ret = skb_mac_header_len(syn_skb) +
5174                                 skb_network_header_len(syn_skb) +
5175                                 tcp_hdrlen(syn_skb);
5176                 }
5177         } else {
5178                 struct sock *sk = bpf_sock->sk;
5179                 struct saved_syn *saved_syn;
5180
5181                 if (sk->sk_state == TCP_NEW_SYN_RECV)
5182                         /* synack retransmit. bpf_sock->syn_skb will
5183                          * not be available.  It has to resort to
5184                          * saved_syn (if it is saved).
5185                          */
5186                         saved_syn = inet_reqsk(sk)->saved_syn;
5187                 else
5188                         saved_syn = tcp_sk(sk)->saved_syn;
5189
5190                 if (!saved_syn)
5191                         return -ENOENT;
5192
5193                 if (optname == TCP_BPF_SYN) {
5194                         hdr_start = saved_syn->data +
5195                                 saved_syn->mac_hdrlen +
5196                                 saved_syn->network_hdrlen;
5197                         ret = saved_syn->tcp_hdrlen;
5198                 } else if (optname == TCP_BPF_SYN_IP) {
5199                         hdr_start = saved_syn->data +
5200                                 saved_syn->mac_hdrlen;
5201                         ret = saved_syn->network_hdrlen +
5202                                 saved_syn->tcp_hdrlen;
5203                 } else {
5204                         /* optname == TCP_BPF_SYN_MAC */
5205
5206                         /* TCP_SAVE_SYN may not have saved the mac hdr */
5207                         if (!saved_syn->mac_hdrlen)
5208                                 return -ENOENT;
5209
5210                         hdr_start = saved_syn->data;
5211                         ret = saved_syn->mac_hdrlen +
5212                                 saved_syn->network_hdrlen +
5213                                 saved_syn->tcp_hdrlen;
5214                 }
5215         }
5216
5217         *start = hdr_start;
5218         return ret;
5219 }
5220
5221 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5222            int, level, int, optname, char *, optval, int, optlen)
5223 {
5224         if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5225             optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5226                 int ret, copy_len = 0;
5227                 const u8 *start;
5228
5229                 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5230                 if (ret > 0) {
5231                         copy_len = ret;
5232                         if (optlen < copy_len) {
5233                                 copy_len = optlen;
5234                                 ret = -ENOSPC;
5235                         }
5236
5237                         memcpy(optval, start, copy_len);
5238                 }
5239
5240                 /* Zero out unused buffer at the end */
5241                 memset(optval + copy_len, 0, optlen - copy_len);
5242
5243                 return ret;
5244         }
5245
5246         return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5247 }
5248
5249 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5250         .func           = bpf_sock_ops_getsockopt,
5251         .gpl_only       = false,
5252         .ret_type       = RET_INTEGER,
5253         .arg1_type      = ARG_PTR_TO_CTX,
5254         .arg2_type      = ARG_ANYTHING,
5255         .arg3_type      = ARG_ANYTHING,
5256         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5257         .arg5_type      = ARG_CONST_SIZE,
5258 };
5259
5260 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5261            int, argval)
5262 {
5263         struct sock *sk = bpf_sock->sk;
5264         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5265
5266         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5267                 return -EINVAL;
5268
5269         tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5270
5271         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5272 }
5273
5274 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5275         .func           = bpf_sock_ops_cb_flags_set,
5276         .gpl_only       = false,
5277         .ret_type       = RET_INTEGER,
5278         .arg1_type      = ARG_PTR_TO_CTX,
5279         .arg2_type      = ARG_ANYTHING,
5280 };
5281
5282 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5283 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5284
5285 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5286            int, addr_len)
5287 {
5288 #ifdef CONFIG_INET
5289         struct sock *sk = ctx->sk;
5290         u32 flags = BIND_FROM_BPF;
5291         int err;
5292
5293         err = -EINVAL;
5294         if (addr_len < offsetofend(struct sockaddr, sa_family))
5295                 return err;
5296         if (addr->sa_family == AF_INET) {
5297                 if (addr_len < sizeof(struct sockaddr_in))
5298                         return err;
5299                 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5300                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5301                 return __inet_bind(sk, addr, addr_len, flags);
5302 #if IS_ENABLED(CONFIG_IPV6)
5303         } else if (addr->sa_family == AF_INET6) {
5304                 if (addr_len < SIN6_LEN_RFC2133)
5305                         return err;
5306                 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5307                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5308                 /* ipv6_bpf_stub cannot be NULL, since it's called from
5309                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5310                  */
5311                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5312 #endif /* CONFIG_IPV6 */
5313         }
5314 #endif /* CONFIG_INET */
5315
5316         return -EAFNOSUPPORT;
5317 }
5318
5319 static const struct bpf_func_proto bpf_bind_proto = {
5320         .func           = bpf_bind,
5321         .gpl_only       = false,
5322         .ret_type       = RET_INTEGER,
5323         .arg1_type      = ARG_PTR_TO_CTX,
5324         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5325         .arg3_type      = ARG_CONST_SIZE,
5326 };
5327
5328 #ifdef CONFIG_XFRM
5329 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5330            struct bpf_xfrm_state *, to, u32, size, u64, flags)
5331 {
5332         const struct sec_path *sp = skb_sec_path(skb);
5333         const struct xfrm_state *x;
5334
5335         if (!sp || unlikely(index >= sp->len || flags))
5336                 goto err_clear;
5337
5338         x = sp->xvec[index];
5339
5340         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5341                 goto err_clear;
5342
5343         to->reqid = x->props.reqid;
5344         to->spi = x->id.spi;
5345         to->family = x->props.family;
5346         to->ext = 0;
5347
5348         if (to->family == AF_INET6) {
5349                 memcpy(to->remote_ipv6, x->props.saddr.a6,
5350                        sizeof(to->remote_ipv6));
5351         } else {
5352                 to->remote_ipv4 = x->props.saddr.a4;
5353                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5354         }
5355
5356         return 0;
5357 err_clear:
5358         memset(to, 0, size);
5359         return -EINVAL;
5360 }
5361
5362 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5363         .func           = bpf_skb_get_xfrm_state,
5364         .gpl_only       = false,
5365         .ret_type       = RET_INTEGER,
5366         .arg1_type      = ARG_PTR_TO_CTX,
5367         .arg2_type      = ARG_ANYTHING,
5368         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
5369         .arg4_type      = ARG_CONST_SIZE,
5370         .arg5_type      = ARG_ANYTHING,
5371 };
5372 #endif
5373
5374 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5375 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5376                                   const struct neighbour *neigh,
5377                                   const struct net_device *dev, u32 mtu)
5378 {
5379         memcpy(params->dmac, neigh->ha, ETH_ALEN);
5380         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5381         params->h_vlan_TCI = 0;
5382         params->h_vlan_proto = 0;
5383         if (mtu)
5384                 params->mtu_result = mtu; /* union with tot_len */
5385
5386         return 0;
5387 }
5388 #endif
5389
5390 #if IS_ENABLED(CONFIG_INET)
5391 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5392                                u32 flags, bool check_mtu)
5393 {
5394         struct fib_nh_common *nhc;
5395         struct in_device *in_dev;
5396         struct neighbour *neigh;
5397         struct net_device *dev;
5398         struct fib_result res;
5399         struct flowi4 fl4;
5400         u32 mtu = 0;
5401         int err;
5402
5403         dev = dev_get_by_index_rcu(net, params->ifindex);
5404         if (unlikely(!dev))
5405                 return -ENODEV;
5406
5407         /* verify forwarding is enabled on this interface */
5408         in_dev = __in_dev_get_rcu(dev);
5409         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5410                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5411
5412         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5413                 fl4.flowi4_iif = 1;
5414                 fl4.flowi4_oif = params->ifindex;
5415         } else {
5416                 fl4.flowi4_iif = params->ifindex;
5417                 fl4.flowi4_oif = 0;
5418         }
5419         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5420         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5421         fl4.flowi4_flags = 0;
5422
5423         fl4.flowi4_proto = params->l4_protocol;
5424         fl4.daddr = params->ipv4_dst;
5425         fl4.saddr = params->ipv4_src;
5426         fl4.fl4_sport = params->sport;
5427         fl4.fl4_dport = params->dport;
5428         fl4.flowi4_multipath_hash = 0;
5429
5430         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5431                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5432                 struct fib_table *tb;
5433
5434                 tb = fib_get_table(net, tbid);
5435                 if (unlikely(!tb))
5436                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5437
5438                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5439         } else {
5440                 fl4.flowi4_mark = 0;
5441                 fl4.flowi4_secid = 0;
5442                 fl4.flowi4_tun_key.tun_id = 0;
5443                 fl4.flowi4_uid = sock_net_uid(net, NULL);
5444
5445                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5446         }
5447
5448         if (err) {
5449                 /* map fib lookup errors to RTN_ type */
5450                 if (err == -EINVAL)
5451                         return BPF_FIB_LKUP_RET_BLACKHOLE;
5452                 if (err == -EHOSTUNREACH)
5453                         return BPF_FIB_LKUP_RET_UNREACHABLE;
5454                 if (err == -EACCES)
5455                         return BPF_FIB_LKUP_RET_PROHIBIT;
5456
5457                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5458         }
5459
5460         if (res.type != RTN_UNICAST)
5461                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5462
5463         if (fib_info_num_path(res.fi) > 1)
5464                 fib_select_path(net, &res, &fl4, NULL);
5465
5466         if (check_mtu) {
5467                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5468                 if (params->tot_len > mtu) {
5469                         params->mtu_result = mtu; /* union with tot_len */
5470                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5471                 }
5472         }
5473
5474         nhc = res.nhc;
5475
5476         /* do not handle lwt encaps right now */
5477         if (nhc->nhc_lwtstate)
5478                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5479
5480         dev = nhc->nhc_dev;
5481
5482         params->rt_metric = res.fi->fib_priority;
5483         params->ifindex = dev->ifindex;
5484
5485         /* xdp and cls_bpf programs are run in RCU-bh so
5486          * rcu_read_lock_bh is not needed here
5487          */
5488         if (likely(nhc->nhc_gw_family != AF_INET6)) {
5489                 if (nhc->nhc_gw_family)
5490                         params->ipv4_dst = nhc->nhc_gw.ipv4;
5491
5492                 neigh = __ipv4_neigh_lookup_noref(dev,
5493                                                  (__force u32)params->ipv4_dst);
5494         } else {
5495                 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5496
5497                 params->family = AF_INET6;
5498                 *dst = nhc->nhc_gw.ipv6;
5499                 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5500         }
5501
5502         if (!neigh)
5503                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5504
5505         return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5506 }
5507 #endif
5508
5509 #if IS_ENABLED(CONFIG_IPV6)
5510 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5511                                u32 flags, bool check_mtu)
5512 {
5513         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5514         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5515         struct fib6_result res = {};
5516         struct neighbour *neigh;
5517         struct net_device *dev;
5518         struct inet6_dev *idev;
5519         struct flowi6 fl6;
5520         int strict = 0;
5521         int oif, err;
5522         u32 mtu = 0;
5523
5524         /* link local addresses are never forwarded */
5525         if (rt6_need_strict(dst) || rt6_need_strict(src))
5526                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5527
5528         dev = dev_get_by_index_rcu(net, params->ifindex);
5529         if (unlikely(!dev))
5530                 return -ENODEV;
5531
5532         idev = __in6_dev_get_safely(dev);
5533         if (unlikely(!idev || !idev->cnf.forwarding))
5534                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5535
5536         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5537                 fl6.flowi6_iif = 1;
5538                 oif = fl6.flowi6_oif = params->ifindex;
5539         } else {
5540                 oif = fl6.flowi6_iif = params->ifindex;
5541                 fl6.flowi6_oif = 0;
5542                 strict = RT6_LOOKUP_F_HAS_SADDR;
5543         }
5544         fl6.flowlabel = params->flowinfo;
5545         fl6.flowi6_scope = 0;
5546         fl6.flowi6_flags = 0;
5547         fl6.mp_hash = 0;
5548
5549         fl6.flowi6_proto = params->l4_protocol;
5550         fl6.daddr = *dst;
5551         fl6.saddr = *src;
5552         fl6.fl6_sport = params->sport;
5553         fl6.fl6_dport = params->dport;
5554
5555         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5556                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5557                 struct fib6_table *tb;
5558
5559                 tb = ipv6_stub->fib6_get_table(net, tbid);
5560                 if (unlikely(!tb))
5561                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5562
5563                 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5564                                                    strict);
5565         } else {
5566                 fl6.flowi6_mark = 0;
5567                 fl6.flowi6_secid = 0;
5568                 fl6.flowi6_tun_key.tun_id = 0;
5569                 fl6.flowi6_uid = sock_net_uid(net, NULL);
5570
5571                 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5572         }
5573
5574         if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5575                      res.f6i == net->ipv6.fib6_null_entry))
5576                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5577
5578         switch (res.fib6_type) {
5579         /* only unicast is forwarded */
5580         case RTN_UNICAST:
5581                 break;
5582         case RTN_BLACKHOLE:
5583                 return BPF_FIB_LKUP_RET_BLACKHOLE;
5584         case RTN_UNREACHABLE:
5585                 return BPF_FIB_LKUP_RET_UNREACHABLE;
5586         case RTN_PROHIBIT:
5587                 return BPF_FIB_LKUP_RET_PROHIBIT;
5588         default:
5589                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5590         }
5591
5592         ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5593                                     fl6.flowi6_oif != 0, NULL, strict);
5594
5595         if (check_mtu) {
5596                 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5597                 if (params->tot_len > mtu) {
5598                         params->mtu_result = mtu; /* union with tot_len */
5599                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5600                 }
5601         }
5602
5603         if (res.nh->fib_nh_lws)
5604                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5605
5606         if (res.nh->fib_nh_gw_family)
5607                 *dst = res.nh->fib_nh_gw6;
5608
5609         dev = res.nh->fib_nh_dev;
5610         params->rt_metric = res.f6i->fib6_metric;
5611         params->ifindex = dev->ifindex;
5612
5613         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5614          * not needed here.
5615          */
5616         neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5617         if (!neigh)
5618                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5619
5620         return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5621 }
5622 #endif
5623
5624 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5625            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5626 {
5627         if (plen < sizeof(*params))
5628                 return -EINVAL;
5629
5630         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5631                 return -EINVAL;
5632
5633         switch (params->family) {
5634 #if IS_ENABLED(CONFIG_INET)
5635         case AF_INET:
5636                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5637                                            flags, true);
5638 #endif
5639 #if IS_ENABLED(CONFIG_IPV6)
5640         case AF_INET6:
5641                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5642                                            flags, true);
5643 #endif
5644         }
5645         return -EAFNOSUPPORT;
5646 }
5647
5648 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5649         .func           = bpf_xdp_fib_lookup,
5650         .gpl_only       = true,
5651         .ret_type       = RET_INTEGER,
5652         .arg1_type      = ARG_PTR_TO_CTX,
5653         .arg2_type      = ARG_PTR_TO_MEM,
5654         .arg3_type      = ARG_CONST_SIZE,
5655         .arg4_type      = ARG_ANYTHING,
5656 };
5657
5658 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5659            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5660 {
5661         struct net *net = dev_net(skb->dev);
5662         int rc = -EAFNOSUPPORT;
5663         bool check_mtu = false;
5664
5665         if (plen < sizeof(*params))
5666                 return -EINVAL;
5667
5668         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5669                 return -EINVAL;
5670
5671         if (params->tot_len)
5672                 check_mtu = true;
5673
5674         switch (params->family) {
5675 #if IS_ENABLED(CONFIG_INET)
5676         case AF_INET:
5677                 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5678                 break;
5679 #endif
5680 #if IS_ENABLED(CONFIG_IPV6)
5681         case AF_INET6:
5682                 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5683                 break;
5684 #endif
5685         }
5686
5687         if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
5688                 struct net_device *dev;
5689
5690                 /* When tot_len isn't provided by user, check skb
5691                  * against MTU of FIB lookup resulting net_device
5692                  */
5693                 dev = dev_get_by_index_rcu(net, params->ifindex);
5694                 if (!is_skb_forwardable(dev, skb))
5695                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5696
5697                 params->mtu_result = dev->mtu; /* union with tot_len */
5698         }
5699
5700         return rc;
5701 }
5702
5703 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5704         .func           = bpf_skb_fib_lookup,
5705         .gpl_only       = true,
5706         .ret_type       = RET_INTEGER,
5707         .arg1_type      = ARG_PTR_TO_CTX,
5708         .arg2_type      = ARG_PTR_TO_MEM,
5709         .arg3_type      = ARG_CONST_SIZE,
5710         .arg4_type      = ARG_ANYTHING,
5711 };
5712
5713 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
5714                                             u32 ifindex)
5715 {
5716         struct net *netns = dev_net(dev_curr);
5717
5718         /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
5719         if (ifindex == 0)
5720                 return dev_curr;
5721
5722         return dev_get_by_index_rcu(netns, ifindex);
5723 }
5724
5725 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
5726            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5727 {
5728         int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5729         struct net_device *dev = skb->dev;
5730         int skb_len, dev_len;
5731         int mtu;
5732
5733         if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
5734                 return -EINVAL;
5735
5736         if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
5737                 return -EINVAL;
5738
5739         dev = __dev_via_ifindex(dev, ifindex);
5740         if (unlikely(!dev))
5741                 return -ENODEV;
5742
5743         mtu = READ_ONCE(dev->mtu);
5744
5745         dev_len = mtu + dev->hard_header_len;
5746
5747         /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
5748         skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
5749
5750         skb_len += len_diff; /* minus result pass check */
5751         if (skb_len <= dev_len) {
5752                 ret = BPF_MTU_CHK_RET_SUCCESS;
5753                 goto out;
5754         }
5755         /* At this point, skb->len exceed MTU, but as it include length of all
5756          * segments, it can still be below MTU.  The SKB can possibly get
5757          * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
5758          * must choose if segs are to be MTU checked.
