tcp: Access &tcp_hashinfo via net.
[platform/kernel/linux-starfive.git] / net / core / filter.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *      Jay Schulist <jschlst@samba.org>
13  *      Alexei Starovoitov <ast@plumgrid.com>
14  *      Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19
20 #include <linux/atomic.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/mm.h>
24 #include <linux/fcntl.h>
25 #include <linux/socket.h>
26 #include <linux/sock_diag.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/netdevice.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_arp.h>
32 #include <linux/gfp.h>
33 #include <net/inet_common.h>
34 #include <net/ip.h>
35 #include <net/protocol.h>
36 #include <net/netlink.h>
37 #include <linux/skbuff.h>
38 #include <linux/skmsg.h>
39 #include <net/sock.h>
40 #include <net/flow_dissector.h>
41 #include <linux/errno.h>
42 #include <linux/timer.h>
43 #include <linux/uaccess.h>
44 #include <asm/unaligned.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80 #include <net/xdp.h>
81 #include <net/mptcp.h>
82
83 static const struct bpf_func_proto *
84 bpf_sk_base_func_proto(enum bpf_func_id func_id);
85
86 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
87 {
88         if (in_compat_syscall()) {
89                 struct compat_sock_fprog f32;
90
91                 if (len != sizeof(f32))
92                         return -EINVAL;
93                 if (copy_from_sockptr(&f32, src, sizeof(f32)))
94                         return -EFAULT;
95                 memset(dst, 0, sizeof(*dst));
96                 dst->len = f32.len;
97                 dst->filter = compat_ptr(f32.filter);
98         } else {
99                 if (len != sizeof(*dst))
100                         return -EINVAL;
101                 if (copy_from_sockptr(dst, src, sizeof(*dst)))
102                         return -EFAULT;
103         }
104
105         return 0;
106 }
107 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
108
109 /**
110  *      sk_filter_trim_cap - run a packet through a socket filter
111  *      @sk: sock associated with &sk_buff
112  *      @skb: buffer to filter
113  *      @cap: limit on how short the eBPF program may trim the packet
114  *
115  * Run the eBPF program and then cut skb->data to correct size returned by
116  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
117  * than pkt_len we keep whole skb->data. This is the socket level
118  * wrapper to bpf_prog_run. It returns 0 if the packet should
119  * be accepted or -EPERM if the packet should be tossed.
120  *
121  */
122 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
123 {
124         int err;
125         struct sk_filter *filter;
126
127         /*
128          * If the skb was allocated from pfmemalloc reserves, only
129          * allow SOCK_MEMALLOC sockets to use it as this socket is
130          * helping free memory
131          */
132         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
133                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
134                 return -ENOMEM;
135         }
136         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
137         if (err)
138                 return err;
139
140         err = security_sock_rcv_skb(sk, skb);
141         if (err)
142                 return err;
143
144         rcu_read_lock();
145         filter = rcu_dereference(sk->sk_filter);
146         if (filter) {
147                 struct sock *save_sk = skb->sk;
148                 unsigned int pkt_len;
149
150                 skb->sk = sk;
151                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
152                 skb->sk = save_sk;
153                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
154         }
155         rcu_read_unlock();
156
157         return err;
158 }
159 EXPORT_SYMBOL(sk_filter_trim_cap);
160
161 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
162 {
163         return skb_get_poff(skb);
164 }
165
166 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
167 {
168         struct nlattr *nla;
169
170         if (skb_is_nonlinear(skb))
171                 return 0;
172
173         if (skb->len < sizeof(struct nlattr))
174                 return 0;
175
176         if (a > skb->len - sizeof(struct nlattr))
177                 return 0;
178
179         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
180         if (nla)
181                 return (void *) nla - (void *) skb->data;
182
183         return 0;
184 }
185
186 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
187 {
188         struct nlattr *nla;
189
190         if (skb_is_nonlinear(skb))
191                 return 0;
192
193         if (skb->len < sizeof(struct nlattr))
194                 return 0;
195
196         if (a > skb->len - sizeof(struct nlattr))
197                 return 0;
198
199         nla = (struct nlattr *) &skb->data[a];
200         if (nla->nla_len > skb->len - a)
201                 return 0;
202
203         nla = nla_find_nested(nla, x);
204         if (nla)
205                 return (void *) nla - (void *) skb->data;
206
207         return 0;
208 }
209
210 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
211            data, int, headlen, int, offset)
212 {
213         u8 tmp, *ptr;
214         const int len = sizeof(tmp);
215
216         if (offset >= 0) {
217                 if (headlen - offset >= len)
218                         return *(u8 *)(data + offset);
219                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
220                         return tmp;
221         } else {
222                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
223                 if (likely(ptr))
224                         return *(u8 *)ptr;
225         }
226
227         return -EFAULT;
228 }
229
230 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
231            int, offset)
232 {
233         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
234                                          offset);
235 }
236
237 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
238            data, int, headlen, int, offset)
239 {
240         __be16 tmp, *ptr;
241         const int len = sizeof(tmp);
242
243         if (offset >= 0) {
244                 if (headlen - offset >= len)
245                         return get_unaligned_be16(data + offset);
246                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
247                         return be16_to_cpu(tmp);
248         } else {
249                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
250                 if (likely(ptr))
251                         return get_unaligned_be16(ptr);
252         }
253
254         return -EFAULT;
255 }
256
257 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
258            int, offset)
259 {
260         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
261                                           offset);
262 }
263
264 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
265            data, int, headlen, int, offset)
266 {
267         __be32 tmp, *ptr;
268         const int len = sizeof(tmp);
269
270         if (likely(offset >= 0)) {
271                 if (headlen - offset >= len)
272                         return get_unaligned_be32(data + offset);
273                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
274                         return be32_to_cpu(tmp);
275         } else {
276                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
277                 if (likely(ptr))
278                         return get_unaligned_be32(ptr);
279         }
280
281         return -EFAULT;
282 }
283
284 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
285            int, offset)
286 {
287         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
288                                           offset);
289 }
290
291 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
292                               struct bpf_insn *insn_buf)
293 {
294         struct bpf_insn *insn = insn_buf;
295
296         switch (skb_field) {
297         case SKF_AD_MARK:
298                 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
299
300                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
301                                       offsetof(struct sk_buff, mark));
302                 break;
303
304         case SKF_AD_PKTTYPE:
305                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
306                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
307 #ifdef __BIG_ENDIAN_BITFIELD
308                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
309 #endif
310                 break;
311
312         case SKF_AD_QUEUE:
313                 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
314
315                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
316                                       offsetof(struct sk_buff, queue_mapping));
317                 break;
318
319         case SKF_AD_VLAN_TAG:
320                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
321
322                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
323                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
324                                       offsetof(struct sk_buff, vlan_tci));
325                 break;
326         case SKF_AD_VLAN_TAG_PRESENT:
327                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET);
328                 if (PKT_VLAN_PRESENT_BIT)
329                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
330                 if (PKT_VLAN_PRESENT_BIT < 7)
331                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
332                 break;
333         }
334
335         return insn - insn_buf;
336 }
337
338 static bool convert_bpf_extensions(struct sock_filter *fp,
339                                    struct bpf_insn **insnp)
340 {
341         struct bpf_insn *insn = *insnp;
342         u32 cnt;
343
344         switch (fp->k) {
345         case SKF_AD_OFF + SKF_AD_PROTOCOL:
346                 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
347
348                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
349                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
350                                       offsetof(struct sk_buff, protocol));
351                 /* A = ntohs(A) [emitting a nop or swap16] */
352                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
353                 break;
354
355         case SKF_AD_OFF + SKF_AD_PKTTYPE:
356                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
357                 insn += cnt - 1;
358                 break;
359
360         case SKF_AD_OFF + SKF_AD_IFINDEX:
361         case SKF_AD_OFF + SKF_AD_HATYPE:
362                 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
363                 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
364
365                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
366                                       BPF_REG_TMP, BPF_REG_CTX,
367                                       offsetof(struct sk_buff, dev));
368                 /* if (tmp != 0) goto pc + 1 */
369                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
370                 *insn++ = BPF_EXIT_INSN();
371                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
372                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
373                                             offsetof(struct net_device, ifindex));
374                 else
375                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
376                                             offsetof(struct net_device, type));
377                 break;
378
379         case SKF_AD_OFF + SKF_AD_MARK:
380                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
381                 insn += cnt - 1;
382                 break;
383
384         case SKF_AD_OFF + SKF_AD_RXHASH:
385                 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
386
387                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
388                                     offsetof(struct sk_buff, hash));
389                 break;
390
391         case SKF_AD_OFF + SKF_AD_QUEUE:
392                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
393                 insn += cnt - 1;
394                 break;
395
396         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
397                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
398                                          BPF_REG_A, BPF_REG_CTX, insn);
399                 insn += cnt - 1;
400                 break;
401
402         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
403                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
404                                          BPF_REG_A, BPF_REG_CTX, insn);
405                 insn += cnt - 1;
406                 break;
407
408         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
409                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
410
411                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
412                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
413                                       offsetof(struct sk_buff, vlan_proto));
414                 /* A = ntohs(A) [emitting a nop or swap16] */
415                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
416                 break;
417
418         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
419         case SKF_AD_OFF + SKF_AD_NLATTR:
420         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
421         case SKF_AD_OFF + SKF_AD_CPU:
422         case SKF_AD_OFF + SKF_AD_RANDOM:
423                 /* arg1 = CTX */
424                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
425                 /* arg2 = A */
426                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
427                 /* arg3 = X */
428                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
429                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
430                 switch (fp->k) {
431                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
432                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
433                         break;
434                 case SKF_AD_OFF + SKF_AD_NLATTR:
435                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
436                         break;
437                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
438                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
439                         break;
440                 case SKF_AD_OFF + SKF_AD_CPU:
441                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
442                         break;
443                 case SKF_AD_OFF + SKF_AD_RANDOM:
444                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
445                         bpf_user_rnd_init_once();
446                         break;
447                 }
448                 break;
449
450         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
451                 /* A ^= X */
452                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
453                 break;
454
455         default:
456                 /* This is just a dummy call to avoid letting the compiler
457                  * evict __bpf_call_base() as an optimization. Placed here
458                  * where no-one bothers.
459                  */
460                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
461                 return false;
462         }
463
464         *insnp = insn;
465         return true;
466 }
467
468 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
469 {
470         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
471         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
472         bool endian = BPF_SIZE(fp->code) == BPF_H ||
473                       BPF_SIZE(fp->code) == BPF_W;
474         bool indirect = BPF_MODE(fp->code) == BPF_IND;
475         const int ip_align = NET_IP_ALIGN;
476         struct bpf_insn *insn = *insnp;
477         int offset = fp->k;
478
479         if (!indirect &&
480             ((unaligned_ok && offset >= 0) ||
481              (!unaligned_ok && offset >= 0 &&
482               offset + ip_align >= 0 &&
483               offset + ip_align % size == 0))) {
484                 bool ldx_off_ok = offset <= S16_MAX;
485
486                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
487                 if (offset)
488                         *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
489                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
490                                       size, 2 + endian + (!ldx_off_ok * 2));
491                 if (ldx_off_ok) {
492                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
493                                               BPF_REG_D, offset);
494                 } else {
495                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
496                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
497                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
498                                               BPF_REG_TMP, 0);
499                 }
500                 if (endian)
501                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
502                 *insn++ = BPF_JMP_A(8);
503         }
504
505         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
506         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
507         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
508         if (!indirect) {
509                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
510         } else {
511                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
512                 if (fp->k)
513                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
514         }
515
516         switch (BPF_SIZE(fp->code)) {
517         case BPF_B:
518                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
519                 break;
520         case BPF_H:
521                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
522                 break;
523         case BPF_W:
524                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
525                 break;
526         default:
527                 return false;
528         }
529
530         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
531         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
532         *insn   = BPF_EXIT_INSN();
533
534         *insnp = insn;
535         return true;
536 }
537
538 /**
539  *      bpf_convert_filter - convert filter program
540  *      @prog: the user passed filter program
541  *      @len: the length of the user passed filter program
542  *      @new_prog: allocated 'struct bpf_prog' or NULL
543  *      @new_len: pointer to store length of converted program
544  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
545  *
546  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
547  * style extended BPF (eBPF).
548  * Conversion workflow:
549  *
550  * 1) First pass for calculating the new program length:
551  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
552  *
553  * 2) 2nd pass to remap in two passes: 1st pass finds new
554  *    jump offsets, 2nd pass remapping:
555  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
556  */
557 static int bpf_convert_filter(struct sock_filter *prog, int len,
558                               struct bpf_prog *new_prog, int *new_len,
559                               bool *seen_ld_abs)
560 {
561         int new_flen = 0, pass = 0, target, i, stack_off;
562         struct bpf_insn *new_insn, *first_insn = NULL;
563         struct sock_filter *fp;
564         int *addrs = NULL;
565         u8 bpf_src;
566
567         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
568         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
569
570         if (len <= 0 || len > BPF_MAXINSNS)
571                 return -EINVAL;
572
573         if (new_prog) {
574                 first_insn = new_prog->insnsi;
575                 addrs = kcalloc(len, sizeof(*addrs),
576                                 GFP_KERNEL | __GFP_NOWARN);
577                 if (!addrs)
578                         return -ENOMEM;
579         }
580
581 do_pass:
582         new_insn = first_insn;
583         fp = prog;
584
585         /* Classic BPF related prologue emission. */
586         if (new_prog) {
587                 /* Classic BPF expects A and X to be reset first. These need
588                  * to be guaranteed to be the first two instructions.
589                  */
590                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
591                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
592
593                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
594                  * In eBPF case it's done by the compiler, here we need to
595                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
596                  */
597                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
598                 if (*seen_ld_abs) {
599                         /* For packet access in classic BPF, cache skb->data
600                          * in callee-saved BPF R8 and skb->len - skb->data_len
601                          * (headlen) in BPF R9. Since classic BPF is read-only
602                          * on CTX, we only need to cache it once.
603                          */
604                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
605                                                   BPF_REG_D, BPF_REG_CTX,
606                                                   offsetof(struct sk_buff, data));
607                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
608                                                   offsetof(struct sk_buff, len));
609                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
610                                                   offsetof(struct sk_buff, data_len));
611                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
612                 }
613         } else {
614                 new_insn += 3;
615         }
616
617         for (i = 0; i < len; fp++, i++) {
618                 struct bpf_insn tmp_insns[32] = { };
619                 struct bpf_insn *insn = tmp_insns;
620
621                 if (addrs)
622                         addrs[i] = new_insn - first_insn;
623
624                 switch (fp->code) {
625                 /* All arithmetic insns and skb loads map as-is. */
626                 case BPF_ALU | BPF_ADD | BPF_X:
627                 case BPF_ALU | BPF_ADD | BPF_K:
628                 case BPF_ALU | BPF_SUB | BPF_X:
629                 case BPF_ALU | BPF_SUB | BPF_K:
630                 case BPF_ALU | BPF_AND | BPF_X:
631                 case BPF_ALU | BPF_AND | BPF_K:
632                 case BPF_ALU | BPF_OR | BPF_X:
633                 case BPF_ALU | BPF_OR | BPF_K:
634                 case BPF_ALU | BPF_LSH | BPF_X:
635                 case BPF_ALU | BPF_LSH | BPF_K:
636                 case BPF_ALU | BPF_RSH | BPF_X:
637                 case BPF_ALU | BPF_RSH | BPF_K:
638                 case BPF_ALU | BPF_XOR | BPF_X:
639                 case BPF_ALU | BPF_XOR | BPF_K:
640                 case BPF_ALU | BPF_MUL | BPF_X:
641                 case BPF_ALU | BPF_MUL | BPF_K:
642                 case BPF_ALU | BPF_DIV | BPF_X:
643                 case BPF_ALU | BPF_DIV | BPF_K:
644                 case BPF_ALU | BPF_MOD | BPF_X:
645                 case BPF_ALU | BPF_MOD | BPF_K:
646                 case BPF_ALU | BPF_NEG:
647                 case BPF_LD | BPF_ABS | BPF_W:
648                 case BPF_LD | BPF_ABS | BPF_H:
649                 case BPF_LD | BPF_ABS | BPF_B:
650                 case BPF_LD | BPF_IND | BPF_W:
651                 case BPF_LD | BPF_IND | BPF_H:
652                 case BPF_LD | BPF_IND | BPF_B:
653                         /* Check for overloaded BPF extension and
654                          * directly convert it if found, otherwise
655                          * just move on with mapping.
656                          */
657                         if (BPF_CLASS(fp->code) == BPF_LD &&
658                             BPF_MODE(fp->code) == BPF_ABS &&
659                             convert_bpf_extensions(fp, &insn))
660                                 break;
661                         if (BPF_CLASS(fp->code) == BPF_LD &&
662                             convert_bpf_ld_abs(fp, &insn)) {
663                                 *seen_ld_abs = true;
664                                 break;
665                         }
666
667                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
668                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
669                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
670                                 /* Error with exception code on div/mod by 0.
671                                  * For cBPF programs, this was always return 0.
672                                  */
673                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
674                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
675                                 *insn++ = BPF_EXIT_INSN();
676                         }
677
678                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
679                         break;
680
681                 /* Jump transformation cannot use BPF block macros
682                  * everywhere as offset calculation and target updates
683                  * require a bit more work than the rest, i.e. jump
684                  * opcodes map as-is, but offsets need adjustment.
685                  */
686
687 #define BPF_EMIT_JMP                                                    \
688         do {                                                            \
689                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
690                 s32 off;                                                \
691                                                                         \
692                 if (target >= len || target < 0)                        \
693                         goto err;                                       \
694                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
695                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
696                 off -= insn - tmp_insns;                                \
697                 /* Reject anything not fitting into insn->off. */       \
698                 if (off < off_min || off > off_max)                     \
699                         goto err;                                       \
700                 insn->off = off;                                        \
701         } while (0)
702
703                 case BPF_JMP | BPF_JA:
704                         target = i + fp->k + 1;
705                         insn->code = fp->code;
706                         BPF_EMIT_JMP;
707                         break;
708
709                 case BPF_JMP | BPF_JEQ | BPF_K:
710                 case BPF_JMP | BPF_JEQ | BPF_X:
711                 case BPF_JMP | BPF_JSET | BPF_K:
712                 case BPF_JMP | BPF_JSET | BPF_X:
713                 case BPF_JMP | BPF_JGT | BPF_K:
714                 case BPF_JMP | BPF_JGT | BPF_X:
715                 case BPF_JMP | BPF_JGE | BPF_K:
716                 case BPF_JMP | BPF_JGE | BPF_X:
717                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
718                                 /* BPF immediates are signed, zero extend
719                                  * immediate into tmp register and use it
720                                  * in compare insn.
721                                  */
722                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
723
724                                 insn->dst_reg = BPF_REG_A;
725                                 insn->src_reg = BPF_REG_TMP;
726                                 bpf_src = BPF_X;
727                         } else {
728                                 insn->dst_reg = BPF_REG_A;
729                                 insn->imm = fp->k;
730                                 bpf_src = BPF_SRC(fp->code);
731                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
732                         }
733
734                         /* Common case where 'jump_false' is next insn. */
735                         if (fp->jf == 0) {
736                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
737                                 target = i + fp->jt + 1;
738                                 BPF_EMIT_JMP;
739                                 break;
740                         }
741
742                         /* Convert some jumps when 'jump_true' is next insn. */
743                         if (fp->jt == 0) {
744                                 switch (BPF_OP(fp->code)) {
745                                 case BPF_JEQ:
746                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
747                                         break;
748                                 case BPF_JGT:
749                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
750                                         break;
751                                 case BPF_JGE:
752                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
753                                         break;
754                                 default:
755                                         goto jmp_rest;
756                                 }
757
758                                 target = i + fp->jf + 1;
759                                 BPF_EMIT_JMP;
760                                 break;
761                         }
762 jmp_rest:
763                         /* Other jumps are mapped into two insns: Jxx and JA. */
764                         target = i + fp->jt + 1;
765                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
766                         BPF_EMIT_JMP;
767                         insn++;
768
769                         insn->code = BPF_JMP | BPF_JA;
770                         target = i + fp->jf + 1;
771                         BPF_EMIT_JMP;
772                         break;
773
774                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
775                 case BPF_LDX | BPF_MSH | BPF_B: {
776                         struct sock_filter tmp = {
777                                 .code   = BPF_LD | BPF_ABS | BPF_B,
778                                 .k      = fp->k,
779                         };
780
781                         *seen_ld_abs = true;
782
783                         /* X = A */
784                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
785                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
786                         convert_bpf_ld_abs(&tmp, &insn);
787                         insn++;
788                         /* A &= 0xf */
789                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
790                         /* A <<= 2 */
791                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
792                         /* tmp = X */
793                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
794                         /* X = A */
795                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
796                         /* A = tmp */
797                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
798                         break;
799                 }
800                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
801                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
802                  */
803                 case BPF_RET | BPF_A:
804                 case BPF_RET | BPF_K:
805                         if (BPF_RVAL(fp->code) == BPF_K)
806                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
807                                                         0, fp->k);
808                         *insn = BPF_EXIT_INSN();
809                         break;
810
811                 /* Store to stack. */
812                 case BPF_ST:
813                 case BPF_STX:
814                         stack_off = fp->k * 4  + 4;
815                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
816                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
817                                             -stack_off);
818                         /* check_load_and_stores() verifies that classic BPF can
819                          * load from stack only after write, so tracking
820                          * stack_depth for ST|STX insns is enough
821                          */
822                         if (new_prog && new_prog->aux->stack_depth < stack_off)
823                                 new_prog->aux->stack_depth = stack_off;
824                         break;
825
826                 /* Load from stack. */
827                 case BPF_LD | BPF_MEM:
828                 case BPF_LDX | BPF_MEM:
829                         stack_off = fp->k * 4  + 4;
830                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
831                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
832                                             -stack_off);
833                         break;
834
835                 /* A = K or X = K */
836                 case BPF_LD | BPF_IMM:
837                 case BPF_LDX | BPF_IMM:
838                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
839                                               BPF_REG_A : BPF_REG_X, fp->k);
840                         break;
841
842                 /* X = A */
843                 case BPF_MISC | BPF_TAX:
844                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
845                         break;
846
847                 /* A = X */
848                 case BPF_MISC | BPF_TXA:
849                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
850                         break;
851
852                 /* A = skb->len or X = skb->len */
853                 case BPF_LD | BPF_W | BPF_LEN:
854                 case BPF_LDX | BPF_W | BPF_LEN:
855                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
856                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
857                                             offsetof(struct sk_buff, len));
858                         break;
859
860                 /* Access seccomp_data fields. */
861                 case BPF_LDX | BPF_ABS | BPF_W:
862                         /* A = *(u32 *) (ctx + K) */
863                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
864                         break;
865
866                 /* Unknown instruction. */
867                 default:
868                         goto err;
869                 }
870
871                 insn++;
872                 if (new_prog)
873                         memcpy(new_insn, tmp_insns,
874                                sizeof(*insn) * (insn - tmp_insns));
875                 new_insn += insn - tmp_insns;
876         }
877
878         if (!new_prog) {
879                 /* Only calculating new length. */
880                 *new_len = new_insn - first_insn;
881                 if (*seen_ld_abs)
882                         *new_len += 4; /* Prologue bits. */
883                 return 0;
884         }
885
886         pass++;
887         if (new_flen != new_insn - first_insn) {
888                 new_flen = new_insn - first_insn;
889                 if (pass > 2)
890                         goto err;
891                 goto do_pass;
892         }
893
894         kfree(addrs);
895         BUG_ON(*new_len != new_flen);
896         return 0;
897 err:
898         kfree(addrs);
899         return -EINVAL;
900 }
901
902 /* Security:
903  *
904  * As we dont want to clear mem[] array for each packet going through
905  * __bpf_prog_run(), we check that filter loaded by user never try to read
906  * a cell if not previously written, and we check all branches to be sure
907  * a malicious user doesn't try to abuse us.
908  */
909 static int check_load_and_stores(const struct sock_filter *filter, int flen)
910 {
911         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
912         int pc, ret = 0;
913
914         BUILD_BUG_ON(BPF_MEMWORDS > 16);
915
916         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
917         if (!masks)
918                 return -ENOMEM;
919
920         memset(masks, 0xff, flen * sizeof(*masks));
921
922         for (pc = 0; pc < flen; pc++) {
923                 memvalid &= masks[pc];
924
925                 switch (filter[pc].code) {
926                 case BPF_ST:
927                 case BPF_STX:
928                         memvalid |= (1 << filter[pc].k);
929                         break;
930                 case BPF_LD | BPF_MEM:
931                 case BPF_LDX | BPF_MEM:
932                         if (!(memvalid & (1 << filter[pc].k))) {
933                                 ret = -EINVAL;
934                                 goto error;
935                         }
936                         break;
937                 case BPF_JMP | BPF_JA:
938                         /* A jump must set masks on target */
939                         masks[pc + 1 + filter[pc].k] &= memvalid;
940                         memvalid = ~0;
941                         break;
942                 case BPF_JMP | BPF_JEQ | BPF_K:
943                 case BPF_JMP | BPF_JEQ | BPF_X:
944                 case BPF_JMP | BPF_JGE | BPF_K:
945                 case BPF_JMP | BPF_JGE | BPF_X:
946                 case BPF_JMP | BPF_JGT | BPF_K:
947                 case BPF_JMP | BPF_JGT | BPF_X:
948                 case BPF_JMP | BPF_JSET | BPF_K:
949                 case BPF_JMP | BPF_JSET | BPF_X:
950                         /* A jump must set masks on targets */
951                         masks[pc + 1 + filter[pc].jt] &= memvalid;
952                         masks[pc + 1 + filter[pc].jf] &= memvalid;
953                         memvalid = ~0;
954                         break;
955                 }
956         }
957 error:
958         kfree(masks);
959         return ret;
960 }
961
962 static bool chk_code_allowed(u16 code_to_probe)
963 {
964         static const bool codes[] = {
965                 /* 32 bit ALU operations */
966                 [BPF_ALU | BPF_ADD | BPF_K] = true,
967                 [BPF_ALU | BPF_ADD | BPF_X] = true,
968                 [BPF_ALU | BPF_SUB | BPF_K] = true,
969                 [BPF_ALU | BPF_SUB | BPF_X] = true,
970                 [BPF_ALU | BPF_MUL | BPF_K] = true,
971                 [BPF_ALU | BPF_MUL | BPF_X] = true,
972                 [BPF_ALU | BPF_DIV | BPF_K] = true,
973                 [BPF_ALU | BPF_DIV | BPF_X] = true,
974                 [BPF_ALU | BPF_MOD | BPF_K] = true,
975                 [BPF_ALU | BPF_MOD | BPF_X] = true,
976                 [BPF_ALU | BPF_AND | BPF_K] = true,
977                 [BPF_ALU | BPF_AND | BPF_X] = true,
978                 [BPF_ALU | BPF_OR | BPF_K] = true,
979                 [BPF_ALU | BPF_OR | BPF_X] = true,
980                 [BPF_ALU | BPF_XOR | BPF_K] = true,
981                 [BPF_ALU | BPF_XOR | BPF_X] = true,
982                 [BPF_ALU | BPF_LSH | BPF_K] = true,
983                 [BPF_ALU | BPF_LSH | BPF_X] = true,
984                 [BPF_ALU | BPF_RSH | BPF_K] = true,
985                 [BPF_ALU | BPF_RSH | BPF_X] = true,
986                 [BPF_ALU | BPF_NEG] = true,
987                 /* Load instructions */
988                 [BPF_LD | BPF_W | BPF_ABS] = true,
989                 [BPF_LD | BPF_H | BPF_ABS] = true,
990                 [BPF_LD | BPF_B | BPF_ABS] = true,
991                 [BPF_LD | BPF_W | BPF_LEN] = true,
992                 [BPF_LD | BPF_W | BPF_IND] = true,
993                 [BPF_LD | BPF_H | BPF_IND] = true,
994                 [BPF_LD | BPF_B | BPF_IND] = true,
995                 [BPF_LD | BPF_IMM] = true,
996                 [BPF_LD | BPF_MEM] = true,
997                 [BPF_LDX | BPF_W | BPF_LEN] = true,
998                 [BPF_LDX | BPF_B | BPF_MSH] = true,
999                 [BPF_LDX | BPF_IMM] = true,
1000                 [BPF_LDX | BPF_MEM] = true,
1001                 /* Store instructions */
1002                 [BPF_ST] = true,
1003                 [BPF_STX] = true,
1004                 /* Misc instructions */
1005                 [BPF_MISC | BPF_TAX] = true,
1006                 [BPF_MISC | BPF_TXA] = true,
1007                 /* Return instructions */
1008                 [BPF_RET | BPF_K] = true,
1009                 [BPF_RET | BPF_A] = true,
1010                 /* Jump instructions */
1011                 [BPF_JMP | BPF_JA] = true,
1012                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1013                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1014                 [BPF_JMP | BPF_JGE | BPF_K] = true,
1015                 [BPF_JMP | BPF_JGE | BPF_X] = true,
1016                 [BPF_JMP | BPF_JGT | BPF_K] = true,
1017                 [BPF_JMP | BPF_JGT | BPF_X] = true,
1018                 [BPF_JMP | BPF_JSET | BPF_K] = true,
1019                 [BPF_JMP | BPF_JSET | BPF_X] = true,
1020         };
1021
1022         if (code_to_probe >= ARRAY_SIZE(codes))
1023                 return false;
1024
1025         return codes[code_to_probe];
1026 }
1027
1028 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1029                                 unsigned int flen)
1030 {
1031         if (filter == NULL)
1032                 return false;
1033         if (flen == 0 || flen > BPF_MAXINSNS)
1034                 return false;
1035
1036         return true;
1037 }
1038
1039 /**
1040  *      bpf_check_classic - verify socket filter code
1041  *      @filter: filter to verify
1042  *      @flen: length of filter
1043  *
1044  * Check the user's filter code. If we let some ugly
1045  * filter code slip through kaboom! The filter must contain
1046  * no references or jumps that are out of range, no illegal
1047  * instructions, and must end with a RET instruction.
1048  *
1049  * All jumps are forward as they are not signed.
1050  *
1051  * Returns 0 if the rule set is legal or -EINVAL if not.
1052  */
1053 static int bpf_check_classic(const struct sock_filter *filter,
1054                              unsigned int flen)
1055 {
1056         bool anc_found;
1057         int pc;
1058
1059         /* Check the filter code now */
1060         for (pc = 0; pc < flen; pc++) {
1061                 const struct sock_filter *ftest = &filter[pc];
1062
1063                 /* May we actually operate on this code? */
1064                 if (!chk_code_allowed(ftest->code))
1065                         return -EINVAL;
1066
1067                 /* Some instructions need special checks */
1068                 switch (ftest->code) {
1069                 case BPF_ALU | BPF_DIV | BPF_K:
1070                 case BPF_ALU | BPF_MOD | BPF_K:
1071                         /* Check for division by zero */
1072                         if (ftest->k == 0)
1073                                 return -EINVAL;
1074                         break;
1075                 case BPF_ALU | BPF_LSH | BPF_K:
1076                 case BPF_ALU | BPF_RSH | BPF_K:
1077                         if (ftest->k >= 32)
1078                                 return -EINVAL;
1079                         break;
1080                 case BPF_LD | BPF_MEM:
1081                 case BPF_LDX | BPF_MEM:
1082                 case BPF_ST:
1083                 case BPF_STX:
1084                         /* Check for invalid memory addresses */
1085                         if (ftest->k >= BPF_MEMWORDS)
1086                                 return -EINVAL;
1087                         break;
1088                 case BPF_JMP | BPF_JA:
1089                         /* Note, the large ftest->k might cause loops.
