Merge https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
[platform/kernel/linux-rpi.git] / net / core / filter.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *      Jay Schulist <jschlst@samba.org>
13  *      Alexei Starovoitov <ast@plumgrid.com>
14  *      Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19
20 #include <linux/atomic.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/mm.h>
24 #include <linux/fcntl.h>
25 #include <linux/socket.h>
26 #include <linux/sock_diag.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/netdevice.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_arp.h>
32 #include <linux/gfp.h>
33 #include <net/inet_common.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <linux/skmsg.h>
39 #include <net/sock.h>
40 #include <net/flow_dissector.h>
41 #include <linux/errno.h>
42 #include <linux/timer.h>
43 #include <linux/uaccess.h>
44 #include <asm/unaligned.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80 #include <net/xdp.h>
81
82 static const struct bpf_func_proto *
83 bpf_sk_base_func_proto(enum bpf_func_id func_id);
84
85 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
86 {
87         if (in_compat_syscall()) {
88                 struct compat_sock_fprog f32;
89
90                 if (len != sizeof(f32))
91                         return -EINVAL;
92                 if (copy_from_sockptr(&f32, src, sizeof(f32)))
93                         return -EFAULT;
94                 memset(dst, 0, sizeof(*dst));
95                 dst->len = f32.len;
96                 dst->filter = compat_ptr(f32.filter);
97         } else {
98                 if (len != sizeof(*dst))
99                         return -EINVAL;
100                 if (copy_from_sockptr(dst, src, sizeof(*dst)))
101                         return -EFAULT;
102         }
103
104         return 0;
105 }
106 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
107
108 /**
109  *      sk_filter_trim_cap - run a packet through a socket filter
110  *      @sk: sock associated with &sk_buff
111  *      @skb: buffer to filter
112  *      @cap: limit on how short the eBPF program may trim the packet
113  *
114  * Run the eBPF program and then cut skb->data to correct size returned by
115  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
116  * than pkt_len we keep whole skb->data. This is the socket level
117  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
118  * be accepted or -EPERM if the packet should be tossed.
119  *
120  */
121 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
122 {
123         int err;
124         struct sk_filter *filter;
125
126         /*
127          * If the skb was allocated from pfmemalloc reserves, only
128          * allow SOCK_MEMALLOC sockets to use it as this socket is
129          * helping free memory
130          */
131         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
132                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
133                 return -ENOMEM;
134         }
135         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
136         if (err)
137                 return err;
138
139         err = security_sock_rcv_skb(sk, skb);
140         if (err)
141                 return err;
142
143         rcu_read_lock();
144         filter = rcu_dereference(sk->sk_filter);
145         if (filter) {
146                 struct sock *save_sk = skb->sk;
147                 unsigned int pkt_len;
148
149                 skb->sk = sk;
150                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
151                 skb->sk = save_sk;
152                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
153         }
154         rcu_read_unlock();
155
156         return err;
157 }
158 EXPORT_SYMBOL(sk_filter_trim_cap);
159
160 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
161 {
162         return skb_get_poff(skb);
163 }
164
165 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
166 {
167         struct nlattr *nla;
168
169         if (skb_is_nonlinear(skb))
170                 return 0;
171
172         if (skb->len < sizeof(struct nlattr))
173                 return 0;
174
175         if (a > skb->len - sizeof(struct nlattr))
176                 return 0;
177
178         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
179         if (nla)
180                 return (void *) nla - (void *) skb->data;
181
182         return 0;
183 }
184
185 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
186 {
187         struct nlattr *nla;
188
189         if (skb_is_nonlinear(skb))
190                 return 0;
191
192         if (skb->len < sizeof(struct nlattr))
193                 return 0;
194
195         if (a > skb->len - sizeof(struct nlattr))
196                 return 0;
197
198         nla = (struct nlattr *) &skb->data[a];
199         if (nla->nla_len > skb->len - a)
200                 return 0;
201
202         nla = nla_find_nested(nla, x);
203         if (nla)
204                 return (void *) nla - (void *) skb->data;
205
206         return 0;
207 }
208
209 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
210            data, int, headlen, int, offset)
211 {
212         u8 tmp, *ptr;
213         const int len = sizeof(tmp);
214
215         if (offset >= 0) {
216                 if (headlen - offset >= len)
217                         return *(u8 *)(data + offset);
218                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
219                         return tmp;
220         } else {
221                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
222                 if (likely(ptr))
223                         return *(u8 *)ptr;
224         }
225
226         return -EFAULT;
227 }
228
229 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
230            int, offset)
231 {
232         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
233                                          offset);
234 }
235
236 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
237            data, int, headlen, int, offset)
238 {
239         u16 tmp, *ptr;
240         const int len = sizeof(tmp);
241
242         if (offset >= 0) {
243                 if (headlen - offset >= len)
244                         return get_unaligned_be16(data + offset);
245                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
246                         return be16_to_cpu(tmp);
247         } else {
248                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
249                 if (likely(ptr))
250                         return get_unaligned_be16(ptr);
251         }
252
253         return -EFAULT;
254 }
255
256 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
257            int, offset)
258 {
259         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
260                                           offset);
261 }
262
263 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
264            data, int, headlen, int, offset)
265 {
266         u32 tmp, *ptr;
267         const int len = sizeof(tmp);
268
269         if (likely(offset >= 0)) {
270                 if (headlen - offset >= len)
271                         return get_unaligned_be32(data + offset);
272                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
273                         return be32_to_cpu(tmp);
274         } else {
275                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
276                 if (likely(ptr))
277                         return get_unaligned_be32(ptr);
278         }
279
280         return -EFAULT;
281 }
282
283 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
284            int, offset)
285 {
286         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
287                                           offset);
288 }
289
290 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
291                               struct bpf_insn *insn_buf)
292 {
293         struct bpf_insn *insn = insn_buf;
294
295         switch (skb_field) {
296         case SKF_AD_MARK:
297                 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
298
299                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
300                                       offsetof(struct sk_buff, mark));
301                 break;
302
303         case SKF_AD_PKTTYPE:
304                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
305                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
306 #ifdef __BIG_ENDIAN_BITFIELD
307                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
308 #endif
309                 break;
310
311         case SKF_AD_QUEUE:
312                 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
313
314                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
315                                       offsetof(struct sk_buff, queue_mapping));
316                 break;
317
318         case SKF_AD_VLAN_TAG:
319                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
320
321                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
322                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
323                                       offsetof(struct sk_buff, vlan_tci));
324                 break;
325         case SKF_AD_VLAN_TAG_PRESENT:
326                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
327                 if (PKT_VLAN_PRESENT_BIT)
328                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
329                 if (PKT_VLAN_PRESENT_BIT < 7)
330                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
331                 break;
332         }
333
334         return insn - insn_buf;
335 }
336
337 static bool convert_bpf_extensions(struct sock_filter *fp,
338                                    struct bpf_insn **insnp)
339 {
340         struct bpf_insn *insn = *insnp;
341         u32 cnt;
342
343         switch (fp->k) {
344         case SKF_AD_OFF + SKF_AD_PROTOCOL:
345                 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
346
347                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
348                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
349                                       offsetof(struct sk_buff, protocol));
350                 /* A = ntohs(A) [emitting a nop or swap16] */
351                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
352                 break;
353
354         case SKF_AD_OFF + SKF_AD_PKTTYPE:
355                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
356                 insn += cnt - 1;
357                 break;
358
359         case SKF_AD_OFF + SKF_AD_IFINDEX:
360         case SKF_AD_OFF + SKF_AD_HATYPE:
361                 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
362                 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
363
364                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
365                                       BPF_REG_TMP, BPF_REG_CTX,
366                                       offsetof(struct sk_buff, dev));
367                 /* if (tmp != 0) goto pc + 1 */
368                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
369                 *insn++ = BPF_EXIT_INSN();
370                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
371                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
372                                             offsetof(struct net_device, ifindex));
373                 else
374                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
375                                             offsetof(struct net_device, type));
376                 break;
377
378         case SKF_AD_OFF + SKF_AD_MARK:
379                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
380                 insn += cnt - 1;
381                 break;
382
383         case SKF_AD_OFF + SKF_AD_RXHASH:
384                 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
385
386                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
387                                     offsetof(struct sk_buff, hash));
388                 break;
389
390         case SKF_AD_OFF + SKF_AD_QUEUE:
391                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
392                 insn += cnt - 1;
393                 break;
394
395         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
396                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
397                                          BPF_REG_A, BPF_REG_CTX, insn);
398                 insn += cnt - 1;
399                 break;
400
401         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
402                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
403                                          BPF_REG_A, BPF_REG_CTX, insn);
404                 insn += cnt - 1;
405                 break;
406
407         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
408                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
409
410                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
411                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
412                                       offsetof(struct sk_buff, vlan_proto));
413                 /* A = ntohs(A) [emitting a nop or swap16] */
414                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
415                 break;
416
417         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
418         case SKF_AD_OFF + SKF_AD_NLATTR:
419         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
420         case SKF_AD_OFF + SKF_AD_CPU:
421         case SKF_AD_OFF + SKF_AD_RANDOM:
422                 /* arg1 = CTX */
423                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
424                 /* arg2 = A */
425                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
426                 /* arg3 = X */
427                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
428                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
429                 switch (fp->k) {
430                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
431                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
432                         break;
433                 case SKF_AD_OFF + SKF_AD_NLATTR:
434                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
435                         break;
436                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
437                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
438                         break;
439                 case SKF_AD_OFF + SKF_AD_CPU:
440                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
441                         break;
442                 case SKF_AD_OFF + SKF_AD_RANDOM:
443                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
444                         bpf_user_rnd_init_once();
445                         break;
446                 }
447                 break;
448
449         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
450                 /* A ^= X */
451                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
452                 break;
453
454         default:
455                 /* This is just a dummy call to avoid letting the compiler
456                  * evict __bpf_call_base() as an optimization. Placed here
457                  * where no-one bothers.
458                  */
459                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
460                 return false;
461         }
462
463         *insnp = insn;
464         return true;
465 }
466
467 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
468 {
469         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
470         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
471         bool endian = BPF_SIZE(fp->code) == BPF_H ||
472                       BPF_SIZE(fp->code) == BPF_W;
473         bool indirect = BPF_MODE(fp->code) == BPF_IND;
474         const int ip_align = NET_IP_ALIGN;
475         struct bpf_insn *insn = *insnp;
476         int offset = fp->k;
477
478         if (!indirect &&
479             ((unaligned_ok && offset >= 0) ||
480              (!unaligned_ok && offset >= 0 &&
481               offset + ip_align >= 0 &&
482               offset + ip_align % size == 0))) {
483                 bool ldx_off_ok = offset <= S16_MAX;
484
485                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
486                 if (offset)
487                         *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
488                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
489                                       size, 2 + endian + (!ldx_off_ok * 2));
490                 if (ldx_off_ok) {
491                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
492                                               BPF_REG_D, offset);
493                 } else {
494                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
495                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
496                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
497                                               BPF_REG_TMP, 0);
498                 }
499                 if (endian)
500                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
501                 *insn++ = BPF_JMP_A(8);
502         }
503
504         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
505         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
506         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
507         if (!indirect) {
508                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
509         } else {
510                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
511                 if (fp->k)
512                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
513         }
514
515         switch (BPF_SIZE(fp->code)) {
516         case BPF_B:
517                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
518                 break;
519         case BPF_H:
520                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
521                 break;
522         case BPF_W:
523                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
524                 break;
525         default:
526                 return false;
527         }
528
529         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
530         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
531         *insn   = BPF_EXIT_INSN();
532
533         *insnp = insn;
534         return true;
535 }
536
537 /**
538  *      bpf_convert_filter - convert filter program
539  *      @prog: the user passed filter program
540  *      @len: the length of the user passed filter program
541  *      @new_prog: allocated 'struct bpf_prog' or NULL
542  *      @new_len: pointer to store length of converted program
543  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
544  *
545  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
546  * style extended BPF (eBPF).
547  * Conversion workflow:
548  *
549  * 1) First pass for calculating the new program length:
550  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
551  *
552  * 2) 2nd pass to remap in two passes: 1st pass finds new
553  *    jump offsets, 2nd pass remapping:
554  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
555  */
556 static int bpf_convert_filter(struct sock_filter *prog, int len,
557                               struct bpf_prog *new_prog, int *new_len,
558                               bool *seen_ld_abs)
559 {
560         int new_flen = 0, pass = 0, target, i, stack_off;
561         struct bpf_insn *new_insn, *first_insn = NULL;
562         struct sock_filter *fp;
563         int *addrs = NULL;
564         u8 bpf_src;
565
566         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
567         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
568
569         if (len <= 0 || len > BPF_MAXINSNS)
570                 return -EINVAL;
571
572         if (new_prog) {
573                 first_insn = new_prog->insnsi;
574                 addrs = kcalloc(len, sizeof(*addrs),
575                                 GFP_KERNEL | __GFP_NOWARN);
576                 if (!addrs)
577                         return -ENOMEM;
578         }
579
580 do_pass:
581         new_insn = first_insn;
582         fp = prog;
583
584         /* Classic BPF related prologue emission. */
585         if (new_prog) {
586                 /* Classic BPF expects A and X to be reset first. These need
587                  * to be guaranteed to be the first two instructions.
588                  */
589                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
590                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
591
592                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
593                  * In eBPF case it's done by the compiler, here we need to
594                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
595                  */
596                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
597                 if (*seen_ld_abs) {
598                         /* For packet access in classic BPF, cache skb->data
599                          * in callee-saved BPF R8 and skb->len - skb->data_len
600                          * (headlen) in BPF R9. Since classic BPF is read-only
601                          * on CTX, we only need to cache it once.
602                          */
603                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
604                                                   BPF_REG_D, BPF_REG_CTX,
605                                                   offsetof(struct sk_buff, data));
606                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
607                                                   offsetof(struct sk_buff, len));
608                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
609                                                   offsetof(struct sk_buff, data_len));
610                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
611                 }
612         } else {
613                 new_insn += 3;
614         }
615
616         for (i = 0; i < len; fp++, i++) {
617                 struct bpf_insn tmp_insns[32] = { };
618                 struct bpf_insn *insn = tmp_insns;
619
620                 if (addrs)
621                         addrs[i] = new_insn - first_insn;
622
623                 switch (fp->code) {
624                 /* All arithmetic insns and skb loads map as-is. */
625                 case BPF_ALU | BPF_ADD | BPF_X:
626                 case BPF_ALU | BPF_ADD | BPF_K:
627                 case BPF_ALU | BPF_SUB | BPF_X:
628                 case BPF_ALU | BPF_SUB | BPF_K:
629                 case BPF_ALU | BPF_AND | BPF_X:
630                 case BPF_ALU | BPF_AND | BPF_K:
631                 case BPF_ALU | BPF_OR | BPF_X:
632                 case BPF_ALU | BPF_OR | BPF_K:
633                 case BPF_ALU | BPF_LSH | BPF_X:
634                 case BPF_ALU | BPF_LSH | BPF_K:
635                 case BPF_ALU | BPF_RSH | BPF_X:
636                 case BPF_ALU | BPF_RSH | BPF_K:
637                 case BPF_ALU | BPF_XOR | BPF_X:
638                 case BPF_ALU | BPF_XOR | BPF_K:
639                 case BPF_ALU | BPF_MUL | BPF_X:
640                 case BPF_ALU | BPF_MUL | BPF_K:
641                 case BPF_ALU | BPF_DIV | BPF_X:
642                 case BPF_ALU | BPF_DIV | BPF_K:
643                 case BPF_ALU | BPF_MOD | BPF_X:
644                 case BPF_ALU | BPF_MOD | BPF_K:
645                 case BPF_ALU | BPF_NEG:
646                 case BPF_LD | BPF_ABS | BPF_W:
647                 case BPF_LD | BPF_ABS | BPF_H:
648                 case BPF_LD | BPF_ABS | BPF_B:
649                 case BPF_LD | BPF_IND | BPF_W:
650                 case BPF_LD | BPF_IND | BPF_H:
651                 case BPF_LD | BPF_IND | BPF_B:
652                         /* Check for overloaded BPF extension and
653                          * directly convert it if found, otherwise
654                          * just move on with mapping.
655                          */
656                         if (BPF_CLASS(fp->code) == BPF_LD &&
657                             BPF_MODE(fp->code) == BPF_ABS &&
658                             convert_bpf_extensions(fp, &insn))
659                                 break;
660                         if (BPF_CLASS(fp->code) == BPF_LD &&
661                             convert_bpf_ld_abs(fp, &insn)) {
662                                 *seen_ld_abs = true;
663                                 break;
664                         }
665
666                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
667                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
668                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
669                                 /* Error with exception code on div/mod by 0.
670                                  * For cBPF programs, this was always return 0.
671                                  */
672                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
673                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
674                                 *insn++ = BPF_EXIT_INSN();
675                         }
676
677                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
678                         break;
679
680                 /* Jump transformation cannot use BPF block macros
681                  * everywhere as offset calculation and target updates
682                  * require a bit more work than the rest, i.e. jump
683                  * opcodes map as-is, but offsets need adjustment.
684                  */
685
686 #define BPF_EMIT_JMP                                                    \
687         do {                                                            \
688                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
689                 s32 off;                                                \
690                                                                         \
691                 if (target >= len || target < 0)                        \
692                         goto err;                                       \
693                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
694                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
695                 off -= insn - tmp_insns;                                \
696                 /* Reject anything not fitting into insn->off. */       \
697                 if (off < off_min || off > off_max)                     \
698                         goto err;                                       \
699                 insn->off = off;                                        \
700         } while (0)
701
702                 case BPF_JMP | BPF_JA:
703                         target = i + fp->k + 1;
704                         insn->code = fp->code;
705                         BPF_EMIT_JMP;
706                         break;
707
708                 case BPF_JMP | BPF_JEQ | BPF_K:
709                 case BPF_JMP | BPF_JEQ | BPF_X:
710                 case BPF_JMP | BPF_JSET | BPF_K:
711                 case BPF_JMP | BPF_JSET | BPF_X:
712                 case BPF_JMP | BPF_JGT | BPF_K:
713                 case BPF_JMP | BPF_JGT | BPF_X:
714                 case BPF_JMP | BPF_JGE | BPF_K:
715                 case BPF_JMP | BPF_JGE | BPF_X:
716                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
717                                 /* BPF immediates are signed, zero extend
718                                  * immediate into tmp register and use it
719                                  * in compare insn.
720                                  */
721                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
722
723                                 insn->dst_reg = BPF_REG_A;
724                                 insn->src_reg = BPF_REG_TMP;
725                                 bpf_src = BPF_X;
726                         } else {
727                                 insn->dst_reg = BPF_REG_A;
728                                 insn->imm = fp->k;
729                                 bpf_src = BPF_SRC(fp->code);
730                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
731                         }
732
733                         /* Common case where 'jump_false' is next insn. */
734                         if (fp->jf == 0) {
735                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
736                                 target = i + fp->jt + 1;
737                                 BPF_EMIT_JMP;
738                                 break;
739                         }
740
741                         /* Convert some jumps when 'jump_true' is next insn. */
742                         if (fp->jt == 0) {
743                                 switch (BPF_OP(fp->code)) {
744                                 case BPF_JEQ:
745                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
746                                         break;
747                                 case BPF_JGT:
748                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
749                                         break;
750                                 case BPF_JGE:
751                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
752                                         break;
753                                 default:
754                                         goto jmp_rest;
755                                 }
756
757                                 target = i + fp->jf + 1;
758                                 BPF_EMIT_JMP;
759                                 break;
760                         }
761 jmp_rest:
762                         /* Other jumps are mapped into two insns: Jxx and JA. */
763                         target = i + fp->jt + 1;
764                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
765                         BPF_EMIT_JMP;
766                         insn++;
767
768                         insn->code = BPF_JMP | BPF_JA;
769                         target = i + fp->jf + 1;
770                         BPF_EMIT_JMP;
771                         break;
772
773                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
774                 case BPF_LDX | BPF_MSH | BPF_B: {
775                         struct sock_filter tmp = {
776                                 .code   = BPF_LD | BPF_ABS | BPF_B,
777                                 .k      = fp->k,
778                         };
779
780                         *seen_ld_abs = true;
781
782                         /* X = A */
783                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
784                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
785                         convert_bpf_ld_abs(&tmp, &insn);
786                         insn++;
787                         /* A &= 0xf */
788                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
789                         /* A <<= 2 */
790                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
791                         /* tmp = X */
792                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
793                         /* X = A */
794                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
795                         /* A = tmp */
796                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
797                         break;
798                 }
799                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
800                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
801                  */
802                 case BPF_RET | BPF_A:
803                 case BPF_RET | BPF_K:
804                         if (BPF_RVAL(fp->code) == BPF_K)
805                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
806                                                         0, fp->k);
807                         *insn = BPF_EXIT_INSN();
808                         break;
809
810                 /* Store to stack. */
811                 case BPF_ST:
812                 case BPF_STX:
813                         stack_off = fp->k * 4  + 4;
814                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
815                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
816                                             -stack_off);
817                         /* check_load_and_stores() verifies that classic BPF can
818                          * load from stack only after write, so tracking
819                          * stack_depth for ST|STX insns is enough
820                          */
821                         if (new_prog && new_prog->aux->stack_depth < stack_off)
822                                 new_prog->aux->stack_depth = stack_off;
823                         break;
824
825                 /* Load from stack. */
826                 case BPF_LD | BPF_MEM:
827                 case BPF_LDX | BPF_MEM:
828                         stack_off = fp->k * 4  + 4;
829                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
830                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
831                                             -stack_off);
832                         break;
833
834                 /* A = K or X = K */
835                 case BPF_LD | BPF_IMM:
836                 case BPF_LDX | BPF_IMM:
837                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
838                                               BPF_REG_A : BPF_REG_X, fp->k);
839                         break;
840
841                 /* X = A */
842                 case BPF_MISC | BPF_TAX:
843                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
844                         break;
845
846                 /* A = X */
847                 case BPF_MISC | BPF_TXA:
848                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
849                         break;
850
851                 /* A = skb->len or X = skb->len */
852                 case BPF_LD | BPF_W | BPF_LEN:
853                 case BPF_LDX | BPF_W | BPF_LEN:
854                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
855                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
856                                             offsetof(struct sk_buff, len));
857                         break;
858
859                 /* Access seccomp_data fields. */
860                 case BPF_LDX | BPF_ABS | BPF_W:
861                         /* A = *(u32 *) (ctx + K) */
862                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
863                         break;
864
865                 /* Unknown instruction. */
866                 default:
867                         goto err;
868                 }
869
870                 insn++;
871                 if (new_prog)
872                         memcpy(new_insn, tmp_insns,
873                                sizeof(*insn) * (insn - tmp_insns));
874                 new_insn += insn - tmp_insns;
875         }
876
877         if (!new_prog) {
878                 /* Only calculating new length. */
879                 *new_len = new_insn - first_insn;
880                 if (*seen_ld_abs)
881                         *new_len += 4; /* Prologue bits. */
882                 return 0;
883         }
884
885         pass++;
886         if (new_flen != new_insn - first_insn) {
887                 new_flen = new_insn - first_insn;
888                 if (pass > 2)
889                         goto err;
890                 goto do_pass;
891         }
892
893         kfree(addrs);
894         BUG_ON(*new_len != new_flen);
895         return 0;
896 err:
897         kfree(addrs);
898         return -EINVAL;
899 }
900
901 /* Security:
902  *
903  * As we dont want to clear mem[] array for each packet going through
904  * __bpf_prog_run(), we check that filter loaded by user never try to read
905  * a cell if not previously written, and we check all branches to be sure
906  * a malicious user doesn't try to abuse us.
907  */
908 static int check_load_and_stores(const struct sock_filter *filter, int flen)
909 {
910         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
911         int pc, ret = 0;
912
913         BUILD_BUG_ON(BPF_MEMWORDS > 16);
914
915         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
916         if (!masks)
917                 return -ENOMEM;
918
919         memset(masks, 0xff, flen * sizeof(*masks));
920
921         for (pc = 0; pc < flen; pc++) {
922                 memvalid &= masks[pc];
923
924                 switch (filter[pc].code) {
925                 case BPF_ST:
926                 case BPF_STX:
927                         memvalid |= (1 << filter[pc].k);
928                         break;
929                 case BPF_LD | BPF_MEM:
930                 case BPF_LDX | BPF_MEM:
931                         if (!(memvalid & (1 << filter[pc].k))) {
932                                 ret = -EINVAL;
933                                 goto error;
934                         }
935                         break;
936                 case BPF_JMP | BPF_JA:
937                         /* A jump must set masks on target */
938                         masks[pc + 1 + filter[pc].k] &= memvalid;
939                         memvalid = ~0;
940                         break;
941                 case BPF_JMP | BPF_JEQ | BPF_K:
942                 case BPF_JMP | BPF_JEQ | BPF_X:
943                 case BPF_JMP | BPF_JGE | BPF_K:
944                 case BPF_JMP | BPF_JGE | BPF_X:
945                 case BPF_JMP | BPF_JGT | BPF_K:
946                 case BPF_JMP | BPF_JGT | BPF_X:
947                 case BPF_JMP | BPF_JSET | BPF_K:
948                 case BPF_JMP | BPF_JSET | BPF_X:
949                         /* A jump must set masks on targets */
950                         masks[pc + 1 + filter[pc].jt] &= memvalid;
951                         masks[pc + 1 + filter[pc].jf] &= memvalid;
952                         memvalid = ~0;
953                         break;
954                 }
955         }
956 error:
957         kfree(masks);
958         return ret;
959 }
960
961 static bool chk_code_allowed(u16 code_to_probe)
962 {
963         static const bool codes[] = {
964                 /* 32 bit ALU operations */
965                 [BPF_ALU | BPF_ADD | BPF_K] = true,
966                 [BPF_ALU | BPF_ADD | BPF_X] = true,
967                 [BPF_ALU | BPF_SUB | BPF_K] = true,
968                 [BPF_ALU | BPF_SUB | BPF_X] = true,
969                 [BPF_ALU | BPF_MUL | BPF_K] = true,
970                 [BPF_ALU | BPF_MUL | BPF_X] = true,
971                 [BPF_ALU | BPF_DIV | BPF_K] = true,
972                 [BPF_ALU | BPF_DIV | BPF_X] = true,
973                 [BPF_ALU | BPF_MOD | BPF_K] = true,
974                 [BPF_ALU | BPF_MOD | BPF_X] = true,
975                 [BPF_ALU | BPF_AND | BPF_K] = true,
976                 [BPF_ALU | BPF_AND | BPF_X] = true,
977                 [BPF_ALU | BPF_OR | BPF_K] = true,
978                 [BPF_ALU | BPF_OR | BPF_X] = true,
979                 [BPF_ALU | BPF_XOR | BPF_K] = true,
980                 [BPF_ALU | BPF_XOR | BPF_X] = true,
981                 [BPF_ALU | BPF_LSH | BPF_K] = true,
982                 [BPF_ALU | BPF_LSH | BPF_X] = true,
983                 [BPF_ALU | BPF_RSH | BPF_K] = true,
984                 [BPF_ALU | BPF_RSH | BPF_X] = true,
985                 [BPF_ALU | BPF_NEG] = true,
986                 /* Load instructions */
987                 [BPF_LD | BPF_W | BPF_ABS] = true,
988                 [BPF_LD | BPF_H | BPF_ABS] = true,
989                 [BPF_LD | BPF_B | BPF_ABS] = true,
990                 [BPF_LD | BPF_W | BPF_LEN] = true,
991                 [BPF_LD | BPF_W | BPF_IND] = true,
992                 [BPF_LD | BPF_H | BPF_IND] = true,
993                 [BPF_LD | BPF_B | BPF_IND] = true,
994                 [BPF_LD | BPF_IMM] = true,
995                 [BPF_LD | BPF_MEM] = true,
996                 [BPF_LDX | BPF_W | BPF_LEN] = true,
997                 [BPF_LDX | BPF_B | BPF_MSH] = true,
998                 [BPF_LDX | BPF_IMM] = true,
999                 [BPF_LDX | BPF_MEM] = true,
1000                 /* Store instructions */
1001                 [BPF_ST] = true,
1002                 [BPF_STX] = true,
1003                 /* Misc instructions */
1004                 [BPF_MISC | BPF_TAX] = true,
1005                 [BPF_MISC | BPF_TXA] = true,
1006                 /* Return instructions */
1007                 [BPF_RET | BPF_K] = true,
1008                 [BPF_RET | BPF_A] = true,
1009                 /* Jump instructions */
1010                 [BPF_JMP | BPF_JA] = true,
1011                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1012                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1013                 [BPF_JMP | BPF_JGE | BPF_K] = true,
1014                 [BPF_JMP | BPF_JGE | BPF_X] = true,
1015                 [BPF_JMP | BPF_JGT | BPF_K] = true,
1016                 [BPF_JMP | BPF_JGT | BPF_X] = true,
1017                 [BPF_JMP | BPF_JSET | BPF_K] = true,
1018                 [BPF_JMP | BPF_JSET | BPF_X] = true,
1019         };
1020
1021         if (code_to_probe >= ARRAY_SIZE(codes))
1022                 return false;
1023
1024         return codes[code_to_probe];
1025 }
1026
1027 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1028                                 unsigned int flen)
1029 {
1030         if (filter == NULL)
1031                 return false;
1032         if (flen == 0 || flen > BPF_MAXINSNS)
1033                 return false;
1034
1035         return true;
1036 }
1037
1038 /**
1039  *      bpf_check_classic - verify socket filter code
1040  *      @filter: filter to verify
1041  *      @flen: length of filter
1042  *
1043  * Check the user's filter code. If we let some ugly
1044  * filter code slip through kaboom! The filter must contain
1045  * no references or jumps that are out of range, no illegal
1046  * instructions, and must end with a RET instruction.
1047  *
1048  * All jumps are forward as they are not signed.
1049  *
1050  * Returns 0 if the rule set is legal or -EINVAL if not.
1051  */
1052 static int bpf_check_classic(const struct sock_filter *filter,
1053                              unsigned int flen)
1054 {
1055         bool anc_found;
1056         int pc;
1057
1058         /* Check the filter code now */
1059         for (pc = 0; pc < flen; pc++) {
1060                 const struct sock_filter *ftest = &filter[pc];
1061
1062                 /* May we actually operate on this code? */
1063                 if (!chk_code_allowed(ftest->code))
1064                         return -EINVAL;
1065
1066                 /* Some instructions need special checks */
1067                 switch (ftest->code) {
1068                 case BPF_ALU | BPF_DIV | BPF_K:
1069                 case BPF_ALU | BPF_MOD | BPF_K:
1070                         /* Check for division by zero */
1071                         if (ftest->k == 0)
1072                                 return -EINVAL;
1073                         break;
1074                 case BPF_ALU | BPF_LSH | BPF_K:
1075                 case BPF_ALU | BPF_RSH | BPF_K:
1076                         if (ftest->k >= 32)
1077                                 return -EINVAL;
1078                         break;
1079                 case BPF_LD | BPF_MEM:
1080                 case BPF_LDX | BPF_MEM:
1081                 case BPF_ST:
1082                 case BPF_STX:
1083                         /* Check for invalid memory addresses */
1084                         if (ftest->k >= BPF_MEMWORDS)
1085                                 return -EINVAL;
1086                         break;
1087                 case BPF_JMP | BPF_JA:
1088                         /* Note, the large ftest->k might cause loops.
1089                          * Compare this with conditional jumps below,
1090                          * where offsets are limited. --ANK (981016)
1091                          */
1092                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1093                                 return -EINVAL;
1094                         break;
1095                 case BPF_JMP | BPF_JEQ | BPF_K:
1096                 case BPF_JMP | BPF_JEQ | BPF_X:
1097                 case BPF_JMP | BPF_JGE | BPF_K:
1098                 case BPF_JMP | BPF_JGE | BPF_X:
1099                 case BPF_JMP | BPF_JGT | BPF_K:
1100                 case BPF_JMP | BPF_JGT | BPF_X:
1101                 case BPF_JMP | BPF_JSET | BPF_K:
1102                 case BPF_JMP | BPF_JSET | BPF_X:
1103                         /* Both conditionals must be safe */
1104                         if (pc + ftest->jt + 1 >= flen ||
1105                             pc + ftest->jf + 1 >= flen)
1106                                 return -EINVAL;
1107                         break;
1108                 case BPF_LD | BPF_W | BPF_ABS:
1109                 case BPF_LD | BPF_H | BPF_ABS:
1110                 case BPF_LD | BPF_B | BPF_ABS:
1111                         anc_found = false;
1112                         if (bpf_anc_helper(ftest) & BPF_ANC)
1113                                 anc_found = true;
1114                         /* Ancillary operation unknown or unsupported */
1115                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1116                                 return -EINVAL;
1117                 }
1118         }
1119
1120         /* Last instruction must be a RET code */
1121         switch (filter[flen - 1].code) {
1122         case BPF_RET | BPF_K:
1123         case BPF_RET | BPF_A:
1124                 return check_load_and_stores(filter, flen);
1125         }
1126
1127         return -EINVAL;
1128 }
1129
1130 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1131                                       const struct sock_fprog *fprog)
1132 {
1133         unsigned int fsize = bpf_classic_proglen(fprog);
1134         struct sock_fprog_kern *fkprog;
1135
1136         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1137         if (!fp->orig_prog)
1138                 return -ENOMEM;
1139
1140         fkprog = fp->orig_prog;
1141         fkprog->len = fprog->len;
1142
1143         fkprog->filter = kmemdup(fp->insns, fsize,
1144                                  GFP_KERNEL | __GFP_NOWARN);
1145         if (!fkprog->filter) {
1146                 kfree(fp->orig_prog);
1147                 return -ENOMEM;
1148         }
1149
1150         return 0;
1151 }
1152
1153 static void bpf_release_orig_filter(struct bpf_prog *fp)
1154 {
1155         struct sock_fprog_kern *fprog = fp->orig_prog;
1156
1157         if (fprog) {
1158                 kfree(fprog->filter);
1159                 kfree(fprog);
1160         }
1161 }
1162
1163 static void __bpf_prog_release(struct bpf_prog *prog)
1164 {
1165         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1166                 bpf_prog_put(prog);
1167         } else {
1168                 bpf_release_orig_filter(prog);
1169                 bpf_prog_free(prog);
1170         }
1171 }
1172
1173 static void __sk_filter_release(struct sk_filter *fp)
1174 {
1175         __bpf_prog_release(fp->prog);
1176         kfree(fp);
1177 }
1178
1179 /**
1180  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1181  *      @rcu: rcu_head that contains the sk_filter to free
1182  */
1183 static void sk_filter_release_rcu(struct rcu_head *rcu)
1184 {
1185         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1186
1187         __sk_filter_release(fp);
1188 }
1189
1190 /**
1191  *      sk_filter_release - release a socket filter
1192  *      @fp: filter to remove
1193  *
1194  *      Remove a filter from a socket and release its resources.
1195  */
1196 static void sk_filter_release(struct sk_filter *fp)
1197 {
1198         if (refcount_dec_and_test(&fp->refcnt))
1199                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1200 }
1201
1202 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1203 {
1204         u32 filter_size = bpf_prog_size(fp->prog->len);
1205
1206         atomic_sub(filter_size, &sk->sk_omem_alloc);
1207         sk_filter_release(fp);
1208 }
1209
1210 /* try to charge the socket memory if there is space available
1211  * return true on success
1212  */
1213 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1214 {
1215         u32 filter_size = bpf_prog_size(fp->prog->len);
1216
1217         /* same check as in sock_kmalloc() */
1218         if (filter_size <= sysctl_optmem_max &&
1219             atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1220                 atomic_add(filter_size, &sk->sk_omem_alloc);
1221                 return true;
1222         }
1223         return false;
1224 }
1225
1226 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1227 {
1228         if (!refcount_inc_not_zero(&fp->refcnt))
1229                 return false;
1230
1231         if (!__sk_filter_charge(sk, fp)) {
1232                 sk_filter_release(fp);
1233                 return false;
1234         }
1235         return true;
1236 }
1237
1238 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1239 {
1240         struct sock_filter *old_prog;
1241         struct bpf_prog *old_fp;
1242         int err, new_len, old_len = fp->len;
1243         bool seen_ld_abs = false;
1244
1245         /* We are free to overwrite insns et al right here as it
1246          * won't be used at this point in time anymore internally
1247          * after the migration to the internal BPF instruction
1248          * representation.
1249          */
1250         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1251                      sizeof(struct bpf_insn));
1252
1253         /* Conversion cannot happen on overlapping memory areas,
1254          * so we need to keep the user BPF around until the 2nd
1255          * pass. At this time, the user BPF is stored in fp->insns.
1256          */
1257         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1258                            GFP_KERNEL | __GFP_NOWARN);
1259         if (!old_prog) {
1260                 err = -ENOMEM;
1261                 goto out_err;
1262         }
1263
1264         /* 1st pass: calculate the new program length. */
1265         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1266                                  &seen_ld_abs);
1267         if (err)
1268                 goto out_err_free;
1269
1270         /* Expand fp for appending the new filter representation. */
1271         old_fp = fp;
1272         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1273         if (!fp) {
1274                 /* The old_fp is still around in case we couldn't
1275                  * allocate new memory, so uncharge on that one.
1276                  */
1277                 fp = old_fp;
1278                 err = -ENOMEM;
1279                 goto out_err_free;
1280         }
1281
1282         fp->len = new_len;
1283
1284         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1285         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1286                                  &seen_ld_abs);
1287         if (err)
1288                 /* 2nd bpf_convert_filter() can fail only if it fails
1289                  * to allocate memory, remapping must succeed. Note,
1290                  * that at this time old_fp has already been released
1291                  * by krealloc().
1292                  */
1293                 goto out_err_free;
1294
1295         fp = bpf_prog_select_runtime(fp, &err);
1296         if (err)
1297                 goto out_err_free;
1298
1299         kfree(old_prog);
1300         return fp;
1301
1302 out_err_free:
1303         kfree(old_prog);
1304 out_err:
1305         __bpf_prog_release(fp);
1306         return ERR_PTR(err);
1307 }
1308
1309 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1310                                            bpf_aux_classic_check_t trans)
1311 {
1312         int err;
1313
1314         fp->bpf_func = NULL;
1315         fp->jited = 0;
1316
1317         err = bpf_check_classic(fp->insns, fp->len);
1318         if (err) {
1319                 __bpf_prog_release(fp);
1320                 return ERR_PTR(err);
1321         }
1322
1323         /* There might be additional checks and transformations
1324          * needed on classic filters, f.e. in case of seccomp.
1325          */
1326         if (trans) {
1327                 err = trans(fp->insns, fp->len);
1328                 if (err) {
1329                         __bpf_prog_release(fp);
1330                         return ERR_PTR(err);
1331                 }
1332         }
1333
1334         /* Probe if we can JIT compile the filter and if so, do
1335          * the compilation of the filter.
1336          */
1337         bpf_jit_compile(fp);
1338
1339         /* JIT compiler couldn't process this filter, so do the
1340          * internal BPF translation for the optimized interpreter.
1341          */
1342         if (!fp->jited)
1343                 fp = bpf_migrate_filter(fp);
1344
1345         return fp;
1346 }
1347
1348 /**
1349  *      bpf_prog_create - create an unattached filter
1350  *      @pfp: the unattached filter that is created
1351  *      @fprog: the filter program
1352  *
1353  * Create a filter independent of any socket. We first run some
1354  * sanity checks on it to make sure it does not explode on us later.
1355  * If an error occurs or there is insufficient memory for the filter
1356  * a negative errno code is returned. On success the return is zero.
1357  */
1358 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1359 {
1360         unsigned int fsize = bpf_classic_proglen(fprog);
1361         struct bpf_prog *fp;
1362
1363         /* Make sure new filter is there and in the right amounts. */
1364         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1365                 return -EINVAL;
1366
1367         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1368         if (!fp)
1369                 return -ENOMEM;
1370
1371         memcpy(fp->insns, fprog->filter, fsize);
1372
1373         fp->len = fprog->len;
1374         /* Since unattached filters are not copied back to user
1375          * space through sk_get_filter(), we do not need to hold
1376          * a copy here, and can spare us the work.
1377          */
1378         fp->orig_prog = NULL;
1379
1380         /* bpf_prepare_filter() already takes care of freeing
1381          * memory in case something goes wrong.
1382          */
1383         fp = bpf_prepare_filter(fp, NULL);
1384         if (IS_ERR(fp))
1385                 return PTR_ERR(fp);
1386
1387         *pfp = fp;
1388         return 0;
1389 }
1390 EXPORT_SYMBOL_GPL(bpf_prog_create);
1391
1392 /**
1393  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1394  *      @pfp: the unattached filter that is created
1395  *      @fprog: the filter program
1396  *      @trans: post-classic verifier transformation handler
1397  *      @save_orig: save classic BPF program
1398  *
1399  * This function effectively does the same as bpf_prog_create(), only
1400  * that it builds up its insns buffer from user space provided buffer.
1401  * It also allows for passing a bpf_aux_classic_check_t handler.
1402  */
1403 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1404                               bpf_aux_classic_check_t trans, bool save_orig)
1405 {
1406         unsigned int fsize = bpf_classic_proglen(fprog);
1407         struct bpf_prog *fp;
1408         int err;
1409
1410         /* Make sure new filter is there and in the right amounts. */
1411         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1412                 return -EINVAL;
1413
1414         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1415         if (!fp)
1416                 return -ENOMEM;
1417
1418         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1419                 __bpf_prog_free(fp);
1420                 return -EFAULT;
1421         }
1422
1423         fp->len = fprog->len;
1424         fp->orig_prog = NULL;
1425
1426         if (save_orig) {
1427                 err = bpf_prog_store_orig_filter(fp, fprog);
1428                 if (err) {
1429                         __bpf_prog_free(fp);
1430                         return -ENOMEM;
1431                 }
1432         }
1433
1434         /* bpf_prepare_filter() already takes care of freeing
1435          * memory in case something goes wrong.