5759          */
5760         if (skb_is_gso(skb)) {
5761                 ret = BPF_MTU_CHK_RET_SUCCESS;
5762
5763                 if (flags & BPF_MTU_CHK_SEGS &&
5764                     !skb_gso_validate_network_len(skb, mtu))
5765                         ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
5766         }
5767 out:
5768         /* BPF verifier guarantees valid pointer */
5769         *mtu_len = mtu;
5770
5771         return ret;
5772 }
5773
5774 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
5775            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5776 {
5777         struct net_device *dev = xdp->rxq->dev;
5778         int xdp_len = xdp->data_end - xdp->data;
5779         int ret = BPF_MTU_CHK_RET_SUCCESS;
5780         int mtu, dev_len;
5781
5782         /* XDP variant doesn't support multi-buffer segment check (yet) */
5783         if (unlikely(flags))
5784                 return -EINVAL;
5785
5786         dev = __dev_via_ifindex(dev, ifindex);
5787         if (unlikely(!dev))
5788                 return -ENODEV;
5789
5790         mtu = READ_ONCE(dev->mtu);
5791
5792         /* Add L2-header as dev MTU is L3 size */
5793         dev_len = mtu + dev->hard_header_len;
5794
5795         /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
5796         if (*mtu_len)
5797                 xdp_len = *mtu_len + dev->hard_header_len;
5798
5799         xdp_len += len_diff; /* minus result pass check */
5800         if (xdp_len > dev_len)
5801                 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5802
5803         /* BPF verifier guarantees valid pointer */
5804         *mtu_len = mtu;
5805
5806         return ret;
5807 }
5808
5809 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
5810         .func           = bpf_skb_check_mtu,
5811         .gpl_only       = true,
5812         .ret_type       = RET_INTEGER,
5813         .arg1_type      = ARG_PTR_TO_CTX,
5814         .arg2_type      = ARG_ANYTHING,
5815         .arg3_type      = ARG_PTR_TO_INT,
5816         .arg4_type      = ARG_ANYTHING,
5817         .arg5_type      = ARG_ANYTHING,
5818 };
5819
5820 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
5821         .func           = bpf_xdp_check_mtu,
5822         .gpl_only       = true,
5823         .ret_type       = RET_INTEGER,
5824         .arg1_type      = ARG_PTR_TO_CTX,
5825         .arg2_type      = ARG_ANYTHING,
5826         .arg3_type      = ARG_PTR_TO_INT,
5827         .arg4_type      = ARG_ANYTHING,
5828         .arg5_type      = ARG_ANYTHING,
5829 };
5830
5831 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5832 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
5833 {
5834         int err;
5835         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
5836
5837         if (!seg6_validate_srh(srh, len, false))
5838                 return -EINVAL;
5839
5840         switch (type) {
5841         case BPF_LWT_ENCAP_SEG6_INLINE:
5842                 if (skb->protocol != htons(ETH_P_IPV6))
5843                         return -EBADMSG;
5844
5845                 err = seg6_do_srh_inline(skb, srh);
5846                 break;
5847         case BPF_LWT_ENCAP_SEG6:
5848                 skb_reset_inner_headers(skb);
5849                 skb->encapsulation = 1;
5850                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
5851                 break;
5852         default:
5853                 return -EINVAL;
5854         }
5855
5856         bpf_compute_data_pointers(skb);
5857         if (err)
5858                 return err;
5859
5860         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
5861
5862         return seg6_lookup_nexthop(skb, NULL, 0);
5863 }
5864 #endif /* CONFIG_IPV6_SEG6_BPF */
5865
5866 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5867 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
5868                              bool ingress)
5869 {
5870         return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
5871 }
5872 #endif
5873
5874 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
5875            u32, len)
5876 {
5877         switch (type) {
5878 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5879         case BPF_LWT_ENCAP_SEG6:
5880         case BPF_LWT_ENCAP_SEG6_INLINE:
5881                 return bpf_push_seg6_encap(skb, type, hdr, len);
5882 #endif
5883 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5884         case BPF_LWT_ENCAP_IP:
5885                 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
5886 #endif
5887         default:
5888                 return -EINVAL;
5889         }
5890 }
5891
5892 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
5893            void *, hdr, u32, len)
5894 {
5895         switch (type) {
5896 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5897         case BPF_LWT_ENCAP_IP:
5898                 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5899 #endif
5900         default:
5901                 return -EINVAL;
5902         }
5903 }
5904
5905 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5906         .func           = bpf_lwt_in_push_encap,
5907         .gpl_only       = false,
5908         .ret_type       = RET_INTEGER,
5909         .arg1_type      = ARG_PTR_TO_CTX,
5910         .arg2_type      = ARG_ANYTHING,
5911         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5912         .arg4_type      = ARG_CONST_SIZE
5913 };
5914
5915 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5916         .func           = bpf_lwt_xmit_push_encap,
5917         .gpl_only       = false,
5918         .ret_type       = RET_INTEGER,
5919         .arg1_type      = ARG_PTR_TO_CTX,
5920         .arg2_type      = ARG_ANYTHING,
5921         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5922         .arg4_type      = ARG_CONST_SIZE
5923 };
5924
5925 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5926 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5927            const void *, from, u32, len)
5928 {
5929         struct seg6_bpf_srh_state *srh_state =
5930                 this_cpu_ptr(&seg6_bpf_srh_states);
5931         struct ipv6_sr_hdr *srh = srh_state->srh;
5932         void *srh_tlvs, *srh_end, *ptr;
5933         int srhoff = 0;
5934
5935         if (srh == NULL)
5936                 return -EINVAL;
5937
5938         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5939         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5940
5941         ptr = skb->data + offset;
5942         if (ptr >= srh_tlvs && ptr + len <= srh_end)
5943                 srh_state->valid = false;
5944         else if (ptr < (void *)&srh->flags ||
5945                  ptr + len > (void *)&srh->segments)
5946                 return -EFAULT;
5947
5948         if (unlikely(bpf_try_make_writable(skb, offset + len)))
5949                 return -EFAULT;
5950         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5951                 return -EINVAL;
5952         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5953
5954         memcpy(skb->data + offset, from, len);
5955         return 0;
5956 }
5957
5958 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5959         .func           = bpf_lwt_seg6_store_bytes,
5960         .gpl_only       = false,
5961         .ret_type       = RET_INTEGER,
5962         .arg1_type      = ARG_PTR_TO_CTX,
5963         .arg2_type      = ARG_ANYTHING,
5964         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5965         .arg4_type      = ARG_CONST_SIZE
5966 };
5967
5968 static void bpf_update_srh_state(struct sk_buff *skb)
5969 {
5970         struct seg6_bpf_srh_state *srh_state =
5971                 this_cpu_ptr(&seg6_bpf_srh_states);
5972         int srhoff = 0;
5973
5974         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5975                 srh_state->srh = NULL;
5976         } else {
5977                 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5978                 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5979                 srh_state->valid = true;
5980         }
5981 }
5982
5983 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5984            u32, action, void *, param, u32, param_len)
5985 {
5986         struct seg6_bpf_srh_state *srh_state =
5987                 this_cpu_ptr(&seg6_bpf_srh_states);
5988         int hdroff = 0;
5989         int err;
5990
5991         switch (action) {
5992         case SEG6_LOCAL_ACTION_END_X:
5993                 if (!seg6_bpf_has_valid_srh(skb))
5994                         return -EBADMSG;
5995                 if (param_len != sizeof(struct in6_addr))
5996                         return -EINVAL;
5997                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5998         case SEG6_LOCAL_ACTION_END_T:
5999                 if (!seg6_bpf_has_valid_srh(skb))
6000                         return -EBADMSG;
6001                 if (param_len != sizeof(int))
6002                         return -EINVAL;
6003                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6004         case SEG6_LOCAL_ACTION_END_DT6:
6005                 if (!seg6_bpf_has_valid_srh(skb))
6006                         return -EBADMSG;
6007                 if (param_len != sizeof(int))
6008                         return -EINVAL;
6009
6010                 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6011                         return -EBADMSG;
6012                 if (!pskb_pull(skb, hdroff))
6013                         return -EBADMSG;
6014
6015                 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6016                 skb_reset_network_header(skb);
6017                 skb_reset_transport_header(skb);
6018                 skb->encapsulation = 0;
6019
6020                 bpf_compute_data_pointers(skb);
6021                 bpf_update_srh_state(skb);
6022                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6023         case SEG6_LOCAL_ACTION_END_B6:
6024                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6025                         return -EBADMSG;
6026                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6027                                           param, param_len);
6028                 if (!err)
6029                         bpf_update_srh_state(skb);
6030
6031                 return err;
6032         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6033                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6034                         return -EBADMSG;
6035                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6036                                           param, param_len);
6037                 if (!err)
6038                         bpf_update_srh_state(skb);
6039
6040                 return err;
6041         default:
6042                 return -EINVAL;
6043         }
6044 }
6045
6046 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6047         .func           = bpf_lwt_seg6_action,
6048         .gpl_only       = false,
6049         .ret_type       = RET_INTEGER,
6050         .arg1_type      = ARG_PTR_TO_CTX,
6051         .arg2_type      = ARG_ANYTHING,
6052         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6053         .arg4_type      = ARG_CONST_SIZE
6054 };
6055
6056 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6057            s32, len)
6058 {
6059         struct seg6_bpf_srh_state *srh_state =
6060                 this_cpu_ptr(&seg6_bpf_srh_states);
6061         struct ipv6_sr_hdr *srh = srh_state->srh;
6062         void *srh_end, *srh_tlvs, *ptr;
6063         struct ipv6hdr *hdr;
6064         int srhoff = 0;
6065         int ret;
6066
6067         if (unlikely(srh == NULL))
6068                 return -EINVAL;
6069
6070         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6071                         ((srh->first_segment + 1) << 4));
6072         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6073                         srh_state->hdrlen);
6074         ptr = skb->data + offset;
6075
6076         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6077                 return -EFAULT;
6078         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6079                 return -EFAULT;
6080
6081         if (len > 0) {
6082                 ret = skb_cow_head(skb, len);
6083                 if (unlikely(ret < 0))
6084                         return ret;
6085
6086                 ret = bpf_skb_net_hdr_push(skb, offset, len);
6087         } else {
6088                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6089         }
6090
6091         bpf_compute_data_pointers(skb);
6092         if (unlikely(ret < 0))
6093                 return ret;
6094
6095         hdr = (struct ipv6hdr *)skb->data;
6096         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6097
6098         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6099                 return -EINVAL;
6100         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6101         srh_state->hdrlen += len;
6102         srh_state->valid = false;
6103         return 0;
6104 }
6105
6106 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6107         .func           = bpf_lwt_seg6_adjust_srh,
6108         .gpl_only       = false,
6109         .ret_type       = RET_INTEGER,
6110         .arg1_type      = ARG_PTR_TO_CTX,
6111         .arg2_type      = ARG_ANYTHING,
6112         .arg3_type      = ARG_ANYTHING,
6113 };
6114 #endif /* CONFIG_IPV6_SEG6_BPF */
6115
6116 #ifdef CONFIG_INET
6117 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6118                               int dif, int sdif, u8 family, u8 proto)
6119 {
6120         bool refcounted = false;
6121         struct sock *sk = NULL;
6122
6123         if (family == AF_INET) {
6124                 __be32 src4 = tuple->ipv4.saddr;
6125                 __be32 dst4 = tuple->ipv4.daddr;
6126
6127                 if (proto == IPPROTO_TCP)
6128                         sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
6129                                            src4, tuple->ipv4.sport,
6130                                            dst4, tuple->ipv4.dport,
6131                                            dif, sdif, &refcounted);
6132                 else
6133                         sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6134                                                dst4, tuple->ipv4.dport,
6135                                                dif, sdif, &udp_table, NULL);
6136 #if IS_ENABLED(CONFIG_IPV6)
6137         } else {
6138                 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6139                 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6140
6141                 if (proto == IPPROTO_TCP)
6142                         sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
6143                                             src6, tuple->ipv6.sport,
6144                                             dst6, ntohs(tuple->ipv6.dport),
6145                                             dif, sdif, &refcounted);
6146                 else if (likely(ipv6_bpf_stub))
6147                         sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6148                                                             src6, tuple->ipv6.sport,
6149                                                             dst6, tuple->ipv6.dport,
6150                                                             dif, sdif,
6151                                                             &udp_table, NULL);
6152 #endif
6153         }
6154
6155         if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6156                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6157                 sk = NULL;
6158         }
6159         return sk;
6160 }
6161
6162 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6163  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6164  * Returns the socket as an 'unsigned long' to simplify the casting in the
6165  * callers to satisfy BPF_CALL declarations.
6166  */
6167 static struct sock *
6168 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6169                  struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6170                  u64 flags)
6171 {
6172         struct sock *sk = NULL;
6173         u8 family = AF_UNSPEC;
6174         struct net *net;
6175         int sdif;
6176
6177         if (len == sizeof(tuple->ipv4))
6178                 family = AF_INET;
6179         else if (len == sizeof(tuple->ipv6))
6180                 family = AF_INET6;
6181         else
6182                 return NULL;
6183
6184         if (unlikely(family == AF_UNSPEC || flags ||
6185                      !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6186                 goto out;
6187
6188         if (family == AF_INET)
6189                 sdif = inet_sdif(skb);
6190         else
6191                 sdif = inet6_sdif(skb);
6192
6193         if ((s32)netns_id < 0) {
6194                 net = caller_net;
6195                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6196         } else {
6197                 net = get_net_ns_by_id(caller_net, netns_id);
6198                 if (unlikely(!net))
6199                         goto out;
6200                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6201                 put_net(net);
6202         }
6203
6204 out:
6205         return sk;
6206 }
6207
6208 static struct sock *
6209 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6210                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6211                 u64 flags)
6212 {
6213         struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6214                                            ifindex, proto, netns_id, flags);
6215
6216         if (sk) {
6217                 struct sock *sk2 = sk_to_full_sk(sk);
6218
6219                 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6220                  * sock refcnt is decremented to prevent a request_sock leak.
6221                  */
6222                 if (!sk_fullsock(sk2))
6223                         sk2 = NULL;
6224                 if (sk2 != sk) {
6225                         sock_gen_put(sk);
6226                         /* Ensure there is no need to bump sk2 refcnt */
6227                         if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6228                                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6229                                 return NULL;
6230                         }
6231                         sk = sk2;
6232                 }
6233         }
6234
6235         return sk;
6236 }
6237
6238 static struct sock *
6239 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6240                u8 proto, u64 netns_id, u64 flags)
6241 {
6242         struct net *caller_net;
6243         int ifindex;
6244
6245         if (skb->dev) {
6246                 caller_net = dev_net(skb->dev);
6247                 ifindex = skb->dev->ifindex;
6248         } else {
6249                 caller_net = sock_net(skb->sk);
6250                 ifindex = 0;
6251         }
6252
6253         return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6254                                 netns_id, flags);
6255 }
6256
6257 static struct sock *
6258 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6259               u8 proto, u64 netns_id, u64 flags)
6260 {
6261         struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6262                                          flags);
6263
6264         if (sk) {
6265                 struct sock *sk2 = sk_to_full_sk(sk);
6266
6267                 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6268                  * sock refcnt is decremented to prevent a request_sock leak.
6269                  */
6270                 if (!sk_fullsock(sk2))
6271                         sk2 = NULL;
6272                 if (sk2 != sk) {
6273                         sock_gen_put(sk);
6274                         /* Ensure there is no need to bump sk2 refcnt */
6275                         if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6276                                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6277                                 return NULL;
6278                         }
6279                         sk = sk2;
6280                 }
6281         }
6282
6283         return sk;
6284 }
6285
6286 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6287            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6288 {
6289         return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6290                                              netns_id, flags);
6291 }
6292
6293 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6294         .func           = bpf_skc_lookup_tcp,
6295         .gpl_only       = false,
6296         .pkt_access     = true,
6297         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6298         .arg1_type      = ARG_PTR_TO_CTX,
6299         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6300         .arg3_type      = ARG_CONST_SIZE,
6301         .arg4_type      = ARG_ANYTHING,
6302         .arg5_type      = ARG_ANYTHING,
6303 };
6304
6305 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6306            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6307 {
6308         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6309                                             netns_id, flags);
6310 }
6311
6312 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6313         .func           = bpf_sk_lookup_tcp,
6314         .gpl_only       = false,
6315         .pkt_access     = true,
6316         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6317         .arg1_type      = ARG_PTR_TO_CTX,
6318         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6319         .arg3_type      = ARG_CONST_SIZE,
6320         .arg4_type      = ARG_ANYTHING,
6321         .arg5_type      = ARG_ANYTHING,
6322 };
6323
6324 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6325            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6326 {
6327         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6328                                             netns_id, flags);
6329 }
6330
6331 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6332         .func           = bpf_sk_lookup_udp,
6333         .gpl_only       = false,
6334         .pkt_access     = true,
6335         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6336         .arg1_type      = ARG_PTR_TO_CTX,
6337         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6338         .arg3_type      = ARG_CONST_SIZE,
6339         .arg4_type      = ARG_ANYTHING,
6340         .arg5_type      = ARG_ANYTHING,
6341 };
6342
6343 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6344 {
6345         if (sk && sk_is_refcounted(sk))
6346                 sock_gen_put(sk);
6347         return 0;
6348 }
6349
6350 static const struct bpf_func_proto bpf_sk_release_proto = {
6351         .func           = bpf_sk_release,
6352         .gpl_only       = false,
6353         .ret_type       = RET_INTEGER,
6354         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6355 };
6356
6357 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6358            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6359 {
6360         struct net *caller_net = dev_net(ctx->rxq->dev);
6361         int ifindex = ctx->rxq->dev->ifindex;
6362
6363         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6364                                               ifindex, IPPROTO_UDP, netns_id,
6365                                               flags);
6366 }
6367
6368 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6369         .func           = bpf_xdp_sk_lookup_udp,
6370         .gpl_only       = false,
6371         .pkt_access     = true,
6372         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6373         .arg1_type      = ARG_PTR_TO_CTX,
6374         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6375         .arg3_type      = ARG_CONST_SIZE,
6376         .arg4_type      = ARG_ANYTHING,
6377         .arg5_type      = ARG_ANYTHING,
6378 };
6379
6380 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6381            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6382 {
6383         struct net *caller_net = dev_net(ctx->rxq->dev);
6384         int ifindex = ctx->rxq->dev->ifindex;
6385
6386         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6387                                                ifindex, IPPROTO_TCP, netns_id,
6388                                                flags);
6389 }
6390
6391 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6392         .func           = bpf_xdp_skc_lookup_tcp,
6393         .gpl_only       = false,
6394         .pkt_access     = true,
6395         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6396         .arg1_type      = ARG_PTR_TO_CTX,
6397         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6398         .arg3_type      = ARG_CONST_SIZE,
6399         .arg4_type      = ARG_ANYTHING,
6400         .arg5_type      = ARG_ANYTHING,
6401 };
6402
6403 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6404            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6405 {
6406         struct net *caller_net = dev_net(ctx->rxq->dev);
6407         int ifindex = ctx->rxq->dev->ifindex;
6408
6409         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6410                                               ifindex, IPPROTO_TCP, netns_id,
6411                                               flags);
6412 }
6413
6414 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6415         .func           = bpf_xdp_sk_lookup_tcp,
6416         .gpl_only       = false,
6417         .pkt_access     = true,
6418         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6419         .arg1_type      = ARG_PTR_TO_CTX,
6420         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6421         .arg3_type      = ARG_CONST_SIZE,
6422         .arg4_type      = ARG_ANYTHING,
6423         .arg5_type      = ARG_ANYTHING,
6424 };
6425
6426 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6427            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6428 {
6429         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6430                                                sock_net(ctx->sk), 0,
6431                                                IPPROTO_TCP, netns_id, flags);
6432 }
6433
6434 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6435         .func           = bpf_sock_addr_skc_lookup_tcp,
6436         .gpl_only       = false,
6437         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6438         .arg1_type      = ARG_PTR_TO_CTX,
6439         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6440         .arg3_type      = ARG_CONST_SIZE,
6441         .arg4_type      = ARG_ANYTHING,
6442         .arg5_type      = ARG_ANYTHING,
6443 };
6444
6445 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6446            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6447 {
6448         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6449                                               sock_net(ctx->sk), 0, IPPROTO_TCP,
6450                                               netns_id, flags);
6451 }
6452
6453 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6454         .func           = bpf_sock_addr_sk_lookup_tcp,
6455         .gpl_only       = false,
6456         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6457         .arg1_type      = ARG_PTR_TO_CTX,
6458         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6459         .arg3_type      = ARG_CONST_SIZE,
6460         .arg4_type      = ARG_ANYTHING,
6461         .arg5_type      = ARG_ANYTHING,
6462 };
6463
6464 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6465            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6466 {
6467         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6468                                               sock_net(ctx->sk), 0, IPPROTO_UDP,
6469                                               netns_id, flags);
6470 }
6471
6472 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6473         .func           = bpf_sock_addr_sk_lookup_udp,
6474         .gpl_only       = false,
6475         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6476         .arg1_type      = ARG_PTR_TO_CTX,
6477         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6478         .arg3_type      = ARG_CONST_SIZE,
6479         .arg4_type      = ARG_ANYTHING,
6480         .arg5_type      = ARG_ANYTHING,
6481 };
6482
6483 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6484                                   struct bpf_insn_access_aux *info)
6485 {
6486         if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6487                                           icsk_retransmits))
6488                 return false;
6489
6490         if (off % size != 0)
6491                 return false;
6492
6493         switch (off) {
6494         case offsetof(struct bpf_tcp_sock, bytes_received):
6495         case offsetof(struct bpf_tcp_sock, bytes_acked):
6496                 return size == sizeof(__u64);
6497         default:
6498                 return size == sizeof(__u32);
6499         }
6500 }
6501
6502 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6503                                     const struct bpf_insn *si,
6504                                     struct bpf_insn *insn_buf,
6505                                     struct bpf_prog *prog, u32 *target_size)
6506 {
6507         struct bpf_insn *insn = insn_buf;
6508
6509 #define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
6510         do {                                                            \
6511                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >     \
6512                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6513                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6514                                       si->dst_reg, si->src_reg,         \
6515                                       offsetof(struct tcp_sock, FIELD)); \
6516         } while (0)
6517
6518 #define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
6519         do {                                                            \
6520                 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,  \
6521                                           FIELD) >                      \
6522                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6523                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
6524                                         struct inet_connection_sock,    \
6525                                         FIELD),                         \
6526                                       si->dst_reg, si->src_reg,         \
6527                                       offsetof(                         \
6528                                         struct inet_connection_sock,    \
6529                                         FIELD));                        \
6530         } while (0)
6531
6532         if (insn > insn_buf)
6533                 return insn - insn_buf;
6534
6535         switch (si->off) {
6536         case offsetof(struct bpf_tcp_sock, rtt_min):
6537                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6538                              sizeof(struct minmax));
6539                 BUILD_BUG_ON(sizeof(struct minmax) <
6540                              sizeof(struct minmax_sample));
6541
6542                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6543                                       offsetof(struct tcp_sock, rtt_min) +
6544                                       offsetof(struct minmax_sample, v));
6545                 break;
6546         case offsetof(struct bpf_tcp_sock, snd_cwnd):
6547                 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6548                 break;
6549         case offsetof(struct bpf_tcp_sock, srtt_us):
6550                 BPF_TCP_SOCK_GET_COMMON(srtt_us);
6551                 break;
6552         case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6553                 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6554                 break;
6555         case offsetof(struct bpf_tcp_sock, rcv_nxt):
6556                 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6557                 break;
6558         case offsetof(struct bpf_tcp_sock, snd_nxt):
6559                 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6560                 break;
6561         case offsetof(struct bpf_tcp_sock, snd_una):
6562                 BPF_TCP_SOCK_GET_COMMON(snd_una);
6563                 break;
6564         case offsetof(struct bpf_tcp_sock, mss_cache):
6565                 BPF_TCP_SOCK_GET_COMMON(mss_cache);
6566                 break;
6567         case offsetof(struct bpf_tcp_sock, ecn_flags):
6568                 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6569                 break;
6570         case offsetof(struct bpf_tcp_sock, rate_delivered):
6571                 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6572                 break;
6573         case offsetof(struct bpf_tcp_sock, rate_interval_us):
6574                 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6575                 break;
6576         case offsetof(struct bpf_tcp_sock, packets_out):
6577                 BPF_TCP_SOCK_GET_COMMON(packets_out);
6578                 break;
6579         case offsetof(struct bpf_tcp_sock, retrans_out):
6580                 BPF_TCP_SOCK_GET_COMMON(retrans_out);
6581                 break;
6582         case offsetof(struct bpf_tcp_sock, total_retrans):
6583                 BPF_TCP_SOCK_GET_COMMON(total_retrans);
6584                 break;
6585         case offsetof(struct bpf_tcp_sock, segs_in):
6586                 BPF_TCP_SOCK_GET_COMMON(segs_in);
6587                 break;
6588         case offsetof(struct bpf_tcp_sock, data_segs_in):
6589                 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6590                 break;
6591         case offsetof(struct bpf_tcp_sock, segs_out):
6592                 BPF_TCP_SOCK_GET_COMMON(segs_out);
6593                 break;
6594         case offsetof(struct bpf_tcp_sock, data_segs_out):
6595                 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6596                 break;
6597         case offsetof(struct bpf_tcp_sock, lost_out):
6598                 BPF_TCP_SOCK_GET_COMMON(lost_out);
6599                 break;
6600         case offsetof(struct bpf_tcp_sock, sacked_out):
6601                 BPF_TCP_SOCK_GET_COMMON(sacked_out);
6602                 break;
6603         case offsetof(struct bpf_tcp_sock, bytes_received):
6604                 BPF_TCP_SOCK_GET_COMMON(bytes_received);
6605                 break;
6606         case offsetof(struct bpf_tcp_sock, bytes_acked):
6607                 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6608                 break;
6609         case offsetof(struct bpf_tcp_sock, dsack_dups):
6610                 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6611                 break;
6612         case offsetof(struct bpf_tcp_sock, delivered):
6613                 BPF_TCP_SOCK_GET_COMMON(delivered);
6614                 break;
6615         case offsetof(struct bpf_tcp_sock, delivered_ce):
6616                 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6617                 break;
6618         case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6619                 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6620                 break;
6621         }
6622
6623         return insn - insn_buf;
6624 }
6625
6626 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6627 {
6628         if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6629                 return (unsigned long)sk;
6630
6631         return (unsigned long)NULL;
6632 }
6633
6634 const struct bpf_func_proto bpf_tcp_sock_proto = {
6635         .func           = bpf_tcp_sock,
6636         .gpl_only       = false,
6637         .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
6638         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6639 };
6640
6641 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6642 {
6643         sk = sk_to_full_sk(sk);
6644
6645         if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6646                 return (unsigned long)sk;
6647
6648         return (unsigned long)NULL;
6649 }
6650
6651 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6652         .func           = bpf_get_listener_sock,
6653         .gpl_only       = false,
6654         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6655         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6656 };
6657
6658 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6659 {
6660         unsigned int iphdr_len;
6661
6662         switch (skb_protocol(skb, true)) {
6663         case cpu_to_be16(ETH_P_IP):
6664                 iphdr_len = sizeof(struct iphdr);
6665                 break;
6666         case cpu_to_be16(ETH_P_IPV6):
6667                 iphdr_len = sizeof(struct ipv6hdr);
6668                 break;
6669         default:
6670                 return 0;
6671         }
6672
6673         if (skb_headlen(skb) < iphdr_len)
6674                 return 0;
6675
6676         if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6677                 return 0;
6678
6679         return INET_ECN_set_ce(skb);
6680 }
6681
6682 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6683                                   struct bpf_insn_access_aux *info)
6684 {
6685         if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6686                 return false;
6687
6688         if (off % size != 0)
6689                 return false;
6690
6691         switch (off) {
6692         default:
6693                 return size == sizeof(__u32);
6694         }
6695 }
6696
6697 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6698                                     const struct bpf_insn *si,
6699                                     struct bpf_insn *insn_buf,
6700                                     struct bpf_prog *prog, u32 *target_size)
6701 {
6702         struct bpf_insn *insn = insn_buf;
6703
6704 #define BPF_XDP_SOCK_GET(FIELD)                                         \
6705         do {                                                            \
6706                 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >     \
6707                              sizeof_field(struct bpf_xdp_sock, FIELD)); \
6708                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6709                                       si->dst_reg, si->src_reg,         \
6710                                       offsetof(struct xdp_sock, FIELD)); \
6711         } while (0)
6712
6713         switch (si->off) {
6714         case offsetof(struct bpf_xdp_sock, queue_id):
6715                 BPF_XDP_SOCK_GET(queue_id);
6716                 break;
6717         }
6718
6719         return insn - insn_buf;
6720 }
6721
6722 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
6723         .func           = bpf_skb_ecn_set_ce,
6724         .gpl_only       = false,
6725         .ret_type       = RET_INTEGER,
6726         .arg1_type      = ARG_PTR_TO_CTX,
6727 };
6728
6729 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6730            struct tcphdr *, th, u32, th_len)
6731 {
6732 #ifdef CONFIG_SYN_COOKIES
6733         u32 cookie;
6734         int ret;
6735
6736         if (unlikely(!sk || th_len < sizeof(*th)))
6737                 return -EINVAL;
6738
6739         /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
6740         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6741                 return -EINVAL;
6742
6743         if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
6744                 return -EINVAL;
6745
6746         if (!th->ack || th->rst || th->syn)
6747                 return -ENOENT;
6748
6749         if (unlikely(iph_len < sizeof(struct iphdr)))
6750                 return -EINVAL;
6751
6752         if (tcp_synq_no_recent_overflow(sk))
6753                 return -ENOENT;
6754
6755         cookie = ntohl(th->ack_seq) - 1;
6756
6757         /* Both struct iphdr and struct ipv6hdr have the version field at the
6758          * same offset so we can cast to the shorter header (struct iphdr).