1090                          * Compare this with conditional jumps below,
1091                          * where offsets are limited. --ANK (981016)
1092                          */
1093                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1094                                 return -EINVAL;
1095                         break;
1096                 case BPF_JMP | BPF_JEQ | BPF_K:
1097                 case BPF_JMP | BPF_JEQ | BPF_X:
1098                 case BPF_JMP | BPF_JGE | BPF_K:
1099                 case BPF_JMP | BPF_JGE | BPF_X:
1100                 case BPF_JMP | BPF_JGT | BPF_K:
1101                 case BPF_JMP | BPF_JGT | BPF_X:
1102                 case BPF_JMP | BPF_JSET | BPF_K:
1103                 case BPF_JMP | BPF_JSET | BPF_X:
1104                         /* Both conditionals must be safe */
1105                         if (pc + ftest->jt + 1 >= flen ||
1106                             pc + ftest->jf + 1 >= flen)
1107                                 return -EINVAL;
1108                         break;
1109                 case BPF_LD | BPF_W | BPF_ABS:
1110                 case BPF_LD | BPF_H | BPF_ABS:
1111                 case BPF_LD | BPF_B | BPF_ABS:
1112                         anc_found = false;
1113                         if (bpf_anc_helper(ftest) & BPF_ANC)
1114                                 anc_found = true;
1115                         /* Ancillary operation unknown or unsupported */
1116                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1117                                 return -EINVAL;
1118                 }
1119         }
1120
1121         /* Last instruction must be a RET code */
1122         switch (filter[flen - 1].code) {
1123         case BPF_RET | BPF_K:
1124         case BPF_RET | BPF_A:
1125                 return check_load_and_stores(filter, flen);
1126         }
1127
1128         return -EINVAL;
1129 }
1130
1131 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1132                                       const struct sock_fprog *fprog)
1133 {
1134         unsigned int fsize = bpf_classic_proglen(fprog);
1135         struct sock_fprog_kern *fkprog;
1136
1137         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1138         if (!fp->orig_prog)
1139                 return -ENOMEM;
1140
1141         fkprog = fp->orig_prog;
1142         fkprog->len = fprog->len;
1143
1144         fkprog->filter = kmemdup(fp->insns, fsize,
1145                                  GFP_KERNEL | __GFP_NOWARN);
1146         if (!fkprog->filter) {
1147                 kfree(fp->orig_prog);
1148                 return -ENOMEM;
1149         }
1150
1151         return 0;
1152 }
1153
1154 static void bpf_release_orig_filter(struct bpf_prog *fp)
1155 {
1156         struct sock_fprog_kern *fprog = fp->orig_prog;
1157
1158         if (fprog) {
1159                 kfree(fprog->filter);
1160                 kfree(fprog);
1161         }
1162 }
1163
1164 static void __bpf_prog_release(struct bpf_prog *prog)
1165 {
1166         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1167                 bpf_prog_put(prog);
1168         } else {
1169                 bpf_release_orig_filter(prog);
1170                 bpf_prog_free(prog);
1171         }
1172 }
1173
1174 static void __sk_filter_release(struct sk_filter *fp)
1175 {
1176         __bpf_prog_release(fp->prog);
1177         kfree(fp);
1178 }
1179
1180 /**
1181  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1182  *      @rcu: rcu_head that contains the sk_filter to free
1183  */
1184 static void sk_filter_release_rcu(struct rcu_head *rcu)
1185 {
1186         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1187
1188         __sk_filter_release(fp);
1189 }
1190
1191 /**
1192  *      sk_filter_release - release a socket filter
1193  *      @fp: filter to remove
1194  *
1195  *      Remove a filter from a socket and release its resources.
1196  */
1197 static void sk_filter_release(struct sk_filter *fp)
1198 {
1199         if (refcount_dec_and_test(&fp->refcnt))
1200                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1201 }
1202
1203 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1204 {
1205         u32 filter_size = bpf_prog_size(fp->prog->len);
1206
1207         atomic_sub(filter_size, &sk->sk_omem_alloc);
1208         sk_filter_release(fp);
1209 }
1210
1211 /* try to charge the socket memory if there is space available
1212  * return true on success
1213  */
1214 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1215 {
1216         u32 filter_size = bpf_prog_size(fp->prog->len);
1217         int optmem_max = READ_ONCE(sysctl_optmem_max);
1218
1219         /* same check as in sock_kmalloc() */
1220         if (filter_size <= optmem_max &&
1221             atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1222                 atomic_add(filter_size, &sk->sk_omem_alloc);
1223                 return true;
1224         }
1225         return false;
1226 }
1227
1228 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1229 {
1230         if (!refcount_inc_not_zero(&fp->refcnt))
1231                 return false;
1232
1233         if (!__sk_filter_charge(sk, fp)) {
1234                 sk_filter_release(fp);
1235                 return false;
1236         }
1237         return true;
1238 }
1239
1240 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1241 {
1242         struct sock_filter *old_prog;
1243         struct bpf_prog *old_fp;
1244         int err, new_len, old_len = fp->len;
1245         bool seen_ld_abs = false;
1246
1247         /* We are free to overwrite insns et al right here as it won't be used at
1248          * this point in time anymore internally after the migration to the eBPF
1249          * instruction representation.
1250          */
1251         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1252                      sizeof(struct bpf_insn));
1253
1254         /* Conversion cannot happen on overlapping memory areas,
1255          * so we need to keep the user BPF around until the 2nd
1256          * pass. At this time, the user BPF is stored in fp->insns.
1257          */
1258         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1259                            GFP_KERNEL | __GFP_NOWARN);
1260         if (!old_prog) {
1261                 err = -ENOMEM;
1262                 goto out_err;
1263         }
1264
1265         /* 1st pass: calculate the new program length. */
1266         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1267                                  &seen_ld_abs);
1268         if (err)
1269                 goto out_err_free;
1270
1271         /* Expand fp for appending the new filter representation. */
1272         old_fp = fp;
1273         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1274         if (!fp) {
1275                 /* The old_fp is still around in case we couldn't
1276                  * allocate new memory, so uncharge on that one.
1277                  */
1278                 fp = old_fp;
1279                 err = -ENOMEM;
1280                 goto out_err_free;
1281         }
1282
1283         fp->len = new_len;
1284
1285         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1286         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1287                                  &seen_ld_abs);
1288         if (err)
1289                 /* 2nd bpf_convert_filter() can fail only if it fails
1290                  * to allocate memory, remapping must succeed. Note,
1291                  * that at this time old_fp has already been released
1292                  * by krealloc().
1293                  */
1294                 goto out_err_free;
1295
1296         fp = bpf_prog_select_runtime(fp, &err);
1297         if (err)
1298                 goto out_err_free;
1299
1300         kfree(old_prog);
1301         return fp;
1302
1303 out_err_free:
1304         kfree(old_prog);
1305 out_err:
1306         __bpf_prog_release(fp);
1307         return ERR_PTR(err);
1308 }
1309
1310 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1311                                            bpf_aux_classic_check_t trans)
1312 {
1313         int err;
1314
1315         fp->bpf_func = NULL;
1316         fp->jited = 0;
1317
1318         err = bpf_check_classic(fp->insns, fp->len);
1319         if (err) {
1320                 __bpf_prog_release(fp);
1321                 return ERR_PTR(err);
1322         }
1323
1324         /* There might be additional checks and transformations
1325          * needed on classic filters, f.e. in case of seccomp.
1326          */
1327         if (trans) {
1328                 err = trans(fp->insns, fp->len);
1329                 if (err) {
1330                         __bpf_prog_release(fp);
1331                         return ERR_PTR(err);
1332                 }
1333         }
1334
1335         /* Probe if we can JIT compile the filter and if so, do
1336          * the compilation of the filter.
1337          */
1338         bpf_jit_compile(fp);
1339
1340         /* JIT compiler couldn't process this filter, so do the eBPF translation
1341          * for the optimized interpreter.
1342          */
1343         if (!fp->jited)
1344                 fp = bpf_migrate_filter(fp);
1345
1346         return fp;
1347 }
1348
1349 /**
1350  *      bpf_prog_create - create an unattached filter
1351  *      @pfp: the unattached filter that is created
1352  *      @fprog: the filter program
1353  *
1354  * Create a filter independent of any socket. We first run some
1355  * sanity checks on it to make sure it does not explode on us later.
1356  * If an error occurs or there is insufficient memory for the filter
1357  * a negative errno code is returned. On success the return is zero.
1358  */
1359 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1360 {
1361         unsigned int fsize = bpf_classic_proglen(fprog);
1362         struct bpf_prog *fp;
1363
1364         /* Make sure new filter is there and in the right amounts. */
1365         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1366                 return -EINVAL;
1367
1368         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1369         if (!fp)
1370                 return -ENOMEM;
1371
1372         memcpy(fp->insns, fprog->filter, fsize);
1373
1374         fp->len = fprog->len;
1375         /* Since unattached filters are not copied back to user
1376          * space through sk_get_filter(), we do not need to hold
1377          * a copy here, and can spare us the work.
1378          */
1379         fp->orig_prog = NULL;
1380
1381         /* bpf_prepare_filter() already takes care of freeing
1382          * memory in case something goes wrong.
1383          */
1384         fp = bpf_prepare_filter(fp, NULL);
1385         if (IS_ERR(fp))
1386                 return PTR_ERR(fp);
1387
1388         *pfp = fp;
1389         return 0;
1390 }
1391 EXPORT_SYMBOL_GPL(bpf_prog_create);
1392
1393 /**
1394  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1395  *      @pfp: the unattached filter that is created
1396  *      @fprog: the filter program
1397  *      @trans: post-classic verifier transformation handler
1398  *      @save_orig: save classic BPF program
1399  *
1400  * This function effectively does the same as bpf_prog_create(), only
1401  * that it builds up its insns buffer from user space provided buffer.
1402  * It also allows for passing a bpf_aux_classic_check_t handler.
1403  */
1404 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1405                               bpf_aux_classic_check_t trans, bool save_orig)
1406 {
1407         unsigned int fsize = bpf_classic_proglen(fprog);
1408         struct bpf_prog *fp;
1409         int err;
1410
1411         /* Make sure new filter is there and in the right amounts. */
1412         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1413                 return -EINVAL;
1414
1415         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1416         if (!fp)
1417                 return -ENOMEM;
1418
1419         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1420                 __bpf_prog_free(fp);
1421                 return -EFAULT;
1422         }
1423
1424         fp->len = fprog->len;
1425         fp->orig_prog = NULL;
1426
1427         if (save_orig) {
1428                 err = bpf_prog_store_orig_filter(fp, fprog);
1429                 if (err) {
1430                         __bpf_prog_free(fp);
1431                         return -ENOMEM;
1432                 }
1433         }
1434
1435         /* bpf_prepare_filter() already takes care of freeing
1436          * memory in case something goes wrong.
1437          */
1438         fp = bpf_prepare_filter(fp, trans);
1439         if (IS_ERR(fp))
1440                 return PTR_ERR(fp);
1441
1442         *pfp = fp;
1443         return 0;
1444 }
1445 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1446
1447 void bpf_prog_destroy(struct bpf_prog *fp)
1448 {
1449         __bpf_prog_release(fp);
1450 }
1451 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1452
1453 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1454 {
1455         struct sk_filter *fp, *old_fp;
1456
1457         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1458         if (!fp)
1459                 return -ENOMEM;
1460
1461         fp->prog = prog;
1462
1463         if (!__sk_filter_charge(sk, fp)) {
1464                 kfree(fp);
1465                 return -ENOMEM;
1466         }
1467         refcount_set(&fp->refcnt, 1);
1468
1469         old_fp = rcu_dereference_protected(sk->sk_filter,
1470                                            lockdep_sock_is_held(sk));
1471         rcu_assign_pointer(sk->sk_filter, fp);
1472
1473         if (old_fp)
1474                 sk_filter_uncharge(sk, old_fp);
1475
1476         return 0;
1477 }
1478
1479 static
1480 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1481 {
1482         unsigned int fsize = bpf_classic_proglen(fprog);
1483         struct bpf_prog *prog;
1484         int err;
1485
1486         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1487                 return ERR_PTR(-EPERM);
1488
1489         /* Make sure new filter is there and in the right amounts. */
1490         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1491                 return ERR_PTR(-EINVAL);
1492
1493         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1494         if (!prog)
1495                 return ERR_PTR(-ENOMEM);
1496
1497         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1498                 __bpf_prog_free(prog);
1499                 return ERR_PTR(-EFAULT);
1500         }
1501
1502         prog->len = fprog->len;
1503
1504         err = bpf_prog_store_orig_filter(prog, fprog);
1505         if (err) {
1506                 __bpf_prog_free(prog);
1507                 return ERR_PTR(-ENOMEM);
1508         }
1509
1510         /* bpf_prepare_filter() already takes care of freeing
1511          * memory in case something goes wrong.
1512          */
1513         return bpf_prepare_filter(prog, NULL);
1514 }
1515
1516 /**
1517  *      sk_attach_filter - attach a socket filter
1518  *      @fprog: the filter program
1519  *      @sk: the socket to use
1520  *
1521  * Attach the user's filter code. We first run some sanity checks on
1522  * it to make sure it does not explode on us later. If an error
1523  * occurs or there is insufficient memory for the filter a negative
1524  * errno code is returned. On success the return is zero.
1525  */
1526 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1527 {
1528         struct bpf_prog *prog = __get_filter(fprog, sk);
1529         int err;
1530
1531         if (IS_ERR(prog))
1532                 return PTR_ERR(prog);
1533
1534         err = __sk_attach_prog(prog, sk);
1535         if (err < 0) {
1536                 __bpf_prog_release(prog);
1537                 return err;
1538         }
1539
1540         return 0;
1541 }
1542 EXPORT_SYMBOL_GPL(sk_attach_filter);
1543
1544 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1545 {
1546         struct bpf_prog *prog = __get_filter(fprog, sk);
1547         int err;
1548
1549         if (IS_ERR(prog))
1550                 return PTR_ERR(prog);
1551
1552         if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1553                 err = -ENOMEM;
1554         else
1555                 err = reuseport_attach_prog(sk, prog);
1556
1557         if (err)
1558                 __bpf_prog_release(prog);
1559
1560         return err;
1561 }
1562
1563 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1564 {
1565         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1566                 return ERR_PTR(-EPERM);
1567
1568         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1569 }
1570
1571 int sk_attach_bpf(u32 ufd, struct sock *sk)
1572 {
1573         struct bpf_prog *prog = __get_bpf(ufd, sk);
1574         int err;
1575
1576         if (IS_ERR(prog))
1577                 return PTR_ERR(prog);
1578
1579         err = __sk_attach_prog(prog, sk);
1580         if (err < 0) {
1581                 bpf_prog_put(prog);
1582                 return err;
1583         }
1584
1585         return 0;
1586 }
1587
1588 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1589 {
1590         struct bpf_prog *prog;
1591         int err;
1592
1593         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1594                 return -EPERM;
1595
1596         prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1597         if (PTR_ERR(prog) == -EINVAL)
1598                 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1599         if (IS_ERR(prog))
1600                 return PTR_ERR(prog);
1601
1602         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1603                 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1604                  * bpf prog (e.g. sockmap).  It depends on the
1605                  * limitation imposed by bpf_prog_load().
1606                  * Hence, sysctl_optmem_max is not checked.
1607                  */
1608                 if ((sk->sk_type != SOCK_STREAM &&
1609                      sk->sk_type != SOCK_DGRAM) ||
1610                     (sk->sk_protocol != IPPROTO_UDP &&
1611                      sk->sk_protocol != IPPROTO_TCP) ||
1612                     (sk->sk_family != AF_INET &&
1613                      sk->sk_family != AF_INET6)) {
1614                         err = -ENOTSUPP;
1615                         goto err_prog_put;
1616                 }
1617         } else {
1618                 /* BPF_PROG_TYPE_SOCKET_FILTER */
1619                 if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1620                         err = -ENOMEM;
1621                         goto err_prog_put;
1622                 }
1623         }
1624
1625         err = reuseport_attach_prog(sk, prog);
1626 err_prog_put:
1627         if (err)
1628                 bpf_prog_put(prog);
1629
1630         return err;
1631 }
1632
1633 void sk_reuseport_prog_free(struct bpf_prog *prog)
1634 {
1635         if (!prog)
1636                 return;
1637
1638         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1639                 bpf_prog_put(prog);
1640         else
1641                 bpf_prog_destroy(prog);
1642 }
1643
1644 struct bpf_scratchpad {
1645         union {
1646                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1647                 u8     buff[MAX_BPF_STACK];
1648         };
1649 };
1650
1651 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1652
1653 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1654                                           unsigned int write_len)
1655 {
1656         return skb_ensure_writable(skb, write_len);
1657 }
1658
1659 static inline int bpf_try_make_writable(struct sk_buff *skb,
1660                                         unsigned int write_len)
1661 {
1662         int err = __bpf_try_make_writable(skb, write_len);
1663
1664         bpf_compute_data_pointers(skb);
1665         return err;
1666 }
1667
1668 static int bpf_try_make_head_writable(struct sk_buff *skb)
1669 {
1670         return bpf_try_make_writable(skb, skb_headlen(skb));
1671 }
1672
1673 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1674 {
1675         if (skb_at_tc_ingress(skb))
1676                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1677 }
1678
1679 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1680 {
1681         if (skb_at_tc_ingress(skb))
1682                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1683 }
1684
1685 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1686            const void *, from, u32, len, u64, flags)
1687 {
1688         void *ptr;
1689
1690         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1691                 return -EINVAL;
1692         if (unlikely(offset > INT_MAX))
1693                 return -EFAULT;
1694         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1695                 return -EFAULT;
1696
1697         ptr = skb->data + offset;
1698         if (flags & BPF_F_RECOMPUTE_CSUM)
1699                 __skb_postpull_rcsum(skb, ptr, len, offset);
1700
1701         memcpy(ptr, from, len);
1702
1703         if (flags & BPF_F_RECOMPUTE_CSUM)
1704                 __skb_postpush_rcsum(skb, ptr, len, offset);
1705         if (flags & BPF_F_INVALIDATE_HASH)
1706                 skb_clear_hash(skb);
1707
1708         return 0;
1709 }
1710
1711 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1712         .func           = bpf_skb_store_bytes,
1713         .gpl_only       = false,
1714         .ret_type       = RET_INTEGER,
1715         .arg1_type      = ARG_PTR_TO_CTX,
1716         .arg2_type      = ARG_ANYTHING,
1717         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
1718         .arg4_type      = ARG_CONST_SIZE,
1719         .arg5_type      = ARG_ANYTHING,
1720 };
1721
1722 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1723            void *, to, u32, len)
1724 {
1725         void *ptr;
1726
1727         if (unlikely(offset > INT_MAX))
1728                 goto err_clear;
1729
1730         ptr = skb_header_pointer(skb, offset, len, to);
1731         if (unlikely(!ptr))
1732                 goto err_clear;
1733         if (ptr != to)
1734                 memcpy(to, ptr, len);
1735
1736         return 0;
1737 err_clear:
1738         memset(to, 0, len);
1739         return -EFAULT;
1740 }
1741
1742 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1743         .func           = bpf_skb_load_bytes,
1744         .gpl_only       = false,
1745         .ret_type       = RET_INTEGER,
1746         .arg1_type      = ARG_PTR_TO_CTX,
1747         .arg2_type      = ARG_ANYTHING,
1748         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1749         .arg4_type      = ARG_CONST_SIZE,
1750 };
1751
1752 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1753            const struct bpf_flow_dissector *, ctx, u32, offset,
1754            void *, to, u32, len)
1755 {
1756         void *ptr;
1757
1758         if (unlikely(offset > 0xffff))
1759                 goto err_clear;
1760
1761         if (unlikely(!ctx->skb))
1762                 goto err_clear;
1763
1764         ptr = skb_header_pointer(ctx->skb, offset, len, to);
1765         if (unlikely(!ptr))
1766                 goto err_clear;
1767         if (ptr != to)
1768                 memcpy(to, ptr, len);
1769
1770         return 0;
1771 err_clear:
1772         memset(to, 0, len);
1773         return -EFAULT;
1774 }
1775
1776 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1777         .func           = bpf_flow_dissector_load_bytes,
1778         .gpl_only       = false,
1779         .ret_type       = RET_INTEGER,
1780         .arg1_type      = ARG_PTR_TO_CTX,
1781         .arg2_type      = ARG_ANYTHING,
1782         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1783         .arg4_type      = ARG_CONST_SIZE,
1784 };
1785
1786 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1787            u32, offset, void *, to, u32, len, u32, start_header)
1788 {
1789         u8 *end = skb_tail_pointer(skb);
1790         u8 *start, *ptr;
1791
1792         if (unlikely(offset > 0xffff))
1793                 goto err_clear;
1794
1795         switch (start_header) {
1796         case BPF_HDR_START_MAC:
1797                 if (unlikely(!skb_mac_header_was_set(skb)))
1798                         goto err_clear;
1799                 start = skb_mac_header(skb);
1800                 break;
1801         case BPF_HDR_START_NET:
1802                 start = skb_network_header(skb);
1803                 break;
1804         default:
1805                 goto err_clear;
1806         }
1807
1808         ptr = start + offset;
1809
1810         if (likely(ptr + len <= end)) {
1811                 memcpy(to, ptr, len);
1812                 return 0;
1813         }
1814
1815 err_clear:
1816         memset(to, 0, len);
1817         return -EFAULT;
1818 }
1819
1820 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1821         .func           = bpf_skb_load_bytes_relative,
1822         .gpl_only       = false,
1823         .ret_type       = RET_INTEGER,
1824         .arg1_type      = ARG_PTR_TO_CTX,
1825         .arg2_type      = ARG_ANYTHING,
1826         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1827         .arg4_type      = ARG_CONST_SIZE,
1828         .arg5_type      = ARG_ANYTHING,
1829 };
1830
1831 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1832 {
1833         /* Idea is the following: should the needed direct read/write
1834          * test fail during runtime, we can pull in more data and redo
1835          * again, since implicitly, we invalidate previous checks here.
1836          *
1837          * Or, since we know how much we need to make read/writeable,
1838          * this can be done once at the program beginning for direct
1839          * access case. By this we overcome limitations of only current
1840          * headroom being accessible.
1841          */
1842         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1843 }
1844
1845 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1846         .func           = bpf_skb_pull_data,
1847         .gpl_only       = false,
1848         .ret_type       = RET_INTEGER,
1849         .arg1_type      = ARG_PTR_TO_CTX,
1850         .arg2_type      = ARG_ANYTHING,
1851 };
1852
1853 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1854 {
1855         return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1856 }
1857
1858 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1859         .func           = bpf_sk_fullsock,
1860         .gpl_only       = false,
1861         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1862         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1863 };
1864
1865 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1866                                            unsigned int write_len)
1867 {
1868         return __bpf_try_make_writable(skb, write_len);
1869 }
1870
1871 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1872 {
1873         /* Idea is the following: should the needed direct read/write
1874          * test fail during runtime, we can pull in more data and redo
1875          * again, since implicitly, we invalidate previous checks here.
1876          *
1877          * Or, since we know how much we need to make read/writeable,
1878          * this can be done once at the program beginning for direct
1879          * access case. By this we overcome limitations of only current
1880          * headroom being accessible.
1881          */
1882         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1883 }
1884
1885 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1886         .func           = sk_skb_pull_data,
1887         .gpl_only       = false,
1888         .ret_type       = RET_INTEGER,
1889         .arg1_type      = ARG_PTR_TO_CTX,
1890         .arg2_type      = ARG_ANYTHING,
1891 };
1892
1893 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1894            u64, from, u64, to, u64, flags)
1895 {
1896         __sum16 *ptr;
1897
1898         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1899                 return -EINVAL;
1900         if (unlikely(offset > 0xffff || offset & 1))
1901                 return -EFAULT;
1902         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1903                 return -EFAULT;
1904
1905         ptr = (__sum16 *)(skb->data + offset);
1906         switch (flags & BPF_F_HDR_FIELD_MASK) {
1907         case 0:
1908                 if (unlikely(from != 0))
1909                         return -EINVAL;
1910
1911                 csum_replace_by_diff(ptr, to);
1912                 break;
1913         case 2:
1914                 csum_replace2(ptr, from, to);
1915                 break;
1916         case 4:
1917                 csum_replace4(ptr, from, to);
1918                 break;
1919         default:
1920                 return -EINVAL;
1921         }
1922
1923         return 0;
1924 }
1925
1926 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1927         .func           = bpf_l3_csum_replace,
1928         .gpl_only       = false,
1929         .ret_type       = RET_INTEGER,
1930         .arg1_type      = ARG_PTR_TO_CTX,
1931         .arg2_type      = ARG_ANYTHING,
1932         .arg3_type      = ARG_ANYTHING,
1933         .arg4_type      = ARG_ANYTHING,
1934         .arg5_type      = ARG_ANYTHING,
1935 };
1936
1937 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1938            u64, from, u64, to, u64, flags)
1939 {
1940         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1941         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1942         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1943         __sum16 *ptr;
1944
1945         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1946                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1947                 return -EINVAL;
1948         if (unlikely(offset > 0xffff || offset & 1))
1949                 return -EFAULT;
1950         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1951                 return -EFAULT;
1952
1953         ptr = (__sum16 *)(skb->data + offset);
1954         if (is_mmzero && !do_mforce && !*ptr)
1955                 return 0;
1956
1957         switch (flags & BPF_F_HDR_FIELD_MASK) {
1958         case 0:
1959                 if (unlikely(from != 0))
1960                         return -EINVAL;
1961
1962                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1963                 break;
1964         case 2:
1965                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1966                 break;
1967         case 4:
1968                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1969                 break;
1970         default:
1971                 return -EINVAL;
1972         }
1973
1974         if (is_mmzero && !*ptr)
1975                 *ptr = CSUM_MANGLED_0;
1976         return 0;
1977 }
1978
1979 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1980         .func           = bpf_l4_csum_replace,
1981         .gpl_only       = false,
1982         .ret_type       = RET_INTEGER,
1983         .arg1_type      = ARG_PTR_TO_CTX,
1984         .arg2_type      = ARG_ANYTHING,
1985         .arg3_type      = ARG_ANYTHING,
1986         .arg4_type      = ARG_ANYTHING,
1987         .arg5_type      = ARG_ANYTHING,
1988 };
1989
1990 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1991            __be32 *, to, u32, to_size, __wsum, seed)
1992 {
1993         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1994         u32 diff_size = from_size + to_size;
1995         int i, j = 0;
1996
1997         /* This is quite flexible, some examples:
1998          *
1999          * from_size == 0, to_size > 0,  seed := csum --> pushing data
2000          * from_size > 0,  to_size == 0, seed := csum --> pulling data
2001          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2002          *
2003          * Even for diffing, from_size and to_size don't need to be equal.
2004          */
2005         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2006                      diff_size > sizeof(sp->diff)))
2007                 return -EINVAL;
2008
2009         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2010                 sp->diff[j] = ~from[i];
2011         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2012                 sp->diff[j] = to[i];
2013
2014         return csum_partial(sp->diff, diff_size, seed);
2015 }
2016
2017 static const struct bpf_func_proto bpf_csum_diff_proto = {
2018         .func           = bpf_csum_diff,
2019         .gpl_only       = false,
2020         .pkt_access     = true,
2021         .ret_type       = RET_INTEGER,
2022         .arg1_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2023         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2024         .arg3_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2025         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2026         .arg5_type      = ARG_ANYTHING,
2027 };
2028
2029 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2030 {
2031         /* The interface is to be used in combination with bpf_csum_diff()
2032          * for direct packet writes. csum rotation for alignment as well
2033          * as emulating csum_sub() can be done from the eBPF program.
2034          */
2035         if (skb->ip_summed == CHECKSUM_COMPLETE)
2036                 return (skb->csum = csum_add(skb->csum, csum));
2037
2038         return -ENOTSUPP;
2039 }
2040
2041 static const struct bpf_func_proto bpf_csum_update_proto = {
2042         .func           = bpf_csum_update,
2043         .gpl_only       = false,
2044         .ret_type       = RET_INTEGER,
2045         .arg1_type      = ARG_PTR_TO_CTX,
2046         .arg2_type      = ARG_ANYTHING,
2047 };
2048
2049 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2050 {
2051         /* The interface is to be used in combination with bpf_skb_adjust_room()
2052          * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2053          * is passed as flags, for example.
2054          */
2055         switch (level) {
2056         case BPF_CSUM_LEVEL_INC:
2057                 __skb_incr_checksum_unnecessary(skb);
2058                 break;
2059         case BPF_CSUM_LEVEL_DEC:
2060                 __skb_decr_checksum_unnecessary(skb);
2061                 break;
2062         case BPF_CSUM_LEVEL_RESET:
2063                 __skb_reset_checksum_unnecessary(skb);
2064                 break;
2065         case BPF_CSUM_LEVEL_QUERY:
2066                 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2067                        skb->csum_level : -EACCES;
2068         default:
2069                 return -EINVAL;
2070         }
2071
2072         return 0;
2073 }
2074
2075 static const struct bpf_func_proto bpf_csum_level_proto = {
2076         .func           = bpf_csum_level,
2077         .gpl_only       = false,
2078         .ret_type       = RET_INTEGER,
2079         .arg1_type      = ARG_PTR_TO_CTX,
2080         .arg2_type      = ARG_ANYTHING,
2081 };
2082
2083 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2084 {
2085         return dev_forward_skb_nomtu(dev, skb);
2086 }
2087
2088 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2089                                       struct sk_buff *skb)
2090 {
2091         int ret = ____dev_forward_skb(dev, skb, false);
2092
2093         if (likely(!ret)) {
2094                 skb->dev = dev;
2095                 ret = netif_rx(skb);
2096         }
2097
2098         return ret;
2099 }
2100
2101 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2102 {
2103         int ret;
2104
2105         if (dev_xmit_recursion()) {
2106                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2107                 kfree_skb(skb);
2108                 return -ENETDOWN;
2109         }
2110
2111         skb->dev = dev;
2112         skb_clear_tstamp(skb);
2113
2114         dev_xmit_recursion_inc();
2115         ret = dev_queue_xmit(skb);
2116         dev_xmit_recursion_dec();
2117
2118         return ret;
2119 }
2120
2121 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2122                                  u32 flags)
2123 {
2124         unsigned int mlen = skb_network_offset(skb);
2125
2126         if (mlen) {
2127                 __skb_pull(skb, mlen);
2128
2129                 /* At ingress, the mac header has already been pulled once.
2130                  * At egress, skb_pospull_rcsum has to be done in case that
2131                  * the skb is originated from ingress (i.e. a forwarded skb)
2132                  * to ensure that rcsum starts at net header.
2133                  */
2134                 if (!skb_at_tc_ingress(skb))
2135                         skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2136         }
2137         skb_pop_mac_header(skb);
2138         skb_reset_mac_len(skb);
2139         return flags & BPF_F_INGRESS ?
2140                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2141 }
2142
2143 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2144                                  u32 flags)
2145 {
2146         /* Verify that a link layer header is carried */
2147         if (unlikely(skb->mac_header >= skb->network_header)) {
2148                 kfree_skb(skb);
2149                 return -ERANGE;
2150         }
2151
2152         bpf_push_mac_rcsum(skb);
2153         return flags & BPF_F_INGRESS ?