1436          */
1437         fp = bpf_prepare_filter(fp, trans);
1438         if (IS_ERR(fp))
1439                 return PTR_ERR(fp);
1440
1441         *pfp = fp;
1442         return 0;
1443 }
1444 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1445
1446 void bpf_prog_destroy(struct bpf_prog *fp)
1447 {
1448         __bpf_prog_release(fp);
1449 }
1450 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1451
1452 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1453 {
1454         struct sk_filter *fp, *old_fp;
1455
1456         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1457         if (!fp)
1458                 return -ENOMEM;
1459
1460         fp->prog = prog;
1461
1462         if (!__sk_filter_charge(sk, fp)) {
1463                 kfree(fp);
1464                 return -ENOMEM;
1465         }
1466         refcount_set(&fp->refcnt, 1);
1467
1468         old_fp = rcu_dereference_protected(sk->sk_filter,
1469                                            lockdep_sock_is_held(sk));
1470         rcu_assign_pointer(sk->sk_filter, fp);
1471
1472         if (old_fp)
1473                 sk_filter_uncharge(sk, old_fp);
1474
1475         return 0;
1476 }
1477
1478 static
1479 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1480 {
1481         unsigned int fsize = bpf_classic_proglen(fprog);
1482         struct bpf_prog *prog;
1483         int err;
1484
1485         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1486                 return ERR_PTR(-EPERM);
1487
1488         /* Make sure new filter is there and in the right amounts. */
1489         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1490                 return ERR_PTR(-EINVAL);
1491
1492         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1493         if (!prog)
1494                 return ERR_PTR(-ENOMEM);
1495
1496         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1497                 __bpf_prog_free(prog);
1498                 return ERR_PTR(-EFAULT);
1499         }
1500
1501         prog->len = fprog->len;
1502
1503         err = bpf_prog_store_orig_filter(prog, fprog);
1504         if (err) {
1505                 __bpf_prog_free(prog);
1506                 return ERR_PTR(-ENOMEM);
1507         }
1508
1509         /* bpf_prepare_filter() already takes care of freeing
1510          * memory in case something goes wrong.
1511          */
1512         return bpf_prepare_filter(prog, NULL);
1513 }
1514
1515 /**
1516  *      sk_attach_filter - attach a socket filter
1517  *      @fprog: the filter program
1518  *      @sk: the socket to use
1519  *
1520  * Attach the user's filter code. We first run some sanity checks on
1521  * it to make sure it does not explode on us later. If an error
1522  * occurs or there is insufficient memory for the filter a negative
1523  * errno code is returned. On success the return is zero.
1524  */
1525 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1526 {
1527         struct bpf_prog *prog = __get_filter(fprog, sk);
1528         int err;
1529
1530         if (IS_ERR(prog))
1531                 return PTR_ERR(prog);
1532
1533         err = __sk_attach_prog(prog, sk);
1534         if (err < 0) {
1535                 __bpf_prog_release(prog);
1536                 return err;
1537         }
1538
1539         return 0;
1540 }
1541 EXPORT_SYMBOL_GPL(sk_attach_filter);
1542
1543 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1544 {
1545         struct bpf_prog *prog = __get_filter(fprog, sk);
1546         int err;
1547
1548         if (IS_ERR(prog))
1549                 return PTR_ERR(prog);
1550
1551         if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1552                 err = -ENOMEM;
1553         else
1554                 err = reuseport_attach_prog(sk, prog);
1555
1556         if (err)
1557                 __bpf_prog_release(prog);
1558
1559         return err;
1560 }
1561
1562 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1563 {
1564         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1565                 return ERR_PTR(-EPERM);
1566
1567         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1568 }
1569
1570 int sk_attach_bpf(u32 ufd, struct sock *sk)
1571 {
1572         struct bpf_prog *prog = __get_bpf(ufd, sk);
1573         int err;
1574
1575         if (IS_ERR(prog))
1576                 return PTR_ERR(prog);
1577
1578         err = __sk_attach_prog(prog, sk);
1579         if (err < 0) {
1580                 bpf_prog_put(prog);
1581                 return err;
1582         }
1583
1584         return 0;
1585 }
1586
1587 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1588 {
1589         struct bpf_prog *prog;
1590         int err;
1591
1592         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1593                 return -EPERM;
1594
1595         prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1596         if (PTR_ERR(prog) == -EINVAL)
1597                 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1598         if (IS_ERR(prog))
1599                 return PTR_ERR(prog);
1600
1601         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1602                 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1603                  * bpf prog (e.g. sockmap).  It depends on the
1604                  * limitation imposed by bpf_prog_load().
1605                  * Hence, sysctl_optmem_max is not checked.
1606                  */
1607                 if ((sk->sk_type != SOCK_STREAM &&
1608                      sk->sk_type != SOCK_DGRAM) ||
1609                     (sk->sk_protocol != IPPROTO_UDP &&
1610                      sk->sk_protocol != IPPROTO_TCP) ||
1611                     (sk->sk_family != AF_INET &&
1612                      sk->sk_family != AF_INET6)) {
1613                         err = -ENOTSUPP;
1614                         goto err_prog_put;
1615                 }
1616         } else {
1617                 /* BPF_PROG_TYPE_SOCKET_FILTER */
1618                 if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1619                         err = -ENOMEM;
1620                         goto err_prog_put;
1621                 }
1622         }
1623
1624         err = reuseport_attach_prog(sk, prog);
1625 err_prog_put:
1626         if (err)
1627                 bpf_prog_put(prog);
1628
1629         return err;
1630 }
1631
1632 void sk_reuseport_prog_free(struct bpf_prog *prog)
1633 {
1634         if (!prog)
1635                 return;
1636
1637         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1638                 bpf_prog_put(prog);
1639         else
1640                 bpf_prog_destroy(prog);
1641 }
1642
1643 struct bpf_scratchpad {
1644         union {
1645                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1646                 u8     buff[MAX_BPF_STACK];
1647         };
1648 };
1649
1650 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1651
1652 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1653                                           unsigned int write_len)
1654 {
1655         return skb_ensure_writable(skb, write_len);
1656 }
1657
1658 static inline int bpf_try_make_writable(struct sk_buff *skb,
1659                                         unsigned int write_len)
1660 {
1661         int err = __bpf_try_make_writable(skb, write_len);
1662
1663         bpf_compute_data_pointers(skb);
1664         return err;
1665 }
1666
1667 static int bpf_try_make_head_writable(struct sk_buff *skb)
1668 {
1669         return bpf_try_make_writable(skb, skb_headlen(skb));
1670 }
1671
1672 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1673 {
1674         if (skb_at_tc_ingress(skb))
1675                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1676 }
1677
1678 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1679 {
1680         if (skb_at_tc_ingress(skb))
1681                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1682 }
1683
1684 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1685            const void *, from, u32, len, u64, flags)
1686 {
1687         void *ptr;
1688
1689         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1690                 return -EINVAL;
1691         if (unlikely(offset > 0xffff))
1692                 return -EFAULT;
1693         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1694                 return -EFAULT;
1695
1696         ptr = skb->data + offset;
1697         if (flags & BPF_F_RECOMPUTE_CSUM)
1698                 __skb_postpull_rcsum(skb, ptr, len, offset);
1699
1700         memcpy(ptr, from, len);
1701
1702         if (flags & BPF_F_RECOMPUTE_CSUM)
1703                 __skb_postpush_rcsum(skb, ptr, len, offset);
1704         if (flags & BPF_F_INVALIDATE_HASH)
1705                 skb_clear_hash(skb);
1706
1707         return 0;
1708 }
1709
1710 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1711         .func           = bpf_skb_store_bytes,
1712         .gpl_only       = false,
1713         .ret_type       = RET_INTEGER,
1714         .arg1_type      = ARG_PTR_TO_CTX,
1715         .arg2_type      = ARG_ANYTHING,
1716         .arg3_type      = ARG_PTR_TO_MEM,
1717         .arg4_type      = ARG_CONST_SIZE,
1718         .arg5_type      = ARG_ANYTHING,
1719 };
1720
1721 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1722            void *, to, u32, len)
1723 {
1724         void *ptr;
1725
1726         if (unlikely(offset > 0xffff))
1727                 goto err_clear;
1728
1729         ptr = skb_header_pointer(skb, offset, len, to);
1730         if (unlikely(!ptr))
1731                 goto err_clear;
1732         if (ptr != to)
1733                 memcpy(to, ptr, len);
1734
1735         return 0;
1736 err_clear:
1737         memset(to, 0, len);
1738         return -EFAULT;
1739 }
1740
1741 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1742         .func           = bpf_skb_load_bytes,
1743         .gpl_only       = false,
1744         .ret_type       = RET_INTEGER,
1745         .arg1_type      = ARG_PTR_TO_CTX,
1746         .arg2_type      = ARG_ANYTHING,
1747         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1748         .arg4_type      = ARG_CONST_SIZE,
1749 };
1750
1751 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1752            const struct bpf_flow_dissector *, ctx, u32, offset,
1753            void *, to, u32, len)
1754 {
1755         void *ptr;
1756
1757         if (unlikely(offset > 0xffff))
1758                 goto err_clear;
1759
1760         if (unlikely(!ctx->skb))
1761                 goto err_clear;
1762
1763         ptr = skb_header_pointer(ctx->skb, offset, len, to);
1764         if (unlikely(!ptr))
1765                 goto err_clear;
1766         if (ptr != to)
1767                 memcpy(to, ptr, len);
1768
1769         return 0;
1770 err_clear:
1771         memset(to, 0, len);
1772         return -EFAULT;
1773 }
1774
1775 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1776         .func           = bpf_flow_dissector_load_bytes,
1777         .gpl_only       = false,
1778         .ret_type       = RET_INTEGER,
1779         .arg1_type      = ARG_PTR_TO_CTX,
1780         .arg2_type      = ARG_ANYTHING,
1781         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1782         .arg4_type      = ARG_CONST_SIZE,
1783 };
1784
1785 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1786            u32, offset, void *, to, u32, len, u32, start_header)
1787 {
1788         u8 *end = skb_tail_pointer(skb);
1789         u8 *start, *ptr;
1790
1791         if (unlikely(offset > 0xffff))
1792                 goto err_clear;
1793
1794         switch (start_header) {
1795         case BPF_HDR_START_MAC:
1796                 if (unlikely(!skb_mac_header_was_set(skb)))
1797                         goto err_clear;
1798                 start = skb_mac_header(skb);
1799                 break;
1800         case BPF_HDR_START_NET:
1801                 start = skb_network_header(skb);
1802                 break;
1803         default:
1804                 goto err_clear;
1805         }
1806
1807         ptr = start + offset;
1808
1809         if (likely(ptr + len <= end)) {
1810                 memcpy(to, ptr, len);
1811                 return 0;
1812         }
1813
1814 err_clear:
1815         memset(to, 0, len);
1816         return -EFAULT;
1817 }
1818
1819 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1820         .func           = bpf_skb_load_bytes_relative,
1821         .gpl_only       = false,
1822         .ret_type       = RET_INTEGER,
1823         .arg1_type      = ARG_PTR_TO_CTX,
1824         .arg2_type      = ARG_ANYTHING,
1825         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1826         .arg4_type      = ARG_CONST_SIZE,
1827         .arg5_type      = ARG_ANYTHING,
1828 };
1829
1830 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1831 {
1832         /* Idea is the following: should the needed direct read/write
1833          * test fail during runtime, we can pull in more data and redo
1834          * again, since implicitly, we invalidate previous checks here.
1835          *
1836          * Or, since we know how much we need to make read/writeable,
1837          * this can be done once at the program beginning for direct
1838          * access case. By this we overcome limitations of only current
1839          * headroom being accessible.
1840          */
1841         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1842 }
1843
1844 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1845         .func           = bpf_skb_pull_data,
1846         .gpl_only       = false,
1847         .ret_type       = RET_INTEGER,
1848         .arg1_type      = ARG_PTR_TO_CTX,
1849         .arg2_type      = ARG_ANYTHING,
1850 };
1851
1852 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1853 {
1854         return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1855 }
1856
1857 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1858         .func           = bpf_sk_fullsock,
1859         .gpl_only       = false,
1860         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1861         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1862 };
1863
1864 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1865                                            unsigned int write_len)
1866 {
1867         return __bpf_try_make_writable(skb, write_len);
1868 }
1869
1870 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1871 {
1872         /* Idea is the following: should the needed direct read/write
1873          * test fail during runtime, we can pull in more data and redo
1874          * again, since implicitly, we invalidate previous checks here.
1875          *
1876          * Or, since we know how much we need to make read/writeable,
1877          * this can be done once at the program beginning for direct
1878          * access case. By this we overcome limitations of only current
1879          * headroom being accessible.
1880          */
1881         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1882 }
1883
1884 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1885         .func           = sk_skb_pull_data,
1886         .gpl_only       = false,
1887         .ret_type       = RET_INTEGER,
1888         .arg1_type      = ARG_PTR_TO_CTX,
1889         .arg2_type      = ARG_ANYTHING,
1890 };
1891
1892 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1893            u64, from, u64, to, u64, flags)
1894 {
1895         __sum16 *ptr;
1896
1897         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1898                 return -EINVAL;
1899         if (unlikely(offset > 0xffff || offset & 1))
1900                 return -EFAULT;
1901         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1902                 return -EFAULT;
1903
1904         ptr = (__sum16 *)(skb->data + offset);
1905         switch (flags & BPF_F_HDR_FIELD_MASK) {
1906         case 0:
1907                 if (unlikely(from != 0))
1908                         return -EINVAL;
1909
1910                 csum_replace_by_diff(ptr, to);
1911                 break;
1912         case 2:
1913                 csum_replace2(ptr, from, to);
1914                 break;
1915         case 4:
1916                 csum_replace4(ptr, from, to);
1917                 break;
1918         default:
1919                 return -EINVAL;
1920         }
1921
1922         return 0;
1923 }
1924
1925 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1926         .func           = bpf_l3_csum_replace,
1927         .gpl_only       = false,
1928         .ret_type       = RET_INTEGER,
1929         .arg1_type      = ARG_PTR_TO_CTX,
1930         .arg2_type      = ARG_ANYTHING,
1931         .arg3_type      = ARG_ANYTHING,
1932         .arg4_type      = ARG_ANYTHING,
1933         .arg5_type      = ARG_ANYTHING,
1934 };
1935
1936 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1937            u64, from, u64, to, u64, flags)
1938 {
1939         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1940         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1941         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1942         __sum16 *ptr;
1943
1944         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1945                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1946                 return -EINVAL;
1947         if (unlikely(offset > 0xffff || offset & 1))
1948                 return -EFAULT;
1949         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1950                 return -EFAULT;
1951
1952         ptr = (__sum16 *)(skb->data + offset);
1953         if (is_mmzero && !do_mforce && !*ptr)
1954                 return 0;
1955
1956         switch (flags & BPF_F_HDR_FIELD_MASK) {
1957         case 0:
1958                 if (unlikely(from != 0))
1959                         return -EINVAL;
1960
1961                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1962                 break;
1963         case 2:
1964                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1965                 break;
1966         case 4:
1967                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1968                 break;
1969         default:
1970                 return -EINVAL;
1971         }
1972
1973         if (is_mmzero && !*ptr)
1974                 *ptr = CSUM_MANGLED_0;
1975         return 0;
1976 }
1977
1978 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1979         .func           = bpf_l4_csum_replace,
1980         .gpl_only       = false,
1981         .ret_type       = RET_INTEGER,
1982         .arg1_type      = ARG_PTR_TO_CTX,
1983         .arg2_type      = ARG_ANYTHING,
1984         .arg3_type      = ARG_ANYTHING,
1985         .arg4_type      = ARG_ANYTHING,
1986         .arg5_type      = ARG_ANYTHING,
1987 };
1988
1989 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1990            __be32 *, to, u32, to_size, __wsum, seed)
1991 {
1992         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1993         u32 diff_size = from_size + to_size;
1994         int i, j = 0;
1995
1996         /* This is quite flexible, some examples:
1997          *
1998          * from_size == 0, to_size > 0,  seed := csum --> pushing data
1999          * from_size > 0,  to_size == 0, seed := csum --> pulling data
2000          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2001          *
2002          * Even for diffing, from_size and to_size don't need to be equal.
2003          */
2004         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2005                      diff_size > sizeof(sp->diff)))
2006                 return -EINVAL;
2007
2008         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2009                 sp->diff[j] = ~from[i];
2010         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2011                 sp->diff[j] = to[i];
2012
2013         return csum_partial(sp->diff, diff_size, seed);
2014 }
2015
2016 static const struct bpf_func_proto bpf_csum_diff_proto = {
2017         .func           = bpf_csum_diff,
2018         .gpl_only       = false,
2019         .pkt_access     = true,
2020         .ret_type       = RET_INTEGER,
2021         .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
2022         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2023         .arg3_type      = ARG_PTR_TO_MEM_OR_NULL,
2024         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2025         .arg5_type      = ARG_ANYTHING,
2026 };
2027
2028 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2029 {
2030         /* The interface is to be used in combination with bpf_csum_diff()
2031          * for direct packet writes. csum rotation for alignment as well
2032          * as emulating csum_sub() can be done from the eBPF program.
2033          */
2034         if (skb->ip_summed == CHECKSUM_COMPLETE)
2035                 return (skb->csum = csum_add(skb->csum, csum));
2036
2037         return -ENOTSUPP;
2038 }
2039
2040 static const struct bpf_func_proto bpf_csum_update_proto = {
2041         .func           = bpf_csum_update,
2042         .gpl_only       = false,
2043         .ret_type       = RET_INTEGER,
2044         .arg1_type      = ARG_PTR_TO_CTX,
2045         .arg2_type      = ARG_ANYTHING,
2046 };
2047
2048 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2049 {
2050         /* The interface is to be used in combination with bpf_skb_adjust_room()
2051          * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2052          * is passed as flags, for example.
2053          */
2054         switch (level) {
2055         case BPF_CSUM_LEVEL_INC:
2056                 __skb_incr_checksum_unnecessary(skb);
2057                 break;
2058         case BPF_CSUM_LEVEL_DEC:
2059                 __skb_decr_checksum_unnecessary(skb);
2060                 break;
2061         case BPF_CSUM_LEVEL_RESET:
2062                 __skb_reset_checksum_unnecessary(skb);
2063                 break;
2064         case BPF_CSUM_LEVEL_QUERY:
2065                 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2066                        skb->csum_level : -EACCES;
2067         default:
2068                 return -EINVAL;
2069         }
2070
2071         return 0;
2072 }
2073
2074 static const struct bpf_func_proto bpf_csum_level_proto = {
2075         .func           = bpf_csum_level,
2076         .gpl_only       = false,
2077         .ret_type       = RET_INTEGER,
2078         .arg1_type      = ARG_PTR_TO_CTX,
2079         .arg2_type      = ARG_ANYTHING,
2080 };
2081
2082 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2083 {
2084         return dev_forward_skb_nomtu(dev, skb);
2085 }
2086
2087 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2088                                       struct sk_buff *skb)
2089 {
2090         int ret = ____dev_forward_skb(dev, skb, false);
2091
2092         if (likely(!ret)) {
2093                 skb->dev = dev;
2094                 ret = netif_rx(skb);
2095         }
2096
2097         return ret;
2098 }
2099
2100 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2101 {
2102         int ret;
2103
2104         if (dev_xmit_recursion()) {
2105                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2106                 kfree_skb(skb);
2107                 return -ENETDOWN;
2108         }
2109
2110         skb->dev = dev;
2111         skb->tstamp = 0;
2112
2113         dev_xmit_recursion_inc();
2114         ret = dev_queue_xmit(skb);
2115         dev_xmit_recursion_dec();
2116
2117         return ret;
2118 }
2119
2120 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2121                                  u32 flags)
2122 {
2123         unsigned int mlen = skb_network_offset(skb);
2124
2125         if (mlen) {
2126                 __skb_pull(skb, mlen);
2127
2128                 /* At ingress, the mac header has already been pulled once.
2129                  * At egress, skb_pospull_rcsum has to be done in case that
2130                  * the skb is originated from ingress (i.e. a forwarded skb)
2131                  * to ensure that rcsum starts at net header.
2132                  */
2133                 if (!skb_at_tc_ingress(skb))
2134                         skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2135         }
2136         skb_pop_mac_header(skb);
2137         skb_reset_mac_len(skb);
2138         return flags & BPF_F_INGRESS ?
2139                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2140 }
2141
2142 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2143                                  u32 flags)
2144 {
2145         /* Verify that a link layer header is carried */
2146         if (unlikely(skb->mac_header >= skb->network_header)) {
2147                 kfree_skb(skb);
2148                 return -ERANGE;
2149         }
2150
2151         bpf_push_mac_rcsum(skb);
2152         return flags & BPF_F_INGRESS ?
2153                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2154 }
2155
2156 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2157                           u32 flags)
2158 {
2159         if (dev_is_mac_header_xmit(dev))
2160                 return __bpf_redirect_common(skb, dev, flags);
2161         else
2162                 return __bpf_redirect_no_mac(skb, dev, flags);
2163 }
2164
2165 #if IS_ENABLED(CONFIG_IPV6)
2166 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2167                             struct net_device *dev, struct bpf_nh_params *nh)
2168 {
2169         u32 hh_len = LL_RESERVED_SPACE(dev);
2170         const struct in6_addr *nexthop;
2171         struct dst_entry *dst = NULL;
2172         struct neighbour *neigh;
2173
2174         if (dev_xmit_recursion()) {
2175                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2176                 goto out_drop;
2177         }
2178
2179         skb->dev = dev;
2180         skb->tstamp = 0;
2181
2182         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2183                 skb = skb_expand_head(skb, hh_len);
2184                 if (!skb)
2185                         return -ENOMEM;
2186         }
2187
2188         rcu_read_lock_bh();
2189         if (!nh) {
2190                 dst = skb_dst(skb);
2191                 nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2192                                       &ipv6_hdr(skb)->daddr);
2193         } else {
2194                 nexthop = &nh->ipv6_nh;
2195         }
2196         neigh = ip_neigh_gw6(dev, nexthop);
2197         if (likely(!IS_ERR(neigh))) {
2198                 int ret;
2199
2200                 sock_confirm_neigh(skb, neigh);
2201                 dev_xmit_recursion_inc();
2202                 ret = neigh_output(neigh, skb, false);
2203                 dev_xmit_recursion_dec();
2204                 rcu_read_unlock_bh();
2205                 return ret;
2206         }
2207         rcu_read_unlock_bh();
2208         if (dst)
2209                 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2210 out_drop:
2211         kfree_skb(skb);
2212         return -ENETDOWN;
2213 }
2214
2215 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2216                                    struct bpf_nh_params *nh)
2217 {
2218         const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2219         struct net *net = dev_net(dev);
2220         int err, ret = NET_XMIT_DROP;
2221
2222         if (!nh) {
2223                 struct dst_entry *dst;
2224                 struct flowi6 fl6 = {
2225                         .flowi6_flags = FLOWI_FLAG_ANYSRC,
2226                         .flowi6_mark  = skb->mark,
2227                         .flowlabel    = ip6_flowinfo(ip6h),
2228                         .flowi6_oif   = dev->ifindex,
2229                         .flowi6_proto = ip6h->nexthdr,
2230                         .daddr        = ip6h->daddr,
2231                         .saddr        = ip6h->saddr,
2232                 };
2233
2234                 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2235                 if (IS_ERR(dst))
2236                         goto out_drop;
2237
2238                 skb_dst_set(skb, dst);
2239         } else if (nh->nh_family != AF_INET6) {
2240                 goto out_drop;
2241         }
2242
2243         err = bpf_out_neigh_v6(net, skb, dev, nh);
2244         if (unlikely(net_xmit_eval(err)))
2245                 dev->stats.tx_errors++;
2246         else
2247                 ret = NET_XMIT_SUCCESS;
2248         goto out_xmit;
2249 out_drop:
2250         dev->stats.tx_errors++;
2251         kfree_skb(skb);
2252 out_xmit:
2253         return ret;
2254 }
2255 #else
2256 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2257                                    struct bpf_nh_params *nh)
2258 {
2259         kfree_skb(skb);
2260         return NET_XMIT_DROP;
2261 }
2262 #endif /* CONFIG_IPV6 */
2263
2264 #if IS_ENABLED(CONFIG_INET)
2265 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2266                             struct net_device *dev, struct bpf_nh_params *nh)
2267 {
2268         u32 hh_len = LL_RESERVED_SPACE(dev);
2269         struct neighbour *neigh;
2270         bool is_v6gw = false;
2271
2272         if (dev_xmit_recursion()) {
2273                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2274                 goto out_drop;
2275         }
2276
2277         skb->dev = dev;
2278         skb->tstamp = 0;
2279
2280         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2281                 skb = skb_expand_head(skb, hh_len);
2282                 if (!skb)
2283                         return -ENOMEM;
2284         }
2285
2286         rcu_read_lock_bh();
2287         if (!nh) {
2288                 struct dst_entry *dst = skb_dst(skb);
2289                 struct rtable *rt = container_of(dst, struct rtable, dst);
2290
2291                 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2292         } else if (nh->nh_family == AF_INET6) {
2293                 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2294                 is_v6gw = true;
2295         } else if (nh->nh_family == AF_INET) {
2296                 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2297         } else {
2298                 rcu_read_unlock_bh();
2299                 goto out_drop;
2300         }
2301
2302         if (likely(!IS_ERR(neigh))) {
2303                 int ret;
2304
2305                 sock_confirm_neigh(skb, neigh);
2306                 dev_xmit_recursion_inc();
2307                 ret = neigh_output(neigh, skb, is_v6gw);
2308                 dev_xmit_recursion_dec();
2309                 rcu_read_unlock_bh();
2310                 return ret;
2311         }
2312         rcu_read_unlock_bh();
2313 out_drop:
2314         kfree_skb(skb);
2315         return -ENETDOWN;
2316 }
2317
2318 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2319                                    struct bpf_nh_params *nh)
2320 {
2321         const struct iphdr *ip4h = ip_hdr(skb);
2322         struct net *net = dev_net(dev);
2323         int err, ret = NET_XMIT_DROP;
2324
2325         if (!nh) {
2326                 struct flowi4 fl4 = {
2327                         .flowi4_flags = FLOWI_FLAG_ANYSRC,
2328                         .flowi4_mark  = skb->mark,
2329                         .flowi4_tos   = RT_TOS(ip4h->tos),
2330                         .flowi4_oif   = dev->ifindex,
2331                         .flowi4_proto = ip4h->protocol,
2332                         .daddr        = ip4h->daddr,
2333                         .saddr        = ip4h->saddr,
2334                 };
2335                 struct rtable *rt;
2336
2337                 rt = ip_route_output_flow(net, &fl4, NULL);
2338                 if (IS_ERR(rt))
2339                         goto out_drop;
2340                 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2341                         ip_rt_put(rt);
2342                         goto out_drop;
2343                 }
2344
2345                 skb_dst_set(skb, &rt->dst);
2346         }
2347
2348         err = bpf_out_neigh_v4(net, skb, dev, nh);
2349         if (unlikely(net_xmit_eval(err)))
2350                 dev->stats.tx_errors++;
2351         else
2352                 ret = NET_XMIT_SUCCESS;
2353         goto out_xmit;
2354 out_drop:
2355         dev->stats.tx_errors++;
2356         kfree_skb(skb);
2357 out_xmit:
2358         return ret;
2359 }
2360 #else
2361 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2362                                    struct bpf_nh_params *nh)
2363 {
2364         kfree_skb(skb);
2365         return NET_XMIT_DROP;
2366 }
2367 #endif /* CONFIG_INET */
2368
2369 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2370                                 struct bpf_nh_params *nh)
2371 {
2372         struct ethhdr *ethh = eth_hdr(skb);
2373
2374         if (unlikely(skb->mac_header >= skb->network_header))
2375                 goto out;
2376         bpf_push_mac_rcsum(skb);
2377         if (is_multicast_ether_addr(ethh->h_dest))
2378                 goto out;
2379
2380         skb_pull(skb, sizeof(*ethh));
2381         skb_unset_mac_header(skb);
2382         skb_reset_network_header(skb);
2383
2384         if (skb->protocol == htons(ETH_P_IP))
2385                 return __bpf_redirect_neigh_v4(skb, dev, nh);
2386         else if (skb->protocol == htons(ETH_P_IPV6))
2387                 return __bpf_redirect_neigh_v6(skb, dev, nh);
2388 out:
2389         kfree_skb(skb);
2390         return -ENOTSUPP;
2391 }
2392
2393 /* Internal, non-exposed redirect flags. */
2394 enum {
2395         BPF_F_NEIGH     = (1ULL << 1),
2396         BPF_F_PEER      = (1ULL << 2),
2397         BPF_F_NEXTHOP   = (1ULL << 3),
2398 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2399 };
2400
2401 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2402 {
2403         struct net_device *dev;
2404         struct sk_buff *clone;
2405         int ret;
2406
2407         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2408                 return -EINVAL;
2409
2410         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2411         if (unlikely(!dev))
2412                 return -EINVAL;
2413
2414         clone = skb_clone(skb, GFP_ATOMIC);
2415         if (unlikely(!clone))
2416                 return -ENOMEM;
2417
2418         /* For direct write, we need to keep the invariant that the skbs
2419          * we're dealing with need to be uncloned. Should uncloning fail
2420          * here, we need to free the just generated clone to unclone once
2421          * again.
2422          */
2423         ret = bpf_try_make_head_writable(skb);
2424         if (unlikely(ret)) {
2425                 kfree_skb(clone);
2426                 return -ENOMEM;
2427         }
2428
2429         return __bpf_redirect(clone, dev, flags);
2430 }
2431
2432 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2433         .func           = bpf_clone_redirect,
2434         .gpl_only       = false,
2435         .ret_type       = RET_INTEGER,
2436         .arg1_type      = ARG_PTR_TO_CTX,
2437         .arg2_type      = ARG_ANYTHING,
2438         .arg3_type      = ARG_ANYTHING,
2439 };
2440
2441 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2442 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2443
2444 int skb_do_redirect(struct sk_buff *skb)
2445 {
2446         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2447         struct net *net = dev_net(skb->dev);
2448         struct net_device *dev;
2449         u32 flags = ri->flags;
2450
2451         dev = dev_get_by_index_rcu(net, ri->tgt_index);
2452         ri->tgt_index = 0;
2453         ri->flags = 0;
2454         if (unlikely(!dev))
2455                 goto out_drop;
2456         if (flags & BPF_F_PEER) {
2457                 const struct net_device_ops *ops = dev->netdev_ops;
2458
2459                 if (unlikely(!ops->ndo_get_peer_dev ||
2460                              !skb_at_tc_ingress(skb)))
2461                         goto out_drop;
2462                 dev = ops->ndo_get_peer_dev(dev);
2463                 if (unlikely(!dev ||
2464                              !(dev->flags & IFF_UP) ||
2465                              net_eq(net, dev_net(dev))))
2466                         goto out_drop;
2467                 skb->dev = dev;
2468                 return -EAGAIN;
2469         }
2470         return flags & BPF_F_NEIGH ?
2471                __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2472                                     &ri->nh : NULL) :
2473                __bpf_redirect(skb, dev, flags);
2474 out_drop:
2475         kfree_skb(skb);
2476         return -EINVAL;
2477 }
2478
2479 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2480 {
2481         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2482
2483         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2484                 return TC_ACT_SHOT;
2485
2486         ri->flags = flags;
2487         ri->tgt_index = ifindex;
2488
2489         return TC_ACT_REDIRECT;
2490 }
2491
2492 static const struct bpf_func_proto bpf_redirect_proto = {
2493         .func           = bpf_redirect,
2494         .gpl_only       = false,
2495         .ret_type       = RET_INTEGER,
2496         .arg1_type      = ARG_ANYTHING,
2497         .arg2_type      = ARG_ANYTHING,
2498 };
2499
2500 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2501 {
2502         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2503
2504         if (unlikely(flags))
2505                 return TC_ACT_SHOT;
2506
2507         ri->flags = BPF_F_PEER;
2508         ri->tgt_index = ifindex;
2509
2510         return TC_ACT_REDIRECT;
2511 }
2512
2513 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2514         .func           = bpf_redirect_peer,
2515         .gpl_only       = false,
2516         .ret_type       = RET_INTEGER,
2517         .arg1_type      = ARG_ANYTHING,
2518         .arg2_type      = ARG_ANYTHING,
2519 };
2520
2521 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2522            int, plen, u64, flags)
2523 {
2524         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2525
2526         if (unlikely((plen && plen < sizeof(*params)) || flags))
2527                 return TC_ACT_SHOT;
2528
2529         ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2530         ri->tgt_index = ifindex;
2531
2532         BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2533         if (plen)
2534                 memcpy(&ri->nh, params, sizeof(ri->nh));
2535
2536         return TC_ACT_REDIRECT;
2537 }
2538
2539 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2540         .func           = bpf_redirect_neigh,
2541         .gpl_only       = false,
2542         .ret_type       = RET_INTEGER,
2543         .arg1_type      = ARG_ANYTHING,
2544         .arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
2545         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2546         .arg4_type      = ARG_ANYTHING,
2547 };
2548
2549 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2550 {
2551         msg->apply_bytes = bytes;
2552         return 0;
2553 }
2554
2555 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2556         .func           = bpf_msg_apply_bytes,
2557         .gpl_only       = false,
2558         .ret_type       = RET_INTEGER,
2559         .arg1_type      = ARG_PTR_TO_CTX,
2560         .arg2_type      = ARG_ANYTHING,
2561 };
2562
2563 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2564 {
2565         msg->cork_bytes = bytes;
2566         return 0;
2567 }
2568
2569 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2570         .func           = bpf_msg_cork_bytes,
2571         .gpl_only       = false,
2572         .ret_type       = RET_INTEGER,
2573         .arg1_type      = ARG_PTR_TO_CTX,
2574         .arg2_type      = ARG_ANYTHING,
2575 };
2576
2577 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2578            u32, end, u64, flags)
2579 {
2580         u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2581         u32 first_sge, last_sge, i, shift, bytes_sg_total;
2582         struct scatterlist *sge;
2583         u8 *raw, *to, *from;
2584         struct page *page;
2585
2586         if (unlikely(flags || end <= start))
2587                 return -EINVAL;
2588
2589         /* First find the starting scatterlist element */
2590         i = msg->sg.start;
2591         do {
2592                 offset += len;
2593                 len = sk_msg_elem(msg, i)->length;
2594                 if (start < offset + len)
2595                         break;
2596                 sk_msg_iter_var_next(i);
2597         } while (i != msg->sg.end);
2598
2599         if (unlikely(start >= offset + len))
2600                 return -EINVAL;
2601
2602         first_sge = i;
2603         /* The start may point into the sg element so we need to also
2604          * account for the headroom.
2605          */
2606         bytes_sg_total = start - offset + bytes;
2607         if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2608                 goto out;
2609
2610         /* At this point we need to linearize multiple scatterlist
2611          * elements or a single shared page. Either way we need to
2612          * copy into a linear buffer exclusively owned by BPF. Then
2613          * place the buffer in the scatterlist and fixup the original
2614          * entries by removing the entries now in the linear buffer
2615          * and shifting the remaining entries. For now we do not try
2616          * to copy partial entries to avoid complexity of running out
2617          * of sg_entry slots. The downside is reading a single byte
2618          * will copy the entire sg entry.
2619          */
2620         do {
2621                 copy += sk_msg_elem(msg, i)->length;
2622                 sk_msg_iter_var_next(i);
2623                 if (bytes_sg_total <= copy)
2624                         break;
2625         } while (i != msg->sg.end);
2626         last_sge = i;
2627
2628         if (unlikely(bytes_sg_total > copy))
2629                 return -EINVAL;
2630
2631         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2632                            get_order(copy));
2633         if (unlikely(!page))
2634                 return -ENOMEM;
2635
2636         raw = page_address(page);
2637         i = first_sge;
2638         do {
2639                 sge = sk_msg_elem(msg, i);
2640                 from = sg_virt(sge);
2641                 len = sge->length;
2642                 to = raw + poffset;
2643
2644                 memcpy(to, from, len);
2645                 poffset += len;
2646                 sge->length = 0;
2647                 put_page(sg_page(sge));
2648
2649                 sk_msg_iter_var_next(i);
2650         } while (i != last_sge);
2651
2652         sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2653
2654         /* To repair sg ring we need to shift entries. If we only
2655          * had a single entry though we can just replace it and
2656          * be done. Otherwise walk the ring and shift the entries.
2657          */
2658         WARN_ON_ONCE(last_sge == first_sge);
2659         shift = last_sge > first_sge ?
2660                 last_sge - first_sge - 1 :
2661                 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2662         if (!shift)
2663                 goto out;
2664
2665         i = first_sge;
2666         sk_msg_iter_var_next(i);
2667         do {
2668                 u32 move_from;
2669
2670                 if (i + shift >= NR_MSG_FRAG_IDS)
2671                         move_from = i + shift - NR_MSG_FRAG_IDS;
2672                 else
2673                         move_from = i + shift;
2674                 if (move_from == msg->sg.end)
2675                         break;
2676
2677                 msg->sg.data[i] = msg->sg.data[move_from];
2678                 msg->sg.data[move_from].length = 0;
2679                 msg->sg.data[move_from].page_link = 0;
2680                 msg->sg.data[move_from].offset = 0;
2681                 sk_msg_iter_var_next(i);
2682         } while (1);
2683
2684         msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2685                       msg->sg.end - shift + NR_MSG_FRAG_IDS :
2686                       msg->sg.end - shift;
2687 out:
2688         msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2689         msg->data_end = msg->data + bytes;
2690         return 0;
2691 }
2692
2693 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2694         .func           = bpf_msg_pull_data,
2695         .gpl_only       = false,
2696         .ret_type       = RET_INTEGER,
2697         .arg1_type      = ARG_PTR_TO_CTX,
2698         .arg2_type      = ARG_ANYTHING,
2699         .arg3_type      = ARG_ANYTHING,
2700         .arg4_type      = ARG_ANYTHING,
2701 };
2702
2703 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2704            u32, len, u64, flags)
2705 {
2706         struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2707         u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2708         u8 *raw, *to, *from;
2709         struct page *page;
2710
2711         if (unlikely(flags))
2712                 return -EINVAL;
2713
2714         /* First find the starting scatterlist element */
2715         i = msg->sg.start;
2716         do {
2717                 offset += l;
2718                 l = sk_msg_elem(msg, i)->length;
2719
2720                 if (start < offset + l)
2721                         break;
2722                 sk_msg_iter_var_next(i);
2723         } while (i != msg->sg.end);
2724
2725         if (start >= offset + l)
2726                 return -EINVAL;
2727
2728         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2729
2730         /* If no space available will fallback to copy, we need at
2731          * least one scatterlist elem available to push data into
2732          * when start aligns to the beginning of an element or two
2733          * when it falls inside an element. We handle the start equals
2734          * offset case because its the common case for inserting a
2735          * header.
2736          */
2737         if (!space || (space == 1 && start != offset))
2738                 copy = msg->sg.data[i].length;
2739
2740         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2741                            get_order(copy + len));
2742         if (unlikely(!page))
2743                 return -ENOMEM;
2744
2745         if (copy) {
2746                 int front, back;
2747
2748                 raw = page_address(page);
2749
2750                 psge = sk_msg_elem(msg, i);
2751                 front = start - offset;
2752                 back = psge->length - front;
2753                 from = sg_virt(psge);
2754
2755                 if (front)
2756                         memcpy(raw, from, front);
2757
2758                 if (back) {
2759                         from += front;
2760                         to = raw + front + len;
2761
2762                         memcpy(to, from, back);
2763                 }
2764
2765                 put_page(sg_page(psge));
2766         } else if (start - offset) {
2767                 psge = sk_msg_elem(msg, i);
2768                 rsge = sk_msg_elem_cpy(msg, i);
2769
2770                 psge->length = start - offset;
2771                 rsge.length -= psge->length;
2772                 rsge.offset += start;
2773
2774                 sk_msg_iter_var_next(i);
2775                 sg_unmark_end(psge);
2776                 sg_unmark_end(&rsge);
2777                 sk_msg_iter_next(msg, end);
2778         }
2779
2780         /* Slot(s) to place newly allocated data */
2781         new = i;
2782
2783         /* Shift one or two slots as needed */
2784         if (!copy) {
2785                 sge = sk_msg_elem_cpy(msg, i);
2786
2787                 sk_msg_iter_var_next(i);
2788                 sg_unmark_end(&sge);
2789                 sk_msg_iter_next(msg, end);
2790
2791                 nsge = sk_msg_elem_cpy(msg, i);
2792                 if (rsge.length) {
2793                         sk_msg_iter_var_next(i);
2794                         nnsge = sk_msg_elem_cpy(msg, i);
2795                 }
2796
2797                 while (i != msg->sg.end) {
2798                         msg->sg.data[i] = sge;
2799                         sge = nsge;
2800                         sk_msg_iter_var_next(i);
2801                         if (rsge.length) {
2802                                 nsge = nnsge;
2803                                 nnsge = sk_msg_elem_cpy(msg, i);
2804                         } else {
2805                                 nsge = sk_msg_elem_cpy(msg, i);
2806                         }
2807                 }
2808         }
2809
2810         /* Place newly allocated data buffer */
2811         sk_mem_charge(msg->sk, len);
2812         msg->sg.size += len;
2813         __clear_bit(new, &msg->sg.copy);
2814         sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2815         if (rsge.length) {
2816                 get_page(sg_page(&rsge));
2817                 sk_msg_iter_var_next(new);
2818                 msg->sg.data[new] = rsge;
2819         }
2820
2821         sk_msg_compute_data_pointers(msg);
2822         return 0;
2823 }
2824
2825 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2826         .func           = bpf_msg_push_data,
2827         .gpl_only       = false,
2828         .ret_type       = RET_INTEGER,
2829         .arg1_type      = ARG_PTR_TO_CTX,
2830         .arg2_type      = ARG_ANYTHING,
2831         .arg3_type      = ARG_ANYTHING,
2832         .arg4_type      = ARG_ANYTHING,
2833 };
2834
2835 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2836 {
2837         int prev;
2838
2839         do {
2840                 prev = i;
2841                 sk_msg_iter_var_next(i);
2842                 msg->sg.data[prev] = msg->sg.data[i];
2843         } while (i != msg->sg.end);
2844
2845         sk_msg_iter_prev(msg, end);
2846 }
2847
2848 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2849 {
2850         struct scatterlist tmp, sge;
2851
2852         sk_msg_iter_next(msg, end);
2853         sge = sk_msg_elem_cpy(msg, i);
2854         sk_msg_iter_var_next(i);
2855         tmp = sk_msg_elem_cpy(msg, i);
2856
2857         while (i != msg->sg.end) {
2858                 msg->sg.data[i] = sge;
2859                 sk_msg_iter_var_next(i);
2860                 sge = tmp;
2861                 tmp = sk_msg_elem_cpy(msg, i);
2862         }
2863 }
2864
2865 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2866            u32, len, u64, flags)
2867 {
2868         u32 i = 0, l = 0, space, offset = 0;
2869         u64 last = start + len;
2870         int pop;
2871
2872         if (unlikely(flags))
2873                 return -EINVAL;
2874
2875         /* First find the starting scatterlist element */
2876         i = msg->sg.start;
2877         do {
2878                 offset += l;
2879                 l = sk_msg_elem(msg, i)->length;
2880
2881                 if (start < offset + l)
2882                         break;
2883                 sk_msg_iter_var_next(i);
2884         } while (i != msg->sg.end);
2885
2886         /* Bounds checks: start and pop must be inside message */
2887         if (start >= offset + l || last >= msg->sg.size)
2888                 return -EINVAL;
2889
2890         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2891
2892         pop = len;
2893         /* --------------| offset
2894          * -| start      |-------- len -------|
2895          *
2896          *  |----- a ----|-------- pop -------|----- b ----|
2897          *  |______________________________________________| length
2898          *
2899          *
2900          * a:   region at front of scatter element to save
2901          * b:   region at back of scatter element to save when length > A + pop
2902          * pop: region to pop from element, same as input 'pop' here will be
2903          *      decremented below per iteration.