6759          */
6760         switch (((struct iphdr *)iph)->version) {
6761         case 4:
6762                 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
6763                         return -EINVAL;
6764
6765                 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
6766                 break;
6767
6768 #if IS_BUILTIN(CONFIG_IPV6)
6769         case 6:
6770                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6771                         return -EINVAL;
6772
6773                 if (sk->sk_family != AF_INET6)
6774                         return -EINVAL;
6775
6776                 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
6777                 break;
6778 #endif /* CONFIG_IPV6 */
6779
6780         default:
6781                 return -EPROTONOSUPPORT;
6782         }
6783
6784         if (ret > 0)
6785                 return 0;
6786
6787         return -ENOENT;
6788 #else
6789         return -ENOTSUPP;
6790 #endif
6791 }
6792
6793 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
6794         .func           = bpf_tcp_check_syncookie,
6795         .gpl_only       = true,
6796         .pkt_access     = true,
6797         .ret_type       = RET_INTEGER,
6798         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6799         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6800         .arg3_type      = ARG_CONST_SIZE,
6801         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6802         .arg5_type      = ARG_CONST_SIZE,
6803 };
6804
6805 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6806            struct tcphdr *, th, u32, th_len)
6807 {
6808 #ifdef CONFIG_SYN_COOKIES
6809         u32 cookie;
6810         u16 mss;
6811
6812         if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
6813                 return -EINVAL;
6814
6815         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6816                 return -EINVAL;
6817
6818         if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
6819                 return -ENOENT;
6820
6821         if (!th->syn || th->ack || th->fin || th->rst)
6822                 return -EINVAL;
6823
6824         if (unlikely(iph_len < sizeof(struct iphdr)))
6825                 return -EINVAL;
6826
6827         /* Both struct iphdr and struct ipv6hdr have the version field at the
6828          * same offset so we can cast to the shorter header (struct iphdr).
6829          */
6830         switch (((struct iphdr *)iph)->version) {
6831         case 4:
6832                 if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
6833                         return -EINVAL;
6834
6835                 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
6836                 break;
6837
6838 #if IS_BUILTIN(CONFIG_IPV6)
6839         case 6:
6840                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6841                         return -EINVAL;
6842
6843                 if (sk->sk_family != AF_INET6)
6844                         return -EINVAL;
6845
6846                 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
6847                 break;
6848 #endif /* CONFIG_IPV6 */
6849
6850         default:
6851                 return -EPROTONOSUPPORT;
6852         }
6853         if (mss == 0)
6854                 return -ENOENT;
6855
6856         return cookie | ((u64)mss << 32);
6857 #else
6858         return -EOPNOTSUPP;
6859 #endif /* CONFIG_SYN_COOKIES */
6860 }
6861
6862 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
6863         .func           = bpf_tcp_gen_syncookie,
6864         .gpl_only       = true, /* __cookie_v*_init_sequence() is GPL */
6865         .pkt_access     = true,
6866         .ret_type       = RET_INTEGER,
6867         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6868         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6869         .arg3_type      = ARG_CONST_SIZE,
6870         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6871         .arg5_type      = ARG_CONST_SIZE,
6872 };
6873
6874 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
6875 {
6876         if (!sk || flags != 0)
6877                 return -EINVAL;
6878         if (!skb_at_tc_ingress(skb))
6879                 return -EOPNOTSUPP;
6880         if (unlikely(dev_net(skb->dev) != sock_net(sk)))
6881                 return -ENETUNREACH;
6882         if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
6883                 return -ESOCKTNOSUPPORT;
6884         if (sk_is_refcounted(sk) &&
6885             unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
6886                 return -ENOENT;
6887
6888         skb_orphan(skb);
6889         skb->sk = sk;
6890         skb->destructor = sock_pfree;
6891
6892         return 0;
6893 }
6894
6895 static const struct bpf_func_proto bpf_sk_assign_proto = {
6896         .func           = bpf_sk_assign,
6897         .gpl_only       = false,
6898         .ret_type       = RET_INTEGER,
6899         .arg1_type      = ARG_PTR_TO_CTX,
6900         .arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6901         .arg3_type      = ARG_ANYTHING,
6902 };
6903
6904 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
6905                                     u8 search_kind, const u8 *magic,
6906                                     u8 magic_len, bool *eol)
6907 {
6908         u8 kind, kind_len;
6909
6910         *eol = false;
6911
6912         while (op < opend) {
6913                 kind = op[0];
6914
6915                 if (kind == TCPOPT_EOL) {
6916                         *eol = true;
6917                         return ERR_PTR(-ENOMSG);
6918                 } else if (kind == TCPOPT_NOP) {
6919                         op++;
6920                         continue;
6921                 }
6922
6923                 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
6924                         /* Something is wrong in the received header.
6925                          * Follow the TCP stack's tcp_parse_options()
6926                          * and just bail here.
6927                          */
6928                         return ERR_PTR(-EFAULT);
6929
6930                 kind_len = op[1];
6931                 if (search_kind == kind) {
6932                         if (!magic_len)
6933                                 return op;
6934
6935                         if (magic_len > kind_len - 2)
6936                                 return ERR_PTR(-ENOMSG);
6937
6938                         if (!memcmp(&op[2], magic, magic_len))
6939                                 return op;
6940                 }
6941
6942                 op += kind_len;
6943         }
6944
6945         return ERR_PTR(-ENOMSG);
6946 }
6947
6948 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6949            void *, search_res, u32, len, u64, flags)
6950 {
6951         bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
6952         const u8 *op, *opend, *magic, *search = search_res;
6953         u8 search_kind, search_len, copy_len, magic_len;
6954         int ret;
6955
6956         /* 2 byte is the minimal option len except TCPOPT_NOP and
6957          * TCPOPT_EOL which are useless for the bpf prog to learn
6958          * and this helper disallow loading them also.
6959          */
6960         if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
6961                 return -EINVAL;
6962
6963         search_kind = search[0];
6964         search_len = search[1];
6965
6966         if (search_len > len || search_kind == TCPOPT_NOP ||
6967             search_kind == TCPOPT_EOL)
6968                 return -EINVAL;
6969
6970         if (search_kind == TCPOPT_EXP || search_kind == 253) {
6971                 /* 16 or 32 bit magic.  +2 for kind and kind length */
6972                 if (search_len != 4 && search_len != 6)
6973                         return -EINVAL;
6974                 magic = &search[2];
6975                 magic_len = search_len - 2;
6976         } else {
6977                 if (search_len)
6978                         return -EINVAL;
6979                 magic = NULL;
6980                 magic_len = 0;
6981         }
6982
6983         if (load_syn) {
6984                 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
6985                 if (ret < 0)
6986                         return ret;
6987
6988                 opend = op + ret;
6989                 op += sizeof(struct tcphdr);
6990         } else {
6991                 if (!bpf_sock->skb ||
6992                     bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6993                         /* This bpf_sock->op cannot call this helper */
6994                         return -EPERM;
6995
6996                 opend = bpf_sock->skb_data_end;
6997                 op = bpf_sock->skb->data + sizeof(struct tcphdr);
6998         }
6999
7000         op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7001                                 &eol);
7002         if (IS_ERR(op))
7003                 return PTR_ERR(op);
7004
7005         copy_len = op[1];
7006         ret = copy_len;
7007         if (copy_len > len) {
7008                 ret = -ENOSPC;
7009                 copy_len = len;
7010         }
7011
7012         memcpy(search_res, op, copy_len);
7013         return ret;
7014 }
7015
7016 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7017         .func           = bpf_sock_ops_load_hdr_opt,
7018         .gpl_only       = false,
7019         .ret_type       = RET_INTEGER,
7020         .arg1_type      = ARG_PTR_TO_CTX,
7021         .arg2_type      = ARG_PTR_TO_MEM,
7022         .arg3_type      = ARG_CONST_SIZE,
7023         .arg4_type      = ARG_ANYTHING,
7024 };
7025
7026 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7027            const void *, from, u32, len, u64, flags)
7028 {
7029         u8 new_kind, new_kind_len, magic_len = 0, *opend;
7030         const u8 *op, *new_op, *magic = NULL;
7031         struct sk_buff *skb;
7032         bool eol;
7033
7034         if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7035                 return -EPERM;
7036
7037         if (len < 2 || flags)
7038                 return -EINVAL;
7039
7040         new_op = from;
7041         new_kind = new_op[0];
7042         new_kind_len = new_op[1];
7043
7044         if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7045             new_kind == TCPOPT_EOL)
7046                 return -EINVAL;
7047
7048         if (new_kind_len > bpf_sock->remaining_opt_len)
7049                 return -ENOSPC;
7050
7051         /* 253 is another experimental kind */
7052         if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7053                 if (new_kind_len < 4)
7054                         return -EINVAL;
7055                 /* Match for the 2 byte magic also.
7056                  * RFC 6994: the magic could be 2 or 4 bytes.
7057                  * Hence, matching by 2 byte only is on the
7058                  * conservative side but it is the right
7059                  * thing to do for the 'search-for-duplication'
7060                  * purpose.
7061                  */
7062                 magic = &new_op[2];
7063                 magic_len = 2;
7064         }
7065
7066         /* Check for duplication */
7067         skb = bpf_sock->skb;
7068         op = skb->data + sizeof(struct tcphdr);
7069         opend = bpf_sock->skb_data_end;
7070
7071         op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7072                                 &eol);
7073         if (!IS_ERR(op))
7074                 return -EEXIST;
7075
7076         if (PTR_ERR(op) != -ENOMSG)
7077                 return PTR_ERR(op);
7078
7079         if (eol)
7080                 /* The option has been ended.  Treat it as no more
7081                  * header option can be written.
7082                  */
7083                 return -ENOSPC;
7084
7085         /* No duplication found.  Store the header option. */
7086         memcpy(opend, from, new_kind_len);
7087
7088         bpf_sock->remaining_opt_len -= new_kind_len;
7089         bpf_sock->skb_data_end += new_kind_len;
7090
7091         return 0;
7092 }
7093
7094 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7095         .func           = bpf_sock_ops_store_hdr_opt,
7096         .gpl_only       = false,
7097         .ret_type       = RET_INTEGER,
7098         .arg1_type      = ARG_PTR_TO_CTX,
7099         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7100         .arg3_type      = ARG_CONST_SIZE,
7101         .arg4_type      = ARG_ANYTHING,
7102 };
7103
7104 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7105            u32, len, u64, flags)
7106 {
7107         if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7108                 return -EPERM;
7109
7110         if (flags || len < 2)
7111                 return -EINVAL;
7112
7113         if (len > bpf_sock->remaining_opt_len)
7114                 return -ENOSPC;
7115
7116         bpf_sock->remaining_opt_len -= len;
7117
7118         return 0;
7119 }
7120
7121 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7122         .func           = bpf_sock_ops_reserve_hdr_opt,
7123         .gpl_only       = false,
7124         .ret_type       = RET_INTEGER,
7125         .arg1_type      = ARG_PTR_TO_CTX,
7126         .arg2_type      = ARG_ANYTHING,
7127         .arg3_type      = ARG_ANYTHING,
7128 };
7129
7130 #endif /* CONFIG_INET */
7131
7132 bool bpf_helper_changes_pkt_data(void *func)
7133 {
7134         if (func == bpf_skb_vlan_push ||
7135             func == bpf_skb_vlan_pop ||
7136             func == bpf_skb_store_bytes ||
7137             func == bpf_skb_change_proto ||
7138             func == bpf_skb_change_head ||
7139             func == sk_skb_change_head ||
7140             func == bpf_skb_change_tail ||
7141             func == sk_skb_change_tail ||
7142             func == bpf_skb_adjust_room ||
7143             func == sk_skb_adjust_room ||
7144             func == bpf_skb_pull_data ||
7145             func == sk_skb_pull_data ||
7146             func == bpf_clone_redirect ||
7147             func == bpf_l3_csum_replace ||
7148             func == bpf_l4_csum_replace ||
7149             func == bpf_xdp_adjust_head ||
7150             func == bpf_xdp_adjust_meta ||
7151             func == bpf_msg_pull_data ||
7152             func == bpf_msg_push_data ||
7153             func == bpf_msg_pop_data ||
7154             func == bpf_xdp_adjust_tail ||
7155 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7156             func == bpf_lwt_seg6_store_bytes ||
7157             func == bpf_lwt_seg6_adjust_srh ||
7158             func == bpf_lwt_seg6_action ||
7159 #endif
7160 #ifdef CONFIG_INET
7161             func == bpf_sock_ops_store_hdr_opt ||
7162 #endif
7163             func == bpf_lwt_in_push_encap ||
7164             func == bpf_lwt_xmit_push_encap)
7165                 return true;
7166
7167         return false;
7168 }
7169
7170 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7171 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7172
7173 static const struct bpf_func_proto *
7174 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7175 {
7176         switch (func_id) {
7177         /* inet and inet6 sockets are created in a process
7178          * context so there is always a valid uid/gid
7179          */
7180         case BPF_FUNC_get_current_uid_gid:
7181                 return &bpf_get_current_uid_gid_proto;
7182         case BPF_FUNC_get_local_storage:
7183                 return &bpf_get_local_storage_proto;
7184         case BPF_FUNC_get_socket_cookie:
7185                 return &bpf_get_socket_cookie_sock_proto;
7186         case BPF_FUNC_get_netns_cookie:
7187                 return &bpf_get_netns_cookie_sock_proto;
7188         case BPF_FUNC_perf_event_output:
7189                 return &bpf_event_output_data_proto;
7190         case BPF_FUNC_get_current_pid_tgid:
7191                 return &bpf_get_current_pid_tgid_proto;
7192         case BPF_FUNC_get_current_comm:
7193                 return &bpf_get_current_comm_proto;
7194 #ifdef CONFIG_CGROUPS
7195         case BPF_FUNC_get_current_cgroup_id:
7196                 return &bpf_get_current_cgroup_id_proto;
7197         case BPF_FUNC_get_current_ancestor_cgroup_id:
7198                 return &bpf_get_current_ancestor_cgroup_id_proto;
7199 #endif
7200 #ifdef CONFIG_CGROUP_NET_CLASSID
7201         case BPF_FUNC_get_cgroup_classid:
7202                 return &bpf_get_cgroup_classid_curr_proto;
7203 #endif
7204         case BPF_FUNC_sk_storage_get:
7205                 return &bpf_sk_storage_get_cg_sock_proto;
7206         case BPF_FUNC_ktime_get_coarse_ns:
7207                 return &bpf_ktime_get_coarse_ns_proto;
7208         default:
7209                 return bpf_base_func_proto(func_id);
7210         }
7211 }
7212
7213 static const struct bpf_func_proto *
7214 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7215 {
7216         switch (func_id) {
7217         /* inet and inet6 sockets are created in a process
7218          * context so there is always a valid uid/gid
7219          */
7220         case BPF_FUNC_get_current_uid_gid:
7221                 return &bpf_get_current_uid_gid_proto;
7222         case BPF_FUNC_bind:
7223                 switch (prog->expected_attach_type) {
7224                 case BPF_CGROUP_INET4_CONNECT:
7225                 case BPF_CGROUP_INET6_CONNECT:
7226                         return &bpf_bind_proto;
7227                 default:
7228                         return NULL;
7229                 }
7230         case BPF_FUNC_get_socket_cookie:
7231                 return &bpf_get_socket_cookie_sock_addr_proto;
7232         case BPF_FUNC_get_netns_cookie:
7233                 return &bpf_get_netns_cookie_sock_addr_proto;
7234         case BPF_FUNC_get_local_storage:
7235                 return &bpf_get_local_storage_proto;
7236         case BPF_FUNC_perf_event_output:
7237                 return &bpf_event_output_data_proto;
7238         case BPF_FUNC_get_current_pid_tgid:
7239                 return &bpf_get_current_pid_tgid_proto;
7240         case BPF_FUNC_get_current_comm:
7241                 return &bpf_get_current_comm_proto;
7242 #ifdef CONFIG_CGROUPS
7243         case BPF_FUNC_get_current_cgroup_id:
7244                 return &bpf_get_current_cgroup_id_proto;
7245         case BPF_FUNC_get_current_ancestor_cgroup_id:
7246                 return &bpf_get_current_ancestor_cgroup_id_proto;
7247 #endif
7248 #ifdef CONFIG_CGROUP_NET_CLASSID
7249         case BPF_FUNC_get_cgroup_classid:
7250                 return &bpf_get_cgroup_classid_curr_proto;
7251 #endif
7252 #ifdef CONFIG_INET
7253         case BPF_FUNC_sk_lookup_tcp:
7254                 return &bpf_sock_addr_sk_lookup_tcp_proto;
7255         case BPF_FUNC_sk_lookup_udp:
7256                 return &bpf_sock_addr_sk_lookup_udp_proto;
7257         case BPF_FUNC_sk_release:
7258                 return &bpf_sk_release_proto;
7259         case BPF_FUNC_skc_lookup_tcp:
7260                 return &bpf_sock_addr_skc_lookup_tcp_proto;
7261 #endif /* CONFIG_INET */
7262         case BPF_FUNC_sk_storage_get:
7263                 return &bpf_sk_storage_get_proto;
7264         case BPF_FUNC_sk_storage_delete:
7265                 return &bpf_sk_storage_delete_proto;
7266         case BPF_FUNC_setsockopt:
7267                 switch (prog->expected_attach_type) {
7268                 case BPF_CGROUP_INET4_BIND:
7269                 case BPF_CGROUP_INET6_BIND:
7270                 case BPF_CGROUP_INET4_CONNECT:
7271                 case BPF_CGROUP_INET6_CONNECT:
7272                 case BPF_CGROUP_UDP4_RECVMSG:
7273                 case BPF_CGROUP_UDP6_RECVMSG:
7274                 case BPF_CGROUP_UDP4_SENDMSG:
7275                 case BPF_CGROUP_UDP6_SENDMSG:
7276                 case BPF_CGROUP_INET4_GETPEERNAME:
7277                 case BPF_CGROUP_INET6_GETPEERNAME:
7278                 case BPF_CGROUP_INET4_GETSOCKNAME:
7279                 case BPF_CGROUP_INET6_GETSOCKNAME:
7280                         return &bpf_sock_addr_setsockopt_proto;
7281                 default:
7282                         return NULL;
7283                 }
7284         case BPF_FUNC_getsockopt:
7285                 switch (prog->expected_attach_type) {
7286                 case BPF_CGROUP_INET4_BIND:
7287                 case BPF_CGROUP_INET6_BIND:
7288                 case BPF_CGROUP_INET4_CONNECT:
7289                 case BPF_CGROUP_INET6_CONNECT:
7290                 case BPF_CGROUP_UDP4_RECVMSG:
7291                 case BPF_CGROUP_UDP6_RECVMSG:
7292                 case BPF_CGROUP_UDP4_SENDMSG:
7293                 case BPF_CGROUP_UDP6_SENDMSG:
7294                 case BPF_CGROUP_INET4_GETPEERNAME:
7295                 case BPF_CGROUP_INET6_GETPEERNAME:
7296                 case BPF_CGROUP_INET4_GETSOCKNAME:
7297                 case BPF_CGROUP_INET6_GETSOCKNAME:
7298                         return &bpf_sock_addr_getsockopt_proto;
7299                 default:
7300                         return NULL;
7301                 }
7302         default:
7303                 return bpf_sk_base_func_proto(func_id);
7304         }
7305 }
7306
7307 static const struct bpf_func_proto *
7308 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7309 {
7310         switch (func_id) {
7311         case BPF_FUNC_skb_load_bytes:
7312                 return &bpf_skb_load_bytes_proto;
7313         case BPF_FUNC_skb_load_bytes_relative:
7314                 return &bpf_skb_load_bytes_relative_proto;
7315         case BPF_FUNC_get_socket_cookie:
7316                 return &bpf_get_socket_cookie_proto;
7317         case BPF_FUNC_get_socket_uid:
7318                 return &bpf_get_socket_uid_proto;
7319         case BPF_FUNC_perf_event_output:
7320                 return &bpf_skb_event_output_proto;
7321         default:
7322                 return bpf_sk_base_func_proto(func_id);
7323         }
7324 }
7325
7326 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7327 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7328
7329 static const struct bpf_func_proto *
7330 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7331 {
7332         switch (func_id) {
7333         case BPF_FUNC_get_local_storage:
7334                 return &bpf_get_local_storage_proto;
7335         case BPF_FUNC_sk_fullsock:
7336                 return &bpf_sk_fullsock_proto;
7337         case BPF_FUNC_sk_storage_get:
7338                 return &bpf_sk_storage_get_proto;
7339         case BPF_FUNC_sk_storage_delete:
7340                 return &bpf_sk_storage_delete_proto;
7341         case BPF_FUNC_perf_event_output:
7342                 return &bpf_skb_event_output_proto;
7343 #ifdef CONFIG_SOCK_CGROUP_DATA
7344         case BPF_FUNC_skb_cgroup_id:
7345                 return &bpf_skb_cgroup_id_proto;
7346         case BPF_FUNC_skb_ancestor_cgroup_id:
7347                 return &bpf_skb_ancestor_cgroup_id_proto;
7348         case BPF_FUNC_sk_cgroup_id:
7349                 return &bpf_sk_cgroup_id_proto;
7350         case BPF_FUNC_sk_ancestor_cgroup_id:
7351                 return &bpf_sk_ancestor_cgroup_id_proto;
7352 #endif
7353 #ifdef CONFIG_INET
7354         case BPF_FUNC_sk_lookup_tcp:
7355                 return &bpf_sk_lookup_tcp_proto;
7356         case BPF_FUNC_sk_lookup_udp:
7357                 return &bpf_sk_lookup_udp_proto;
7358         case BPF_FUNC_sk_release:
7359                 return &bpf_sk_release_proto;
7360         case BPF_FUNC_skc_lookup_tcp:
7361                 return &bpf_skc_lookup_tcp_proto;
7362         case BPF_FUNC_tcp_sock:
7363                 return &bpf_tcp_sock_proto;
7364         case BPF_FUNC_get_listener_sock:
7365                 return &bpf_get_listener_sock_proto;
7366         case BPF_FUNC_skb_ecn_set_ce:
7367                 return &bpf_skb_ecn_set_ce_proto;
7368 #endif
7369         default:
7370                 return sk_filter_func_proto(func_id, prog);
7371         }
7372 }
7373
7374 static const struct bpf_func_proto *
7375 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7376 {
7377         switch (func_id) {
7378         case BPF_FUNC_skb_store_bytes:
7379                 return &bpf_skb_store_bytes_proto;
7380         case BPF_FUNC_skb_load_bytes:
7381                 return &bpf_skb_load_bytes_proto;
7382         case BPF_FUNC_skb_load_bytes_relative:
7383                 return &bpf_skb_load_bytes_relative_proto;
7384         case BPF_FUNC_skb_pull_data:
7385                 return &bpf_skb_pull_data_proto;
7386         case BPF_FUNC_csum_diff:
7387                 return &bpf_csum_diff_proto;
7388         case BPF_FUNC_csum_update:
7389                 return &bpf_csum_update_proto;
7390         case BPF_FUNC_csum_level:
7391                 return &bpf_csum_level_proto;
7392         case BPF_FUNC_l3_csum_replace:
7393                 return &bpf_l3_csum_replace_proto;
7394         case BPF_FUNC_l4_csum_replace:
7395                 return &bpf_l4_csum_replace_proto;
7396         case BPF_FUNC_clone_redirect:
7397                 return &bpf_clone_redirect_proto;
7398         case BPF_FUNC_get_cgroup_classid:
7399                 return &bpf_get_cgroup_classid_proto;
7400         case BPF_FUNC_skb_vlan_push:
7401                 return &bpf_skb_vlan_push_proto;
7402         case BPF_FUNC_skb_vlan_pop:
7403                 return &bpf_skb_vlan_pop_proto;
7404         case BPF_FUNC_skb_change_proto:
7405                 return &bpf_skb_change_proto_proto;
7406         case BPF_FUNC_skb_change_type:
7407                 return &bpf_skb_change_type_proto;
7408         case BPF_FUNC_skb_adjust_room:
7409                 return &bpf_skb_adjust_room_proto;
7410         case BPF_FUNC_skb_change_tail:
7411                 return &bpf_skb_change_tail_proto;
7412         case BPF_FUNC_skb_change_head:
7413                 return &bpf_skb_change_head_proto;
7414         case BPF_FUNC_skb_get_tunnel_key:
7415                 return &bpf_skb_get_tunnel_key_proto;
7416         case BPF_FUNC_skb_set_tunnel_key:
7417                 return bpf_get_skb_set_tunnel_proto(func_id);