2154                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2155 }
2156
2157 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2158                           u32 flags)
2159 {
2160         if (dev_is_mac_header_xmit(dev))
2161                 return __bpf_redirect_common(skb, dev, flags);
2162         else
2163                 return __bpf_redirect_no_mac(skb, dev, flags);
2164 }
2165
2166 #if IS_ENABLED(CONFIG_IPV6)
2167 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2168                             struct net_device *dev, struct bpf_nh_params *nh)
2169 {
2170         u32 hh_len = LL_RESERVED_SPACE(dev);
2171         const struct in6_addr *nexthop;
2172         struct dst_entry *dst = NULL;
2173         struct neighbour *neigh;
2174
2175         if (dev_xmit_recursion()) {
2176                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2177                 goto out_drop;
2178         }
2179
2180         skb->dev = dev;
2181         skb_clear_tstamp(skb);
2182
2183         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2184                 skb = skb_expand_head(skb, hh_len);
2185                 if (!skb)
2186                         return -ENOMEM;
2187         }
2188
2189         rcu_read_lock_bh();
2190         if (!nh) {
2191                 dst = skb_dst(skb);
2192                 nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2193                                       &ipv6_hdr(skb)->daddr);
2194         } else {
2195                 nexthop = &nh->ipv6_nh;
2196         }
2197         neigh = ip_neigh_gw6(dev, nexthop);
2198         if (likely(!IS_ERR(neigh))) {
2199                 int ret;
2200
2201                 sock_confirm_neigh(skb, neigh);
2202                 dev_xmit_recursion_inc();
2203                 ret = neigh_output(neigh, skb, false);
2204                 dev_xmit_recursion_dec();
2205                 rcu_read_unlock_bh();
2206                 return ret;
2207         }
2208         rcu_read_unlock_bh();
2209         if (dst)
2210                 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2211 out_drop:
2212         kfree_skb(skb);
2213         return -ENETDOWN;
2214 }
2215
2216 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2217                                    struct bpf_nh_params *nh)
2218 {
2219         const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2220         struct net *net = dev_net(dev);
2221         int err, ret = NET_XMIT_DROP;
2222
2223         if (!nh) {
2224                 struct dst_entry *dst;
2225                 struct flowi6 fl6 = {
2226                         .flowi6_flags = FLOWI_FLAG_ANYSRC,
2227                         .flowi6_mark  = skb->mark,
2228                         .flowlabel    = ip6_flowinfo(ip6h),
2229                         .flowi6_oif   = dev->ifindex,
2230                         .flowi6_proto = ip6h->nexthdr,
2231                         .daddr        = ip6h->daddr,
2232                         .saddr        = ip6h->saddr,
2233                 };
2234
2235                 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2236                 if (IS_ERR(dst))
2237                         goto out_drop;
2238
2239                 skb_dst_set(skb, dst);
2240         } else if (nh->nh_family != AF_INET6) {
2241                 goto out_drop;
2242         }
2243
2244         err = bpf_out_neigh_v6(net, skb, dev, nh);
2245         if (unlikely(net_xmit_eval(err)))
2246                 dev->stats.tx_errors++;
2247         else
2248                 ret = NET_XMIT_SUCCESS;
2249         goto out_xmit;
2250 out_drop:
2251         dev->stats.tx_errors++;
2252         kfree_skb(skb);
2253 out_xmit:
2254         return ret;
2255 }
2256 #else
2257 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2258                                    struct bpf_nh_params *nh)
2259 {
2260         kfree_skb(skb);
2261         return NET_XMIT_DROP;
2262 }
2263 #endif /* CONFIG_IPV6 */
2264
2265 #if IS_ENABLED(CONFIG_INET)
2266 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2267                             struct net_device *dev, struct bpf_nh_params *nh)
2268 {
2269         u32 hh_len = LL_RESERVED_SPACE(dev);
2270         struct neighbour *neigh;
2271         bool is_v6gw = false;
2272
2273         if (dev_xmit_recursion()) {
2274                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2275                 goto out_drop;
2276         }
2277
2278         skb->dev = dev;
2279         skb_clear_tstamp(skb);
2280
2281         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2282                 skb = skb_expand_head(skb, hh_len);
2283                 if (!skb)
2284                         return -ENOMEM;
2285         }
2286
2287         rcu_read_lock_bh();
2288         if (!nh) {
2289                 struct dst_entry *dst = skb_dst(skb);
2290                 struct rtable *rt = container_of(dst, struct rtable, dst);
2291
2292                 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2293         } else if (nh->nh_family == AF_INET6) {
2294                 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2295                 is_v6gw = true;
2296         } else if (nh->nh_family == AF_INET) {
2297                 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2298         } else {
2299                 rcu_read_unlock_bh();
2300                 goto out_drop;
2301         }
2302
2303         if (likely(!IS_ERR(neigh))) {
2304                 int ret;
2305
2306                 sock_confirm_neigh(skb, neigh);
2307                 dev_xmit_recursion_inc();
2308                 ret = neigh_output(neigh, skb, is_v6gw);
2309                 dev_xmit_recursion_dec();
2310                 rcu_read_unlock_bh();
2311                 return ret;
2312         }
2313         rcu_read_unlock_bh();
2314 out_drop:
2315         kfree_skb(skb);
2316         return -ENETDOWN;
2317 }
2318
2319 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2320                                    struct bpf_nh_params *nh)
2321 {
2322         const struct iphdr *ip4h = ip_hdr(skb);
2323         struct net *net = dev_net(dev);
2324         int err, ret = NET_XMIT_DROP;
2325
2326         if (!nh) {
2327                 struct flowi4 fl4 = {
2328                         .flowi4_flags = FLOWI_FLAG_ANYSRC,
2329                         .flowi4_mark  = skb->mark,
2330                         .flowi4_tos   = RT_TOS(ip4h->tos),
2331                         .flowi4_oif   = dev->ifindex,
2332                         .flowi4_proto = ip4h->protocol,
2333                         .daddr        = ip4h->daddr,
2334                         .saddr        = ip4h->saddr,
2335                 };
2336                 struct rtable *rt;
2337
2338                 rt = ip_route_output_flow(net, &fl4, NULL);
2339                 if (IS_ERR(rt))
2340                         goto out_drop;
2341                 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2342                         ip_rt_put(rt);
2343                         goto out_drop;
2344                 }
2345
2346                 skb_dst_set(skb, &rt->dst);
2347         }
2348
2349         err = bpf_out_neigh_v4(net, skb, dev, nh);
2350         if (unlikely(net_xmit_eval(err)))
2351                 dev->stats.tx_errors++;
2352         else
2353                 ret = NET_XMIT_SUCCESS;
2354         goto out_xmit;
2355 out_drop:
2356         dev->stats.tx_errors++;
2357         kfree_skb(skb);
2358 out_xmit:
2359         return ret;
2360 }
2361 #else
2362 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2363                                    struct bpf_nh_params *nh)
2364 {
2365         kfree_skb(skb);
2366         return NET_XMIT_DROP;
2367 }
2368 #endif /* CONFIG_INET */
2369
2370 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2371                                 struct bpf_nh_params *nh)
2372 {
2373         struct ethhdr *ethh = eth_hdr(skb);
2374
2375         if (unlikely(skb->mac_header >= skb->network_header))
2376                 goto out;
2377         bpf_push_mac_rcsum(skb);
2378         if (is_multicast_ether_addr(ethh->h_dest))
2379                 goto out;
2380
2381         skb_pull(skb, sizeof(*ethh));
2382         skb_unset_mac_header(skb);
2383         skb_reset_network_header(skb);
2384
2385         if (skb->protocol == htons(ETH_P_IP))
2386                 return __bpf_redirect_neigh_v4(skb, dev, nh);
2387         else if (skb->protocol == htons(ETH_P_IPV6))
2388                 return __bpf_redirect_neigh_v6(skb, dev, nh);
2389 out:
2390         kfree_skb(skb);
2391         return -ENOTSUPP;
2392 }
2393
2394 /* Internal, non-exposed redirect flags. */
2395 enum {
2396         BPF_F_NEIGH     = (1ULL << 1),
2397         BPF_F_PEER      = (1ULL << 2),
2398         BPF_F_NEXTHOP   = (1ULL << 3),
2399 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2400 };
2401
2402 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2403 {
2404         struct net_device *dev;
2405         struct sk_buff *clone;
2406         int ret;
2407
2408         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2409                 return -EINVAL;
2410
2411         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2412         if (unlikely(!dev))
2413                 return -EINVAL;
2414
2415         clone = skb_clone(skb, GFP_ATOMIC);
2416         if (unlikely(!clone))
2417                 return -ENOMEM;
2418
2419         /* For direct write, we need to keep the invariant that the skbs
2420          * we're dealing with need to be uncloned. Should uncloning fail
2421          * here, we need to free the just generated clone to unclone once
2422          * again.
2423          */
2424         ret = bpf_try_make_head_writable(skb);
2425         if (unlikely(ret)) {
2426                 kfree_skb(clone);
2427                 return -ENOMEM;
2428         }
2429
2430         return __bpf_redirect(clone, dev, flags);
2431 }
2432
2433 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2434         .func           = bpf_clone_redirect,
2435         .gpl_only       = false,
2436         .ret_type       = RET_INTEGER,
2437         .arg1_type      = ARG_PTR_TO_CTX,
2438         .arg2_type      = ARG_ANYTHING,
2439         .arg3_type      = ARG_ANYTHING,
2440 };
2441
2442 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2443 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2444
2445 int skb_do_redirect(struct sk_buff *skb)
2446 {
2447         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2448         struct net *net = dev_net(skb->dev);
2449         struct net_device *dev;
2450         u32 flags = ri->flags;
2451
2452         dev = dev_get_by_index_rcu(net, ri->tgt_index);
2453         ri->tgt_index = 0;
2454         ri->flags = 0;
2455         if (unlikely(!dev))
2456                 goto out_drop;
2457         if (flags & BPF_F_PEER) {
2458                 const struct net_device_ops *ops = dev->netdev_ops;
2459
2460                 if (unlikely(!ops->ndo_get_peer_dev ||
2461                              !skb_at_tc_ingress(skb)))
2462                         goto out_drop;
2463                 dev = ops->ndo_get_peer_dev(dev);
2464                 if (unlikely(!dev ||
2465                              !(dev->flags & IFF_UP) ||
2466                              net_eq(net, dev_net(dev))))
2467                         goto out_drop;
2468                 skb->dev = dev;
2469                 return -EAGAIN;
2470         }
2471         return flags & BPF_F_NEIGH ?
2472                __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2473                                     &ri->nh : NULL) :
2474                __bpf_redirect(skb, dev, flags);
2475 out_drop:
2476         kfree_skb(skb);
2477         return -EINVAL;
2478 }
2479
2480 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2481 {
2482         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2483
2484         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2485                 return TC_ACT_SHOT;
2486
2487         ri->flags = flags;
2488         ri->tgt_index = ifindex;
2489
2490         return TC_ACT_REDIRECT;
2491 }
2492
2493 static const struct bpf_func_proto bpf_redirect_proto = {
2494         .func           = bpf_redirect,
2495         .gpl_only       = false,
2496         .ret_type       = RET_INTEGER,
2497         .arg1_type      = ARG_ANYTHING,
2498         .arg2_type      = ARG_ANYTHING,
2499 };
2500
2501 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2502 {
2503         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2504
2505         if (unlikely(flags))
2506                 return TC_ACT_SHOT;
2507
2508         ri->flags = BPF_F_PEER;
2509         ri->tgt_index = ifindex;
2510
2511         return TC_ACT_REDIRECT;
2512 }
2513
2514 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2515         .func           = bpf_redirect_peer,
2516         .gpl_only       = false,
2517         .ret_type       = RET_INTEGER,
2518         .arg1_type      = ARG_ANYTHING,
2519         .arg2_type      = ARG_ANYTHING,
2520 };
2521
2522 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2523            int, plen, u64, flags)
2524 {
2525         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2526
2527         if (unlikely((plen && plen < sizeof(*params)) || flags))
2528                 return TC_ACT_SHOT;
2529
2530         ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2531         ri->tgt_index = ifindex;
2532
2533         BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2534         if (plen)
2535                 memcpy(&ri->nh, params, sizeof(ri->nh));
2536
2537         return TC_ACT_REDIRECT;
2538 }
2539
2540 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2541         .func           = bpf_redirect_neigh,
2542         .gpl_only       = false,
2543         .ret_type       = RET_INTEGER,
2544         .arg1_type      = ARG_ANYTHING,
2545         .arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2546         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2547         .arg4_type      = ARG_ANYTHING,
2548 };
2549
2550 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2551 {
2552         msg->apply_bytes = bytes;
2553         return 0;
2554 }
2555
2556 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2557         .func           = bpf_msg_apply_bytes,
2558         .gpl_only       = false,
2559         .ret_type       = RET_INTEGER,
2560         .arg1_type      = ARG_PTR_TO_CTX,
2561         .arg2_type      = ARG_ANYTHING,
2562 };
2563
2564 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2565 {
2566         msg->cork_bytes = bytes;
2567         return 0;
2568 }
2569
2570 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2571         .func           = bpf_msg_cork_bytes,
2572         .gpl_only       = false,
2573         .ret_type       = RET_INTEGER,
2574         .arg1_type      = ARG_PTR_TO_CTX,
2575         .arg2_type      = ARG_ANYTHING,
2576 };
2577
2578 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2579            u32, end, u64, flags)
2580 {
2581         u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2582         u32 first_sge, last_sge, i, shift, bytes_sg_total;
2583         struct scatterlist *sge;
2584         u8 *raw, *to, *from;
2585         struct page *page;
2586
2587         if (unlikely(flags || end <= start))
2588                 return -EINVAL;
2589
2590         /* First find the starting scatterlist element */
2591         i = msg->sg.start;
2592         do {
2593                 offset += len;
2594                 len = sk_msg_elem(msg, i)->length;
2595                 if (start < offset + len)
2596                         break;
2597                 sk_msg_iter_var_next(i);
2598         } while (i != msg->sg.end);
2599
2600         if (unlikely(start >= offset + len))
2601                 return -EINVAL;
2602
2603         first_sge = i;
2604         /* The start may point into the sg element so we need to also
2605          * account for the headroom.
2606          */
2607         bytes_sg_total = start - offset + bytes;
2608         if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2609                 goto out;
2610
2611         /* At this point we need to linearize multiple scatterlist
2612          * elements or a single shared page. Either way we need to
2613          * copy into a linear buffer exclusively owned by BPF. Then
2614          * place the buffer in the scatterlist and fixup the original
2615          * entries by removing the entries now in the linear buffer
2616          * and shifting the remaining entries. For now we do not try
2617          * to copy partial entries to avoid complexity of running out
2618          * of sg_entry slots. The downside is reading a single byte
2619          * will copy the entire sg entry.
2620          */
2621         do {
2622                 copy += sk_msg_elem(msg, i)->length;
2623                 sk_msg_iter_var_next(i);
2624                 if (bytes_sg_total <= copy)
2625                         break;
2626         } while (i != msg->sg.end);
2627         last_sge = i;
2628
2629         if (unlikely(bytes_sg_total > copy))
2630                 return -EINVAL;
2631
2632         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2633                            get_order(copy));
2634         if (unlikely(!page))
2635                 return -ENOMEM;
2636
2637         raw = page_address(page);
2638         i = first_sge;
2639         do {
2640                 sge = sk_msg_elem(msg, i);
2641                 from = sg_virt(sge);
2642                 len = sge->length;
2643                 to = raw + poffset;
2644
2645                 memcpy(to, from, len);
2646                 poffset += len;
2647                 sge->length = 0;
2648                 put_page(sg_page(sge));
2649
2650                 sk_msg_iter_var_next(i);
2651         } while (i != last_sge);
2652
2653         sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2654
2655         /* To repair sg ring we need to shift entries. If we only
2656          * had a single entry though we can just replace it and
2657          * be done. Otherwise walk the ring and shift the entries.
2658          */
2659         WARN_ON_ONCE(last_sge == first_sge);
2660         shift = last_sge > first_sge ?
2661                 last_sge - first_sge - 1 :
2662                 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2663         if (!shift)
2664                 goto out;
2665
2666         i = first_sge;
2667         sk_msg_iter_var_next(i);
2668         do {
2669                 u32 move_from;
2670
2671                 if (i + shift >= NR_MSG_FRAG_IDS)
2672                         move_from = i + shift - NR_MSG_FRAG_IDS;
2673                 else
2674                         move_from = i + shift;
2675                 if (move_from == msg->sg.end)
2676                         break;
2677
2678                 msg->sg.data[i] = msg->sg.data[move_from];
2679                 msg->sg.data[move_from].length = 0;
2680                 msg->sg.data[move_from].page_link = 0;
2681                 msg->sg.data[move_from].offset = 0;
2682                 sk_msg_iter_var_next(i);
2683         } while (1);
2684
2685         msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2686                       msg->sg.end - shift + NR_MSG_FRAG_IDS :
2687                       msg->sg.end - shift;
2688 out:
2689         msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2690         msg->data_end = msg->data + bytes;
2691         return 0;
2692 }
2693
2694 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2695         .func           = bpf_msg_pull_data,
2696         .gpl_only       = false,
2697         .ret_type       = RET_INTEGER,
2698         .arg1_type      = ARG_PTR_TO_CTX,
2699         .arg2_type      = ARG_ANYTHING,
2700         .arg3_type      = ARG_ANYTHING,
2701         .arg4_type      = ARG_ANYTHING,
2702 };
2703
2704 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2705            u32, len, u64, flags)
2706 {
2707         struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2708         u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2709         u8 *raw, *to, *from;
2710         struct page *page;
2711
2712         if (unlikely(flags))
2713                 return -EINVAL;
2714
2715         if (unlikely(len == 0))
2716                 return 0;
2717
2718         /* First find the starting scatterlist element */
2719         i = msg->sg.start;
2720         do {
2721                 offset += l;
2722                 l = sk_msg_elem(msg, i)->length;
2723
2724                 if (start < offset + l)
2725                         break;
2726                 sk_msg_iter_var_next(i);
2727         } while (i != msg->sg.end);
2728
2729         if (start >= offset + l)
2730                 return -EINVAL;
2731
2732         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2733
2734         /* If no space available will fallback to copy, we need at
2735          * least one scatterlist elem available to push data into
2736          * when start aligns to the beginning of an element or two
2737          * when it falls inside an element. We handle the start equals
2738          * offset case because its the common case for inserting a
2739          * header.
2740          */
2741         if (!space || (space == 1 && start != offset))
2742                 copy = msg->sg.data[i].length;
2743
2744         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2745                            get_order(copy + len));
2746         if (unlikely(!page))
2747                 return -ENOMEM;
2748
2749         if (copy) {
2750                 int front, back;
2751
2752                 raw = page_address(page);
2753
2754                 psge = sk_msg_elem(msg, i);
2755                 front = start - offset;
2756                 back = psge->length - front;
2757                 from = sg_virt(psge);
2758
2759                 if (front)
2760                         memcpy(raw, from, front);
2761
2762                 if (back) {
2763                         from += front;
2764                         to = raw + front + len;
2765
2766                         memcpy(to, from, back);
2767                 }
2768
2769                 put_page(sg_page(psge));
2770         } else if (start - offset) {
2771                 psge = sk_msg_elem(msg, i);
2772                 rsge = sk_msg_elem_cpy(msg, i);
2773
2774                 psge->length = start - offset;
2775                 rsge.length -= psge->length;
2776                 rsge.offset += start;
2777
2778                 sk_msg_iter_var_next(i);
2779                 sg_unmark_end(psge);
2780                 sg_unmark_end(&rsge);
2781                 sk_msg_iter_next(msg, end);
2782         }
2783
2784         /* Slot(s) to place newly allocated data */
2785         new = i;
2786
2787         /* Shift one or two slots as needed */
2788         if (!copy) {
2789                 sge = sk_msg_elem_cpy(msg, i);
2790
2791                 sk_msg_iter_var_next(i);
2792                 sg_unmark_end(&sge);
2793                 sk_msg_iter_next(msg, end);
2794
2795                 nsge = sk_msg_elem_cpy(msg, i);
2796                 if (rsge.length) {
2797                         sk_msg_iter_var_next(i);
2798                         nnsge = sk_msg_elem_cpy(msg, i);
2799                 }
2800
2801                 while (i != msg->sg.end) {
2802                         msg->sg.data[i] = sge;
2803                         sge = nsge;
2804                         sk_msg_iter_var_next(i);
2805                         if (rsge.length) {
2806                                 nsge = nnsge;
2807                                 nnsge = sk_msg_elem_cpy(msg, i);
2808                         } else {
2809                                 nsge = sk_msg_elem_cpy(msg, i);
2810                         }
2811                 }
2812         }
2813
2814         /* Place newly allocated data buffer */
2815         sk_mem_charge(msg->sk, len);
2816         msg->sg.size += len;
2817         __clear_bit(new, msg->sg.copy);
2818         sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2819         if (rsge.length) {
2820                 get_page(sg_page(&rsge));
2821                 sk_msg_iter_var_next(new);
2822                 msg->sg.data[new] = rsge;
2823         }
2824
2825         sk_msg_compute_data_pointers(msg);
2826         return 0;
2827 }
2828
2829 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2830         .func           = bpf_msg_push_data,
2831         .gpl_only       = false,
2832         .ret_type       = RET_INTEGER,
2833         .arg1_type      = ARG_PTR_TO_CTX,
2834         .arg2_type      = ARG_ANYTHING,
2835         .arg3_type      = ARG_ANYTHING,
2836         .arg4_type      = ARG_ANYTHING,
2837 };
2838
2839 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2840 {
2841         int prev;
2842
2843         do {
2844                 prev = i;
2845                 sk_msg_iter_var_next(i);
2846                 msg->sg.data[prev] = msg->sg.data[i];
2847         } while (i != msg->sg.end);
2848
2849         sk_msg_iter_prev(msg, end);
2850 }
2851
2852 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2853 {
2854         struct scatterlist tmp, sge;
2855
2856         sk_msg_iter_next(msg, end);
2857         sge = sk_msg_elem_cpy(msg, i);
2858         sk_msg_iter_var_next(i);
2859         tmp = sk_msg_elem_cpy(msg, i);
2860
2861         while (i != msg->sg.end) {
2862                 msg->sg.data[i] = sge;
2863                 sk_msg_iter_var_next(i);
2864                 sge = tmp;
2865                 tmp = sk_msg_elem_cpy(msg, i);
2866         }
2867 }
2868
2869 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2870            u32, len, u64, flags)
2871 {
2872         u32 i = 0, l = 0, space, offset = 0;
2873         u64 last = start + len;
2874         int pop;
2875
2876         if (unlikely(flags))
2877                 return -EINVAL;
2878
2879         /* First find the starting scatterlist element */
2880         i = msg->sg.start;
2881         do {
2882                 offset += l;
2883                 l = sk_msg_elem(msg, i)->length;
2884
2885                 if (start < offset + l)
2886                         break;
2887                 sk_msg_iter_var_next(i);
2888         } while (i != msg->sg.end);
2889
2890         /* Bounds checks: start and pop must be inside message */
2891         if (start >= offset + l || last >= msg->sg.size)
2892                 return -EINVAL;
2893
2894         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2895
2896         pop = len;
2897         /* --------------| offset
2898          * -| start      |-------- len -------|
2899          *
2900          *  |----- a ----|-------- pop -------|----- b ----|
2901          *  |______________________________________________| length
2902          *
2903          *
2904          * a:   region at front of scatter element to save
2905          * b:   region at back of scatter element to save when length > A + pop
2906          * pop: region to pop from element, same as input 'pop' here will be
2907          *      decremented below per iteration.
2908          *
2909          * Two top-level cases to handle when start != offset, first B is non
2910          * zero and second B is zero corresponding to when a pop includes more
2911          * than one element.
2912          *
2913          * Then if B is non-zero AND there is no space allocate space and
2914          * compact A, B regions into page. If there is space shift ring to
2915          * the rigth free'ing the next element in ring to place B, leaving
2916          * A untouched except to reduce length.
2917          */
2918         if (start != offset) {
2919                 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2920                 int a = start;
2921                 int b = sge->length - pop - a;
2922
2923                 sk_msg_iter_var_next(i);
2924
2925                 if (pop < sge->length - a) {
2926                         if (space) {
2927                                 sge->length = a;
2928                                 sk_msg_shift_right(msg, i);
2929                                 nsge = sk_msg_elem(msg, i);
2930                                 get_page(sg_page(sge));
2931                                 sg_set_page(nsge,
2932                                             sg_page(sge),
2933                                             b, sge->offset + pop + a);
2934                         } else {
2935                                 struct page *page, *orig;
2936                                 u8 *to, *from;
2937
2938                                 page = alloc_pages(__GFP_NOWARN |
2939                                                    __GFP_COMP   | GFP_ATOMIC,
2940                                                    get_order(a + b));
2941                                 if (unlikely(!page))
2942                                         return -ENOMEM;
2943
2944                                 sge->length = a;
2945                                 orig = sg_page(sge);
2946                                 from = sg_virt(sge);
2947                                 to = page_address(page);
2948                                 memcpy(to, from, a);
2949                                 memcpy(to + a, from + a + pop, b);
2950                                 sg_set_page(sge, page, a + b, 0);
2951                                 put_page(orig);
2952                         }
2953                         pop = 0;
2954                 } else if (pop >= sge->length - a) {
2955                         pop -= (sge->length - a);
2956                         sge->length = a;
2957                 }
2958         }
2959
2960         /* From above the current layout _must_ be as follows,
2961          *
2962          * -| offset
2963          * -| start
2964          *
2965          *  |---- pop ---|---------------- b ------------|
2966          *  |____________________________________________| length
2967          *
2968          * Offset and start of the current msg elem are equal because in the
2969          * previous case we handled offset != start and either consumed the
2970          * entire element and advanced to the next element OR pop == 0.
2971          *
2972          * Two cases to handle here are first pop is less than the length
2973          * leaving some remainder b above. Simply adjust the element's layout
2974          * in this case. Or pop >= length of the element so that b = 0. In this
2975          * case advance to next element decrementing pop.
2976          */
2977         while (pop) {
2978                 struct scatterlist *sge = sk_msg_elem(msg, i);
2979
2980                 if (pop < sge->length) {
2981                         sge->length -= pop;
2982                         sge->offset += pop;
2983                         pop = 0;
2984                 } else {
2985                         pop -= sge->length;
2986                         sk_msg_shift_left(msg, i);
2987                 }
2988                 sk_msg_iter_var_next(i);
2989         }
2990
2991         sk_mem_uncharge(msg->sk, len - pop);
2992         msg->sg.size -= (len - pop);
2993         sk_msg_compute_data_pointers(msg);
2994         return 0;
2995 }
2996
2997 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2998         .func           = bpf_msg_pop_data,
2999         .gpl_only       = false,
3000         .ret_type       = RET_INTEGER,
3001         .arg1_type      = ARG_PTR_TO_CTX,
3002         .arg2_type      = ARG_ANYTHING,
3003         .arg3_type      = ARG_ANYTHING,
3004         .arg4_type      = ARG_ANYTHING,
3005 };
3006
3007 #ifdef CONFIG_CGROUP_NET_CLASSID
3008 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3009 {
3010         return __task_get_classid(current);
3011 }
3012
3013 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3014         .func           = bpf_get_cgroup_classid_curr,
3015         .gpl_only       = false,
3016         .ret_type       = RET_INTEGER,
3017 };
3018
3019 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3020 {
3021         struct sock *sk = skb_to_full_sk(skb);
3022
3023         if (!sk || !sk_fullsock(sk))
3024                 return 0;
3025
3026         return sock_cgroup_classid(&sk->sk_cgrp_data);
3027 }
3028
3029 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3030         .func           = bpf_skb_cgroup_classid,
3031         .gpl_only       = false,
3032         .ret_type       = RET_INTEGER,
3033         .arg1_type      = ARG_PTR_TO_CTX,
3034 };
3035 #endif
3036
3037 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3038 {
3039         return task_get_classid(skb);
3040 }
3041
3042 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3043         .func           = bpf_get_cgroup_classid,
3044         .gpl_only       = false,
3045         .ret_type       = RET_INTEGER,
3046         .arg1_type      = ARG_PTR_TO_CTX,
3047 };
3048
3049 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3050 {
3051         return dst_tclassid(skb);
3052 }
3053
3054 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3055         .func           = bpf_get_route_realm,
3056         .gpl_only       = false,
3057         .ret_type       = RET_INTEGER,
3058         .arg1_type      = ARG_PTR_TO_CTX,
3059 };
3060
3061 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3062 {
3063         /* If skb_clear_hash() was called due to mangling, we can
3064          * trigger SW recalculation here. Later access to hash
3065          * can then use the inline skb->hash via context directly
3066          * instead of calling this helper again.
3067          */
3068         return skb_get_hash(skb);
3069 }
3070
3071 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3072         .func           = bpf_get_hash_recalc,
3073         .gpl_only       = false,
3074         .ret_type       = RET_INTEGER,
3075         .arg1_type      = ARG_PTR_TO_CTX,
3076 };
3077
3078 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3079 {
3080         /* After all direct packet write, this can be used once for
3081          * triggering a lazy recalc on next skb_get_hash() invocation.
3082          */
3083         skb_clear_hash(skb);
3084         return 0;
3085 }
3086
3087 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3088         .func           = bpf_set_hash_invalid,
3089         .gpl_only       = false,
3090         .ret_type       = RET_INTEGER,
3091         .arg1_type      = ARG_PTR_TO_CTX,
3092 };
3093
3094 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3095 {
3096         /* Set user specified hash as L4(+), so that it gets returned
3097          * on skb_get_hash() call unless BPF prog later on triggers a
3098          * skb_clear_hash().
3099          */
3100         __skb_set_sw_hash(skb, hash, true);
3101         return 0;
3102 }
3103
3104 static const struct bpf_func_proto bpf_set_hash_proto = {
3105         .func           = bpf_set_hash,
3106         .gpl_only       = false,
3107         .ret_type       = RET_INTEGER,
3108         .arg1_type      = ARG_PTR_TO_CTX,
3109         .arg2_type      = ARG_ANYTHING,
3110 };
3111
3112 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3113            u16, vlan_tci)
3114 {
3115         int ret;
3116
3117         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3118                      vlan_proto != htons(ETH_P_8021AD)))
3119                 vlan_proto = htons(ETH_P_8021Q);
3120
3121         bpf_push_mac_rcsum(skb);
3122         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3123         bpf_pull_mac_rcsum(skb);
3124
3125         bpf_compute_data_pointers(skb);
3126         return ret;
3127 }
3128
3129 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3130         .func           = bpf_skb_vlan_push,
3131         .gpl_only       = false,
3132         .ret_type       = RET_INTEGER,
3133         .arg1_type      = ARG_PTR_TO_CTX,
3134         .arg2_type      = ARG_ANYTHING,
3135         .arg3_type      = ARG_ANYTHING,
3136 };
3137
3138 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3139 {
3140         int ret;
3141
3142         bpf_push_mac_rcsum(skb);
3143         ret = skb_vlan_pop(skb);
3144         bpf_pull_mac_rcsum(skb);
3145
3146         bpf_compute_data_pointers(skb);
3147         return ret;
3148 }
3149
3150 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3151         .func           = bpf_skb_vlan_pop,
3152         .gpl_only       = false,
3153         .ret_type       = RET_INTEGER,
3154         .arg1_type      = ARG_PTR_TO_CTX,
3155 };
3156
3157 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3158 {
3159         /* Caller already did skb_cow() with len as headroom,
3160          * so no need to do it here.