2904          *
2905          * Two top-level cases to handle when start != offset, first B is non
2906          * zero and second B is zero corresponding to when a pop includes more
2907          * than one element.
2908          *
2909          * Then if B is non-zero AND there is no space allocate space and
2910          * compact A, B regions into page. If there is space shift ring to
2911          * the rigth free'ing the next element in ring to place B, leaving
2912          * A untouched except to reduce length.
2913          */
2914         if (start != offset) {
2915                 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2916                 int a = start;
2917                 int b = sge->length - pop - a;
2918
2919                 sk_msg_iter_var_next(i);
2920
2921                 if (pop < sge->length - a) {
2922                         if (space) {
2923                                 sge->length = a;
2924                                 sk_msg_shift_right(msg, i);
2925                                 nsge = sk_msg_elem(msg, i);
2926                                 get_page(sg_page(sge));
2927                                 sg_set_page(nsge,
2928                                             sg_page(sge),
2929                                             b, sge->offset + pop + a);
2930                         } else {
2931                                 struct page *page, *orig;
2932                                 u8 *to, *from;
2933
2934                                 page = alloc_pages(__GFP_NOWARN |
2935                                                    __GFP_COMP   | GFP_ATOMIC,
2936                                                    get_order(a + b));
2937                                 if (unlikely(!page))
2938                                         return -ENOMEM;
2939
2940                                 sge->length = a;
2941                                 orig = sg_page(sge);
2942                                 from = sg_virt(sge);
2943                                 to = page_address(page);
2944                                 memcpy(to, from, a);
2945                                 memcpy(to + a, from + a + pop, b);
2946                                 sg_set_page(sge, page, a + b, 0);
2947                                 put_page(orig);
2948                         }
2949                         pop = 0;
2950                 } else if (pop >= sge->length - a) {
2951                         pop -= (sge->length - a);
2952                         sge->length = a;
2953                 }
2954         }
2955
2956         /* From above the current layout _must_ be as follows,
2957          *
2958          * -| offset
2959          * -| start
2960          *
2961          *  |---- pop ---|---------------- b ------------|
2962          *  |____________________________________________| length
2963          *
2964          * Offset and start of the current msg elem are equal because in the
2965          * previous case we handled offset != start and either consumed the
2966          * entire element and advanced to the next element OR pop == 0.
2967          *
2968          * Two cases to handle here are first pop is less than the length
2969          * leaving some remainder b above. Simply adjust the element's layout
2970          * in this case. Or pop >= length of the element so that b = 0. In this
2971          * case advance to next element decrementing pop.
2972          */
2973         while (pop) {
2974                 struct scatterlist *sge = sk_msg_elem(msg, i);
2975
2976                 if (pop < sge->length) {
2977                         sge->length -= pop;
2978                         sge->offset += pop;
2979                         pop = 0;
2980                 } else {
2981                         pop -= sge->length;
2982                         sk_msg_shift_left(msg, i);
2983                 }
2984                 sk_msg_iter_var_next(i);
2985         }
2986
2987         sk_mem_uncharge(msg->sk, len - pop);
2988         msg->sg.size -= (len - pop);
2989         sk_msg_compute_data_pointers(msg);
2990         return 0;
2991 }
2992
2993 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2994         .func           = bpf_msg_pop_data,
2995         .gpl_only       = false,
2996         .ret_type       = RET_INTEGER,
2997         .arg1_type      = ARG_PTR_TO_CTX,
2998         .arg2_type      = ARG_ANYTHING,
2999         .arg3_type      = ARG_ANYTHING,
3000         .arg4_type      = ARG_ANYTHING,
3001 };
3002
3003 #ifdef CONFIG_CGROUP_NET_CLASSID
3004 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3005 {
3006         return __task_get_classid(current);
3007 }
3008
3009 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3010         .func           = bpf_get_cgroup_classid_curr,
3011         .gpl_only       = false,
3012         .ret_type       = RET_INTEGER,
3013 };
3014
3015 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3016 {
3017         struct sock *sk = skb_to_full_sk(skb);
3018
3019         if (!sk || !sk_fullsock(sk))
3020                 return 0;
3021
3022         return sock_cgroup_classid(&sk->sk_cgrp_data);
3023 }
3024
3025 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3026         .func           = bpf_skb_cgroup_classid,
3027         .gpl_only       = false,
3028         .ret_type       = RET_INTEGER,
3029         .arg1_type      = ARG_PTR_TO_CTX,
3030 };
3031 #endif
3032
3033 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3034 {
3035         return task_get_classid(skb);
3036 }
3037
3038 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3039         .func           = bpf_get_cgroup_classid,
3040         .gpl_only       = false,
3041         .ret_type       = RET_INTEGER,
3042         .arg1_type      = ARG_PTR_TO_CTX,
3043 };
3044
3045 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3046 {
3047         return dst_tclassid(skb);
3048 }
3049
3050 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3051         .func           = bpf_get_route_realm,
3052         .gpl_only       = false,
3053         .ret_type       = RET_INTEGER,
3054         .arg1_type      = ARG_PTR_TO_CTX,
3055 };
3056
3057 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3058 {
3059         /* If skb_clear_hash() was called due to mangling, we can
3060          * trigger SW recalculation here. Later access to hash
3061          * can then use the inline skb->hash via context directly
3062          * instead of calling this helper again.
3063          */
3064         return skb_get_hash(skb);
3065 }
3066
3067 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3068         .func           = bpf_get_hash_recalc,
3069         .gpl_only       = false,
3070         .ret_type       = RET_INTEGER,
3071         .arg1_type      = ARG_PTR_TO_CTX,
3072 };
3073
3074 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3075 {
3076         /* After all direct packet write, this can be used once for
3077          * triggering a lazy recalc on next skb_get_hash() invocation.
3078          */
3079         skb_clear_hash(skb);
3080         return 0;
3081 }
3082
3083 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3084         .func           = bpf_set_hash_invalid,
3085         .gpl_only       = false,
3086         .ret_type       = RET_INTEGER,
3087         .arg1_type      = ARG_PTR_TO_CTX,
3088 };
3089
3090 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3091 {
3092         /* Set user specified hash as L4(+), so that it gets returned
3093          * on skb_get_hash() call unless BPF prog later on triggers a
3094          * skb_clear_hash().
3095          */
3096         __skb_set_sw_hash(skb, hash, true);
3097         return 0;
3098 }
3099
3100 static const struct bpf_func_proto bpf_set_hash_proto = {
3101         .func           = bpf_set_hash,
3102         .gpl_only       = false,
3103         .ret_type       = RET_INTEGER,
3104         .arg1_type      = ARG_PTR_TO_CTX,
3105         .arg2_type      = ARG_ANYTHING,
3106 };
3107
3108 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3109            u16, vlan_tci)
3110 {
3111         int ret;
3112
3113         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3114                      vlan_proto != htons(ETH_P_8021AD)))
3115                 vlan_proto = htons(ETH_P_8021Q);
3116
3117         bpf_push_mac_rcsum(skb);
3118         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3119         bpf_pull_mac_rcsum(skb);
3120
3121         bpf_compute_data_pointers(skb);
3122         return ret;
3123 }
3124
3125 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3126         .func           = bpf_skb_vlan_push,
3127         .gpl_only       = false,
3128         .ret_type       = RET_INTEGER,
3129         .arg1_type      = ARG_PTR_TO_CTX,
3130         .arg2_type      = ARG_ANYTHING,
3131         .arg3_type      = ARG_ANYTHING,
3132 };
3133
3134 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3135 {
3136         int ret;
3137
3138         bpf_push_mac_rcsum(skb);
3139         ret = skb_vlan_pop(skb);
3140         bpf_pull_mac_rcsum(skb);
3141
3142         bpf_compute_data_pointers(skb);
3143         return ret;
3144 }
3145
3146 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3147         .func           = bpf_skb_vlan_pop,
3148         .gpl_only       = false,
3149         .ret_type       = RET_INTEGER,
3150         .arg1_type      = ARG_PTR_TO_CTX,
3151 };
3152
3153 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3154 {
3155         /* Caller already did skb_cow() with len as headroom,
3156          * so no need to do it here.
3157          */
3158         skb_push(skb, len);
3159         memmove(skb->data, skb->data + len, off);
3160         memset(skb->data + off, 0, len);
3161
3162         /* No skb_postpush_rcsum(skb, skb->data + off, len)
3163          * needed here as it does not change the skb->csum
3164          * result for checksum complete when summing over
3165          * zeroed blocks.
3166          */
3167         return 0;
3168 }
3169
3170 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3171 {
3172         /* skb_ensure_writable() is not needed here, as we're
3173          * already working on an uncloned skb.
3174          */
3175         if (unlikely(!pskb_may_pull(skb, off + len)))
3176                 return -ENOMEM;
3177
3178         skb_postpull_rcsum(skb, skb->data + off, len);
3179         memmove(skb->data + len, skb->data, off);
3180         __skb_pull(skb, len);
3181
3182         return 0;
3183 }
3184
3185 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3186 {
3187         bool trans_same = skb->transport_header == skb->network_header;
3188         int ret;
3189
3190         /* There's no need for __skb_push()/__skb_pull() pair to
3191          * get to the start of the mac header as we're guaranteed
3192          * to always start from here under eBPF.
3193          */
3194         ret = bpf_skb_generic_push(skb, off, len);
3195         if (likely(!ret)) {
3196                 skb->mac_header -= len;
3197                 skb->network_header -= len;
3198                 if (trans_same)
3199                         skb->transport_header = skb->network_header;
3200         }
3201
3202         return ret;
3203 }
3204
3205 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3206 {
3207         bool trans_same = skb->transport_header == skb->network_header;
3208         int ret;
3209
3210         /* Same here, __skb_push()/__skb_pull() pair not needed. */
3211         ret = bpf_skb_generic_pop(skb, off, len);
3212         if (likely(!ret)) {
3213                 skb->mac_header += len;
3214                 skb->network_header += len;
3215                 if (trans_same)
3216                         skb->transport_header = skb->network_header;
3217         }
3218
3219         return ret;
3220 }
3221
3222 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3223 {
3224         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3225         u32 off = skb_mac_header_len(skb);
3226         int ret;
3227
3228         ret = skb_cow(skb, len_diff);
3229         if (unlikely(ret < 0))
3230                 return ret;
3231
3232         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3233         if (unlikely(ret < 0))
3234                 return ret;
3235
3236         if (skb_is_gso(skb)) {
3237                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3238
3239                 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3240                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3241                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
3242                         shinfo->gso_type |=  SKB_GSO_TCPV6;
3243                 }
3244         }
3245
3246         skb->protocol = htons(ETH_P_IPV6);
3247         skb_clear_hash(skb);
3248
3249         return 0;
3250 }
3251
3252 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3253 {
3254         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3255         u32 off = skb_mac_header_len(skb);
3256         int ret;
3257
3258         ret = skb_unclone(skb, GFP_ATOMIC);
3259         if (unlikely(ret < 0))
3260                 return ret;
3261
3262         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3263         if (unlikely(ret < 0))
3264                 return ret;
3265
3266         if (skb_is_gso(skb)) {
3267                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3268
3269                 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3270                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3271                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
3272                         shinfo->gso_type |=  SKB_GSO_TCPV4;
3273                 }
3274         }
3275
3276         skb->protocol = htons(ETH_P_IP);
3277         skb_clear_hash(skb);
3278
3279         return 0;
3280 }
3281
3282 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3283 {
3284         __be16 from_proto = skb->protocol;
3285
3286         if (from_proto == htons(ETH_P_IP) &&
3287               to_proto == htons(ETH_P_IPV6))
3288                 return bpf_skb_proto_4_to_6(skb);
3289
3290         if (from_proto == htons(ETH_P_IPV6) &&
3291               to_proto == htons(ETH_P_IP))
3292                 return bpf_skb_proto_6_to_4(skb);
3293
3294         return -ENOTSUPP;
3295 }
3296
3297 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3298            u64, flags)
3299 {
3300         int ret;
3301
3302         if (unlikely(flags))
3303                 return -EINVAL;
3304
3305         /* General idea is that this helper does the basic groundwork
3306          * needed for changing the protocol, and eBPF program fills the
3307          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3308          * and other helpers, rather than passing a raw buffer here.
3309          *
3310          * The rationale is to keep this minimal and without a need to
3311          * deal with raw packet data. F.e. even if we would pass buffers
3312          * here, the program still needs to call the bpf_lX_csum_replace()
3313          * helpers anyway. Plus, this way we keep also separation of
3314          * concerns, since f.e. bpf_skb_store_bytes() should only take
3315          * care of stores.
3316          *
3317          * Currently, additional options and extension header space are
3318          * not supported, but flags register is reserved so we can adapt
3319          * that. For offloads, we mark packet as dodgy, so that headers
3320          * need to be verified first.
3321          */
3322         ret = bpf_skb_proto_xlat(skb, proto);
3323         bpf_compute_data_pointers(skb);
3324         return ret;
3325 }
3326
3327 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3328         .func           = bpf_skb_change_proto,
3329         .gpl_only       = false,
3330         .ret_type       = RET_INTEGER,
3331         .arg1_type      = ARG_PTR_TO_CTX,
3332         .arg2_type      = ARG_ANYTHING,
3333         .arg3_type      = ARG_ANYTHING,
3334 };
3335
3336 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3337 {
3338         /* We only allow a restricted subset to be changed for now. */
3339         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3340                      !skb_pkt_type_ok(pkt_type)))
3341                 return -EINVAL;
3342
3343         skb->pkt_type = pkt_type;
3344         return 0;
3345 }
3346
3347 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3348         .func           = bpf_skb_change_type,
3349         .gpl_only       = false,
3350         .ret_type       = RET_INTEGER,
3351         .arg1_type      = ARG_PTR_TO_CTX,
3352         .arg2_type      = ARG_ANYTHING,
3353 };
3354
3355 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3356 {
3357         switch (skb->protocol) {
3358         case htons(ETH_P_IP):
3359                 return sizeof(struct iphdr);
3360         case htons(ETH_P_IPV6):
3361                 return sizeof(struct ipv6hdr);
3362         default:
3363                 return ~0U;
3364         }
3365 }
3366
3367 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3368                                          BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3369
3370 #define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3371                                          BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3372                                          BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3373                                          BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3374                                          BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3375                                          BPF_F_ADJ_ROOM_ENCAP_L2( \
3376                                           BPF_ADJ_ROOM_ENCAP_L2_MASK))
3377
3378 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3379                             u64 flags)
3380 {
3381         u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3382         bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3383         u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3384         unsigned int gso_type = SKB_GSO_DODGY;
3385         int ret;
3386
3387         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3388                 /* udp gso_size delineates datagrams, only allow if fixed */
3389                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3390                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3391                         return -ENOTSUPP;
3392         }
3393
3394         ret = skb_cow_head(skb, len_diff);
3395         if (unlikely(ret < 0))
3396                 return ret;
3397
3398         if (encap) {
3399                 if (skb->protocol != htons(ETH_P_IP) &&
3400                     skb->protocol != htons(ETH_P_IPV6))
3401                         return -ENOTSUPP;
3402
3403                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3404                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3405                         return -EINVAL;
3406
3407                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3408                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3409                         return -EINVAL;
3410
3411                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3412                     inner_mac_len < ETH_HLEN)
3413                         return -EINVAL;
3414
3415                 if (skb->encapsulation)
3416                         return -EALREADY;
3417
3418                 mac_len = skb->network_header - skb->mac_header;
3419                 inner_net = skb->network_header;
3420                 if (inner_mac_len > len_diff)
3421                         return -EINVAL;
3422                 inner_trans = skb->transport_header;
3423         }
3424
3425         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3426         if (unlikely(ret < 0))
3427                 return ret;
3428
3429         if (encap) {
3430                 skb->inner_mac_header = inner_net - inner_mac_len;
3431                 skb->inner_network_header = inner_net;
3432                 skb->inner_transport_header = inner_trans;
3433
3434                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3435                         skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3436                 else
3437                         skb_set_inner_protocol(skb, skb->protocol);
3438
3439                 skb->encapsulation = 1;
3440                 skb_set_network_header(skb, mac_len);
3441
3442                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3443                         gso_type |= SKB_GSO_UDP_TUNNEL;
3444                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3445                         gso_type |= SKB_GSO_GRE;
3446                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3447                         gso_type |= SKB_GSO_IPXIP6;
3448                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3449                         gso_type |= SKB_GSO_IPXIP4;
3450
3451                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3452                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3453                         int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3454                                         sizeof(struct ipv6hdr) :
3455                                         sizeof(struct iphdr);
3456
3457                         skb_set_transport_header(skb, mac_len + nh_len);
3458                 }
3459
3460                 /* Match skb->protocol to new outer l3 protocol */
3461                 if (skb->protocol == htons(ETH_P_IP) &&
3462                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3463                         skb->protocol = htons(ETH_P_IPV6);
3464                 else if (skb->protocol == htons(ETH_P_IPV6) &&
3465                          flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3466                         skb->protocol = htons(ETH_P_IP);
3467         }
3468
3469         if (skb_is_gso(skb)) {
3470                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3471
3472                 /* Due to header grow, MSS needs to be downgraded. */
3473                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3474                         skb_decrease_gso_size(shinfo, len_diff);
3475
3476                 /* Header must be checked, and gso_segs recomputed. */
3477                 shinfo->gso_type |= gso_type;
3478                 shinfo->gso_segs = 0;
3479         }
3480
3481         return 0;
3482 }
3483
3484 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3485                               u64 flags)
3486 {
3487         int ret;
3488
3489         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3490                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3491                 return -EINVAL;
3492
3493         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3494                 /* udp gso_size delineates datagrams, only allow if fixed */
3495                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3496                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3497                         return -ENOTSUPP;
3498         }
3499
3500         ret = skb_unclone(skb, GFP_ATOMIC);
3501         if (unlikely(ret < 0))
3502                 return ret;
3503
3504         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3505         if (unlikely(ret < 0))
3506                 return ret;
3507
3508         if (skb_is_gso(skb)) {
3509                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3510
3511                 /* Due to header shrink, MSS can be upgraded. */
3512                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3513                         skb_increase_gso_size(shinfo, len_diff);
3514
3515                 /* Header must be checked, and gso_segs recomputed. */
3516                 shinfo->gso_type |= SKB_GSO_DODGY;
3517                 shinfo->gso_segs = 0;
3518         }
3519
3520         return 0;
3521 }
3522
3523 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3524
3525 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3526            u32, mode, u64, flags)
3527 {
3528         u32 len_diff_abs = abs(len_diff);
3529         bool shrink = len_diff < 0;
3530         int ret = 0;
3531
3532         if (unlikely(flags || mode))
3533                 return -EINVAL;
3534         if (unlikely(len_diff_abs > 0xfffU))
3535                 return -EFAULT;
3536
3537         if (!shrink) {
3538                 ret = skb_cow(skb, len_diff);
3539                 if (unlikely(ret < 0))
3540                         return ret;
3541                 __skb_push(skb, len_diff_abs);
3542                 memset(skb->data, 0, len_diff_abs);
3543         } else {
3544                 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3545                         return -ENOMEM;
3546                 __skb_pull(skb, len_diff_abs);
3547         }
3548         if (tls_sw_has_ctx_rx(skb->sk)) {
3549                 struct strp_msg *rxm = strp_msg(skb);
3550
3551                 rxm->full_len += len_diff;
3552         }
3553         return ret;
3554 }
3555
3556 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3557         .func           = sk_skb_adjust_room,
3558         .gpl_only       = false,
3559         .ret_type       = RET_INTEGER,
3560         .arg1_type      = ARG_PTR_TO_CTX,
3561         .arg2_type      = ARG_ANYTHING,
3562         .arg3_type      = ARG_ANYTHING,
3563         .arg4_type      = ARG_ANYTHING,
3564 };
3565
3566 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3567            u32, mode, u64, flags)
3568 {
3569         u32 len_cur, len_diff_abs = abs(len_diff);
3570         u32 len_min = bpf_skb_net_base_len(skb);
3571         u32 len_max = BPF_SKB_MAX_LEN;
3572         __be16 proto = skb->protocol;
3573         bool shrink = len_diff < 0;
3574         u32 off;
3575         int ret;
3576
3577         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3578                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3579                 return -EINVAL;
3580         if (unlikely(len_diff_abs > 0xfffU))
3581                 return -EFAULT;
3582         if (unlikely(proto != htons(ETH_P_IP) &&
3583                      proto != htons(ETH_P_IPV6)))
3584                 return -ENOTSUPP;
3585
3586         off = skb_mac_header_len(skb);
3587         switch (mode) {
3588         case BPF_ADJ_ROOM_NET:
3589                 off += bpf_skb_net_base_len(skb);
3590                 break;
3591         case BPF_ADJ_ROOM_MAC:
3592                 break;
3593         default:
3594                 return -ENOTSUPP;
3595         }
3596
3597         len_cur = skb->len - skb_network_offset(skb);
3598         if ((shrink && (len_diff_abs >= len_cur ||
3599                         len_cur - len_diff_abs < len_min)) ||
3600             (!shrink && (skb->len + len_diff_abs > len_max &&
3601                          !skb_is_gso(skb))))
3602                 return -ENOTSUPP;
3603
3604         ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3605                        bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3606         if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3607                 __skb_reset_checksum_unnecessary(skb);
3608
3609         bpf_compute_data_pointers(skb);
3610         return ret;
3611 }
3612
3613 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3614         .func           = bpf_skb_adjust_room,
3615         .gpl_only       = false,
3616         .ret_type       = RET_INTEGER,
3617         .arg1_type      = ARG_PTR_TO_CTX,
3618         .arg2_type      = ARG_ANYTHING,
3619         .arg3_type      = ARG_ANYTHING,
3620         .arg4_type      = ARG_ANYTHING,
3621 };
3622
3623 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3624 {
3625         u32 min_len = skb_network_offset(skb);
3626
3627         if (skb_transport_header_was_set(skb))
3628                 min_len = skb_transport_offset(skb);
3629         if (skb->ip_summed == CHECKSUM_PARTIAL)
3630                 min_len = skb_checksum_start_offset(skb) +
3631                           skb->csum_offset + sizeof(__sum16);
3632         return min_len;
3633 }
3634
3635 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3636 {
3637         unsigned int old_len = skb->len;
3638         int ret;
3639
3640         ret = __skb_grow_rcsum(skb, new_len);
3641         if (!ret)
3642                 memset(skb->data + old_len, 0, new_len - old_len);
3643         return ret;
3644 }
3645
3646 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3647 {
3648         return __skb_trim_rcsum(skb, new_len);
3649 }
3650
3651 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3652                                         u64 flags)
3653 {
3654         u32 max_len = BPF_SKB_MAX_LEN;
3655         u32 min_len = __bpf_skb_min_len(skb);
3656         int ret;
3657
3658         if (unlikely(flags || new_len > max_len || new_len < min_len))
3659                 return -EINVAL;
3660         if (skb->encapsulation)
3661                 return -ENOTSUPP;
3662
3663         /* The basic idea of this helper is that it's performing the
3664          * needed work to either grow or trim an skb, and eBPF program
3665          * rewrites the rest via helpers like bpf_skb_store_bytes(),
3666          * bpf_lX_csum_replace() and others rather than passing a raw
3667          * buffer here. This one is a slow path helper and intended
3668          * for replies with control messages.
3669          *
3670          * Like in bpf_skb_change_proto(), we want to keep this rather
3671          * minimal and without protocol specifics so that we are able
3672          * to separate concerns as in bpf_skb_store_bytes() should only
3673          * be the one responsible for writing buffers.
3674          *
3675          * It's really expected to be a slow path operation here for
3676          * control message replies, so we're implicitly linearizing,
3677          * uncloning and drop offloads from the skb by this.
3678          */
3679         ret = __bpf_try_make_writable(skb, skb->len);
3680         if (!ret) {
3681                 if (new_len > skb->len)
3682                         ret = bpf_skb_grow_rcsum(skb, new_len);
3683                 else if (new_len < skb->len)
3684                         ret = bpf_skb_trim_rcsum(skb, new_len);
3685                 if (!ret && skb_is_gso(skb))
3686                         skb_gso_reset(skb);
3687         }
3688         return ret;
3689 }
3690
3691 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3692            u64, flags)
3693 {
3694         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3695
3696         bpf_compute_data_pointers(skb);
3697         return ret;
3698 }
3699
3700 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3701         .func           = bpf_skb_change_tail,
3702         .gpl_only       = false,
3703         .ret_type       = RET_INTEGER,
3704         .arg1_type      = ARG_PTR_TO_CTX,
3705         .arg2_type      = ARG_ANYTHING,
3706         .arg3_type      = ARG_ANYTHING,
3707 };
3708
3709 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3710            u64, flags)
3711 {
3712         return __bpf_skb_change_tail(skb, new_len, flags);
3713 }
3714
3715 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3716         .func           = sk_skb_change_tail,
3717         .gpl_only       = false,
3718         .ret_type       = RET_INTEGER,
3719         .arg1_type      = ARG_PTR_TO_CTX,
3720         .arg2_type      = ARG_ANYTHING,
3721         .arg3_type      = ARG_ANYTHING,
3722 };
3723
3724 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3725                                         u64 flags)
3726 {
3727         u32 max_len = BPF_SKB_MAX_LEN;
3728         u32 new_len = skb->len + head_room;
3729         int ret;
3730
3731         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3732                      new_len < skb->len))
3733                 return -EINVAL;
3734
3735         ret = skb_cow(skb, head_room);
3736         if (likely(!ret)) {
3737                 /* Idea for this helper is that we currently only
3738                  * allow to expand on mac header. This means that
3739                  * skb->protocol network header, etc, stay as is.
3740                  * Compared to bpf_skb_change_tail(), we're more
3741                  * flexible due to not needing to linearize or
3742                  * reset GSO. Intention for this helper is to be
3743                  * used by an L3 skb that needs to push mac header
3744                  * for redirection into L2 device.
3745                  */
3746                 __skb_push(skb, head_room);
3747                 memset(skb->data, 0, head_room);
3748                 skb_reset_mac_header(skb);
3749                 skb_reset_mac_len(skb);
3750         }
3751
3752         return ret;
3753 }
3754
3755 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3756            u64, flags)
3757 {
3758         int ret = __bpf_skb_change_head(skb, head_room, flags);
3759
3760         bpf_compute_data_pointers(skb);
3761         return ret;
3762 }
3763
3764 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3765         .func           = bpf_skb_change_head,
3766         .gpl_only       = false,
3767         .ret_type       = RET_INTEGER,
3768         .arg1_type      = ARG_PTR_TO_CTX,
3769         .arg2_type      = ARG_ANYTHING,
3770         .arg3_type      = ARG_ANYTHING,
3771 };
3772
3773 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3774            u64, flags)
3775 {
3776         return __bpf_skb_change_head(skb, head_room, flags);
3777 }
3778
3779 static const struct bpf_func_proto sk_skb_change_head_proto = {
3780         .func           = sk_skb_change_head,
3781         .gpl_only       = false,
3782         .ret_type       = RET_INTEGER,
3783         .arg1_type      = ARG_PTR_TO_CTX,
3784         .arg2_type      = ARG_ANYTHING,
3785         .arg3_type      = ARG_ANYTHING,
3786 };
3787 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3788 {
3789         return xdp_data_meta_unsupported(xdp) ? 0 :
3790                xdp->data - xdp->data_meta;
3791 }
3792
3793 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3794 {
3795         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3796         unsigned long metalen = xdp_get_metalen(xdp);
3797         void *data_start = xdp_frame_end + metalen;
3798         void *data = xdp->data + offset;
3799
3800         if (unlikely(data < data_start ||
3801                      data > xdp->data_end - ETH_HLEN))
3802                 return -EINVAL;
3803
3804         if (metalen)
3805                 memmove(xdp->data_meta + offset,
3806                         xdp->data_meta, metalen);
3807         xdp->data_meta += offset;
3808         xdp->data = data;
3809
3810         return 0;
3811 }
3812
3813 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3814         .func           = bpf_xdp_adjust_head,
3815         .gpl_only       = false,
3816         .ret_type       = RET_INTEGER,
3817         .arg1_type      = ARG_PTR_TO_CTX,
3818         .arg2_type      = ARG_ANYTHING,
3819 };
3820
3821 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3822 {
3823         void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
3824         void *data_end = xdp->data_end + offset;
3825
3826         /* Notice that xdp_data_hard_end have reserved some tailroom */
3827         if (unlikely(data_end > data_hard_end))
3828                 return -EINVAL;
3829
3830         /* ALL drivers MUST init xdp->frame_sz, chicken check below */
3831         if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
3832                 WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
3833                 return -EINVAL;
3834         }
3835
3836         if (unlikely(data_end < xdp->data + ETH_HLEN))
3837                 return -EINVAL;
3838
3839         /* Clear memory area on grow, can contain uninit kernel memory */
3840         if (offset > 0)
3841                 memset(xdp->data_end, 0, offset);
3842
3843         xdp->data_end = data_end;
3844
3845         return 0;
3846 }
3847
3848 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3849         .func           = bpf_xdp_adjust_tail,
3850         .gpl_only       = false,
3851         .ret_type       = RET_INTEGER,
3852         .arg1_type      = ARG_PTR_TO_CTX,
3853         .arg2_type      = ARG_ANYTHING,
3854 };
3855
3856 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3857 {
3858         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3859         void *meta = xdp->data_meta + offset;
3860         unsigned long metalen = xdp->data - meta;
3861
3862         if (xdp_data_meta_unsupported(xdp))
3863                 return -ENOTSUPP;
3864         if (unlikely(meta < xdp_frame_end ||
3865                      meta > xdp->data))
3866                 return -EINVAL;
3867         if (unlikely(xdp_metalen_invalid(metalen)))
3868                 return -EACCES;
3869
3870         xdp->data_meta = meta;
3871
3872         return 0;
3873 }
3874
3875 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3876         .func           = bpf_xdp_adjust_meta,
3877         .gpl_only       = false,
3878         .ret_type       = RET_INTEGER,
3879         .arg1_type      = ARG_PTR_TO_CTX,
3880         .arg2_type      = ARG_ANYTHING,
3881 };
3882
3883 /* XDP_REDIRECT works by a three-step process, implemented in the functions
3884  * below:
3885  *
3886  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
3887  *    of the redirect and store it (along with some other metadata) in a per-CPU
3888  *    struct bpf_redirect_info.
3889  *
3890  * 2. When the program returns the XDP_REDIRECT return code, the driver will
3891  *    call xdp_do_redirect() which will use the information in struct
3892  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
3893  *    bulk queue structure.
3894  *
3895  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
3896  *    which will flush all the different bulk queues, thus completing the
3897  *    redirect.
3898  *
3899  * Pointers to the map entries will be kept around for this whole sequence of
3900  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
3901  * the core code; instead, the RCU protection relies on everything happening
3902  * inside a single NAPI poll sequence, which means it's between a pair of calls
3903  * to local_bh_disable()/local_bh_enable().
3904  *
3905  * The map entries are marked as __rcu and the map code makes sure to
3906  * dereference those pointers with rcu_dereference_check() in a way that works
3907  * for both sections that to hold an rcu_read_lock() and sections that are
3908  * called from NAPI without a separate rcu_read_lock(). The code below does not
3909  * use RCU annotations, but relies on those in the map code.
3910  */
3911 void xdp_do_flush(void)
3912 {
3913         __dev_flush();
3914         __cpu_map_flush();
3915         __xsk_map_flush();
3916 }
3917 EXPORT_SYMBOL_GPL(xdp_do_flush);
3918
3919 void bpf_clear_redirect_map(struct bpf_map *map)
3920 {
3921         struct bpf_redirect_info *ri;
3922         int cpu;
3923
3924         for_each_possible_cpu(cpu) {
3925                 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3926                 /* Avoid polluting remote cacheline due to writes if
3927                  * not needed. Once we pass this test, we need the
3928                  * cmpxchg() to make sure it hasn't been changed in
3929                  * the meantime by remote CPU.
3930                  */
3931                 if (unlikely(READ_ONCE(ri->map) == map))
3932                         cmpxchg(&ri->map, map, NULL);
3933         }
3934 }
3935
3936 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
3937 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
3938
3939 u32 xdp_master_redirect(struct xdp_buff *xdp)
3940 {
3941         struct net_device *master, *slave;
3942         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3943
3944         master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
3945         slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
3946         if (slave && slave != xdp->rxq->dev) {
3947                 /* The target device is different from the receiving device, so
3948                  * redirect it to the new device.
3949                  * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
3950                  * drivers to unmap the packet from their rx ring.
3951                  */
3952                 ri->tgt_index = slave->ifindex;
3953                 ri->map_id = INT_MAX;
3954                 ri->map_type = BPF_MAP_TYPE_UNSPEC;
3955                 return XDP_REDIRECT;
3956         }
3957         return XDP_TX;
3958 }
3959 EXPORT_SYMBOL_GPL(xdp_master_redirect);
3960
3961 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3962                     struct bpf_prog *xdp_prog)
3963 {
3964         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3965         enum bpf_map_type map_type = ri->map_type;
3966         void *fwd = ri->tgt_value;
3967         u32 map_id = ri->map_id;
3968         struct bpf_map *map;
3969         int err;
3970
3971         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
3972         ri->map_type = BPF_MAP_TYPE_UNSPEC;
3973
3974         switch (map_type) {
3975         case BPF_MAP_TYPE_DEVMAP:
3976                 fallthrough;
3977         case BPF_MAP_TYPE_DEVMAP_HASH:
3978                 map = READ_ONCE(ri->map);
3979                 if (unlikely(map)) {
3980                         WRITE_ONCE(ri->map, NULL);
3981                         err = dev_map_enqueue_multi(xdp, dev, map,
3982                                                     ri->flags & BPF_F_EXCLUDE_INGRESS);
3983                 } else {
3984                         err = dev_map_enqueue(fwd, xdp, dev);
3985                 }
3986                 break;
3987         case BPF_MAP_TYPE_CPUMAP:
3988                 err = cpu_map_enqueue(fwd, xdp, dev);
3989                 break;
3990         case BPF_MAP_TYPE_XSKMAP:
3991                 err = __xsk_map_redirect(fwd, xdp);
3992                 break;
3993         case BPF_MAP_TYPE_UNSPEC:
3994                 if (map_id == INT_MAX) {
3995                         fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
3996                         if (unlikely(!fwd)) {
3997                                 err = -EINVAL;
3998                                 break;
3999                         }
4000                         err = dev_xdp_enqueue(fwd, xdp, dev);
4001                         break;
4002                 }
4003                 fallthrough;
4004         default:
4005                 err = -EBADRQC;
4006         }
4007
4008         if (unlikely(err))
4009                 goto err;
4010
4011         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4012         return 0;
4013 err:
4014         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4015         return err;
4016 }
4017 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4018
4019 static int xdp_do_generic_redirect_map(struct net_device *dev,
4020                                        struct sk_buff *skb,
4021                                        struct xdp_buff *xdp,
4022                                        struct bpf_prog *xdp_prog,
4023                                        void *fwd,
4024                                        enum bpf_map_type map_type, u32 map_id)
4025 {
4026         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4027         struct bpf_map *map;
4028         int err;
4029
4030         switch (map_type) {
4031         case BPF_MAP_TYPE_DEVMAP:
4032                 fallthrough;
4033         case BPF_MAP_TYPE_DEVMAP_HASH:
4034                 map = READ_ONCE(ri->map);
4035                 if (unlikely(map)) {
4036                         WRITE_ONCE(ri->map, NULL);
4037                         err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4038                                                      ri->flags & BPF_F_EXCLUDE_INGRESS);
4039                 } else {
4040                         err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4041                 }
4042                 if (unlikely(err))
4043                         goto err;
4044                 break;
4045         case BPF_MAP_TYPE_XSKMAP:
4046                 err = xsk_generic_rcv(fwd, xdp);
4047                 if (err)
4048                         goto err;
4049                 consume_skb(skb);
4050                 break;
4051         case BPF_MAP_TYPE_CPUMAP:
4052                 err = cpu_map_generic_redirect(fwd, skb);
4053                 if (unlikely(err))
4054                         goto err;
4055                 break;
4056         default:
4057                 err = -EBADRQC;
4058                 goto err;
4059         }
4060
4061         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4062         return 0;
4063 err:
4064         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4065         return err;
4066 }
4067
4068 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4069                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4070 {
4071         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4072         enum bpf_map_type map_type = ri->map_type;
4073         void *fwd = ri->tgt_value;
4074         u32 map_id = ri->map_id;
4075         int err;
4076
4077         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4078         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4079
4080         if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4081                 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4082                 if (unlikely(!fwd)) {
4083                         err = -EINVAL;
4084                         goto err;
4085                 }
4086
4087                 err = xdp_ok_fwd_dev(fwd, skb->len);
4088                 if (unlikely(err))
4089                         goto err;
4090
4091                 skb->dev = fwd;
4092                 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4093                 generic_xdp_tx(skb, xdp_prog);
4094                 return 0;
4095         }
4096
4097         return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4098 err:
4099         _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4100         return err;
4101 }
4102
4103 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4104 {
4105         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4106
4107         if (unlikely(flags))
4108                 return XDP_ABORTED;
4109
4110         /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4111          * by map_idr) is used for ifindex based XDP redirect.
4112          */
4113         ri->tgt_index = ifindex;
4114         ri->map_id = INT_MAX;
4115         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4116
4117         return XDP_REDIRECT;
4118 }
4119
4120 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4121         .func           = bpf_xdp_redirect,
4122         .gpl_only       = false,
4123         .ret_type       = RET_INTEGER,
4124         .arg1_type      = ARG_ANYTHING,
4125         .arg2_type      = ARG_ANYTHING,
4126 };
4127
4128 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4129            u64, flags)
4130 {
4131         return map->ops->map_redirect(map, ifindex, flags);
4132 }
4133
4134 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4135         .func           = bpf_xdp_redirect_map,
4136         .gpl_only       = false,
4137         .ret_type       = RET_INTEGER,
4138         .arg1_type      = ARG_CONST_MAP_PTR,
4139         .arg2_type      = ARG_ANYTHING,
4140         .arg3_type      = ARG_ANYTHING,
4141 };
4142
4143 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4144                                   unsigned long off, unsigned long len)
4145 {
4146         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4147
4148         if (unlikely(!ptr))
4149                 return len;
4150         if (ptr != dst_buff)
4151                 memcpy(dst_buff, ptr, len);
4152
4153         return 0;
4154 }
4155
4156 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4157            u64, flags, void *, meta, u64, meta_size)
4158 {
4159         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4160
4161         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4162                 return -EINVAL;
4163         if (unlikely(!skb || skb_size > skb->len))
4164                 return -EFAULT;
4165
4166         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4167                                 bpf_skb_copy);
4168 }
4169
4170 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4171         .func           = bpf_skb_event_output,
4172         .gpl_only       = true,
4173         .ret_type       = RET_INTEGER,
4174         .arg1_type      = ARG_PTR_TO_CTX,
4175         .arg2_type      = ARG_CONST_MAP_PTR,
4176         .arg3_type      = ARG_ANYTHING,
4177         .arg4_type      = ARG_PTR_TO_MEM,
4178         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4179 };
4180
4181 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4182
4183 const struct bpf_func_proto bpf_skb_output_proto = {
4184         .func           = bpf_skb_event_output,
4185         .gpl_only       = true,
4186         .ret_type       = RET_INTEGER,
4187         .arg1_type      = ARG_PTR_TO_BTF_ID,
4188         .arg1_btf_id    = &bpf_skb_output_btf_ids[0],
4189         .arg2_type      = ARG_CONST_MAP_PTR,
4190         .arg3_type      = ARG_ANYTHING,
4191         .arg4_type      = ARG_PTR_TO_MEM,
4192         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4193 };
4194
4195 static unsigned short bpf_tunnel_key_af(u64 flags)
4196 {
4197         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4198 }
4199
4200 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4201            u32, size, u64, flags)
4202 {
4203         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4204         u8 compat[sizeof(struct bpf_tunnel_key)];
4205         void *to_orig = to;
4206         int err;
4207
4208         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4209                 err = -EINVAL;
4210                 goto err_clear;
4211         }
4212         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4213                 err = -EPROTO;
4214                 goto err_clear;
4215         }
4216         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4217                 err = -EINVAL;
4218                 switch (size) {
4219                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4220                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4221                         goto set_compat;
4222                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4223                         /* Fixup deprecated structure layouts here, so we have
4224                          * a common path later on.
4225                          */
4226                         if (ip_tunnel_info_af(info) != AF_INET)
4227                                 goto err_clear;
4228 set_compat:
4229                         to = (struct bpf_tunnel_key *)compat;
4230                         break;
4231                 default:
4232                         goto err_clear;
4233                 }
4234         }
4235
4236         to->tunnel_id = be64_to_cpu(info->key.tun_id);
4237         to->tunnel_tos = info->key.tos;
4238         to->tunnel_ttl = info->key.ttl;
4239         to->tunnel_ext = 0;
4240
4241         if (flags & BPF_F_TUNINFO_IPV6) {
4242                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4243                        sizeof(to->remote_ipv6));
4244                 to->tunnel_label = be32_to_cpu(info->key.label);
4245         } else {
4246                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4247                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4248                 to->tunnel_label = 0;
4249         }
4250
4251         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4252                 memcpy(to_orig, to, size);
4253
4254         return 0;
4255 err_clear:
4256         memset(to_orig, 0, size);
4257         return err;
4258 }
4259
4260 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4261         .func           = bpf_skb_get_tunnel_key,
4262         .gpl_only       = false,
4263         .ret_type       = RET_INTEGER,
4264         .arg1_type      = ARG_PTR_TO_CTX,
4265         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4266         .arg3_type      = ARG_CONST_SIZE,
4267         .arg4_type      = ARG_ANYTHING,
4268 };
4269
4270 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4271 {
4272         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4273         int err;
4274
4275         if (unlikely(!info ||
4276                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4277                 err = -ENOENT;
4278                 goto err_clear;
4279         }
4280         if (unlikely(size < info->options_len)) {
4281                 err = -ENOMEM;
4282                 goto err_clear;
4283         }
4284
4285         ip_tunnel_info_opts_get(to, info);
4286         if (size > info->options_len)
4287                 memset(to + info->options_len, 0, size - info->options_len);
4288
4289         return info->options_len;
4290 err_clear:
4291         memset(to, 0, size);
4292         return err;
4293 }
4294
4295 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4296         .func           = bpf_skb_get_tunnel_opt,
4297         .gpl_only       = false,
4298         .ret_type       = RET_INTEGER,
4299         .arg1_type      = ARG_PTR_TO_CTX,
4300         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4301         .arg3_type      = ARG_CONST_SIZE,
4302 };
4303
4304 static struct metadata_dst __percpu *md_dst;
4305
4306 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4307            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4308 {
4309         struct metadata_dst *md = this_cpu_ptr(md_dst);
4310         u8 compat[sizeof(struct bpf_tunnel_key)];
4311         struct ip_tunnel_info *info;
4312
4313         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4314                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4315                 return -EINVAL;
4316         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4317                 switch (size) {
4318                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4319                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4320                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4321                         /* Fixup deprecated structure layouts here, so we have
4322                          * a common path later on.