7418         case BPF_FUNC_skb_get_tunnel_opt:
7419                 return &bpf_skb_get_tunnel_opt_proto;
7420         case BPF_FUNC_skb_set_tunnel_opt:
7421                 return bpf_get_skb_set_tunnel_proto(func_id);
7422         case BPF_FUNC_redirect:
7423                 return &bpf_redirect_proto;
7424         case BPF_FUNC_redirect_neigh:
7425                 return &bpf_redirect_neigh_proto;
7426         case BPF_FUNC_redirect_peer:
7427                 return &bpf_redirect_peer_proto;
7428         case BPF_FUNC_get_route_realm:
7429                 return &bpf_get_route_realm_proto;
7430         case BPF_FUNC_get_hash_recalc:
7431                 return &bpf_get_hash_recalc_proto;
7432         case BPF_FUNC_set_hash_invalid:
7433                 return &bpf_set_hash_invalid_proto;
7434         case BPF_FUNC_set_hash:
7435                 return &bpf_set_hash_proto;
7436         case BPF_FUNC_perf_event_output:
7437                 return &bpf_skb_event_output_proto;
7438         case BPF_FUNC_get_smp_processor_id:
7439                 return &bpf_get_smp_processor_id_proto;
7440         case BPF_FUNC_skb_under_cgroup:
7441                 return &bpf_skb_under_cgroup_proto;
7442         case BPF_FUNC_get_socket_cookie:
7443                 return &bpf_get_socket_cookie_proto;
7444         case BPF_FUNC_get_socket_uid:
7445                 return &bpf_get_socket_uid_proto;
7446         case BPF_FUNC_fib_lookup:
7447                 return &bpf_skb_fib_lookup_proto;
7448         case BPF_FUNC_check_mtu:
7449                 return &bpf_skb_check_mtu_proto;
7450         case BPF_FUNC_sk_fullsock:
7451                 return &bpf_sk_fullsock_proto;
7452         case BPF_FUNC_sk_storage_get:
7453                 return &bpf_sk_storage_get_proto;
7454         case BPF_FUNC_sk_storage_delete:
7455                 return &bpf_sk_storage_delete_proto;
7456 #ifdef CONFIG_XFRM
7457         case BPF_FUNC_skb_get_xfrm_state:
7458                 return &bpf_skb_get_xfrm_state_proto;
7459 #endif
7460 #ifdef CONFIG_CGROUP_NET_CLASSID
7461         case BPF_FUNC_skb_cgroup_classid:
7462                 return &bpf_skb_cgroup_classid_proto;
7463 #endif
7464 #ifdef CONFIG_SOCK_CGROUP_DATA
7465         case BPF_FUNC_skb_cgroup_id:
7466                 return &bpf_skb_cgroup_id_proto;
7467         case BPF_FUNC_skb_ancestor_cgroup_id:
7468                 return &bpf_skb_ancestor_cgroup_id_proto;
7469 #endif
7470 #ifdef CONFIG_INET
7471         case BPF_FUNC_sk_lookup_tcp:
7472                 return &bpf_sk_lookup_tcp_proto;
7473         case BPF_FUNC_sk_lookup_udp:
7474                 return &bpf_sk_lookup_udp_proto;
7475         case BPF_FUNC_sk_release:
7476                 return &bpf_sk_release_proto;
7477         case BPF_FUNC_tcp_sock:
7478                 return &bpf_tcp_sock_proto;
7479         case BPF_FUNC_get_listener_sock:
7480                 return &bpf_get_listener_sock_proto;
7481         case BPF_FUNC_skc_lookup_tcp:
7482                 return &bpf_skc_lookup_tcp_proto;
7483         case BPF_FUNC_tcp_check_syncookie:
7484                 return &bpf_tcp_check_syncookie_proto;
7485         case BPF_FUNC_skb_ecn_set_ce:
7486                 return &bpf_skb_ecn_set_ce_proto;
7487         case BPF_FUNC_tcp_gen_syncookie:
7488                 return &bpf_tcp_gen_syncookie_proto;
7489         case BPF_FUNC_sk_assign:
7490                 return &bpf_sk_assign_proto;
7491 #endif
7492         default:
7493                 return bpf_sk_base_func_proto(func_id);
7494         }
7495 }
7496
7497 static const struct bpf_func_proto *
7498 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7499 {
7500         switch (func_id) {
7501         case BPF_FUNC_perf_event_output:
7502                 return &bpf_xdp_event_output_proto;
7503         case BPF_FUNC_get_smp_processor_id:
7504                 return &bpf_get_smp_processor_id_proto;
7505         case BPF_FUNC_csum_diff:
7506                 return &bpf_csum_diff_proto;
7507         case BPF_FUNC_xdp_adjust_head:
7508                 return &bpf_xdp_adjust_head_proto;
7509         case BPF_FUNC_xdp_adjust_meta:
7510                 return &bpf_xdp_adjust_meta_proto;
7511         case BPF_FUNC_redirect:
7512                 return &bpf_xdp_redirect_proto;
7513         case BPF_FUNC_redirect_map:
7514                 return &bpf_xdp_redirect_map_proto;
7515         case BPF_FUNC_xdp_adjust_tail:
7516                 return &bpf_xdp_adjust_tail_proto;
7517         case BPF_FUNC_fib_lookup:
7518                 return &bpf_xdp_fib_lookup_proto;
7519         case BPF_FUNC_check_mtu:
7520                 return &bpf_xdp_check_mtu_proto;
7521 #ifdef CONFIG_INET
7522         case BPF_FUNC_sk_lookup_udp:
7523                 return &bpf_xdp_sk_lookup_udp_proto;
7524         case BPF_FUNC_sk_lookup_tcp:
7525                 return &bpf_xdp_sk_lookup_tcp_proto;
7526         case BPF_FUNC_sk_release:
7527                 return &bpf_sk_release_proto;
7528         case BPF_FUNC_skc_lookup_tcp:
7529                 return &bpf_xdp_skc_lookup_tcp_proto;
7530         case BPF_FUNC_tcp_check_syncookie:
7531                 return &bpf_tcp_check_syncookie_proto;
7532         case BPF_FUNC_tcp_gen_syncookie:
7533                 return &bpf_tcp_gen_syncookie_proto;
7534 #endif
7535         default:
7536                 return bpf_sk_base_func_proto(func_id);
7537         }
7538 }
7539
7540 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7541 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7542
7543 static const struct bpf_func_proto *
7544 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7545 {
7546         switch (func_id) {
7547         case BPF_FUNC_setsockopt:
7548                 return &bpf_sock_ops_setsockopt_proto;
7549         case BPF_FUNC_getsockopt:
7550                 return &bpf_sock_ops_getsockopt_proto;
7551         case BPF_FUNC_sock_ops_cb_flags_set:
7552                 return &bpf_sock_ops_cb_flags_set_proto;
7553         case BPF_FUNC_sock_map_update:
7554                 return &bpf_sock_map_update_proto;
7555         case BPF_FUNC_sock_hash_update:
7556                 return &bpf_sock_hash_update_proto;
7557         case BPF_FUNC_get_socket_cookie:
7558                 return &bpf_get_socket_cookie_sock_ops_proto;
7559         case BPF_FUNC_get_local_storage:
7560                 return &bpf_get_local_storage_proto;
7561         case BPF_FUNC_perf_event_output:
7562                 return &bpf_event_output_data_proto;
7563         case BPF_FUNC_sk_storage_get:
7564                 return &bpf_sk_storage_get_proto;
7565         case BPF_FUNC_sk_storage_delete:
7566                 return &bpf_sk_storage_delete_proto;
7567         case BPF_FUNC_get_netns_cookie:
7568                 return &bpf_get_netns_cookie_sock_ops_proto;
7569 #ifdef CONFIG_INET
7570         case BPF_FUNC_load_hdr_opt:
7571                 return &bpf_sock_ops_load_hdr_opt_proto;
7572         case BPF_FUNC_store_hdr_opt:
7573                 return &bpf_sock_ops_store_hdr_opt_proto;
7574         case BPF_FUNC_reserve_hdr_opt:
7575                 return &bpf_sock_ops_reserve_hdr_opt_proto;
7576         case BPF_FUNC_tcp_sock:
7577                 return &bpf_tcp_sock_proto;
7578 #endif /* CONFIG_INET */
7579         default:
7580                 return bpf_sk_base_func_proto(func_id);
7581         }
7582 }
7583
7584 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7585 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7586
7587 static const struct bpf_func_proto *
7588 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7589 {
7590         switch (func_id) {
7591         case BPF_FUNC_msg_redirect_map:
7592                 return &bpf_msg_redirect_map_proto;
7593         case BPF_FUNC_msg_redirect_hash:
7594                 return &bpf_msg_redirect_hash_proto;
7595         case BPF_FUNC_msg_apply_bytes:
7596                 return &bpf_msg_apply_bytes_proto;
7597         case BPF_FUNC_msg_cork_bytes:
7598                 return &bpf_msg_cork_bytes_proto;
7599         case BPF_FUNC_msg_pull_data:
7600                 return &bpf_msg_pull_data_proto;
7601         case BPF_FUNC_msg_push_data:
7602                 return &bpf_msg_push_data_proto;
7603         case BPF_FUNC_msg_pop_data:
7604                 return &bpf_msg_pop_data_proto;
7605         case BPF_FUNC_perf_event_output:
7606                 return &bpf_event_output_data_proto;
7607         case BPF_FUNC_get_current_uid_gid:
7608                 return &bpf_get_current_uid_gid_proto;
7609         case BPF_FUNC_get_current_pid_tgid:
7610                 return &bpf_get_current_pid_tgid_proto;
7611         case BPF_FUNC_sk_storage_get:
7612                 return &bpf_sk_storage_get_proto;
7613         case BPF_FUNC_sk_storage_delete:
7614                 return &bpf_sk_storage_delete_proto;
7615         case BPF_FUNC_get_netns_cookie:
7616                 return &bpf_get_netns_cookie_sk_msg_proto;
7617 #ifdef CONFIG_CGROUPS
7618         case BPF_FUNC_get_current_cgroup_id:
7619                 return &bpf_get_current_cgroup_id_proto;
7620         case BPF_FUNC_get_current_ancestor_cgroup_id:
7621                 return &bpf_get_current_ancestor_cgroup_id_proto;
7622 #endif
7623 #ifdef CONFIG_CGROUP_NET_CLASSID
7624         case BPF_FUNC_get_cgroup_classid:
7625                 return &bpf_get_cgroup_classid_curr_proto;
7626 #endif
7627         default:
7628                 return bpf_sk_base_func_proto(func_id);
7629         }
7630 }
7631
7632 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
7633 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
7634
7635 static const struct bpf_func_proto *
7636 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7637 {
7638         switch (func_id) {
7639         case BPF_FUNC_skb_store_bytes:
7640                 return &bpf_skb_store_bytes_proto;
7641         case BPF_FUNC_skb_load_bytes:
7642                 return &bpf_skb_load_bytes_proto;
7643         case BPF_FUNC_skb_pull_data:
7644                 return &sk_skb_pull_data_proto;
7645         case BPF_FUNC_skb_change_tail:
7646                 return &sk_skb_change_tail_proto;
7647         case BPF_FUNC_skb_change_head:
7648                 return &sk_skb_change_head_proto;
7649         case BPF_FUNC_skb_adjust_room:
7650                 return &sk_skb_adjust_room_proto;
7651         case BPF_FUNC_get_socket_cookie:
7652                 return &bpf_get_socket_cookie_proto;
7653         case BPF_FUNC_get_socket_uid:
7654                 return &bpf_get_socket_uid_proto;
7655         case BPF_FUNC_sk_redirect_map:
7656                 return &bpf_sk_redirect_map_proto;
7657         case BPF_FUNC_sk_redirect_hash:
7658                 return &bpf_sk_redirect_hash_proto;
7659         case BPF_FUNC_perf_event_output:
7660                 return &bpf_skb_event_output_proto;
7661 #ifdef CONFIG_INET
7662         case BPF_FUNC_sk_lookup_tcp:
7663                 return &bpf_sk_lookup_tcp_proto;
7664         case BPF_FUNC_sk_lookup_udp:
7665                 return &bpf_sk_lookup_udp_proto;
7666         case BPF_FUNC_sk_release:
7667                 return &bpf_sk_release_proto;
7668         case BPF_FUNC_skc_lookup_tcp:
7669                 return &bpf_skc_lookup_tcp_proto;
7670 #endif
7671         default:
7672                 return bpf_sk_base_func_proto(func_id);
7673         }
7674 }
7675
7676 static const struct bpf_func_proto *
7677 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7678 {
7679         switch (func_id) {
7680         case BPF_FUNC_skb_load_bytes:
7681                 return &bpf_flow_dissector_load_bytes_proto;
7682         default:
7683                 return bpf_sk_base_func_proto(func_id);
7684         }
7685 }
7686
7687 static const struct bpf_func_proto *
7688 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7689 {
7690         switch (func_id) {
7691         case BPF_FUNC_skb_load_bytes:
7692                 return &bpf_skb_load_bytes_proto;
7693         case BPF_FUNC_skb_pull_data:
7694                 return &bpf_skb_pull_data_proto;
7695         case BPF_FUNC_csum_diff:
7696                 return &bpf_csum_diff_proto;
7697         case BPF_FUNC_get_cgroup_classid:
7698                 return &bpf_get_cgroup_classid_proto;
7699         case BPF_FUNC_get_route_realm:
7700                 return &bpf_get_route_realm_proto;
7701         case BPF_FUNC_get_hash_recalc:
7702                 return &bpf_get_hash_recalc_proto;
7703         case BPF_FUNC_perf_event_output:
7704                 return &bpf_skb_event_output_proto;
7705         case BPF_FUNC_get_smp_processor_id:
7706                 return &bpf_get_smp_processor_id_proto;
7707         case BPF_FUNC_skb_under_cgroup:
7708                 return &bpf_skb_under_cgroup_proto;
7709         default:
7710                 return bpf_sk_base_func_proto(func_id);
7711         }
7712 }
7713
7714 static const struct bpf_func_proto *
7715 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7716 {
7717         switch (func_id) {
7718         case BPF_FUNC_lwt_push_encap:
7719                 return &bpf_lwt_in_push_encap_proto;
7720         default:
7721                 return lwt_out_func_proto(func_id, prog);
7722         }
7723 }
7724
7725 static const struct bpf_func_proto *
7726 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7727 {
7728         switch (func_id) {
7729         case BPF_FUNC_skb_get_tunnel_key:
7730                 return &bpf_skb_get_tunnel_key_proto;
7731         case BPF_FUNC_skb_set_tunnel_key:
7732                 return bpf_get_skb_set_tunnel_proto(func_id);
7733         case BPF_FUNC_skb_get_tunnel_opt:
7734                 return &bpf_skb_get_tunnel_opt_proto;
7735         case BPF_FUNC_skb_set_tunnel_opt:
7736                 return bpf_get_skb_set_tunnel_proto(func_id);
7737         case BPF_FUNC_redirect:
7738                 return &bpf_redirect_proto;
7739         case BPF_FUNC_clone_redirect:
7740                 return &bpf_clone_redirect_proto;
7741         case BPF_FUNC_skb_change_tail:
7742                 return &bpf_skb_change_tail_proto;
7743         case BPF_FUNC_skb_change_head:
7744                 return &bpf_skb_change_head_proto;
7745         case BPF_FUNC_skb_store_bytes:
7746                 return &bpf_skb_store_bytes_proto;
7747         case BPF_FUNC_csum_update:
7748                 return &bpf_csum_update_proto;
7749         case BPF_FUNC_csum_level:
7750                 return &bpf_csum_level_proto;
7751         case BPF_FUNC_l3_csum_replace:
7752                 return &bpf_l3_csum_replace_proto;
7753         case BPF_FUNC_l4_csum_replace:
7754                 return &bpf_l4_csum_replace_proto;
7755         case BPF_FUNC_set_hash_invalid:
7756                 return &bpf_set_hash_invalid_proto;
7757         case BPF_FUNC_lwt_push_encap:
7758                 return &bpf_lwt_xmit_push_encap_proto;
7759         default:
7760                 return lwt_out_func_proto(func_id, prog);
7761         }
7762 }
7763
7764 static const struct bpf_func_proto *
7765 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7766 {
7767         switch (func_id) {
7768 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7769         case BPF_FUNC_lwt_seg6_store_bytes:
7770                 return &bpf_lwt_seg6_store_bytes_proto;
7771         case BPF_FUNC_lwt_seg6_action:
7772                 return &bpf_lwt_seg6_action_proto;
7773         case BPF_FUNC_lwt_seg6_adjust_srh:
7774                 return &bpf_lwt_seg6_adjust_srh_proto;
7775 #endif
7776         default:
7777                 return lwt_out_func_proto(func_id, prog);
7778         }
7779 }
7780
7781 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
7782                                     const struct bpf_prog *prog,
7783                                     struct bpf_insn_access_aux *info)
7784 {
7785         const int size_default = sizeof(__u32);
7786
7787         if (off < 0 || off >= sizeof(struct __sk_buff))
7788                 return false;
7789
7790         /* The verifier guarantees that size > 0. */
7791         if (off % size != 0)
7792                 return false;
7793
7794         switch (off) {
7795         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7796                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
7797                         return false;
7798                 break;
7799         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
7800         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
7801         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
7802         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
7803         case bpf_ctx_range(struct __sk_buff, data):
7804         case bpf_ctx_range(struct __sk_buff, data_meta):
7805         case bpf_ctx_range(struct __sk_buff, data_end):
7806                 if (size != size_default)
7807                         return false;
7808                 break;
7809         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7810                 return false;
7811         case bpf_ctx_range(struct __sk_buff, tstamp):
7812                 if (size != sizeof(__u64))
7813                         return false;
7814                 break;
7815         case offsetof(struct __sk_buff, sk):
7816                 if (type == BPF_WRITE || size != sizeof(__u64))
7817                         return false;
7818                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
7819                 break;
7820         default:
7821                 /* Only narrow read access allowed for now. */
7822                 if (type == BPF_WRITE) {
7823                         if (size != size_default)
7824                                 return false;
7825                 } else {
7826                         bpf_ctx_record_field_size(info, size_default);
7827                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7828                                 return false;
7829                 }
7830         }
7831
7832         return true;
7833 }
7834
7835 static bool sk_filter_is_valid_access(int off, int size,
7836                                       enum bpf_access_type type,
7837                                       const struct bpf_prog *prog,
7838                                       struct bpf_insn_access_aux *info)
7839 {
7840         switch (off) {
7841         case bpf_ctx_range(struct __sk_buff, tc_classid):
7842         case bpf_ctx_range(struct __sk_buff, data):
7843         case bpf_ctx_range(struct __sk_buff, data_meta):
7844         case bpf_ctx_range(struct __sk_buff, data_end):
7845         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7846         case bpf_ctx_range(struct __sk_buff, tstamp):
7847         case bpf_ctx_range(struct __sk_buff, wire_len):
7848                 return false;
7849         }
7850
7851         if (type == BPF_WRITE) {
7852                 switch (off) {
7853                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7854                         break;
7855                 default:
7856                         return false;
7857                 }
7858         }
7859
7860         return bpf_skb_is_valid_access(off, size, type, prog, info);
7861 }
7862
7863 static bool cg_skb_is_valid_access(int off, int size,
7864                                    enum bpf_access_type type,
7865                                    const struct bpf_prog *prog,
7866                                    struct bpf_insn_access_aux *info)
7867 {
7868         switch (off) {
7869         case bpf_ctx_range(struct __sk_buff, tc_classid):
7870         case bpf_ctx_range(struct __sk_buff, data_meta):
7871         case bpf_ctx_range(struct __sk_buff, wire_len):
7872                 return false;
7873         case bpf_ctx_range(struct __sk_buff, data):
7874         case bpf_ctx_range(struct __sk_buff, data_end):
7875                 if (!bpf_capable())
7876                         return false;
7877                 break;
7878         }
7879
7880         if (type == BPF_WRITE) {
7881                 switch (off) {
7882                 case bpf_ctx_range(struct __sk_buff, mark):
7883                 case bpf_ctx_range(struct __sk_buff, priority):
7884                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7885                         break;
7886                 case bpf_ctx_range(struct __sk_buff, tstamp):
7887                         if (!bpf_capable())
7888                                 return false;
7889                         break;
7890                 default:
7891                         return false;
7892                 }
7893         }
7894
7895         switch (off) {
7896         case bpf_ctx_range(struct __sk_buff, data):
7897                 info->reg_type = PTR_TO_PACKET;
7898                 break;
7899         case bpf_ctx_range(struct __sk_buff, data_end):
7900                 info->reg_type = PTR_TO_PACKET_END;
7901                 break;
7902         }
7903
7904         return bpf_skb_is_valid_access(off, size, type, prog, info);
7905 }
7906
7907 static bool lwt_is_valid_access(int off, int size,
7908                                 enum bpf_access_type type,
7909                                 const struct bpf_prog *prog,
7910                                 struct bpf_insn_access_aux *info)
7911 {
7912         switch (off) {
7913         case bpf_ctx_range(struct __sk_buff, tc_classid):
7914         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7915         case bpf_ctx_range(struct __sk_buff, data_meta):
7916         case bpf_ctx_range(struct __sk_buff, tstamp):
7917         case bpf_ctx_range(struct __sk_buff, wire_len):
7918                 return false;
7919         }
7920
7921         if (type == BPF_WRITE) {
7922                 switch (off) {
7923                 case bpf_ctx_range(struct __sk_buff, mark):
7924                 case bpf_ctx_range(struct __sk_buff, priority):
7925                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7926                         break;
7927                 default:
7928                         return false;
7929                 }
7930         }
7931
7932         switch (off) {
7933         case bpf_ctx_range(struct __sk_buff, data):
7934                 info->reg_type = PTR_TO_PACKET;
7935                 break;
7936         case bpf_ctx_range(struct __sk_buff, data_end):
7937                 info->reg_type = PTR_TO_PACKET_END;
7938                 break;
7939         }
7940
7941         return bpf_skb_is_valid_access(off, size, type, prog, info);
7942 }
7943
7944 /* Attach type specific accesses */
7945 static bool __sock_filter_check_attach_type(int off,
7946                                             enum bpf_access_type access_type,
7947                                             enum bpf_attach_type attach_type)
7948 {
7949         switch (off) {
7950         case offsetof(struct bpf_sock, bound_dev_if):
7951         case offsetof(struct bpf_sock, mark):
7952         case offsetof(struct bpf_sock, priority):
7953                 switch (attach_type) {
7954                 case BPF_CGROUP_INET_SOCK_CREATE:
7955                 case BPF_CGROUP_INET_SOCK_RELEASE:
7956                         goto full_access;
7957                 default:
7958                         return false;
7959                 }
7960         case bpf_ctx_range(struct bpf_sock, src_ip4):
7961                 switch (attach_type) {
7962                 case BPF_CGROUP_INET4_POST_BIND:
7963                         goto read_only;
7964                 default:
7965                         return false;
7966                 }
7967         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7968                 switch (attach_type) {
7969                 case BPF_CGROUP_INET6_POST_BIND:
7970                         goto read_only;
7971                 default:
7972                         return false;
7973                 }
7974         case bpf_ctx_range(struct bpf_sock, src_port):
7975                 switch (attach_type) {
7976                 case BPF_CGROUP_INET4_POST_BIND:
7977                 case BPF_CGROUP_INET6_POST_BIND:
7978                         goto read_only;
7979                 default:
7980                         return false;
7981                 }
7982         }
7983 read_only:
7984         return access_type == BPF_READ;
7985 full_access:
7986         return true;
7987 }
7988
7989 bool bpf_sock_common_is_valid_access(int off, int size,
7990                                      enum bpf_access_type type,
7991                                      struct bpf_insn_access_aux *info)
7992 {
7993         switch (off) {
7994         case bpf_ctx_range_till(struct bpf_sock, type, priority):
7995                 return false;
7996         default:
7997                 return bpf_sock_is_valid_access(off, size, type, info);
7998         }
7999 }
8000
8001 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8002                               struct bpf_insn_access_aux *info)
8003 {
8004         const int size_default = sizeof(__u32);
8005         int field_size;
8006
8007         if (off < 0 || off >= sizeof(struct bpf_sock))
8008                 return false;
8009         if (off % size != 0)
8010                 return false;
8011
8012         switch (off) {
8013         case offsetof(struct bpf_sock, state):
8014         case offsetof(struct bpf_sock, family):
8015         case offsetof(struct bpf_sock, type):
8016         case offsetof(struct bpf_sock, protocol):
8017         case offsetof(struct bpf_sock, src_port):
8018         case offsetof(struct bpf_sock, rx_queue_mapping):
8019         case bpf_ctx_range(struct bpf_sock, src_ip4):
8020         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8021         case bpf_ctx_range(struct bpf_sock, dst_ip4):
8022         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8023                 bpf_ctx_record_field_size(info, size_default);
8024                 return bpf_ctx_narrow_access_ok(off, size, size_default);
8025         case bpf_ctx_range(struct bpf_sock, dst_port):
8026                 field_size = size == size_default ?