3161          */
3162         skb_push(skb, len);
3163         memmove(skb->data, skb->data + len, off);
3164         memset(skb->data + off, 0, len);
3165
3166         /* No skb_postpush_rcsum(skb, skb->data + off, len)
3167          * needed here as it does not change the skb->csum
3168          * result for checksum complete when summing over
3169          * zeroed blocks.
3170          */
3171         return 0;
3172 }
3173
3174 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3175 {
3176         /* skb_ensure_writable() is not needed here, as we're
3177          * already working on an uncloned skb.
3178          */
3179         if (unlikely(!pskb_may_pull(skb, off + len)))
3180                 return -ENOMEM;
3181
3182         skb_postpull_rcsum(skb, skb->data + off, len);
3183         memmove(skb->data + len, skb->data, off);
3184         __skb_pull(skb, len);
3185
3186         return 0;
3187 }
3188
3189 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3190 {
3191         bool trans_same = skb->transport_header == skb->network_header;
3192         int ret;
3193
3194         /* There's no need for __skb_push()/__skb_pull() pair to
3195          * get to the start of the mac header as we're guaranteed
3196          * to always start from here under eBPF.
3197          */
3198         ret = bpf_skb_generic_push(skb, off, len);
3199         if (likely(!ret)) {
3200                 skb->mac_header -= len;
3201                 skb->network_header -= len;
3202                 if (trans_same)
3203                         skb->transport_header = skb->network_header;
3204         }
3205
3206         return ret;
3207 }
3208
3209 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3210 {
3211         bool trans_same = skb->transport_header == skb->network_header;
3212         int ret;
3213
3214         /* Same here, __skb_push()/__skb_pull() pair not needed. */
3215         ret = bpf_skb_generic_pop(skb, off, len);
3216         if (likely(!ret)) {
3217                 skb->mac_header += len;
3218                 skb->network_header += len;
3219                 if (trans_same)
3220                         skb->transport_header = skb->network_header;
3221         }
3222
3223         return ret;
3224 }
3225
3226 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3227 {
3228         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3229         u32 off = skb_mac_header_len(skb);
3230         int ret;
3231
3232         ret = skb_cow(skb, len_diff);
3233         if (unlikely(ret < 0))
3234                 return ret;
3235
3236         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3237         if (unlikely(ret < 0))
3238                 return ret;
3239
3240         if (skb_is_gso(skb)) {
3241                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3242
3243                 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3244                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3245                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
3246                         shinfo->gso_type |=  SKB_GSO_TCPV6;
3247                 }
3248         }
3249
3250         skb->protocol = htons(ETH_P_IPV6);
3251         skb_clear_hash(skb);
3252
3253         return 0;
3254 }
3255
3256 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3257 {
3258         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3259         u32 off = skb_mac_header_len(skb);
3260         int ret;
3261
3262         ret = skb_unclone(skb, GFP_ATOMIC);
3263         if (unlikely(ret < 0))
3264                 return ret;
3265
3266         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3267         if (unlikely(ret < 0))
3268                 return ret;
3269
3270         if (skb_is_gso(skb)) {
3271                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3272
3273                 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3274                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3275                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
3276                         shinfo->gso_type |=  SKB_GSO_TCPV4;
3277                 }
3278         }
3279
3280         skb->protocol = htons(ETH_P_IP);
3281         skb_clear_hash(skb);
3282
3283         return 0;
3284 }
3285
3286 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3287 {
3288         __be16 from_proto = skb->protocol;
3289
3290         if (from_proto == htons(ETH_P_IP) &&
3291               to_proto == htons(ETH_P_IPV6))
3292                 return bpf_skb_proto_4_to_6(skb);
3293
3294         if (from_proto == htons(ETH_P_IPV6) &&
3295               to_proto == htons(ETH_P_IP))
3296                 return bpf_skb_proto_6_to_4(skb);
3297
3298         return -ENOTSUPP;
3299 }
3300
3301 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3302            u64, flags)
3303 {
3304         int ret;
3305
3306         if (unlikely(flags))
3307                 return -EINVAL;
3308
3309         /* General idea is that this helper does the basic groundwork
3310          * needed for changing the protocol, and eBPF program fills the
3311          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3312          * and other helpers, rather than passing a raw buffer here.
3313          *
3314          * The rationale is to keep this minimal and without a need to
3315          * deal with raw packet data. F.e. even if we would pass buffers
3316          * here, the program still needs to call the bpf_lX_csum_replace()
3317          * helpers anyway. Plus, this way we keep also separation of
3318          * concerns, since f.e. bpf_skb_store_bytes() should only take
3319          * care of stores.
3320          *
3321          * Currently, additional options and extension header space are
3322          * not supported, but flags register is reserved so we can adapt
3323          * that. For offloads, we mark packet as dodgy, so that headers
3324          * need to be verified first.
3325          */
3326         ret = bpf_skb_proto_xlat(skb, proto);
3327         bpf_compute_data_pointers(skb);
3328         return ret;
3329 }
3330
3331 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3332         .func           = bpf_skb_change_proto,
3333         .gpl_only       = false,
3334         .ret_type       = RET_INTEGER,
3335         .arg1_type      = ARG_PTR_TO_CTX,
3336         .arg2_type      = ARG_ANYTHING,
3337         .arg3_type      = ARG_ANYTHING,
3338 };
3339
3340 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3341 {
3342         /* We only allow a restricted subset to be changed for now. */
3343         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3344                      !skb_pkt_type_ok(pkt_type)))
3345                 return -EINVAL;
3346
3347         skb->pkt_type = pkt_type;
3348         return 0;
3349 }
3350
3351 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3352         .func           = bpf_skb_change_type,
3353         .gpl_only       = false,
3354         .ret_type       = RET_INTEGER,
3355         .arg1_type      = ARG_PTR_TO_CTX,
3356         .arg2_type      = ARG_ANYTHING,
3357 };
3358
3359 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3360 {
3361         switch (skb->protocol) {
3362         case htons(ETH_P_IP):
3363                 return sizeof(struct iphdr);
3364         case htons(ETH_P_IPV6):
3365                 return sizeof(struct ipv6hdr);
3366         default:
3367                 return ~0U;
3368         }
3369 }
3370
3371 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3372                                          BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3373
3374 #define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3375                                          BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3376                                          BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3377                                          BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3378                                          BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3379                                          BPF_F_ADJ_ROOM_ENCAP_L2( \
3380                                           BPF_ADJ_ROOM_ENCAP_L2_MASK))
3381
3382 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3383                             u64 flags)
3384 {
3385         u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3386         bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3387         u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3388         unsigned int gso_type = SKB_GSO_DODGY;
3389         int ret;
3390
3391         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3392                 /* udp gso_size delineates datagrams, only allow if fixed */
3393                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3394                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3395                         return -ENOTSUPP;
3396         }
3397
3398         ret = skb_cow_head(skb, len_diff);
3399         if (unlikely(ret < 0))
3400                 return ret;
3401
3402         if (encap) {
3403                 if (skb->protocol != htons(ETH_P_IP) &&
3404                     skb->protocol != htons(ETH_P_IPV6))
3405                         return -ENOTSUPP;
3406
3407                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3408                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3409                         return -EINVAL;
3410
3411                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3412                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3413                         return -EINVAL;
3414
3415                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3416                     inner_mac_len < ETH_HLEN)
3417                         return -EINVAL;
3418
3419                 if (skb->encapsulation)
3420                         return -EALREADY;
3421
3422                 mac_len = skb->network_header - skb->mac_header;
3423                 inner_net = skb->network_header;
3424                 if (inner_mac_len > len_diff)
3425                         return -EINVAL;
3426                 inner_trans = skb->transport_header;
3427         }
3428
3429         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3430         if (unlikely(ret < 0))
3431                 return ret;
3432
3433         if (encap) {
3434                 skb->inner_mac_header = inner_net - inner_mac_len;
3435                 skb->inner_network_header = inner_net;
3436                 skb->inner_transport_header = inner_trans;
3437
3438                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3439                         skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3440                 else
3441                         skb_set_inner_protocol(skb, skb->protocol);
3442
3443                 skb->encapsulation = 1;
3444                 skb_set_network_header(skb, mac_len);
3445
3446                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3447                         gso_type |= SKB_GSO_UDP_TUNNEL;
3448                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3449                         gso_type |= SKB_GSO_GRE;
3450                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3451                         gso_type |= SKB_GSO_IPXIP6;
3452                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3453                         gso_type |= SKB_GSO_IPXIP4;
3454
3455                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3456                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3457                         int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3458                                         sizeof(struct ipv6hdr) :
3459                                         sizeof(struct iphdr);
3460
3461                         skb_set_transport_header(skb, mac_len + nh_len);
3462                 }
3463
3464                 /* Match skb->protocol to new outer l3 protocol */
3465                 if (skb->protocol == htons(ETH_P_IP) &&
3466                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3467                         skb->protocol = htons(ETH_P_IPV6);
3468                 else if (skb->protocol == htons(ETH_P_IPV6) &&
3469                          flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3470                         skb->protocol = htons(ETH_P_IP);
3471         }
3472
3473         if (skb_is_gso(skb)) {
3474                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3475
3476                 /* Due to header grow, MSS needs to be downgraded. */
3477                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3478                         skb_decrease_gso_size(shinfo, len_diff);
3479
3480                 /* Header must be checked, and gso_segs recomputed. */
3481                 shinfo->gso_type |= gso_type;
3482                 shinfo->gso_segs = 0;
3483         }
3484
3485         return 0;
3486 }
3487
3488 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3489                               u64 flags)
3490 {
3491         int ret;
3492
3493         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3494                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3495                 return -EINVAL;
3496
3497         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3498                 /* udp gso_size delineates datagrams, only allow if fixed */
3499                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3500                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3501                         return -ENOTSUPP;
3502         }
3503
3504         ret = skb_unclone(skb, GFP_ATOMIC);
3505         if (unlikely(ret < 0))
3506                 return ret;
3507
3508         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3509         if (unlikely(ret < 0))
3510                 return ret;
3511
3512         if (skb_is_gso(skb)) {
3513                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3514
3515                 /* Due to header shrink, MSS can be upgraded. */
3516                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3517                         skb_increase_gso_size(shinfo, len_diff);
3518
3519                 /* Header must be checked, and gso_segs recomputed. */
3520                 shinfo->gso_type |= SKB_GSO_DODGY;
3521                 shinfo->gso_segs = 0;
3522         }
3523
3524         return 0;
3525 }
3526
3527 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3528
3529 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3530            u32, mode, u64, flags)
3531 {
3532         u32 len_diff_abs = abs(len_diff);
3533         bool shrink = len_diff < 0;
3534         int ret = 0;
3535
3536         if (unlikely(flags || mode))
3537                 return -EINVAL;
3538         if (unlikely(len_diff_abs > 0xfffU))
3539                 return -EFAULT;
3540
3541         if (!shrink) {
3542                 ret = skb_cow(skb, len_diff);
3543                 if (unlikely(ret < 0))
3544                         return ret;
3545                 __skb_push(skb, len_diff_abs);
3546                 memset(skb->data, 0, len_diff_abs);
3547         } else {
3548                 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3549                         return -ENOMEM;
3550                 __skb_pull(skb, len_diff_abs);
3551         }
3552         if (tls_sw_has_ctx_rx(skb->sk)) {
3553                 struct strp_msg *rxm = strp_msg(skb);
3554
3555                 rxm->full_len += len_diff;
3556         }
3557         return ret;
3558 }
3559
3560 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3561         .func           = sk_skb_adjust_room,
3562         .gpl_only       = false,
3563         .ret_type       = RET_INTEGER,
3564         .arg1_type      = ARG_PTR_TO_CTX,
3565         .arg2_type      = ARG_ANYTHING,
3566         .arg3_type      = ARG_ANYTHING,
3567         .arg4_type      = ARG_ANYTHING,
3568 };
3569
3570 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3571            u32, mode, u64, flags)
3572 {
3573         u32 len_cur, len_diff_abs = abs(len_diff);
3574         u32 len_min = bpf_skb_net_base_len(skb);
3575         u32 len_max = BPF_SKB_MAX_LEN;
3576         __be16 proto = skb->protocol;
3577         bool shrink = len_diff < 0;
3578         u32 off;
3579         int ret;
3580
3581         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3582                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3583                 return -EINVAL;
3584         if (unlikely(len_diff_abs > 0xfffU))
3585                 return -EFAULT;
3586         if (unlikely(proto != htons(ETH_P_IP) &&
3587                      proto != htons(ETH_P_IPV6)))
3588                 return -ENOTSUPP;
3589
3590         off = skb_mac_header_len(skb);
3591         switch (mode) {
3592         case BPF_ADJ_ROOM_NET:
3593                 off += bpf_skb_net_base_len(skb);
3594                 break;
3595         case BPF_ADJ_ROOM_MAC:
3596                 break;
3597         default:
3598                 return -ENOTSUPP;
3599         }
3600
3601         len_cur = skb->len - skb_network_offset(skb);
3602         if ((shrink && (len_diff_abs >= len_cur ||
3603                         len_cur - len_diff_abs < len_min)) ||
3604             (!shrink && (skb->len + len_diff_abs > len_max &&
3605                          !skb_is_gso(skb))))
3606                 return -ENOTSUPP;
3607
3608         ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3609                        bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3610         if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3611                 __skb_reset_checksum_unnecessary(skb);
3612
3613         bpf_compute_data_pointers(skb);
3614         return ret;
3615 }
3616
3617 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3618         .func           = bpf_skb_adjust_room,
3619         .gpl_only       = false,
3620         .ret_type       = RET_INTEGER,
3621         .arg1_type      = ARG_PTR_TO_CTX,
3622         .arg2_type      = ARG_ANYTHING,
3623         .arg3_type      = ARG_ANYTHING,
3624         .arg4_type      = ARG_ANYTHING,
3625 };
3626
3627 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3628 {
3629         u32 min_len = skb_network_offset(skb);
3630
3631         if (skb_transport_header_was_set(skb))
3632                 min_len = skb_transport_offset(skb);
3633         if (skb->ip_summed == CHECKSUM_PARTIAL)
3634                 min_len = skb_checksum_start_offset(skb) +
3635                           skb->csum_offset + sizeof(__sum16);
3636         return min_len;
3637 }
3638
3639 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3640 {
3641         unsigned int old_len = skb->len;
3642         int ret;
3643
3644         ret = __skb_grow_rcsum(skb, new_len);
3645         if (!ret)
3646                 memset(skb->data + old_len, 0, new_len - old_len);
3647         return ret;
3648 }
3649
3650 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3651 {
3652         return __skb_trim_rcsum(skb, new_len);
3653 }
3654
3655 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3656                                         u64 flags)
3657 {
3658         u32 max_len = BPF_SKB_MAX_LEN;
3659         u32 min_len = __bpf_skb_min_len(skb);
3660         int ret;
3661
3662         if (unlikely(flags || new_len > max_len || new_len < min_len))
3663                 return -EINVAL;
3664         if (skb->encapsulation)
3665                 return -ENOTSUPP;
3666
3667         /* The basic idea of this helper is that it's performing the
3668          * needed work to either grow or trim an skb, and eBPF program
3669          * rewrites the rest via helpers like bpf_skb_store_bytes(),
3670          * bpf_lX_csum_replace() and others rather than passing a raw
3671          * buffer here. This one is a slow path helper and intended
3672          * for replies with control messages.
3673          *
3674          * Like in bpf_skb_change_proto(), we want to keep this rather
3675          * minimal and without protocol specifics so that we are able
3676          * to separate concerns as in bpf_skb_store_bytes() should only
3677          * be the one responsible for writing buffers.
3678          *
3679          * It's really expected to be a slow path operation here for
3680          * control message replies, so we're implicitly linearizing,
3681          * uncloning and drop offloads from the skb by this.
3682          */
3683         ret = __bpf_try_make_writable(skb, skb->len);
3684         if (!ret) {
3685                 if (new_len > skb->len)
3686                         ret = bpf_skb_grow_rcsum(skb, new_len);
3687                 else if (new_len < skb->len)
3688                         ret = bpf_skb_trim_rcsum(skb, new_len);
3689                 if (!ret && skb_is_gso(skb))
3690                         skb_gso_reset(skb);
3691         }
3692         return ret;
3693 }
3694
3695 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3696            u64, flags)
3697 {
3698         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3699
3700         bpf_compute_data_pointers(skb);
3701         return ret;
3702 }
3703
3704 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3705         .func           = bpf_skb_change_tail,
3706         .gpl_only       = false,
3707         .ret_type       = RET_INTEGER,
3708         .arg1_type      = ARG_PTR_TO_CTX,
3709         .arg2_type      = ARG_ANYTHING,
3710         .arg3_type      = ARG_ANYTHING,
3711 };
3712
3713 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3714            u64, flags)
3715 {
3716         return __bpf_skb_change_tail(skb, new_len, flags);
3717 }
3718
3719 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3720         .func           = sk_skb_change_tail,
3721         .gpl_only       = false,
3722         .ret_type       = RET_INTEGER,
3723         .arg1_type      = ARG_PTR_TO_CTX,
3724         .arg2_type      = ARG_ANYTHING,
3725         .arg3_type      = ARG_ANYTHING,
3726 };
3727
3728 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3729                                         u64 flags)
3730 {
3731         u32 max_len = BPF_SKB_MAX_LEN;
3732         u32 new_len = skb->len + head_room;
3733         int ret;
3734
3735         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3736                      new_len < skb->len))
3737                 return -EINVAL;
3738
3739         ret = skb_cow(skb, head_room);
3740         if (likely(!ret)) {
3741                 /* Idea for this helper is that we currently only
3742                  * allow to expand on mac header. This means that
3743                  * skb->protocol network header, etc, stay as is.
3744                  * Compared to bpf_skb_change_tail(), we're more
3745                  * flexible due to not needing to linearize or
3746                  * reset GSO. Intention for this helper is to be
3747                  * used by an L3 skb that needs to push mac header
3748                  * for redirection into L2 device.
3749                  */
3750                 __skb_push(skb, head_room);
3751                 memset(skb->data, 0, head_room);
3752                 skb_reset_mac_header(skb);
3753                 skb_reset_mac_len(skb);
3754         }
3755
3756         return ret;
3757 }
3758
3759 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3760            u64, flags)
3761 {
3762         int ret = __bpf_skb_change_head(skb, head_room, flags);
3763
3764         bpf_compute_data_pointers(skb);
3765         return ret;
3766 }
3767
3768 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3769         .func           = bpf_skb_change_head,
3770         .gpl_only       = false,
3771         .ret_type       = RET_INTEGER,
3772         .arg1_type      = ARG_PTR_TO_CTX,
3773         .arg2_type      = ARG_ANYTHING,
3774         .arg3_type      = ARG_ANYTHING,
3775 };
3776
3777 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3778            u64, flags)
3779 {
3780         return __bpf_skb_change_head(skb, head_room, flags);
3781 }
3782
3783 static const struct bpf_func_proto sk_skb_change_head_proto = {
3784         .func           = sk_skb_change_head,
3785         .gpl_only       = false,
3786         .ret_type       = RET_INTEGER,
3787         .arg1_type      = ARG_PTR_TO_CTX,
3788         .arg2_type      = ARG_ANYTHING,
3789         .arg3_type      = ARG_ANYTHING,
3790 };
3791
3792 BPF_CALL_1(bpf_xdp_get_buff_len, struct  xdp_buff*, xdp)
3793 {
3794         return xdp_get_buff_len(xdp);
3795 }
3796
3797 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3798         .func           = bpf_xdp_get_buff_len,
3799         .gpl_only       = false,
3800         .ret_type       = RET_INTEGER,
3801         .arg1_type      = ARG_PTR_TO_CTX,
3802 };
3803
3804 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3805
3806 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3807         .func           = bpf_xdp_get_buff_len,
3808         .gpl_only       = false,
3809         .arg1_type      = ARG_PTR_TO_BTF_ID,
3810         .arg1_btf_id    = &bpf_xdp_get_buff_len_bpf_ids[0],
3811 };
3812
3813 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3814 {
3815         return xdp_data_meta_unsupported(xdp) ? 0 :
3816                xdp->data - xdp->data_meta;
3817 }
3818
3819 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3820 {
3821         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3822         unsigned long metalen = xdp_get_metalen(xdp);
3823         void *data_start = xdp_frame_end + metalen;
3824         void *data = xdp->data + offset;
3825
3826         if (unlikely(data < data_start ||
3827                      data > xdp->data_end - ETH_HLEN))
3828                 return -EINVAL;
3829
3830         if (metalen)
3831                 memmove(xdp->data_meta + offset,
3832                         xdp->data_meta, metalen);
3833         xdp->data_meta += offset;
3834         xdp->data = data;
3835
3836         return 0;
3837 }
3838
3839 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3840         .func           = bpf_xdp_adjust_head,
3841         .gpl_only       = false,
3842         .ret_type       = RET_INTEGER,
3843         .arg1_type      = ARG_PTR_TO_CTX,
3844         .arg2_type      = ARG_ANYTHING,
3845 };
3846
3847 static void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3848                              void *buf, unsigned long len, bool flush)
3849 {
3850         unsigned long ptr_len, ptr_off = 0;
3851         skb_frag_t *next_frag, *end_frag;
3852         struct skb_shared_info *sinfo;
3853         void *src, *dst;
3854         u8 *ptr_buf;
3855
3856         if (likely(xdp->data_end - xdp->data >= off + len)) {
3857                 src = flush ? buf : xdp->data + off;
3858                 dst = flush ? xdp->data + off : buf;
3859                 memcpy(dst, src, len);
3860                 return;
3861         }
3862
3863         sinfo = xdp_get_shared_info_from_buff(xdp);
3864         end_frag = &sinfo->frags[sinfo->nr_frags];
3865         next_frag = &sinfo->frags[0];
3866
3867         ptr_len = xdp->data_end - xdp->data;
3868         ptr_buf = xdp->data;
3869
3870         while (true) {
3871                 if (off < ptr_off + ptr_len) {
3872                         unsigned long copy_off = off - ptr_off;
3873                         unsigned long copy_len = min(len, ptr_len - copy_off);
3874
3875                         src = flush ? buf : ptr_buf + copy_off;
3876                         dst = flush ? ptr_buf + copy_off : buf;
3877                         memcpy(dst, src, copy_len);
3878
3879                         off += copy_len;
3880                         len -= copy_len;
3881                         buf += copy_len;
3882                 }
3883
3884                 if (!len || next_frag == end_frag)
3885                         break;
3886
3887                 ptr_off += ptr_len;
3888                 ptr_buf = skb_frag_address(next_frag);
3889                 ptr_len = skb_frag_size(next_frag);
3890                 next_frag++;
3891         }
3892 }
3893
3894 static void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3895 {
3896         struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3897         u32 size = xdp->data_end - xdp->data;
3898         void *addr = xdp->data;
3899         int i;
3900
3901         if (unlikely(offset > 0xffff || len > 0xffff))
3902                 return ERR_PTR(-EFAULT);
3903
3904         if (offset + len > xdp_get_buff_len(xdp))
3905                 return ERR_PTR(-EINVAL);
3906
3907         if (offset < size) /* linear area */
3908                 goto out;
3909
3910         offset -= size;
3911         for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
3912                 u32 frag_size = skb_frag_size(&sinfo->frags[i]);
3913
3914                 if  (offset < frag_size) {
3915                         addr = skb_frag_address(&sinfo->frags[i]);
3916                         size = frag_size;
3917                         break;
3918                 }
3919                 offset -= frag_size;
3920         }
3921 out:
3922         return offset + len <= size ? addr + offset : NULL;
3923 }
3924
3925 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
3926            void *, buf, u32, len)
3927 {
3928         void *ptr;
3929
3930         ptr = bpf_xdp_pointer(xdp, offset, len);
3931         if (IS_ERR(ptr))
3932                 return PTR_ERR(ptr);
3933
3934         if (!ptr)
3935                 bpf_xdp_copy_buf(xdp, offset, buf, len, false);
3936         else
3937                 memcpy(buf, ptr, len);
3938
3939         return 0;
3940 }
3941
3942 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
3943         .func           = bpf_xdp_load_bytes,
3944         .gpl_only       = false,
3945         .ret_type       = RET_INTEGER,
3946         .arg1_type      = ARG_PTR_TO_CTX,
3947         .arg2_type      = ARG_ANYTHING,
3948         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
3949         .arg4_type      = ARG_CONST_SIZE,
3950 };
3951
3952 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
3953            void *, buf, u32, len)
3954 {
3955         void *ptr;
3956
3957         ptr = bpf_xdp_pointer(xdp, offset, len);
3958         if (IS_ERR(ptr))
3959                 return PTR_ERR(ptr);
3960
3961         if (!ptr)
3962                 bpf_xdp_copy_buf(xdp, offset, buf, len, true);
3963         else
3964                 memcpy(ptr, buf, len);
3965
3966         return 0;
3967 }
3968
3969 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
3970         .func           = bpf_xdp_store_bytes,
3971         .gpl_only       = false,
3972         .ret_type       = RET_INTEGER,
3973         .arg1_type      = ARG_PTR_TO_CTX,
3974         .arg2_type      = ARG_ANYTHING,
3975         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
3976         .arg4_type      = ARG_CONST_SIZE,
3977 };
3978
3979 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
3980 {
3981         struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3982         skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
3983         struct xdp_rxq_info *rxq = xdp->rxq;
3984         unsigned int tailroom;
3985
3986         if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
3987                 return -EOPNOTSUPP;
3988
3989         tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
3990         if (unlikely(offset > tailroom))
3991                 return -EINVAL;
3992
3993         memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
3994         skb_frag_size_add(frag, offset);
3995         sinfo->xdp_frags_size += offset;
3996
3997         return 0;
3998 }
3999
4000 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4001 {
4002         struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4003         int i, n_frags_free = 0, len_free = 0;
4004
4005         if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4006                 return -EINVAL;
4007
4008         for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4009                 skb_frag_t *frag = &sinfo->frags[i];
4010                 int shrink = min_t(int, offset, skb_frag_size(frag));
4011
4012                 len_free += shrink;
4013                 offset -= shrink;
4014
4015                 if (skb_frag_size(frag) == shrink) {
4016                         struct page *page = skb_frag_page(frag);
4017
4018                         __xdp_return(page_address(page), &xdp->rxq->mem,
4019                                      false, NULL);
4020                         n_frags_free++;
4021                 } else {
4022                         skb_frag_size_sub(frag, shrink);
4023                         break;
4024                 }
4025         }
4026         sinfo->nr_frags -= n_frags_free;
4027         sinfo->xdp_frags_size -= len_free;
4028
4029         if (unlikely(!sinfo->nr_frags)) {
4030                 xdp_buff_clear_frags_flag(xdp);
4031                 xdp->data_end -= offset;
4032         }
4033
4034         return 0;
4035 }
4036
4037 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4038 {
4039         void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4040         void *data_end = xdp->data_end + offset;
4041
4042         if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4043                 if (offset < 0)
4044                         return bpf_xdp_frags_shrink_tail(xdp, -offset);
4045
4046                 return bpf_xdp_frags_increase_tail(xdp, offset);
4047         }
4048
4049         /* Notice that xdp_data_hard_end have reserved some tailroom */
4050         if (unlikely(data_end > data_hard_end))
4051                 return -EINVAL;
4052
4053         /* ALL drivers MUST init xdp->frame_sz, chicken check below */
4054         if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
4055                 WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
4056                 return -EINVAL;
4057         }
4058
4059         if (unlikely(data_end < xdp->data + ETH_HLEN))
4060                 return -EINVAL;
4061
4062         /* Clear memory area on grow, can contain uninit kernel memory */
4063         if (offset > 0)
4064                 memset(xdp->data_end, 0, offset);
4065
4066         xdp->data_end = data_end;
4067
4068         return 0;
4069 }
4070
4071 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4072         .func           = bpf_xdp_adjust_tail,
4073         .gpl_only       = false,
4074         .ret_type       = RET_INTEGER,
4075         .arg1_type      = ARG_PTR_TO_CTX,
4076         .arg2_type      = ARG_ANYTHING,
4077 };
4078
4079 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4080 {
4081         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4082         void *meta = xdp->data_meta + offset;
4083         unsigned long metalen = xdp->data - meta;
4084
4085         if (xdp_data_meta_unsupported(xdp))
4086                 return -ENOTSUPP;
4087         if (unlikely(meta < xdp_frame_end ||
4088                      meta > xdp->data))
4089                 return -EINVAL;
4090         if (unlikely(xdp_metalen_invalid(metalen)))
4091                 return -EACCES;
4092
4093         xdp->data_meta = meta;
4094
4095         return 0;
4096 }
4097
4098 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4099         .func           = bpf_xdp_adjust_meta,
4100         .gpl_only       = false,
4101         .ret_type       = RET_INTEGER,
4102         .arg1_type      = ARG_PTR_TO_CTX,
4103         .arg2_type      = ARG_ANYTHING,
4104 };
4105
4106 /* XDP_REDIRECT works by a three-step process, implemented in the functions
4107  * below:
4108  *
4109  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4110  *    of the redirect and store it (along with some other metadata) in a per-CPU
4111  *    struct bpf_redirect_info.
4112  *
4113  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4114  *    call xdp_do_redirect() which will use the information in struct
4115  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4116  *    bulk queue structure.
4117  *
4118  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
4119  *    which will flush all the different bulk queues, thus completing the
4120  *    redirect.
4121  *
4122  * Pointers to the map entries will be kept around for this whole sequence of
4123  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4124  * the core code; instead, the RCU protection relies on everything happening
4125  * inside a single NAPI poll sequence, which means it's between a pair of calls
4126  * to local_bh_disable()/local_bh_enable().
4127  *
4128  * The map entries are marked as __rcu and the map code makes sure to
4129  * dereference those pointers with rcu_dereference_check() in a way that works
4130  * for both sections that to hold an rcu_read_lock() and sections that are
4131  * called from NAPI without a separate rcu_read_lock(). The code below does not
4132  * use RCU annotations, but relies on those in the map code.
4133  */
4134 void xdp_do_flush(void)
4135 {
4136         __dev_flush();
4137         __cpu_map_flush();
4138         __xsk_map_flush();
4139 }
4140 EXPORT_SYMBOL_GPL(xdp_do_flush);
4141
4142 void bpf_clear_redirect_map(struct bpf_map *map)
4143 {
4144         struct bpf_redirect_info *ri;
4145         int cpu;
4146
4147         for_each_possible_cpu(cpu) {
4148                 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4149                 /* Avoid polluting remote cacheline due to writes if
4150                  * not needed. Once we pass this test, we need the
4151                  * cmpxchg() to make sure it hasn't been changed in
4152                  * the meantime by remote CPU.
4153                  */
4154                 if (unlikely(READ_ONCE(ri->map) == map))
4155                         cmpxchg(&ri->map, map, NULL);
4156         }
4157 }
4158
4159 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4160 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4161
4162 u32 xdp_master_redirect(struct xdp_buff *xdp)
4163 {
4164         struct net_device *master, *slave;
4165         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4166
4167         master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4168         slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4169         if (slave && slave != xdp->rxq->dev) {
4170                 /* The target device is different from the receiving device, so
4171                  * redirect it to the new device.
4172                  * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4173                  * drivers to unmap the packet from their rx ring.