4323                          */
4324                         memcpy(compat, from, size);
4325                         memset(compat + size, 0, sizeof(compat) - size);
4326                         from = (const struct bpf_tunnel_key *) compat;
4327                         break;
4328                 default:
4329                         return -EINVAL;
4330                 }
4331         }
4332         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4333                      from->tunnel_ext))
4334                 return -EINVAL;
4335
4336         skb_dst_drop(skb);
4337         dst_hold((struct dst_entry *) md);
4338         skb_dst_set(skb, (struct dst_entry *) md);
4339
4340         info = &md->u.tun_info;
4341         memset(info, 0, sizeof(*info));
4342         info->mode = IP_TUNNEL_INFO_TX;
4343
4344         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4345         if (flags & BPF_F_DONT_FRAGMENT)
4346                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4347         if (flags & BPF_F_ZERO_CSUM_TX)
4348                 info->key.tun_flags &= ~TUNNEL_CSUM;
4349         if (flags & BPF_F_SEQ_NUMBER)
4350                 info->key.tun_flags |= TUNNEL_SEQ;
4351
4352         info->key.tun_id = cpu_to_be64(from->tunnel_id);
4353         info->key.tos = from->tunnel_tos;
4354         info->key.ttl = from->tunnel_ttl;
4355
4356         if (flags & BPF_F_TUNINFO_IPV6) {
4357                 info->mode |= IP_TUNNEL_INFO_IPV6;
4358                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4359                        sizeof(from->remote_ipv6));
4360                 info->key.label = cpu_to_be32(from->tunnel_label) &
4361                                   IPV6_FLOWLABEL_MASK;
4362         } else {
4363                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4364         }
4365
4366         return 0;
4367 }
4368
4369 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4370         .func           = bpf_skb_set_tunnel_key,
4371         .gpl_only       = false,
4372         .ret_type       = RET_INTEGER,
4373         .arg1_type      = ARG_PTR_TO_CTX,
4374         .arg2_type      = ARG_PTR_TO_MEM,
4375         .arg3_type      = ARG_CONST_SIZE,
4376         .arg4_type      = ARG_ANYTHING,
4377 };
4378
4379 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4380            const u8 *, from, u32, size)
4381 {
4382         struct ip_tunnel_info *info = skb_tunnel_info(skb);
4383         const struct metadata_dst *md = this_cpu_ptr(md_dst);
4384
4385         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4386                 return -EINVAL;
4387         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4388                 return -ENOMEM;
4389
4390         ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4391
4392         return 0;
4393 }
4394
4395 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4396         .func           = bpf_skb_set_tunnel_opt,
4397         .gpl_only       = false,
4398         .ret_type       = RET_INTEGER,
4399         .arg1_type      = ARG_PTR_TO_CTX,
4400         .arg2_type      = ARG_PTR_TO_MEM,
4401         .arg3_type      = ARG_CONST_SIZE,
4402 };
4403
4404 static const struct bpf_func_proto *
4405 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4406 {
4407         if (!md_dst) {
4408                 struct metadata_dst __percpu *tmp;
4409
4410                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4411                                                 METADATA_IP_TUNNEL,
4412                                                 GFP_KERNEL);
4413                 if (!tmp)
4414                         return NULL;
4415                 if (cmpxchg(&md_dst, NULL, tmp))
4416                         metadata_dst_free_percpu(tmp);
4417         }
4418
4419         switch (which) {
4420         case BPF_FUNC_skb_set_tunnel_key:
4421                 return &bpf_skb_set_tunnel_key_proto;
4422         case BPF_FUNC_skb_set_tunnel_opt:
4423                 return &bpf_skb_set_tunnel_opt_proto;
4424         default:
4425                 return NULL;
4426         }
4427 }
4428
4429 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4430            u32, idx)
4431 {
4432         struct bpf_array *array = container_of(map, struct bpf_array, map);
4433         struct cgroup *cgrp;
4434         struct sock *sk;
4435
4436         sk = skb_to_full_sk(skb);
4437         if (!sk || !sk_fullsock(sk))
4438                 return -ENOENT;
4439         if (unlikely(idx >= array->map.max_entries))
4440                 return -E2BIG;
4441
4442         cgrp = READ_ONCE(array->ptrs[idx]);
4443         if (unlikely(!cgrp))
4444                 return -EAGAIN;
4445
4446         return sk_under_cgroup_hierarchy(sk, cgrp);
4447 }
4448
4449 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4450         .func           = bpf_skb_under_cgroup,
4451         .gpl_only       = false,
4452         .ret_type       = RET_INTEGER,
4453         .arg1_type      = ARG_PTR_TO_CTX,
4454         .arg2_type      = ARG_CONST_MAP_PTR,
4455         .arg3_type      = ARG_ANYTHING,
4456 };
4457
4458 #ifdef CONFIG_SOCK_CGROUP_DATA
4459 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4460 {
4461         struct cgroup *cgrp;
4462
4463         sk = sk_to_full_sk(sk);
4464         if (!sk || !sk_fullsock(sk))
4465                 return 0;
4466
4467         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4468         return cgroup_id(cgrp);
4469 }
4470
4471 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4472 {
4473         return __bpf_sk_cgroup_id(skb->sk);
4474 }
4475
4476 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4477         .func           = bpf_skb_cgroup_id,
4478         .gpl_only       = false,
4479         .ret_type       = RET_INTEGER,
4480         .arg1_type      = ARG_PTR_TO_CTX,
4481 };
4482
4483 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4484                                               int ancestor_level)
4485 {
4486         struct cgroup *ancestor;
4487         struct cgroup *cgrp;
4488
4489         sk = sk_to_full_sk(sk);
4490         if (!sk || !sk_fullsock(sk))
4491                 return 0;
4492
4493         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4494         ancestor = cgroup_ancestor(cgrp, ancestor_level);
4495         if (!ancestor)
4496                 return 0;
4497
4498         return cgroup_id(ancestor);
4499 }
4500
4501 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4502            ancestor_level)
4503 {
4504         return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4505 }
4506
4507 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4508         .func           = bpf_skb_ancestor_cgroup_id,
4509         .gpl_only       = false,
4510         .ret_type       = RET_INTEGER,
4511         .arg1_type      = ARG_PTR_TO_CTX,
4512         .arg2_type      = ARG_ANYTHING,
4513 };
4514
4515 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4516 {
4517         return __bpf_sk_cgroup_id(sk);
4518 }
4519
4520 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4521         .func           = bpf_sk_cgroup_id,
4522         .gpl_only       = false,
4523         .ret_type       = RET_INTEGER,
4524         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4525 };
4526
4527 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4528 {
4529         return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4530 }
4531
4532 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4533         .func           = bpf_sk_ancestor_cgroup_id,
4534         .gpl_only       = false,
4535         .ret_type       = RET_INTEGER,
4536         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4537         .arg2_type      = ARG_ANYTHING,
4538 };
4539 #endif
4540
4541 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4542                                   unsigned long off, unsigned long len)
4543 {
4544         memcpy(dst_buff, src_buff + off, len);
4545         return 0;
4546 }
4547
4548 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4549            u64, flags, void *, meta, u64, meta_size)
4550 {
4551         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4552
4553         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4554                 return -EINVAL;
4555         if (unlikely(!xdp ||
4556                      xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4557                 return -EFAULT;
4558
4559         return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4560                                 xdp_size, bpf_xdp_copy);
4561 }
4562
4563 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4564         .func           = bpf_xdp_event_output,
4565         .gpl_only       = true,
4566         .ret_type       = RET_INTEGER,
4567         .arg1_type      = ARG_PTR_TO_CTX,
4568         .arg2_type      = ARG_CONST_MAP_PTR,
4569         .arg3_type      = ARG_ANYTHING,
4570         .arg4_type      = ARG_PTR_TO_MEM,
4571         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4572 };
4573
4574 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4575
4576 const struct bpf_func_proto bpf_xdp_output_proto = {
4577         .func           = bpf_xdp_event_output,
4578         .gpl_only       = true,
4579         .ret_type       = RET_INTEGER,
4580         .arg1_type      = ARG_PTR_TO_BTF_ID,
4581         .arg1_btf_id    = &bpf_xdp_output_btf_ids[0],
4582         .arg2_type      = ARG_CONST_MAP_PTR,
4583         .arg3_type      = ARG_ANYTHING,
4584         .arg4_type      = ARG_PTR_TO_MEM,
4585         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4586 };
4587
4588 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4589 {
4590         return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4591 }
4592
4593 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4594         .func           = bpf_get_socket_cookie,
4595         .gpl_only       = false,
4596         .ret_type       = RET_INTEGER,
4597         .arg1_type      = ARG_PTR_TO_CTX,
4598 };
4599
4600 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4601 {
4602         return __sock_gen_cookie(ctx->sk);
4603 }
4604
4605 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4606         .func           = bpf_get_socket_cookie_sock_addr,
4607         .gpl_only       = false,
4608         .ret_type       = RET_INTEGER,
4609         .arg1_type      = ARG_PTR_TO_CTX,
4610 };
4611
4612 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4613 {
4614         return __sock_gen_cookie(ctx);
4615 }
4616
4617 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4618         .func           = bpf_get_socket_cookie_sock,
4619         .gpl_only       = false,
4620         .ret_type       = RET_INTEGER,
4621         .arg1_type      = ARG_PTR_TO_CTX,
4622 };
4623
4624 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4625 {
4626         return sk ? sock_gen_cookie(sk) : 0;
4627 }
4628
4629 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4630         .func           = bpf_get_socket_ptr_cookie,
4631         .gpl_only       = false,
4632         .ret_type       = RET_INTEGER,
4633         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4634 };
4635
4636 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4637 {
4638         return __sock_gen_cookie(ctx->sk);
4639 }
4640
4641 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4642         .func           = bpf_get_socket_cookie_sock_ops,
4643         .gpl_only       = false,
4644         .ret_type       = RET_INTEGER,
4645         .arg1_type      = ARG_PTR_TO_CTX,
4646 };
4647
4648 static u64 __bpf_get_netns_cookie(struct sock *sk)
4649 {
4650         const struct net *net = sk ? sock_net(sk) : &init_net;
4651
4652         return net->net_cookie;
4653 }
4654
4655 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4656 {
4657         return __bpf_get_netns_cookie(ctx);
4658 }
4659
4660 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4661         .func           = bpf_get_netns_cookie_sock,
4662         .gpl_only       = false,
4663         .ret_type       = RET_INTEGER,
4664         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4665 };
4666
4667 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4668 {
4669         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4670 }
4671
4672 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4673         .func           = bpf_get_netns_cookie_sock_addr,
4674         .gpl_only       = false,
4675         .ret_type       = RET_INTEGER,
4676         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4677 };
4678
4679 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4680 {
4681         struct sock *sk = sk_to_full_sk(skb->sk);
4682         kuid_t kuid;
4683
4684         if (!sk || !sk_fullsock(sk))
4685                 return overflowuid;
4686         kuid = sock_net_uid(sock_net(sk), sk);
4687         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4688 }
4689
4690 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4691         .func           = bpf_get_socket_uid,
4692         .gpl_only       = false,
4693         .ret_type       = RET_INTEGER,
4694         .arg1_type      = ARG_PTR_TO_CTX,
4695 };
4696
4697 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
4698                            char *optval, int optlen)
4699 {
4700         char devname[IFNAMSIZ];
4701         int val, valbool;
4702         struct net *net;
4703         int ifindex;
4704         int ret = 0;
4705
4706         if (!sk_fullsock(sk))
4707                 return -EINVAL;
4708
4709         sock_owned_by_me(sk);
4710
4711         if (level == SOL_SOCKET) {
4712                 if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
4713                         return -EINVAL;
4714                 val = *((int *)optval);
4715                 valbool = val ? 1 : 0;
4716
4717                 /* Only some socketops are supported */
4718                 switch (optname) {
4719                 case SO_RCVBUF:
4720                         val = min_t(u32, val, sysctl_rmem_max);
4721                         sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4722                         WRITE_ONCE(sk->sk_rcvbuf,
4723                                    max_t(int, val * 2, SOCK_MIN_RCVBUF));
4724                         break;
4725                 case SO_SNDBUF:
4726                         val = min_t(u32, val, sysctl_wmem_max);
4727                         sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4728                         WRITE_ONCE(sk->sk_sndbuf,
4729                                    max_t(int, val * 2, SOCK_MIN_SNDBUF));
4730                         break;
4731                 case SO_MAX_PACING_RATE: /* 32bit version */
4732                         if (val != ~0U)
4733                                 cmpxchg(&sk->sk_pacing_status,
4734                                         SK_PACING_NONE,
4735                                         SK_PACING_NEEDED);
4736                         sk->sk_max_pacing_rate = (val == ~0U) ?
4737                                                  ~0UL : (unsigned int)val;
4738                         sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4739                                                  sk->sk_max_pacing_rate);
4740                         break;
4741                 case SO_PRIORITY:
4742                         sk->sk_priority = val;
4743                         break;
4744                 case SO_RCVLOWAT:
4745                         if (val < 0)
4746                                 val = INT_MAX;
4747                         WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4748                         break;
4749                 case SO_MARK:
4750                         if (sk->sk_mark != val) {
4751                                 sk->sk_mark = val;
4752                                 sk_dst_reset(sk);
4753                         }
4754                         break;
4755                 case SO_BINDTODEVICE:
4756                         optlen = min_t(long, optlen, IFNAMSIZ - 1);
4757                         strncpy(devname, optval, optlen);
4758                         devname[optlen] = 0;
4759
4760                         ifindex = 0;
4761                         if (devname[0] != '\0') {
4762                                 struct net_device *dev;
4763
4764                                 ret = -ENODEV;
4765
4766                                 net = sock_net(sk);
4767                                 dev = dev_get_by_name(net, devname);
4768                                 if (!dev)
4769                                         break;
4770                                 ifindex = dev->ifindex;
4771                                 dev_put(dev);
4772                         }
4773                         fallthrough;
4774                 case SO_BINDTOIFINDEX:
4775                         if (optname == SO_BINDTOIFINDEX)
4776                                 ifindex = val;
4777                         ret = sock_bindtoindex(sk, ifindex, false);
4778                         break;
4779                 case SO_KEEPALIVE:
4780                         if (sk->sk_prot->keepalive)
4781                                 sk->sk_prot->keepalive(sk, valbool);
4782                         sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
4783                         break;
4784                 case SO_REUSEPORT:
4785                         sk->sk_reuseport = valbool;
4786                         break;
4787                 default:
4788                         ret = -EINVAL;
4789                 }
4790 #ifdef CONFIG_INET
4791         } else if (level == SOL_IP) {
4792                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4793                         return -EINVAL;
4794
4795                 val = *((int *)optval);
4796                 /* Only some options are supported */
4797                 switch (optname) {
4798                 case IP_TOS:
4799                         if (val < -1 || val > 0xff) {
4800                                 ret = -EINVAL;
4801                         } else {
4802                                 struct inet_sock *inet = inet_sk(sk);
4803
4804                                 if (val == -1)
4805                                         val = 0;
4806                                 inet->tos = val;
4807                         }
4808                         break;
4809                 default:
4810                         ret = -EINVAL;
4811                 }
4812 #if IS_ENABLED(CONFIG_IPV6)
4813         } else if (level == SOL_IPV6) {
4814                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4815                         return -EINVAL;
4816
4817                 val = *((int *)optval);
4818                 /* Only some options are supported */
4819                 switch (optname) {
4820                 case IPV6_TCLASS:
4821                         if (val < -1 || val > 0xff) {
4822                                 ret = -EINVAL;
4823                         } else {
4824                                 struct ipv6_pinfo *np = inet6_sk(sk);
4825
4826                                 if (val == -1)
4827                                         val = 0;
4828                                 np->tclass = val;
4829                         }
4830                         break;
4831                 default:
4832                         ret = -EINVAL;
4833                 }
4834 #endif
4835         } else if (level == SOL_TCP &&
4836                    sk->sk_prot->setsockopt == tcp_setsockopt) {
4837                 if (optname == TCP_CONGESTION) {
4838                         char name[TCP_CA_NAME_MAX];
4839
4840                         strncpy(name, optval, min_t(long, optlen,
4841                                                     TCP_CA_NAME_MAX-1));
4842                         name[TCP_CA_NAME_MAX-1] = 0;
4843                         ret = tcp_set_congestion_control(sk, name, false, true);
4844                 } else {
4845                         struct inet_connection_sock *icsk = inet_csk(sk);
4846                         struct tcp_sock *tp = tcp_sk(sk);
4847                         unsigned long timeout;
4848
4849                         if (optlen != sizeof(int))
4850                                 return -EINVAL;
4851
4852                         val = *((int *)optval);
4853                         /* Only some options are supported */
4854                         switch (optname) {
4855                         case TCP_BPF_IW:
4856                                 if (val <= 0 || tp->data_segs_out > tp->syn_data)
4857                                         ret = -EINVAL;
4858                                 else
4859                                         tp->snd_cwnd = val;
4860                                 break;
4861                         case TCP_BPF_SNDCWND_CLAMP:
4862                                 if (val <= 0) {
4863                                         ret = -EINVAL;
4864                                 } else {
4865                                         tp->snd_cwnd_clamp = val;
4866                                         tp->snd_ssthresh = val;
4867                                 }
4868                                 break;
4869                         case TCP_BPF_DELACK_MAX:
4870                                 timeout = usecs_to_jiffies(val);
4871                                 if (timeout > TCP_DELACK_MAX ||
4872                                     timeout < TCP_TIMEOUT_MIN)
4873                                         return -EINVAL;
4874                                 inet_csk(sk)->icsk_delack_max = timeout;
4875                                 break;
4876                         case TCP_BPF_RTO_MIN:
4877                                 timeout = usecs_to_jiffies(val);
4878                                 if (timeout > TCP_RTO_MIN ||
4879                                     timeout < TCP_TIMEOUT_MIN)
4880                                         return -EINVAL;
4881                                 inet_csk(sk)->icsk_rto_min = timeout;
4882                                 break;
4883                         case TCP_SAVE_SYN:
4884                                 if (val < 0 || val > 1)
4885                                         ret = -EINVAL;
4886                                 else
4887                                         tp->save_syn = val;
4888                                 break;
4889                         case TCP_KEEPIDLE:
4890                                 ret = tcp_sock_set_keepidle_locked(sk, val);
4891                                 break;
4892                         case TCP_KEEPINTVL:
4893                                 if (val < 1 || val > MAX_TCP_KEEPINTVL)
4894                                         ret = -EINVAL;
4895                                 else
4896                                         tp->keepalive_intvl = val * HZ;
4897                                 break;
4898                         case TCP_KEEPCNT:
4899                                 if (val < 1 || val > MAX_TCP_KEEPCNT)
4900                                         ret = -EINVAL;
4901                                 else
4902                                         tp->keepalive_probes = val;
4903                                 break;
4904                         case TCP_SYNCNT:
4905                                 if (val < 1 || val > MAX_TCP_SYNCNT)
4906                                         ret = -EINVAL;
4907                                 else
4908                                         icsk->icsk_syn_retries = val;
4909                                 break;
4910                         case TCP_USER_TIMEOUT:
4911                                 if (val < 0)
4912                                         ret = -EINVAL;
4913                                 else
4914                                         icsk->icsk_user_timeout = val;
4915                                 break;
4916                         case TCP_NOTSENT_LOWAT:
4917                                 tp->notsent_lowat = val;
4918                                 sk->sk_write_space(sk);
4919                                 break;
4920                         case TCP_WINDOW_CLAMP:
4921                                 ret = tcp_set_window_clamp(sk, val);
4922                                 break;
4923                         default:
4924                                 ret = -EINVAL;
4925                         }
4926                 }
4927 #endif
4928         } else {
4929                 ret = -EINVAL;
4930         }
4931         return ret;
4932 }
4933
4934 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
4935                            char *optval, int optlen)
4936 {
4937         if (!sk_fullsock(sk))
4938                 goto err_clear;
4939
4940         sock_owned_by_me(sk);
4941
4942         if (level == SOL_SOCKET) {
4943                 if (optlen != sizeof(int))
4944                         goto err_clear;
4945
4946                 switch (optname) {
4947                 case SO_MARK:
4948                         *((int *)optval) = sk->sk_mark;
4949                         break;
4950                 case SO_PRIORITY:
4951                         *((int *)optval) = sk->sk_priority;
4952                         break;
4953                 case SO_BINDTOIFINDEX:
4954                         *((int *)optval) = sk->sk_bound_dev_if;
4955                         break;
4956                 case SO_REUSEPORT:
4957                         *((int *)optval) = sk->sk_reuseport;
4958                         break;
4959                 default:
4960                         goto err_clear;
4961                 }
4962 #ifdef CONFIG_INET
4963         } else if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4964                 struct inet_connection_sock *icsk;
4965                 struct tcp_sock *tp;
4966
4967                 switch (optname) {
4968                 case TCP_CONGESTION:
4969                         icsk = inet_csk(sk);
4970
4971                         if (!icsk->icsk_ca_ops || optlen <= 1)
4972                                 goto err_clear;
4973                         strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4974                         optval[optlen - 1] = 0;
4975                         break;
4976                 case TCP_SAVED_SYN:
4977                         tp = tcp_sk(sk);
4978
4979                         if (optlen <= 0 || !tp->saved_syn ||
4980                             optlen > tcp_saved_syn_len(tp->saved_syn))
4981                                 goto err_clear;
4982                         memcpy(optval, tp->saved_syn->data, optlen);
4983                         break;
4984                 default:
4985                         goto err_clear;
4986                 }
4987         } else if (level == SOL_IP) {
4988                 struct inet_sock *inet = inet_sk(sk);
4989
4990                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4991                         goto err_clear;
4992
4993                 /* Only some options are supported */
4994                 switch (optname) {
4995                 case IP_TOS:
4996                         *((int *)optval) = (int)inet->tos;
4997                         break;
4998                 default:
4999                         goto err_clear;
5000                 }
5001 #if IS_ENABLED(CONFIG_IPV6)
5002         } else if (level == SOL_IPV6) {
5003                 struct ipv6_pinfo *np = inet6_sk(sk);
5004
5005                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
5006                         goto err_clear;
5007
5008                 /* Only some options are supported */
5009                 switch (optname) {
5010                 case IPV6_TCLASS:
5011                         *((int *)optval) = (int)np->tclass;
5012                         break;
5013                 default:
5014                         goto err_clear;
5015                 }
5016 #endif
5017 #endif
5018         } else {
5019                 goto err_clear;
5020         }
5021         return 0;
5022 err_clear:
5023         memset(optval, 0, optlen);
5024         return -EINVAL;
5025 }
5026
5027 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5028            int, optname, char *, optval, int, optlen)
5029 {
5030         return _bpf_setsockopt(sk, level, optname, optval, optlen);
5031 }
5032
5033 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5034         .func           = bpf_sk_setsockopt,
5035         .gpl_only       = false,
5036         .ret_type       = RET_INTEGER,
5037         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5038         .arg2_type      = ARG_ANYTHING,
5039         .arg3_type      = ARG_ANYTHING,
5040         .arg4_type      = ARG_PTR_TO_MEM,
5041         .arg5_type      = ARG_CONST_SIZE,
5042 };
5043
5044 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5045            int, optname, char *, optval, int, optlen)
5046 {
5047         return _bpf_getsockopt(sk, level, optname, optval, optlen);
5048 }
5049
5050 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5051         .func           = bpf_sk_getsockopt,
5052         .gpl_only       = false,
5053         .ret_type       = RET_INTEGER,
5054         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5055         .arg2_type      = ARG_ANYTHING,
5056         .arg3_type      = ARG_ANYTHING,
5057         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5058         .arg5_type      = ARG_CONST_SIZE,
5059 };
5060
5061 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5062            int, level, int, optname, char *, optval, int, optlen)
5063 {
5064         return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5065 }
5066
5067 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5068         .func           = bpf_sock_addr_setsockopt,
5069         .gpl_only       = false,
5070         .ret_type       = RET_INTEGER,
5071         .arg1_type      = ARG_PTR_TO_CTX,
5072         .arg2_type      = ARG_ANYTHING,
5073         .arg3_type      = ARG_ANYTHING,
5074         .arg4_type      = ARG_PTR_TO_MEM,
5075         .arg5_type      = ARG_CONST_SIZE,
5076 };
5077
5078 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5079            int, level, int, optname, char *, optval, int, optlen)
5080 {
5081         return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5082 }
5083
5084 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5085         .func           = bpf_sock_addr_getsockopt,
5086         .gpl_only       = false,
5087         .ret_type       = RET_INTEGER,
5088         .arg1_type      = ARG_PTR_TO_CTX,
5089         .arg2_type      = ARG_ANYTHING,
5090         .arg3_type      = ARG_ANYTHING,
5091         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5092         .arg5_type      = ARG_CONST_SIZE,
5093 };
5094
5095 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5096            int, level, int, optname, char *, optval, int, optlen)
5097 {
5098         return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5099 }
5100
5101 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5102         .func           = bpf_sock_ops_setsockopt,
5103         .gpl_only       = false,
5104         .ret_type       = RET_INTEGER,
5105         .arg1_type      = ARG_PTR_TO_CTX,
5106         .arg2_type      = ARG_ANYTHING,
5107         .arg3_type      = ARG_ANYTHING,
5108         .arg4_type      = ARG_PTR_TO_MEM,
5109         .arg5_type      = ARG_CONST_SIZE,
5110 };
5111
5112 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5113                                 int optname, const u8 **start)
5114 {
5115         struct sk_buff *syn_skb = bpf_sock->syn_skb;
5116         const u8 *hdr_start;
5117         int ret;
5118
5119         if (syn_skb) {
5120                 /* sk is a request_sock here */
5121
5122                 if (optname == TCP_BPF_SYN) {
5123                         hdr_start = syn_skb->data;
5124                         ret = tcp_hdrlen(syn_skb);
5125                 } else if (optname == TCP_BPF_SYN_IP) {
5126                         hdr_start = skb_network_header(syn_skb);
5127                         ret = skb_network_header_len(syn_skb) +
5128                                 tcp_hdrlen(syn_skb);
5129                 } else {
5130                         /* optname == TCP_BPF_SYN_MAC */
5131                         hdr_start = skb_mac_header(syn_skb);
5132                         ret = skb_mac_header_len(syn_skb) +
5133                                 skb_network_header_len(syn_skb) +
5134                                 tcp_hdrlen(syn_skb);
5135                 }
5136         } else {
5137                 struct sock *sk = bpf_sock->sk;
5138                 struct saved_syn *saved_syn;
5139
5140                 if (sk->sk_state == TCP_NEW_SYN_RECV)
5141                         /* synack retransmit. bpf_sock->syn_skb will
5142                          * not be available.  It has to resort to
5143                          * saved_syn (if it is saved).
5144                          */
5145                         saved_syn = inet_reqsk(sk)->saved_syn;
5146                 else
5147                         saved_syn = tcp_sk(sk)->saved_syn;
5148
5149                 if (!saved_syn)
5150                         return -ENOENT;
5151
5152                 if (optname == TCP_BPF_SYN) {
5153                         hdr_start = saved_syn->data +
5154                                 saved_syn->mac_hdrlen +
5155                                 saved_syn->network_hdrlen;
5156                         ret = saved_syn->tcp_hdrlen;
5157                 } else if (optname == TCP_BPF_SYN_IP) {
5158                         hdr_start = saved_syn->data +
5159                                 saved_syn->mac_hdrlen;
5160                         ret = saved_syn->network_hdrlen +
5161                                 saved_syn->tcp_hdrlen;
5162                 } else {
5163                         /* optname == TCP_BPF_SYN_MAC */
5164
5165                         /* TCP_SAVE_SYN may not have saved the mac hdr */
5166                         if (!saved_syn->mac_hdrlen)
5167                                 return -ENOENT;
5168
5169                         hdr_start = saved_syn->data;
5170                         ret = saved_syn->mac_hdrlen +
5171                                 saved_syn->network_hdrlen +
5172                                 saved_syn->tcp_hdrlen;
5173                 }
5174         }
5175
5176         *start = hdr_start;
5177         return ret;
5178 }
5179
5180 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5181            int, level, int, optname, char *, optval, int, optlen)
5182 {
5183         if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5184             optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5185                 int ret, copy_len = 0;
5186                 const u8 *start;
5187
5188                 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5189                 if (ret > 0) {
5190                         copy_len = ret;
5191                         if (optlen < copy_len) {
5192                                 copy_len = optlen;
5193                                 ret = -ENOSPC;
5194                         }
5195
5196                         memcpy(optval, start, copy_len);
5197                 }
5198
5199                 /* Zero out unused buffer at the end */
5200                 memset(optval + copy_len, 0, optlen - copy_len);
5201
5202                 return ret;
5203         }
5204
5205         return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5206 }
5207
5208 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5209         .func           = bpf_sock_ops_getsockopt,
5210         .gpl_only       = false,
5211         .ret_type       = RET_INTEGER,
5212         .arg1_type      = ARG_PTR_TO_CTX,
5213         .arg2_type      = ARG_ANYTHING,
5214         .arg3_type      = ARG_ANYTHING,
5215         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5216         .arg5_type      = ARG_CONST_SIZE,
5217 };
5218
5219 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5220            int, argval)
5221 {
5222         struct sock *sk = bpf_sock->sk;
5223         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5224
5225         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5226                 return -EINVAL;
5227
5228         tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5229
5230         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5231 }
5232
5233 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5234         .func           = bpf_sock_ops_cb_flags_set,
5235         .gpl_only       = false,
5236         .ret_type       = RET_INTEGER,
5237         .arg1_type      = ARG_PTR_TO_CTX,
5238         .arg2_type      = ARG_ANYTHING,
5239 };
5240
5241 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5242 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5243
5244 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5245            int, addr_len)
5246 {
5247 #ifdef CONFIG_INET
5248         struct sock *sk = ctx->sk;
5249         u32 flags = BIND_FROM_BPF;
5250         int err;
5251
5252         err = -EINVAL;
5253         if (addr_len < offsetofend(struct sockaddr, sa_family))
5254                 return err;
5255         if (addr->sa_family == AF_INET) {
5256                 if (addr_len < sizeof(struct sockaddr_in))
5257                         return err;
5258                 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5259                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5260                 return __inet_bind(sk, addr, addr_len, flags);
5261 #if IS_ENABLED(CONFIG_IPV6)
5262         } else if (addr->sa_family == AF_INET6) {
5263                 if (addr_len < SIN6_LEN_RFC2133)
5264                         return err;
5265                 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5266                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5267                 /* ipv6_bpf_stub cannot be NULL, since it's called from
5268                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5269                  */
5270                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5271 #endif /* CONFIG_IPV6 */
5272         }
5273 #endif /* CONFIG_INET */
5274
5275         return -EAFNOSUPPORT;
5276 }
5277
5278 static const struct bpf_func_proto bpf_bind_proto = {
5279         .func           = bpf_bind,
5280         .gpl_only       = false,
5281         .ret_type       = RET_INTEGER,
5282         .arg1_type      = ARG_PTR_TO_CTX,
5283         .arg2_type      = ARG_PTR_TO_MEM,
5284         .arg3_type      = ARG_CONST_SIZE,
5285 };
5286
5287 #ifdef CONFIG_XFRM
5288 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5289            struct bpf_xfrm_state *, to, u32, size, u64, flags)
5290 {
5291         const struct sec_path *sp = skb_sec_path(skb);
5292         const struct xfrm_state *x;
5293
5294         if (!sp || unlikely(index >= sp->len || flags))
5295                 goto err_clear;
5296
5297         x = sp->xvec[index];
5298
5299         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5300                 goto err_clear;
5301
5302         to->reqid = x->props.reqid;
5303         to->spi = x->id.spi;
5304         to->family = x->props.family;
5305         to->ext = 0;
5306
5307         if (to->family == AF_INET6) {
5308                 memcpy(to->remote_ipv6, x->props.saddr.a6,
5309                        sizeof(to->remote_ipv6));
5310         } else {
5311                 to->remote_ipv4 = x->props.saddr.a4;
5312                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5313         }
5314
5315         return 0;
5316 err_clear:
5317         memset(to, 0, size);
5318         return -EINVAL;
5319 }
5320
5321 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5322         .func           = bpf_skb_get_xfrm_state,
5323         .gpl_only       = false,
5324         .ret_type       = RET_INTEGER,
5325         .arg1_type      = ARG_PTR_TO_CTX,
5326         .arg2_type      = ARG_ANYTHING,
5327         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
5328         .arg4_type      = ARG_CONST_SIZE,
5329         .arg5_type      = ARG_ANYTHING,
5330 };
5331 #endif
5332
5333 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5334 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5335                                   const struct neighbour *neigh,
5336                                   const struct net_device *dev, u32 mtu)
5337 {
5338         memcpy(params->dmac, neigh->ha, ETH_ALEN);
5339         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5340         params->h_vlan_TCI = 0;
5341         params->h_vlan_proto = 0;
5342         if (mtu)
5343                 params->mtu_result = mtu; /* union with tot_len */
5344
5345         return 0;
5346 }
5347 #endif
5348
5349 #if IS_ENABLED(CONFIG_INET)
5350 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5351                                u32 flags, bool check_mtu)
5352 {
5353         struct fib_nh_common *nhc;
5354         struct in_device *in_dev;
5355         struct neighbour *neigh;
5356         struct net_device *dev;
5357         struct fib_result res;
5358         struct flowi4 fl4;
5359         u32 mtu = 0;
5360         int err;
5361
5362         dev = dev_get_by_index_rcu(net, params->ifindex);
5363         if (unlikely(!dev))
5364                 return -ENODEV;
5365
5366         /* verify forwarding is enabled on this interface */
5367         in_dev = __in_dev_get_rcu(dev);
5368         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5369                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5370
5371         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5372                 fl4.flowi4_iif = 1;
5373                 fl4.flowi4_oif = params->ifindex;
5374         } else {
5375                 fl4.flowi4_iif = params->ifindex;
5376                 fl4.flowi4_oif = 0;
5377         }
5378         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5379         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5380         fl4.flowi4_flags = 0;
5381
5382         fl4.flowi4_proto = params->l4_protocol;
5383         fl4.daddr = params->ipv4_dst;
5384         fl4.saddr = params->ipv4_src;
5385         fl4.fl4_sport = params->sport;
5386         fl4.fl4_dport = params->dport;
5387         fl4.flowi4_multipath_hash = 0;
5388
5389         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5390                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5391                 struct fib_table *tb;
5392
5393                 tb = fib_get_table(net, tbid);
5394                 if (unlikely(!tb))
5395                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5396
5397                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5398         } else {
5399                 fl4.flowi4_mark = 0;
5400                 fl4.flowi4_secid = 0;
5401                 fl4.flowi4_tun_key.tun_id = 0;
5402                 fl4.flowi4_uid = sock_net_uid(net, NULL);
5403
5404                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5405         }
5406
5407         if (err) {
5408                 /* map fib lookup errors to RTN_ type */
5409                 if (err == -EINVAL)
5410                         return BPF_FIB_LKUP_RET_BLACKHOLE;
5411                 if (err == -EHOSTUNREACH)
5412                         return BPF_FIB_LKUP_RET_UNREACHABLE;
5413                 if (err == -EACCES)
5414                         return BPF_FIB_LKUP_RET_PROHIBIT;
5415
5416                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5417         }
5418
5419         if (res.type != RTN_UNICAST)
5420                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5421
5422         if (fib_info_num_path(res.fi) > 1)
5423                 fib_select_path(net, &res, &fl4, NULL);
5424
5425         if (check_mtu) {
5426                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5427                 if (params->tot_len > mtu) {
5428                         params->mtu_result = mtu; /* union with tot_len */
5429                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5430                 }
5431         }
5432
5433         nhc = res.nhc;
5434
5435         /* do not handle lwt encaps right now */
5436         if (nhc->nhc_lwtstate)
5437                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5438
5439         dev = nhc->nhc_dev;
5440
5441         params->rt_metric = res.fi->fib_priority;
5442         params->ifindex = dev->ifindex;
5443
5444         /* xdp and cls_bpf programs are run in RCU-bh so
5445          * rcu_read_lock_bh is not needed here
5446          */
5447         if (likely(nhc->nhc_gw_family != AF_INET6)) {
5448                 if (nhc->nhc_gw_family)
5449                         params->ipv4_dst = nhc->nhc_gw.ipv4;
5450
5451                 neigh = __ipv4_neigh_lookup_noref(dev,
5452                                                  (__force u32)params->ipv4_dst);
5453         } else {
5454                 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5455
5456                 params->family = AF_INET6;
5457                 *dst = nhc->nhc_gw.ipv6;
5458                 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5459         }
5460
5461         if (!neigh)
5462                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5463
5464         return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5465 }
5466 #endif
5467
5468 #if IS_ENABLED(CONFIG_IPV6)
5469 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5470                                u32 flags, bool check_mtu)
5471 {
5472         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5473         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5474         struct fib6_result res = {};
5475         struct neighbour *neigh;
5476         struct net_device *dev;
5477         struct inet6_dev *idev;
5478         struct flowi6 fl6;
5479         int strict = 0;
5480         int oif, err;
5481         u32 mtu = 0;
5482
5483         /* link local addresses are never forwarded */
5484         if (rt6_need_strict(dst) || rt6_need_strict(src))
5485                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5486
5487         dev = dev_get_by_index_rcu(net, params->ifindex);
5488         if (unlikely(!dev))
5489                 return -ENODEV;
5490
5491         idev = __in6_dev_get_safely(dev);
5492         if (unlikely(!idev || !idev->cnf.forwarding))
5493                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5494
5495         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5496                 fl6.flowi6_iif = 1;
5497                 oif = fl6.flowi6_oif = params->ifindex;
5498         } else {
5499                 oif = fl6.flowi6_iif = params->ifindex;
5500                 fl6.flowi6_oif = 0;
5501                 strict = RT6_LOOKUP_F_HAS_SADDR;
5502         }
5503         fl6.flowlabel = params->flowinfo;
5504         fl6.flowi6_scope = 0;
5505         fl6.flowi6_flags = 0;
5506         fl6.mp_hash = 0;
5507
5508         fl6.flowi6_proto = params->l4_protocol;
5509         fl6.daddr = *dst;
5510         fl6.saddr = *src;
5511         fl6.fl6_sport = params->sport;
5512         fl6.fl6_dport = params->dport;
5513
5514         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5515                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5516                 struct fib6_table *tb;
5517
5518                 tb = ipv6_stub->fib6_get_table(net, tbid);
5519                 if (unlikely(!tb))
5520                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5521
5522                 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5523                                                    strict);
5524         } else {
5525                 fl6.flowi6_mark = 0;
5526                 fl6.flowi6_secid = 0;
5527                 fl6.flowi6_tun_key.tun_id = 0;
5528                 fl6.flowi6_uid = sock_net_uid(net, NULL);
5529
5530                 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5531         }
5532
5533         if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5534                      res.f6i == net->ipv6.fib6_null_entry))
5535                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5536
5537         switch (res.fib6_type) {
5538         /* only unicast is forwarded */
5539         case RTN_UNICAST:
5540                 break;
5541         case RTN_BLACKHOLE:
5542                 return BPF_FIB_LKUP_RET_BLACKHOLE;
5543         case RTN_UNREACHABLE:
5544                 return BPF_FIB_LKUP_RET_UNREACHABLE;
5545         case RTN_PROHIBIT:
5546                 return BPF_FIB_LKUP_RET_PROHIBIT;
5547         default:
5548                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5549         }
5550
5551         ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5552                                     fl6.flowi6_oif != 0, NULL, strict);
5553
5554         if (check_mtu) {
5555                 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5556                 if (params->tot_len > mtu) {
5557                         params->mtu_result = mtu; /* union with tot_len */
5558                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5559                 }
5560         }
5561
5562         if (res.nh->fib_nh_lws)
5563                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5564
5565         if (res.nh->fib_nh_gw_family)
5566                 *dst = res.nh->fib_nh_gw6;
5567
5568         dev = res.nh->fib_nh_dev;
5569         params->rt_metric = res.f6i->fib6_metric;
5570         params->ifindex = dev->ifindex;
5571
5572         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5573          * not needed here.