8027                         size_default : sizeof_field(struct bpf_sock, dst_port);
8028                 bpf_ctx_record_field_size(info, field_size);
8029                 return bpf_ctx_narrow_access_ok(off, size, field_size);
8030         case offsetofend(struct bpf_sock, dst_port) ...
8031              offsetof(struct bpf_sock, dst_ip4) - 1:
8032                 return false;
8033         }
8034
8035         return size == size_default;
8036 }
8037
8038 static bool sock_filter_is_valid_access(int off, int size,
8039                                         enum bpf_access_type type,
8040                                         const struct bpf_prog *prog,
8041                                         struct bpf_insn_access_aux *info)
8042 {
8043         if (!bpf_sock_is_valid_access(off, size, type, info))
8044                 return false;
8045         return __sock_filter_check_attach_type(off, type,
8046                                                prog->expected_attach_type);
8047 }
8048
8049 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8050                              const struct bpf_prog *prog)
8051 {
8052         /* Neither direct read nor direct write requires any preliminary
8053          * action.
8054          */
8055         return 0;
8056 }
8057
8058 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8059                                 const struct bpf_prog *prog, int drop_verdict)
8060 {
8061         struct bpf_insn *insn = insn_buf;
8062
8063         if (!direct_write)
8064                 return 0;
8065
8066         /* if (!skb->cloned)
8067          *       goto start;
8068          *
8069          * (Fast-path, otherwise approximation that we might be
8070          *  a clone, do the rest in helper.)
8071          */
8072         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
8073         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8074         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8075
8076         /* ret = bpf_skb_pull_data(skb, 0); */
8077         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8078         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8079         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8080                                BPF_FUNC_skb_pull_data);
8081         /* if (!ret)
8082          *      goto restore;
8083          * return TC_ACT_SHOT;
8084          */
8085         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8086         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8087         *insn++ = BPF_EXIT_INSN();
8088
8089         /* restore: */
8090         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8091         /* start: */
8092         *insn++ = prog->insnsi[0];
8093
8094         return insn - insn_buf;
8095 }
8096
8097 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8098                           struct bpf_insn *insn_buf)
8099 {
8100         bool indirect = BPF_MODE(orig->code) == BPF_IND;
8101         struct bpf_insn *insn = insn_buf;
8102
8103         if (!indirect) {
8104                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8105         } else {
8106                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8107                 if (orig->imm)
8108                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8109         }
8110         /* We're guaranteed here that CTX is in R6. */
8111         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8112
8113         switch (BPF_SIZE(orig->code)) {
8114         case BPF_B:
8115                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8116                 break;
8117         case BPF_H:
8118                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8119                 break;
8120         case BPF_W:
8121                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8122                 break;
8123         }
8124
8125         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8126         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8127         *insn++ = BPF_EXIT_INSN();
8128
8129         return insn - insn_buf;
8130 }
8131
8132 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8133                                const struct bpf_prog *prog)
8134 {
8135         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8136 }
8137
8138 static bool tc_cls_act_is_valid_access(int off, int size,
8139                                        enum bpf_access_type type,
8140                                        const struct bpf_prog *prog,
8141                                        struct bpf_insn_access_aux *info)
8142 {
8143         if (type == BPF_WRITE) {
8144                 switch (off) {
8145                 case bpf_ctx_range(struct __sk_buff, mark):
8146                 case bpf_ctx_range(struct __sk_buff, tc_index):
8147                 case bpf_ctx_range(struct __sk_buff, priority):
8148                 case bpf_ctx_range(struct __sk_buff, tc_classid):
8149                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8150                 case bpf_ctx_range(struct __sk_buff, tstamp):
8151                 case bpf_ctx_range(struct __sk_buff, queue_mapping):
8152                         break;
8153                 default:
8154                         return false;
8155                 }
8156         }
8157
8158         switch (off) {
8159         case bpf_ctx_range(struct __sk_buff, data):
8160                 info->reg_type = PTR_TO_PACKET;
8161                 break;
8162         case bpf_ctx_range(struct __sk_buff, data_meta):
8163                 info->reg_type = PTR_TO_PACKET_META;
8164                 break;
8165         case bpf_ctx_range(struct __sk_buff, data_end):
8166                 info->reg_type = PTR_TO_PACKET_END;
8167                 break;
8168         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8169                 return false;
8170         }
8171
8172         return bpf_skb_is_valid_access(off, size, type, prog, info);
8173 }
8174
8175 static bool __is_valid_xdp_access(int off, int size)
8176 {
8177         if (off < 0 || off >= sizeof(struct xdp_md))
8178                 return false;
8179         if (off % size != 0)
8180                 return false;
8181         if (size != sizeof(__u32))
8182                 return false;
8183
8184         return true;
8185 }
8186
8187 static bool xdp_is_valid_access(int off, int size,
8188                                 enum bpf_access_type type,
8189                                 const struct bpf_prog *prog,
8190                                 struct bpf_insn_access_aux *info)
8191 {
8192         if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8193                 switch (off) {
8194                 case offsetof(struct xdp_md, egress_ifindex):
8195                         return false;
8196                 }
8197         }
8198
8199         if (type == BPF_WRITE) {
8200                 if (bpf_prog_is_dev_bound(prog->aux)) {
8201                         switch (off) {
8202                         case offsetof(struct xdp_md, rx_queue_index):
8203                                 return __is_valid_xdp_access(off, size);
8204                         }
8205                 }
8206                 return false;
8207         }
8208
8209         switch (off) {
8210         case offsetof(struct xdp_md, data):
8211                 info->reg_type = PTR_TO_PACKET;
8212                 break;
8213         case offsetof(struct xdp_md, data_meta):
8214                 info->reg_type = PTR_TO_PACKET_META;
8215                 break;
8216         case offsetof(struct xdp_md, data_end):
8217                 info->reg_type = PTR_TO_PACKET_END;
8218                 break;
8219         }
8220
8221         return __is_valid_xdp_access(off, size);
8222 }
8223
8224 void bpf_warn_invalid_xdp_action(u32 act)
8225 {
8226         const u32 act_max = XDP_REDIRECT;
8227
8228         pr_warn_once("%s XDP return value %u, expect packet loss!\n",
8229                      act > act_max ? "Illegal" : "Driver unsupported",
8230                      act);
8231 }
8232 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8233
8234 static bool sock_addr_is_valid_access(int off, int size,
8235                                       enum bpf_access_type type,
8236                                       const struct bpf_prog *prog,
8237                                       struct bpf_insn_access_aux *info)
8238 {
8239         const int size_default = sizeof(__u32);
8240
8241         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8242                 return false;
8243         if (off % size != 0)
8244                 return false;
8245
8246         /* Disallow access to IPv6 fields from IPv4 contex and vise
8247          * versa.
8248          */
8249         switch (off) {
8250         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8251                 switch (prog->expected_attach_type) {
8252                 case BPF_CGROUP_INET4_BIND:
8253                 case BPF_CGROUP_INET4_CONNECT:
8254                 case BPF_CGROUP_INET4_GETPEERNAME:
8255                 case BPF_CGROUP_INET4_GETSOCKNAME:
8256                 case BPF_CGROUP_UDP4_SENDMSG:
8257                 case BPF_CGROUP_UDP4_RECVMSG:
8258                         break;
8259                 default:
8260                         return false;
8261                 }
8262                 break;
8263         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8264                 switch (prog->expected_attach_type) {
8265                 case BPF_CGROUP_INET6_BIND:
8266                 case BPF_CGROUP_INET6_CONNECT:
8267                 case BPF_CGROUP_INET6_GETPEERNAME:
8268                 case BPF_CGROUP_INET6_GETSOCKNAME:
8269                 case BPF_CGROUP_UDP6_SENDMSG:
8270                 case BPF_CGROUP_UDP6_RECVMSG:
8271                         break;
8272                 default:
8273                         return false;
8274                 }
8275                 break;
8276         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8277                 switch (prog->expected_attach_type) {
8278                 case BPF_CGROUP_UDP4_SENDMSG:
8279                         break;
8280                 default:
8281                         return false;
8282                 }
8283                 break;
8284         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8285                                 msg_src_ip6[3]):
8286                 switch (prog->expected_attach_type) {
8287                 case BPF_CGROUP_UDP6_SENDMSG:
8288                         break;
8289                 default:
8290                         return false;
8291                 }
8292                 break;
8293         }
8294
8295         switch (off) {
8296         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8297         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8298         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8299         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8300                                 msg_src_ip6[3]):
8301         case bpf_ctx_range(struct bpf_sock_addr, user_port):
8302                 if (type == BPF_READ) {
8303                         bpf_ctx_record_field_size(info, size_default);
8304
8305                         if (bpf_ctx_wide_access_ok(off, size,
8306                                                    struct bpf_sock_addr,
8307                                                    user_ip6))
8308                                 return true;
8309
8310                         if (bpf_ctx_wide_access_ok(off, size,
8311                                                    struct bpf_sock_addr,
8312                                                    msg_src_ip6))
8313                                 return true;
8314
8315                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8316                                 return false;
8317                 } else {
8318                         if (bpf_ctx_wide_access_ok(off, size,
8319                                                    struct bpf_sock_addr,
8320                                                    user_ip6))
8321                                 return true;
8322
8323                         if (bpf_ctx_wide_access_ok(off, size,
8324                                                    struct bpf_sock_addr,
8325                                                    msg_src_ip6))
8326                                 return true;
8327
8328                         if (size != size_default)
8329                                 return false;
8330                 }
8331                 break;
8332         case offsetof(struct bpf_sock_addr, sk):
8333                 if (type != BPF_READ)
8334                         return false;
8335                 if (size != sizeof(__u64))
8336                         return false;
8337                 info->reg_type = PTR_TO_SOCKET;
8338                 break;
8339         default:
8340                 if (type == BPF_READ) {
8341                         if (size != size_default)
8342                                 return false;
8343                 } else {
8344                         return false;
8345                 }
8346         }
8347
8348         return true;
8349 }
8350
8351 static bool sock_ops_is_valid_access(int off, int size,
8352                                      enum bpf_access_type type,
8353                                      const struct bpf_prog *prog,
8354                                      struct bpf_insn_access_aux *info)
8355 {
8356         const int size_default = sizeof(__u32);
8357
8358         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8359                 return false;
8360
8361         /* The verifier guarantees that size > 0. */
8362         if (off % size != 0)
8363                 return false;
8364
8365         if (type == BPF_WRITE) {
8366                 switch (off) {
8367                 case offsetof(struct bpf_sock_ops, reply):
8368                 case offsetof(struct bpf_sock_ops, sk_txhash):
8369                         if (size != size_default)
8370                                 return false;
8371                         break;
8372                 default:
8373                         return false;
8374                 }
8375         } else {
8376                 switch (off) {
8377                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8378                                         bytes_acked):
8379                         if (size != sizeof(__u64))
8380                                 return false;
8381                         break;
8382                 case offsetof(struct bpf_sock_ops, sk):
8383                         if (size != sizeof(__u64))
8384                                 return false;
8385                         info->reg_type = PTR_TO_SOCKET_OR_NULL;
8386                         break;
8387                 case offsetof(struct bpf_sock_ops, skb_data):
8388                         if (size != sizeof(__u64))
8389                                 return false;
8390                         info->reg_type = PTR_TO_PACKET;
8391                         break;
8392                 case offsetof(struct bpf_sock_ops, skb_data_end):
8393                         if (size != sizeof(__u64))
8394                                 return false;
8395                         info->reg_type = PTR_TO_PACKET_END;
8396                         break;
8397                 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8398                         bpf_ctx_record_field_size(info, size_default);
8399                         return bpf_ctx_narrow_access_ok(off, size,
8400                                                         size_default);
8401                 default:
8402                         if (size != size_default)
8403                                 return false;
8404                         break;
8405                 }
8406         }
8407
8408         return true;
8409 }
8410
8411 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8412                            const struct bpf_prog *prog)
8413 {
8414         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8415 }
8416
8417 static bool sk_skb_is_valid_access(int off, int size,
8418                                    enum bpf_access_type type,
8419                                    const struct bpf_prog *prog,
8420                                    struct bpf_insn_access_aux *info)
8421 {
8422         switch (off) {
8423         case bpf_ctx_range(struct __sk_buff, tc_classid):
8424         case bpf_ctx_range(struct __sk_buff, data_meta):
8425         case bpf_ctx_range(struct __sk_buff, tstamp):
8426         case bpf_ctx_range(struct __sk_buff, wire_len):
8427                 return false;
8428         }
8429
8430         if (type == BPF_WRITE) {
8431                 switch (off) {
8432                 case bpf_ctx_range(struct __sk_buff, tc_index):
8433                 case bpf_ctx_range(struct __sk_buff, priority):
8434                         break;
8435                 default:
8436                         return false;
8437                 }
8438         }
8439
8440         switch (off) {
8441         case bpf_ctx_range(struct __sk_buff, mark):
8442                 return false;
8443         case bpf_ctx_range(struct __sk_buff, data):
8444                 info->reg_type = PTR_TO_PACKET;
8445                 break;
8446         case bpf_ctx_range(struct __sk_buff, data_end):
8447                 info->reg_type = PTR_TO_PACKET_END;
8448                 break;
8449         }
8450
8451         return bpf_skb_is_valid_access(off, size, type, prog, info);
8452 }
8453
8454 static bool sk_msg_is_valid_access(int off, int size,
8455                                    enum bpf_access_type type,
8456                                    const struct bpf_prog *prog,
8457                                    struct bpf_insn_access_aux *info)
8458 {
8459         if (type == BPF_WRITE)
8460                 return false;
8461
8462         if (off % size != 0)
8463                 return false;
8464
8465         switch (off) {
8466         case offsetof(struct sk_msg_md, data):
8467                 info->reg_type = PTR_TO_PACKET;
8468                 if (size != sizeof(__u64))
8469                         return false;
8470                 break;
8471         case offsetof(struct sk_msg_md, data_end):
8472                 info->reg_type = PTR_TO_PACKET_END;
8473                 if (size != sizeof(__u64))
8474                         return false;
8475                 break;
8476         case offsetof(struct sk_msg_md, sk):
8477                 if (size != sizeof(__u64))
8478                         return false;
8479                 info->reg_type = PTR_TO_SOCKET;
8480                 break;
8481         case bpf_ctx_range(struct sk_msg_md, family):
8482         case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8483         case bpf_ctx_range(struct sk_msg_md, local_ip4):
8484         case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8485         case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8486         case bpf_ctx_range(struct sk_msg_md, remote_port):
8487         case bpf_ctx_range(struct sk_msg_md, local_port):
8488         case bpf_ctx_range(struct sk_msg_md, size):
8489                 if (size != sizeof(__u32))
8490                         return false;
8491                 break;
8492         default:
8493                 return false;
8494         }
8495         return true;
8496 }
8497
8498 static bool flow_dissector_is_valid_access(int off, int size,
8499                                            enum bpf_access_type type,
8500                                            const struct bpf_prog *prog,
8501                                            struct bpf_insn_access_aux *info)
8502 {
8503         const int size_default = sizeof(__u32);
8504
8505         if (off < 0 || off >= sizeof(struct __sk_buff))
8506                 return false;
8507
8508         if (type == BPF_WRITE)
8509                 return false;
8510
8511         switch (off) {
8512         case bpf_ctx_range(struct __sk_buff, data):
8513                 if (size != size_default)
8514                         return false;
8515                 info->reg_type = PTR_TO_PACKET;
8516                 return true;
8517         case bpf_ctx_range(struct __sk_buff, data_end):
8518                 if (size != size_default)
8519                         return false;
8520                 info->reg_type = PTR_TO_PACKET_END;
8521                 return true;
8522         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8523                 if (size != sizeof(__u64))
8524                         return false;
8525                 info->reg_type = PTR_TO_FLOW_KEYS;
8526                 return true;
8527         default:
8528                 return false;
8529         }
8530 }
8531
8532 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8533                                              const struct bpf_insn *si,
8534                                              struct bpf_insn *insn_buf,
8535                                              struct bpf_prog *prog,
8536                                              u32 *target_size)
8537
8538 {
8539         struct bpf_insn *insn = insn_buf;
8540
8541         switch (si->off) {
8542         case offsetof(struct __sk_buff, data):
8543                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8544                                       si->dst_reg, si->src_reg,
8545                                       offsetof(struct bpf_flow_dissector, data));
8546                 break;
8547
8548         case offsetof(struct __sk_buff, data_end):
8549                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8550                                       si->dst_reg, si->src_reg,
8551                                       offsetof(struct bpf_flow_dissector, data_end));
8552                 break;
8553
8554         case offsetof(struct __sk_buff, flow_keys):
8555                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8556                                       si->dst_reg, si->src_reg,
8557                                       offsetof(struct bpf_flow_dissector, flow_keys));
8558                 break;
8559         }
8560
8561         return insn - insn_buf;
8562 }
8563
8564 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
8565                                                   struct bpf_insn *insn)
8566 {
8567         /* si->dst_reg = skb_shinfo(SKB); */
8568 #ifdef NET_SKBUFF_DATA_USES_OFFSET
8569         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8570                               BPF_REG_AX, si->src_reg,
8571                               offsetof(struct sk_buff, end));
8572         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
8573                               si->dst_reg, si->src_reg,
8574                               offsetof(struct sk_buff, head));
8575         *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
8576 #else
8577         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8578                               si->dst_reg, si->src_reg,
8579                               offsetof(struct sk_buff, end));
8580 #endif
8581
8582         return insn;
8583 }
8584
8585 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
8586                                   const struct bpf_insn *si,
8587                                   struct bpf_insn *insn_buf,
8588                                   struct bpf_prog *prog, u32 *target_size)
8589 {
8590         struct bpf_insn *insn = insn_buf;
8591         int off;
8592
8593         switch (si->off) {
8594         case offsetof(struct __sk_buff, len):
8595                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8596                                       bpf_target_off(struct sk_buff, len, 4,
8597                                                      target_size));
8598                 break;
8599
8600         case offsetof(struct __sk_buff, protocol):
8601                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8602                                       bpf_target_off(struct sk_buff, protocol, 2,
8603                                                      target_size));
8604                 break;
8605
8606         case offsetof(struct __sk_buff, vlan_proto):
8607                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8608                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
8609                                                      target_size));
8610                 break;
8611
8612         case offsetof(struct __sk_buff, priority):
8613                 if (type == BPF_WRITE)
8614                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8615                                               bpf_target_off(struct sk_buff, priority, 4,
8616                                                              target_size));
8617                 else
8618                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8619                                               bpf_target_off(struct sk_buff, priority, 4,
8620                                                              target_size));
8621                 break;
8622
8623         case offsetof(struct __sk_buff, ingress_ifindex):
8624                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8625                                       bpf_target_off(struct sk_buff, skb_iif, 4,
8626                                                      target_size));
8627                 break;
8628
8629         case offsetof(struct __sk_buff, ifindex):
8630                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8631                                       si->dst_reg, si->src_reg,
8632                                       offsetof(struct sk_buff, dev));
8633                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8634                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8635                                       bpf_target_off(struct net_device, ifindex, 4,
8636                                                      target_size));
8637                 break;
8638
8639         case offsetof(struct __sk_buff, hash):
8640                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8641                                       bpf_target_off(struct sk_buff, hash, 4,
8642                                                      target_size));
8643                 break;
8644
8645         case offsetof(struct __sk_buff, mark):
8646                 if (type == BPF_WRITE)
8647                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8648                                               bpf_target_off(struct sk_buff, mark, 4,
8649                                                              target_size));
8650                 else
8651                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8652                                               bpf_target_off(struct sk_buff, mark, 4,
8653                                                              target_size));
8654                 break;
8655
8656         case offsetof(struct __sk_buff, pkt_type):
8657                 *target_size = 1;
8658                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8659                                       PKT_TYPE_OFFSET());
8660                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
8661 #ifdef __BIG_ENDIAN_BITFIELD
8662                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
8663 #endif
8664                 break;
8665
8666         case offsetof(struct __sk_buff, queue_mapping):
8667                 if (type == BPF_WRITE) {
8668                         *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
8669                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8670                                               bpf_target_off(struct sk_buff,
8671                                                              queue_mapping,
8672                                                              2, target_size));
8673                 } else {
8674                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8675                                               bpf_target_off(struct sk_buff,
8676                                                              queue_mapping,
8677                                                              2, target_size));
8678                 }
8679                 break;
8680
8681         case offsetof(struct __sk_buff, vlan_present):
8682                 *target_size = 1;
8683                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8684                                       PKT_VLAN_PRESENT_OFFSET());
8685                 if (PKT_VLAN_PRESENT_BIT)
8686                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
8687                 if (PKT_VLAN_PRESENT_BIT < 7)
8688                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
8689                 break;
8690
8691         case offsetof(struct __sk_buff, vlan_tci):
8692                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8693                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
8694                                                      target_size));
8695                 break;
8696
8697         case offsetof(struct __sk_buff, cb[0]) ...