4174                  */
4175                 ri->tgt_index = slave->ifindex;
4176                 ri->map_id = INT_MAX;
4177                 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4178                 return XDP_REDIRECT;
4179         }
4180         return XDP_TX;
4181 }
4182 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4183
4184 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4185                                         struct net_device *dev,
4186                                         struct xdp_buff *xdp,
4187                                         struct bpf_prog *xdp_prog)
4188 {
4189         enum bpf_map_type map_type = ri->map_type;
4190         void *fwd = ri->tgt_value;
4191         u32 map_id = ri->map_id;
4192         int err;
4193
4194         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4195         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4196
4197         err = __xsk_map_redirect(fwd, xdp);
4198         if (unlikely(err))
4199                 goto err;
4200
4201         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4202         return 0;
4203 err:
4204         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4205         return err;
4206 }
4207
4208 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4209                                                    struct net_device *dev,
4210                                                    struct xdp_frame *xdpf,
4211                                                    struct bpf_prog *xdp_prog)
4212 {
4213         enum bpf_map_type map_type = ri->map_type;
4214         void *fwd = ri->tgt_value;
4215         u32 map_id = ri->map_id;
4216         struct bpf_map *map;
4217         int err;
4218
4219         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4220         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4221
4222         if (unlikely(!xdpf)) {
4223                 err = -EOVERFLOW;
4224                 goto err;
4225         }
4226
4227         switch (map_type) {
4228         case BPF_MAP_TYPE_DEVMAP:
4229                 fallthrough;
4230         case BPF_MAP_TYPE_DEVMAP_HASH:
4231                 map = READ_ONCE(ri->map);
4232                 if (unlikely(map)) {
4233                         WRITE_ONCE(ri->map, NULL);
4234                         err = dev_map_enqueue_multi(xdpf, dev, map,
4235                                                     ri->flags & BPF_F_EXCLUDE_INGRESS);
4236                 } else {
4237                         err = dev_map_enqueue(fwd, xdpf, dev);
4238                 }
4239                 break;
4240         case BPF_MAP_TYPE_CPUMAP:
4241                 err = cpu_map_enqueue(fwd, xdpf, dev);
4242                 break;
4243         case BPF_MAP_TYPE_UNSPEC:
4244                 if (map_id == INT_MAX) {
4245                         fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4246                         if (unlikely(!fwd)) {
4247                                 err = -EINVAL;
4248                                 break;
4249                         }
4250                         err = dev_xdp_enqueue(fwd, xdpf, dev);
4251                         break;
4252                 }
4253                 fallthrough;
4254         default:
4255                 err = -EBADRQC;
4256         }
4257
4258         if (unlikely(err))
4259                 goto err;
4260
4261         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4262         return 0;
4263 err:
4264         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4265         return err;
4266 }
4267
4268 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4269                     struct bpf_prog *xdp_prog)
4270 {
4271         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4272         enum bpf_map_type map_type = ri->map_type;
4273
4274         /* XDP_REDIRECT is not fully supported yet for xdp frags since
4275          * not all XDP capable drivers can map non-linear xdp_frame in
4276          * ndo_xdp_xmit.
4277          */
4278         if (unlikely(xdp_buff_has_frags(xdp) &&
4279                      map_type != BPF_MAP_TYPE_CPUMAP))
4280                 return -EOPNOTSUPP;
4281
4282         if (map_type == BPF_MAP_TYPE_XSKMAP)
4283                 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4284
4285         return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4286                                        xdp_prog);
4287 }
4288 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4289
4290 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4291                           struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4292 {
4293         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4294         enum bpf_map_type map_type = ri->map_type;
4295
4296         if (map_type == BPF_MAP_TYPE_XSKMAP)
4297                 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4298
4299         return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4300 }
4301 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4302
4303 static int xdp_do_generic_redirect_map(struct net_device *dev,
4304                                        struct sk_buff *skb,
4305                                        struct xdp_buff *xdp,
4306                                        struct bpf_prog *xdp_prog,
4307                                        void *fwd,
4308                                        enum bpf_map_type map_type, u32 map_id)
4309 {
4310         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4311         struct bpf_map *map;
4312         int err;
4313
4314         switch (map_type) {
4315         case BPF_MAP_TYPE_DEVMAP:
4316                 fallthrough;
4317         case BPF_MAP_TYPE_DEVMAP_HASH:
4318                 map = READ_ONCE(ri->map);
4319                 if (unlikely(map)) {
4320                         WRITE_ONCE(ri->map, NULL);
4321                         err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4322                                                      ri->flags & BPF_F_EXCLUDE_INGRESS);
4323                 } else {
4324                         err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4325                 }
4326                 if (unlikely(err))
4327                         goto err;
4328                 break;
4329         case BPF_MAP_TYPE_XSKMAP:
4330                 err = xsk_generic_rcv(fwd, xdp);
4331                 if (err)
4332                         goto err;
4333                 consume_skb(skb);
4334                 break;
4335         case BPF_MAP_TYPE_CPUMAP:
4336                 err = cpu_map_generic_redirect(fwd, skb);
4337                 if (unlikely(err))
4338                         goto err;
4339                 break;
4340         default:
4341                 err = -EBADRQC;
4342                 goto err;
4343         }
4344
4345         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4346         return 0;
4347 err:
4348         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4349         return err;
4350 }
4351
4352 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4353                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4354 {
4355         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4356         enum bpf_map_type map_type = ri->map_type;
4357         void *fwd = ri->tgt_value;
4358         u32 map_id = ri->map_id;
4359         int err;
4360
4361         ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4362         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4363
4364         if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4365                 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4366                 if (unlikely(!fwd)) {
4367                         err = -EINVAL;
4368                         goto err;
4369                 }
4370
4371                 err = xdp_ok_fwd_dev(fwd, skb->len);
4372                 if (unlikely(err))
4373                         goto err;
4374
4375                 skb->dev = fwd;
4376                 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4377                 generic_xdp_tx(skb, xdp_prog);
4378                 return 0;
4379         }
4380
4381         return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4382 err:
4383         _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4384         return err;
4385 }
4386
4387 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4388 {
4389         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4390
4391         if (unlikely(flags))
4392                 return XDP_ABORTED;
4393
4394         /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4395          * by map_idr) is used for ifindex based XDP redirect.
4396          */
4397         ri->tgt_index = ifindex;
4398         ri->map_id = INT_MAX;
4399         ri->map_type = BPF_MAP_TYPE_UNSPEC;
4400
4401         return XDP_REDIRECT;
4402 }
4403
4404 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4405         .func           = bpf_xdp_redirect,
4406         .gpl_only       = false,
4407         .ret_type       = RET_INTEGER,
4408         .arg1_type      = ARG_ANYTHING,
4409         .arg2_type      = ARG_ANYTHING,
4410 };
4411
4412 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4413            u64, flags)
4414 {
4415         return map->ops->map_redirect(map, ifindex, flags);
4416 }
4417
4418 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4419         .func           = bpf_xdp_redirect_map,
4420         .gpl_only       = false,
4421         .ret_type       = RET_INTEGER,
4422         .arg1_type      = ARG_CONST_MAP_PTR,
4423         .arg2_type      = ARG_ANYTHING,
4424         .arg3_type      = ARG_ANYTHING,
4425 };
4426
4427 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4428                                   unsigned long off, unsigned long len)
4429 {
4430         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4431
4432         if (unlikely(!ptr))
4433                 return len;
4434         if (ptr != dst_buff)
4435                 memcpy(dst_buff, ptr, len);
4436
4437         return 0;
4438 }
4439
4440 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4441            u64, flags, void *, meta, u64, meta_size)
4442 {
4443         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4444
4445         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4446                 return -EINVAL;
4447         if (unlikely(!skb || skb_size > skb->len))
4448                 return -EFAULT;
4449
4450         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4451                                 bpf_skb_copy);
4452 }
4453
4454 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4455         .func           = bpf_skb_event_output,
4456         .gpl_only       = true,
4457         .ret_type       = RET_INTEGER,
4458         .arg1_type      = ARG_PTR_TO_CTX,
4459         .arg2_type      = ARG_CONST_MAP_PTR,
4460         .arg3_type      = ARG_ANYTHING,
4461         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4462         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4463 };
4464
4465 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4466
4467 const struct bpf_func_proto bpf_skb_output_proto = {
4468         .func           = bpf_skb_event_output,
4469         .gpl_only       = true,
4470         .ret_type       = RET_INTEGER,
4471         .arg1_type      = ARG_PTR_TO_BTF_ID,
4472         .arg1_btf_id    = &bpf_skb_output_btf_ids[0],
4473         .arg2_type      = ARG_CONST_MAP_PTR,
4474         .arg3_type      = ARG_ANYTHING,
4475         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4476         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4477 };
4478
4479 static unsigned short bpf_tunnel_key_af(u64 flags)
4480 {
4481         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4482 }
4483
4484 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4485            u32, size, u64, flags)
4486 {
4487         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4488         u8 compat[sizeof(struct bpf_tunnel_key)];
4489         void *to_orig = to;
4490         int err;
4491
4492         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4493                                          BPF_F_TUNINFO_FLAGS)))) {
4494                 err = -EINVAL;
4495                 goto err_clear;
4496         }
4497         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4498                 err = -EPROTO;
4499                 goto err_clear;
4500         }
4501         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4502                 err = -EINVAL;
4503                 switch (size) {
4504                 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4505                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4506                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4507                         goto set_compat;
4508                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4509                         /* Fixup deprecated structure layouts here, so we have
4510                          * a common path later on.
4511                          */
4512                         if (ip_tunnel_info_af(info) != AF_INET)
4513                                 goto err_clear;
4514 set_compat:
4515                         to = (struct bpf_tunnel_key *)compat;
4516                         break;
4517                 default:
4518                         goto err_clear;
4519                 }
4520         }
4521
4522         to->tunnel_id = be64_to_cpu(info->key.tun_id);
4523         to->tunnel_tos = info->key.tos;
4524         to->tunnel_ttl = info->key.ttl;
4525         if (flags & BPF_F_TUNINFO_FLAGS)
4526                 to->tunnel_flags = info->key.tun_flags;
4527         else
4528                 to->tunnel_ext = 0;
4529
4530         if (flags & BPF_F_TUNINFO_IPV6) {
4531                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4532                        sizeof(to->remote_ipv6));
4533                 memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4534                        sizeof(to->local_ipv6));
4535                 to->tunnel_label = be32_to_cpu(info->key.label);
4536         } else {
4537                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4538                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4539                 to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4540                 memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4541                 to->tunnel_label = 0;
4542         }
4543
4544         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4545                 memcpy(to_orig, to, size);
4546
4547         return 0;
4548 err_clear:
4549         memset(to_orig, 0, size);
4550         return err;
4551 }
4552
4553 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4554         .func           = bpf_skb_get_tunnel_key,
4555         .gpl_only       = false,
4556         .ret_type       = RET_INTEGER,
4557         .arg1_type      = ARG_PTR_TO_CTX,
4558         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4559         .arg3_type      = ARG_CONST_SIZE,
4560         .arg4_type      = ARG_ANYTHING,
4561 };
4562
4563 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4564 {
4565         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4566         int err;
4567
4568         if (unlikely(!info ||
4569                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4570                 err = -ENOENT;
4571                 goto err_clear;
4572         }
4573         if (unlikely(size < info->options_len)) {
4574                 err = -ENOMEM;
4575                 goto err_clear;
4576         }
4577
4578         ip_tunnel_info_opts_get(to, info);
4579         if (size > info->options_len)
4580                 memset(to + info->options_len, 0, size - info->options_len);
4581
4582         return info->options_len;
4583 err_clear:
4584         memset(to, 0, size);
4585         return err;
4586 }
4587
4588 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4589         .func           = bpf_skb_get_tunnel_opt,
4590         .gpl_only       = false,
4591         .ret_type       = RET_INTEGER,
4592         .arg1_type      = ARG_PTR_TO_CTX,
4593         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4594         .arg3_type      = ARG_CONST_SIZE,
4595 };
4596
4597 static struct metadata_dst __percpu *md_dst;
4598
4599 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4600            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4601 {
4602         struct metadata_dst *md = this_cpu_ptr(md_dst);
4603         u8 compat[sizeof(struct bpf_tunnel_key)];
4604         struct ip_tunnel_info *info;
4605
4606         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4607                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4608                 return -EINVAL;
4609         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4610                 switch (size) {
4611                 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4612                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4613                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4614                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4615                         /* Fixup deprecated structure layouts here, so we have
4616                          * a common path later on.
4617                          */
4618                         memcpy(compat, from, size);
4619                         memset(compat + size, 0, sizeof(compat) - size);
4620                         from = (const struct bpf_tunnel_key *) compat;
4621                         break;
4622                 default:
4623                         return -EINVAL;
4624                 }
4625         }
4626         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4627                      from->tunnel_ext))
4628                 return -EINVAL;
4629
4630         skb_dst_drop(skb);
4631         dst_hold((struct dst_entry *) md);
4632         skb_dst_set(skb, (struct dst_entry *) md);
4633
4634         info = &md->u.tun_info;
4635         memset(info, 0, sizeof(*info));
4636         info->mode = IP_TUNNEL_INFO_TX;
4637
4638         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4639         if (flags & BPF_F_DONT_FRAGMENT)
4640                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4641         if (flags & BPF_F_ZERO_CSUM_TX)
4642                 info->key.tun_flags &= ~TUNNEL_CSUM;
4643         if (flags & BPF_F_SEQ_NUMBER)
4644                 info->key.tun_flags |= TUNNEL_SEQ;
4645
4646         info->key.tun_id = cpu_to_be64(from->tunnel_id);
4647         info->key.tos = from->tunnel_tos;
4648         info->key.ttl = from->tunnel_ttl;
4649
4650         if (flags & BPF_F_TUNINFO_IPV6) {
4651                 info->mode |= IP_TUNNEL_INFO_IPV6;
4652                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4653                        sizeof(from->remote_ipv6));
4654                 memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4655                        sizeof(from->local_ipv6));
4656                 info->key.label = cpu_to_be32(from->tunnel_label) &
4657                                   IPV6_FLOWLABEL_MASK;
4658         } else {
4659                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4660                 info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4661                 info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4662         }
4663
4664         return 0;
4665 }
4666
4667 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4668         .func           = bpf_skb_set_tunnel_key,
4669         .gpl_only       = false,
4670         .ret_type       = RET_INTEGER,
4671         .arg1_type      = ARG_PTR_TO_CTX,
4672         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4673         .arg3_type      = ARG_CONST_SIZE,
4674         .arg4_type      = ARG_ANYTHING,
4675 };
4676
4677 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4678            const u8 *, from, u32, size)
4679 {
4680         struct ip_tunnel_info *info = skb_tunnel_info(skb);
4681         const struct metadata_dst *md = this_cpu_ptr(md_dst);
4682
4683         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4684                 return -EINVAL;
4685         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4686                 return -ENOMEM;
4687
4688         ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4689
4690         return 0;
4691 }
4692
4693 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4694         .func           = bpf_skb_set_tunnel_opt,
4695         .gpl_only       = false,
4696         .ret_type       = RET_INTEGER,
4697         .arg1_type      = ARG_PTR_TO_CTX,
4698         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4699         .arg3_type      = ARG_CONST_SIZE,
4700 };
4701
4702 static const struct bpf_func_proto *
4703 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4704 {
4705         if (!md_dst) {
4706                 struct metadata_dst __percpu *tmp;
4707
4708                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4709                                                 METADATA_IP_TUNNEL,
4710                                                 GFP_KERNEL);
4711                 if (!tmp)
4712                         return NULL;
4713                 if (cmpxchg(&md_dst, NULL, tmp))
4714                         metadata_dst_free_percpu(tmp);
4715         }
4716
4717         switch (which) {
4718         case BPF_FUNC_skb_set_tunnel_key:
4719                 return &bpf_skb_set_tunnel_key_proto;
4720         case BPF_FUNC_skb_set_tunnel_opt:
4721                 return &bpf_skb_set_tunnel_opt_proto;
4722         default:
4723                 return NULL;
4724         }
4725 }
4726
4727 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4728            u32, idx)
4729 {
4730         struct bpf_array *array = container_of(map, struct bpf_array, map);
4731         struct cgroup *cgrp;
4732         struct sock *sk;
4733
4734         sk = skb_to_full_sk(skb);
4735         if (!sk || !sk_fullsock(sk))
4736                 return -ENOENT;
4737         if (unlikely(idx >= array->map.max_entries))
4738                 return -E2BIG;
4739
4740         cgrp = READ_ONCE(array->ptrs[idx]);
4741         if (unlikely(!cgrp))
4742                 return -EAGAIN;
4743
4744         return sk_under_cgroup_hierarchy(sk, cgrp);
4745 }
4746
4747 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4748         .func           = bpf_skb_under_cgroup,
4749         .gpl_only       = false,
4750         .ret_type       = RET_INTEGER,
4751         .arg1_type      = ARG_PTR_TO_CTX,
4752         .arg2_type      = ARG_CONST_MAP_PTR,
4753         .arg3_type      = ARG_ANYTHING,
4754 };
4755
4756 #ifdef CONFIG_SOCK_CGROUP_DATA
4757 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4758 {
4759         struct cgroup *cgrp;
4760
4761         sk = sk_to_full_sk(sk);
4762         if (!sk || !sk_fullsock(sk))
4763                 return 0;
4764
4765         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4766         return cgroup_id(cgrp);
4767 }
4768
4769 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4770 {
4771         return __bpf_sk_cgroup_id(skb->sk);
4772 }
4773
4774 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4775         .func           = bpf_skb_cgroup_id,
4776         .gpl_only       = false,
4777         .ret_type       = RET_INTEGER,
4778         .arg1_type      = ARG_PTR_TO_CTX,
4779 };
4780
4781 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4782                                               int ancestor_level)
4783 {
4784         struct cgroup *ancestor;
4785         struct cgroup *cgrp;
4786
4787         sk = sk_to_full_sk(sk);
4788         if (!sk || !sk_fullsock(sk))
4789                 return 0;
4790
4791         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4792         ancestor = cgroup_ancestor(cgrp, ancestor_level);
4793         if (!ancestor)
4794                 return 0;
4795
4796         return cgroup_id(ancestor);
4797 }
4798
4799 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4800            ancestor_level)
4801 {
4802         return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4803 }
4804
4805 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4806         .func           = bpf_skb_ancestor_cgroup_id,
4807         .gpl_only       = false,
4808         .ret_type       = RET_INTEGER,
4809         .arg1_type      = ARG_PTR_TO_CTX,
4810         .arg2_type      = ARG_ANYTHING,
4811 };
4812
4813 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4814 {
4815         return __bpf_sk_cgroup_id(sk);
4816 }
4817
4818 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4819         .func           = bpf_sk_cgroup_id,
4820         .gpl_only       = false,
4821         .ret_type       = RET_INTEGER,
4822         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4823 };
4824
4825 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4826 {
4827         return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4828 }
4829
4830 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4831         .func           = bpf_sk_ancestor_cgroup_id,
4832         .gpl_only       = false,
4833         .ret_type       = RET_INTEGER,
4834         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4835         .arg2_type      = ARG_ANYTHING,
4836 };
4837 #endif
4838
4839 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4840                                   unsigned long off, unsigned long len)
4841 {
4842         struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4843
4844         bpf_xdp_copy_buf(xdp, off, dst, len, false);
4845         return 0;
4846 }
4847
4848 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4849            u64, flags, void *, meta, u64, meta_size)
4850 {
4851         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4852
4853         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4854                 return -EINVAL;
4855
4856         if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4857                 return -EFAULT;
4858
4859         return bpf_event_output(map, flags, meta, meta_size, xdp,
4860                                 xdp_size, bpf_xdp_copy);
4861 }
4862
4863 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4864         .func           = bpf_xdp_event_output,
4865         .gpl_only       = true,
4866         .ret_type       = RET_INTEGER,
4867         .arg1_type      = ARG_PTR_TO_CTX,
4868         .arg2_type      = ARG_CONST_MAP_PTR,
4869         .arg3_type      = ARG_ANYTHING,
4870         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4871         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4872 };
4873
4874 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4875
4876 const struct bpf_func_proto bpf_xdp_output_proto = {
4877         .func           = bpf_xdp_event_output,
4878         .gpl_only       = true,
4879         .ret_type       = RET_INTEGER,
4880         .arg1_type      = ARG_PTR_TO_BTF_ID,
4881         .arg1_btf_id    = &bpf_xdp_output_btf_ids[0],
4882         .arg2_type      = ARG_CONST_MAP_PTR,
4883         .arg3_type      = ARG_ANYTHING,
4884         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
4885         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4886 };
4887
4888 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4889 {
4890         return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4891 }
4892
4893 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4894         .func           = bpf_get_socket_cookie,
4895         .gpl_only       = false,
4896         .ret_type       = RET_INTEGER,
4897         .arg1_type      = ARG_PTR_TO_CTX,
4898 };
4899
4900 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4901 {
4902         return __sock_gen_cookie(ctx->sk);
4903 }
4904
4905 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4906         .func           = bpf_get_socket_cookie_sock_addr,
4907         .gpl_only       = false,
4908         .ret_type       = RET_INTEGER,
4909         .arg1_type      = ARG_PTR_TO_CTX,
4910 };
4911
4912 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4913 {
4914         return __sock_gen_cookie(ctx);
4915 }
4916
4917 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4918         .func           = bpf_get_socket_cookie_sock,
4919         .gpl_only       = false,
4920         .ret_type       = RET_INTEGER,
4921         .arg1_type      = ARG_PTR_TO_CTX,
4922 };
4923
4924 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4925 {
4926         return sk ? sock_gen_cookie(sk) : 0;
4927 }
4928
4929 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4930         .func           = bpf_get_socket_ptr_cookie,
4931         .gpl_only       = false,
4932         .ret_type       = RET_INTEGER,
4933         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4934 };
4935
4936 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4937 {
4938         return __sock_gen_cookie(ctx->sk);
4939 }
4940
4941 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4942         .func           = bpf_get_socket_cookie_sock_ops,
4943         .gpl_only       = false,
4944         .ret_type       = RET_INTEGER,
4945         .arg1_type      = ARG_PTR_TO_CTX,
4946 };
4947
4948 static u64 __bpf_get_netns_cookie(struct sock *sk)
4949 {
4950         const struct net *net = sk ? sock_net(sk) : &init_net;
4951
4952         return net->net_cookie;
4953 }
4954
4955 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4956 {
4957         return __bpf_get_netns_cookie(ctx);
4958 }
4959
4960 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4961         .func           = bpf_get_netns_cookie_sock,
4962         .gpl_only       = false,
4963         .ret_type       = RET_INTEGER,
4964         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4965 };
4966
4967 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4968 {
4969         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4970 }
4971
4972 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4973         .func           = bpf_get_netns_cookie_sock_addr,
4974         .gpl_only       = false,
4975         .ret_type       = RET_INTEGER,
4976         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4977 };
4978
4979 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4980 {
4981         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4982 }
4983
4984 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
4985         .func           = bpf_get_netns_cookie_sock_ops,
4986         .gpl_only       = false,
4987         .ret_type       = RET_INTEGER,
4988         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4989 };
4990
4991 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
4992 {
4993         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4994 }
4995
4996 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
4997         .func           = bpf_get_netns_cookie_sk_msg,
4998         .gpl_only       = false,
4999         .ret_type       = RET_INTEGER,
5000         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
5001 };
5002
5003 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5004 {
5005         struct sock *sk = sk_to_full_sk(skb->sk);
5006         kuid_t kuid;
5007
5008         if (!sk || !sk_fullsock(sk))
5009                 return overflowuid;
5010         kuid = sock_net_uid(sock_net(sk), sk);
5011         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5012 }
5013
5014 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5015         .func           = bpf_get_socket_uid,
5016         .gpl_only       = false,
5017         .ret_type       = RET_INTEGER,
5018         .arg1_type      = ARG_PTR_TO_CTX,
5019 };
5020
5021 static int sol_socket_sockopt(struct sock *sk, int optname,
5022                               char *optval, int *optlen,
5023                               bool getopt)
5024 {
5025         switch (optname) {
5026         case SO_REUSEADDR:
5027         case SO_SNDBUF:
5028         case SO_RCVBUF:
5029         case SO_KEEPALIVE:
5030         case SO_PRIORITY:
5031         case SO_REUSEPORT:
5032         case SO_RCVLOWAT:
5033         case SO_MARK:
5034         case SO_MAX_PACING_RATE:
5035         case SO_BINDTOIFINDEX:
5036         case SO_TXREHASH:
5037                 if (*optlen != sizeof(int))
5038                         return -EINVAL;
5039                 break;
5040         case SO_BINDTODEVICE:
5041                 break;
5042         default:
5043                 return -EINVAL;
5044         }
5045
5046         if (getopt) {
5047                 if (optname == SO_BINDTODEVICE)
5048                         return -EINVAL;
5049                 return sk_getsockopt(sk, SOL_SOCKET, optname,
5050                                      KERNEL_SOCKPTR(optval),
5051                                      KERNEL_SOCKPTR(optlen));
5052         }
5053
5054         return sk_setsockopt(sk, SOL_SOCKET, optname,
5055                              KERNEL_SOCKPTR(optval), *optlen);
5056 }
5057
5058 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5059                                   char *optval, int optlen)
5060 {
5061         struct tcp_sock *tp = tcp_sk(sk);
5062         unsigned long timeout;
5063         int val;
5064
5065         if (optlen != sizeof(int))
5066                 return -EINVAL;
5067
5068         val = *(int *)optval;
5069
5070         /* Only some options are supported */
5071         switch (optname) {
5072         case TCP_BPF_IW:
5073                 if (val <= 0 || tp->data_segs_out > tp->syn_data)
5074                         return -EINVAL;
5075                 tcp_snd_cwnd_set(tp, val);
5076                 break;
5077         case TCP_BPF_SNDCWND_CLAMP:
5078                 if (val <= 0)
5079                         return -EINVAL;
5080                 tp->snd_cwnd_clamp = val;
5081                 tp->snd_ssthresh = val;
5082                 break;
5083         case TCP_BPF_DELACK_MAX:
5084                 timeout = usecs_to_jiffies(val);
5085                 if (timeout > TCP_DELACK_MAX ||
5086                     timeout < TCP_TIMEOUT_MIN)
5087                         return -EINVAL;
5088                 inet_csk(sk)->icsk_delack_max = timeout;
5089                 break;
5090         case TCP_BPF_RTO_MIN:
5091                 timeout = usecs_to_jiffies(val);
5092                 if (timeout > TCP_RTO_MIN ||
5093                     timeout < TCP_TIMEOUT_MIN)
5094                         return -EINVAL;
5095                 inet_csk(sk)->icsk_rto_min = timeout;
5096                 break;
5097         default:
5098                 return -EINVAL;
5099         }
5100
5101         return 0;
5102 }
5103
5104 static int sol_tcp_sockopt(struct sock *sk, int optname,
5105                            char *optval, int *optlen,
5106                            bool getopt)
5107 {
5108         if (sk->sk_prot->setsockopt != tcp_setsockopt)
5109                 return -EINVAL;
5110
5111         switch (optname) {
5112         case TCP_NODELAY:
5113         case TCP_MAXSEG:
5114         case TCP_KEEPIDLE:
5115         case TCP_KEEPINTVL:
5116         case TCP_KEEPCNT:
5117         case TCP_SYNCNT:
5118         case TCP_WINDOW_CLAMP:
5119         case TCP_THIN_LINEAR_TIMEOUTS:
5120         case TCP_USER_TIMEOUT:
5121         case TCP_NOTSENT_LOWAT:
5122         case TCP_SAVE_SYN:
5123                 if (*optlen != sizeof(int))
5124                         return -EINVAL;
5125                 break;
5126         case TCP_CONGESTION:
5127                 if (*optlen < 2)
5128                         return -EINVAL;
5129                 break;
5130         case TCP_SAVED_SYN:
5131                 if (*optlen < 1)
5132                         return -EINVAL;
5133                 break;
5134         default:
5135                 if (getopt)
5136                         return -EINVAL;
5137                 return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5138         }
5139
5140         if (getopt) {
5141                 if (optname == TCP_SAVED_SYN) {
5142                         struct tcp_sock *tp = tcp_sk(sk);
5143
5144                         if (!tp->saved_syn ||
5145                             *optlen > tcp_saved_syn_len(tp->saved_syn))
5146                                 return -EINVAL;
5147                         memcpy(optval, tp->saved_syn->data, *optlen);
5148                         /* It cannot free tp->saved_syn here because it
5149                          * does not know if the user space still needs it.