5574          */
5575         neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5576         if (!neigh)
5577                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5578
5579         return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5580 }
5581 #endif
5582
5583 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5584            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5585 {
5586         if (plen < sizeof(*params))
5587                 return -EINVAL;
5588
5589         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5590                 return -EINVAL;
5591
5592         switch (params->family) {
5593 #if IS_ENABLED(CONFIG_INET)
5594         case AF_INET:
5595                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5596                                            flags, true);
5597 #endif
5598 #if IS_ENABLED(CONFIG_IPV6)
5599         case AF_INET6:
5600                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5601                                            flags, true);
5602 #endif
5603         }
5604         return -EAFNOSUPPORT;
5605 }
5606
5607 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5608         .func           = bpf_xdp_fib_lookup,
5609         .gpl_only       = true,
5610         .ret_type       = RET_INTEGER,
5611         .arg1_type      = ARG_PTR_TO_CTX,
5612         .arg2_type      = ARG_PTR_TO_MEM,
5613         .arg3_type      = ARG_CONST_SIZE,
5614         .arg4_type      = ARG_ANYTHING,
5615 };
5616
5617 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5618            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5619 {
5620         struct net *net = dev_net(skb->dev);
5621         int rc = -EAFNOSUPPORT;
5622         bool check_mtu = false;
5623
5624         if (plen < sizeof(*params))
5625                 return -EINVAL;
5626
5627         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5628                 return -EINVAL;
5629
5630         if (params->tot_len)
5631                 check_mtu = true;
5632
5633         switch (params->family) {
5634 #if IS_ENABLED(CONFIG_INET)
5635         case AF_INET:
5636                 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5637                 break;
5638 #endif
5639 #if IS_ENABLED(CONFIG_IPV6)
5640         case AF_INET6:
5641                 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5642                 break;
5643 #endif
5644         }
5645
5646         if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
5647                 struct net_device *dev;
5648
5649                 /* When tot_len isn't provided by user, check skb
5650                  * against MTU of FIB lookup resulting net_device
5651                  */
5652                 dev = dev_get_by_index_rcu(net, params->ifindex);
5653                 if (!is_skb_forwardable(dev, skb))
5654                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5655
5656                 params->mtu_result = dev->mtu; /* union with tot_len */
5657         }
5658
5659         return rc;
5660 }
5661
5662 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5663         .func           = bpf_skb_fib_lookup,
5664         .gpl_only       = true,
5665         .ret_type       = RET_INTEGER,
5666         .arg1_type      = ARG_PTR_TO_CTX,
5667         .arg2_type      = ARG_PTR_TO_MEM,
5668         .arg3_type      = ARG_CONST_SIZE,
5669         .arg4_type      = ARG_ANYTHING,
5670 };
5671
5672 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
5673                                             u32 ifindex)
5674 {
5675         struct net *netns = dev_net(dev_curr);
5676
5677         /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
5678         if (ifindex == 0)
5679                 return dev_curr;
5680
5681         return dev_get_by_index_rcu(netns, ifindex);
5682 }
5683
5684 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
5685            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5686 {
5687         int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5688         struct net_device *dev = skb->dev;
5689         int skb_len, dev_len;
5690         int mtu;
5691
5692         if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
5693                 return -EINVAL;
5694
5695         if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
5696                 return -EINVAL;
5697
5698         dev = __dev_via_ifindex(dev, ifindex);
5699         if (unlikely(!dev))
5700                 return -ENODEV;
5701
5702         mtu = READ_ONCE(dev->mtu);
5703
5704         dev_len = mtu + dev->hard_header_len;
5705
5706         /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
5707         skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
5708
5709         skb_len += len_diff; /* minus result pass check */
5710         if (skb_len <= dev_len) {
5711                 ret = BPF_MTU_CHK_RET_SUCCESS;
5712                 goto out;
5713         }
5714         /* At this point, skb->len exceed MTU, but as it include length of all
5715          * segments, it can still be below MTU.  The SKB can possibly get
5716          * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
5717          * must choose if segs are to be MTU checked.
5718          */
5719         if (skb_is_gso(skb)) {
5720                 ret = BPF_MTU_CHK_RET_SUCCESS;
5721
5722                 if (flags & BPF_MTU_CHK_SEGS &&
5723                     !skb_gso_validate_network_len(skb, mtu))
5724                         ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
5725         }
5726 out:
5727         /* BPF verifier guarantees valid pointer */
5728         *mtu_len = mtu;
5729
5730         return ret;
5731 }
5732
5733 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
5734            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5735 {
5736         struct net_device *dev = xdp->rxq->dev;
5737         int xdp_len = xdp->data_end - xdp->data;
5738         int ret = BPF_MTU_CHK_RET_SUCCESS;
5739         int mtu, dev_len;
5740
5741         /* XDP variant doesn't support multi-buffer segment check (yet) */
5742         if (unlikely(flags))
5743                 return -EINVAL;
5744
5745         dev = __dev_via_ifindex(dev, ifindex);
5746         if (unlikely(!dev))
5747                 return -ENODEV;
5748
5749         mtu = READ_ONCE(dev->mtu);
5750
5751         /* Add L2-header as dev MTU is L3 size */
5752         dev_len = mtu + dev->hard_header_len;
5753
5754         /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
5755         if (*mtu_len)
5756                 xdp_len = *mtu_len + dev->hard_header_len;
5757
5758         xdp_len += len_diff; /* minus result pass check */
5759         if (xdp_len > dev_len)
5760                 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5761
5762         /* BPF verifier guarantees valid pointer */
5763         *mtu_len = mtu;
5764
5765         return ret;
5766 }
5767
5768 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
5769         .func           = bpf_skb_check_mtu,
5770         .gpl_only       = true,
5771         .ret_type       = RET_INTEGER,
5772         .arg1_type      = ARG_PTR_TO_CTX,
5773         .arg2_type      = ARG_ANYTHING,
5774         .arg3_type      = ARG_PTR_TO_INT,
5775         .arg4_type      = ARG_ANYTHING,
5776         .arg5_type      = ARG_ANYTHING,
5777 };
5778
5779 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
5780         .func           = bpf_xdp_check_mtu,
5781         .gpl_only       = true,
5782         .ret_type       = RET_INTEGER,
5783         .arg1_type      = ARG_PTR_TO_CTX,
5784         .arg2_type      = ARG_ANYTHING,
5785         .arg3_type      = ARG_PTR_TO_INT,
5786         .arg4_type      = ARG_ANYTHING,
5787         .arg5_type      = ARG_ANYTHING,
5788 };
5789
5790 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5791 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
5792 {
5793         int err;
5794         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
5795
5796         if (!seg6_validate_srh(srh, len, false))
5797                 return -EINVAL;
5798
5799         switch (type) {
5800         case BPF_LWT_ENCAP_SEG6_INLINE:
5801                 if (skb->protocol != htons(ETH_P_IPV6))
5802                         return -EBADMSG;
5803
5804                 err = seg6_do_srh_inline(skb, srh);
5805                 break;
5806         case BPF_LWT_ENCAP_SEG6:
5807                 skb_reset_inner_headers(skb);
5808                 skb->encapsulation = 1;
5809                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
5810                 break;
5811         default:
5812                 return -EINVAL;
5813         }
5814
5815         bpf_compute_data_pointers(skb);
5816         if (err)
5817                 return err;
5818
5819         ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5820         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
5821
5822         return seg6_lookup_nexthop(skb, NULL, 0);
5823 }
5824 #endif /* CONFIG_IPV6_SEG6_BPF */
5825
5826 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5827 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
5828                              bool ingress)
5829 {
5830         return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
5831 }
5832 #endif
5833
5834 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
5835            u32, len)
5836 {
5837         switch (type) {
5838 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5839         case BPF_LWT_ENCAP_SEG6:
5840         case BPF_LWT_ENCAP_SEG6_INLINE:
5841                 return bpf_push_seg6_encap(skb, type, hdr, len);
5842 #endif
5843 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5844         case BPF_LWT_ENCAP_IP:
5845                 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
5846 #endif
5847         default:
5848                 return -EINVAL;
5849         }
5850 }
5851
5852 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
5853            void *, hdr, u32, len)
5854 {
5855         switch (type) {
5856 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5857         case BPF_LWT_ENCAP_IP:
5858                 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5859 #endif
5860         default:
5861                 return -EINVAL;
5862         }
5863 }
5864
5865 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5866         .func           = bpf_lwt_in_push_encap,
5867         .gpl_only       = false,
5868         .ret_type       = RET_INTEGER,
5869         .arg1_type      = ARG_PTR_TO_CTX,
5870         .arg2_type      = ARG_ANYTHING,
5871         .arg3_type      = ARG_PTR_TO_MEM,
5872         .arg4_type      = ARG_CONST_SIZE
5873 };
5874
5875 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5876         .func           = bpf_lwt_xmit_push_encap,
5877         .gpl_only       = false,
5878         .ret_type       = RET_INTEGER,
5879         .arg1_type      = ARG_PTR_TO_CTX,
5880         .arg2_type      = ARG_ANYTHING,
5881         .arg3_type      = ARG_PTR_TO_MEM,
5882         .arg4_type      = ARG_CONST_SIZE
5883 };
5884
5885 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5886 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5887            const void *, from, u32, len)
5888 {
5889         struct seg6_bpf_srh_state *srh_state =
5890                 this_cpu_ptr(&seg6_bpf_srh_states);
5891         struct ipv6_sr_hdr *srh = srh_state->srh;
5892         void *srh_tlvs, *srh_end, *ptr;
5893         int srhoff = 0;
5894
5895         if (srh == NULL)
5896                 return -EINVAL;
5897
5898         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5899         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5900
5901         ptr = skb->data + offset;
5902         if (ptr >= srh_tlvs && ptr + len <= srh_end)
5903                 srh_state->valid = false;
5904         else if (ptr < (void *)&srh->flags ||
5905                  ptr + len > (void *)&srh->segments)
5906                 return -EFAULT;
5907
5908         if (unlikely(bpf_try_make_writable(skb, offset + len)))
5909                 return -EFAULT;
5910         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5911                 return -EINVAL;
5912         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5913
5914         memcpy(skb->data + offset, from, len);
5915         return 0;
5916 }
5917
5918 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5919         .func           = bpf_lwt_seg6_store_bytes,
5920         .gpl_only       = false,
5921         .ret_type       = RET_INTEGER,
5922         .arg1_type      = ARG_PTR_TO_CTX,
5923         .arg2_type      = ARG_ANYTHING,
5924         .arg3_type      = ARG_PTR_TO_MEM,
5925         .arg4_type      = ARG_CONST_SIZE
5926 };
5927
5928 static void bpf_update_srh_state(struct sk_buff *skb)
5929 {
5930         struct seg6_bpf_srh_state *srh_state =
5931                 this_cpu_ptr(&seg6_bpf_srh_states);
5932         int srhoff = 0;
5933
5934         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5935                 srh_state->srh = NULL;
5936         } else {
5937                 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5938                 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5939                 srh_state->valid = true;
5940         }
5941 }
5942
5943 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5944            u32, action, void *, param, u32, param_len)
5945 {
5946         struct seg6_bpf_srh_state *srh_state =
5947                 this_cpu_ptr(&seg6_bpf_srh_states);
5948         int hdroff = 0;
5949         int err;
5950
5951         switch (action) {
5952         case SEG6_LOCAL_ACTION_END_X:
5953                 if (!seg6_bpf_has_valid_srh(skb))
5954                         return -EBADMSG;
5955                 if (param_len != sizeof(struct in6_addr))
5956                         return -EINVAL;
5957                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5958         case SEG6_LOCAL_ACTION_END_T:
5959                 if (!seg6_bpf_has_valid_srh(skb))
5960                         return -EBADMSG;
5961                 if (param_len != sizeof(int))
5962                         return -EINVAL;
5963                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5964         case SEG6_LOCAL_ACTION_END_DT6:
5965                 if (!seg6_bpf_has_valid_srh(skb))
5966                         return -EBADMSG;
5967                 if (param_len != sizeof(int))
5968                         return -EINVAL;
5969
5970                 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5971                         return -EBADMSG;
5972                 if (!pskb_pull(skb, hdroff))
5973                         return -EBADMSG;
5974
5975                 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5976                 skb_reset_network_header(skb);
5977                 skb_reset_transport_header(skb);
5978                 skb->encapsulation = 0;
5979
5980                 bpf_compute_data_pointers(skb);
5981                 bpf_update_srh_state(skb);
5982                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5983         case SEG6_LOCAL_ACTION_END_B6:
5984                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5985                         return -EBADMSG;
5986                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5987                                           param, param_len);
5988                 if (!err)
5989                         bpf_update_srh_state(skb);
5990
5991                 return err;
5992         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5993                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5994                         return -EBADMSG;
5995                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5996                                           param, param_len);
5997                 if (!err)
5998                         bpf_update_srh_state(skb);
5999
6000                 return err;
6001         default:
6002                 return -EINVAL;
6003         }
6004 }
6005
6006 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6007         .func           = bpf_lwt_seg6_action,
6008         .gpl_only       = false,
6009         .ret_type       = RET_INTEGER,
6010         .arg1_type      = ARG_PTR_TO_CTX,
6011         .arg2_type      = ARG_ANYTHING,
6012         .arg3_type      = ARG_PTR_TO_MEM,
6013         .arg4_type      = ARG_CONST_SIZE
6014 };
6015
6016 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6017            s32, len)
6018 {
6019         struct seg6_bpf_srh_state *srh_state =
6020                 this_cpu_ptr(&seg6_bpf_srh_states);
6021         struct ipv6_sr_hdr *srh = srh_state->srh;
6022         void *srh_end, *srh_tlvs, *ptr;
6023         struct ipv6hdr *hdr;
6024         int srhoff = 0;
6025         int ret;
6026
6027         if (unlikely(srh == NULL))
6028                 return -EINVAL;
6029
6030         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6031                         ((srh->first_segment + 1) << 4));
6032         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6033                         srh_state->hdrlen);
6034         ptr = skb->data + offset;
6035
6036         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6037                 return -EFAULT;
6038         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6039                 return -EFAULT;
6040
6041         if (len > 0) {
6042                 ret = skb_cow_head(skb, len);
6043                 if (unlikely(ret < 0))
6044                         return ret;
6045
6046                 ret = bpf_skb_net_hdr_push(skb, offset, len);
6047         } else {
6048                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6049         }
6050
6051         bpf_compute_data_pointers(skb);
6052         if (unlikely(ret < 0))
6053                 return ret;
6054
6055         hdr = (struct ipv6hdr *)skb->data;
6056         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6057
6058         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6059                 return -EINVAL;
6060         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6061         srh_state->hdrlen += len;
6062         srh_state->valid = false;
6063         return 0;
6064 }
6065
6066 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6067         .func           = bpf_lwt_seg6_adjust_srh,
6068         .gpl_only       = false,
6069         .ret_type       = RET_INTEGER,
6070         .arg1_type      = ARG_PTR_TO_CTX,
6071         .arg2_type      = ARG_ANYTHING,
6072         .arg3_type      = ARG_ANYTHING,
6073 };
6074 #endif /* CONFIG_IPV6_SEG6_BPF */
6075
6076 #ifdef CONFIG_INET
6077 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6078                               int dif, int sdif, u8 family, u8 proto)
6079 {
6080         bool refcounted = false;
6081         struct sock *sk = NULL;
6082
6083         if (family == AF_INET) {
6084                 __be32 src4 = tuple->ipv4.saddr;
6085                 __be32 dst4 = tuple->ipv4.daddr;
6086
6087                 if (proto == IPPROTO_TCP)
6088                         sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
6089                                            src4, tuple->ipv4.sport,
6090                                            dst4, tuple->ipv4.dport,
6091                                            dif, sdif, &refcounted);
6092                 else
6093                         sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6094                                                dst4, tuple->ipv4.dport,
6095                                                dif, sdif, &udp_table, NULL);
6096 #if IS_ENABLED(CONFIG_IPV6)
6097         } else {
6098                 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6099                 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6100
6101                 if (proto == IPPROTO_TCP)
6102                         sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
6103                                             src6, tuple->ipv6.sport,
6104                                             dst6, ntohs(tuple->ipv6.dport),
6105                                             dif, sdif, &refcounted);
6106                 else if (likely(ipv6_bpf_stub))
6107                         sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6108                                                             src6, tuple->ipv6.sport,
6109                                                             dst6, tuple->ipv6.dport,
6110                                                             dif, sdif,
6111                                                             &udp_table, NULL);
6112 #endif
6113         }
6114
6115         if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6116                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6117                 sk = NULL;
6118         }
6119         return sk;
6120 }
6121
6122 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6123  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6124  * Returns the socket as an 'unsigned long' to simplify the casting in the
6125  * callers to satisfy BPF_CALL declarations.
6126  */
6127 static struct sock *
6128 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6129                  struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6130                  u64 flags)
6131 {
6132         struct sock *sk = NULL;
6133         u8 family = AF_UNSPEC;
6134         struct net *net;
6135         int sdif;
6136
6137         if (len == sizeof(tuple->ipv4))
6138                 family = AF_INET;
6139         else if (len == sizeof(tuple->ipv6))
6140                 family = AF_INET6;
6141         else
6142                 return NULL;
6143
6144         if (unlikely(family == AF_UNSPEC || flags ||
6145                      !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6146                 goto out;
6147
6148         if (family == AF_INET)
6149                 sdif = inet_sdif(skb);
6150         else
6151                 sdif = inet6_sdif(skb);
6152
6153         if ((s32)netns_id < 0) {
6154                 net = caller_net;
6155                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6156         } else {
6157                 net = get_net_ns_by_id(caller_net, netns_id);
6158                 if (unlikely(!net))
6159                         goto out;
6160                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6161                 put_net(net);
6162         }
6163
6164 out:
6165         return sk;
6166 }
6167
6168 static struct sock *
6169 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6170                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6171                 u64 flags)
6172 {
6173         struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6174                                            ifindex, proto, netns_id, flags);
6175
6176         if (sk) {
6177                 sk = sk_to_full_sk(sk);
6178                 if (!sk_fullsock(sk)) {
6179                         sock_gen_put(sk);
6180                         return NULL;
6181                 }
6182         }
6183
6184         return sk;
6185 }
6186
6187 static struct sock *
6188 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6189                u8 proto, u64 netns_id, u64 flags)
6190 {
6191         struct net *caller_net;
6192         int ifindex;
6193
6194         if (skb->dev) {
6195                 caller_net = dev_net(skb->dev);
6196                 ifindex = skb->dev->ifindex;
6197         } else {
6198                 caller_net = sock_net(skb->sk);
6199                 ifindex = 0;
6200         }
6201
6202         return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6203                                 netns_id, flags);
6204 }
6205
6206 static struct sock *
6207 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6208               u8 proto, u64 netns_id, u64 flags)
6209 {
6210         struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6211                                          flags);
6212
6213         if (sk) {
6214                 sk = sk_to_full_sk(sk);
6215                 if (!sk_fullsock(sk)) {
6216                         sock_gen_put(sk);
6217                         return NULL;
6218                 }
6219         }
6220
6221         return sk;
6222 }
6223
6224 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6225            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6226 {
6227         return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6228                                              netns_id, flags);
6229 }
6230
6231 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6232         .func           = bpf_skc_lookup_tcp,
6233         .gpl_only       = false,
6234         .pkt_access     = true,
6235         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6236         .arg1_type      = ARG_PTR_TO_CTX,
6237         .arg2_type      = ARG_PTR_TO_MEM,
6238         .arg3_type      = ARG_CONST_SIZE,
6239         .arg4_type      = ARG_ANYTHING,
6240         .arg5_type      = ARG_ANYTHING,
6241 };
6242
6243 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6244            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6245 {
6246         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6247                                             netns_id, flags);
6248 }
6249
6250 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6251         .func           = bpf_sk_lookup_tcp,
6252         .gpl_only       = false,
6253         .pkt_access     = true,
6254         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6255         .arg1_type      = ARG_PTR_TO_CTX,
6256         .arg2_type      = ARG_PTR_TO_MEM,
6257         .arg3_type      = ARG_CONST_SIZE,
6258         .arg4_type      = ARG_ANYTHING,
6259         .arg5_type      = ARG_ANYTHING,
6260 };
6261
6262 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6263            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6264 {
6265         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6266                                             netns_id, flags);
6267 }
6268
6269 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6270         .func           = bpf_sk_lookup_udp,
6271         .gpl_only       = false,
6272         .pkt_access     = true,
6273         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6274         .arg1_type      = ARG_PTR_TO_CTX,
6275         .arg2_type      = ARG_PTR_TO_MEM,
6276         .arg3_type      = ARG_CONST_SIZE,
6277         .arg4_type      = ARG_ANYTHING,
6278         .arg5_type      = ARG_ANYTHING,
6279 };
6280
6281 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6282 {
6283         if (sk && sk_is_refcounted(sk))
6284                 sock_gen_put(sk);
6285         return 0;
6286 }
6287
6288 static const struct bpf_func_proto bpf_sk_release_proto = {
6289         .func           = bpf_sk_release,
6290         .gpl_only       = false,
6291         .ret_type       = RET_INTEGER,
6292         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6293 };
6294
6295 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6296            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6297 {
6298         struct net *caller_net = dev_net(ctx->rxq->dev);
6299         int ifindex = ctx->rxq->dev->ifindex;
6300
6301         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6302                                               ifindex, IPPROTO_UDP, netns_id,
6303                                               flags);
6304 }
6305
6306 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6307         .func           = bpf_xdp_sk_lookup_udp,
6308         .gpl_only       = false,
6309         .pkt_access     = true,
6310         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6311         .arg1_type      = ARG_PTR_TO_CTX,
6312         .arg2_type      = ARG_PTR_TO_MEM,
6313         .arg3_type      = ARG_CONST_SIZE,
6314         .arg4_type      = ARG_ANYTHING,
6315         .arg5_type      = ARG_ANYTHING,
6316 };
6317
6318 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6319            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6320 {
6321         struct net *caller_net = dev_net(ctx->rxq->dev);
6322         int ifindex = ctx->rxq->dev->ifindex;
6323
6324         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6325                                                ifindex, IPPROTO_TCP, netns_id,
6326                                                flags);
6327 }
6328
6329 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6330         .func           = bpf_xdp_skc_lookup_tcp,
6331         .gpl_only       = false,
6332         .pkt_access     = true,
6333         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6334         .arg1_type      = ARG_PTR_TO_CTX,
6335         .arg2_type      = ARG_PTR_TO_MEM,
6336         .arg3_type      = ARG_CONST_SIZE,
6337         .arg4_type      = ARG_ANYTHING,
6338         .arg5_type      = ARG_ANYTHING,
6339 };
6340
6341 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6342            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6343 {
6344         struct net *caller_net = dev_net(ctx->rxq->dev);
6345         int ifindex = ctx->rxq->dev->ifindex;
6346
6347         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6348                                               ifindex, IPPROTO_TCP, netns_id,
6349                                               flags);
6350 }
6351
6352 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6353         .func           = bpf_xdp_sk_lookup_tcp,
6354         .gpl_only       = false,
6355         .pkt_access     = true,
6356         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6357         .arg1_type      = ARG_PTR_TO_CTX,
6358         .arg2_type      = ARG_PTR_TO_MEM,
6359         .arg3_type      = ARG_CONST_SIZE,
6360         .arg4_type      = ARG_ANYTHING,
6361         .arg5_type      = ARG_ANYTHING,
6362 };
6363
6364 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6365            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6366 {
6367         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6368                                                sock_net(ctx->sk), 0,
6369                                                IPPROTO_TCP, netns_id, flags);
6370 }
6371
6372 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6373         .func           = bpf_sock_addr_skc_lookup_tcp,
6374         .gpl_only       = false,
6375         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6376         .arg1_type      = ARG_PTR_TO_CTX,
6377         .arg2_type      = ARG_PTR_TO_MEM,
6378         .arg3_type      = ARG_CONST_SIZE,
6379         .arg4_type      = ARG_ANYTHING,
6380         .arg5_type      = ARG_ANYTHING,
6381 };
6382
6383 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6384            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6385 {
6386         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6387                                               sock_net(ctx->sk), 0, IPPROTO_TCP,
6388                                               netns_id, flags);
6389 }
6390
6391 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6392         .func           = bpf_sock_addr_sk_lookup_tcp,
6393         .gpl_only       = false,
6394         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6395         .arg1_type      = ARG_PTR_TO_CTX,
6396         .arg2_type      = ARG_PTR_TO_MEM,
6397         .arg3_type      = ARG_CONST_SIZE,
6398         .arg4_type      = ARG_ANYTHING,
6399         .arg5_type      = ARG_ANYTHING,
6400 };
6401
6402 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6403            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6404 {
6405         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6406                                               sock_net(ctx->sk), 0, IPPROTO_UDP,
6407                                               netns_id, flags);
6408 }
6409
6410 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6411         .func           = bpf_sock_addr_sk_lookup_udp,
6412         .gpl_only       = false,
6413         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6414         .arg1_type      = ARG_PTR_TO_CTX,
6415         .arg2_type      = ARG_PTR_TO_MEM,
6416         .arg3_type      = ARG_CONST_SIZE,
6417         .arg4_type      = ARG_ANYTHING,
6418         .arg5_type      = ARG_ANYTHING,
6419 };
6420
6421 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6422                                   struct bpf_insn_access_aux *info)
6423 {
6424         if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6425                                           icsk_retransmits))
6426                 return false;
6427
6428         if (off % size != 0)
6429                 return false;
6430
6431         switch (off) {
6432         case offsetof(struct bpf_tcp_sock, bytes_received):
6433         case offsetof(struct bpf_tcp_sock, bytes_acked):
6434                 return size == sizeof(__u64);
6435         default:
6436                 return size == sizeof(__u32);
6437         }
6438 }
6439
6440 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6441                                     const struct bpf_insn *si,
6442                                     struct bpf_insn *insn_buf,
6443                                     struct bpf_prog *prog, u32 *target_size)
6444 {
6445         struct bpf_insn *insn = insn_buf;
6446
6447 #define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
6448         do {                                                            \
6449                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >     \
6450                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6451                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6452                                       si->dst_reg, si->src_reg,         \
6453                                       offsetof(struct tcp_sock, FIELD)); \
6454         } while (0)
6455
6456 #define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
6457         do {                                                            \
6458                 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,  \
6459                                           FIELD) >                      \
6460                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6461                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
6462                                         struct inet_connection_sock,    \
6463                                         FIELD),                         \
6464                                       si->dst_reg, si->src_reg,         \
6465                                       offsetof(                         \
6466                                         struct inet_connection_sock,    \
6467                                         FIELD));                        \
6468         } while (0)
6469
6470         if (insn > insn_buf)
6471                 return insn - insn_buf;
6472
6473         switch (si->off) {
6474         case offsetof(struct bpf_tcp_sock, rtt_min):
6475                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6476                              sizeof(struct minmax));
6477                 BUILD_BUG_ON(sizeof(struct minmax) <
6478                              sizeof(struct minmax_sample));
6479
6480                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6481                                       offsetof(struct tcp_sock, rtt_min) +
6482                                       offsetof(struct minmax_sample, v));
6483                 break;
6484         case offsetof(struct bpf_tcp_sock, snd_cwnd):
6485                 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6486                 break;
6487         case offsetof(struct bpf_tcp_sock, srtt_us):
6488                 BPF_TCP_SOCK_GET_COMMON(srtt_us);
6489                 break;
6490         case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6491                 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6492                 break;
6493         case offsetof(struct bpf_tcp_sock, rcv_nxt):
6494                 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6495                 break;
6496         case offsetof(struct bpf_tcp_sock, snd_nxt):
6497                 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6498                 break;
6499         case offsetof(struct bpf_tcp_sock, snd_una):
6500                 BPF_TCP_SOCK_GET_COMMON(snd_una);
6501                 break;
6502         case offsetof(struct bpf_tcp_sock, mss_cache):
6503                 BPF_TCP_SOCK_GET_COMMON(mss_cache);
6504                 break;
6505         case offsetof(struct bpf_tcp_sock, ecn_flags):
6506                 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6507                 break;
6508         case offsetof(struct bpf_tcp_sock, rate_delivered):
6509                 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6510                 break;
6511         case offsetof(struct bpf_tcp_sock, rate_interval_us):
6512                 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6513                 break;
6514         case offsetof(struct bpf_tcp_sock, packets_out):
6515                 BPF_TCP_SOCK_GET_COMMON(packets_out);
6516                 break;
6517         case offsetof(struct bpf_tcp_sock, retrans_out):
6518                 BPF_TCP_SOCK_GET_COMMON(retrans_out);
6519                 break;
6520         case offsetof(struct bpf_tcp_sock, total_retrans):
6521                 BPF_TCP_SOCK_GET_COMMON(total_retrans);
6522                 break;
6523         case offsetof(struct bpf_tcp_sock, segs_in):
6524                 BPF_TCP_SOCK_GET_COMMON(segs_in);
6525                 break;
6526         case offsetof(struct bpf_tcp_sock, data_segs_in):
6527                 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6528                 break;
6529         case offsetof(struct bpf_tcp_sock, segs_out):
6530                 BPF_TCP_SOCK_GET_COMMON(segs_out);
6531                 break;
6532         case offsetof(struct bpf_tcp_sock, data_segs_out):
6533                 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6534                 break;
6535         case offsetof(struct bpf_tcp_sock, lost_out):
6536                 BPF_TCP_SOCK_GET_COMMON(lost_out);
6537                 break;
6538         case offsetof(struct bpf_tcp_sock, sacked_out):
6539                 BPF_TCP_SOCK_GET_COMMON(sacked_out);
6540                 break;
6541         case offsetof(struct bpf_tcp_sock, bytes_received):
6542                 BPF_TCP_SOCK_GET_COMMON(bytes_received);
6543                 break;
6544         case offsetof(struct bpf_tcp_sock, bytes_acked):
6545                 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6546                 break;
6547         case offsetof(struct bpf_tcp_sock, dsack_dups):
6548                 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6549                 break;
6550         case offsetof(struct bpf_tcp_sock, delivered):
6551                 BPF_TCP_SOCK_GET_COMMON(delivered);
6552                 break;
6553         case offsetof(struct bpf_tcp_sock, delivered_ce):
6554                 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6555                 break;
6556         case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6557                 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6558                 break;
6559         }
6560
6561         return insn - insn_buf;
6562 }
6563
6564 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6565 {
6566         if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6567                 return (unsigned long)sk;
6568
6569         return (unsigned long)NULL;
6570 }
6571
6572 const struct bpf_func_proto bpf_tcp_sock_proto = {
6573         .func           = bpf_tcp_sock,
6574         .gpl_only       = false,
6575         .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
6576         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6577 };
6578
6579 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6580 {
6581         sk = sk_to_full_sk(sk);
6582
6583         if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6584                 return (unsigned long)sk;
6585
6586         return (unsigned long)NULL;
6587 }
6588
6589 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6590         .func           = bpf_get_listener_sock,
6591         .gpl_only       = false,
6592         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6593         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6594 };
6595
6596 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6597 {
6598         unsigned int iphdr_len;
6599
6600         switch (skb_protocol(skb, true)) {
6601         case cpu_to_be16(ETH_P_IP):
6602                 iphdr_len = sizeof(struct iphdr);
6603                 break;
6604         case cpu_to_be16(ETH_P_IPV6):
6605                 iphdr_len = sizeof(struct ipv6hdr);
6606                 break;
6607         default:
6608                 return 0;
6609         }
6610
6611         if (skb_headlen(skb) < iphdr_len)
6612                 return 0;
6613
6614         if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6615                 return 0;
6616
6617         return INET_ECN_set_ce(skb);
6618 }
6619
6620 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6621                                   struct bpf_insn_access_aux *info)
6622 {
6623         if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6624                 return false;
6625
6626         if (off % size != 0)
6627                 return false;
6628
6629         switch (off) {
6630         default:
6631                 return size == sizeof(__u32);
6632         }
6633 }
6634
6635 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6636                                     const struct bpf_insn *si,
6637                                     struct bpf_insn *insn_buf,
6638                                     struct bpf_prog *prog, u32 *target_size)
6639 {
6640         struct bpf_insn *insn = insn_buf;
6641
6642 #define BPF_XDP_SOCK_GET(FIELD)                                         \
6643         do {                                                            \
6644                 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >     \
6645                              sizeof_field(struct bpf_xdp_sock, FIELD)); \
6646                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6647                                       si->dst_reg, si->src_reg,         \
6648                                       offsetof(struct xdp_sock, FIELD)); \
6649         } while (0)
6650
6651         switch (si->off) {
6652         case offsetof(struct bpf_xdp_sock, queue_id):
6653                 BPF_XDP_SOCK_GET(queue_id);
6654                 break;
6655         }
6656
6657         return insn - insn_buf;
6658 }
6659
6660 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
6661         .func           = bpf_skb_ecn_set_ce,
6662         .gpl_only       = false,
6663         .ret_type       = RET_INTEGER,
6664         .arg1_type      = ARG_PTR_TO_CTX,
6665 };
6666
6667 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6668            struct tcphdr *, th, u32, th_len)
6669 {
6670 #ifdef CONFIG_SYN_COOKIES
6671         u32 cookie;
6672         int ret;
6673
6674         if (unlikely(!sk || th_len < sizeof(*th)))
6675                 return -EINVAL;
6676
6677         /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
6678         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6679                 return -EINVAL;
6680
6681         if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6682                 return -EINVAL;
6683
6684         if (!th->ack || th->rst || th->syn)
6685                 return -ENOENT;
6686
6687         if (tcp_synq_no_recent_overflow(sk))
6688                 return -ENOENT;
6689
6690         cookie = ntohl(th->ack_seq) - 1;
6691
6692         switch (sk->sk_family) {
6693         case AF_INET:
6694                 if (unlikely(iph_len < sizeof(struct iphdr)))
6695                         return -EINVAL;
6696
6697                 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
6698                 break;
6699
6700 #if IS_BUILTIN(CONFIG_IPV6)
6701         case AF_INET6:
6702                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6703                         return -EINVAL;
6704
6705                 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
6706                 break;
6707 #endif /* CONFIG_IPV6 */
6708
6709         default:
6710                 return -EPROTONOSUPPORT;
6711         }
6712
6713         if (ret > 0)
6714                 return 0;
6715
6716         return -ENOENT;
6717 #else
6718         return -ENOTSUPP;
6719 #endif
6720 }
6721
6722 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
6723         .func           = bpf_tcp_check_syncookie,
6724         .gpl_only       = true,
6725         .pkt_access     = true,
6726         .ret_type       = RET_INTEGER,
6727         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6728         .arg2_type      = ARG_PTR_TO_MEM,
6729         .arg3_type      = ARG_CONST_SIZE,
6730         .arg4_type      = ARG_PTR_TO_MEM,
6731         .arg5_type      = ARG_CONST_SIZE,
6732 };
6733
6734 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6735            struct tcphdr *, th, u32, th_len)
6736 {
6737 #ifdef CONFIG_SYN_COOKIES
6738         u32 cookie;
6739         u16 mss;
6740
6741         if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
6742                 return -EINVAL;
6743
6744         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6745                 return -EINVAL;
6746
6747         if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6748                 return -ENOENT;
6749
6750         if (!th->syn || th->ack || th->fin || th->rst)
6751                 return -EINVAL;
6752
6753         if (unlikely(iph_len < sizeof(struct iphdr)))
6754                 return -EINVAL;
6755
6756         /* Both struct iphdr and struct ipv6hdr have the version field at the
6757          * same offset so we can cast to the shorter header (struct iphdr).
6758          */
6759         switch (((struct iphdr *)iph)->version) {
6760         case 4:
6761                 if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
6762                         return -EINVAL;
6763
6764                 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
6765                 break;
6766
6767 #if IS_BUILTIN(CONFIG_IPV6)
6768         case 6:
6769                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6770                         return -EINVAL;
6771
6772                 if (sk->sk_family != AF_INET6)
6773                         return -EINVAL;
6774
6775                 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
6776                 break;
6777 #endif /* CONFIG_IPV6 */
6778
6779         default:
6780                 return -EPROTONOSUPPORT;
6781         }
6782         if (mss == 0)
6783                 return -ENOENT;
6784
6785         return cookie | ((u64)mss << 32);
6786 #else
6787         return -EOPNOTSUPP;
6788 #endif /* CONFIG_SYN_COOKIES */
6789 }
6790
6791 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
6792         .func           = bpf_tcp_gen_syncookie,
6793         .gpl_only       = true, /* __cookie_v*_init_sequence() is GPL */
6794         .pkt_access     = true,
6795         .ret_type       = RET_INTEGER,
6796         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6797         .arg2_type      = ARG_PTR_TO_MEM,
6798         .arg3_type      = ARG_CONST_SIZE,
6799         .arg4_type      = ARG_PTR_TO_MEM,
6800         .arg5_type      = ARG_CONST_SIZE,
6801 };
6802
6803 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
6804 {
6805         if (!sk || flags != 0)
6806                 return -EINVAL;
6807         if (!skb_at_tc_ingress(skb))
6808                 return -EOPNOTSUPP;
6809         if (unlikely(dev_net(skb->dev) != sock_net(sk)))
6810                 return -ENETUNREACH;
6811         if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
6812                 return -ESOCKTNOSUPPORT;
6813         if (sk_is_refcounted(sk) &&
6814             unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
6815                 return -ENOENT;
6816
6817         skb_orphan(skb);
6818         skb->sk = sk;
6819         skb->destructor = sock_pfree;
6820
6821         return 0;
6822 }
6823
6824 static const struct bpf_func_proto bpf_sk_assign_proto = {
6825         .func           = bpf_sk_assign,
6826         .gpl_only       = false,
6827         .ret_type       = RET_INTEGER,
6828         .arg1_type      = ARG_PTR_TO_CTX,
6829         .arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6830         .arg3_type      = ARG_ANYTHING,
6831 };
6832
6833 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
6834                                     u8 search_kind, const u8 *magic,
6835                                     u8 magic_len, bool *eol)
6836 {
6837         u8 kind, kind_len;
6838
6839         *eol = false;
6840
6841         while (op < opend) {
6842                 kind = op[0];
6843
6844                 if (kind == TCPOPT_EOL) {
6845                         *eol = true;
6846                         return ERR_PTR(-ENOMSG);
6847                 } else if (kind == TCPOPT_NOP) {
6848                         op++;
6849                         continue;
6850                 }
6851
6852                 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
6853                         /* Something is wrong in the received header.
6854                          * Follow the TCP stack's tcp_parse_options()
6855                          * and just bail here.
6856                          */
6857                         return ERR_PTR(-EFAULT);
6858
6859                 kind_len = op[1];
6860                 if (search_kind == kind) {
6861                         if (!magic_len)
6862                                 return op;
6863
6864                         if (magic_len > kind_len - 2)
6865                                 return ERR_PTR(-ENOMSG);
6866
6867                         if (!memcmp(&op[2], magic, magic_len))
6868                                 return op;
6869                 }
6870
6871                 op += kind_len;
6872         }
6873
6874         return ERR_PTR(-ENOMSG);
6875 }
6876
6877 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6878            void *, search_res, u32, len, u64, flags)
6879 {
6880         bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
6881         const u8 *op, *opend, *magic, *search = search_res;
6882         u8 search_kind, search_len, copy_len, magic_len;
6883         int ret;
6884
6885         /* 2 byte is the minimal option len except TCPOPT_NOP and
6886          * TCPOPT_EOL which are useless for the bpf prog to learn
6887          * and this helper disallow loading them also.
6888          */
6889         if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
6890                 return -EINVAL;
6891
6892         search_kind = search[0];
6893         search_len = search[1];
6894
6895         if (search_len > len || search_kind == TCPOPT_NOP ||
6896             search_kind == TCPOPT_EOL)
6897                 return -EINVAL;
6898
6899         if (search_kind == TCPOPT_EXP || search_kind == 253) {
6900                 /* 16 or 32 bit magic.  +2 for kind and kind length */
6901                 if (search_len != 4 && search_len != 6)
6902                         return -EINVAL;
6903                 magic = &search[2];
6904                 magic_len = search_len - 2;
6905         } else {
6906                 if (search_len)
6907                         return -EINVAL;
6908                 magic = NULL;
6909                 magic_len = 0;
6910         }
6911
6912         if (load_syn) {
6913                 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
6914                 if (ret < 0)
6915                         return ret;
6916
6917                 opend = op + ret;
6918                 op += sizeof(struct tcphdr);
6919         } else {
6920                 if (!bpf_sock->skb ||
6921                     bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6922                         /* This bpf_sock->op cannot call this helper */
6923                         return -EPERM;
6924
6925                 opend = bpf_sock->skb_data_end;
6926                 op = bpf_sock->skb->data + sizeof(struct tcphdr);
6927         }
6928
6929         op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
6930                                 &eol);
6931         if (IS_ERR(op))
6932                 return PTR_ERR(op);
6933
6934         copy_len = op[1];
6935         ret = copy_len;
6936         if (copy_len > len) {
6937                 ret = -ENOSPC;
6938                 copy_len = len;
6939         }
6940
6941         memcpy(search_res, op, copy_len);
6942         return ret;
6943 }
6944
6945 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
6946         .func           = bpf_sock_ops_load_hdr_opt,
6947         .gpl_only       = false,
6948         .ret_type       = RET_INTEGER,
6949         .arg1_type      = ARG_PTR_TO_CTX,
6950         .arg2_type      = ARG_PTR_TO_MEM,
6951         .arg3_type      = ARG_CONST_SIZE,
6952         .arg4_type      = ARG_ANYTHING,
6953 };
6954
6955 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6956            const void *, from, u32, len, u64, flags)
6957 {
6958         u8 new_kind, new_kind_len, magic_len = 0, *opend;
6959         const u8 *op, *new_op, *magic = NULL;
6960         struct sk_buff *skb;
6961         bool eol;
6962
6963         if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
6964                 return -EPERM;
6965
6966         if (len < 2 || flags)
6967                 return -EINVAL;
6968
6969         new_op = from;
6970         new_kind = new_op[0];
6971         new_kind_len = new_op[1];
6972
6973         if (new_kind_len > len || new_kind == TCPOPT_NOP ||
6974             new_kind == TCPOPT_EOL)
6975                 return -EINVAL;
6976
6977         if (new_kind_len > bpf_sock->remaining_opt_len)
6978                 return -ENOSPC;
6979
6980         /* 253 is another experimental kind */
6981         if (new_kind == TCPOPT_EXP || new_kind == 253)  {
6982                 if (new_kind_len < 4)
6983                         return -EINVAL;
6984                 /* Match for the 2 byte magic also.
6985                  * RFC 6994: the magic could be 2 or 4 bytes.
6986                  * Hence, matching by 2 byte only is on the
6987                  * conservative side but it is the right
6988                  * thing to do for the 'search-for-duplication'
6989                  * purpose.
6990                  */
6991                 magic = &new_op[2];
6992                 magic_len = 2;
6993         }
6994
6995         /* Check for duplication */
6996         skb = bpf_sock->skb;
6997         op = skb->data + sizeof(struct tcphdr);
6998         opend = bpf_sock->skb_data_end;
6999
7000         op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7001                                 &eol);
7002         if (!IS_ERR(op))
7003                 return -EEXIST;
7004
7005         if (PTR_ERR(op) != -ENOMSG)
7006                 return PTR_ERR(op);
7007
7008         if (eol)
7009                 /* The option has been ended.  Treat it as no more
7010                  * header option can be written.