8698              offsetofend(struct __sk_buff, cb[4]) - 1:
8699                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
8700                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
8701                               offsetof(struct qdisc_skb_cb, data)) %
8702                              sizeof(__u64));
8703
8704                 prog->cb_access = 1;
8705                 off  = si->off;
8706                 off -= offsetof(struct __sk_buff, cb[0]);
8707                 off += offsetof(struct sk_buff, cb);
8708                 off += offsetof(struct qdisc_skb_cb, data);
8709                 if (type == BPF_WRITE)
8710                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
8711                                               si->src_reg, off);
8712                 else
8713                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
8714                                               si->src_reg, off);
8715                 break;
8716
8717         case offsetof(struct __sk_buff, tc_classid):
8718                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
8719
8720                 off  = si->off;
8721                 off -= offsetof(struct __sk_buff, tc_classid);
8722                 off += offsetof(struct sk_buff, cb);
8723                 off += offsetof(struct qdisc_skb_cb, tc_classid);
8724                 *target_size = 2;
8725                 if (type == BPF_WRITE)
8726                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
8727                                               si->src_reg, off);
8728                 else
8729                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
8730                                               si->src_reg, off);
8731                 break;
8732
8733         case offsetof(struct __sk_buff, data):
8734                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
8735                                       si->dst_reg, si->src_reg,
8736                                       offsetof(struct sk_buff, data));
8737                 break;
8738
8739         case offsetof(struct __sk_buff, data_meta):
8740                 off  = si->off;
8741                 off -= offsetof(struct __sk_buff, data_meta);
8742                 off += offsetof(struct sk_buff, cb);
8743                 off += offsetof(struct bpf_skb_data_end, data_meta);
8744                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8745                                       si->src_reg, off);
8746                 break;
8747
8748         case offsetof(struct __sk_buff, data_end):
8749                 off  = si->off;
8750                 off -= offsetof(struct __sk_buff, data_end);
8751                 off += offsetof(struct sk_buff, cb);
8752                 off += offsetof(struct bpf_skb_data_end, data_end);
8753                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8754                                       si->src_reg, off);
8755                 break;
8756
8757         case offsetof(struct __sk_buff, tc_index):
8758 #ifdef CONFIG_NET_SCHED
8759                 if (type == BPF_WRITE)
8760                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8761                                               bpf_target_off(struct sk_buff, tc_index, 2,
8762                                                              target_size));
8763                 else
8764                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8765                                               bpf_target_off(struct sk_buff, tc_index, 2,
8766                                                              target_size));
8767 #else
8768                 *target_size = 2;
8769                 if (type == BPF_WRITE)
8770                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
8771                 else
8772                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8773 #endif
8774                 break;
8775
8776         case offsetof(struct __sk_buff, napi_id):
8777 #if defined(CONFIG_NET_RX_BUSY_POLL)
8778                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8779                                       bpf_target_off(struct sk_buff, napi_id, 4,
8780                                                      target_size));
8781                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
8782                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8783 #else
8784                 *target_size = 4;
8785                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8786 #endif
8787                 break;
8788         case offsetof(struct __sk_buff, family):
8789                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8790
8791                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8792                                       si->dst_reg, si->src_reg,
8793                                       offsetof(struct sk_buff, sk));
8794                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8795                                       bpf_target_off(struct sock_common,
8796                                                      skc_family,
8797                                                      2, target_size));
8798                 break;
8799         case offsetof(struct __sk_buff, remote_ip4):
8800                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8801
8802                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8803                                       si->dst_reg, si->src_reg,
8804                                       offsetof(struct sk_buff, sk));
8805                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8806                                       bpf_target_off(struct sock_common,
8807                                                      skc_daddr,
8808                                                      4, target_size));
8809                 break;
8810         case offsetof(struct __sk_buff, local_ip4):
8811                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8812                                           skc_rcv_saddr) != 4);
8813
8814                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8815                                       si->dst_reg, si->src_reg,
8816                                       offsetof(struct sk_buff, sk));
8817                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8818                                       bpf_target_off(struct sock_common,
8819                                                      skc_rcv_saddr,
8820                                                      4, target_size));
8821                 break;
8822         case offsetof(struct __sk_buff, remote_ip6[0]) ...
8823              offsetof(struct __sk_buff, remote_ip6[3]):
8824 #if IS_ENABLED(CONFIG_IPV6)
8825                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8826                                           skc_v6_daddr.s6_addr32[0]) != 4);
8827
8828                 off = si->off;
8829                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
8830
8831                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8832                                       si->dst_reg, si->src_reg,
8833                                       offsetof(struct sk_buff, sk));
8834                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8835                                       offsetof(struct sock_common,
8836                                                skc_v6_daddr.s6_addr32[0]) +
8837                                       off);
8838 #else
8839                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8840 #endif
8841                 break;
8842         case offsetof(struct __sk_buff, local_ip6[0]) ...
8843              offsetof(struct __sk_buff, local_ip6[3]):
8844 #if IS_ENABLED(CONFIG_IPV6)
8845                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8846                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8847
8848                 off = si->off;
8849                 off -= offsetof(struct __sk_buff, local_ip6[0]);
8850
8851                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8852                                       si->dst_reg, si->src_reg,
8853                                       offsetof(struct sk_buff, sk));
8854                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8855                                       offsetof(struct sock_common,
8856                                                skc_v6_rcv_saddr.s6_addr32[0]) +
8857                                       off);
8858 #else
8859                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8860 #endif
8861                 break;
8862
8863         case offsetof(struct __sk_buff, remote_port):
8864                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8865
8866                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8867                                       si->dst_reg, si->src_reg,
8868                                       offsetof(struct sk_buff, sk));
8869                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8870                                       bpf_target_off(struct sock_common,
8871                                                      skc_dport,
8872                                                      2, target_size));
8873 #ifndef __BIG_ENDIAN_BITFIELD
8874                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8875 #endif
8876                 break;
8877
8878         case offsetof(struct __sk_buff, local_port):
8879                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8880
8881                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8882                                       si->dst_reg, si->src_reg,
8883                                       offsetof(struct sk_buff, sk));
8884                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8885                                       bpf_target_off(struct sock_common,
8886                                                      skc_num, 2, target_size));
8887                 break;
8888
8889         case offsetof(struct __sk_buff, tstamp):
8890                 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
8891
8892                 if (type == BPF_WRITE)
8893                         *insn++ = BPF_STX_MEM(BPF_DW,
8894                                               si->dst_reg, si->src_reg,
8895                                               bpf_target_off(struct sk_buff,
8896                                                              tstamp, 8,
8897                                                              target_size));
8898                 else
8899                         *insn++ = BPF_LDX_MEM(BPF_DW,
8900                                               si->dst_reg, si->src_reg,
8901                                               bpf_target_off(struct sk_buff,
8902                                                              tstamp, 8,
8903                                                              target_size));
8904                 break;
8905
8906         case offsetof(struct __sk_buff, gso_segs):
8907                 insn = bpf_convert_shinfo_access(si, insn);
8908                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
8909                                       si->dst_reg, si->dst_reg,
8910                                       bpf_target_off(struct skb_shared_info,
8911                                                      gso_segs, 2,
8912                                                      target_size));
8913                 break;
8914         case offsetof(struct __sk_buff, gso_size):
8915                 insn = bpf_convert_shinfo_access(si, insn);
8916                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
8917                                       si->dst_reg, si->dst_reg,
8918                                       bpf_target_off(struct skb_shared_info,
8919                                                      gso_size, 2,
8920                                                      target_size));
8921                 break;
8922         case offsetof(struct __sk_buff, wire_len):
8923                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
8924
8925                 off = si->off;
8926                 off -= offsetof(struct __sk_buff, wire_len);
8927                 off += offsetof(struct sk_buff, cb);
8928                 off += offsetof(struct qdisc_skb_cb, pkt_len);
8929                 *target_size = 4;
8930                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
8931                 break;
8932
8933         case offsetof(struct __sk_buff, sk):
8934                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8935                                       si->dst_reg, si->src_reg,
8936                                       offsetof(struct sk_buff, sk));
8937                 break;
8938         }
8939
8940         return insn - insn_buf;
8941 }
8942
8943 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
8944                                 const struct bpf_insn *si,
8945                                 struct bpf_insn *insn_buf,
8946                                 struct bpf_prog *prog, u32 *target_size)
8947 {
8948         struct bpf_insn *insn = insn_buf;
8949         int off;
8950
8951         switch (si->off) {
8952         case offsetof(struct bpf_sock, bound_dev_if):
8953                 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
8954
8955                 if (type == BPF_WRITE)
8956                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8957                                         offsetof(struct sock, sk_bound_dev_if));
8958                 else
8959                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8960                                       offsetof(struct sock, sk_bound_dev_if));
8961                 break;
8962
8963         case offsetof(struct bpf_sock, mark):
8964                 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
8965
8966                 if (type == BPF_WRITE)
8967                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8968                                         offsetof(struct sock, sk_mark));
8969                 else
8970                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8971                                       offsetof(struct sock, sk_mark));
8972                 break;
8973
8974         case offsetof(struct bpf_sock, priority):
8975                 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
8976
8977                 if (type == BPF_WRITE)
8978                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8979                                         offsetof(struct sock, sk_priority));
8980                 else
8981                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8982                                       offsetof(struct sock, sk_priority));
8983                 break;
8984
8985         case offsetof(struct bpf_sock, family):
8986                 *insn++ = BPF_LDX_MEM(
8987                         BPF_FIELD_SIZEOF(struct sock_common, skc_family),
8988                         si->dst_reg, si->src_reg,
8989                         bpf_target_off(struct sock_common,
8990                                        skc_family,
8991                                        sizeof_field(struct sock_common,
8992                                                     skc_family),
8993                                        target_size));
8994                 break;
8995
8996         case offsetof(struct bpf_sock, type):
8997                 *insn++ = BPF_LDX_MEM(
8998                         BPF_FIELD_SIZEOF(struct sock, sk_type),
8999                         si->dst_reg, si->src_reg,
9000                         bpf_target_off(struct sock, sk_type,
9001                                        sizeof_field(struct sock, sk_type),
9002                                        target_size));
9003                 break;
9004
9005         case offsetof(struct bpf_sock, protocol):
9006                 *insn++ = BPF_LDX_MEM(
9007                         BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9008                         si->dst_reg, si->src_reg,
9009                         bpf_target_off(struct sock, sk_protocol,
9010                                        sizeof_field(struct sock, sk_protocol),
9011                                        target_size));
9012                 break;
9013
9014         case offsetof(struct bpf_sock, src_ip4):
9015                 *insn++ = BPF_LDX_MEM(
9016                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9017                         bpf_target_off(struct sock_common, skc_rcv_saddr,
9018                                        sizeof_field(struct sock_common,
9019                                                     skc_rcv_saddr),
9020                                        target_size));
9021                 break;
9022
9023         case offsetof(struct bpf_sock, dst_ip4):
9024                 *insn++ = BPF_LDX_MEM(
9025                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9026                         bpf_target_off(struct sock_common, skc_daddr,
9027                                        sizeof_field(struct sock_common,
9028                                                     skc_daddr),
9029                                        target_size));
9030                 break;
9031
9032         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9033 #if IS_ENABLED(CONFIG_IPV6)
9034                 off = si->off;
9035                 off -= offsetof(struct bpf_sock, src_ip6[0]);
9036                 *insn++ = BPF_LDX_MEM(
9037                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9038                         bpf_target_off(
9039                                 struct sock_common,
9040                                 skc_v6_rcv_saddr.s6_addr32[0],
9041                                 sizeof_field(struct sock_common,
9042                                              skc_v6_rcv_saddr.s6_addr32[0]),
9043                                 target_size) + off);
9044 #else
9045                 (void)off;
9046                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9047 #endif
9048                 break;
9049
9050         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9051 #if IS_ENABLED(CONFIG_IPV6)
9052                 off = si->off;
9053                 off -= offsetof(struct bpf_sock, dst_ip6[0]);
9054                 *insn++ = BPF_LDX_MEM(
9055                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9056                         bpf_target_off(struct sock_common,
9057                                        skc_v6_daddr.s6_addr32[0],
9058                                        sizeof_field(struct sock_common,
9059                                                     skc_v6_daddr.s6_addr32[0]),
9060                                        target_size) + off);
9061 #else
9062                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9063                 *target_size = 4;
9064 #endif
9065                 break;
9066
9067         case offsetof(struct bpf_sock, src_port):
9068                 *insn++ = BPF_LDX_MEM(
9069                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9070                         si->dst_reg, si->src_reg,
9071                         bpf_target_off(struct sock_common, skc_num,
9072                                        sizeof_field(struct sock_common,
9073                                                     skc_num),
9074                                        target_size));
9075                 break;
9076
9077         case offsetof(struct bpf_sock, dst_port):
9078                 *insn++ = BPF_LDX_MEM(
9079                         BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9080                         si->dst_reg, si->src_reg,
9081                         bpf_target_off(struct sock_common, skc_dport,
9082                                        sizeof_field(struct sock_common,
9083                                                     skc_dport),
9084                                        target_size));
9085                 break;
9086
9087         case offsetof(struct bpf_sock, state):
9088                 *insn++ = BPF_LDX_MEM(
9089                         BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9090                         si->dst_reg, si->src_reg,
9091                         bpf_target_off(struct sock_common, skc_state,
9092                                        sizeof_field(struct sock_common,
9093                                                     skc_state),
9094                                        target_size));
9095                 break;
9096         case offsetof(struct bpf_sock, rx_queue_mapping):
9097 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9098                 *insn++ = BPF_LDX_MEM(
9099                         BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9100                         si->dst_reg, si->src_reg,
9101                         bpf_target_off(struct sock, sk_rx_queue_mapping,
9102                                        sizeof_field(struct sock,
9103                                                     sk_rx_queue_mapping),
9104                                        target_size));
9105                 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9106                                       1);
9107                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9108 #else
9109                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9110                 *target_size = 2;
9111 #endif
9112                 break;
9113         }
9114
9115         return insn - insn_buf;
9116 }
9117
9118 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9119                                          const struct bpf_insn *si,
9120                                          struct bpf_insn *insn_buf,
9121                                          struct bpf_prog *prog, u32 *target_size)
9122 {
9123         struct bpf_insn *insn = insn_buf;
9124
9125         switch (si->off) {
9126         case offsetof(struct __sk_buff, ifindex):
9127                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9128                                       si->dst_reg, si->src_reg,
9129                                       offsetof(struct sk_buff, dev));
9130                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9131                                       bpf_target_off(struct net_device, ifindex, 4,
9132                                                      target_size));
9133                 break;
9134         default:
9135                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9136                                               target_size);
9137         }
9138
9139         return insn - insn_buf;
9140 }
9141
9142 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9143                                   const struct bpf_insn *si,
9144                                   struct bpf_insn *insn_buf,
9145                                   struct bpf_prog *prog, u32 *target_size)
9146 {
9147         struct bpf_insn *insn = insn_buf;
9148
9149         switch (si->off) {
9150         case offsetof(struct xdp_md, data):
9151                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9152                                       si->dst_reg, si->src_reg,
9153                                       offsetof(struct xdp_buff, data));
9154                 break;
9155         case offsetof(struct xdp_md, data_meta):
9156                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9157                                       si->dst_reg, si->src_reg,
9158                                       offsetof(struct xdp_buff, data_meta));
9159                 break;
9160         case offsetof(struct xdp_md, data_end):
9161                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9162                                       si->dst_reg, si->src_reg,
9163                                       offsetof(struct xdp_buff, data_end));
9164                 break;
9165         case offsetof(struct xdp_md, ingress_ifindex):
9166                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9167                                       si->dst_reg, si->src_reg,
9168                                       offsetof(struct xdp_buff, rxq));
9169                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9170                                       si->dst_reg, si->dst_reg,
9171                                       offsetof(struct xdp_rxq_info, dev));
9172                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9173                                       offsetof(struct net_device, ifindex));
9174                 break;
9175         case offsetof(struct xdp_md, rx_queue_index):
9176                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9177                                       si->dst_reg, si->src_reg,
9178                                       offsetof(struct xdp_buff, rxq));
9179                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9180                                       offsetof(struct xdp_rxq_info,
9181                                                queue_index));
9182                 break;
9183         case offsetof(struct xdp_md, egress_ifindex):
9184                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9185                                       si->dst_reg, si->src_reg,
9186                                       offsetof(struct xdp_buff, txq));
9187                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9188                                       si->dst_reg, si->dst_reg,
9189                                       offsetof(struct xdp_txq_info, dev));
9190                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9191                                       offsetof(struct net_device, ifindex));
9192                 break;
9193         }
9194
9195         return insn - insn_buf;
9196 }
9197
9198 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9199  * context Structure, F is Field in context structure that contains a pointer
9200  * to Nested Structure of type NS that has the field NF.
9201  *
9202  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9203  * sure that SIZE is not greater than actual size of S.F.NF.
9204  *
9205  * If offset OFF is provided, the load happens from that offset relative to
9206  * offset of NF.
9207  */
9208 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
9209         do {                                                                   \
9210                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9211                                       si->src_reg, offsetof(S, F));            \
9212                 *insn++ = BPF_LDX_MEM(                                         \
9213                         SIZE, si->dst_reg, si->dst_reg,                        \
9214                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9215                                        target_size)                            \
9216                                 + OFF);                                        \
9217         } while (0)
9218
9219 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
9220         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
9221                                              BPF_FIELD_SIZEOF(NS, NF), 0)
9222
9223 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9224  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9225  *
9226  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9227  * "register" since two registers available in convert_ctx_access are not
9228  * enough: we can't override neither SRC, since it contains value to store, nor
9229  * DST since it contains pointer to context that may be used by later
9230  * instructions. But we need a temporary place to save pointer to nested
9231  * structure whose field we want to store to.
9232  */
9233 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
9234         do {                                                                   \
9235                 int tmp_reg = BPF_REG_9;                                       \
9236                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9237                         --tmp_reg;                                             \
9238                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9239                         --tmp_reg;                                             \
9240                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
9241                                       offsetof(S, TF));                        \
9242                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
9243                                       si->dst_reg, offsetof(S, F));            \
9244                 *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,              \
9245                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9246                                        target_size)                            \
9247                                 + OFF);                                        \
9248                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
9249                                       offsetof(S, TF));                        \
9250         } while (0)
9251
9252 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9253                                                       TF)                      \
9254         do {                                                                   \
9255                 if (type == BPF_WRITE) {                                       \
9256                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9257                                                          OFF, TF);             \
9258                 } else {                                                       \
9259                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
9260                                 S, NS, F, NF, SIZE, OFF);  \
9261                 }                                                              \
9262         } while (0)
9263
9264 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
9265         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
9266                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9267
9268 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9269                                         const struct bpf_insn *si,
9270                                         struct bpf_insn *insn_buf,
9271                                         struct bpf_prog *prog, u32 *target_size)
9272 {
9273         int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9274         struct bpf_insn *insn = insn_buf;
9275
9276         switch (si->off) {
9277         case offsetof(struct bpf_sock_addr, user_family):
9278                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9279                                             struct sockaddr, uaddr, sa_family);
9280                 break;
9281
9282         case offsetof(struct bpf_sock_addr, user_ip4):
9283                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9284                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9285                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9286                 break;
9287
9288         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9289                 off = si->off;
9290                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9291                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9292                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9293                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9294                         tmp_reg);
9295                 break;
9296
9297         case offsetof(struct bpf_sock_addr, user_port):
9298                 /* To get port we need to know sa_family first and then treat
9299                  * sockaddr as either sockaddr_in or sockaddr_in6.
9300                  * Though we can simplify since port field has same offset and
9301                  * size in both structures.
9302                  * Here we check this invariant and use just one of the
9303                  * structures if it's true.
9304                  */
9305                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9306                              offsetof(struct sockaddr_in6, sin6_port));
9307                 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9308                              sizeof_field(struct sockaddr_in6, sin6_port));
9309                 /* Account for sin6_port being smaller than user_port. */
9310                 port_size = min(port_size, BPF_LDST_BYTES(si));
9311                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9312                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9313                         sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9314                 break;
9315
9316         case offsetof(struct bpf_sock_addr, family):
9317                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9318                                             struct sock, sk, sk_family);
9319                 break;
9320
9321         case offsetof(struct bpf_sock_addr, type):
9322                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9323                                             struct sock, sk, sk_type);
9324                 break;
9325
9326         case offsetof(struct bpf_sock_addr, protocol):
9327                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9328                                             struct sock, sk, sk_protocol);
9329                 break;
9330
9331         case offsetof(struct bpf_sock_addr, msg_src_ip4):
9332                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
9333                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9334                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9335                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9336                 break;
9337
9338         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9339                                 msg_src_ip6[3]):
9340                 off = si->off;
9341                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9342                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9343                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9344                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9345                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9346                 break;
9347         case offsetof(struct bpf_sock_addr, sk):
9348                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9349                                       si->dst_reg, si->src_reg,
9350                                       offsetof(struct bpf_sock_addr_kern, sk));
9351                 break;
9352         }
9353
9354         return insn - insn_buf;
9355 }
9356
9357 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9358                                        const struct bpf_insn *si,
9359                                        struct bpf_insn *insn_buf,
9360                                        struct bpf_prog *prog,
9361                                        u32 *target_size)
9362 {
9363         struct bpf_insn *insn = insn_buf;
9364         int off;
9365
9366 /* Helper macro for adding read access to tcp_sock or sock fields. */
9367 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
9368         do {                                                                  \
9369                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9370                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
9371                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9372                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9373                         reg--;                                                \
9374                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9375                         reg--;                                                \
9376                 if (si->dst_reg == si->src_reg) {                             \
9377                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
9378                                           offsetof(struct bpf_sock_ops_kern,  \
9379                                           temp));                             \
9380                         fullsock_reg = reg;                                   \
9381                         jmp += 2;                                             \
9382                 }                                                             \
9383                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9384                                                 struct bpf_sock_ops_kern,     \
9385                                                 is_fullsock),                 \
9386                                       fullsock_reg, si->src_reg,              \
9387                                       offsetof(struct bpf_sock_ops_kern,      \
9388                                                is_fullsock));                 \
9389                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
9390                 if (si->dst_reg == si->src_reg)                               \
9391                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9392                                       offsetof(struct bpf_sock_ops_kern,      \
9393                                       temp));                                 \
9394                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9395                                                 struct bpf_sock_ops_kern, sk),\
9396                                       si->dst_reg, si->src_reg,               \
9397                                       offsetof(struct bpf_sock_ops_kern, sk));\
9398                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
9399                                                        OBJ_FIELD),            \
9400                                       si->dst_reg, si->dst_reg,               \
9401                                       offsetof(OBJ, OBJ_FIELD));              \
9402                 if (si->dst_reg == si->src_reg) {                             \
9403                         *insn++ = BPF_JMP_A(1);                               \
9404                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9405                                       offsetof(struct bpf_sock_ops_kern,      \
9406                                       temp));                                 \
9407                 }                                                             \
9408         } while (0)
9409
9410 #define SOCK_OPS_GET_SK()                                                             \
9411         do {                                                                  \
9412                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
9413                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9414                         reg--;                                                \
9415                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9416                         reg--;                                                \
9417                 if (si->dst_reg == si->src_reg) {                             \
9418                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
9419                                           offsetof(struct bpf_sock_ops_kern,  \
9420                                           temp));                             \
9421                         fullsock_reg = reg;                                   \
9422                         jmp += 2;                                             \
9423                 }                                                             \
9424                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9425                                                 struct bpf_sock_ops_kern,     \
9426                                                 is_fullsock),                 \
9427                                       fullsock_reg, si->src_reg,              \
9428                                       offsetof(struct bpf_sock_ops_kern,      \
9429                                                is_fullsock));                 \
9430                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
9431                 if (si->dst_reg == si->src_reg)                               \
9432                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9433                                       offsetof(struct bpf_sock_ops_kern,      \
9434                                       temp));                                 \
9435                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9436                                                 struct bpf_sock_ops_kern, sk),\
9437                                       si->dst_reg, si->src_reg,               \
9438                                       offsetof(struct bpf_sock_ops_kern, sk));\
9439                 if (si->dst_reg == si->src_reg) {                             \
9440                         *insn++ = BPF_JMP_A(1);                               \
9441                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9442                                       offsetof(struct bpf_sock_ops_kern,      \
9443                                       temp));                                 \
9444                 }                                                             \
9445         } while (0)
9446
9447 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9448                 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9449
9450 /* Helper macro for adding write access to tcp_sock or sock fields.