5150                          */
5151                         return 0;
5152                 }
5153
5154                 if (optname == TCP_CONGESTION) {
5155                         if (!inet_csk(sk)->icsk_ca_ops)
5156                                 return -EINVAL;
5157                         /* BPF expects NULL-terminated tcp-cc string */
5158                         optval[--(*optlen)] = '\0';
5159                 }
5160
5161                 return do_tcp_getsockopt(sk, SOL_TCP, optname,
5162                                          KERNEL_SOCKPTR(optval),
5163                                          KERNEL_SOCKPTR(optlen));
5164         }
5165
5166         return do_tcp_setsockopt(sk, SOL_TCP, optname,
5167                                  KERNEL_SOCKPTR(optval), *optlen);
5168 }
5169
5170 static int sol_ip_sockopt(struct sock *sk, int optname,
5171                           char *optval, int *optlen,
5172                           bool getopt)
5173 {
5174         if (sk->sk_family != AF_INET)
5175                 return -EINVAL;
5176
5177         switch (optname) {
5178         case IP_TOS:
5179                 if (*optlen != sizeof(int))
5180                         return -EINVAL;
5181                 break;
5182         default:
5183                 return -EINVAL;
5184         }
5185
5186         if (getopt)
5187                 return do_ip_getsockopt(sk, SOL_IP, optname,
5188                                         KERNEL_SOCKPTR(optval),
5189                                         KERNEL_SOCKPTR(optlen));
5190
5191         return do_ip_setsockopt(sk, SOL_IP, optname,
5192                                 KERNEL_SOCKPTR(optval), *optlen);
5193 }
5194
5195 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5196                             char *optval, int *optlen,
5197                             bool getopt)
5198 {
5199         if (sk->sk_family != AF_INET6)
5200                 return -EINVAL;
5201
5202         switch (optname) {
5203         case IPV6_TCLASS:
5204         case IPV6_AUTOFLOWLABEL:
5205                 if (*optlen != sizeof(int))
5206                         return -EINVAL;
5207                 break;
5208         default:
5209                 return -EINVAL;
5210         }
5211
5212         if (getopt)
5213                 return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5214                                                       KERNEL_SOCKPTR(optval),
5215                                                       KERNEL_SOCKPTR(optlen));
5216
5217         return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5218                                               KERNEL_SOCKPTR(optval), *optlen);
5219 }
5220
5221 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5222                             char *optval, int optlen)
5223 {
5224         if (!sk_fullsock(sk))
5225                 return -EINVAL;
5226
5227         if (level == SOL_SOCKET)
5228                 return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5229         else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5230                 return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5231         else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5232                 return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5233         else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5234                 return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5235
5236         return -EINVAL;
5237 }
5238
5239 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5240                            char *optval, int optlen)
5241 {
5242         if (sk_fullsock(sk))
5243                 sock_owned_by_me(sk);
5244         return __bpf_setsockopt(sk, level, optname, optval, optlen);
5245 }
5246
5247 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5248                             char *optval, int optlen)
5249 {
5250         int err, saved_optlen = optlen;
5251
5252         if (!sk_fullsock(sk)) {
5253                 err = -EINVAL;
5254                 goto done;
5255         }
5256
5257         if (level == SOL_SOCKET)
5258                 err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5259         else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5260                 err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5261         else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5262                 err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5263         else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5264                 err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5265         else
5266                 err = -EINVAL;
5267
5268 done:
5269         if (err)
5270                 optlen = 0;
5271         if (optlen < saved_optlen)
5272                 memset(optval + optlen, 0, saved_optlen - optlen);
5273         return err;
5274 }
5275
5276 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5277                            char *optval, int optlen)
5278 {
5279         if (sk_fullsock(sk))
5280                 sock_owned_by_me(sk);
5281         return __bpf_getsockopt(sk, level, optname, optval, optlen);
5282 }
5283
5284 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5285            int, optname, char *, optval, int, optlen)
5286 {
5287         if (level == SOL_TCP && optname == TCP_CONGESTION) {
5288                 if (optlen >= sizeof("cdg") - 1 &&
5289                     !strncmp("cdg", optval, optlen))
5290                         return -ENOTSUPP;
5291         }
5292
5293         return _bpf_setsockopt(sk, level, optname, optval, optlen);
5294 }
5295
5296 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5297         .func           = bpf_sk_setsockopt,
5298         .gpl_only       = false,
5299         .ret_type       = RET_INTEGER,
5300         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5301         .arg2_type      = ARG_ANYTHING,
5302         .arg3_type      = ARG_ANYTHING,
5303         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5304         .arg5_type      = ARG_CONST_SIZE,
5305 };
5306
5307 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5308            int, optname, char *, optval, int, optlen)
5309 {
5310         return _bpf_getsockopt(sk, level, optname, optval, optlen);
5311 }
5312
5313 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5314         .func           = bpf_sk_getsockopt,
5315         .gpl_only       = false,
5316         .ret_type       = RET_INTEGER,
5317         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5318         .arg2_type      = ARG_ANYTHING,
5319         .arg3_type      = ARG_ANYTHING,
5320         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5321         .arg5_type      = ARG_CONST_SIZE,
5322 };
5323
5324 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5325            int, optname, char *, optval, int, optlen)
5326 {
5327         return __bpf_setsockopt(sk, level, optname, optval, optlen);
5328 }
5329
5330 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5331         .func           = bpf_unlocked_sk_setsockopt,
5332         .gpl_only       = false,
5333         .ret_type       = RET_INTEGER,
5334         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5335         .arg2_type      = ARG_ANYTHING,
5336         .arg3_type      = ARG_ANYTHING,
5337         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5338         .arg5_type      = ARG_CONST_SIZE,
5339 };
5340
5341 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5342            int, optname, char *, optval, int, optlen)
5343 {
5344         return __bpf_getsockopt(sk, level, optname, optval, optlen);
5345 }
5346
5347 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5348         .func           = bpf_unlocked_sk_getsockopt,
5349         .gpl_only       = false,
5350         .ret_type       = RET_INTEGER,
5351         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5352         .arg2_type      = ARG_ANYTHING,
5353         .arg3_type      = ARG_ANYTHING,
5354         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5355         .arg5_type      = ARG_CONST_SIZE,
5356 };
5357
5358 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5359            int, level, int, optname, char *, optval, int, optlen)
5360 {
5361         return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5362 }
5363
5364 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5365         .func           = bpf_sock_addr_setsockopt,
5366         .gpl_only       = false,
5367         .ret_type       = RET_INTEGER,
5368         .arg1_type      = ARG_PTR_TO_CTX,
5369         .arg2_type      = ARG_ANYTHING,
5370         .arg3_type      = ARG_ANYTHING,
5371         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5372         .arg5_type      = ARG_CONST_SIZE,
5373 };
5374
5375 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5376            int, level, int, optname, char *, optval, int, optlen)
5377 {
5378         return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5379 }
5380
5381 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5382         .func           = bpf_sock_addr_getsockopt,
5383         .gpl_only       = false,
5384         .ret_type       = RET_INTEGER,
5385         .arg1_type      = ARG_PTR_TO_CTX,
5386         .arg2_type      = ARG_ANYTHING,
5387         .arg3_type      = ARG_ANYTHING,
5388         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5389         .arg5_type      = ARG_CONST_SIZE,
5390 };
5391
5392 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5393            int, level, int, optname, char *, optval, int, optlen)
5394 {
5395         return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5396 }
5397
5398 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5399         .func           = bpf_sock_ops_setsockopt,
5400         .gpl_only       = false,
5401         .ret_type       = RET_INTEGER,
5402         .arg1_type      = ARG_PTR_TO_CTX,
5403         .arg2_type      = ARG_ANYTHING,
5404         .arg3_type      = ARG_ANYTHING,
5405         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5406         .arg5_type      = ARG_CONST_SIZE,
5407 };
5408
5409 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5410                                 int optname, const u8 **start)
5411 {
5412         struct sk_buff *syn_skb = bpf_sock->syn_skb;
5413         const u8 *hdr_start;
5414         int ret;
5415
5416         if (syn_skb) {
5417                 /* sk is a request_sock here */
5418
5419                 if (optname == TCP_BPF_SYN) {
5420                         hdr_start = syn_skb->data;
5421                         ret = tcp_hdrlen(syn_skb);
5422                 } else if (optname == TCP_BPF_SYN_IP) {
5423                         hdr_start = skb_network_header(syn_skb);
5424                         ret = skb_network_header_len(syn_skb) +
5425                                 tcp_hdrlen(syn_skb);
5426                 } else {
5427                         /* optname == TCP_BPF_SYN_MAC */
5428                         hdr_start = skb_mac_header(syn_skb);
5429                         ret = skb_mac_header_len(syn_skb) +
5430                                 skb_network_header_len(syn_skb) +
5431                                 tcp_hdrlen(syn_skb);
5432                 }
5433         } else {
5434                 struct sock *sk = bpf_sock->sk;
5435                 struct saved_syn *saved_syn;
5436
5437                 if (sk->sk_state == TCP_NEW_SYN_RECV)
5438                         /* synack retransmit. bpf_sock->syn_skb will
5439                          * not be available.  It has to resort to
5440                          * saved_syn (if it is saved).
5441                          */
5442                         saved_syn = inet_reqsk(sk)->saved_syn;
5443                 else
5444                         saved_syn = tcp_sk(sk)->saved_syn;
5445
5446                 if (!saved_syn)
5447                         return -ENOENT;
5448
5449                 if (optname == TCP_BPF_SYN) {
5450                         hdr_start = saved_syn->data +
5451                                 saved_syn->mac_hdrlen +
5452                                 saved_syn->network_hdrlen;
5453                         ret = saved_syn->tcp_hdrlen;
5454                 } else if (optname == TCP_BPF_SYN_IP) {
5455                         hdr_start = saved_syn->data +
5456                                 saved_syn->mac_hdrlen;
5457                         ret = saved_syn->network_hdrlen +
5458                                 saved_syn->tcp_hdrlen;
5459                 } else {
5460                         /* optname == TCP_BPF_SYN_MAC */
5461
5462                         /* TCP_SAVE_SYN may not have saved the mac hdr */
5463                         if (!saved_syn->mac_hdrlen)
5464                                 return -ENOENT;
5465
5466                         hdr_start = saved_syn->data;
5467                         ret = saved_syn->mac_hdrlen +
5468                                 saved_syn->network_hdrlen +
5469                                 saved_syn->tcp_hdrlen;
5470                 }
5471         }
5472
5473         *start = hdr_start;
5474         return ret;
5475 }
5476
5477 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5478            int, level, int, optname, char *, optval, int, optlen)
5479 {
5480         if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5481             optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5482                 int ret, copy_len = 0;
5483                 const u8 *start;
5484
5485                 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5486                 if (ret > 0) {
5487                         copy_len = ret;
5488                         if (optlen < copy_len) {
5489                                 copy_len = optlen;
5490                                 ret = -ENOSPC;
5491                         }
5492
5493                         memcpy(optval, start, copy_len);
5494                 }
5495
5496                 /* Zero out unused buffer at the end */
5497                 memset(optval + copy_len, 0, optlen - copy_len);
5498
5499                 return ret;
5500         }
5501
5502         return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5503 }
5504
5505 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5506         .func           = bpf_sock_ops_getsockopt,
5507         .gpl_only       = false,
5508         .ret_type       = RET_INTEGER,
5509         .arg1_type      = ARG_PTR_TO_CTX,
5510         .arg2_type      = ARG_ANYTHING,
5511         .arg3_type      = ARG_ANYTHING,
5512         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5513         .arg5_type      = ARG_CONST_SIZE,
5514 };
5515
5516 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5517            int, argval)
5518 {
5519         struct sock *sk = bpf_sock->sk;
5520         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5521
5522         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5523                 return -EINVAL;
5524
5525         tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5526
5527         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5528 }
5529
5530 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5531         .func           = bpf_sock_ops_cb_flags_set,
5532         .gpl_only       = false,
5533         .ret_type       = RET_INTEGER,
5534         .arg1_type      = ARG_PTR_TO_CTX,
5535         .arg2_type      = ARG_ANYTHING,
5536 };
5537
5538 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5539 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5540
5541 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5542            int, addr_len)
5543 {
5544 #ifdef CONFIG_INET
5545         struct sock *sk = ctx->sk;
5546         u32 flags = BIND_FROM_BPF;
5547         int err;
5548
5549         err = -EINVAL;
5550         if (addr_len < offsetofend(struct sockaddr, sa_family))
5551                 return err;
5552         if (addr->sa_family == AF_INET) {
5553                 if (addr_len < sizeof(struct sockaddr_in))
5554                         return err;
5555                 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5556                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5557                 return __inet_bind(sk, addr, addr_len, flags);
5558 #if IS_ENABLED(CONFIG_IPV6)
5559         } else if (addr->sa_family == AF_INET6) {
5560                 if (addr_len < SIN6_LEN_RFC2133)
5561                         return err;
5562                 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5563                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5564                 /* ipv6_bpf_stub cannot be NULL, since it's called from
5565                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5566                  */
5567                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5568 #endif /* CONFIG_IPV6 */
5569         }
5570 #endif /* CONFIG_INET */
5571
5572         return -EAFNOSUPPORT;
5573 }
5574
5575 static const struct bpf_func_proto bpf_bind_proto = {
5576         .func           = bpf_bind,
5577         .gpl_only       = false,
5578         .ret_type       = RET_INTEGER,
5579         .arg1_type      = ARG_PTR_TO_CTX,
5580         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
5581         .arg3_type      = ARG_CONST_SIZE,
5582 };
5583
5584 #ifdef CONFIG_XFRM
5585 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5586            struct bpf_xfrm_state *, to, u32, size, u64, flags)
5587 {
5588         const struct sec_path *sp = skb_sec_path(skb);
5589         const struct xfrm_state *x;
5590
5591         if (!sp || unlikely(index >= sp->len || flags))
5592                 goto err_clear;
5593
5594         x = sp->xvec[index];
5595
5596         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5597                 goto err_clear;
5598
5599         to->reqid = x->props.reqid;
5600         to->spi = x->id.spi;
5601         to->family = x->props.family;
5602         to->ext = 0;
5603
5604         if (to->family == AF_INET6) {
5605                 memcpy(to->remote_ipv6, x->props.saddr.a6,
5606                        sizeof(to->remote_ipv6));
5607         } else {
5608                 to->remote_ipv4 = x->props.saddr.a4;
5609                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5610         }
5611
5612         return 0;
5613 err_clear:
5614         memset(to, 0, size);
5615         return -EINVAL;
5616 }
5617
5618 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5619         .func           = bpf_skb_get_xfrm_state,
5620         .gpl_only       = false,
5621         .ret_type       = RET_INTEGER,
5622         .arg1_type      = ARG_PTR_TO_CTX,
5623         .arg2_type      = ARG_ANYTHING,
5624         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
5625         .arg4_type      = ARG_CONST_SIZE,
5626         .arg5_type      = ARG_ANYTHING,
5627 };
5628 #endif
5629
5630 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5631 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5632                                   const struct neighbour *neigh,
5633                                   const struct net_device *dev, u32 mtu)
5634 {
5635         memcpy(params->dmac, neigh->ha, ETH_ALEN);
5636         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5637         params->h_vlan_TCI = 0;
5638         params->h_vlan_proto = 0;
5639         if (mtu)
5640                 params->mtu_result = mtu; /* union with tot_len */
5641
5642         return 0;
5643 }
5644 #endif
5645
5646 #if IS_ENABLED(CONFIG_INET)
5647 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5648                                u32 flags, bool check_mtu)
5649 {
5650         struct fib_nh_common *nhc;
5651         struct in_device *in_dev;
5652         struct neighbour *neigh;
5653         struct net_device *dev;
5654         struct fib_result res;
5655         struct flowi4 fl4;
5656         u32 mtu = 0;
5657         int err;
5658
5659         dev = dev_get_by_index_rcu(net, params->ifindex);
5660         if (unlikely(!dev))
5661                 return -ENODEV;
5662
5663         /* verify forwarding is enabled on this interface */
5664         in_dev = __in_dev_get_rcu(dev);
5665         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5666                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5667
5668         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5669                 fl4.flowi4_iif = 1;
5670                 fl4.flowi4_oif = params->ifindex;
5671         } else {
5672                 fl4.flowi4_iif = params->ifindex;
5673                 fl4.flowi4_oif = 0;
5674         }
5675         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5676         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5677         fl4.flowi4_flags = 0;
5678
5679         fl4.flowi4_proto = params->l4_protocol;
5680         fl4.daddr = params->ipv4_dst;
5681         fl4.saddr = params->ipv4_src;
5682         fl4.fl4_sport = params->sport;
5683         fl4.fl4_dport = params->dport;
5684         fl4.flowi4_multipath_hash = 0;
5685
5686         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5687                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5688                 struct fib_table *tb;
5689
5690                 tb = fib_get_table(net, tbid);
5691                 if (unlikely(!tb))
5692                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5693
5694                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5695         } else {
5696                 fl4.flowi4_mark = 0;
5697                 fl4.flowi4_secid = 0;
5698                 fl4.flowi4_tun_key.tun_id = 0;
5699                 fl4.flowi4_uid = sock_net_uid(net, NULL);
5700
5701                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5702         }
5703
5704         if (err) {
5705                 /* map fib lookup errors to RTN_ type */
5706                 if (err == -EINVAL)
5707                         return BPF_FIB_LKUP_RET_BLACKHOLE;
5708                 if (err == -EHOSTUNREACH)
5709                         return BPF_FIB_LKUP_RET_UNREACHABLE;
5710                 if (err == -EACCES)
5711                         return BPF_FIB_LKUP_RET_PROHIBIT;
5712
5713                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5714         }
5715
5716         if (res.type != RTN_UNICAST)
5717                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5718
5719         if (fib_info_num_path(res.fi) > 1)
5720                 fib_select_path(net, &res, &fl4, NULL);
5721
5722         if (check_mtu) {
5723                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5724                 if (params->tot_len > mtu) {
5725                         params->mtu_result = mtu; /* union with tot_len */
5726                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5727                 }
5728         }
5729
5730         nhc = res.nhc;
5731
5732         /* do not handle lwt encaps right now */
5733         if (nhc->nhc_lwtstate)
5734                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5735
5736         dev = nhc->nhc_dev;
5737
5738         params->rt_metric = res.fi->fib_priority;
5739         params->ifindex = dev->ifindex;
5740
5741         /* xdp and cls_bpf programs are run in RCU-bh so
5742          * rcu_read_lock_bh is not needed here
5743          */
5744         if (likely(nhc->nhc_gw_family != AF_INET6)) {
5745                 if (nhc->nhc_gw_family)
5746                         params->ipv4_dst = nhc->nhc_gw.ipv4;
5747
5748                 neigh = __ipv4_neigh_lookup_noref(dev,
5749                                                  (__force u32)params->ipv4_dst);
5750         } else {
5751                 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5752
5753                 params->family = AF_INET6;
5754                 *dst = nhc->nhc_gw.ipv6;
5755                 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5756         }
5757
5758         if (!neigh)
5759                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5760
5761         return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5762 }
5763 #endif
5764
5765 #if IS_ENABLED(CONFIG_IPV6)
5766 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5767                                u32 flags, bool check_mtu)
5768 {
5769         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5770         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5771         struct fib6_result res = {};
5772         struct neighbour *neigh;
5773         struct net_device *dev;
5774         struct inet6_dev *idev;
5775         struct flowi6 fl6;
5776         int strict = 0;
5777         int oif, err;
5778         u32 mtu = 0;
5779
5780         /* link local addresses are never forwarded */
5781         if (rt6_need_strict(dst) || rt6_need_strict(src))
5782                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5783
5784         dev = dev_get_by_index_rcu(net, params->ifindex);
5785         if (unlikely(!dev))
5786                 return -ENODEV;
5787
5788         idev = __in6_dev_get_safely(dev);
5789         if (unlikely(!idev || !idev->cnf.forwarding))
5790                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5791
5792         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5793                 fl6.flowi6_iif = 1;
5794                 oif = fl6.flowi6_oif = params->ifindex;
5795         } else {
5796                 oif = fl6.flowi6_iif = params->ifindex;
5797                 fl6.flowi6_oif = 0;
5798                 strict = RT6_LOOKUP_F_HAS_SADDR;
5799         }
5800         fl6.flowlabel = params->flowinfo;
5801         fl6.flowi6_scope = 0;
5802         fl6.flowi6_flags = 0;
5803         fl6.mp_hash = 0;
5804
5805         fl6.flowi6_proto = params->l4_protocol;
5806         fl6.daddr = *dst;
5807         fl6.saddr = *src;
5808         fl6.fl6_sport = params->sport;
5809         fl6.fl6_dport = params->dport;
5810
5811         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5812                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5813                 struct fib6_table *tb;
5814
5815                 tb = ipv6_stub->fib6_get_table(net, tbid);
5816                 if (unlikely(!tb))
5817                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5818
5819                 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5820                                                    strict);
5821         } else {
5822                 fl6.flowi6_mark = 0;
5823                 fl6.flowi6_secid = 0;
5824                 fl6.flowi6_tun_key.tun_id = 0;
5825                 fl6.flowi6_uid = sock_net_uid(net, NULL);
5826
5827                 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5828         }
5829
5830         if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5831                      res.f6i == net->ipv6.fib6_null_entry))
5832                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5833
5834         switch (res.fib6_type) {
5835         /* only unicast is forwarded */
5836         case RTN_UNICAST:
5837                 break;
5838         case RTN_BLACKHOLE:
5839                 return BPF_FIB_LKUP_RET_BLACKHOLE;
5840         case RTN_UNREACHABLE:
5841                 return BPF_FIB_LKUP_RET_UNREACHABLE;
5842         case RTN_PROHIBIT:
5843                 return BPF_FIB_LKUP_RET_PROHIBIT;
5844         default:
5845                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5846         }
5847
5848         ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5849                                     fl6.flowi6_oif != 0, NULL, strict);
5850
5851         if (check_mtu) {
5852                 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5853                 if (params->tot_len > mtu) {
5854                         params->mtu_result = mtu; /* union with tot_len */
5855                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5856                 }
5857         }
5858
5859         if (res.nh->fib_nh_lws)
5860                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5861
5862         if (res.nh->fib_nh_gw_family)
5863                 *dst = res.nh->fib_nh_gw6;
5864
5865         dev = res.nh->fib_nh_dev;
5866         params->rt_metric = res.f6i->fib6_metric;
5867         params->ifindex = dev->ifindex;
5868
5869         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5870          * not needed here.
5871          */
5872         neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5873         if (!neigh)
5874                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5875
5876         return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5877 }
5878 #endif
5879
5880 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5881            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5882 {
5883         if (plen < sizeof(*params))
5884                 return -EINVAL;
5885
5886         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5887                 return -EINVAL;
5888
5889         switch (params->family) {
5890 #if IS_ENABLED(CONFIG_INET)
5891         case AF_INET:
5892                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5893                                            flags, true);
5894 #endif
5895 #if IS_ENABLED(CONFIG_IPV6)
5896         case AF_INET6:
5897                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5898                                            flags, true);
5899 #endif
5900         }
5901         return -EAFNOSUPPORT;
5902 }
5903
5904 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5905         .func           = bpf_xdp_fib_lookup,
5906         .gpl_only       = true,
5907         .ret_type       = RET_INTEGER,
5908         .arg1_type      = ARG_PTR_TO_CTX,
5909         .arg2_type      = ARG_PTR_TO_MEM,
5910         .arg3_type      = ARG_CONST_SIZE,
5911         .arg4_type      = ARG_ANYTHING,
5912 };
5913
5914 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5915            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5916 {
5917         struct net *net = dev_net(skb->dev);
5918         int rc = -EAFNOSUPPORT;
5919         bool check_mtu = false;
5920
5921         if (plen < sizeof(*params))
5922                 return -EINVAL;
5923
5924         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5925                 return -EINVAL;
5926
5927         if (params->tot_len)
5928                 check_mtu = true;
5929
5930         switch (params->family) {
5931 #if IS_ENABLED(CONFIG_INET)
5932         case AF_INET:
5933                 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5934                 break;
5935 #endif
5936 #if IS_ENABLED(CONFIG_IPV6)
5937         case AF_INET6:
5938                 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5939                 break;
5940 #endif
5941         }
5942
5943         if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
5944                 struct net_device *dev;
5945
5946                 /* When tot_len isn't provided by user, check skb
5947                  * against MTU of FIB lookup resulting net_device
5948                  */
5949                 dev = dev_get_by_index_rcu(net, params->ifindex);
5950                 if (!is_skb_forwardable(dev, skb))
5951                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5952
5953                 params->mtu_result = dev->mtu; /* union with tot_len */
5954         }
5955
5956         return rc;
5957 }
5958
5959 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5960         .func           = bpf_skb_fib_lookup,
5961         .gpl_only       = true,
5962         .ret_type       = RET_INTEGER,
5963         .arg1_type      = ARG_PTR_TO_CTX,
5964         .arg2_type      = ARG_PTR_TO_MEM,
5965         .arg3_type      = ARG_CONST_SIZE,
5966         .arg4_type      = ARG_ANYTHING,
5967 };
5968
5969 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
5970                                             u32 ifindex)
5971 {
5972         struct net *netns = dev_net(dev_curr);
5973
5974         /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
5975         if (ifindex == 0)
5976                 return dev_curr;
5977
5978         return dev_get_by_index_rcu(netns, ifindex);
5979 }
5980
5981 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
5982            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
5983 {
5984         int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
5985         struct net_device *dev = skb->dev;
5986         int skb_len, dev_len;
5987         int mtu;
5988
5989         if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
5990                 return -EINVAL;
5991
5992         if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
5993                 return -EINVAL;
5994
5995         dev = __dev_via_ifindex(dev, ifindex);
5996         if (unlikely(!dev))
5997                 return -ENODEV;
5998
5999         mtu = READ_ONCE(dev->mtu);
6000
6001         dev_len = mtu + dev->hard_header_len;
6002
6003         /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6004         skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6005
6006         skb_len += len_diff; /* minus result pass check */
6007         if (skb_len <= dev_len) {
6008                 ret = BPF_MTU_CHK_RET_SUCCESS;
6009                 goto out;
6010         }
6011         /* At this point, skb->len exceed MTU, but as it include length of all
6012          * segments, it can still be below MTU.  The SKB can possibly get
6013          * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6014          * must choose if segs are to be MTU checked.
6015          */
6016         if (skb_is_gso(skb)) {
6017                 ret = BPF_MTU_CHK_RET_SUCCESS;
6018
6019                 if (flags & BPF_MTU_CHK_SEGS &&
6020                     !skb_gso_validate_network_len(skb, mtu))
6021                         ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6022         }
6023 out:
6024         /* BPF verifier guarantees valid pointer */
6025         *mtu_len = mtu;
6026
6027         return ret;
6028 }
6029
6030 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6031            u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6032 {
6033         struct net_device *dev = xdp->rxq->dev;
6034         int xdp_len = xdp->data_end - xdp->data;
6035         int ret = BPF_MTU_CHK_RET_SUCCESS;
6036         int mtu, dev_len;
6037
6038         /* XDP variant doesn't support multi-buffer segment check (yet) */
6039         if (unlikely(flags))
6040                 return -EINVAL;
6041
6042         dev = __dev_via_ifindex(dev, ifindex);
6043         if (unlikely(!dev))
6044                 return -ENODEV;
6045
6046         mtu = READ_ONCE(dev->mtu);
6047
6048         /* Add L2-header as dev MTU is L3 size */
6049         dev_len = mtu + dev->hard_header_len;
6050
6051         /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6052         if (*mtu_len)
6053                 xdp_len = *mtu_len + dev->hard_header_len;
6054
6055         xdp_len += len_diff; /* minus result pass check */
6056         if (xdp_len > dev_len)
6057                 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6058
6059         /* BPF verifier guarantees valid pointer */
6060         *mtu_len = mtu;
6061
6062         return ret;
6063 }
6064
6065 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6066         .func           = bpf_skb_check_mtu,
6067         .gpl_only       = true,
6068         .ret_type       = RET_INTEGER,
6069         .arg1_type      = ARG_PTR_TO_CTX,
6070         .arg2_type      = ARG_ANYTHING,
6071         .arg3_type      = ARG_PTR_TO_INT,
6072         .arg4_type      = ARG_ANYTHING,
6073         .arg5_type      = ARG_ANYTHING,
6074 };
6075
6076 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6077         .func           = bpf_xdp_check_mtu,
6078         .gpl_only       = true,
6079         .ret_type       = RET_INTEGER,
6080         .arg1_type      = ARG_PTR_TO_CTX,
6081         .arg2_type      = ARG_ANYTHING,
6082         .arg3_type      = ARG_PTR_TO_INT,
6083         .arg4_type      = ARG_ANYTHING,
6084         .arg5_type      = ARG_ANYTHING,
6085 };
6086
6087 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6088 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6089 {
6090         int err;
6091         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6092
6093         if (!seg6_validate_srh(srh, len, false))
6094                 return -EINVAL;
6095
6096         switch (type) {
6097         case BPF_LWT_ENCAP_SEG6_INLINE:
6098                 if (skb->protocol != htons(ETH_P_IPV6))
6099                         return -EBADMSG;
6100
6101                 err = seg6_do_srh_inline(skb, srh);
6102                 break;
6103         case BPF_LWT_ENCAP_SEG6:
6104                 skb_reset_inner_headers(skb);
6105                 skb->encapsulation = 1;
6106                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6107                 break;
6108         default:
6109                 return -EINVAL;
6110         }
6111
6112         bpf_compute_data_pointers(skb);
6113         if (err)
6114                 return err;
6115
6116         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6117
6118         return seg6_lookup_nexthop(skb, NULL, 0);
6119 }
6120 #endif /* CONFIG_IPV6_SEG6_BPF */
6121
6122 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6123 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6124                              bool ingress)
6125 {
6126         return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6127 }
6128 #endif
6129
6130 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6131            u32, len)
6132 {
6133         switch (type) {
6134 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6135         case BPF_LWT_ENCAP_SEG6:
6136         case BPF_LWT_ENCAP_SEG6_INLINE:
6137                 return bpf_push_seg6_encap(skb, type, hdr, len);
6138 #endif
6139 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6140         case BPF_LWT_ENCAP_IP:
6141                 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6142 #endif
6143         default:
6144                 return -EINVAL;
6145         }
6146 }
6147
6148 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6149            void *, hdr, u32, len)
6150 {
6151         switch (type) {
6152 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6153         case BPF_LWT_ENCAP_IP:
6154                 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6155 #endif
6156         default:
6157                 return -EINVAL;
6158         }
6159 }
6160
6161 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6162         .func           = bpf_lwt_in_push_encap,
6163         .gpl_only       = false,
6164         .ret_type       = RET_INTEGER,
6165         .arg1_type      = ARG_PTR_TO_CTX,
6166         .arg2_type      = ARG_ANYTHING,
6167         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6168         .arg4_type      = ARG_CONST_SIZE
6169 };
6170
6171 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6172         .func           = bpf_lwt_xmit_push_encap,
6173         .gpl_only       = false,
6174         .ret_type       = RET_INTEGER,
6175         .arg1_type      = ARG_PTR_TO_CTX,
6176         .arg2_type      = ARG_ANYTHING,
6177         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6178         .arg4_type      = ARG_CONST_SIZE
6179 };
6180
6181 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6182 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6183            const void *, from, u32, len)
6184 {
6185         struct seg6_bpf_srh_state *srh_state =
6186                 this_cpu_ptr(&seg6_bpf_srh_states);
6187         struct ipv6_sr_hdr *srh = srh_state->srh;
6188         void *srh_tlvs, *srh_end, *ptr;
6189         int srhoff = 0;
6190
6191         if (srh == NULL)
6192                 return -EINVAL;
6193
6194         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6195         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6196
6197         ptr = skb->data + offset;
6198         if (ptr >= srh_tlvs && ptr + len <= srh_end)
6199                 srh_state->valid = false;
6200         else if (ptr < (void *)&srh->flags ||
6201                  ptr + len > (void *)&srh->segments)
6202                 return -EFAULT;
6203
6204         if (unlikely(bpf_try_make_writable(skb, offset + len)))
6205                 return -EFAULT;
6206         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6207                 return -EINVAL;
6208         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6209
6210         memcpy(skb->data + offset, from, len);
6211         return 0;
6212 }
6213
6214 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6215         .func           = bpf_lwt_seg6_store_bytes,
6216         .gpl_only       = false,
6217         .ret_type       = RET_INTEGER,
6218         .arg1_type      = ARG_PTR_TO_CTX,
6219         .arg2_type      = ARG_ANYTHING,
6220         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6221         .arg4_type      = ARG_CONST_SIZE
6222 };
6223
6224 static void bpf_update_srh_state(struct sk_buff *skb)
6225 {
6226         struct seg6_bpf_srh_state *srh_state =
6227                 this_cpu_ptr(&seg6_bpf_srh_states);
6228         int srhoff = 0;
6229
6230         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6231                 srh_state->srh = NULL;
6232         } else {
6233                 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6234                 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6235                 srh_state->valid = true;
6236         }
6237 }
6238
6239 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6240            u32, action, void *, param, u32, param_len)
6241 {
6242         struct seg6_bpf_srh_state *srh_state =
6243                 this_cpu_ptr(&seg6_bpf_srh_states);
6244         int hdroff = 0;
6245         int err;
6246
6247         switch (action) {
6248         case SEG6_LOCAL_ACTION_END_X:
6249                 if (!seg6_bpf_has_valid_srh(skb))
6250                         return -EBADMSG;
6251                 if (param_len != sizeof(struct in6_addr))
6252                         return -EINVAL;
6253                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6254         case SEG6_LOCAL_ACTION_END_T:
6255                 if (!seg6_bpf_has_valid_srh(skb))
6256                         return -EBADMSG;
6257                 if (param_len != sizeof(int))
6258                         return -EINVAL;
6259                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6260         case SEG6_LOCAL_ACTION_END_DT6:
6261                 if (!seg6_bpf_has_valid_srh(skb))
6262                         return -EBADMSG;
6263                 if (param_len != sizeof(int))
6264                         return -EINVAL;
6265
6266                 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6267                         return -EBADMSG;
6268                 if (!pskb_pull(skb, hdroff))
6269                         return -EBADMSG;
6270
6271                 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6272                 skb_reset_network_header(skb);
6273                 skb_reset_transport_header(skb);
6274                 skb->encapsulation = 0;
6275
6276                 bpf_compute_data_pointers(skb);
6277                 bpf_update_srh_state(skb);
6278                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6279         case SEG6_LOCAL_ACTION_END_B6:
6280                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6281                         return -EBADMSG;
6282                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6283                                           param, param_len);
6284                 if (!err)
6285                         bpf_update_srh_state(skb);
6286
6287                 return err;
6288         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6289                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6290                         return -EBADMSG;
6291                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6292                                           param, param_len);
6293                 if (!err)
6294                         bpf_update_srh_state(skb);
6295
6296                 return err;
6297         default:
6298                 return -EINVAL;
6299         }
6300 }
6301
6302 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6303         .func           = bpf_lwt_seg6_action,
6304         .gpl_only       = false,
6305         .ret_type       = RET_INTEGER,
6306         .arg1_type      = ARG_PTR_TO_CTX,
6307         .arg2_type      = ARG_ANYTHING,
6308         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6309         .arg4_type      = ARG_CONST_SIZE
6310 };
6311
6312 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6313            s32, len)
6314 {
6315         struct seg6_bpf_srh_state *srh_state =
6316                 this_cpu_ptr(&seg6_bpf_srh_states);
6317         struct ipv6_sr_hdr *srh = srh_state->srh;
6318         void *srh_end, *srh_tlvs, *ptr;
6319         struct ipv6hdr *hdr;
6320         int srhoff = 0;
6321         int ret;
6322
6323         if (unlikely(srh == NULL))
6324                 return -EINVAL;
6325
6326         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6327                         ((srh->first_segment + 1) << 4));
6328         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6329                         srh_state->hdrlen);
6330         ptr = skb->data + offset;
6331
6332         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6333                 return -EFAULT;
6334         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6335                 return -EFAULT;
6336
6337         if (len > 0) {
6338                 ret = skb_cow_head(skb, len);
6339                 if (unlikely(ret < 0))
6340                         return ret;
6341
6342                 ret = bpf_skb_net_hdr_push(skb, offset, len);
6343         } else {
6344                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6345         }
6346
6347         bpf_compute_data_pointers(skb);
6348         if (unlikely(ret < 0))
6349                 return ret;
6350
6351         hdr = (struct ipv6hdr *)skb->data;
6352         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6353
6354         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6355                 return -EINVAL;
6356         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6357         srh_state->hdrlen += len;
6358         srh_state->valid = false;
6359         return 0;
6360 }
6361
6362 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6363         .func           = bpf_lwt_seg6_adjust_srh,
6364         .gpl_only       = false,
6365         .ret_type       = RET_INTEGER,
6366         .arg1_type      = ARG_PTR_TO_CTX,
6367         .arg2_type      = ARG_ANYTHING,
6368         .arg3_type      = ARG_ANYTHING,
6369 };
6370 #endif /* CONFIG_IPV6_SEG6_BPF */
6371
6372 #ifdef CONFIG_INET
6373 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6374                               int dif, int sdif, u8 family, u8 proto)
6375 {
6376         struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6377         bool refcounted = false;
6378         struct sock *sk = NULL;
6379
6380         if (family == AF_INET) {
6381                 __be32 src4 = tuple->ipv4.saddr;
6382                 __be32 dst4 = tuple->ipv4.daddr;
6383
6384                 if (proto == IPPROTO_TCP)
6385                         sk = __inet_lookup(net, hinfo, NULL, 0,
6386                                            src4, tuple->ipv4.sport,
6387                                            dst4, tuple->ipv4.dport,
6388                                            dif, sdif, &refcounted);
6389                 else
6390                         sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6391                                                dst4, tuple->ipv4.dport,
6392                                                dif, sdif, &udp_table, NULL);
6393 #if IS_ENABLED(CONFIG_IPV6)
6394         } else {
6395                 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6396                 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6397
6398                 if (proto == IPPROTO_TCP)
6399                         sk = __inet6_lookup(net, hinfo, NULL, 0,
6400                                             src6, tuple->ipv6.sport,
6401                                             dst6, ntohs(tuple->ipv6.dport),
6402                                             dif, sdif, &refcounted);
6403                 else if (likely(ipv6_bpf_stub))
6404                         sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6405                                                             src6, tuple->ipv6.sport,
6406                                                             dst6, tuple->ipv6.dport,
6407                                                             dif, sdif,
6408                                                             &udp_table, NULL);
6409 #endif
6410         }
6411
6412         if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6413                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6414                 sk = NULL;
6415         }
6416         return sk;
6417 }
6418
6419 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6420  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6421  */
6422 static struct sock *
6423 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6424                  struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6425                  u64 flags)
6426 {
6427         struct sock *sk = NULL;
6428         struct net *net;
6429         u8 family;
6430         int sdif;
6431
6432         if (len == sizeof(tuple->ipv4))
6433                 family = AF_INET;
6434         else if (len == sizeof(tuple->ipv6))
6435                 family = AF_INET6;
6436         else
6437                 return NULL;
6438
6439         if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6440                 goto out;
6441
6442         if (family == AF_INET)
6443                 sdif = inet_sdif(skb);
6444         else
6445                 sdif = inet6_sdif(skb);
6446
6447         if ((s32)netns_id < 0) {
6448                 net = caller_net;
6449                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6450         } else {
6451                 net = get_net_ns_by_id(caller_net, netns_id);
6452                 if (unlikely(!net))
6453                         goto out;
6454                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6455                 put_net(net);
6456         }
6457
6458 out:
6459         return sk;
6460 }
6461
6462 static struct sock *
6463 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6464                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6465                 u64 flags)
6466 {
6467         struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6468                                            ifindex, proto, netns_id, flags);
6469
6470         if (sk) {
6471                 struct sock *sk2 = sk_to_full_sk(sk);
6472
6473                 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6474                  * sock refcnt is decremented to prevent a request_sock leak.