7011                  */
7012                 return -ENOSPC;
7013
7014         /* No duplication found.  Store the header option. */
7015         memcpy(opend, from, new_kind_len);
7016
7017         bpf_sock->remaining_opt_len -= new_kind_len;
7018         bpf_sock->skb_data_end += new_kind_len;
7019
7020         return 0;
7021 }
7022
7023 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7024         .func           = bpf_sock_ops_store_hdr_opt,
7025         .gpl_only       = false,
7026         .ret_type       = RET_INTEGER,
7027         .arg1_type      = ARG_PTR_TO_CTX,
7028         .arg2_type      = ARG_PTR_TO_MEM,
7029         .arg3_type      = ARG_CONST_SIZE,
7030         .arg4_type      = ARG_ANYTHING,
7031 };
7032
7033 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7034            u32, len, u64, flags)
7035 {
7036         if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7037                 return -EPERM;
7038
7039         if (flags || len < 2)
7040                 return -EINVAL;
7041
7042         if (len > bpf_sock->remaining_opt_len)
7043                 return -ENOSPC;
7044
7045         bpf_sock->remaining_opt_len -= len;
7046
7047         return 0;
7048 }
7049
7050 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7051         .func           = bpf_sock_ops_reserve_hdr_opt,
7052         .gpl_only       = false,
7053         .ret_type       = RET_INTEGER,
7054         .arg1_type      = ARG_PTR_TO_CTX,
7055         .arg2_type      = ARG_ANYTHING,
7056         .arg3_type      = ARG_ANYTHING,
7057 };
7058
7059 #endif /* CONFIG_INET */
7060
7061 bool bpf_helper_changes_pkt_data(void *func)
7062 {
7063         if (func == bpf_skb_vlan_push ||
7064             func == bpf_skb_vlan_pop ||
7065             func == bpf_skb_store_bytes ||
7066             func == bpf_skb_change_proto ||
7067             func == bpf_skb_change_head ||
7068             func == sk_skb_change_head ||
7069             func == bpf_skb_change_tail ||
7070             func == sk_skb_change_tail ||
7071             func == bpf_skb_adjust_room ||
7072             func == sk_skb_adjust_room ||
7073             func == bpf_skb_pull_data ||
7074             func == sk_skb_pull_data ||
7075             func == bpf_clone_redirect ||
7076             func == bpf_l3_csum_replace ||
7077             func == bpf_l4_csum_replace ||
7078             func == bpf_xdp_adjust_head ||
7079             func == bpf_xdp_adjust_meta ||
7080             func == bpf_msg_pull_data ||
7081             func == bpf_msg_push_data ||
7082             func == bpf_msg_pop_data ||
7083             func == bpf_xdp_adjust_tail ||
7084 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7085             func == bpf_lwt_seg6_store_bytes ||
7086             func == bpf_lwt_seg6_adjust_srh ||
7087             func == bpf_lwt_seg6_action ||
7088 #endif
7089 #ifdef CONFIG_INET
7090             func == bpf_sock_ops_store_hdr_opt ||
7091 #endif
7092             func == bpf_lwt_in_push_encap ||
7093             func == bpf_lwt_xmit_push_encap)
7094                 return true;
7095
7096         return false;
7097 }
7098
7099 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7100 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7101
7102 static const struct bpf_func_proto *
7103 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7104 {
7105         switch (func_id) {
7106         /* inet and inet6 sockets are created in a process
7107          * context so there is always a valid uid/gid
7108          */
7109         case BPF_FUNC_get_current_uid_gid:
7110                 return &bpf_get_current_uid_gid_proto;
7111         case BPF_FUNC_get_local_storage:
7112                 return &bpf_get_local_storage_proto;
7113         case BPF_FUNC_get_socket_cookie:
7114                 return &bpf_get_socket_cookie_sock_proto;
7115         case BPF_FUNC_get_netns_cookie:
7116                 return &bpf_get_netns_cookie_sock_proto;
7117         case BPF_FUNC_perf_event_output:
7118                 return &bpf_event_output_data_proto;
7119         case BPF_FUNC_get_current_pid_tgid:
7120                 return &bpf_get_current_pid_tgid_proto;
7121         case BPF_FUNC_get_current_comm:
7122                 return &bpf_get_current_comm_proto;
7123 #ifdef CONFIG_CGROUPS
7124         case BPF_FUNC_get_current_cgroup_id:
7125                 return &bpf_get_current_cgroup_id_proto;
7126         case BPF_FUNC_get_current_ancestor_cgroup_id:
7127                 return &bpf_get_current_ancestor_cgroup_id_proto;
7128 #endif
7129 #ifdef CONFIG_CGROUP_NET_CLASSID
7130         case BPF_FUNC_get_cgroup_classid:
7131                 return &bpf_get_cgroup_classid_curr_proto;
7132 #endif
7133         case BPF_FUNC_sk_storage_get:
7134                 return &bpf_sk_storage_get_cg_sock_proto;
7135         default:
7136                 return bpf_base_func_proto(func_id);
7137         }
7138 }
7139
7140 static const struct bpf_func_proto *
7141 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7142 {
7143         switch (func_id) {
7144         /* inet and inet6 sockets are created in a process
7145          * context so there is always a valid uid/gid
7146          */
7147         case BPF_FUNC_get_current_uid_gid:
7148                 return &bpf_get_current_uid_gid_proto;
7149         case BPF_FUNC_bind:
7150                 switch (prog->expected_attach_type) {
7151                 case BPF_CGROUP_INET4_CONNECT:
7152                 case BPF_CGROUP_INET6_CONNECT:
7153                         return &bpf_bind_proto;
7154                 default:
7155                         return NULL;
7156                 }
7157         case BPF_FUNC_get_socket_cookie:
7158                 return &bpf_get_socket_cookie_sock_addr_proto;
7159         case BPF_FUNC_get_netns_cookie:
7160                 return &bpf_get_netns_cookie_sock_addr_proto;
7161         case BPF_FUNC_get_local_storage:
7162                 return &bpf_get_local_storage_proto;
7163         case BPF_FUNC_perf_event_output:
7164                 return &bpf_event_output_data_proto;
7165         case BPF_FUNC_get_current_pid_tgid:
7166                 return &bpf_get_current_pid_tgid_proto;
7167         case BPF_FUNC_get_current_comm:
7168                 return &bpf_get_current_comm_proto;
7169 #ifdef CONFIG_CGROUPS
7170         case BPF_FUNC_get_current_cgroup_id:
7171                 return &bpf_get_current_cgroup_id_proto;
7172         case BPF_FUNC_get_current_ancestor_cgroup_id:
7173                 return &bpf_get_current_ancestor_cgroup_id_proto;
7174 #endif
7175 #ifdef CONFIG_CGROUP_NET_CLASSID
7176         case BPF_FUNC_get_cgroup_classid:
7177                 return &bpf_get_cgroup_classid_curr_proto;
7178 #endif
7179 #ifdef CONFIG_INET
7180         case BPF_FUNC_sk_lookup_tcp:
7181                 return &bpf_sock_addr_sk_lookup_tcp_proto;
7182         case BPF_FUNC_sk_lookup_udp:
7183                 return &bpf_sock_addr_sk_lookup_udp_proto;
7184         case BPF_FUNC_sk_release:
7185                 return &bpf_sk_release_proto;
7186         case BPF_FUNC_skc_lookup_tcp:
7187                 return &bpf_sock_addr_skc_lookup_tcp_proto;
7188 #endif /* CONFIG_INET */
7189         case BPF_FUNC_sk_storage_get:
7190                 return &bpf_sk_storage_get_proto;
7191         case BPF_FUNC_sk_storage_delete:
7192                 return &bpf_sk_storage_delete_proto;
7193         case BPF_FUNC_setsockopt:
7194                 switch (prog->expected_attach_type) {
7195                 case BPF_CGROUP_INET4_BIND:
7196                 case BPF_CGROUP_INET6_BIND:
7197                 case BPF_CGROUP_INET4_CONNECT:
7198                 case BPF_CGROUP_INET6_CONNECT:
7199                 case BPF_CGROUP_UDP4_RECVMSG:
7200                 case BPF_CGROUP_UDP6_RECVMSG:
7201                 case BPF_CGROUP_UDP4_SENDMSG:
7202                 case BPF_CGROUP_UDP6_SENDMSG:
7203                 case BPF_CGROUP_INET4_GETPEERNAME:
7204                 case BPF_CGROUP_INET6_GETPEERNAME:
7205                 case BPF_CGROUP_INET4_GETSOCKNAME:
7206                 case BPF_CGROUP_INET6_GETSOCKNAME:
7207                         return &bpf_sock_addr_setsockopt_proto;
7208                 default:
7209                         return NULL;
7210                 }
7211         case BPF_FUNC_getsockopt:
7212                 switch (prog->expected_attach_type) {
7213                 case BPF_CGROUP_INET4_BIND:
7214                 case BPF_CGROUP_INET6_BIND:
7215                 case BPF_CGROUP_INET4_CONNECT:
7216                 case BPF_CGROUP_INET6_CONNECT:
7217                 case BPF_CGROUP_UDP4_RECVMSG:
7218                 case BPF_CGROUP_UDP6_RECVMSG:
7219                 case BPF_CGROUP_UDP4_SENDMSG:
7220                 case BPF_CGROUP_UDP6_SENDMSG:
7221                 case BPF_CGROUP_INET4_GETPEERNAME:
7222                 case BPF_CGROUP_INET6_GETPEERNAME:
7223                 case BPF_CGROUP_INET4_GETSOCKNAME:
7224                 case BPF_CGROUP_INET6_GETSOCKNAME:
7225                         return &bpf_sock_addr_getsockopt_proto;
7226                 default:
7227                         return NULL;
7228                 }
7229         default:
7230                 return bpf_sk_base_func_proto(func_id);
7231         }
7232 }
7233
7234 static const struct bpf_func_proto *
7235 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7236 {
7237         switch (func_id) {
7238         case BPF_FUNC_skb_load_bytes:
7239                 return &bpf_skb_load_bytes_proto;
7240         case BPF_FUNC_skb_load_bytes_relative:
7241                 return &bpf_skb_load_bytes_relative_proto;
7242         case BPF_FUNC_get_socket_cookie:
7243                 return &bpf_get_socket_cookie_proto;
7244         case BPF_FUNC_get_socket_uid:
7245                 return &bpf_get_socket_uid_proto;
7246         case BPF_FUNC_perf_event_output:
7247                 return &bpf_skb_event_output_proto;
7248         default:
7249                 return bpf_sk_base_func_proto(func_id);
7250         }
7251 }
7252
7253 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7254 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7255
7256 static const struct bpf_func_proto *
7257 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7258 {
7259         switch (func_id) {
7260         case BPF_FUNC_get_local_storage:
7261                 return &bpf_get_local_storage_proto;
7262         case BPF_FUNC_sk_fullsock:
7263                 return &bpf_sk_fullsock_proto;
7264         case BPF_FUNC_sk_storage_get:
7265                 return &bpf_sk_storage_get_proto;
7266         case BPF_FUNC_sk_storage_delete:
7267                 return &bpf_sk_storage_delete_proto;
7268         case BPF_FUNC_perf_event_output:
7269                 return &bpf_skb_event_output_proto;
7270 #ifdef CONFIG_SOCK_CGROUP_DATA
7271         case BPF_FUNC_skb_cgroup_id:
7272                 return &bpf_skb_cgroup_id_proto;
7273         case BPF_FUNC_skb_ancestor_cgroup_id:
7274                 return &bpf_skb_ancestor_cgroup_id_proto;
7275         case BPF_FUNC_sk_cgroup_id:
7276                 return &bpf_sk_cgroup_id_proto;
7277         case BPF_FUNC_sk_ancestor_cgroup_id:
7278                 return &bpf_sk_ancestor_cgroup_id_proto;
7279 #endif
7280 #ifdef CONFIG_INET
7281         case BPF_FUNC_sk_lookup_tcp:
7282                 return &bpf_sk_lookup_tcp_proto;
7283         case BPF_FUNC_sk_lookup_udp:
7284                 return &bpf_sk_lookup_udp_proto;
7285         case BPF_FUNC_sk_release:
7286                 return &bpf_sk_release_proto;
7287         case BPF_FUNC_skc_lookup_tcp:
7288                 return &bpf_skc_lookup_tcp_proto;
7289         case BPF_FUNC_tcp_sock:
7290                 return &bpf_tcp_sock_proto;
7291         case BPF_FUNC_get_listener_sock:
7292                 return &bpf_get_listener_sock_proto;
7293         case BPF_FUNC_skb_ecn_set_ce:
7294                 return &bpf_skb_ecn_set_ce_proto;
7295 #endif
7296         default:
7297                 return sk_filter_func_proto(func_id, prog);
7298         }
7299 }
7300
7301 static const struct bpf_func_proto *
7302 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7303 {
7304         switch (func_id) {
7305         case BPF_FUNC_skb_store_bytes:
7306                 return &bpf_skb_store_bytes_proto;
7307         case BPF_FUNC_skb_load_bytes:
7308                 return &bpf_skb_load_bytes_proto;
7309         case BPF_FUNC_skb_load_bytes_relative:
7310                 return &bpf_skb_load_bytes_relative_proto;
7311         case BPF_FUNC_skb_pull_data:
7312                 return &bpf_skb_pull_data_proto;
7313         case BPF_FUNC_csum_diff:
7314                 return &bpf_csum_diff_proto;
7315         case BPF_FUNC_csum_update:
7316                 return &bpf_csum_update_proto;
7317         case BPF_FUNC_csum_level:
7318                 return &bpf_csum_level_proto;
7319         case BPF_FUNC_l3_csum_replace:
7320                 return &bpf_l3_csum_replace_proto;
7321         case BPF_FUNC_l4_csum_replace:
7322                 return &bpf_l4_csum_replace_proto;
7323         case BPF_FUNC_clone_redirect:
7324                 return &bpf_clone_redirect_proto;
7325         case BPF_FUNC_get_cgroup_classid:
7326                 return &bpf_get_cgroup_classid_proto;
7327         case BPF_FUNC_skb_vlan_push:
7328                 return &bpf_skb_vlan_push_proto;
7329         case BPF_FUNC_skb_vlan_pop:
7330                 return &bpf_skb_vlan_pop_proto;
7331         case BPF_FUNC_skb_change_proto:
7332                 return &bpf_skb_change_proto_proto;
7333         case BPF_FUNC_skb_change_type:
7334                 return &bpf_skb_change_type_proto;
7335         case BPF_FUNC_skb_adjust_room:
7336                 return &bpf_skb_adjust_room_proto;
7337         case BPF_FUNC_skb_change_tail:
7338                 return &bpf_skb_change_tail_proto;
7339         case BPF_FUNC_skb_change_head:
7340                 return &bpf_skb_change_head_proto;
7341         case BPF_FUNC_skb_get_tunnel_key:
7342                 return &bpf_skb_get_tunnel_key_proto;
7343         case BPF_FUNC_skb_set_tunnel_key:
7344                 return bpf_get_skb_set_tunnel_proto(func_id);
7345         case BPF_FUNC_skb_get_tunnel_opt:
7346                 return &bpf_skb_get_tunnel_opt_proto;
7347         case BPF_FUNC_skb_set_tunnel_opt:
7348                 return bpf_get_skb_set_tunnel_proto(func_id);
7349         case BPF_FUNC_redirect:
7350                 return &bpf_redirect_proto;
7351         case BPF_FUNC_redirect_neigh:
7352                 return &bpf_redirect_neigh_proto;
7353         case BPF_FUNC_redirect_peer:
7354                 return &bpf_redirect_peer_proto;
7355         case BPF_FUNC_get_route_realm:
7356                 return &bpf_get_route_realm_proto;
7357         case BPF_FUNC_get_hash_recalc:
7358                 return &bpf_get_hash_recalc_proto;
7359         case BPF_FUNC_set_hash_invalid:
7360                 return &bpf_set_hash_invalid_proto;
7361         case BPF_FUNC_set_hash:
7362                 return &bpf_set_hash_proto;
7363         case BPF_FUNC_perf_event_output:
7364                 return &bpf_skb_event_output_proto;
7365         case BPF_FUNC_get_smp_processor_id:
7366                 return &bpf_get_smp_processor_id_proto;
7367         case BPF_FUNC_skb_under_cgroup:
7368                 return &bpf_skb_under_cgroup_proto;
7369         case BPF_FUNC_get_socket_cookie:
7370                 return &bpf_get_socket_cookie_proto;
7371         case BPF_FUNC_get_socket_uid:
7372                 return &bpf_get_socket_uid_proto;
7373         case BPF_FUNC_fib_lookup:
7374                 return &bpf_skb_fib_lookup_proto;
7375         case BPF_FUNC_check_mtu:
7376                 return &bpf_skb_check_mtu_proto;
7377         case BPF_FUNC_sk_fullsock:
7378                 return &bpf_sk_fullsock_proto;
7379         case BPF_FUNC_sk_storage_get:
7380                 return &bpf_sk_storage_get_proto;
7381         case BPF_FUNC_sk_storage_delete:
7382                 return &bpf_sk_storage_delete_proto;
7383 #ifdef CONFIG_XFRM
7384         case BPF_FUNC_skb_get_xfrm_state:
7385                 return &bpf_skb_get_xfrm_state_proto;
7386 #endif
7387 #ifdef CONFIG_CGROUP_NET_CLASSID
7388         case BPF_FUNC_skb_cgroup_classid:
7389                 return &bpf_skb_cgroup_classid_proto;
7390 #endif
7391 #ifdef CONFIG_SOCK_CGROUP_DATA
7392         case BPF_FUNC_skb_cgroup_id:
7393                 return &bpf_skb_cgroup_id_proto;
7394         case BPF_FUNC_skb_ancestor_cgroup_id:
7395                 return &bpf_skb_ancestor_cgroup_id_proto;
7396 #endif
7397 #ifdef CONFIG_INET
7398         case BPF_FUNC_sk_lookup_tcp:
7399                 return &bpf_sk_lookup_tcp_proto;
7400         case BPF_FUNC_sk_lookup_udp:
7401                 return &bpf_sk_lookup_udp_proto;
7402         case BPF_FUNC_sk_release:
7403                 return &bpf_sk_release_proto;
7404         case BPF_FUNC_tcp_sock:
7405                 return &bpf_tcp_sock_proto;
7406         case BPF_FUNC_get_listener_sock:
7407                 return &bpf_get_listener_sock_proto;
7408         case BPF_FUNC_skc_lookup_tcp:
7409                 return &bpf_skc_lookup_tcp_proto;
7410         case BPF_FUNC_tcp_check_syncookie:
7411                 return &bpf_tcp_check_syncookie_proto;
7412         case BPF_FUNC_skb_ecn_set_ce:
7413                 return &bpf_skb_ecn_set_ce_proto;
7414         case BPF_FUNC_tcp_gen_syncookie:
7415                 return &bpf_tcp_gen_syncookie_proto;
7416         case BPF_FUNC_sk_assign:
7417                 return &bpf_sk_assign_proto;
7418 #endif
7419         default:
7420                 return bpf_sk_base_func_proto(func_id);
7421         }
7422 }
7423
7424 static const struct bpf_func_proto *
7425 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7426 {
7427         switch (func_id) {
7428         case BPF_FUNC_perf_event_output:
7429                 return &bpf_xdp_event_output_proto;
7430         case BPF_FUNC_get_smp_processor_id:
7431                 return &bpf_get_smp_processor_id_proto;
7432         case BPF_FUNC_csum_diff:
7433                 return &bpf_csum_diff_proto;
7434         case BPF_FUNC_xdp_adjust_head:
7435                 return &bpf_xdp_adjust_head_proto;
7436         case BPF_FUNC_xdp_adjust_meta:
7437                 return &bpf_xdp_adjust_meta_proto;
7438         case BPF_FUNC_redirect:
7439                 return &bpf_xdp_redirect_proto;
7440         case BPF_FUNC_redirect_map:
7441                 return &bpf_xdp_redirect_map_proto;
7442         case BPF_FUNC_xdp_adjust_tail:
7443                 return &bpf_xdp_adjust_tail_proto;
7444         case BPF_FUNC_fib_lookup:
7445                 return &bpf_xdp_fib_lookup_proto;
7446         case BPF_FUNC_check_mtu:
7447                 return &bpf_xdp_check_mtu_proto;
7448 #ifdef CONFIG_INET
7449         case BPF_FUNC_sk_lookup_udp:
7450                 return &bpf_xdp_sk_lookup_udp_proto;
7451         case BPF_FUNC_sk_lookup_tcp:
7452                 return &bpf_xdp_sk_lookup_tcp_proto;
7453         case BPF_FUNC_sk_release:
7454                 return &bpf_sk_release_proto;
7455         case BPF_FUNC_skc_lookup_tcp:
7456                 return &bpf_xdp_skc_lookup_tcp_proto;
7457         case BPF_FUNC_tcp_check_syncookie:
7458                 return &bpf_tcp_check_syncookie_proto;
7459         case BPF_FUNC_tcp_gen_syncookie:
7460                 return &bpf_tcp_gen_syncookie_proto;
7461 #endif
7462         default:
7463                 return bpf_sk_base_func_proto(func_id);
7464         }
7465 }
7466
7467 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7468 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7469
7470 static const struct bpf_func_proto *
7471 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7472 {
7473         switch (func_id) {
7474         case BPF_FUNC_setsockopt:
7475                 return &bpf_sock_ops_setsockopt_proto;
7476         case BPF_FUNC_getsockopt:
7477                 return &bpf_sock_ops_getsockopt_proto;
7478         case BPF_FUNC_sock_ops_cb_flags_set:
7479                 return &bpf_sock_ops_cb_flags_set_proto;
7480         case BPF_FUNC_sock_map_update:
7481                 return &bpf_sock_map_update_proto;
7482         case BPF_FUNC_sock_hash_update:
7483                 return &bpf_sock_hash_update_proto;
7484         case BPF_FUNC_get_socket_cookie:
7485                 return &bpf_get_socket_cookie_sock_ops_proto;
7486         case BPF_FUNC_get_local_storage:
7487                 return &bpf_get_local_storage_proto;
7488         case BPF_FUNC_perf_event_output:
7489                 return &bpf_event_output_data_proto;
7490         case BPF_FUNC_sk_storage_get:
7491                 return &bpf_sk_storage_get_proto;
7492         case BPF_FUNC_sk_storage_delete:
7493                 return &bpf_sk_storage_delete_proto;
7494 #ifdef CONFIG_INET
7495         case BPF_FUNC_load_hdr_opt:
7496                 return &bpf_sock_ops_load_hdr_opt_proto;
7497         case BPF_FUNC_store_hdr_opt:
7498                 return &bpf_sock_ops_store_hdr_opt_proto;
7499         case BPF_FUNC_reserve_hdr_opt:
7500                 return &bpf_sock_ops_reserve_hdr_opt_proto;
7501         case BPF_FUNC_tcp_sock:
7502                 return &bpf_tcp_sock_proto;
7503 #endif /* CONFIG_INET */
7504         default:
7505                 return bpf_sk_base_func_proto(func_id);
7506         }
7507 }
7508
7509 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7510 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7511
7512 static const struct bpf_func_proto *
7513 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7514 {
7515         switch (func_id) {
7516         case BPF_FUNC_msg_redirect_map:
7517                 return &bpf_msg_redirect_map_proto;
7518         case BPF_FUNC_msg_redirect_hash:
7519                 return &bpf_msg_redirect_hash_proto;
7520         case BPF_FUNC_msg_apply_bytes:
7521                 return &bpf_msg_apply_bytes_proto;
7522         case BPF_FUNC_msg_cork_bytes:
7523                 return &bpf_msg_cork_bytes_proto;
7524         case BPF_FUNC_msg_pull_data:
7525                 return &bpf_msg_pull_data_proto;
7526         case BPF_FUNC_msg_push_data:
7527                 return &bpf_msg_push_data_proto;
7528         case BPF_FUNC_msg_pop_data:
7529                 return &bpf_msg_pop_data_proto;
7530         case BPF_FUNC_perf_event_output:
7531                 return &bpf_event_output_data_proto;
7532         case BPF_FUNC_get_current_uid_gid:
7533                 return &bpf_get_current_uid_gid_proto;
7534         case BPF_FUNC_get_current_pid_tgid:
7535                 return &bpf_get_current_pid_tgid_proto;
7536         case BPF_FUNC_sk_storage_get:
7537                 return &bpf_sk_storage_get_proto;
7538         case BPF_FUNC_sk_storage_delete:
7539                 return &bpf_sk_storage_delete_proto;
7540 #ifdef CONFIG_CGROUPS
7541         case BPF_FUNC_get_current_cgroup_id:
7542                 return &bpf_get_current_cgroup_id_proto;
7543         case BPF_FUNC_get_current_ancestor_cgroup_id:
7544                 return &bpf_get_current_ancestor_cgroup_id_proto;
7545 #endif
7546 #ifdef CONFIG_CGROUP_NET_CLASSID
7547         case BPF_FUNC_get_cgroup_classid:
7548                 return &bpf_get_cgroup_classid_curr_proto;
7549 #endif
7550         default:
7551                 return bpf_sk_base_func_proto(func_id);
7552         }
7553 }
7554
7555 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
7556 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
7557
7558 static const struct bpf_func_proto *
7559 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7560 {
7561         switch (func_id) {
7562         case BPF_FUNC_skb_store_bytes:
7563                 return &bpf_skb_store_bytes_proto;
7564         case BPF_FUNC_skb_load_bytes:
7565                 return &bpf_skb_load_bytes_proto;
7566         case BPF_FUNC_skb_pull_data:
7567                 return &sk_skb_pull_data_proto;
7568         case BPF_FUNC_skb_change_tail:
7569                 return &sk_skb_change_tail_proto;
7570         case BPF_FUNC_skb_change_head:
7571                 return &sk_skb_change_head_proto;
7572         case BPF_FUNC_skb_adjust_room:
7573                 return &sk_skb_adjust_room_proto;
7574         case BPF_FUNC_get_socket_cookie:
7575                 return &bpf_get_socket_cookie_proto;
7576         case BPF_FUNC_get_socket_uid:
7577                 return &bpf_get_socket_uid_proto;
7578         case BPF_FUNC_sk_redirect_map:
7579                 return &bpf_sk_redirect_map_proto;
7580         case BPF_FUNC_sk_redirect_hash:
7581                 return &bpf_sk_redirect_hash_proto;
7582         case BPF_FUNC_perf_event_output:
7583                 return &bpf_skb_event_output_proto;
7584 #ifdef CONFIG_INET
7585         case BPF_FUNC_sk_lookup_tcp:
7586                 return &bpf_sk_lookup_tcp_proto;
7587         case BPF_FUNC_sk_lookup_udp:
7588                 return &bpf_sk_lookup_udp_proto;
7589         case BPF_FUNC_sk_release:
7590                 return &bpf_sk_release_proto;
7591         case BPF_FUNC_skc_lookup_tcp:
7592                 return &bpf_skc_lookup_tcp_proto;
7593 #endif
7594         default:
7595                 return bpf_sk_base_func_proto(func_id);
7596         }
7597 }
7598
7599 static const struct bpf_func_proto *
7600 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7601 {
7602         switch (func_id) {
7603         case BPF_FUNC_skb_load_bytes:
7604                 return &bpf_flow_dissector_load_bytes_proto;
7605         default:
7606                 return bpf_sk_base_func_proto(func_id);
7607         }
7608 }
7609
7610 static const struct bpf_func_proto *
7611 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7612 {
7613         switch (func_id) {
7614         case BPF_FUNC_skb_load_bytes:
7615                 return &bpf_skb_load_bytes_proto;
7616         case BPF_FUNC_skb_pull_data:
7617                 return &bpf_skb_pull_data_proto;
7618         case BPF_FUNC_csum_diff:
7619                 return &bpf_csum_diff_proto;
7620         case BPF_FUNC_get_cgroup_classid:
7621                 return &bpf_get_cgroup_classid_proto;
7622         case BPF_FUNC_get_route_realm:
7623                 return &bpf_get_route_realm_proto;
7624         case BPF_FUNC_get_hash_recalc:
7625                 return &bpf_get_hash_recalc_proto;
7626         case BPF_FUNC_perf_event_output:
7627                 return &bpf_skb_event_output_proto;
7628         case BPF_FUNC_get_smp_processor_id:
7629                 return &bpf_get_smp_processor_id_proto;
7630         case BPF_FUNC_skb_under_cgroup:
7631                 return &bpf_skb_under_cgroup_proto;
7632         default:
7633                 return bpf_sk_base_func_proto(func_id);
7634         }
7635 }
7636
7637 static const struct bpf_func_proto *
7638 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7639 {
7640         switch (func_id) {
7641         case BPF_FUNC_lwt_push_encap:
7642                 return &bpf_lwt_in_push_encap_proto;
7643         default:
7644                 return lwt_out_func_proto(func_id, prog);
7645         }
7646 }
7647
7648 static const struct bpf_func_proto *
7649 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7650 {
7651         switch (func_id) {
7652         case BPF_FUNC_skb_get_tunnel_key:
7653                 return &bpf_skb_get_tunnel_key_proto;
7654         case BPF_FUNC_skb_set_tunnel_key:
7655                 return bpf_get_skb_set_tunnel_proto(func_id);
7656         case BPF_FUNC_skb_get_tunnel_opt:
7657                 return &bpf_skb_get_tunnel_opt_proto;
7658         case BPF_FUNC_skb_set_tunnel_opt:
7659                 return bpf_get_skb_set_tunnel_proto(func_id);
7660         case BPF_FUNC_redirect:
7661                 return &bpf_redirect_proto;
7662         case BPF_FUNC_clone_redirect:
7663                 return &bpf_clone_redirect_proto;
7664         case BPF_FUNC_skb_change_tail:
7665                 return &bpf_skb_change_tail_proto;
7666         case BPF_FUNC_skb_change_head:
7667                 return &bpf_skb_change_head_proto;
7668         case BPF_FUNC_skb_store_bytes:
7669                 return &bpf_skb_store_bytes_proto;
7670         case BPF_FUNC_csum_update:
7671                 return &bpf_csum_update_proto;
7672         case BPF_FUNC_csum_level:
7673                 return &bpf_csum_level_proto;
7674         case BPF_FUNC_l3_csum_replace:
7675                 return &bpf_l3_csum_replace_proto;
7676         case BPF_FUNC_l4_csum_replace:
7677                 return &bpf_l4_csum_replace_proto;
7678         case BPF_FUNC_set_hash_invalid:
7679                 return &bpf_set_hash_invalid_proto;
7680         case BPF_FUNC_lwt_push_encap:
7681                 return &bpf_lwt_xmit_push_encap_proto;
7682         default:
7683                 return lwt_out_func_proto(func_id, prog);
7684         }
7685 }
7686
7687 static const struct bpf_func_proto *
7688 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7689 {
7690         switch (func_id) {
7691 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7692         case BPF_FUNC_lwt_seg6_store_bytes:
7693                 return &bpf_lwt_seg6_store_bytes_proto;
7694         case BPF_FUNC_lwt_seg6_action:
7695                 return &bpf_lwt_seg6_action_proto;
7696         case BPF_FUNC_lwt_seg6_adjust_srh:
7697                 return &bpf_lwt_seg6_adjust_srh_proto;
7698 #endif
7699         default:
7700                 return lwt_out_func_proto(func_id, prog);
7701         }
7702 }
7703
7704 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
7705                                     const struct bpf_prog *prog,
7706                                     struct bpf_insn_access_aux *info)
7707 {
7708         const int size_default = sizeof(__u32);
7709
7710         if (off < 0 || off >= sizeof(struct __sk_buff))
7711                 return false;
7712
7713         /* The verifier guarantees that size > 0. */
7714         if (off % size != 0)
7715                 return false;
7716
7717         switch (off) {
7718         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7719                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
7720                         return false;
7721                 break;
7722         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
7723         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
7724         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
7725         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
7726         case bpf_ctx_range(struct __sk_buff, data):
7727         case bpf_ctx_range(struct __sk_buff, data_meta):
7728         case bpf_ctx_range(struct __sk_buff, data_end):
7729                 if (size != size_default)
7730                         return false;
7731                 break;
7732         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7733                 return false;
7734         case bpf_ctx_range(struct __sk_buff, tstamp):
7735                 if (size != sizeof(__u64))
7736                         return false;
7737                 break;
7738         case offsetof(struct __sk_buff, sk):
7739                 if (type == BPF_WRITE || size != sizeof(__u64))
7740                         return false;
7741                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
7742                 break;
7743         default:
7744                 /* Only narrow read access allowed for now. */
7745                 if (type == BPF_WRITE) {
7746                         if (size != size_default)
7747                                 return false;
7748                 } else {
7749                         bpf_ctx_record_field_size(info, size_default);
7750                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7751                                 return false;
7752                 }
7753         }
7754
7755         return true;
7756 }
7757
7758 static bool sk_filter_is_valid_access(int off, int size,
7759                                       enum bpf_access_type type,
7760                                       const struct bpf_prog *prog,
7761                                       struct bpf_insn_access_aux *info)
7762 {
7763         switch (off) {
7764         case bpf_ctx_range(struct __sk_buff, tc_classid):
7765         case bpf_ctx_range(struct __sk_buff, data):
7766         case bpf_ctx_range(struct __sk_buff, data_meta):
7767         case bpf_ctx_range(struct __sk_buff, data_end):
7768         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7769         case bpf_ctx_range(struct __sk_buff, tstamp):
7770         case bpf_ctx_range(struct __sk_buff, wire_len):
7771                 return false;
7772         }
7773
7774         if (type == BPF_WRITE) {
7775                 switch (off) {
7776                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7777                         break;
7778                 default:
7779                         return false;
7780                 }
7781         }
7782
7783         return bpf_skb_is_valid_access(off, size, type, prog, info);
7784 }
7785
7786 static bool cg_skb_is_valid_access(int off, int size,
7787                                    enum bpf_access_type type,
7788                                    const struct bpf_prog *prog,
7789                                    struct bpf_insn_access_aux *info)
7790 {
7791         switch (off) {
7792         case bpf_ctx_range(struct __sk_buff, tc_classid):
7793         case bpf_ctx_range(struct __sk_buff, data_meta):
7794         case bpf_ctx_range(struct __sk_buff, wire_len):
7795                 return false;
7796         case bpf_ctx_range(struct __sk_buff, data):
7797         case bpf_ctx_range(struct __sk_buff, data_end):
7798                 if (!bpf_capable())
7799                         return false;
7800                 break;
7801         }
7802
7803         if (type == BPF_WRITE) {
7804                 switch (off) {
7805                 case bpf_ctx_range(struct __sk_buff, mark):
7806                 case bpf_ctx_range(struct __sk_buff, priority):
7807                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7808                         break;
7809                 case bpf_ctx_range(struct __sk_buff, tstamp):
7810                         if (!bpf_capable())
7811                                 return false;
7812                         break;
7813                 default:
7814                         return false;
7815                 }
7816         }
7817
7818         switch (off) {
7819         case bpf_ctx_range(struct __sk_buff, data):
7820                 info->reg_type = PTR_TO_PACKET;
7821                 break;
7822         case bpf_ctx_range(struct __sk_buff, data_end):
7823                 info->reg_type = PTR_TO_PACKET_END;
7824                 break;
7825         }
7826
7827         return bpf_skb_is_valid_access(off, size, type, prog, info);
7828 }
7829
7830 static bool lwt_is_valid_access(int off, int size,
7831                                 enum bpf_access_type type,
7832                                 const struct bpf_prog *prog,
7833                                 struct bpf_insn_access_aux *info)
7834 {
7835         switch (off) {
7836         case bpf_ctx_range(struct __sk_buff, tc_classid):
7837         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7838         case bpf_ctx_range(struct __sk_buff, data_meta):
7839         case bpf_ctx_range(struct __sk_buff, tstamp):
7840         case bpf_ctx_range(struct __sk_buff, wire_len):
7841                 return false;
7842         }
7843
7844         if (type == BPF_WRITE) {
7845                 switch (off) {
7846                 case bpf_ctx_range(struct __sk_buff, mark):
7847                 case bpf_ctx_range(struct __sk_buff, priority):
7848                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7849                         break;
7850                 default:
7851                         return false;
7852                 }
7853         }
7854
7855         switch (off) {
7856         case bpf_ctx_range(struct __sk_buff, data):
7857                 info->reg_type = PTR_TO_PACKET;
7858                 break;
7859         case bpf_ctx_range(struct __sk_buff, data_end):
7860                 info->reg_type = PTR_TO_PACKET_END;
7861                 break;
7862         }
7863
7864         return bpf_skb_is_valid_access(off, size, type, prog, info);
7865 }
7866
7867 /* Attach type specific accesses */
7868 static bool __sock_filter_check_attach_type(int off,
7869                                             enum bpf_access_type access_type,
7870                                             enum bpf_attach_type attach_type)
7871 {
7872         switch (off) {
7873         case offsetof(struct bpf_sock, bound_dev_if):
7874         case offsetof(struct bpf_sock, mark):
7875         case offsetof(struct bpf_sock, priority):
7876                 switch (attach_type) {
7877                 case BPF_CGROUP_INET_SOCK_CREATE:
7878                 case BPF_CGROUP_INET_SOCK_RELEASE:
7879                         goto full_access;
7880                 default:
7881                         return false;
7882                 }
7883         case bpf_ctx_range(struct bpf_sock, src_ip4):
7884                 switch (attach_type) {
7885                 case BPF_CGROUP_INET4_POST_BIND:
7886                         goto read_only;
7887                 default:
7888                         return false;
7889                 }
7890         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7891                 switch (attach_type) {
7892                 case BPF_CGROUP_INET6_POST_BIND:
7893                         goto read_only;
7894                 default:
7895                         return false;
7896                 }
7897         case bpf_ctx_range(struct bpf_sock, src_port):
7898                 switch (attach_type) {
7899                 case BPF_CGROUP_INET4_POST_BIND:
7900                 case BPF_CGROUP_INET6_POST_BIND:
7901                         goto read_only;
7902                 default:
7903                         return false;
7904                 }
7905         }
7906 read_only:
7907         return access_type == BPF_READ;
7908 full_access:
7909         return true;
7910 }
7911
7912 bool bpf_sock_common_is_valid_access(int off, int size,
7913                                      enum bpf_access_type type,
7914                                      struct bpf_insn_access_aux *info)
7915 {
7916         switch (off) {
7917         case bpf_ctx_range_till(struct bpf_sock, type, priority):
7918                 return false;
7919         default:
7920                 return bpf_sock_is_valid_access(off, size, type, info);
7921         }
7922 }
7923
7924 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7925                               struct bpf_insn_access_aux *info)
7926 {
7927         const int size_default = sizeof(__u32);
7928
7929         if (off < 0 || off >= sizeof(struct bpf_sock))
7930                 return false;
7931         if (off % size != 0)
7932                 return false;
7933
7934         switch (off) {
7935         case offsetof(struct bpf_sock, state):
7936         case offsetof(struct bpf_sock, family):
7937         case offsetof(struct bpf_sock, type):
7938         case offsetof(struct bpf_sock, protocol):
7939         case offsetof(struct bpf_sock, dst_port):
7940         case offsetof(struct bpf_sock, src_port):
7941         case offsetof(struct bpf_sock, rx_queue_mapping):
7942         case bpf_ctx_range(struct bpf_sock, src_ip4):
7943         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7944         case bpf_ctx_range(struct bpf_sock, dst_ip4):
7945         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7946                 bpf_ctx_record_field_size(info, size_default);
7947                 return bpf_ctx_narrow_access_ok(off, size, size_default);
7948         }
7949
7950         return size == size_default;
7951 }
7952
7953 static bool sock_filter_is_valid_access(int off, int size,
7954                                         enum bpf_access_type type,
7955                                         const struct bpf_prog *prog,
7956                                         struct bpf_insn_access_aux *info)
7957 {
7958         if (!bpf_sock_is_valid_access(off, size, type, info))
7959                 return false;
7960         return __sock_filter_check_attach_type(off, type,
7961                                                prog->expected_attach_type);
7962 }
7963
7964 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
7965                              const struct bpf_prog *prog)
7966 {
7967         /* Neither direct read nor direct write requires any preliminary
7968          * action.
7969          */
7970         return 0;
7971 }
7972
7973 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
7974                                 const struct bpf_prog *prog, int drop_verdict)
7975 {
7976         struct bpf_insn *insn = insn_buf;
7977
7978         if (!direct_write)
7979                 return 0;
7980
7981         /* if (!skb->cloned)
7982          *       goto start;
7983          *
7984          * (Fast-path, otherwise approximation that we might be
7985          *  a clone, do the rest in helper.)
7986          */
7987         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
7988         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
7989         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
7990
7991         /* ret = bpf_skb_pull_data(skb, 0); */
7992         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
7993         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
7994         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
7995                                BPF_FUNC_skb_pull_data);
7996         /* if (!ret)
7997          *      goto restore;
7998          * return TC_ACT_SHOT;
7999          */
8000         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8001         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8002         *insn++ = BPF_EXIT_INSN();
8003
8004         /* restore: */
8005         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8006         /* start: */
8007         *insn++ = prog->insnsi[0];
8008
8009         return insn - insn_buf;
8010 }
8011
8012 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8013                           struct bpf_insn *insn_buf)
8014 {
8015         bool indirect = BPF_MODE(orig->code) == BPF_IND;
8016         struct bpf_insn *insn = insn_buf;
8017
8018         if (!indirect) {
8019                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8020         } else {
8021                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8022                 if (orig->imm)
8023                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8024         }
8025         /* We're guaranteed here that CTX is in R6. */
8026         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8027
8028         switch (BPF_SIZE(orig->code)) {
8029         case BPF_B:
8030                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8031                 break;
8032         case BPF_H:
8033                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8034                 break;
8035         case BPF_W:
8036                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8037                 break;
8038         }
8039
8040         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8041         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8042         *insn++ = BPF_EXIT_INSN();
8043
8044         return insn - insn_buf;
8045 }
8046
8047 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8048                                const struct bpf_prog *prog)
8049 {
8050         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8051 }
8052
8053 static bool tc_cls_act_is_valid_access(int off, int size,
8054                                        enum bpf_access_type type,
8055                                        const struct bpf_prog *prog,
8056                                        struct bpf_insn_access_aux *info)
8057 {
8058         if (type == BPF_WRITE) {
8059                 switch (off) {
8060                 case bpf_ctx_range(struct __sk_buff, mark):
8061                 case bpf_ctx_range(struct __sk_buff, tc_index):
8062                 case bpf_ctx_range(struct __sk_buff, priority):
8063                 case bpf_ctx_range(struct __sk_buff, tc_classid):
8064                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8065                 case bpf_ctx_range(struct __sk_buff, tstamp):
8066                 case bpf_ctx_range(struct __sk_buff, queue_mapping):
8067                         break;
8068                 default:
8069                         return false;
8070                 }
8071         }
8072
8073         switch (off) {
8074         case bpf_ctx_range(struct __sk_buff, data):
8075                 info->reg_type = PTR_TO_PACKET;
8076                 break;
8077         case bpf_ctx_range(struct __sk_buff, data_meta):
8078                 info->reg_type = PTR_TO_PACKET_META;
8079                 break;
8080         case bpf_ctx_range(struct __sk_buff, data_end):
8081                 info->reg_type = PTR_TO_PACKET_END;
8082                 break;
8083         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8084                 return false;
8085         }
8086
8087         return bpf_skb_is_valid_access(off, size, type, prog, info);
8088 }
8089
8090 static bool __is_valid_xdp_access(int off, int size)
8091 {
8092         if (off < 0 || off >= sizeof(struct xdp_md))
8093                 return false;
8094         if (off % size != 0)
8095                 return false;
8096         if (size != sizeof(__u32))
8097                 return false;
8098
8099         return true;
8100 }
8101
8102 static bool xdp_is_valid_access(int off, int size,
8103                                 enum bpf_access_type type,
8104                                 const struct bpf_prog *prog,
8105                                 struct bpf_insn_access_aux *info)
8106 {
8107         if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8108                 switch (off) {
8109                 case offsetof(struct xdp_md, egress_ifindex):
8110                         return false;
8111                 }
8112         }
8113
8114         if (type == BPF_WRITE) {
8115                 if (bpf_prog_is_dev_bound(prog->aux)) {
8116                         switch (off) {
8117                         case offsetof(struct xdp_md, rx_queue_index):
8118                                 return __is_valid_xdp_access(off, size);
8119                         }
8120                 }
8121                 return false;
8122         }
8123
8124         switch (off) {
8125         case offsetof(struct xdp_md, data):
8126                 info->reg_type = PTR_TO_PACKET;
8127                 break;
8128         case offsetof(struct xdp_md, data_meta):
8129                 info->reg_type = PTR_TO_PACKET_META;
8130                 break;
8131         case offsetof(struct xdp_md, data_end):
8132                 info->reg_type = PTR_TO_PACKET_END;
8133                 break;
8134         }
8135
8136         return __is_valid_xdp_access(off, size);
8137 }
8138
8139 void bpf_warn_invalid_xdp_action(u32 act)
8140 {
8141         const u32 act_max = XDP_REDIRECT;
8142
8143         WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
8144                   act > act_max ? "Illegal" : "Driver unsupported",
8145                   act);
8146 }
8147 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8148
8149 static bool sock_addr_is_valid_access(int off, int size,
8150                                       enum bpf_access_type type,
8151                                       const struct bpf_prog *prog,
8152                                       struct bpf_insn_access_aux *info)
8153 {
8154         const int size_default = sizeof(__u32);
8155
8156         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8157                 return false;
8158         if (off % size != 0)
8159                 return false;
8160
8161         /* Disallow access to IPv6 fields from IPv4 contex and vise
8162          * versa.