9451  * The macro is called with two registers, dst_reg which contains a pointer
9452  * to ctx (context) and src_reg which contains the value that should be
9453  * stored. However, we need an additional register since we cannot overwrite
9454  * dst_reg because it may be used later in the program.
9455  * Instead we "borrow" one of the other register. We first save its value
9456  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9457  * it at the end of the macro.
9458  */
9459 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
9460         do {                                                                  \
9461                 int reg = BPF_REG_9;                                          \
9462                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
9463                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9464                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9465                         reg--;                                                \
9466                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9467                         reg--;                                                \
9468                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
9469                                       offsetof(struct bpf_sock_ops_kern,      \
9470                                                temp));                        \
9471                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9472                                                 struct bpf_sock_ops_kern,     \
9473                                                 is_fullsock),                 \
9474                                       reg, si->dst_reg,                       \
9475                                       offsetof(struct bpf_sock_ops_kern,      \
9476                                                is_fullsock));                 \
9477                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
9478                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9479                                                 struct bpf_sock_ops_kern, sk),\
9480                                       reg, si->dst_reg,                       \
9481                                       offsetof(struct bpf_sock_ops_kern, sk));\
9482                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
9483                                       reg, si->src_reg,                       \
9484                                       offsetof(OBJ, OBJ_FIELD));              \
9485                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
9486                                       offsetof(struct bpf_sock_ops_kern,      \
9487                                                temp));                        \
9488         } while (0)
9489
9490 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
9491         do {                                                                  \
9492                 if (TYPE == BPF_WRITE)                                        \
9493                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
9494                 else                                                          \
9495                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
9496         } while (0)
9497
9498         if (insn > insn_buf)
9499                 return insn - insn_buf;
9500
9501         switch (si->off) {
9502         case offsetof(struct bpf_sock_ops, op):
9503                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9504                                                        op),
9505                                       si->dst_reg, si->src_reg,
9506                                       offsetof(struct bpf_sock_ops_kern, op));
9507                 break;
9508
9509         case offsetof(struct bpf_sock_ops, replylong[0]) ...
9510              offsetof(struct bpf_sock_ops, replylong[3]):
9511                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
9512                              sizeof_field(struct bpf_sock_ops_kern, reply));
9513                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
9514                              sizeof_field(struct bpf_sock_ops_kern, replylong));
9515                 off = si->off;
9516                 off -= offsetof(struct bpf_sock_ops, replylong[0]);
9517                 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
9518                 if (type == BPF_WRITE)
9519                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9520                                               off);
9521                 else
9522                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9523                                               off);
9524                 break;
9525
9526         case offsetof(struct bpf_sock_ops, family):
9527                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9528
9529                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9530                                               struct bpf_sock_ops_kern, sk),
9531                                       si->dst_reg, si->src_reg,
9532                                       offsetof(struct bpf_sock_ops_kern, sk));
9533                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9534                                       offsetof(struct sock_common, skc_family));
9535                 break;
9536
9537         case offsetof(struct bpf_sock_ops, remote_ip4):
9538                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9539
9540                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9541                                                 struct bpf_sock_ops_kern, sk),
9542                                       si->dst_reg, si->src_reg,
9543                                       offsetof(struct bpf_sock_ops_kern, sk));
9544                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9545                                       offsetof(struct sock_common, skc_daddr));
9546                 break;
9547
9548         case offsetof(struct bpf_sock_ops, local_ip4):
9549                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9550                                           skc_rcv_saddr) != 4);
9551
9552                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9553                                               struct bpf_sock_ops_kern, sk),
9554                                       si->dst_reg, si->src_reg,
9555                                       offsetof(struct bpf_sock_ops_kern, sk));
9556                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9557                                       offsetof(struct sock_common,
9558                                                skc_rcv_saddr));
9559                 break;
9560
9561         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
9562              offsetof(struct bpf_sock_ops, remote_ip6[3]):
9563 #if IS_ENABLED(CONFIG_IPV6)
9564                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9565                                           skc_v6_daddr.s6_addr32[0]) != 4);
9566
9567                 off = si->off;
9568                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
9569                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9570                                                 struct bpf_sock_ops_kern, sk),
9571                                       si->dst_reg, si->src_reg,
9572                                       offsetof(struct bpf_sock_ops_kern, sk));
9573                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9574                                       offsetof(struct sock_common,
9575                                                skc_v6_daddr.s6_addr32[0]) +
9576                                       off);
9577 #else
9578                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9579 #endif
9580                 break;
9581
9582         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
9583              offsetof(struct bpf_sock_ops, local_ip6[3]):
9584 #if IS_ENABLED(CONFIG_IPV6)
9585                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9586                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9587
9588                 off = si->off;
9589                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
9590                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9591                                                 struct bpf_sock_ops_kern, sk),
9592                                       si->dst_reg, si->src_reg,
9593                                       offsetof(struct bpf_sock_ops_kern, sk));
9594                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9595                                       offsetof(struct sock_common,
9596                                                skc_v6_rcv_saddr.s6_addr32[0]) +
9597                                       off);
9598 #else
9599                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9600 #endif
9601                 break;
9602
9603         case offsetof(struct bpf_sock_ops, remote_port):
9604                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9605
9606                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9607                                                 struct bpf_sock_ops_kern, sk),
9608                                       si->dst_reg, si->src_reg,
9609                                       offsetof(struct bpf_sock_ops_kern, sk));
9610                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9611                                       offsetof(struct sock_common, skc_dport));
9612 #ifndef __BIG_ENDIAN_BITFIELD
9613                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9614 #endif
9615                 break;
9616
9617         case offsetof(struct bpf_sock_ops, local_port):
9618                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9619
9620                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9621                                                 struct bpf_sock_ops_kern, sk),
9622                                       si->dst_reg, si->src_reg,
9623                                       offsetof(struct bpf_sock_ops_kern, sk));
9624                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9625                                       offsetof(struct sock_common, skc_num));
9626                 break;
9627
9628         case offsetof(struct bpf_sock_ops, is_fullsock):
9629                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9630                                                 struct bpf_sock_ops_kern,
9631                                                 is_fullsock),
9632                                       si->dst_reg, si->src_reg,
9633                                       offsetof(struct bpf_sock_ops_kern,
9634                                                is_fullsock));
9635                 break;
9636
9637         case offsetof(struct bpf_sock_ops, state):
9638                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
9639
9640                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9641                                                 struct bpf_sock_ops_kern, sk),
9642                                       si->dst_reg, si->src_reg,
9643                                       offsetof(struct bpf_sock_ops_kern, sk));
9644                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
9645                                       offsetof(struct sock_common, skc_state));
9646                 break;
9647
9648         case offsetof(struct bpf_sock_ops, rtt_min):
9649                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
9650                              sizeof(struct minmax));
9651                 BUILD_BUG_ON(sizeof(struct minmax) <
9652                              sizeof(struct minmax_sample));
9653
9654                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9655                                                 struct bpf_sock_ops_kern, sk),
9656                                       si->dst_reg, si->src_reg,
9657                                       offsetof(struct bpf_sock_ops_kern, sk));
9658                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9659                                       offsetof(struct tcp_sock, rtt_min) +
9660                                       sizeof_field(struct minmax_sample, t));
9661                 break;
9662
9663         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
9664                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
9665                                    struct tcp_sock);
9666                 break;
9667
9668         case offsetof(struct bpf_sock_ops, sk_txhash):
9669                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
9670                                           struct sock, type);
9671                 break;
9672         case offsetof(struct bpf_sock_ops, snd_cwnd):
9673                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
9674                 break;
9675         case offsetof(struct bpf_sock_ops, srtt_us):
9676                 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
9677                 break;
9678         case offsetof(struct bpf_sock_ops, snd_ssthresh):
9679                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
9680                 break;
9681         case offsetof(struct bpf_sock_ops, rcv_nxt):
9682                 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
9683                 break;
9684         case offsetof(struct bpf_sock_ops, snd_nxt):
9685                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
9686                 break;
9687         case offsetof(struct bpf_sock_ops, snd_una):
9688                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
9689                 break;
9690         case offsetof(struct bpf_sock_ops, mss_cache):
9691                 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
9692                 break;
9693         case offsetof(struct bpf_sock_ops, ecn_flags):
9694                 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
9695                 break;
9696         case offsetof(struct bpf_sock_ops, rate_delivered):
9697                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
9698                 break;
9699         case offsetof(struct bpf_sock_ops, rate_interval_us):
9700                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
9701                 break;
9702         case offsetof(struct bpf_sock_ops, packets_out):
9703                 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
9704                 break;
9705         case offsetof(struct bpf_sock_ops, retrans_out):
9706                 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
9707                 break;
9708         case offsetof(struct bpf_sock_ops, total_retrans):
9709                 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
9710                 break;
9711         case offsetof(struct bpf_sock_ops, segs_in):
9712                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
9713                 break;
9714         case offsetof(struct bpf_sock_ops, data_segs_in):
9715                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
9716                 break;
9717         case offsetof(struct bpf_sock_ops, segs_out):
9718                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
9719                 break;
9720         case offsetof(struct bpf_sock_ops, data_segs_out):
9721                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
9722                 break;
9723         case offsetof(struct bpf_sock_ops, lost_out):
9724                 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
9725                 break;
9726         case offsetof(struct bpf_sock_ops, sacked_out):
9727                 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
9728                 break;
9729         case offsetof(struct bpf_sock_ops, bytes_received):
9730                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
9731                 break;
9732         case offsetof(struct bpf_sock_ops, bytes_acked):
9733                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
9734                 break;
9735         case offsetof(struct bpf_sock_ops, sk):
9736                 SOCK_OPS_GET_SK();
9737                 break;
9738         case offsetof(struct bpf_sock_ops, skb_data_end):
9739                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9740                                                        skb_data_end),
9741                                       si->dst_reg, si->src_reg,
9742                                       offsetof(struct bpf_sock_ops_kern,
9743                                                skb_data_end));
9744                 break;
9745         case offsetof(struct bpf_sock_ops, skb_data):
9746                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9747                                                        skb),
9748                                       si->dst_reg, si->src_reg,
9749                                       offsetof(struct bpf_sock_ops_kern,
9750                                                skb));
9751                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9752                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9753                                       si->dst_reg, si->dst_reg,
9754                                       offsetof(struct sk_buff, data));
9755                 break;
9756         case offsetof(struct bpf_sock_ops, skb_len):
9757                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9758                                                        skb),
9759                                       si->dst_reg, si->src_reg,
9760                                       offsetof(struct bpf_sock_ops_kern,
9761                                                skb));
9762                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9763                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9764                                       si->dst_reg, si->dst_reg,
9765                                       offsetof(struct sk_buff, len));
9766                 break;
9767         case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9768                 off = offsetof(struct sk_buff, cb);
9769                 off += offsetof(struct tcp_skb_cb, tcp_flags);
9770                 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
9771                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9772                                                        skb),
9773                                       si->dst_reg, si->src_reg,
9774                                       offsetof(struct bpf_sock_ops_kern,
9775                                                skb));
9776                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9777                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
9778                                                        tcp_flags),
9779                                       si->dst_reg, si->dst_reg, off);
9780                 break;
9781         }
9782         return insn - insn_buf;
9783 }
9784
9785 /* data_end = skb->data + skb_headlen() */
9786 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
9787                                                     struct bpf_insn *insn)
9788 {
9789         int reg;
9790         int temp_reg_off = offsetof(struct sk_buff, cb) +
9791                            offsetof(struct sk_skb_cb, temp_reg);
9792
9793         if (si->src_reg == si->dst_reg) {
9794                 /* We need an extra register, choose and save a register. */
9795                 reg = BPF_REG_9;
9796                 if (si->src_reg == reg || si->dst_reg == reg)
9797                         reg--;
9798                 if (si->src_reg == reg || si->dst_reg == reg)
9799                         reg--;
9800                 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
9801         } else {
9802                 reg = si->dst_reg;
9803         }
9804
9805         /* reg = skb->data */
9806         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9807                               reg, si->src_reg,
9808                               offsetof(struct sk_buff, data));
9809         /* AX = skb->len */
9810         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9811                               BPF_REG_AX, si->src_reg,
9812                               offsetof(struct sk_buff, len));
9813         /* reg = skb->data + skb->len */
9814         *insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
9815         /* AX = skb->data_len */
9816         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
9817                               BPF_REG_AX, si->src_reg,
9818                               offsetof(struct sk_buff, data_len));
9819
9820         /* reg = skb->data + skb->len - skb->data_len */
9821         *insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
9822
9823         if (si->src_reg == si->dst_reg) {
9824                 /* Restore the saved register */
9825                 *insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
9826                 *insn++ = BPF_MOV64_REG(si->dst_reg, reg);
9827                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
9828         }
9829
9830         return insn;
9831 }
9832
9833 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
9834                                      const struct bpf_insn *si,
9835                                      struct bpf_insn *insn_buf,
9836                                      struct bpf_prog *prog, u32 *target_size)
9837 {
9838         struct bpf_insn *insn = insn_buf;
9839         int off;
9840
9841         switch (si->off) {
9842         case offsetof(struct __sk_buff, data_end):
9843                 insn = bpf_convert_data_end_access(si, insn);
9844                 break;
9845         case offsetof(struct __sk_buff, cb[0]) ...
9846              offsetofend(struct __sk_buff, cb[4]) - 1:
9847                 BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
9848                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9849                               offsetof(struct sk_skb_cb, data)) %
9850                              sizeof(__u64));
9851
9852                 prog->cb_access = 1;
9853                 off  = si->off;
9854                 off -= offsetof(struct __sk_buff, cb[0]);
9855                 off += offsetof(struct sk_buff, cb);
9856                 off += offsetof(struct sk_skb_cb, data);
9857                 if (type == BPF_WRITE)
9858                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9859                                               si->src_reg, off);
9860                 else
9861                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9862                                               si->src_reg, off);
9863                 break;
9864
9865
9866         default:
9867                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9868                                               target_size);
9869         }
9870
9871         return insn - insn_buf;
9872 }
9873
9874 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
9875                                      const struct bpf_insn *si,
9876                                      struct bpf_insn *insn_buf,
9877                                      struct bpf_prog *prog, u32 *target_size)
9878 {
9879         struct bpf_insn *insn = insn_buf;
9880 #if IS_ENABLED(CONFIG_IPV6)
9881         int off;
9882 #endif
9883
9884         /* convert ctx uses the fact sg element is first in struct */
9885         BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
9886
9887         switch (si->off) {
9888         case offsetof(struct sk_msg_md, data):
9889                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
9890                                       si->dst_reg, si->src_reg,
9891                                       offsetof(struct sk_msg, data));
9892                 break;
9893         case offsetof(struct sk_msg_md, data_end):
9894                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
9895                                       si->dst_reg, si->src_reg,
9896                                       offsetof(struct sk_msg, data_end));
9897                 break;
9898         case offsetof(struct sk_msg_md, family):
9899                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9900
9901                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9902                                               struct sk_msg, sk),
9903                                       si->dst_reg, si->src_reg,
9904                                       offsetof(struct sk_msg, sk));
9905                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9906                                       offsetof(struct sock_common, skc_family));
9907                 break;
9908
9909         case offsetof(struct sk_msg_md, remote_ip4):
9910                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9911
9912                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9913                                                 struct sk_msg, sk),
9914                                       si->dst_reg, si->src_reg,
9915                                       offsetof(struct sk_msg, sk));
9916                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9917                                       offsetof(struct sock_common, skc_daddr));
9918                 break;
9919
9920         case offsetof(struct sk_msg_md, local_ip4):
9921                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9922                                           skc_rcv_saddr) != 4);
9923
9924                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9925                                               struct sk_msg, sk),
9926                                       si->dst_reg, si->src_reg,
9927                                       offsetof(struct sk_msg, sk));
9928                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9929                                       offsetof(struct sock_common,
9930                                                skc_rcv_saddr));
9931                 break;
9932
9933         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
9934              offsetof(struct sk_msg_md, remote_ip6[3]):
9935 #if IS_ENABLED(CONFIG_IPV6)
9936                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9937                                           skc_v6_daddr.s6_addr32[0]) != 4);
9938
9939                 off = si->off;
9940                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
9941                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9942                                                 struct sk_msg, sk),
9943                                       si->dst_reg, si->src_reg,
9944                                       offsetof(struct sk_msg, sk));
9945                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9946                                       offsetof(struct sock_common,
9947                                                skc_v6_daddr.s6_addr32[0]) +
9948                                       off);
9949 #else
9950                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9951 #endif
9952                 break;
9953
9954         case offsetof(struct sk_msg_md, local_ip6[0]) ...
9955              offsetof(struct sk_msg_md, local_ip6[3]):
9956 #if IS_ENABLED(CONFIG_IPV6)
9957                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9958                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9959
9960                 off = si->off;
9961                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
9962                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9963                                                 struct sk_msg, sk),
9964                                       si->dst_reg, si->src_reg,
9965                                       offsetof(struct sk_msg, sk));
9966                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9967                                       offsetof(struct sock_common,
9968                                                skc_v6_rcv_saddr.s6_addr32[0]) +
9969                                       off);
9970 #else
9971                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9972 #endif
9973                 break;
9974
9975         case offsetof(struct sk_msg_md, remote_port):
9976                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9977
9978                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9979                                                 struct sk_msg, sk),
9980                                       si->dst_reg, si->src_reg,
9981                                       offsetof(struct sk_msg, sk));
9982                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9983                                       offsetof(struct sock_common, skc_dport));
9984 #ifndef __BIG_ENDIAN_BITFIELD
9985                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9986 #endif
9987                 break;
9988
9989         case offsetof(struct sk_msg_md, local_port):
9990                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9991
9992                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9993                                                 struct sk_msg, sk),
9994                                       si->dst_reg, si->src_reg,
9995                                       offsetof(struct sk_msg, sk));
9996                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9997                                       offsetof(struct sock_common, skc_num));
9998                 break;
9999
10000         case offsetof(struct sk_msg_md, size):
10001                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10002                                       si->dst_reg, si->src_reg,
10003                                       offsetof(struct sk_msg_sg, size));
10004                 break;
10005
10006         case offsetof(struct sk_msg_md, sk):
10007                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10008                                       si->dst_reg, si->src_reg,
10009                                       offsetof(struct sk_msg, sk));
10010                 break;
10011         }
10012
10013         return insn - insn_buf;
10014 }
10015
10016 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10017         .get_func_proto         = sk_filter_func_proto,
10018         .is_valid_access        = sk_filter_is_valid_access,
10019         .convert_ctx_access     = bpf_convert_ctx_access,
10020         .gen_ld_abs             = bpf_gen_ld_abs,
10021 };
10022
10023 const struct bpf_prog_ops sk_filter_prog_ops = {
10024         .test_run               = bpf_prog_test_run_skb,
10025 };
10026
10027 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10028         .get_func_proto         = tc_cls_act_func_proto,
10029         .is_valid_access        = tc_cls_act_is_valid_access,
10030         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
10031         .gen_prologue           = tc_cls_act_prologue,
10032         .gen_ld_abs             = bpf_gen_ld_abs,
10033         .check_kfunc_call       = bpf_prog_test_check_kfunc_call,
10034 };
10035
10036 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10037         .test_run               = bpf_prog_test_run_skb,
10038 };
10039
10040 const struct bpf_verifier_ops xdp_verifier_ops = {
10041         .get_func_proto         = xdp_func_proto,
10042         .is_valid_access        = xdp_is_valid_access,
10043         .convert_ctx_access     = xdp_convert_ctx_access,
10044         .gen_prologue           = bpf_noop_prologue,
10045 };
10046
10047 const struct bpf_prog_ops xdp_prog_ops = {
10048         .test_run               = bpf_prog_test_run_xdp,
10049 };
10050
10051 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10052         .get_func_proto         = cg_skb_func_proto,
10053         .is_valid_access        = cg_skb_is_valid_access,
10054         .convert_ctx_access     = bpf_convert_ctx_access,
10055 };
10056
10057 const struct bpf_prog_ops cg_skb_prog_ops = {
10058         .test_run               = bpf_prog_test_run_skb,
10059 };
10060
10061 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10062         .get_func_proto         = lwt_in_func_proto,
10063         .is_valid_access        = lwt_is_valid_access,
10064         .convert_ctx_access     = bpf_convert_ctx_access,
10065 };
10066
10067 const struct bpf_prog_ops lwt_in_prog_ops = {
10068         .test_run               = bpf_prog_test_run_skb,
10069 };
10070
10071 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10072         .get_func_proto         = lwt_out_func_proto,
10073         .is_valid_access        = lwt_is_valid_access,
10074         .convert_ctx_access     = bpf_convert_ctx_access,
10075 };
10076
10077 const struct bpf_prog_ops lwt_out_prog_ops = {
10078         .test_run               = bpf_prog_test_run_skb,
10079 };
10080
10081 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10082         .get_func_proto         = lwt_xmit_func_proto,
10083         .is_valid_access        = lwt_is_valid_access,
10084         .convert_ctx_access     = bpf_convert_ctx_access,
10085         .gen_prologue           = tc_cls_act_prologue,
10086 };
10087
10088 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10089         .test_run               = bpf_prog_test_run_skb,
10090 };
10091
10092 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10093         .get_func_proto         = lwt_seg6local_func_proto,
10094         .is_valid_access        = lwt_is_valid_access,
10095         .convert_ctx_access     = bpf_convert_ctx_access,
10096 };
10097
10098 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10099         .test_run               = bpf_prog_test_run_skb,
10100 };
10101
10102 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10103         .get_func_proto         = sock_filter_func_proto,
10104         .is_valid_access        = sock_filter_is_valid_access,
10105         .convert_ctx_access     = bpf_sock_convert_ctx_access,
10106 };
10107
10108 const struct bpf_prog_ops cg_sock_prog_ops = {
10109 };
10110
10111 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10112         .get_func_proto         = sock_addr_func_proto,
10113         .is_valid_access        = sock_addr_is_valid_access,
10114         .convert_ctx_access     = sock_addr_convert_ctx_access,
10115 };
10116
10117 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10118 };
10119
10120 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10121         .get_func_proto         = sock_ops_func_proto,
10122         .is_valid_access        = sock_ops_is_valid_access,
10123         .convert_ctx_access     = sock_ops_convert_ctx_access,
10124 };
10125
10126 const struct bpf_prog_ops sock_ops_prog_ops = {
10127 };
10128
10129 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10130         .get_func_proto         = sk_skb_func_proto,
10131         .is_valid_access        = sk_skb_is_valid_access,
10132         .convert_ctx_access     = sk_skb_convert_ctx_access,
10133         .gen_prologue           = sk_skb_prologue,
10134 };
10135
10136 const struct bpf_prog_ops sk_skb_prog_ops = {
10137 };
10138
10139 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10140         .get_func_proto         = sk_msg_func_proto,
10141         .is_valid_access        = sk_msg_is_valid_access,
10142         .convert_ctx_access     = sk_msg_convert_ctx_access,
10143         .gen_prologue           = bpf_noop_prologue,
10144 };
10145
10146 const struct bpf_prog_ops sk_msg_prog_ops = {
10147 };
10148
10149 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10150         .get_func_proto         = flow_dissector_func_proto,
10151         .is_valid_access        = flow_dissector_is_valid_access,
10152         .convert_ctx_access     = flow_dissector_convert_ctx_access,
10153 };
10154
10155 const struct bpf_prog_ops flow_dissector_prog_ops = {
10156         .test_run               = bpf_prog_test_run_flow_dissector,
10157 };
10158
10159 int sk_detach_filter(struct sock *sk)
10160 {
10161         int ret = -ENOENT;
10162         struct sk_filter *filter;
10163
10164         if (sock_flag(sk, SOCK_FILTER_LOCKED))
10165                 return -EPERM;
10166
10167         filter = rcu_dereference_protected(sk->sk_filter,
10168                                            lockdep_sock_is_held(sk));
10169         if (filter) {
10170                 RCU_INIT_POINTER(sk->sk_filter, NULL);
10171                 sk_filter_uncharge(sk, filter);
10172                 ret = 0;
10173         }
10174
10175         return ret;
10176 }
10177 EXPORT_SYMBOL_GPL(sk_detach_filter);
10178
10179 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
10180                   unsigned int len)
10181 {
10182         struct sock_fprog_kern *fprog;
10183         struct sk_filter *filter;
10184         int ret = 0;
10185
10186         lock_sock(sk);
10187         filter = rcu_dereference_protected(sk->sk_filter,
10188                                            lockdep_sock_is_held(sk));
10189         if (!filter)
10190                 goto out;
10191
10192         /* We're copying the filter that has been originally attached,
10193          * so no conversion/decode needed anymore. eBPF programs that
10194          * have no original program cannot be dumped through this.