6475                  */
6476                 if (!sk_fullsock(sk2))
6477                         sk2 = NULL;
6478                 if (sk2 != sk) {
6479                         sock_gen_put(sk);
6480                         /* Ensure there is no need to bump sk2 refcnt */
6481                         if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6482                                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6483                                 return NULL;
6484                         }
6485                         sk = sk2;
6486                 }
6487         }
6488
6489         return sk;
6490 }
6491
6492 static struct sock *
6493 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6494                u8 proto, u64 netns_id, u64 flags)
6495 {
6496         struct net *caller_net;
6497         int ifindex;
6498
6499         if (skb->dev) {
6500                 caller_net = dev_net(skb->dev);
6501                 ifindex = skb->dev->ifindex;
6502         } else {
6503                 caller_net = sock_net(skb->sk);
6504                 ifindex = 0;
6505         }
6506
6507         return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6508                                 netns_id, flags);
6509 }
6510
6511 static struct sock *
6512 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6513               u8 proto, u64 netns_id, u64 flags)
6514 {
6515         struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6516                                          flags);
6517
6518         if (sk) {
6519                 struct sock *sk2 = sk_to_full_sk(sk);
6520
6521                 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6522                  * sock refcnt is decremented to prevent a request_sock leak.
6523                  */
6524                 if (!sk_fullsock(sk2))
6525                         sk2 = NULL;
6526                 if (sk2 != sk) {
6527                         sock_gen_put(sk);
6528                         /* Ensure there is no need to bump sk2 refcnt */
6529                         if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6530                                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6531                                 return NULL;
6532                         }
6533                         sk = sk2;
6534                 }
6535         }
6536
6537         return sk;
6538 }
6539
6540 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6541            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6542 {
6543         return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6544                                              netns_id, flags);
6545 }
6546
6547 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6548         .func           = bpf_skc_lookup_tcp,
6549         .gpl_only       = false,
6550         .pkt_access     = true,
6551         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6552         .arg1_type      = ARG_PTR_TO_CTX,
6553         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6554         .arg3_type      = ARG_CONST_SIZE,
6555         .arg4_type      = ARG_ANYTHING,
6556         .arg5_type      = ARG_ANYTHING,
6557 };
6558
6559 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6560            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6561 {
6562         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6563                                             netns_id, flags);
6564 }
6565
6566 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6567         .func           = bpf_sk_lookup_tcp,
6568         .gpl_only       = false,
6569         .pkt_access     = true,
6570         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6571         .arg1_type      = ARG_PTR_TO_CTX,
6572         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6573         .arg3_type      = ARG_CONST_SIZE,
6574         .arg4_type      = ARG_ANYTHING,
6575         .arg5_type      = ARG_ANYTHING,
6576 };
6577
6578 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6579            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6580 {
6581         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6582                                             netns_id, flags);
6583 }
6584
6585 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6586         .func           = bpf_sk_lookup_udp,
6587         .gpl_only       = false,
6588         .pkt_access     = true,
6589         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6590         .arg1_type      = ARG_PTR_TO_CTX,
6591         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6592         .arg3_type      = ARG_CONST_SIZE,
6593         .arg4_type      = ARG_ANYTHING,
6594         .arg5_type      = ARG_ANYTHING,
6595 };
6596
6597 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6598 {
6599         if (sk && sk_is_refcounted(sk))
6600                 sock_gen_put(sk);
6601         return 0;
6602 }
6603
6604 static const struct bpf_func_proto bpf_sk_release_proto = {
6605         .func           = bpf_sk_release,
6606         .gpl_only       = false,
6607         .ret_type       = RET_INTEGER,
6608         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6609 };
6610
6611 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6612            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6613 {
6614         struct net *caller_net = dev_net(ctx->rxq->dev);
6615         int ifindex = ctx->rxq->dev->ifindex;
6616
6617         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6618                                               ifindex, IPPROTO_UDP, netns_id,
6619                                               flags);
6620 }
6621
6622 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6623         .func           = bpf_xdp_sk_lookup_udp,
6624         .gpl_only       = false,
6625         .pkt_access     = true,
6626         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6627         .arg1_type      = ARG_PTR_TO_CTX,
6628         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6629         .arg3_type      = ARG_CONST_SIZE,
6630         .arg4_type      = ARG_ANYTHING,
6631         .arg5_type      = ARG_ANYTHING,
6632 };
6633
6634 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6635            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6636 {
6637         struct net *caller_net = dev_net(ctx->rxq->dev);
6638         int ifindex = ctx->rxq->dev->ifindex;
6639
6640         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6641                                                ifindex, IPPROTO_TCP, netns_id,
6642                                                flags);
6643 }
6644
6645 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6646         .func           = bpf_xdp_skc_lookup_tcp,
6647         .gpl_only       = false,
6648         .pkt_access     = true,
6649         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6650         .arg1_type      = ARG_PTR_TO_CTX,
6651         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6652         .arg3_type      = ARG_CONST_SIZE,
6653         .arg4_type      = ARG_ANYTHING,
6654         .arg5_type      = ARG_ANYTHING,
6655 };
6656
6657 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6658            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6659 {
6660         struct net *caller_net = dev_net(ctx->rxq->dev);
6661         int ifindex = ctx->rxq->dev->ifindex;
6662
6663         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6664                                               ifindex, IPPROTO_TCP, netns_id,
6665                                               flags);
6666 }
6667
6668 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6669         .func           = bpf_xdp_sk_lookup_tcp,
6670         .gpl_only       = false,
6671         .pkt_access     = true,
6672         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6673         .arg1_type      = ARG_PTR_TO_CTX,
6674         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6675         .arg3_type      = ARG_CONST_SIZE,
6676         .arg4_type      = ARG_ANYTHING,
6677         .arg5_type      = ARG_ANYTHING,
6678 };
6679
6680 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6681            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6682 {
6683         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6684                                                sock_net(ctx->sk), 0,
6685                                                IPPROTO_TCP, netns_id, flags);
6686 }
6687
6688 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6689         .func           = bpf_sock_addr_skc_lookup_tcp,
6690         .gpl_only       = false,
6691         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6692         .arg1_type      = ARG_PTR_TO_CTX,
6693         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6694         .arg3_type      = ARG_CONST_SIZE,
6695         .arg4_type      = ARG_ANYTHING,
6696         .arg5_type      = ARG_ANYTHING,
6697 };
6698
6699 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6700            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6701 {
6702         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6703                                               sock_net(ctx->sk), 0, IPPROTO_TCP,
6704                                               netns_id, flags);
6705 }
6706
6707 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6708         .func           = bpf_sock_addr_sk_lookup_tcp,
6709         .gpl_only       = false,
6710         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6711         .arg1_type      = ARG_PTR_TO_CTX,
6712         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6713         .arg3_type      = ARG_CONST_SIZE,
6714         .arg4_type      = ARG_ANYTHING,
6715         .arg5_type      = ARG_ANYTHING,
6716 };
6717
6718 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6719            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6720 {
6721         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6722                                               sock_net(ctx->sk), 0, IPPROTO_UDP,
6723                                               netns_id, flags);
6724 }
6725
6726 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6727         .func           = bpf_sock_addr_sk_lookup_udp,
6728         .gpl_only       = false,
6729         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6730         .arg1_type      = ARG_PTR_TO_CTX,
6731         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6732         .arg3_type      = ARG_CONST_SIZE,
6733         .arg4_type      = ARG_ANYTHING,
6734         .arg5_type      = ARG_ANYTHING,
6735 };
6736
6737 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6738                                   struct bpf_insn_access_aux *info)
6739 {
6740         if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6741                                           icsk_retransmits))
6742                 return false;
6743
6744         if (off % size != 0)
6745                 return false;
6746
6747         switch (off) {
6748         case offsetof(struct bpf_tcp_sock, bytes_received):
6749         case offsetof(struct bpf_tcp_sock, bytes_acked):
6750                 return size == sizeof(__u64);
6751         default:
6752                 return size == sizeof(__u32);
6753         }
6754 }
6755
6756 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6757                                     const struct bpf_insn *si,
6758                                     struct bpf_insn *insn_buf,
6759                                     struct bpf_prog *prog, u32 *target_size)
6760 {
6761         struct bpf_insn *insn = insn_buf;
6762
6763 #define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
6764         do {                                                            \
6765                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >     \
6766                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6767                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6768                                       si->dst_reg, si->src_reg,         \
6769                                       offsetof(struct tcp_sock, FIELD)); \
6770         } while (0)
6771
6772 #define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
6773         do {                                                            \
6774                 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,  \
6775                                           FIELD) >                      \
6776                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6777                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
6778                                         struct inet_connection_sock,    \
6779                                         FIELD),                         \
6780                                       si->dst_reg, si->src_reg,         \
6781                                       offsetof(                         \
6782                                         struct inet_connection_sock,    \
6783                                         FIELD));                        \
6784         } while (0)
6785
6786         if (insn > insn_buf)
6787                 return insn - insn_buf;
6788
6789         switch (si->off) {
6790         case offsetof(struct bpf_tcp_sock, rtt_min):
6791                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6792                              sizeof(struct minmax));
6793                 BUILD_BUG_ON(sizeof(struct minmax) <
6794                              sizeof(struct minmax_sample));
6795
6796                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6797                                       offsetof(struct tcp_sock, rtt_min) +
6798                                       offsetof(struct minmax_sample, v));
6799                 break;
6800         case offsetof(struct bpf_tcp_sock, snd_cwnd):
6801                 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6802                 break;
6803         case offsetof(struct bpf_tcp_sock, srtt_us):
6804                 BPF_TCP_SOCK_GET_COMMON(srtt_us);
6805                 break;
6806         case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6807                 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6808                 break;
6809         case offsetof(struct bpf_tcp_sock, rcv_nxt):
6810                 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6811                 break;
6812         case offsetof(struct bpf_tcp_sock, snd_nxt):
6813                 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6814                 break;
6815         case offsetof(struct bpf_tcp_sock, snd_una):
6816                 BPF_TCP_SOCK_GET_COMMON(snd_una);
6817                 break;
6818         case offsetof(struct bpf_tcp_sock, mss_cache):
6819                 BPF_TCP_SOCK_GET_COMMON(mss_cache);
6820                 break;
6821         case offsetof(struct bpf_tcp_sock, ecn_flags):
6822                 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6823                 break;
6824         case offsetof(struct bpf_tcp_sock, rate_delivered):
6825                 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6826                 break;
6827         case offsetof(struct bpf_tcp_sock, rate_interval_us):
6828                 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6829                 break;
6830         case offsetof(struct bpf_tcp_sock, packets_out):
6831                 BPF_TCP_SOCK_GET_COMMON(packets_out);
6832                 break;
6833         case offsetof(struct bpf_tcp_sock, retrans_out):
6834                 BPF_TCP_SOCK_GET_COMMON(retrans_out);
6835                 break;
6836         case offsetof(struct bpf_tcp_sock, total_retrans):
6837                 BPF_TCP_SOCK_GET_COMMON(total_retrans);
6838                 break;
6839         case offsetof(struct bpf_tcp_sock, segs_in):
6840                 BPF_TCP_SOCK_GET_COMMON(segs_in);
6841                 break;
6842         case offsetof(struct bpf_tcp_sock, data_segs_in):
6843                 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6844                 break;
6845         case offsetof(struct bpf_tcp_sock, segs_out):
6846                 BPF_TCP_SOCK_GET_COMMON(segs_out);
6847                 break;
6848         case offsetof(struct bpf_tcp_sock, data_segs_out):
6849                 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6850                 break;
6851         case offsetof(struct bpf_tcp_sock, lost_out):
6852                 BPF_TCP_SOCK_GET_COMMON(lost_out);
6853                 break;
6854         case offsetof(struct bpf_tcp_sock, sacked_out):
6855                 BPF_TCP_SOCK_GET_COMMON(sacked_out);
6856                 break;
6857         case offsetof(struct bpf_tcp_sock, bytes_received):
6858                 BPF_TCP_SOCK_GET_COMMON(bytes_received);
6859                 break;
6860         case offsetof(struct bpf_tcp_sock, bytes_acked):
6861                 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6862                 break;
6863         case offsetof(struct bpf_tcp_sock, dsack_dups):
6864                 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6865                 break;
6866         case offsetof(struct bpf_tcp_sock, delivered):
6867                 BPF_TCP_SOCK_GET_COMMON(delivered);
6868                 break;
6869         case offsetof(struct bpf_tcp_sock, delivered_ce):
6870                 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6871                 break;
6872         case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6873                 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6874                 break;
6875         }
6876
6877         return insn - insn_buf;
6878 }
6879
6880 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6881 {
6882         if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6883                 return (unsigned long)sk;
6884
6885         return (unsigned long)NULL;
6886 }
6887
6888 const struct bpf_func_proto bpf_tcp_sock_proto = {
6889         .func           = bpf_tcp_sock,
6890         .gpl_only       = false,
6891         .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
6892         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6893 };
6894
6895 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6896 {
6897         sk = sk_to_full_sk(sk);
6898
6899         if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6900                 return (unsigned long)sk;
6901
6902         return (unsigned long)NULL;
6903 }
6904
6905 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6906         .func           = bpf_get_listener_sock,
6907         .gpl_only       = false,
6908         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6909         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6910 };
6911
6912 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6913 {
6914         unsigned int iphdr_len;
6915
6916         switch (skb_protocol(skb, true)) {
6917         case cpu_to_be16(ETH_P_IP):
6918                 iphdr_len = sizeof(struct iphdr);
6919                 break;
6920         case cpu_to_be16(ETH_P_IPV6):
6921                 iphdr_len = sizeof(struct ipv6hdr);
6922                 break;
6923         default:
6924                 return 0;
6925         }
6926
6927         if (skb_headlen(skb) < iphdr_len)
6928                 return 0;
6929
6930         if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6931                 return 0;
6932
6933         return INET_ECN_set_ce(skb);
6934 }
6935
6936 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6937                                   struct bpf_insn_access_aux *info)
6938 {
6939         if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6940                 return false;
6941
6942         if (off % size != 0)
6943                 return false;
6944
6945         switch (off) {
6946         default:
6947                 return size == sizeof(__u32);
6948         }
6949 }
6950
6951 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6952                                     const struct bpf_insn *si,
6953                                     struct bpf_insn *insn_buf,
6954                                     struct bpf_prog *prog, u32 *target_size)
6955 {
6956         struct bpf_insn *insn = insn_buf;
6957
6958 #define BPF_XDP_SOCK_GET(FIELD)                                         \
6959         do {                                                            \
6960                 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >     \
6961                              sizeof_field(struct bpf_xdp_sock, FIELD)); \
6962                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6963                                       si->dst_reg, si->src_reg,         \
6964                                       offsetof(struct xdp_sock, FIELD)); \
6965         } while (0)
6966
6967         switch (si->off) {
6968         case offsetof(struct bpf_xdp_sock, queue_id):
6969                 BPF_XDP_SOCK_GET(queue_id);
6970                 break;
6971         }
6972
6973         return insn - insn_buf;
6974 }
6975
6976 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
6977         .func           = bpf_skb_ecn_set_ce,
6978         .gpl_only       = false,
6979         .ret_type       = RET_INTEGER,
6980         .arg1_type      = ARG_PTR_TO_CTX,
6981 };
6982
6983 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6984            struct tcphdr *, th, u32, th_len)
6985 {
6986 #ifdef CONFIG_SYN_COOKIES
6987         u32 cookie;
6988         int ret;
6989
6990         if (unlikely(!sk || th_len < sizeof(*th)))
6991                 return -EINVAL;
6992
6993         /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
6994         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6995                 return -EINVAL;
6996
6997         if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
6998                 return -EINVAL;
6999
7000         if (!th->ack || th->rst || th->syn)
7001                 return -ENOENT;
7002
7003         if (unlikely(iph_len < sizeof(struct iphdr)))
7004                 return -EINVAL;
7005
7006         if (tcp_synq_no_recent_overflow(sk))
7007                 return -ENOENT;
7008
7009         cookie = ntohl(th->ack_seq) - 1;
7010
7011         /* Both struct iphdr and struct ipv6hdr have the version field at the
7012          * same offset so we can cast to the shorter header (struct iphdr).
7013          */
7014         switch (((struct iphdr *)iph)->version) {
7015         case 4:
7016                 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7017                         return -EINVAL;
7018
7019                 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7020                 break;
7021
7022 #if IS_BUILTIN(CONFIG_IPV6)
7023         case 6:
7024                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7025                         return -EINVAL;
7026
7027                 if (sk->sk_family != AF_INET6)
7028                         return -EINVAL;
7029
7030                 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7031                 break;
7032 #endif /* CONFIG_IPV6 */
7033
7034         default:
7035                 return -EPROTONOSUPPORT;
7036         }
7037
7038         if (ret > 0)
7039                 return 0;
7040
7041         return -ENOENT;
7042 #else
7043         return -ENOTSUPP;
7044 #endif
7045 }
7046
7047 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7048         .func           = bpf_tcp_check_syncookie,
7049         .gpl_only       = true,
7050         .pkt_access     = true,
7051         .ret_type       = RET_INTEGER,
7052         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7053         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7054         .arg3_type      = ARG_CONST_SIZE,
7055         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7056         .arg5_type      = ARG_CONST_SIZE,
7057 };
7058
7059 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7060            struct tcphdr *, th, u32, th_len)
7061 {
7062 #ifdef CONFIG_SYN_COOKIES
7063         u32 cookie;
7064         u16 mss;
7065
7066         if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7067                 return -EINVAL;
7068
7069         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7070                 return -EINVAL;
7071
7072         if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7073                 return -ENOENT;
7074
7075         if (!th->syn || th->ack || th->fin || th->rst)
7076                 return -EINVAL;
7077
7078         if (unlikely(iph_len < sizeof(struct iphdr)))
7079                 return -EINVAL;
7080
7081         /* Both struct iphdr and struct ipv6hdr have the version field at the
7082          * same offset so we can cast to the shorter header (struct iphdr).
7083          */
7084         switch (((struct iphdr *)iph)->version) {
7085         case 4:
7086                 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7087                         return -EINVAL;
7088
7089                 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7090                 break;
7091
7092 #if IS_BUILTIN(CONFIG_IPV6)
7093         case 6:
7094                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7095                         return -EINVAL;
7096
7097                 if (sk->sk_family != AF_INET6)
7098                         return -EINVAL;
7099
7100                 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7101                 break;
7102 #endif /* CONFIG_IPV6 */
7103
7104         default:
7105                 return -EPROTONOSUPPORT;
7106         }
7107         if (mss == 0)
7108                 return -ENOENT;
7109
7110         return cookie | ((u64)mss << 32);
7111 #else
7112         return -EOPNOTSUPP;
7113 #endif /* CONFIG_SYN_COOKIES */
7114 }
7115
7116 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7117         .func           = bpf_tcp_gen_syncookie,
7118         .gpl_only       = true, /* __cookie_v*_init_sequence() is GPL */
7119         .pkt_access     = true,
7120         .ret_type       = RET_INTEGER,
7121         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7122         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7123         .arg3_type      = ARG_CONST_SIZE,
7124         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7125         .arg5_type      = ARG_CONST_SIZE,
7126 };
7127
7128 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7129 {
7130         if (!sk || flags != 0)
7131                 return -EINVAL;
7132         if (!skb_at_tc_ingress(skb))
7133                 return -EOPNOTSUPP;
7134         if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7135                 return -ENETUNREACH;
7136         if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
7137                 return -ESOCKTNOSUPPORT;
7138         if (sk_is_refcounted(sk) &&
7139             unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7140                 return -ENOENT;
7141
7142         skb_orphan(skb);
7143         skb->sk = sk;
7144         skb->destructor = sock_pfree;
7145
7146         return 0;
7147 }
7148
7149 static const struct bpf_func_proto bpf_sk_assign_proto = {
7150         .func           = bpf_sk_assign,
7151         .gpl_only       = false,
7152         .ret_type       = RET_INTEGER,
7153         .arg1_type      = ARG_PTR_TO_CTX,
7154         .arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7155         .arg3_type      = ARG_ANYTHING,
7156 };
7157
7158 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7159                                     u8 search_kind, const u8 *magic,
7160                                     u8 magic_len, bool *eol)
7161 {
7162         u8 kind, kind_len;
7163
7164         *eol = false;
7165
7166         while (op < opend) {
7167                 kind = op[0];
7168
7169                 if (kind == TCPOPT_EOL) {
7170                         *eol = true;
7171                         return ERR_PTR(-ENOMSG);
7172                 } else if (kind == TCPOPT_NOP) {
7173                         op++;
7174                         continue;
7175                 }
7176
7177                 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7178                         /* Something is wrong in the received header.
7179                          * Follow the TCP stack's tcp_parse_options()
7180                          * and just bail here.
7181                          */
7182                         return ERR_PTR(-EFAULT);
7183
7184                 kind_len = op[1];
7185                 if (search_kind == kind) {
7186                         if (!magic_len)
7187                                 return op;
7188
7189                         if (magic_len > kind_len - 2)
7190                                 return ERR_PTR(-ENOMSG);
7191
7192                         if (!memcmp(&op[2], magic, magic_len))
7193                                 return op;
7194                 }
7195
7196                 op += kind_len;
7197         }
7198
7199         return ERR_PTR(-ENOMSG);
7200 }
7201
7202 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7203            void *, search_res, u32, len, u64, flags)
7204 {
7205         bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7206         const u8 *op, *opend, *magic, *search = search_res;
7207         u8 search_kind, search_len, copy_len, magic_len;
7208         int ret;
7209
7210         /* 2 byte is the minimal option len except TCPOPT_NOP and
7211          * TCPOPT_EOL which are useless for the bpf prog to learn
7212          * and this helper disallow loading them also.
7213          */
7214         if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7215                 return -EINVAL;
7216
7217         search_kind = search[0];
7218         search_len = search[1];
7219
7220         if (search_len > len || search_kind == TCPOPT_NOP ||
7221             search_kind == TCPOPT_EOL)
7222                 return -EINVAL;
7223
7224         if (search_kind == TCPOPT_EXP || search_kind == 253) {
7225                 /* 16 or 32 bit magic.  +2 for kind and kind length */
7226                 if (search_len != 4 && search_len != 6)
7227                         return -EINVAL;
7228                 magic = &search[2];
7229                 magic_len = search_len - 2;
7230         } else {
7231                 if (search_len)
7232                         return -EINVAL;
7233                 magic = NULL;
7234                 magic_len = 0;
7235         }
7236
7237         if (load_syn) {
7238                 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7239                 if (ret < 0)
7240                         return ret;
7241
7242                 opend = op + ret;
7243                 op += sizeof(struct tcphdr);
7244         } else {
7245                 if (!bpf_sock->skb ||
7246                     bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7247                         /* This bpf_sock->op cannot call this helper */
7248                         return -EPERM;
7249
7250                 opend = bpf_sock->skb_data_end;
7251                 op = bpf_sock->skb->data + sizeof(struct tcphdr);
7252         }
7253
7254         op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7255                                 &eol);
7256         if (IS_ERR(op))
7257                 return PTR_ERR(op);
7258
7259         copy_len = op[1];
7260         ret = copy_len;
7261         if (copy_len > len) {
7262                 ret = -ENOSPC;
7263                 copy_len = len;
7264         }
7265
7266         memcpy(search_res, op, copy_len);
7267         return ret;
7268 }
7269
7270 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7271         .func           = bpf_sock_ops_load_hdr_opt,
7272         .gpl_only       = false,
7273         .ret_type       = RET_INTEGER,
7274         .arg1_type      = ARG_PTR_TO_CTX,
7275         .arg2_type      = ARG_PTR_TO_MEM,
7276         .arg3_type      = ARG_CONST_SIZE,
7277         .arg4_type      = ARG_ANYTHING,
7278 };
7279
7280 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7281            const void *, from, u32, len, u64, flags)
7282 {
7283         u8 new_kind, new_kind_len, magic_len = 0, *opend;
7284         const u8 *op, *new_op, *magic = NULL;
7285         struct sk_buff *skb;
7286         bool eol;
7287
7288         if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7289                 return -EPERM;
7290
7291         if (len < 2 || flags)
7292                 return -EINVAL;
7293
7294         new_op = from;
7295         new_kind = new_op[0];
7296         new_kind_len = new_op[1];
7297
7298         if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7299             new_kind == TCPOPT_EOL)
7300                 return -EINVAL;
7301
7302         if (new_kind_len > bpf_sock->remaining_opt_len)
7303                 return -ENOSPC;
7304
7305         /* 253 is another experimental kind */
7306         if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7307                 if (new_kind_len < 4)
7308                         return -EINVAL;
7309                 /* Match for the 2 byte magic also.
7310                  * RFC 6994: the magic could be 2 or 4 bytes.
7311                  * Hence, matching by 2 byte only is on the
7312                  * conservative side but it is the right
7313                  * thing to do for the 'search-for-duplication'
7314                  * purpose.
7315                  */
7316                 magic = &new_op[2];
7317                 magic_len = 2;
7318         }
7319
7320         /* Check for duplication */
7321         skb = bpf_sock->skb;
7322         op = skb->data + sizeof(struct tcphdr);
7323         opend = bpf_sock->skb_data_end;
7324
7325         op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7326                                 &eol);
7327         if (!IS_ERR(op))
7328                 return -EEXIST;
7329
7330         if (PTR_ERR(op) != -ENOMSG)
7331                 return PTR_ERR(op);
7332
7333         if (eol)
7334                 /* The option has been ended.  Treat it as no more
7335                  * header option can be written.