8163          */
8164         switch (off) {
8165         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8166                 switch (prog->expected_attach_type) {
8167                 case BPF_CGROUP_INET4_BIND:
8168                 case BPF_CGROUP_INET4_CONNECT:
8169                 case BPF_CGROUP_INET4_GETPEERNAME:
8170                 case BPF_CGROUP_INET4_GETSOCKNAME:
8171                 case BPF_CGROUP_UDP4_SENDMSG:
8172                 case BPF_CGROUP_UDP4_RECVMSG:
8173                         break;
8174                 default:
8175                         return false;
8176                 }
8177                 break;
8178         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8179                 switch (prog->expected_attach_type) {
8180                 case BPF_CGROUP_INET6_BIND:
8181                 case BPF_CGROUP_INET6_CONNECT:
8182                 case BPF_CGROUP_INET6_GETPEERNAME:
8183                 case BPF_CGROUP_INET6_GETSOCKNAME:
8184                 case BPF_CGROUP_UDP6_SENDMSG:
8185                 case BPF_CGROUP_UDP6_RECVMSG:
8186                         break;
8187                 default:
8188                         return false;
8189                 }
8190                 break;
8191         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8192                 switch (prog->expected_attach_type) {
8193                 case BPF_CGROUP_UDP4_SENDMSG:
8194                         break;
8195                 default:
8196                         return false;
8197                 }
8198                 break;
8199         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8200                                 msg_src_ip6[3]):
8201                 switch (prog->expected_attach_type) {
8202                 case BPF_CGROUP_UDP6_SENDMSG:
8203                         break;
8204                 default:
8205                         return false;
8206                 }
8207                 break;
8208         }
8209
8210         switch (off) {
8211         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8212         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8213         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8214         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8215                                 msg_src_ip6[3]):
8216         case bpf_ctx_range(struct bpf_sock_addr, user_port):
8217                 if (type == BPF_READ) {
8218                         bpf_ctx_record_field_size(info, size_default);
8219
8220                         if (bpf_ctx_wide_access_ok(off, size,
8221                                                    struct bpf_sock_addr,
8222                                                    user_ip6))
8223                                 return true;
8224
8225                         if (bpf_ctx_wide_access_ok(off, size,
8226                                                    struct bpf_sock_addr,
8227                                                    msg_src_ip6))
8228                                 return true;
8229
8230                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8231                                 return false;
8232                 } else {
8233                         if (bpf_ctx_wide_access_ok(off, size,
8234                                                    struct bpf_sock_addr,
8235                                                    user_ip6))
8236                                 return true;
8237
8238                         if (bpf_ctx_wide_access_ok(off, size,
8239                                                    struct bpf_sock_addr,
8240                                                    msg_src_ip6))
8241                                 return true;
8242
8243                         if (size != size_default)
8244                                 return false;
8245                 }
8246                 break;
8247         case offsetof(struct bpf_sock_addr, sk):
8248                 if (type != BPF_READ)
8249                         return false;
8250                 if (size != sizeof(__u64))
8251                         return false;
8252                 info->reg_type = PTR_TO_SOCKET;
8253                 break;
8254         default:
8255                 if (type == BPF_READ) {
8256                         if (size != size_default)
8257                                 return false;
8258                 } else {
8259                         return false;
8260                 }
8261         }
8262
8263         return true;
8264 }
8265
8266 static bool sock_ops_is_valid_access(int off, int size,
8267                                      enum bpf_access_type type,
8268                                      const struct bpf_prog *prog,
8269                                      struct bpf_insn_access_aux *info)
8270 {
8271         const int size_default = sizeof(__u32);
8272
8273         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8274                 return false;
8275
8276         /* The verifier guarantees that size > 0. */
8277         if (off % size != 0)
8278                 return false;
8279
8280         if (type == BPF_WRITE) {
8281                 switch (off) {
8282                 case offsetof(struct bpf_sock_ops, reply):
8283                 case offsetof(struct bpf_sock_ops, sk_txhash):
8284                         if (size != size_default)
8285                                 return false;
8286                         break;
8287                 default:
8288                         return false;
8289                 }
8290         } else {
8291                 switch (off) {
8292                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8293                                         bytes_acked):
8294                         if (size != sizeof(__u64))
8295                                 return false;
8296                         break;
8297                 case offsetof(struct bpf_sock_ops, sk):
8298                         if (size != sizeof(__u64))
8299                                 return false;
8300                         info->reg_type = PTR_TO_SOCKET_OR_NULL;
8301                         break;
8302                 case offsetof(struct bpf_sock_ops, skb_data):
8303                         if (size != sizeof(__u64))
8304                                 return false;
8305                         info->reg_type = PTR_TO_PACKET;
8306                         break;
8307                 case offsetof(struct bpf_sock_ops, skb_data_end):
8308                         if (size != sizeof(__u64))
8309                                 return false;
8310                         info->reg_type = PTR_TO_PACKET_END;
8311                         break;
8312                 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8313                         bpf_ctx_record_field_size(info, size_default);
8314                         return bpf_ctx_narrow_access_ok(off, size,
8315                                                         size_default);
8316                 default:
8317                         if (size != size_default)
8318                                 return false;
8319                         break;
8320                 }
8321         }
8322
8323         return true;
8324 }
8325
8326 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8327                            const struct bpf_prog *prog)
8328 {
8329         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8330 }
8331
8332 static bool sk_skb_is_valid_access(int off, int size,
8333                                    enum bpf_access_type type,
8334                                    const struct bpf_prog *prog,
8335                                    struct bpf_insn_access_aux *info)
8336 {
8337         switch (off) {
8338         case bpf_ctx_range(struct __sk_buff, tc_classid):
8339         case bpf_ctx_range(struct __sk_buff, data_meta):
8340         case bpf_ctx_range(struct __sk_buff, tstamp):
8341         case bpf_ctx_range(struct __sk_buff, wire_len):
8342                 return false;
8343         }
8344
8345         if (type == BPF_WRITE) {
8346                 switch (off) {
8347                 case bpf_ctx_range(struct __sk_buff, tc_index):
8348                 case bpf_ctx_range(struct __sk_buff, priority):
8349                         break;
8350                 default:
8351                         return false;
8352                 }
8353         }
8354
8355         switch (off) {
8356         case bpf_ctx_range(struct __sk_buff, mark):
8357                 return false;
8358         case bpf_ctx_range(struct __sk_buff, data):
8359                 info->reg_type = PTR_TO_PACKET;
8360                 break;
8361         case bpf_ctx_range(struct __sk_buff, data_end):
8362                 info->reg_type = PTR_TO_PACKET_END;
8363                 break;
8364         }
8365
8366         return bpf_skb_is_valid_access(off, size, type, prog, info);
8367 }
8368
8369 static bool sk_msg_is_valid_access(int off, int size,
8370                                    enum bpf_access_type type,
8371                                    const struct bpf_prog *prog,
8372                                    struct bpf_insn_access_aux *info)
8373 {
8374         if (type == BPF_WRITE)
8375                 return false;
8376
8377         if (off % size != 0)
8378                 return false;
8379
8380         switch (off) {
8381         case offsetof(struct sk_msg_md, data):
8382                 info->reg_type = PTR_TO_PACKET;
8383                 if (size != sizeof(__u64))
8384                         return false;
8385                 break;
8386         case offsetof(struct sk_msg_md, data_end):
8387                 info->reg_type = PTR_TO_PACKET_END;
8388                 if (size != sizeof(__u64))
8389                         return false;
8390                 break;
8391         case offsetof(struct sk_msg_md, sk):
8392                 if (size != sizeof(__u64))
8393                         return false;
8394                 info->reg_type = PTR_TO_SOCKET;
8395                 break;
8396         case bpf_ctx_range(struct sk_msg_md, family):
8397         case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8398         case bpf_ctx_range(struct sk_msg_md, local_ip4):
8399         case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8400         case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8401         case bpf_ctx_range(struct sk_msg_md, remote_port):
8402         case bpf_ctx_range(struct sk_msg_md, local_port):
8403         case bpf_ctx_range(struct sk_msg_md, size):
8404                 if (size != sizeof(__u32))
8405                         return false;
8406                 break;
8407         default:
8408                 return false;
8409         }
8410         return true;
8411 }
8412
8413 static bool flow_dissector_is_valid_access(int off, int size,
8414                                            enum bpf_access_type type,
8415                                            const struct bpf_prog *prog,
8416                                            struct bpf_insn_access_aux *info)
8417 {
8418         const int size_default = sizeof(__u32);
8419
8420         if (off < 0 || off >= sizeof(struct __sk_buff))
8421                 return false;
8422
8423         if (type == BPF_WRITE)
8424                 return false;
8425
8426         switch (off) {
8427         case bpf_ctx_range(struct __sk_buff, data):
8428                 if (size != size_default)
8429                         return false;
8430                 info->reg_type = PTR_TO_PACKET;
8431                 return true;
8432         case bpf_ctx_range(struct __sk_buff, data_end):
8433                 if (size != size_default)
8434                         return false;
8435                 info->reg_type = PTR_TO_PACKET_END;
8436                 return true;
8437         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8438                 if (size != sizeof(__u64))
8439                         return false;
8440                 info->reg_type = PTR_TO_FLOW_KEYS;
8441                 return true;
8442         default:
8443                 return false;
8444         }
8445 }
8446
8447 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8448                                              const struct bpf_insn *si,
8449                                              struct bpf_insn *insn_buf,
8450                                              struct bpf_prog *prog,
8451                                              u32 *target_size)
8452
8453 {
8454         struct bpf_insn *insn = insn_buf;
8455
8456         switch (si->off) {
8457         case offsetof(struct __sk_buff, data):
8458                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8459                                       si->dst_reg, si->src_reg,
8460                                       offsetof(struct bpf_flow_dissector, data));
8461                 break;
8462
8463         case offsetof(struct __sk_buff, data_end):
8464                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8465                                       si->dst_reg, si->src_reg,
8466                                       offsetof(struct bpf_flow_dissector, data_end));
8467                 break;
8468
8469         case offsetof(struct __sk_buff, flow_keys):
8470                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8471                                       si->dst_reg, si->src_reg,
8472                                       offsetof(struct bpf_flow_dissector, flow_keys));
8473                 break;
8474         }
8475
8476         return insn - insn_buf;
8477 }
8478
8479 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
8480                                                   struct bpf_insn *insn)
8481 {
8482         /* si->dst_reg = skb_shinfo(SKB); */
8483 #ifdef NET_SKBUFF_DATA_USES_OFFSET
8484         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8485                               BPF_REG_AX, si->src_reg,
8486                               offsetof(struct sk_buff, end));
8487         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
8488                               si->dst_reg, si->src_reg,
8489                               offsetof(struct sk_buff, head));
8490         *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
8491 #else
8492         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8493                               si->dst_reg, si->src_reg,
8494                               offsetof(struct sk_buff, end));
8495 #endif
8496
8497         return insn;
8498 }
8499
8500 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
8501                                   const struct bpf_insn *si,
8502                                   struct bpf_insn *insn_buf,
8503                                   struct bpf_prog *prog, u32 *target_size)
8504 {
8505         struct bpf_insn *insn = insn_buf;
8506         int off;
8507
8508         switch (si->off) {
8509         case offsetof(struct __sk_buff, len):
8510                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8511                                       bpf_target_off(struct sk_buff, len, 4,
8512                                                      target_size));
8513                 break;
8514
8515         case offsetof(struct __sk_buff, protocol):
8516                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8517                                       bpf_target_off(struct sk_buff, protocol, 2,
8518                                                      target_size));
8519                 break;
8520
8521         case offsetof(struct __sk_buff, vlan_proto):
8522                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8523                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
8524                                                      target_size));
8525                 break;
8526
8527         case offsetof(struct __sk_buff, priority):
8528                 if (type == BPF_WRITE)
8529                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8530                                               bpf_target_off(struct sk_buff, priority, 4,
8531                                                              target_size));
8532                 else
8533                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8534                                               bpf_target_off(struct sk_buff, priority, 4,
8535                                                              target_size));
8536                 break;
8537
8538         case offsetof(struct __sk_buff, ingress_ifindex):
8539                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8540                                       bpf_target_off(struct sk_buff, skb_iif, 4,
8541                                                      target_size));
8542                 break;
8543
8544         case offsetof(struct __sk_buff, ifindex):
8545                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8546                                       si->dst_reg, si->src_reg,
8547                                       offsetof(struct sk_buff, dev));
8548                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8549                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8550                                       bpf_target_off(struct net_device, ifindex, 4,
8551                                                      target_size));
8552                 break;
8553
8554         case offsetof(struct __sk_buff, hash):
8555                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8556                                       bpf_target_off(struct sk_buff, hash, 4,
8557                                                      target_size));
8558                 break;
8559
8560         case offsetof(struct __sk_buff, mark):
8561                 if (type == BPF_WRITE)
8562                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8563                                               bpf_target_off(struct sk_buff, mark, 4,
8564                                                              target_size));
8565                 else
8566                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8567                                               bpf_target_off(struct sk_buff, mark, 4,
8568                                                              target_size));
8569                 break;
8570
8571         case offsetof(struct __sk_buff, pkt_type):
8572                 *target_size = 1;
8573                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8574                                       PKT_TYPE_OFFSET());
8575                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
8576 #ifdef __BIG_ENDIAN_BITFIELD
8577                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
8578 #endif
8579                 break;
8580
8581         case offsetof(struct __sk_buff, queue_mapping):
8582                 if (type == BPF_WRITE) {
8583                         *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
8584                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8585                                               bpf_target_off(struct sk_buff,
8586                                                              queue_mapping,
8587                                                              2, target_size));
8588                 } else {
8589                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8590                                               bpf_target_off(struct sk_buff,
8591                                                              queue_mapping,
8592                                                              2, target_size));
8593                 }
8594                 break;
8595
8596         case offsetof(struct __sk_buff, vlan_present):
8597                 *target_size = 1;
8598                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8599                                       PKT_VLAN_PRESENT_OFFSET());
8600                 if (PKT_VLAN_PRESENT_BIT)
8601                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
8602                 if (PKT_VLAN_PRESENT_BIT < 7)
8603                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
8604                 break;
8605
8606         case offsetof(struct __sk_buff, vlan_tci):
8607                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8608                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
8609                                                      target_size));
8610                 break;
8611
8612         case offsetof(struct __sk_buff, cb[0]) ...
8613              offsetofend(struct __sk_buff, cb[4]) - 1:
8614                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
8615                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
8616                               offsetof(struct qdisc_skb_cb, data)) %
8617                              sizeof(__u64));
8618
8619                 prog->cb_access = 1;
8620                 off  = si->off;
8621                 off -= offsetof(struct __sk_buff, cb[0]);
8622                 off += offsetof(struct sk_buff, cb);
8623                 off += offsetof(struct qdisc_skb_cb, data);
8624                 if (type == BPF_WRITE)
8625                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
8626                                               si->src_reg, off);
8627                 else
8628                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
8629                                               si->src_reg, off);
8630                 break;
8631
8632         case offsetof(struct __sk_buff, tc_classid):
8633                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
8634
8635                 off  = si->off;
8636                 off -= offsetof(struct __sk_buff, tc_classid);
8637                 off += offsetof(struct sk_buff, cb);
8638                 off += offsetof(struct qdisc_skb_cb, tc_classid);
8639                 *target_size = 2;
8640                 if (type == BPF_WRITE)
8641                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
8642                                               si->src_reg, off);
8643                 else
8644                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
8645                                               si->src_reg, off);
8646                 break;
8647
8648         case offsetof(struct __sk_buff, data):
8649                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
8650                                       si->dst_reg, si->src_reg,
8651                                       offsetof(struct sk_buff, data));
8652                 break;
8653
8654         case offsetof(struct __sk_buff, data_meta):
8655                 off  = si->off;
8656                 off -= offsetof(struct __sk_buff, data_meta);
8657                 off += offsetof(struct sk_buff, cb);
8658                 off += offsetof(struct bpf_skb_data_end, data_meta);
8659                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8660                                       si->src_reg, off);
8661                 break;
8662
8663         case offsetof(struct __sk_buff, data_end):
8664                 off  = si->off;
8665                 off -= offsetof(struct __sk_buff, data_end);
8666                 off += offsetof(struct sk_buff, cb);
8667                 off += offsetof(struct bpf_skb_data_end, data_end);
8668                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8669                                       si->src_reg, off);
8670                 break;
8671
8672         case offsetof(struct __sk_buff, tc_index):
8673 #ifdef CONFIG_NET_SCHED
8674                 if (type == BPF_WRITE)
8675                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8676                                               bpf_target_off(struct sk_buff, tc_index, 2,
8677                                                              target_size));
8678                 else
8679                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8680                                               bpf_target_off(struct sk_buff, tc_index, 2,
8681                                                              target_size));
8682 #else
8683                 *target_size = 2;
8684                 if (type == BPF_WRITE)
8685                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
8686                 else
8687                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8688 #endif
8689                 break;
8690
8691         case offsetof(struct __sk_buff, napi_id):
8692 #if defined(CONFIG_NET_RX_BUSY_POLL)
8693                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8694                                       bpf_target_off(struct sk_buff, napi_id, 4,
8695                                                      target_size));
8696                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
8697                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8698 #else
8699                 *target_size = 4;
8700                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8701 #endif
8702                 break;
8703         case offsetof(struct __sk_buff, family):
8704                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8705
8706                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8707                                       si->dst_reg, si->src_reg,
8708                                       offsetof(struct sk_buff, sk));
8709                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8710                                       bpf_target_off(struct sock_common,
8711                                                      skc_family,
8712                                                      2, target_size));
8713                 break;
8714         case offsetof(struct __sk_buff, remote_ip4):
8715                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8716
8717                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8718                                       si->dst_reg, si->src_reg,
8719                                       offsetof(struct sk_buff, sk));
8720                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8721                                       bpf_target_off(struct sock_common,
8722                                                      skc_daddr,
8723                                                      4, target_size));
8724                 break;
8725         case offsetof(struct __sk_buff, local_ip4):
8726                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8727                                           skc_rcv_saddr) != 4);
8728
8729                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8730                                       si->dst_reg, si->src_reg,
8731                                       offsetof(struct sk_buff, sk));
8732                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8733                                       bpf_target_off(struct sock_common,
8734                                                      skc_rcv_saddr,
8735                                                      4, target_size));
8736                 break;
8737         case offsetof(struct __sk_buff, remote_ip6[0]) ...
8738              offsetof(struct __sk_buff, remote_ip6[3]):
8739 #if IS_ENABLED(CONFIG_IPV6)
8740                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8741                                           skc_v6_daddr.s6_addr32[0]) != 4);
8742
8743                 off = si->off;
8744                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
8745
8746                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8747                                       si->dst_reg, si->src_reg,
8748                                       offsetof(struct sk_buff, sk));
8749                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8750                                       offsetof(struct sock_common,
8751                                                skc_v6_daddr.s6_addr32[0]) +
8752                                       off);
8753 #else
8754                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8755 #endif
8756                 break;
8757         case offsetof(struct __sk_buff, local_ip6[0]) ...
8758              offsetof(struct __sk_buff, local_ip6[3]):
8759 #if IS_ENABLED(CONFIG_IPV6)
8760                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8761                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8762
8763                 off = si->off;
8764                 off -= offsetof(struct __sk_buff, local_ip6[0]);
8765
8766                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8767                                       si->dst_reg, si->src_reg,
8768                                       offsetof(struct sk_buff, sk));
8769                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8770                                       offsetof(struct sock_common,
8771                                                skc_v6_rcv_saddr.s6_addr32[0]) +
8772                                       off);
8773 #else
8774                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8775 #endif
8776                 break;
8777
8778         case offsetof(struct __sk_buff, remote_port):
8779                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8780
8781                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8782                                       si->dst_reg, si->src_reg,
8783                                       offsetof(struct sk_buff, sk));
8784                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8785                                       bpf_target_off(struct sock_common,
8786                                                      skc_dport,
8787                                                      2, target_size));
8788 #ifndef __BIG_ENDIAN_BITFIELD
8789                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8790 #endif
8791                 break;
8792
8793         case offsetof(struct __sk_buff, local_port):
8794                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8795
8796                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8797                                       si->dst_reg, si->src_reg,
8798                                       offsetof(struct sk_buff, sk));
8799                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8800                                       bpf_target_off(struct sock_common,
8801                                                      skc_num, 2, target_size));
8802                 break;
8803
8804         case offsetof(struct __sk_buff, tstamp):
8805                 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
8806
8807                 if (type == BPF_WRITE)
8808                         *insn++ = BPF_STX_MEM(BPF_DW,
8809                                               si->dst_reg, si->src_reg,
8810                                               bpf_target_off(struct sk_buff,
8811                                                              tstamp, 8,
8812                                                              target_size));
8813                 else
8814                         *insn++ = BPF_LDX_MEM(BPF_DW,
8815                                               si->dst_reg, si->src_reg,
8816                                               bpf_target_off(struct sk_buff,
8817                                                              tstamp, 8,
8818                                                              target_size));
8819                 break;
8820
8821         case offsetof(struct __sk_buff, gso_segs):
8822                 insn = bpf_convert_shinfo_access(si, insn);
8823                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
8824                                       si->dst_reg, si->dst_reg,
8825                                       bpf_target_off(struct skb_shared_info,
8826                                                      gso_segs, 2,
8827                                                      target_size));
8828                 break;
8829         case offsetof(struct __sk_buff, gso_size):
8830                 insn = bpf_convert_shinfo_access(si, insn);
8831                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
8832                                       si->dst_reg, si->dst_reg,
8833                                       bpf_target_off(struct skb_shared_info,
8834                                                      gso_size, 2,
8835                                                      target_size));
8836                 break;
8837         case offsetof(struct __sk_buff, wire_len):
8838                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
8839
8840                 off = si->off;
8841                 off -= offsetof(struct __sk_buff, wire_len);
8842                 off += offsetof(struct sk_buff, cb);
8843                 off += offsetof(struct qdisc_skb_cb, pkt_len);
8844                 *target_size = 4;
8845                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
8846                 break;
8847
8848         case offsetof(struct __sk_buff, sk):
8849                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8850                                       si->dst_reg, si->src_reg,
8851                                       offsetof(struct sk_buff, sk));
8852                 break;
8853         }
8854
8855         return insn - insn_buf;
8856 }
8857
8858 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
8859                                 const struct bpf_insn *si,
8860                                 struct bpf_insn *insn_buf,
8861                                 struct bpf_prog *prog, u32 *target_size)
8862 {
8863         struct bpf_insn *insn = insn_buf;
8864         int off;
8865
8866         switch (si->off) {
8867         case offsetof(struct bpf_sock, bound_dev_if):
8868                 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
8869
8870                 if (type == BPF_WRITE)
8871                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8872                                         offsetof(struct sock, sk_bound_dev_if));
8873                 else
8874                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8875                                       offsetof(struct sock, sk_bound_dev_if));
8876                 break;
8877
8878         case offsetof(struct bpf_sock, mark):
8879                 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
8880
8881                 if (type == BPF_WRITE)
8882                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8883                                         offsetof(struct sock, sk_mark));
8884                 else
8885                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8886                                       offsetof(struct sock, sk_mark));
8887                 break;
8888
8889         case offsetof(struct bpf_sock, priority):
8890                 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
8891
8892                 if (type == BPF_WRITE)
8893                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8894                                         offsetof(struct sock, sk_priority));
8895                 else
8896                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8897                                       offsetof(struct sock, sk_priority));
8898                 break;
8899
8900         case offsetof(struct bpf_sock, family):
8901                 *insn++ = BPF_LDX_MEM(
8902                         BPF_FIELD_SIZEOF(struct sock_common, skc_family),
8903                         si->dst_reg, si->src_reg,
8904                         bpf_target_off(struct sock_common,
8905                                        skc_family,
8906                                        sizeof_field(struct sock_common,
8907                                                     skc_family),
8908                                        target_size));
8909                 break;
8910
8911         case offsetof(struct bpf_sock, type):
8912                 *insn++ = BPF_LDX_MEM(
8913                         BPF_FIELD_SIZEOF(struct sock, sk_type),
8914                         si->dst_reg, si->src_reg,
8915                         bpf_target_off(struct sock, sk_type,
8916                                        sizeof_field(struct sock, sk_type),
8917                                        target_size));
8918                 break;
8919
8920         case offsetof(struct bpf_sock, protocol):
8921                 *insn++ = BPF_LDX_MEM(
8922                         BPF_FIELD_SIZEOF(struct sock, sk_protocol),
8923                         si->dst_reg, si->src_reg,
8924                         bpf_target_off(struct sock, sk_protocol,
8925                                        sizeof_field(struct sock, sk_protocol),
8926                                        target_size));
8927                 break;
8928
8929         case offsetof(struct bpf_sock, src_ip4):
8930                 *insn++ = BPF_LDX_MEM(
8931                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8932                         bpf_target_off(struct sock_common, skc_rcv_saddr,
8933                                        sizeof_field(struct sock_common,
8934                                                     skc_rcv_saddr),
8935                                        target_size));
8936                 break;
8937
8938         case offsetof(struct bpf_sock, dst_ip4):
8939                 *insn++ = BPF_LDX_MEM(
8940                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8941                         bpf_target_off(struct sock_common, skc_daddr,
8942                                        sizeof_field(struct sock_common,
8943                                                     skc_daddr),
8944                                        target_size));
8945                 break;
8946
8947         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8948 #if IS_ENABLED(CONFIG_IPV6)
8949                 off = si->off;
8950                 off -= offsetof(struct bpf_sock, src_ip6[0]);
8951                 *insn++ = BPF_LDX_MEM(
8952                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8953                         bpf_target_off(
8954                                 struct sock_common,
8955                                 skc_v6_rcv_saddr.s6_addr32[0],
8956                                 sizeof_field(struct sock_common,
8957                                              skc_v6_rcv_saddr.s6_addr32[0]),
8958                                 target_size) + off);
8959 #else
8960                 (void)off;
8961                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8962 #endif
8963                 break;
8964
8965         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8966 #if IS_ENABLED(CONFIG_IPV6)
8967                 off = si->off;
8968                 off -= offsetof(struct bpf_sock, dst_ip6[0]);
8969                 *insn++ = BPF_LDX_MEM(
8970                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8971                         bpf_target_off(struct sock_common,
8972                                        skc_v6_daddr.s6_addr32[0],
8973                                        sizeof_field(struct sock_common,
8974                                                     skc_v6_daddr.s6_addr32[0]),
8975                                        target_size) + off);
8976 #else
8977                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8978                 *target_size = 4;
8979 #endif
8980                 break;
8981
8982         case offsetof(struct bpf_sock, src_port):
8983                 *insn++ = BPF_LDX_MEM(
8984                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
8985                         si->dst_reg, si->src_reg,
8986                         bpf_target_off(struct sock_common, skc_num,
8987                                        sizeof_field(struct sock_common,
8988                                                     skc_num),
8989                                        target_size));
8990                 break;
8991
8992         case offsetof(struct bpf_sock, dst_port):
8993                 *insn++ = BPF_LDX_MEM(
8994                         BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
8995                         si->dst_reg, si->src_reg,
8996                         bpf_target_off(struct sock_common, skc_dport,
8997                                        sizeof_field(struct sock_common,
8998                                                     skc_dport),
8999                                        target_size));
9000                 break;
9001
9002         case offsetof(struct bpf_sock, state):
9003                 *insn++ = BPF_LDX_MEM(
9004                         BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9005                         si->dst_reg, si->src_reg,
9006                         bpf_target_off(struct sock_common, skc_state,
9007                                        sizeof_field(struct sock_common,
9008                                                     skc_state),
9009                                        target_size));
9010                 break;
9011         case offsetof(struct bpf_sock, rx_queue_mapping):
9012 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9013                 *insn++ = BPF_LDX_MEM(
9014                         BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9015                         si->dst_reg, si->src_reg,
9016                         bpf_target_off(struct sock, sk_rx_queue_mapping,
9017                                        sizeof_field(struct sock,
9018                                                     sk_rx_queue_mapping),
9019                                        target_size));
9020                 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9021                                       1);
9022                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9023 #else
9024                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9025                 *target_size = 2;
9026 #endif
9027                 break;
9028         }
9029
9030         return insn - insn_buf;
9031 }
9032
9033 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9034                                          const struct bpf_insn *si,
9035                                          struct bpf_insn *insn_buf,
9036                                          struct bpf_prog *prog, u32 *target_size)
9037 {
9038         struct bpf_insn *insn = insn_buf;
9039
9040         switch (si->off) {
9041         case offsetof(struct __sk_buff, ifindex):
9042                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9043                                       si->dst_reg, si->src_reg,
9044                                       offsetof(struct sk_buff, dev));
9045                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9046                                       bpf_target_off(struct net_device, ifindex, 4,
9047                                                      target_size));
9048                 break;
9049         default:
9050                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9051                                               target_size);
9052         }
9053
9054         return insn - insn_buf;
9055 }
9056
9057 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9058                                   const struct bpf_insn *si,
9059                                   struct bpf_insn *insn_buf,
9060                                   struct bpf_prog *prog, u32 *target_size)
9061 {
9062         struct bpf_insn *insn = insn_buf;
9063
9064         switch (si->off) {
9065         case offsetof(struct xdp_md, data):
9066                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9067                                       si->dst_reg, si->src_reg,
9068                                       offsetof(struct xdp_buff, data));
9069                 break;
9070         case offsetof(struct xdp_md, data_meta):
9071                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9072                                       si->dst_reg, si->src_reg,
9073                                       offsetof(struct xdp_buff, data_meta));
9074                 break;
9075         case offsetof(struct xdp_md, data_end):
9076                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9077                                       si->dst_reg, si->src_reg,
9078                                       offsetof(struct xdp_buff, data_end));
9079                 break;
9080         case offsetof(struct xdp_md, ingress_ifindex):
9081                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9082                                       si->dst_reg, si->src_reg,
9083                                       offsetof(struct xdp_buff, rxq));
9084                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9085                                       si->dst_reg, si->dst_reg,
9086                                       offsetof(struct xdp_rxq_info, dev));
9087                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9088                                       offsetof(struct net_device, ifindex));
9089                 break;
9090         case offsetof(struct xdp_md, rx_queue_index):
9091                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9092                                       si->dst_reg, si->src_reg,
9093                                       offsetof(struct xdp_buff, rxq));
9094                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9095                                       offsetof(struct xdp_rxq_info,
9096                                                queue_index));
9097                 break;
9098         case offsetof(struct xdp_md, egress_ifindex):
9099                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9100                                       si->dst_reg, si->src_reg,
9101                                       offsetof(struct xdp_buff, txq));
9102                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9103                                       si->dst_reg, si->dst_reg,
9104                                       offsetof(struct xdp_txq_info, dev));
9105                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9106                                       offsetof(struct net_device, ifindex));
9107                 break;
9108         }
9109
9110         return insn - insn_buf;
9111 }
9112
9113 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9114  * context Structure, F is Field in context structure that contains a pointer
9115  * to Nested Structure of type NS that has the field NF.
9116  *
9117  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9118  * sure that SIZE is not greater than actual size of S.F.NF.
9119  *
9120  * If offset OFF is provided, the load happens from that offset relative to
9121  * offset of NF.
9122  */
9123 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
9124         do {                                                                   \
9125                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9126                                       si->src_reg, offsetof(S, F));            \
9127                 *insn++ = BPF_LDX_MEM(                                         \
9128                         SIZE, si->dst_reg, si->dst_reg,                        \
9129                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9130                                        target_size)                            \
9131                                 + OFF);                                        \
9132         } while (0)
9133
9134 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
9135         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
9136                                              BPF_FIELD_SIZEOF(NS, NF), 0)
9137
9138 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9139  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9140  *
9141  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9142  * "register" since two registers available in convert_ctx_access are not
9143  * enough: we can't override neither SRC, since it contains value to store, nor
9144  * DST since it contains pointer to context that may be used by later
9145  * instructions. But we need a temporary place to save pointer to nested
9146  * structure whose field we want to store to.
9147  */
9148 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
9149         do {                                                                   \
9150                 int tmp_reg = BPF_REG_9;                                       \
9151                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9152                         --tmp_reg;                                             \
9153                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9154                         --tmp_reg;                                             \
9155                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
9156                                       offsetof(S, TF));                        \
9157                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
9158                                       si->dst_reg, offsetof(S, F));            \
9159                 *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,              \
9160                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9161                                        target_size)                            \
9162                                 + OFF);                                        \
9163                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
9164                                       offsetof(S, TF));                        \
9165         } while (0)
9166
9167 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9168                                                       TF)                      \
9169         do {                                                                   \
9170                 if (type == BPF_WRITE) {                                       \
9171                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9172                                                          OFF, TF);             \
9173                 } else {                                                       \
9174                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
9175                                 S, NS, F, NF, SIZE, OFF);  \
9176                 }                                                              \
9177         } while (0)
9178
9179 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
9180         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
9181                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9182
9183 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9184                                         const struct bpf_insn *si,
9185                                         struct bpf_insn *insn_buf,
9186                                         struct bpf_prog *prog, u32 *target_size)
9187 {
9188         int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9189         struct bpf_insn *insn = insn_buf;
9190
9191         switch (si->off) {
9192         case offsetof(struct bpf_sock_addr, user_family):
9193                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9194                                             struct sockaddr, uaddr, sa_family);
9195                 break;
9196
9197         case offsetof(struct bpf_sock_addr, user_ip4):
9198                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9199                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9200                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9201                 break;
9202
9203         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9204                 off = si->off;
9205                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9206                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9207                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9208                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9209                         tmp_reg);
9210                 break;
9211
9212         case offsetof(struct bpf_sock_addr, user_port):
9213                 /* To get port we need to know sa_family first and then treat
9214                  * sockaddr as either sockaddr_in or sockaddr_in6.
9215                  * Though we can simplify since port field has same offset and
9216                  * size in both structures.
9217                  * Here we check this invariant and use just one of the
9218                  * structures if it's true.
9219                  */
9220                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9221                              offsetof(struct sockaddr_in6, sin6_port));
9222                 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9223                              sizeof_field(struct sockaddr_in6, sin6_port));
9224                 /* Account for sin6_port being smaller than user_port. */
9225                 port_size = min(port_size, BPF_LDST_BYTES(si));
9226                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9227                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9228                         sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9229                 break;
9230
9231         case offsetof(struct bpf_sock_addr, family):
9232                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9233                                             struct sock, sk, sk_family);
9234                 break;
9235
9236         case offsetof(struct bpf_sock_addr, type):
9237                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9238                                             struct sock, sk, sk_type);
9239                 break;
9240
9241         case offsetof(struct bpf_sock_addr, protocol):
9242                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9243                                             struct sock, sk, sk_protocol);
9244                 break;
9245
9246         case offsetof(struct bpf_sock_addr, msg_src_ip4):
9247                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
9248                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9249                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9250                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9251                 break;
9252
9253         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9254                                 msg_src_ip6[3]):
9255                 off = si->off;
9256                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9257                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9258                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9259                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9260                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9261                 break;
9262         case offsetof(struct bpf_sock_addr, sk):
9263                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9264                                       si->dst_reg, si->src_reg,
9265                                       offsetof(struct bpf_sock_addr_kern, sk));
9266                 break;
9267         }
9268
9269         return insn - insn_buf;
9270 }
9271
9272 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9273                                        const struct bpf_insn *si,
9274                                        struct bpf_insn *insn_buf,
9275                                        struct bpf_prog *prog,
9276                                        u32 *target_size)
9277 {
9278         struct bpf_insn *insn = insn_buf;
9279         int off;
9280
9281 /* Helper macro for adding read access to tcp_sock or sock fields. */
9282 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
9283         do {                                                                  \
9284                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9285                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
9286                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9287                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9288                         reg--;                                                \
9289                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9290                         reg--;                                                \
9291                 if (si->dst_reg == si->src_reg) {                             \
9292                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
9293                                           offsetof(struct bpf_sock_ops_kern,  \
9294                                           temp));                             \
9295                         fullsock_reg = reg;                                   \
9296                         jmp += 2;                                             \
9297                 }                                                             \
9298                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9299                                                 struct bpf_sock_ops_kern,     \
9300                                                 is_fullsock),                 \
9301                                       fullsock_reg, si->src_reg,              \
9302                                       offsetof(struct bpf_sock_ops_kern,      \
9303                                                is_fullsock));                 \
9304                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
9305                 if (si->dst_reg == si->src_reg)                               \
9306                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9307                                       offsetof(struct bpf_sock_ops_kern,      \
9308                                       temp));                                 \
9309                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9310                                                 struct bpf_sock_ops_kern, sk),\
9311                                       si->dst_reg, si->src_reg,               \
9312                                       offsetof(struct bpf_sock_ops_kern, sk));\
9313                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
9314                                                        OBJ_FIELD),            \
9315                                       si->dst_reg, si->dst_reg,               \
9316                                       offsetof(OBJ, OBJ_FIELD));              \
9317                 if (si->dst_reg == si->src_reg) {                             \
9318                         *insn++ = BPF_JMP_A(1);                               \
9319                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9320                                       offsetof(struct bpf_sock_ops_kern,      \
9321                                       temp));                                 \
9322                 }                                                             \
9323         } while (0)
9324
9325 #define SOCK_OPS_GET_SK()                                                             \
9326         do {                                                                  \
9327                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
9328                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9329                         reg--;                                                \
9330                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9331                         reg--;                                                \
9332                 if (si->dst_reg == si->src_reg) {                             \
9333                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
9334                                           offsetof(struct bpf_sock_ops_kern,  \
9335                                           temp));                             \
9336                         fullsock_reg = reg;                                   \
9337                         jmp += 2;                                             \
9338                 }                                                             \
9339                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9340                                                 struct bpf_sock_ops_kern,     \
9341                                                 is_fullsock),                 \
9342                                       fullsock_reg, si->src_reg,              \
9343                                       offsetof(struct bpf_sock_ops_kern,      \
9344                                                is_fullsock));                 \
9345                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
9346                 if (si->dst_reg == si->src_reg)                               \
9347                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9348                                       offsetof(struct bpf_sock_ops_kern,      \
9349                                       temp));                                 \
9350                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9351                                                 struct bpf_sock_ops_kern, sk),\
9352                                       si->dst_reg, si->src_reg,               \
9353                                       offsetof(struct bpf_sock_ops_kern, sk));\
9354                 if (si->dst_reg == si->src_reg) {                             \
9355                         *insn++ = BPF_JMP_A(1);                               \
9356                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9357                                       offsetof(struct bpf_sock_ops_kern,      \
9358                                       temp));                                 \
9359                 }                                                             \
9360         } while (0)
9361
9362 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9363                 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9364
9365 /* Helper macro for adding write access to tcp_sock or sock fields.
9366  * The macro is called with two registers, dst_reg which contains a pointer
9367  * to ctx (context) and src_reg which contains the value that should be
9368  * stored. However, we need an additional register since we cannot overwrite
9369  * dst_reg because it may be used later in the program.
9370  * Instead we "borrow" one of the other register. We first save its value
9371  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9372  * it at the end of the macro.
9373  */
9374 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
9375         do {                                                                  \
9376                 int reg = BPF_REG_9;                                          \
9377                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
9378                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9379                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9380                         reg--;                                                \
9381                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9382                         reg--;                                                \
9383                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
9384                                       offsetof(struct bpf_sock_ops_kern,      \
9385                                                temp));                        \
9386                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9387                                                 struct bpf_sock_ops_kern,     \
9388                                                 is_fullsock),                 \
9389                                       reg, si->dst_reg,                       \
9390                                       offsetof(struct bpf_sock_ops_kern,      \
9391                                                is_fullsock));                 \
9392                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
9393                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9394                                                 struct bpf_sock_ops_kern, sk),\
9395                                       reg, si->dst_reg,                       \
9396                                       offsetof(struct bpf_sock_ops_kern, sk));\
9397                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
9398                                       reg, si->src_reg,                       \
9399                                       offsetof(OBJ, OBJ_FIELD));              \
9400                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
9401                                       offsetof(struct bpf_sock_ops_kern,      \
9402                                                temp));                        \
9403         } while (0)
9404
9405 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
9406         do {                                                                  \
9407                 if (TYPE == BPF_WRITE)                                        \
9408                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
9409                 else                                                          \
9410                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
9411         } while (0)
9412
9413         if (insn > insn_buf)
9414                 return insn - insn_buf;
9415
9416         switch (si->off) {
9417         case offsetof(struct bpf_sock_ops, op):
9418                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9419                                                        op),
9420                                       si->dst_reg, si->src_reg,
9421                                       offsetof(struct bpf_sock_ops_kern, op));
9422                 break;
9423
9424         case offsetof(struct bpf_sock_ops, replylong[0]) ...