10195          */
10196         ret = -EACCES;
10197         fprog = filter->prog->orig_prog;
10198         if (!fprog)
10199                 goto out;
10200
10201         ret = fprog->len;
10202         if (!len)
10203                 /* User space only enquires number of filter blocks. */
10204                 goto out;
10205
10206         ret = -EINVAL;
10207         if (len < fprog->len)
10208                 goto out;
10209
10210         ret = -EFAULT;
10211         if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
10212                 goto out;
10213
10214         /* Instead of bytes, the API requests to return the number
10215          * of filter blocks.
10216          */
10217         ret = fprog->len;
10218 out:
10219         release_sock(sk);
10220         return ret;
10221 }
10222
10223 #ifdef CONFIG_INET
10224 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10225                                     struct sock_reuseport *reuse,
10226                                     struct sock *sk, struct sk_buff *skb,
10227                                     struct sock *migrating_sk,
10228                                     u32 hash)
10229 {
10230         reuse_kern->skb = skb;
10231         reuse_kern->sk = sk;
10232         reuse_kern->selected_sk = NULL;
10233         reuse_kern->migrating_sk = migrating_sk;
10234         reuse_kern->data_end = skb->data + skb_headlen(skb);
10235         reuse_kern->hash = hash;
10236         reuse_kern->reuseport_id = reuse->reuseport_id;
10237         reuse_kern->bind_inany = reuse->bind_inany;
10238 }
10239
10240 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10241                                   struct bpf_prog *prog, struct sk_buff *skb,
10242                                   struct sock *migrating_sk,
10243                                   u32 hash)
10244 {
10245         struct sk_reuseport_kern reuse_kern;
10246         enum sk_action action;
10247
10248         bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10249         action = bpf_prog_run(prog, &reuse_kern);
10250
10251         if (action == SK_PASS)
10252                 return reuse_kern.selected_sk;
10253         else
10254                 return ERR_PTR(-ECONNREFUSED);
10255 }
10256
10257 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10258            struct bpf_map *, map, void *, key, u32, flags)
10259 {
10260         bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10261         struct sock_reuseport *reuse;
10262         struct sock *selected_sk;
10263
10264         selected_sk = map->ops->map_lookup_elem(map, key);
10265         if (!selected_sk)
10266                 return -ENOENT;
10267
10268         reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10269         if (!reuse) {
10270                 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10271                 if (sk_is_refcounted(selected_sk))
10272                         sock_put(selected_sk);
10273
10274                 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
10275                  * The only (!reuse) case here is - the sk has already been
10276                  * unhashed (e.g. by close()), so treat it as -ENOENT.
10277                  *
10278                  * Other maps (e.g. sock_map) do not provide this guarantee and
10279                  * the sk may never be in the reuseport group to begin with.
10280                  */
10281                 return is_sockarray ? -ENOENT : -EINVAL;
10282         }
10283
10284         if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10285                 struct sock *sk = reuse_kern->sk;
10286
10287                 if (sk->sk_protocol != selected_sk->sk_protocol)
10288                         return -EPROTOTYPE;
10289                 else if (sk->sk_family != selected_sk->sk_family)
10290                         return -EAFNOSUPPORT;
10291
10292                 /* Catch all. Likely bound to a different sockaddr. */
10293                 return -EBADFD;
10294         }
10295
10296         reuse_kern->selected_sk = selected_sk;
10297
10298         return 0;
10299 }
10300
10301 static const struct bpf_func_proto sk_select_reuseport_proto = {
10302         .func           = sk_select_reuseport,
10303         .gpl_only       = false,
10304         .ret_type       = RET_INTEGER,
10305         .arg1_type      = ARG_PTR_TO_CTX,
10306         .arg2_type      = ARG_CONST_MAP_PTR,
10307         .arg3_type      = ARG_PTR_TO_MAP_KEY,
10308         .arg4_type      = ARG_ANYTHING,
10309 };
10310
10311 BPF_CALL_4(sk_reuseport_load_bytes,
10312            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10313            void *, to, u32, len)
10314 {
10315         return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10316 }
10317
10318 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10319         .func           = sk_reuseport_load_bytes,
10320         .gpl_only       = false,
10321         .ret_type       = RET_INTEGER,
10322         .arg1_type      = ARG_PTR_TO_CTX,
10323         .arg2_type      = ARG_ANYTHING,
10324         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
10325         .arg4_type      = ARG_CONST_SIZE,
10326 };
10327
10328 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10329            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10330            void *, to, u32, len, u32, start_header)
10331 {
10332         return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10333                                                len, start_header);
10334 }
10335
10336 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10337         .func           = sk_reuseport_load_bytes_relative,
10338         .gpl_only       = false,
10339         .ret_type       = RET_INTEGER,
10340         .arg1_type      = ARG_PTR_TO_CTX,
10341         .arg2_type      = ARG_ANYTHING,
10342         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
10343         .arg4_type      = ARG_CONST_SIZE,
10344         .arg5_type      = ARG_ANYTHING,
10345 };
10346
10347 static const struct bpf_func_proto *
10348 sk_reuseport_func_proto(enum bpf_func_id func_id,
10349                         const struct bpf_prog *prog)
10350 {
10351         switch (func_id) {
10352         case BPF_FUNC_sk_select_reuseport:
10353                 return &sk_select_reuseport_proto;
10354         case BPF_FUNC_skb_load_bytes:
10355                 return &sk_reuseport_load_bytes_proto;
10356         case BPF_FUNC_skb_load_bytes_relative:
10357                 return &sk_reuseport_load_bytes_relative_proto;
10358         case BPF_FUNC_get_socket_cookie:
10359                 return &bpf_get_socket_ptr_cookie_proto;
10360         case BPF_FUNC_ktime_get_coarse_ns:
10361                 return &bpf_ktime_get_coarse_ns_proto;
10362         default:
10363                 return bpf_base_func_proto(func_id);
10364         }
10365 }
10366
10367 static bool
10368 sk_reuseport_is_valid_access(int off, int size,
10369                              enum bpf_access_type type,
10370                              const struct bpf_prog *prog,
10371                              struct bpf_insn_access_aux *info)
10372 {
10373         const u32 size_default = sizeof(__u32);
10374
10375         if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
10376             off % size || type != BPF_READ)
10377                 return false;
10378
10379         switch (off) {
10380         case offsetof(struct sk_reuseport_md, data):
10381                 info->reg_type = PTR_TO_PACKET;
10382                 return size == sizeof(__u64);
10383
10384         case offsetof(struct sk_reuseport_md, data_end):
10385                 info->reg_type = PTR_TO_PACKET_END;
10386                 return size == sizeof(__u64);
10387
10388         case offsetof(struct sk_reuseport_md, hash):
10389                 return size == size_default;
10390
10391         case offsetof(struct sk_reuseport_md, sk):
10392                 info->reg_type = PTR_TO_SOCKET;
10393                 return size == sizeof(__u64);
10394
10395         case offsetof(struct sk_reuseport_md, migrating_sk):
10396                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
10397                 return size == sizeof(__u64);
10398
10399         /* Fields that allow narrowing */
10400         case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
10401                 if (size < sizeof_field(struct sk_buff, protocol))
10402                         return false;
10403                 fallthrough;
10404         case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
10405         case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
10406         case bpf_ctx_range(struct sk_reuseport_md, len):
10407                 bpf_ctx_record_field_size(info, size_default);
10408                 return bpf_ctx_narrow_access_ok(off, size, size_default);
10409
10410         default:
10411                 return false;
10412         }
10413 }
10414
10415 #define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
10416         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
10417                               si->dst_reg, si->src_reg,                 \
10418                               bpf_target_off(struct sk_reuseport_kern, F, \
10419                                              sizeof_field(struct sk_reuseport_kern, F), \
10420                                              target_size));             \
10421         })
10422
10423 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
10424         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
10425                                     struct sk_buff,                     \
10426                                     skb,                                \
10427                                     SKB_FIELD)
10428
10429 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)                            \
10430         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
10431                                     struct sock,                        \
10432                                     sk,                                 \
10433                                     SK_FIELD)
10434
10435 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
10436                                            const struct bpf_insn *si,
10437                                            struct bpf_insn *insn_buf,
10438                                            struct bpf_prog *prog,
10439                                            u32 *target_size)
10440 {
10441         struct bpf_insn *insn = insn_buf;
10442
10443         switch (si->off) {
10444         case offsetof(struct sk_reuseport_md, data):
10445                 SK_REUSEPORT_LOAD_SKB_FIELD(data);
10446                 break;
10447
10448         case offsetof(struct sk_reuseport_md, len):
10449                 SK_REUSEPORT_LOAD_SKB_FIELD(len);
10450                 break;
10451
10452         case offsetof(struct sk_reuseport_md, eth_protocol):
10453                 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
10454                 break;
10455
10456         case offsetof(struct sk_reuseport_md, ip_protocol):
10457                 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
10458                 break;
10459
10460         case offsetof(struct sk_reuseport_md, data_end):
10461                 SK_REUSEPORT_LOAD_FIELD(data_end);
10462                 break;
10463
10464         case offsetof(struct sk_reuseport_md, hash):
10465                 SK_REUSEPORT_LOAD_FIELD(hash);
10466                 break;
10467
10468         case offsetof(struct sk_reuseport_md, bind_inany):
10469                 SK_REUSEPORT_LOAD_FIELD(bind_inany);
10470                 break;
10471
10472         case offsetof(struct sk_reuseport_md, sk):
10473                 SK_REUSEPORT_LOAD_FIELD(sk);
10474                 break;
10475
10476         case offsetof(struct sk_reuseport_md, migrating_sk):
10477                 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
10478                 break;
10479         }
10480
10481         return insn - insn_buf;
10482 }
10483
10484 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
10485         .get_func_proto         = sk_reuseport_func_proto,
10486         .is_valid_access        = sk_reuseport_is_valid_access,
10487         .convert_ctx_access     = sk_reuseport_convert_ctx_access,
10488 };
10489
10490 const struct bpf_prog_ops sk_reuseport_prog_ops = {
10491 };
10492
10493 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
10494 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
10495
10496 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
10497            struct sock *, sk, u64, flags)
10498 {
10499         if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
10500                                BPF_SK_LOOKUP_F_NO_REUSEPORT)))
10501                 return -EINVAL;
10502         if (unlikely(sk && sk_is_refcounted(sk)))
10503                 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
10504         if (unlikely(sk && sk->sk_state == TCP_ESTABLISHED))
10505                 return -ESOCKTNOSUPPORT; /* reject connected sockets */
10506
10507         /* Check if socket is suitable for packet L3/L4 protocol */
10508         if (sk && sk->sk_protocol != ctx->protocol)
10509                 return -EPROTOTYPE;
10510         if (sk && sk->sk_family != ctx->family &&
10511             (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
10512                 return -EAFNOSUPPORT;
10513
10514         if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
10515                 return -EEXIST;
10516
10517         /* Select socket as lookup result */
10518         ctx->selected_sk = sk;
10519         ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
10520         return 0;
10521 }
10522
10523 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
10524         .func           = bpf_sk_lookup_assign,
10525         .gpl_only       = false,
10526         .ret_type       = RET_INTEGER,
10527         .arg1_type      = ARG_PTR_TO_CTX,
10528         .arg2_type      = ARG_PTR_TO_SOCKET_OR_NULL,
10529         .arg3_type      = ARG_ANYTHING,
10530 };
10531
10532 static const struct bpf_func_proto *
10533 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
10534 {
10535         switch (func_id) {
10536         case BPF_FUNC_perf_event_output:
10537                 return &bpf_event_output_data_proto;
10538         case BPF_FUNC_sk_assign:
10539                 return &bpf_sk_lookup_assign_proto;
10540         case BPF_FUNC_sk_release:
10541                 return &bpf_sk_release_proto;
10542         default:
10543                 return bpf_sk_base_func_proto(func_id);
10544         }
10545 }
10546
10547 static bool sk_lookup_is_valid_access(int off, int size,
10548                                       enum bpf_access_type type,
10549                                       const struct bpf_prog *prog,
10550                                       struct bpf_insn_access_aux *info)
10551 {
10552         if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
10553                 return false;
10554         if (off % size != 0)
10555                 return false;
10556         if (type != BPF_READ)
10557                 return false;
10558
10559         switch (off) {
10560         case offsetof(struct bpf_sk_lookup, sk):
10561                 info->reg_type = PTR_TO_SOCKET_OR_NULL;
10562                 return size == sizeof(__u64);
10563
10564         case bpf_ctx_range(struct bpf_sk_lookup, family):
10565         case bpf_ctx_range(struct bpf_sk_lookup, protocol):
10566         case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
10567         case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
10568         case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
10569         case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
10570         case offsetof(struct bpf_sk_lookup, remote_port) ...
10571              offsetof(struct bpf_sk_lookup, local_ip4) - 1:
10572         case bpf_ctx_range(struct bpf_sk_lookup, local_port):
10573                 bpf_ctx_record_field_size(info, sizeof(__u32));
10574                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
10575
10576         default:
10577                 return false;
10578         }
10579 }
10580
10581 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
10582                                         const struct bpf_insn *si,
10583                                         struct bpf_insn *insn_buf,
10584                                         struct bpf_prog *prog,
10585                                         u32 *target_size)
10586 {
10587         struct bpf_insn *insn = insn_buf;
10588
10589         switch (si->off) {
10590         case offsetof(struct bpf_sk_lookup, sk):
10591                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10592                                       offsetof(struct bpf_sk_lookup_kern, selected_sk));
10593                 break;
10594
10595         case offsetof(struct bpf_sk_lookup, family):
10596                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10597                                       bpf_target_off(struct bpf_sk_lookup_kern,
10598                                                      family, 2, target_size));
10599                 break;
10600
10601         case offsetof(struct bpf_sk_lookup, protocol):
10602                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10603                                       bpf_target_off(struct bpf_sk_lookup_kern,
10604                                                      protocol, 2, target_size));
10605                 break;
10606
10607         case offsetof(struct bpf_sk_lookup, remote_ip4):
10608                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10609                                       bpf_target_off(struct bpf_sk_lookup_kern,
10610                                                      v4.saddr, 4, target_size));
10611                 break;
10612
10613         case offsetof(struct bpf_sk_lookup, local_ip4):
10614                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10615                                       bpf_target_off(struct bpf_sk_lookup_kern,
10616                                                      v4.daddr, 4, target_size));
10617                 break;
10618
10619         case bpf_ctx_range_till(struct bpf_sk_lookup,
10620                                 remote_ip6[0], remote_ip6[3]): {
10621 #if IS_ENABLED(CONFIG_IPV6)
10622                 int off = si->off;
10623
10624                 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
10625                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10626                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10627                                       offsetof(struct bpf_sk_lookup_kern, v6.saddr));
10628                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10629                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10630 #else
10631                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10632 #endif
10633                 break;
10634         }
10635         case bpf_ctx_range_till(struct bpf_sk_lookup,
10636                                 local_ip6[0], local_ip6[3]): {
10637 #if IS_ENABLED(CONFIG_IPV6)
10638                 int off = si->off;
10639
10640                 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
10641                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10642                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10643                                       offsetof(struct bpf_sk_lookup_kern, v6.daddr));
10644                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10645                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10646 #else
10647                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10648 #endif
10649                 break;
10650         }
10651         case offsetof(struct bpf_sk_lookup, remote_port):
10652                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10653                                       bpf_target_off(struct bpf_sk_lookup_kern,
10654                                                      sport, 2, target_size));
10655                 break;
10656
10657         case offsetof(struct bpf_sk_lookup, local_port):
10658                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10659                                       bpf_target_off(struct bpf_sk_lookup_kern,
10660                                                      dport, 2, target_size));
10661                 break;
10662         }
10663
10664         return insn - insn_buf;
10665 }
10666
10667 const struct bpf_prog_ops sk_lookup_prog_ops = {
10668         .test_run = bpf_prog_test_run_sk_lookup,
10669 };
10670
10671 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
10672         .get_func_proto         = sk_lookup_func_proto,
10673         .is_valid_access        = sk_lookup_is_valid_access,
10674         .convert_ctx_access     = sk_lookup_convert_ctx_access,
10675 };
10676
10677 #endif /* CONFIG_INET */
10678
10679 DEFINE_BPF_DISPATCHER(xdp)
10680
10681 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
10682 {
10683         bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
10684 }
10685
10686 #ifdef CONFIG_DEBUG_INFO_BTF
10687 BTF_ID_LIST_GLOBAL(btf_sock_ids)
10688 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
10689 BTF_SOCK_TYPE_xxx
10690 #undef BTF_SOCK_TYPE
10691 #else
10692 u32 btf_sock_ids[MAX_BTF_SOCK_TYPE];
10693 #endif
10694
10695 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
10696 {
10697         /* tcp6_sock type is not generated in dwarf and hence btf,
10698          * trigger an explicit type generation here.
10699          */
10700         BTF_TYPE_EMIT(struct tcp6_sock);
10701         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
10702             sk->sk_family == AF_INET6)
10703                 return (unsigned long)sk;
10704
10705         return (unsigned long)NULL;
10706 }
10707
10708 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
10709         .func                   = bpf_skc_to_tcp6_sock,
10710         .gpl_only               = false,
10711         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10712         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10713         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
10714 };
10715
10716 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
10717 {
10718         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
10719                 return (unsigned long)sk;
10720
10721         return (unsigned long)NULL;
10722 }
10723
10724 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
10725         .func                   = bpf_skc_to_tcp_sock,
10726         .gpl_only               = false,
10727         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10728         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10729         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
10730 };
10731
10732 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
10733 {
10734         /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
10735          * generated if CONFIG_INET=n. Trigger an explicit generation here.
10736          */
10737         BTF_TYPE_EMIT(struct inet_timewait_sock);
10738         BTF_TYPE_EMIT(struct tcp_timewait_sock);
10739
10740 #ifdef CONFIG_INET
10741         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
10742                 return (unsigned long)sk;
10743 #endif
10744
10745 #if IS_BUILTIN(CONFIG_IPV6)
10746         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
10747                 return (unsigned long)sk;
10748 #endif
10749
10750         return (unsigned long)NULL;
10751 }
10752
10753 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
10754         .func                   = bpf_skc_to_tcp_timewait_sock,
10755         .gpl_only               = false,
10756         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10757         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10758         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
10759 };
10760
10761 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
10762 {
10763 #ifdef CONFIG_INET
10764         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10765                 return (unsigned long)sk;
10766 #endif
10767
10768 #if IS_BUILTIN(CONFIG_IPV6)
10769         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10770                 return (unsigned long)sk;
10771 #endif
10772
10773         return (unsigned long)NULL;
10774 }
10775
10776 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
10777         .func                   = bpf_skc_to_tcp_request_sock,
10778         .gpl_only               = false,
10779         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10780         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10781         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
10782 };
10783
10784 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
10785 {
10786         /* udp6_sock type is not generated in dwarf and hence btf,
10787          * trigger an explicit type generation here.
10788          */
10789         BTF_TYPE_EMIT(struct udp6_sock);
10790         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
10791             sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
10792                 return (unsigned long)sk;
10793
10794         return (unsigned long)NULL;
10795 }
10796
10797 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
10798         .func                   = bpf_skc_to_udp6_sock,
10799         .gpl_only               = false,
10800         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10801         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10802         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
10803 };
10804
10805 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
10806 {
10807         return (unsigned long)sock_from_file(file);
10808 }
10809
10810 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
10811 BTF_ID(struct, socket)
10812 BTF_ID(struct, file)
10813
10814 const struct bpf_func_proto bpf_sock_from_file_proto = {
10815         .func           = bpf_sock_from_file,
10816         .gpl_only       = false,
10817         .ret_type       = RET_PTR_TO_BTF_ID_OR_NULL,
10818         .ret_btf_id     = &bpf_sock_from_file_btf_ids[0],
10819         .arg1_type      = ARG_PTR_TO_BTF_ID,
10820         .arg1_btf_id    = &bpf_sock_from_file_btf_ids[1],
10821 };
10822
10823 static const struct bpf_func_proto *
10824 bpf_sk_base_func_proto(enum bpf_func_id func_id)
10825 {
10826         const struct bpf_func_proto *func;
10827
10828         switch (func_id) {
10829         case BPF_FUNC_skc_to_tcp6_sock:
10830                 func = &bpf_skc_to_tcp6_sock_proto;
10831                 break;
10832         case BPF_FUNC_skc_to_tcp_sock:
10833                 func = &bpf_skc_to_tcp_sock_proto;
10834                 break;
10835         case BPF_FUNC_skc_to_tcp_timewait_sock:
10836                 func = &bpf_skc_to_tcp_timewait_sock_proto;
10837                 break;
10838         case BPF_FUNC_skc_to_tcp_request_sock:
10839                 func = &bpf_skc_to_tcp_request_sock_proto;
10840                 break;
10841         case BPF_FUNC_skc_to_udp6_sock:
10842                 func = &bpf_skc_to_udp6_sock_proto;
10843                 break;
10844         case BPF_FUNC_ktime_get_coarse_ns:
10845                 return &bpf_ktime_get_coarse_ns_proto;
10846         default:
10847                 return bpf_base_func_proto(func_id);
10848         }
10849
10850         if (!perfmon_capable())
10851                 return NULL;
10852
10853         return func;
10854 }