9425              offsetof(struct bpf_sock_ops, replylong[3]):
9426                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
9427                              sizeof_field(struct bpf_sock_ops_kern, reply));
9428                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
9429                              sizeof_field(struct bpf_sock_ops_kern, replylong));
9430                 off = si->off;
9431                 off -= offsetof(struct bpf_sock_ops, replylong[0]);
9432                 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
9433                 if (type == BPF_WRITE)
9434                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9435                                               off);
9436                 else
9437                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9438                                               off);
9439                 break;
9440
9441         case offsetof(struct bpf_sock_ops, family):
9442                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9443
9444                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9445                                               struct bpf_sock_ops_kern, sk),
9446                                       si->dst_reg, si->src_reg,
9447                                       offsetof(struct bpf_sock_ops_kern, sk));
9448                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9449                                       offsetof(struct sock_common, skc_family));
9450                 break;
9451
9452         case offsetof(struct bpf_sock_ops, remote_ip4):
9453                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9454
9455                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9456                                                 struct bpf_sock_ops_kern, sk),
9457                                       si->dst_reg, si->src_reg,
9458                                       offsetof(struct bpf_sock_ops_kern, sk));
9459                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9460                                       offsetof(struct sock_common, skc_daddr));
9461                 break;
9462
9463         case offsetof(struct bpf_sock_ops, local_ip4):
9464                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9465                                           skc_rcv_saddr) != 4);
9466
9467                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9468                                               struct bpf_sock_ops_kern, sk),
9469                                       si->dst_reg, si->src_reg,
9470                                       offsetof(struct bpf_sock_ops_kern, sk));
9471                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9472                                       offsetof(struct sock_common,
9473                                                skc_rcv_saddr));
9474                 break;
9475
9476         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
9477              offsetof(struct bpf_sock_ops, remote_ip6[3]):
9478 #if IS_ENABLED(CONFIG_IPV6)
9479                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9480                                           skc_v6_daddr.s6_addr32[0]) != 4);
9481
9482                 off = si->off;
9483                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
9484                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9485                                                 struct bpf_sock_ops_kern, sk),
9486                                       si->dst_reg, si->src_reg,
9487                                       offsetof(struct bpf_sock_ops_kern, sk));
9488                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9489                                       offsetof(struct sock_common,
9490                                                skc_v6_daddr.s6_addr32[0]) +
9491                                       off);
9492 #else
9493                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9494 #endif
9495                 break;
9496
9497         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
9498              offsetof(struct bpf_sock_ops, local_ip6[3]):
9499 #if IS_ENABLED(CONFIG_IPV6)
9500                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9501                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9502
9503                 off = si->off;
9504                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
9505                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9506                                                 struct bpf_sock_ops_kern, sk),
9507                                       si->dst_reg, si->src_reg,
9508                                       offsetof(struct bpf_sock_ops_kern, sk));
9509                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9510                                       offsetof(struct sock_common,
9511                                                skc_v6_rcv_saddr.s6_addr32[0]) +
9512                                       off);
9513 #else
9514                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9515 #endif
9516                 break;
9517
9518         case offsetof(struct bpf_sock_ops, remote_port):
9519                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9520
9521                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9522                                                 struct bpf_sock_ops_kern, sk),
9523                                       si->dst_reg, si->src_reg,
9524                                       offsetof(struct bpf_sock_ops_kern, sk));
9525                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9526                                       offsetof(struct sock_common, skc_dport));
9527 #ifndef __BIG_ENDIAN_BITFIELD
9528                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9529 #endif
9530                 break;
9531
9532         case offsetof(struct bpf_sock_ops, local_port):
9533                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9534
9535                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9536                                                 struct bpf_sock_ops_kern, sk),
9537                                       si->dst_reg, si->src_reg,
9538                                       offsetof(struct bpf_sock_ops_kern, sk));
9539                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9540                                       offsetof(struct sock_common, skc_num));
9541                 break;
9542
9543         case offsetof(struct bpf_sock_ops, is_fullsock):
9544                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9545                                                 struct bpf_sock_ops_kern,
9546                                                 is_fullsock),
9547                                       si->dst_reg, si->src_reg,
9548                                       offsetof(struct bpf_sock_ops_kern,
9549                                                is_fullsock));
9550                 break;
9551
9552         case offsetof(struct bpf_sock_ops, state):
9553                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
9554
9555                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9556                                                 struct bpf_sock_ops_kern, sk),
9557                                       si->dst_reg, si->src_reg,
9558                                       offsetof(struct bpf_sock_ops_kern, sk));
9559                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
9560                                       offsetof(struct sock_common, skc_state));
9561                 break;
9562
9563         case offsetof(struct bpf_sock_ops, rtt_min):
9564                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
9565                              sizeof(struct minmax));
9566                 BUILD_BUG_ON(sizeof(struct minmax) <
9567                              sizeof(struct minmax_sample));
9568
9569                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9570                                                 struct bpf_sock_ops_kern, sk),
9571                                       si->dst_reg, si->src_reg,
9572                                       offsetof(struct bpf_sock_ops_kern, sk));
9573                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9574                                       offsetof(struct tcp_sock, rtt_min) +
9575                                       sizeof_field(struct minmax_sample, t));
9576                 break;
9577
9578         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
9579                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
9580                                    struct tcp_sock);
9581                 break;
9582
9583         case offsetof(struct bpf_sock_ops, sk_txhash):
9584                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
9585                                           struct sock, type);
9586                 break;
9587         case offsetof(struct bpf_sock_ops, snd_cwnd):
9588                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
9589                 break;
9590         case offsetof(struct bpf_sock_ops, srtt_us):
9591                 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
9592                 break;
9593         case offsetof(struct bpf_sock_ops, snd_ssthresh):
9594                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
9595                 break;
9596         case offsetof(struct bpf_sock_ops, rcv_nxt):
9597                 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
9598                 break;
9599         case offsetof(struct bpf_sock_ops, snd_nxt):
9600                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
9601                 break;
9602         case offsetof(struct bpf_sock_ops, snd_una):
9603                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
9604                 break;
9605         case offsetof(struct bpf_sock_ops, mss_cache):
9606                 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
9607                 break;
9608         case offsetof(struct bpf_sock_ops, ecn_flags):
9609                 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
9610                 break;
9611         case offsetof(struct bpf_sock_ops, rate_delivered):
9612                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
9613                 break;
9614         case offsetof(struct bpf_sock_ops, rate_interval_us):
9615                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
9616                 break;
9617         case offsetof(struct bpf_sock_ops, packets_out):
9618                 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
9619                 break;
9620         case offsetof(struct bpf_sock_ops, retrans_out):
9621                 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
9622                 break;
9623         case offsetof(struct bpf_sock_ops, total_retrans):
9624                 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
9625                 break;
9626         case offsetof(struct bpf_sock_ops, segs_in):
9627                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
9628                 break;
9629         case offsetof(struct bpf_sock_ops, data_segs_in):
9630                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
9631                 break;
9632         case offsetof(struct bpf_sock_ops, segs_out):
9633                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
9634                 break;
9635         case offsetof(struct bpf_sock_ops, data_segs_out):
9636                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
9637                 break;
9638         case offsetof(struct bpf_sock_ops, lost_out):
9639                 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
9640                 break;
9641         case offsetof(struct bpf_sock_ops, sacked_out):
9642                 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
9643                 break;
9644         case offsetof(struct bpf_sock_ops, bytes_received):
9645                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
9646                 break;
9647         case offsetof(struct bpf_sock_ops, bytes_acked):
9648                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
9649                 break;
9650         case offsetof(struct bpf_sock_ops, sk):
9651                 SOCK_OPS_GET_SK();
9652                 break;
9653         case offsetof(struct bpf_sock_ops, skb_data_end):
9654                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9655                                                        skb_data_end),
9656                                       si->dst_reg, si->src_reg,
9657                                       offsetof(struct bpf_sock_ops_kern,
9658                                                skb_data_end));
9659                 break;
9660         case offsetof(struct bpf_sock_ops, skb_data):
9661                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9662                                                        skb),
9663                                       si->dst_reg, si->src_reg,
9664                                       offsetof(struct bpf_sock_ops_kern,
9665                                                skb));
9666                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9667                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9668                                       si->dst_reg, si->dst_reg,
9669                                       offsetof(struct sk_buff, data));
9670                 break;
9671         case offsetof(struct bpf_sock_ops, skb_len):
9672                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9673                                                        skb),
9674                                       si->dst_reg, si->src_reg,
9675                                       offsetof(struct bpf_sock_ops_kern,
9676                                                skb));
9677                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9678                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9679                                       si->dst_reg, si->dst_reg,
9680                                       offsetof(struct sk_buff, len));
9681                 break;
9682         case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9683                 off = offsetof(struct sk_buff, cb);
9684                 off += offsetof(struct tcp_skb_cb, tcp_flags);
9685                 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
9686                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9687                                                        skb),
9688                                       si->dst_reg, si->src_reg,
9689                                       offsetof(struct bpf_sock_ops_kern,
9690                                                skb));
9691                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9692                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
9693                                                        tcp_flags),
9694                                       si->dst_reg, si->dst_reg, off);
9695                 break;
9696         }
9697         return insn - insn_buf;
9698 }
9699
9700 /* data_end = skb->data + skb_headlen() */
9701 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
9702                                                     struct bpf_insn *insn)
9703 {
9704         /* si->dst_reg = skb->data */
9705         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9706                               si->dst_reg, si->src_reg,
9707                               offsetof(struct sk_buff, data));
9708         /* AX = skb->len */
9709         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9710                               BPF_REG_AX, si->src_reg,
9711                               offsetof(struct sk_buff, len));
9712         /* si->dst_reg = skb->data + skb->len */
9713         *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
9714         /* AX = skb->data_len */
9715         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
9716                               BPF_REG_AX, si->src_reg,
9717                               offsetof(struct sk_buff, data_len));
9718         /* si->dst_reg = skb->data + skb->len - skb->data_len */
9719         *insn++ = BPF_ALU64_REG(BPF_SUB, si->dst_reg, BPF_REG_AX);
9720
9721         return insn;
9722 }
9723
9724 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
9725                                      const struct bpf_insn *si,
9726                                      struct bpf_insn *insn_buf,
9727                                      struct bpf_prog *prog, u32 *target_size)
9728 {
9729         struct bpf_insn *insn = insn_buf;
9730
9731         switch (si->off) {
9732         case offsetof(struct __sk_buff, data_end):
9733                 insn = bpf_convert_data_end_access(si, insn);
9734                 break;
9735         default:
9736                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9737                                               target_size);
9738         }
9739
9740         return insn - insn_buf;
9741 }
9742
9743 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
9744                                      const struct bpf_insn *si,
9745                                      struct bpf_insn *insn_buf,
9746                                      struct bpf_prog *prog, u32 *target_size)
9747 {
9748         struct bpf_insn *insn = insn_buf;
9749 #if IS_ENABLED(CONFIG_IPV6)
9750         int off;
9751 #endif
9752
9753         /* convert ctx uses the fact sg element is first in struct */
9754         BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
9755
9756         switch (si->off) {
9757         case offsetof(struct sk_msg_md, data):
9758                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
9759                                       si->dst_reg, si->src_reg,
9760                                       offsetof(struct sk_msg, data));
9761                 break;
9762         case offsetof(struct sk_msg_md, data_end):
9763                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
9764                                       si->dst_reg, si->src_reg,
9765                                       offsetof(struct sk_msg, data_end));
9766                 break;
9767         case offsetof(struct sk_msg_md, family):
9768                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9769
9770                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9771                                               struct sk_msg, sk),
9772                                       si->dst_reg, si->src_reg,
9773                                       offsetof(struct sk_msg, sk));
9774                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9775                                       offsetof(struct sock_common, skc_family));
9776                 break;
9777
9778         case offsetof(struct sk_msg_md, remote_ip4):
9779                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9780
9781                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9782                                                 struct sk_msg, sk),
9783                                       si->dst_reg, si->src_reg,
9784                                       offsetof(struct sk_msg, sk));
9785                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9786                                       offsetof(struct sock_common, skc_daddr));
9787                 break;
9788
9789         case offsetof(struct sk_msg_md, local_ip4):
9790                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9791                                           skc_rcv_saddr) != 4);
9792
9793                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9794                                               struct sk_msg, sk),
9795                                       si->dst_reg, si->src_reg,
9796                                       offsetof(struct sk_msg, sk));
9797                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9798                                       offsetof(struct sock_common,
9799                                                skc_rcv_saddr));
9800                 break;
9801
9802         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
9803              offsetof(struct sk_msg_md, remote_ip6[3]):
9804 #if IS_ENABLED(CONFIG_IPV6)
9805                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9806                                           skc_v6_daddr.s6_addr32[0]) != 4);
9807
9808                 off = si->off;
9809                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
9810                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9811                                                 struct sk_msg, sk),
9812                                       si->dst_reg, si->src_reg,
9813                                       offsetof(struct sk_msg, sk));
9814                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9815                                       offsetof(struct sock_common,
9816                                                skc_v6_daddr.s6_addr32[0]) +
9817                                       off);
9818 #else
9819                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9820 #endif
9821                 break;
9822
9823         case offsetof(struct sk_msg_md, local_ip6[0]) ...
9824              offsetof(struct sk_msg_md, local_ip6[3]):
9825 #if IS_ENABLED(CONFIG_IPV6)
9826                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9827                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9828
9829                 off = si->off;
9830                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
9831                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9832                                                 struct sk_msg, sk),
9833                                       si->dst_reg, si->src_reg,
9834                                       offsetof(struct sk_msg, sk));
9835                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9836                                       offsetof(struct sock_common,
9837                                                skc_v6_rcv_saddr.s6_addr32[0]) +
9838                                       off);
9839 #else
9840                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9841 #endif
9842                 break;
9843
9844         case offsetof(struct sk_msg_md, remote_port):
9845                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9846
9847                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9848                                                 struct sk_msg, sk),
9849                                       si->dst_reg, si->src_reg,
9850                                       offsetof(struct sk_msg, sk));
9851                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9852                                       offsetof(struct sock_common, skc_dport));
9853 #ifndef __BIG_ENDIAN_BITFIELD
9854                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9855 #endif
9856                 break;
9857
9858         case offsetof(struct sk_msg_md, local_port):
9859                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9860
9861                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9862                                                 struct sk_msg, sk),
9863                                       si->dst_reg, si->src_reg,
9864                                       offsetof(struct sk_msg, sk));
9865                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9866                                       offsetof(struct sock_common, skc_num));
9867                 break;
9868
9869         case offsetof(struct sk_msg_md, size):
9870                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
9871                                       si->dst_reg, si->src_reg,
9872                                       offsetof(struct sk_msg_sg, size));
9873                 break;
9874
9875         case offsetof(struct sk_msg_md, sk):
9876                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
9877                                       si->dst_reg, si->src_reg,
9878                                       offsetof(struct sk_msg, sk));
9879                 break;
9880         }
9881
9882         return insn - insn_buf;
9883 }
9884
9885 const struct bpf_verifier_ops sk_filter_verifier_ops = {
9886         .get_func_proto         = sk_filter_func_proto,
9887         .is_valid_access        = sk_filter_is_valid_access,
9888         .convert_ctx_access     = bpf_convert_ctx_access,
9889         .gen_ld_abs             = bpf_gen_ld_abs,
9890 };
9891
9892 const struct bpf_prog_ops sk_filter_prog_ops = {
9893         .test_run               = bpf_prog_test_run_skb,
9894 };
9895
9896 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
9897         .get_func_proto         = tc_cls_act_func_proto,
9898         .is_valid_access        = tc_cls_act_is_valid_access,
9899         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
9900         .gen_prologue           = tc_cls_act_prologue,
9901         .gen_ld_abs             = bpf_gen_ld_abs,
9902         .check_kfunc_call       = bpf_prog_test_check_kfunc_call,
9903 };
9904
9905 const struct bpf_prog_ops tc_cls_act_prog_ops = {
9906         .test_run               = bpf_prog_test_run_skb,
9907 };
9908
9909 const struct bpf_verifier_ops xdp_verifier_ops = {
9910         .get_func_proto         = xdp_func_proto,
9911         .is_valid_access        = xdp_is_valid_access,
9912         .convert_ctx_access     = xdp_convert_ctx_access,
9913         .gen_prologue           = bpf_noop_prologue,
9914 };
9915
9916 const struct bpf_prog_ops xdp_prog_ops = {
9917         .test_run               = bpf_prog_test_run_xdp,
9918 };
9919
9920 const struct bpf_verifier_ops cg_skb_verifier_ops = {
9921         .get_func_proto         = cg_skb_func_proto,
9922         .is_valid_access        = cg_skb_is_valid_access,
9923         .convert_ctx_access     = bpf_convert_ctx_access,
9924 };
9925
9926 const struct bpf_prog_ops cg_skb_prog_ops = {
9927         .test_run               = bpf_prog_test_run_skb,
9928 };
9929
9930 const struct bpf_verifier_ops lwt_in_verifier_ops = {
9931         .get_func_proto         = lwt_in_func_proto,
9932         .is_valid_access        = lwt_is_valid_access,
9933         .convert_ctx_access     = bpf_convert_ctx_access,
9934 };
9935
9936 const struct bpf_prog_ops lwt_in_prog_ops = {
9937         .test_run               = bpf_prog_test_run_skb,
9938 };
9939
9940 const struct bpf_verifier_ops lwt_out_verifier_ops = {
9941         .get_func_proto         = lwt_out_func_proto,
9942         .is_valid_access        = lwt_is_valid_access,
9943         .convert_ctx_access     = bpf_convert_ctx_access,
9944 };
9945
9946 const struct bpf_prog_ops lwt_out_prog_ops = {
9947         .test_run               = bpf_prog_test_run_skb,
9948 };
9949
9950 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
9951         .get_func_proto         = lwt_xmit_func_proto,
9952         .is_valid_access        = lwt_is_valid_access,
9953         .convert_ctx_access     = bpf_convert_ctx_access,
9954         .gen_prologue           = tc_cls_act_prologue,
9955 };
9956
9957 const struct bpf_prog_ops lwt_xmit_prog_ops = {
9958         .test_run               = bpf_prog_test_run_skb,
9959 };
9960
9961 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
9962         .get_func_proto         = lwt_seg6local_func_proto,
9963         .is_valid_access        = lwt_is_valid_access,
9964         .convert_ctx_access     = bpf_convert_ctx_access,
9965 };
9966
9967 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
9968         .test_run               = bpf_prog_test_run_skb,
9969 };
9970
9971 const struct bpf_verifier_ops cg_sock_verifier_ops = {
9972         .get_func_proto         = sock_filter_func_proto,
9973         .is_valid_access        = sock_filter_is_valid_access,
9974         .convert_ctx_access     = bpf_sock_convert_ctx_access,
9975 };
9976
9977 const struct bpf_prog_ops cg_sock_prog_ops = {
9978 };
9979
9980 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
9981         .get_func_proto         = sock_addr_func_proto,
9982         .is_valid_access        = sock_addr_is_valid_access,
9983         .convert_ctx_access     = sock_addr_convert_ctx_access,
9984 };
9985
9986 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
9987 };
9988
9989 const struct bpf_verifier_ops sock_ops_verifier_ops = {
9990         .get_func_proto         = sock_ops_func_proto,
9991         .is_valid_access        = sock_ops_is_valid_access,
9992         .convert_ctx_access     = sock_ops_convert_ctx_access,
9993 };
9994
9995 const struct bpf_prog_ops sock_ops_prog_ops = {
9996 };
9997
9998 const struct bpf_verifier_ops sk_skb_verifier_ops = {
9999         .get_func_proto         = sk_skb_func_proto,
10000         .is_valid_access        = sk_skb_is_valid_access,
10001         .convert_ctx_access     = sk_skb_convert_ctx_access,
10002         .gen_prologue           = sk_skb_prologue,
10003 };
10004
10005 const struct bpf_prog_ops sk_skb_prog_ops = {
10006 };
10007
10008 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10009         .get_func_proto         = sk_msg_func_proto,
10010         .is_valid_access        = sk_msg_is_valid_access,
10011         .convert_ctx_access     = sk_msg_convert_ctx_access,
10012         .gen_prologue           = bpf_noop_prologue,
10013 };
10014
10015 const struct bpf_prog_ops sk_msg_prog_ops = {
10016 };
10017
10018 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10019         .get_func_proto         = flow_dissector_func_proto,
10020         .is_valid_access        = flow_dissector_is_valid_access,
10021         .convert_ctx_access     = flow_dissector_convert_ctx_access,
10022 };
10023
10024 const struct bpf_prog_ops flow_dissector_prog_ops = {
10025         .test_run               = bpf_prog_test_run_flow_dissector,
10026 };
10027
10028 int sk_detach_filter(struct sock *sk)
10029 {
10030         int ret = -ENOENT;
10031         struct sk_filter *filter;
10032
10033         if (sock_flag(sk, SOCK_FILTER_LOCKED))
10034                 return -EPERM;
10035
10036         filter = rcu_dereference_protected(sk->sk_filter,
10037                                            lockdep_sock_is_held(sk));
10038         if (filter) {
10039                 RCU_INIT_POINTER(sk->sk_filter, NULL);
10040                 sk_filter_uncharge(sk, filter);
10041                 ret = 0;
10042         }
10043
10044         return ret;
10045 }
10046 EXPORT_SYMBOL_GPL(sk_detach_filter);
10047
10048 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
10049                   unsigned int len)
10050 {
10051         struct sock_fprog_kern *fprog;
10052         struct sk_filter *filter;
10053         int ret = 0;
10054
10055         lock_sock(sk);
10056         filter = rcu_dereference_protected(sk->sk_filter,
10057                                            lockdep_sock_is_held(sk));
10058         if (!filter)
10059                 goto out;
10060
10061         /* We're copying the filter that has been originally attached,
10062          * so no conversion/decode needed anymore. eBPF programs that
10063          * have no original program cannot be dumped through this.
10064          */
10065         ret = -EACCES;
10066         fprog = filter->prog->orig_prog;
10067         if (!fprog)
10068                 goto out;
10069
10070         ret = fprog->len;
10071         if (!len)
10072                 /* User space only enquires number of filter blocks. */
10073                 goto out;
10074
10075         ret = -EINVAL;
10076         if (len < fprog->len)
10077                 goto out;
10078
10079         ret = -EFAULT;
10080         if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
10081                 goto out;
10082
10083         /* Instead of bytes, the API requests to return the number
10084          * of filter blocks.
10085          */
10086         ret = fprog->len;
10087 out:
10088         release_sock(sk);
10089         return ret;
10090 }
10091
10092 #ifdef CONFIG_INET
10093 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10094                                     struct sock_reuseport *reuse,
10095                                     struct sock *sk, struct sk_buff *skb,
10096                                     struct sock *migrating_sk,
10097                                     u32 hash)
10098 {
10099         reuse_kern->skb = skb;
10100         reuse_kern->sk = sk;
10101         reuse_kern->selected_sk = NULL;
10102         reuse_kern->migrating_sk = migrating_sk;
10103         reuse_kern->data_end = skb->data + skb_headlen(skb);
10104         reuse_kern->hash = hash;
10105         reuse_kern->reuseport_id = reuse->reuseport_id;
10106         reuse_kern->bind_inany = reuse->bind_inany;
10107 }
10108
10109 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10110                                   struct bpf_prog *prog, struct sk_buff *skb,
10111                                   struct sock *migrating_sk,
10112                                   u32 hash)
10113 {
10114         struct sk_reuseport_kern reuse_kern;
10115         enum sk_action action;
10116
10117         bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10118         action = BPF_PROG_RUN(prog, &reuse_kern);
10119
10120         if (action == SK_PASS)
10121                 return reuse_kern.selected_sk;
10122         else
10123                 return ERR_PTR(-ECONNREFUSED);
10124 }
10125
10126 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10127            struct bpf_map *, map, void *, key, u32, flags)
10128 {
10129         bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10130         struct sock_reuseport *reuse;
10131         struct sock *selected_sk;
10132
10133         selected_sk = map->ops->map_lookup_elem(map, key);
10134         if (!selected_sk)
10135                 return -ENOENT;
10136
10137         reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10138         if (!reuse) {
10139                 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10140                 if (sk_is_refcounted(selected_sk))
10141                         sock_put(selected_sk);
10142
10143                 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
10144                  * The only (!reuse) case here is - the sk has already been
10145                  * unhashed (e.g. by close()), so treat it as -ENOENT.
10146                  *
10147                  * Other maps (e.g. sock_map) do not provide this guarantee and
10148                  * the sk may never be in the reuseport group to begin with.
10149                  */
10150                 return is_sockarray ? -ENOENT : -EINVAL;
10151         }
10152
10153         if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10154                 struct sock *sk = reuse_kern->sk;
10155
10156                 if (sk->sk_protocol != selected_sk->sk_protocol)
10157                         return -EPROTOTYPE;
10158                 else if (sk->sk_family != selected_sk->sk_family)
10159                         return -EAFNOSUPPORT;
10160
10161                 /* Catch all. Likely bound to a different sockaddr. */
10162                 return -EBADFD;
10163         }
10164
10165         reuse_kern->selected_sk = selected_sk;
10166
10167         return 0;
10168 }
10169
10170 static const struct bpf_func_proto sk_select_reuseport_proto = {
10171         .func           = sk_select_reuseport,
10172         .gpl_only       = false,
10173         .ret_type       = RET_INTEGER,
10174         .arg1_type      = ARG_PTR_TO_CTX,
10175         .arg2_type      = ARG_CONST_MAP_PTR,
10176         .arg3_type      = ARG_PTR_TO_MAP_KEY,
10177         .arg4_type      = ARG_ANYTHING,
10178 };
10179
10180 BPF_CALL_4(sk_reuseport_load_bytes,
10181            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10182            void *, to, u32, len)
10183 {
10184         return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10185 }
10186
10187 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10188         .func           = sk_reuseport_load_bytes,
10189         .gpl_only       = false,
10190         .ret_type       = RET_INTEGER,
10191         .arg1_type      = ARG_PTR_TO_CTX,
10192         .arg2_type      = ARG_ANYTHING,
10193         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
10194         .arg4_type      = ARG_CONST_SIZE,
10195 };
10196
10197 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10198            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10199            void *, to, u32, len, u32, start_header)
10200 {
10201         return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10202                                                len, start_header);
10203 }
10204
10205 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10206         .func           = sk_reuseport_load_bytes_relative,
10207         .gpl_only       = false,
10208         .ret_type       = RET_INTEGER,
10209         .arg1_type      = ARG_PTR_TO_CTX,
10210         .arg2_type      = ARG_ANYTHING,
10211         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
10212         .arg4_type      = ARG_CONST_SIZE,
10213         .arg5_type      = ARG_ANYTHING,
10214 };
10215
10216 static const struct bpf_func_proto *
10217 sk_reuseport_func_proto(enum bpf_func_id func_id,
10218                         const struct bpf_prog *prog)
10219 {
10220         switch (func_id) {
10221         case BPF_FUNC_sk_select_reuseport:
10222                 return &sk_select_reuseport_proto;
10223         case BPF_FUNC_skb_load_bytes:
10224                 return &sk_reuseport_load_bytes_proto;
10225         case BPF_FUNC_skb_load_bytes_relative:
10226                 return &sk_reuseport_load_bytes_relative_proto;
10227         case BPF_FUNC_get_socket_cookie:
10228                 return &bpf_get_socket_ptr_cookie_proto;
10229         default:
10230                 return bpf_base_func_proto(func_id);
10231         }
10232 }
10233
10234 static bool
10235 sk_reuseport_is_valid_access(int off, int size,
10236                              enum bpf_access_type type,
10237                              const struct bpf_prog *prog,
10238                              struct bpf_insn_access_aux *info)
10239 {
10240         const u32 size_default = sizeof(__u32);
10241
10242         if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
10243             off % size || type != BPF_READ)
10244                 return false;
10245
10246         switch (off) {
10247         case offsetof(struct sk_reuseport_md, data):
10248                 info->reg_type = PTR_TO_PACKET;
10249                 return size == sizeof(__u64);
10250
10251         case offsetof(struct sk_reuseport_md, data_end):
10252                 info->reg_type = PTR_TO_PACKET_END;
10253                 return size == sizeof(__u64);
10254
10255         case offsetof(struct sk_reuseport_md, hash):
10256                 return size == size_default;
10257
10258         case offsetof(struct sk_reuseport_md, sk):
10259                 info->reg_type = PTR_TO_SOCKET;
10260                 return size == sizeof(__u64);
10261
10262         case offsetof(struct sk_reuseport_md, migrating_sk):
10263                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
10264                 return size == sizeof(__u64);
10265
10266         /* Fields that allow narrowing */
10267         case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
10268                 if (size < sizeof_field(struct sk_buff, protocol))
10269                         return false;
10270                 fallthrough;
10271         case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
10272         case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
10273         case bpf_ctx_range(struct sk_reuseport_md, len):
10274                 bpf_ctx_record_field_size(info, size_default);
10275                 return bpf_ctx_narrow_access_ok(off, size, size_default);
10276
10277         default:
10278                 return false;
10279         }
10280 }
10281
10282 #define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
10283         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
10284                               si->dst_reg, si->src_reg,                 \
10285                               bpf_target_off(struct sk_reuseport_kern, F, \
10286                                              sizeof_field(struct sk_reuseport_kern, F), \
10287                                              target_size));             \
10288         })
10289
10290 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
10291         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
10292                                     struct sk_buff,                     \
10293                                     skb,                                \
10294                                     SKB_FIELD)
10295
10296 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)                            \
10297         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
10298                                     struct sock,                        \
10299                                     sk,                                 \
10300                                     SK_FIELD)
10301
10302 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
10303                                            const struct bpf_insn *si,
10304                                            struct bpf_insn *insn_buf,
10305                                            struct bpf_prog *prog,
10306                                            u32 *target_size)
10307 {
10308         struct bpf_insn *insn = insn_buf;
10309
10310         switch (si->off) {
10311         case offsetof(struct sk_reuseport_md, data):
10312                 SK_REUSEPORT_LOAD_SKB_FIELD(data);
10313                 break;
10314
10315         case offsetof(struct sk_reuseport_md, len):
10316                 SK_REUSEPORT_LOAD_SKB_FIELD(len);
10317                 break;
10318
10319         case offsetof(struct sk_reuseport_md, eth_protocol):
10320                 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
10321                 break;
10322
10323         case offsetof(struct sk_reuseport_md, ip_protocol):
10324                 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
10325                 break;
10326
10327         case offsetof(struct sk_reuseport_md, data_end):
10328                 SK_REUSEPORT_LOAD_FIELD(data_end);
10329                 break;
10330
10331         case offsetof(struct sk_reuseport_md, hash):
10332                 SK_REUSEPORT_LOAD_FIELD(hash);
10333                 break;
10334
10335         case offsetof(struct sk_reuseport_md, bind_inany):
10336                 SK_REUSEPORT_LOAD_FIELD(bind_inany);
10337                 break;
10338
10339         case offsetof(struct sk_reuseport_md, sk):
10340                 SK_REUSEPORT_LOAD_FIELD(sk);
10341                 break;
10342
10343         case offsetof(struct sk_reuseport_md, migrating_sk):
10344                 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
10345                 break;
10346         }
10347
10348         return insn - insn_buf;
10349 }
10350
10351 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
10352         .get_func_proto         = sk_reuseport_func_proto,
10353         .is_valid_access        = sk_reuseport_is_valid_access,
10354         .convert_ctx_access     = sk_reuseport_convert_ctx_access,
10355 };
10356
10357 const struct bpf_prog_ops sk_reuseport_prog_ops = {
10358 };
10359
10360 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
10361 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
10362
10363 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
10364            struct sock *, sk, u64, flags)
10365 {
10366         if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
10367                                BPF_SK_LOOKUP_F_NO_REUSEPORT)))
10368                 return -EINVAL;
10369         if (unlikely(sk && sk_is_refcounted(sk)))
10370                 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
10371         if (unlikely(sk && sk->sk_state == TCP_ESTABLISHED))
10372                 return -ESOCKTNOSUPPORT; /* reject connected sockets */
10373
10374         /* Check if socket is suitable for packet L3/L4 protocol */
10375         if (sk && sk->sk_protocol != ctx->protocol)
10376                 return -EPROTOTYPE;
10377         if (sk && sk->sk_family != ctx->family &&
10378             (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
10379                 return -EAFNOSUPPORT;
10380
10381         if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
10382                 return -EEXIST;
10383
10384         /* Select socket as lookup result */
10385         ctx->selected_sk = sk;
10386         ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
10387         return 0;
10388 }
10389
10390 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
10391         .func           = bpf_sk_lookup_assign,
10392         .gpl_only       = false,
10393         .ret_type       = RET_INTEGER,
10394         .arg1_type      = ARG_PTR_TO_CTX,
10395         .arg2_type      = ARG_PTR_TO_SOCKET_OR_NULL,
10396         .arg3_type      = ARG_ANYTHING,
10397 };
10398
10399 static const struct bpf_func_proto *
10400 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
10401 {
10402         switch (func_id) {
10403         case BPF_FUNC_perf_event_output:
10404                 return &bpf_event_output_data_proto;
10405         case BPF_FUNC_sk_assign:
10406                 return &bpf_sk_lookup_assign_proto;
10407         case BPF_FUNC_sk_release:
10408                 return &bpf_sk_release_proto;
10409         default:
10410                 return bpf_sk_base_func_proto(func_id);
10411         }
10412 }
10413
10414 static bool sk_lookup_is_valid_access(int off, int size,
10415                                       enum bpf_access_type type,
10416                                       const struct bpf_prog *prog,
10417                                       struct bpf_insn_access_aux *info)
10418 {
10419         if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
10420                 return false;
10421         if (off % size != 0)
10422                 return false;
10423         if (type != BPF_READ)
10424                 return false;
10425
10426         switch (off) {
10427         case offsetof(struct bpf_sk_lookup, sk):
10428                 info->reg_type = PTR_TO_SOCKET_OR_NULL;
10429                 return size == sizeof(__u64);
10430
10431         case bpf_ctx_range(struct bpf_sk_lookup, family):
10432         case bpf_ctx_range(struct bpf_sk_lookup, protocol):
10433         case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
10434         case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
10435         case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
10436         case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
10437         case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
10438         case bpf_ctx_range(struct bpf_sk_lookup, local_port):
10439                 bpf_ctx_record_field_size(info, sizeof(__u32));
10440                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
10441
10442         default:
10443                 return false;
10444         }
10445 }
10446
10447 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
10448                                         const struct bpf_insn *si,
10449                                         struct bpf_insn *insn_buf,
10450                                         struct bpf_prog *prog,
10451                                         u32 *target_size)
10452 {
10453         struct bpf_insn *insn = insn_buf;
10454
10455         switch (si->off) {
10456         case offsetof(struct bpf_sk_lookup, sk):
10457                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10458                                       offsetof(struct bpf_sk_lookup_kern, selected_sk));
10459                 break;
10460
10461         case offsetof(struct bpf_sk_lookup, family):
10462                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10463                                       bpf_target_off(struct bpf_sk_lookup_kern,
10464                                                      family, 2, target_size));
10465                 break;
10466
10467         case offsetof(struct bpf_sk_lookup, protocol):
10468                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10469                                       bpf_target_off(struct bpf_sk_lookup_kern,
10470                                                      protocol, 2, target_size));
10471                 break;
10472
10473         case offsetof(struct bpf_sk_lookup, remote_ip4):
10474                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10475                                       bpf_target_off(struct bpf_sk_lookup_kern,
10476                                                      v4.saddr, 4, target_size));
10477                 break;
10478
10479         case offsetof(struct bpf_sk_lookup, local_ip4):
10480                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10481                                       bpf_target_off(struct bpf_sk_lookup_kern,
10482                                                      v4.daddr, 4, target_size));
10483                 break;
10484
10485         case bpf_ctx_range_till(struct bpf_sk_lookup,
10486                                 remote_ip6[0], remote_ip6[3]): {
10487 #if IS_ENABLED(CONFIG_IPV6)
10488                 int off = si->off;
10489
10490                 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
10491                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10492                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10493                                       offsetof(struct bpf_sk_lookup_kern, v6.saddr));
10494                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10495                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10496 #else
10497                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10498 #endif
10499                 break;
10500         }
10501         case bpf_ctx_range_till(struct bpf_sk_lookup,
10502                                 local_ip6[0], local_ip6[3]): {
10503 #if IS_ENABLED(CONFIG_IPV6)
10504                 int off = si->off;
10505
10506                 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
10507                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10508                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10509                                       offsetof(struct bpf_sk_lookup_kern, v6.daddr));
10510                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10511                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10512 #else
10513                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10514 #endif
10515                 break;
10516         }
10517         case offsetof(struct bpf_sk_lookup, remote_port):
10518                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10519                                       bpf_target_off(struct bpf_sk_lookup_kern,
10520                                                      sport, 2, target_size));
10521                 break;
10522
10523         case offsetof(struct bpf_sk_lookup, local_port):
10524                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10525                                       bpf_target_off(struct bpf_sk_lookup_kern,
10526                                                      dport, 2, target_size));
10527                 break;
10528         }
10529
10530         return insn - insn_buf;
10531 }
10532
10533 const struct bpf_prog_ops sk_lookup_prog_ops = {
10534         .test_run = bpf_prog_test_run_sk_lookup,
10535 };
10536
10537 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
10538         .get_func_proto         = sk_lookup_func_proto,
10539         .is_valid_access        = sk_lookup_is_valid_access,
10540         .convert_ctx_access     = sk_lookup_convert_ctx_access,
10541 };
10542
10543 #endif /* CONFIG_INET */
10544
10545 DEFINE_BPF_DISPATCHER(xdp)
10546
10547 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
10548 {
10549         bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
10550 }
10551
10552 #ifdef CONFIG_DEBUG_INFO_BTF
10553 BTF_ID_LIST_GLOBAL(btf_sock_ids)
10554 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
10555 BTF_SOCK_TYPE_xxx
10556 #undef BTF_SOCK_TYPE
10557 #else
10558 u32 btf_sock_ids[MAX_BTF_SOCK_TYPE];
10559 #endif
10560
10561 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
10562 {
10563         /* tcp6_sock type is not generated in dwarf and hence btf,
10564          * trigger an explicit type generation here.
10565          */
10566         BTF_TYPE_EMIT(struct tcp6_sock);
10567         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
10568             sk->sk_family == AF_INET6)
10569                 return (unsigned long)sk;
10570
10571         return (unsigned long)NULL;
10572 }
10573
10574 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
10575         .func                   = bpf_skc_to_tcp6_sock,
10576         .gpl_only               = false,
10577         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10578         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10579         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
10580 };
10581
10582 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
10583 {
10584         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
10585                 return (unsigned long)sk;
10586
10587         return (unsigned long)NULL;
10588 }
10589
10590 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
10591         .func                   = bpf_skc_to_tcp_sock,
10592         .gpl_only               = false,
10593         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10594         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10595         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
10596 };
10597
10598 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
10599 {
10600         /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
10601          * generated if CONFIG_INET=n. Trigger an explicit generation here.
10602          */
10603         BTF_TYPE_EMIT(struct inet_timewait_sock);
10604         BTF_TYPE_EMIT(struct tcp_timewait_sock);
10605
10606 #ifdef CONFIG_INET
10607         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
10608                 return (unsigned long)sk;
10609 #endif
10610
10611 #if IS_BUILTIN(CONFIG_IPV6)
10612         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
10613                 return (unsigned long)sk;
10614 #endif
10615
10616         return (unsigned long)NULL;
10617 }
10618
10619 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
10620         .func                   = bpf_skc_to_tcp_timewait_sock,
10621         .gpl_only               = false,
10622         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10623         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10624         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
10625 };
10626
10627 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
10628 {
10629 #ifdef CONFIG_INET
10630         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10631                 return (unsigned long)sk;
10632 #endif
10633
10634 #if IS_BUILTIN(CONFIG_IPV6)
10635         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10636                 return (unsigned long)sk;
10637 #endif
10638
10639         return (unsigned long)NULL;
10640 }
10641
10642 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
10643         .func                   = bpf_skc_to_tcp_request_sock,
10644         .gpl_only               = false,
10645         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10646         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10647         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
10648 };
10649
10650 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
10651 {
10652         /* udp6_sock type is not generated in dwarf and hence btf,
10653          * trigger an explicit type generation here.
10654          */
10655         BTF_TYPE_EMIT(struct udp6_sock);
10656         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
10657             sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
10658                 return (unsigned long)sk;
10659
10660         return (unsigned long)NULL;
10661 }
10662
10663 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
10664         .func                   = bpf_skc_to_udp6_sock,
10665         .gpl_only               = false,
10666         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10667         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10668         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
10669 };
10670
10671 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
10672 {
10673         return (unsigned long)sock_from_file(file);
10674 }
10675
10676 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
10677 BTF_ID(struct, socket)
10678 BTF_ID(struct, file)
10679
10680 const struct bpf_func_proto bpf_sock_from_file_proto = {
10681         .func           = bpf_sock_from_file,
10682         .gpl_only       = false,
10683         .ret_type       = RET_PTR_TO_BTF_ID_OR_NULL,
10684         .ret_btf_id     = &bpf_sock_from_file_btf_ids[0],
10685         .arg1_type      = ARG_PTR_TO_BTF_ID,
10686         .arg1_btf_id    = &bpf_sock_from_file_btf_ids[1],
10687 };
10688
10689 static const struct bpf_func_proto *
10690 bpf_sk_base_func_proto(enum bpf_func_id func_id)
10691 {
10692         const struct bpf_func_proto *func;
10693
10694         switch (func_id) {
10695         case BPF_FUNC_skc_to_tcp6_sock:
10696                 func = &bpf_skc_to_tcp6_sock_proto;
10697                 break;
10698         case BPF_FUNC_skc_to_tcp_sock:
10699                 func = &bpf_skc_to_tcp_sock_proto;
10700                 break;
10701         case BPF_FUNC_skc_to_tcp_timewait_sock:
10702                 func = &bpf_skc_to_tcp_timewait_sock_proto;
10703                 break;
10704         case BPF_FUNC_skc_to_tcp_request_sock:
10705                 func = &bpf_skc_to_tcp_request_sock_proto;
10706                 break;
10707         case BPF_FUNC_skc_to_udp6_sock:
10708                 func = &bpf_skc_to_udp6_sock_proto;
10709                 break;
10710         default:
10711                 return bpf_base_func_proto(func_id);
10712         }
10713
10714         if (!perfmon_capable())
10715                 return NULL;
10716
10717         return func;
10718 }