7336                  */
7337                 return -ENOSPC;
7338
7339         /* No duplication found.  Store the header option. */
7340         memcpy(opend, from, new_kind_len);
7341
7342         bpf_sock->remaining_opt_len -= new_kind_len;
7343         bpf_sock->skb_data_end += new_kind_len;
7344
7345         return 0;
7346 }
7347
7348 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7349         .func           = bpf_sock_ops_store_hdr_opt,
7350         .gpl_only       = false,
7351         .ret_type       = RET_INTEGER,
7352         .arg1_type      = ARG_PTR_TO_CTX,
7353         .arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
7354         .arg3_type      = ARG_CONST_SIZE,
7355         .arg4_type      = ARG_ANYTHING,
7356 };
7357
7358 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7359            u32, len, u64, flags)
7360 {
7361         if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7362                 return -EPERM;
7363
7364         if (flags || len < 2)
7365                 return -EINVAL;
7366
7367         if (len > bpf_sock->remaining_opt_len)
7368                 return -ENOSPC;
7369
7370         bpf_sock->remaining_opt_len -= len;
7371
7372         return 0;
7373 }
7374
7375 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7376         .func           = bpf_sock_ops_reserve_hdr_opt,
7377         .gpl_only       = false,
7378         .ret_type       = RET_INTEGER,
7379         .arg1_type      = ARG_PTR_TO_CTX,
7380         .arg2_type      = ARG_ANYTHING,
7381         .arg3_type      = ARG_ANYTHING,
7382 };
7383
7384 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7385            u64, tstamp, u32, tstamp_type)
7386 {
7387         /* skb_clear_delivery_time() is done for inet protocol */
7388         if (skb->protocol != htons(ETH_P_IP) &&
7389             skb->protocol != htons(ETH_P_IPV6))
7390                 return -EOPNOTSUPP;
7391
7392         switch (tstamp_type) {
7393         case BPF_SKB_TSTAMP_DELIVERY_MONO:
7394                 if (!tstamp)
7395                         return -EINVAL;
7396                 skb->tstamp = tstamp;
7397                 skb->mono_delivery_time = 1;
7398                 break;
7399         case BPF_SKB_TSTAMP_UNSPEC:
7400                 if (tstamp)
7401                         return -EINVAL;
7402                 skb->tstamp = 0;
7403                 skb->mono_delivery_time = 0;
7404                 break;
7405         default:
7406                 return -EINVAL;
7407         }
7408
7409         return 0;
7410 }
7411
7412 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7413         .func           = bpf_skb_set_tstamp,
7414         .gpl_only       = false,
7415         .ret_type       = RET_INTEGER,
7416         .arg1_type      = ARG_PTR_TO_CTX,
7417         .arg2_type      = ARG_ANYTHING,
7418         .arg3_type      = ARG_ANYTHING,
7419 };
7420
7421 #ifdef CONFIG_SYN_COOKIES
7422 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7423            struct tcphdr *, th, u32, th_len)
7424 {
7425         u32 cookie;
7426         u16 mss;
7427
7428         if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7429                 return -EINVAL;
7430
7431         mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7432         cookie = __cookie_v4_init_sequence(iph, th, &mss);
7433
7434         return cookie | ((u64)mss << 32);
7435 }
7436
7437 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7438         .func           = bpf_tcp_raw_gen_syncookie_ipv4,
7439         .gpl_only       = true, /* __cookie_v4_init_sequence() is GPL */
7440         .pkt_access     = true,
7441         .ret_type       = RET_INTEGER,
7442         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7443         .arg1_size      = sizeof(struct iphdr),
7444         .arg2_type      = ARG_PTR_TO_MEM,
7445         .arg3_type      = ARG_CONST_SIZE,
7446 };
7447
7448 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7449            struct tcphdr *, th, u32, th_len)
7450 {
7451 #if IS_BUILTIN(CONFIG_IPV6)
7452         const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7453                 sizeof(struct ipv6hdr);
7454         u32 cookie;
7455         u16 mss;
7456
7457         if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7458                 return -EINVAL;
7459
7460         mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7461         cookie = __cookie_v6_init_sequence(iph, th, &mss);
7462
7463         return cookie | ((u64)mss << 32);
7464 #else
7465         return -EPROTONOSUPPORT;
7466 #endif
7467 }
7468
7469 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7470         .func           = bpf_tcp_raw_gen_syncookie_ipv6,
7471         .gpl_only       = true, /* __cookie_v6_init_sequence() is GPL */
7472         .pkt_access     = true,
7473         .ret_type       = RET_INTEGER,
7474         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7475         .arg1_size      = sizeof(struct ipv6hdr),
7476         .arg2_type      = ARG_PTR_TO_MEM,
7477         .arg3_type      = ARG_CONST_SIZE,
7478 };
7479
7480 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7481            struct tcphdr *, th)
7482 {
7483         u32 cookie = ntohl(th->ack_seq) - 1;
7484
7485         if (__cookie_v4_check(iph, th, cookie) > 0)
7486                 return 0;
7487
7488         return -EACCES;
7489 }
7490
7491 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7492         .func           = bpf_tcp_raw_check_syncookie_ipv4,
7493         .gpl_only       = true, /* __cookie_v4_check is GPL */
7494         .pkt_access     = true,
7495         .ret_type       = RET_INTEGER,
7496         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7497         .arg1_size      = sizeof(struct iphdr),
7498         .arg2_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7499         .arg2_size      = sizeof(struct tcphdr),
7500 };
7501
7502 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7503            struct tcphdr *, th)
7504 {
7505 #if IS_BUILTIN(CONFIG_IPV6)
7506         u32 cookie = ntohl(th->ack_seq) - 1;
7507
7508         if (__cookie_v6_check(iph, th, cookie) > 0)
7509                 return 0;
7510
7511         return -EACCES;
7512 #else
7513         return -EPROTONOSUPPORT;
7514 #endif
7515 }
7516
7517 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7518         .func           = bpf_tcp_raw_check_syncookie_ipv6,
7519         .gpl_only       = true, /* __cookie_v6_check is GPL */
7520         .pkt_access     = true,
7521         .ret_type       = RET_INTEGER,
7522         .arg1_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7523         .arg1_size      = sizeof(struct ipv6hdr),
7524         .arg2_type      = ARG_PTR_TO_FIXED_SIZE_MEM,
7525         .arg2_size      = sizeof(struct tcphdr),
7526 };
7527 #endif /* CONFIG_SYN_COOKIES */
7528
7529 #endif /* CONFIG_INET */
7530
7531 bool bpf_helper_changes_pkt_data(void *func)
7532 {
7533         if (func == bpf_skb_vlan_push ||
7534             func == bpf_skb_vlan_pop ||
7535             func == bpf_skb_store_bytes ||
7536             func == bpf_skb_change_proto ||
7537             func == bpf_skb_change_head ||
7538             func == sk_skb_change_head ||
7539             func == bpf_skb_change_tail ||
7540             func == sk_skb_change_tail ||
7541             func == bpf_skb_adjust_room ||
7542             func == sk_skb_adjust_room ||
7543             func == bpf_skb_pull_data ||
7544             func == sk_skb_pull_data ||
7545             func == bpf_clone_redirect ||
7546             func == bpf_l3_csum_replace ||
7547             func == bpf_l4_csum_replace ||
7548             func == bpf_xdp_adjust_head ||
7549             func == bpf_xdp_adjust_meta ||
7550             func == bpf_msg_pull_data ||
7551             func == bpf_msg_push_data ||
7552             func == bpf_msg_pop_data ||
7553             func == bpf_xdp_adjust_tail ||
7554 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7555             func == bpf_lwt_seg6_store_bytes ||
7556             func == bpf_lwt_seg6_adjust_srh ||
7557             func == bpf_lwt_seg6_action ||
7558 #endif
7559 #ifdef CONFIG_INET
7560             func == bpf_sock_ops_store_hdr_opt ||
7561 #endif
7562             func == bpf_lwt_in_push_encap ||
7563             func == bpf_lwt_xmit_push_encap)
7564                 return true;
7565
7566         return false;
7567 }
7568
7569 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7570 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7571
7572 static const struct bpf_func_proto *
7573 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7574 {
7575         const struct bpf_func_proto *func_proto;
7576
7577         func_proto = cgroup_common_func_proto(func_id, prog);
7578         if (func_proto)
7579                 return func_proto;
7580
7581         func_proto = cgroup_current_func_proto(func_id, prog);
7582         if (func_proto)
7583                 return func_proto;
7584
7585         switch (func_id) {
7586         case BPF_FUNC_get_socket_cookie:
7587                 return &bpf_get_socket_cookie_sock_proto;
7588         case BPF_FUNC_get_netns_cookie:
7589                 return &bpf_get_netns_cookie_sock_proto;
7590         case BPF_FUNC_perf_event_output:
7591                 return &bpf_event_output_data_proto;
7592         case BPF_FUNC_sk_storage_get:
7593                 return &bpf_sk_storage_get_cg_sock_proto;
7594         case BPF_FUNC_ktime_get_coarse_ns:
7595                 return &bpf_ktime_get_coarse_ns_proto;
7596         default:
7597                 return bpf_base_func_proto(func_id);
7598         }
7599 }
7600
7601 static const struct bpf_func_proto *
7602 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7603 {
7604         const struct bpf_func_proto *func_proto;
7605
7606         func_proto = cgroup_common_func_proto(func_id, prog);
7607         if (func_proto)
7608                 return func_proto;
7609
7610         func_proto = cgroup_current_func_proto(func_id, prog);
7611         if (func_proto)
7612                 return func_proto;
7613
7614         switch (func_id) {
7615         case BPF_FUNC_bind:
7616                 switch (prog->expected_attach_type) {
7617                 case BPF_CGROUP_INET4_CONNECT:
7618                 case BPF_CGROUP_INET6_CONNECT:
7619                         return &bpf_bind_proto;
7620                 default:
7621                         return NULL;
7622                 }
7623         case BPF_FUNC_get_socket_cookie:
7624                 return &bpf_get_socket_cookie_sock_addr_proto;
7625         case BPF_FUNC_get_netns_cookie:
7626                 return &bpf_get_netns_cookie_sock_addr_proto;
7627         case BPF_FUNC_perf_event_output:
7628                 return &bpf_event_output_data_proto;
7629 #ifdef CONFIG_INET
7630         case BPF_FUNC_sk_lookup_tcp:
7631                 return &bpf_sock_addr_sk_lookup_tcp_proto;
7632         case BPF_FUNC_sk_lookup_udp:
7633                 return &bpf_sock_addr_sk_lookup_udp_proto;
7634         case BPF_FUNC_sk_release:
7635                 return &bpf_sk_release_proto;
7636         case BPF_FUNC_skc_lookup_tcp:
7637                 return &bpf_sock_addr_skc_lookup_tcp_proto;
7638 #endif /* CONFIG_INET */
7639         case BPF_FUNC_sk_storage_get:
7640                 return &bpf_sk_storage_get_proto;
7641         case BPF_FUNC_sk_storage_delete:
7642                 return &bpf_sk_storage_delete_proto;
7643         case BPF_FUNC_setsockopt:
7644                 switch (prog->expected_attach_type) {
7645                 case BPF_CGROUP_INET4_BIND:
7646                 case BPF_CGROUP_INET6_BIND:
7647                 case BPF_CGROUP_INET4_CONNECT:
7648                 case BPF_CGROUP_INET6_CONNECT:
7649                 case BPF_CGROUP_UDP4_RECVMSG:
7650                 case BPF_CGROUP_UDP6_RECVMSG:
7651                 case BPF_CGROUP_UDP4_SENDMSG:
7652                 case BPF_CGROUP_UDP6_SENDMSG:
7653                 case BPF_CGROUP_INET4_GETPEERNAME:
7654                 case BPF_CGROUP_INET6_GETPEERNAME:
7655                 case BPF_CGROUP_INET4_GETSOCKNAME:
7656                 case BPF_CGROUP_INET6_GETSOCKNAME:
7657                         return &bpf_sock_addr_setsockopt_proto;
7658                 default:
7659                         return NULL;
7660                 }
7661         case BPF_FUNC_getsockopt:
7662                 switch (prog->expected_attach_type) {
7663                 case BPF_CGROUP_INET4_BIND:
7664                 case BPF_CGROUP_INET6_BIND:
7665                 case BPF_CGROUP_INET4_CONNECT:
7666                 case BPF_CGROUP_INET6_CONNECT:
7667                 case BPF_CGROUP_UDP4_RECVMSG:
7668                 case BPF_CGROUP_UDP6_RECVMSG:
7669                 case BPF_CGROUP_UDP4_SENDMSG:
7670                 case BPF_CGROUP_UDP6_SENDMSG:
7671                 case BPF_CGROUP_INET4_GETPEERNAME:
7672                 case BPF_CGROUP_INET6_GETPEERNAME:
7673                 case BPF_CGROUP_INET4_GETSOCKNAME:
7674                 case BPF_CGROUP_INET6_GETSOCKNAME:
7675                         return &bpf_sock_addr_getsockopt_proto;
7676                 default:
7677                         return NULL;
7678                 }
7679         default:
7680                 return bpf_sk_base_func_proto(func_id);
7681         }
7682 }
7683
7684 static const struct bpf_func_proto *
7685 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7686 {
7687         switch (func_id) {
7688         case BPF_FUNC_skb_load_bytes:
7689                 return &bpf_skb_load_bytes_proto;
7690         case BPF_FUNC_skb_load_bytes_relative:
7691                 return &bpf_skb_load_bytes_relative_proto;
7692         case BPF_FUNC_get_socket_cookie:
7693                 return &bpf_get_socket_cookie_proto;
7694         case BPF_FUNC_get_socket_uid:
7695                 return &bpf_get_socket_uid_proto;
7696         case BPF_FUNC_perf_event_output:
7697                 return &bpf_skb_event_output_proto;
7698         default:
7699                 return bpf_sk_base_func_proto(func_id);
7700         }
7701 }
7702
7703 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7704 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7705
7706 static const struct bpf_func_proto *
7707 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7708 {
7709         const struct bpf_func_proto *func_proto;
7710
7711         func_proto = cgroup_common_func_proto(func_id, prog);
7712         if (func_proto)
7713                 return func_proto;
7714
7715         switch (func_id) {
7716         case BPF_FUNC_sk_fullsock:
7717                 return &bpf_sk_fullsock_proto;
7718         case BPF_FUNC_sk_storage_get:
7719                 return &bpf_sk_storage_get_proto;
7720         case BPF_FUNC_sk_storage_delete:
7721                 return &bpf_sk_storage_delete_proto;
7722         case BPF_FUNC_perf_event_output:
7723                 return &bpf_skb_event_output_proto;
7724 #ifdef CONFIG_SOCK_CGROUP_DATA
7725         case BPF_FUNC_skb_cgroup_id:
7726                 return &bpf_skb_cgroup_id_proto;
7727         case BPF_FUNC_skb_ancestor_cgroup_id:
7728                 return &bpf_skb_ancestor_cgroup_id_proto;
7729         case BPF_FUNC_sk_cgroup_id:
7730                 return &bpf_sk_cgroup_id_proto;
7731         case BPF_FUNC_sk_ancestor_cgroup_id:
7732                 return &bpf_sk_ancestor_cgroup_id_proto;
7733 #endif
7734 #ifdef CONFIG_INET
7735         case BPF_FUNC_sk_lookup_tcp:
7736                 return &bpf_sk_lookup_tcp_proto;
7737         case BPF_FUNC_sk_lookup_udp:
7738                 return &bpf_sk_lookup_udp_proto;
7739         case BPF_FUNC_sk_release:
7740                 return &bpf_sk_release_proto;
7741         case BPF_FUNC_skc_lookup_tcp:
7742                 return &bpf_skc_lookup_tcp_proto;
7743         case BPF_FUNC_tcp_sock:
7744                 return &bpf_tcp_sock_proto;
7745         case BPF_FUNC_get_listener_sock:
7746                 return &bpf_get_listener_sock_proto;
7747         case BPF_FUNC_skb_ecn_set_ce:
7748                 return &bpf_skb_ecn_set_ce_proto;
7749 #endif
7750         default:
7751                 return sk_filter_func_proto(func_id, prog);
7752         }
7753 }
7754
7755 static const struct bpf_func_proto *
7756 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7757 {
7758         switch (func_id) {
7759         case BPF_FUNC_skb_store_bytes:
7760                 return &bpf_skb_store_bytes_proto;
7761         case BPF_FUNC_skb_load_bytes:
7762                 return &bpf_skb_load_bytes_proto;
7763         case BPF_FUNC_skb_load_bytes_relative:
7764                 return &bpf_skb_load_bytes_relative_proto;
7765         case BPF_FUNC_skb_pull_data:
7766                 return &bpf_skb_pull_data_proto;
7767         case BPF_FUNC_csum_diff:
7768                 return &bpf_csum_diff_proto;
7769         case BPF_FUNC_csum_update:
7770                 return &bpf_csum_update_proto;
7771         case BPF_FUNC_csum_level:
7772                 return &bpf_csum_level_proto;
7773         case BPF_FUNC_l3_csum_replace:
7774                 return &bpf_l3_csum_replace_proto;
7775         case BPF_FUNC_l4_csum_replace:
7776                 return &bpf_l4_csum_replace_proto;
7777         case BPF_FUNC_clone_redirect:
7778                 return &bpf_clone_redirect_proto;
7779         case BPF_FUNC_get_cgroup_classid:
7780                 return &bpf_get_cgroup_classid_proto;
7781         case BPF_FUNC_skb_vlan_push:
7782                 return &bpf_skb_vlan_push_proto;
7783         case BPF_FUNC_skb_vlan_pop:
7784                 return &bpf_skb_vlan_pop_proto;
7785         case BPF_FUNC_skb_change_proto:
7786                 return &bpf_skb_change_proto_proto;
7787         case BPF_FUNC_skb_change_type:
7788                 return &bpf_skb_change_type_proto;
7789         case BPF_FUNC_skb_adjust_room:
7790                 return &bpf_skb_adjust_room_proto;
7791         case BPF_FUNC_skb_change_tail:
7792                 return &bpf_skb_change_tail_proto;
7793         case BPF_FUNC_skb_change_head:
7794                 return &bpf_skb_change_head_proto;
7795         case BPF_FUNC_skb_get_tunnel_key:
7796                 return &bpf_skb_get_tunnel_key_proto;
7797         case BPF_FUNC_skb_set_tunnel_key:
7798                 return bpf_get_skb_set_tunnel_proto(func_id);
7799         case BPF_FUNC_skb_get_tunnel_opt:
7800                 return &bpf_skb_get_tunnel_opt_proto;
7801         case BPF_FUNC_skb_set_tunnel_opt:
7802                 return bpf_get_skb_set_tunnel_proto(func_id);
7803         case BPF_FUNC_redirect:
7804                 return &bpf_redirect_proto;
7805         case BPF_FUNC_redirect_neigh:
7806                 return &bpf_redirect_neigh_proto;
7807         case BPF_FUNC_redirect_peer:
7808                 return &bpf_redirect_peer_proto;
7809         case BPF_FUNC_get_route_realm:
7810                 return &bpf_get_route_realm_proto;
7811         case BPF_FUNC_get_hash_recalc:
7812                 return &bpf_get_hash_recalc_proto;
7813         case BPF_FUNC_set_hash_invalid:
7814                 return &bpf_set_hash_invalid_proto;
7815         case BPF_FUNC_set_hash:
7816                 return &bpf_set_hash_proto;
7817         case BPF_FUNC_perf_event_output:
7818                 return &bpf_skb_event_output_proto;
7819         case BPF_FUNC_get_smp_processor_id:
7820                 return &bpf_get_smp_processor_id_proto;
7821         case BPF_FUNC_skb_under_cgroup:
7822                 return &bpf_skb_under_cgroup_proto;
7823         case BPF_FUNC_get_socket_cookie:
7824                 return &bpf_get_socket_cookie_proto;
7825         case BPF_FUNC_get_socket_uid:
7826                 return &bpf_get_socket_uid_proto;
7827         case BPF_FUNC_fib_lookup:
7828                 return &bpf_skb_fib_lookup_proto;
7829         case BPF_FUNC_check_mtu:
7830                 return &bpf_skb_check_mtu_proto;
7831         case BPF_FUNC_sk_fullsock:
7832                 return &bpf_sk_fullsock_proto;
7833         case BPF_FUNC_sk_storage_get:
7834                 return &bpf_sk_storage_get_proto;
7835         case BPF_FUNC_sk_storage_delete:
7836                 return &bpf_sk_storage_delete_proto;
7837 #ifdef CONFIG_XFRM
7838         case BPF_FUNC_skb_get_xfrm_state:
7839                 return &bpf_skb_get_xfrm_state_proto;
7840 #endif
7841 #ifdef CONFIG_CGROUP_NET_CLASSID
7842         case BPF_FUNC_skb_cgroup_classid:
7843                 return &bpf_skb_cgroup_classid_proto;
7844 #endif
7845 #ifdef CONFIG_SOCK_CGROUP_DATA
7846         case BPF_FUNC_skb_cgroup_id:
7847                 return &bpf_skb_cgroup_id_proto;
7848         case BPF_FUNC_skb_ancestor_cgroup_id:
7849                 return &bpf_skb_ancestor_cgroup_id_proto;
7850 #endif
7851 #ifdef CONFIG_INET
7852         case BPF_FUNC_sk_lookup_tcp:
7853                 return &bpf_sk_lookup_tcp_proto;
7854         case BPF_FUNC_sk_lookup_udp:
7855                 return &bpf_sk_lookup_udp_proto;
7856         case BPF_FUNC_sk_release:
7857                 return &bpf_sk_release_proto;
7858         case BPF_FUNC_tcp_sock:
7859                 return &bpf_tcp_sock_proto;
7860         case BPF_FUNC_get_listener_sock:
7861                 return &bpf_get_listener_sock_proto;
7862         case BPF_FUNC_skc_lookup_tcp:
7863                 return &bpf_skc_lookup_tcp_proto;
7864         case BPF_FUNC_tcp_check_syncookie:
7865                 return &bpf_tcp_check_syncookie_proto;
7866         case BPF_FUNC_skb_ecn_set_ce:
7867                 return &bpf_skb_ecn_set_ce_proto;
7868         case BPF_FUNC_tcp_gen_syncookie:
7869                 return &bpf_tcp_gen_syncookie_proto;
7870         case BPF_FUNC_sk_assign:
7871                 return &bpf_sk_assign_proto;
7872         case BPF_FUNC_skb_set_tstamp:
7873                 return &bpf_skb_set_tstamp_proto;
7874 #ifdef CONFIG_SYN_COOKIES
7875         case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
7876                 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
7877         case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
7878                 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
7879         case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
7880                 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
7881         case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
7882                 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
7883 #endif
7884 #endif
7885         default:
7886                 return bpf_sk_base_func_proto(func_id);
7887         }
7888 }
7889
7890 static const struct bpf_func_proto *
7891 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7892 {
7893         switch (func_id) {
7894         case BPF_FUNC_perf_event_output:
7895                 return &bpf_xdp_event_output_proto;
7896         case BPF_FUNC_get_smp_processor_id:
7897                 return &bpf_get_smp_processor_id_proto;
7898         case BPF_FUNC_csum_diff:
7899                 return &bpf_csum_diff_proto;
7900         case BPF_FUNC_xdp_adjust_head:
7901                 return &bpf_xdp_adjust_head_proto;
7902         case BPF_FUNC_xdp_adjust_meta:
7903                 return &bpf_xdp_adjust_meta_proto;
7904         case BPF_FUNC_redirect:
7905                 return &bpf_xdp_redirect_proto;
7906         case BPF_FUNC_redirect_map:
7907                 return &bpf_xdp_redirect_map_proto;
7908         case BPF_FUNC_xdp_adjust_tail:
7909                 return &bpf_xdp_adjust_tail_proto;
7910         case BPF_FUNC_xdp_get_buff_len:
7911                 return &bpf_xdp_get_buff_len_proto;
7912         case BPF_FUNC_xdp_load_bytes:
7913                 return &bpf_xdp_load_bytes_proto;
7914         case BPF_FUNC_xdp_store_bytes:
7915                 return &bpf_xdp_store_bytes_proto;
7916         case BPF_FUNC_fib_lookup:
7917                 return &bpf_xdp_fib_lookup_proto;
7918         case BPF_FUNC_check_mtu:
7919                 return &bpf_xdp_check_mtu_proto;
7920 #ifdef CONFIG_INET
7921         case BPF_FUNC_sk_lookup_udp:
7922                 return &bpf_xdp_sk_lookup_udp_proto;
7923         case BPF_FUNC_sk_lookup_tcp:
7924                 return &bpf_xdp_sk_lookup_tcp_proto;
7925         case BPF_FUNC_sk_release:
7926                 return &bpf_sk_release_proto;
7927         case BPF_FUNC_skc_lookup_tcp:
7928                 return &bpf_xdp_skc_lookup_tcp_proto;
7929         case BPF_FUNC_tcp_check_syncookie:
7930                 return &bpf_tcp_check_syncookie_proto;
7931         case BPF_FUNC_tcp_gen_syncookie:
7932                 return &bpf_tcp_gen_syncookie_proto;
7933 #ifdef CONFIG_SYN_COOKIES
7934         case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
7935                 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
7936         case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
7937                 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
7938         case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
7939                 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
7940         case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
7941                 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
7942 #endif
7943 #endif
7944         default:
7945                 return bpf_sk_base_func_proto(func_id);
7946         }
7947 }
7948
7949 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7950 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7951
7952 static const struct bpf_func_proto *
7953 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7954 {
7955         const struct bpf_func_proto *func_proto;
7956
7957         func_proto = cgroup_common_func_proto(func_id, prog);
7958         if (func_proto)
7959                 return func_proto;
7960
7961         switch (func_id) {
7962         case BPF_FUNC_setsockopt:
7963                 return &bpf_sock_ops_setsockopt_proto;
7964         case BPF_FUNC_getsockopt:
7965                 return &bpf_sock_ops_getsockopt_proto;
7966         case BPF_FUNC_sock_ops_cb_flags_set:
7967                 return &bpf_sock_ops_cb_flags_set_proto;
7968         case BPF_FUNC_sock_map_update:
7969                 return &bpf_sock_map_update_proto;
7970         case BPF_FUNC_sock_hash_update:
7971                 return &bpf_sock_hash_update_proto;
7972         case BPF_FUNC_get_socket_cookie:
7973                 return &bpf_get_socket_cookie_sock_ops_proto;
7974         case BPF_FUNC_perf_event_output:
7975                 return &bpf_event_output_data_proto;
7976         case BPF_FUNC_sk_storage_get:
7977                 return &bpf_sk_storage_get_proto;
7978         case BPF_FUNC_sk_storage_delete:
7979                 return &bpf_sk_storage_delete_proto;
7980         case BPF_FUNC_get_netns_cookie:
7981                 return &bpf_get_netns_cookie_sock_ops_proto;
7982 #ifdef CONFIG_INET
7983         case BPF_FUNC_load_hdr_opt:
7984                 return &bpf_sock_ops_load_hdr_opt_proto;
7985         case BPF_FUNC_store_hdr_opt:
7986                 return &bpf_sock_ops_store_hdr_opt_proto;
7987         case BPF_FUNC_reserve_hdr_opt:
7988                 return &bpf_sock_ops_reserve_hdr_opt_proto;
7989         case BPF_FUNC_tcp_sock:
7990                 return &bpf_tcp_sock_proto;
7991 #endif /* CONFIG_INET */
7992         default:
7993                 return bpf_sk_base_func_proto(func_id);
7994         }
7995 }
7996
7997 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7998 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7999
8000 static const struct bpf_func_proto *
8001 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8002 {
8003         switch (func_id) {
8004         case BPF_FUNC_msg_redirect_map:
8005                 return &bpf_msg_redirect_map_proto;
8006         case BPF_FUNC_msg_redirect_hash:
8007                 return &bpf_msg_redirect_hash_proto;
8008         case BPF_FUNC_msg_apply_bytes:
8009                 return &bpf_msg_apply_bytes_proto;
8010         case BPF_FUNC_msg_cork_bytes:
8011                 return &bpf_msg_cork_bytes_proto;
8012         case BPF_FUNC_msg_pull_data:
8013                 return &bpf_msg_pull_data_proto;
8014         case BPF_FUNC_msg_push_data:
8015                 return &bpf_msg_push_data_proto;
8016         case BPF_FUNC_msg_pop_data:
8017                 return &bpf_msg_pop_data_proto;
8018         case BPF_FUNC_perf_event_output:
8019                 return &bpf_event_output_data_proto;
8020         case BPF_FUNC_get_current_uid_gid:
8021                 return &bpf_get_current_uid_gid_proto;
8022         case BPF_FUNC_get_current_pid_tgid:
8023                 return &bpf_get_current_pid_tgid_proto;
8024         case BPF_FUNC_sk_storage_get:
8025                 return &bpf_sk_storage_get_proto;
8026         case BPF_FUNC_sk_storage_delete:
8027                 return &bpf_sk_storage_delete_proto;
8028         case BPF_FUNC_get_netns_cookie:
8029                 return &bpf_get_netns_cookie_sk_msg_proto;
8030 #ifdef CONFIG_CGROUPS
8031         case BPF_FUNC_get_current_cgroup_id:
8032                 return &bpf_get_current_cgroup_id_proto;
8033         case BPF_FUNC_get_current_ancestor_cgroup_id:
8034                 return &bpf_get_current_ancestor_cgroup_id_proto;
8035 #endif
8036 #ifdef CONFIG_CGROUP_NET_CLASSID
8037         case BPF_FUNC_get_cgroup_classid:
8038                 return &bpf_get_cgroup_classid_curr_proto;
8039 #endif
8040         default:
8041                 return bpf_sk_base_func_proto(func_id);
8042         }
8043 }
8044
8045 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8046 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8047
8048 static const struct bpf_func_proto *
8049 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8050 {
8051         switch (func_id) {
8052         case BPF_FUNC_skb_store_bytes:
8053                 return &bpf_skb_store_bytes_proto;
8054         case BPF_FUNC_skb_load_bytes:
8055                 return &bpf_skb_load_bytes_proto;
8056         case BPF_FUNC_skb_pull_data:
8057                 return &sk_skb_pull_data_proto;
8058         case BPF_FUNC_skb_change_tail:
8059                 return &sk_skb_change_tail_proto;
8060         case BPF_FUNC_skb_change_head:
8061                 return &sk_skb_change_head_proto;
8062         case BPF_FUNC_skb_adjust_room:
8063                 return &sk_skb_adjust_room_proto;
8064         case BPF_FUNC_get_socket_cookie:
8065                 return &bpf_get_socket_cookie_proto;
8066         case BPF_FUNC_get_socket_uid:
8067                 return &bpf_get_socket_uid_proto;
8068         case BPF_FUNC_sk_redirect_map:
8069                 return &bpf_sk_redirect_map_proto;
8070         case BPF_FUNC_sk_redirect_hash:
8071                 return &bpf_sk_redirect_hash_proto;
8072         case BPF_FUNC_perf_event_output:
8073                 return &bpf_skb_event_output_proto;
8074 #ifdef CONFIG_INET
8075         case BPF_FUNC_sk_lookup_tcp:
8076                 return &bpf_sk_lookup_tcp_proto;
8077         case BPF_FUNC_sk_lookup_udp:
8078                 return &bpf_sk_lookup_udp_proto;
8079         case BPF_FUNC_sk_release:
8080                 return &bpf_sk_release_proto;
8081         case BPF_FUNC_skc_lookup_tcp:
8082                 return &bpf_skc_lookup_tcp_proto;
8083 #endif
8084         default:
8085                 return bpf_sk_base_func_proto(func_id);
8086         }
8087 }
8088
8089 static const struct bpf_func_proto *
8090 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8091 {
8092         switch (func_id) {
8093         case BPF_FUNC_skb_load_bytes:
8094                 return &bpf_flow_dissector_load_bytes_proto;
8095         default:
8096                 return bpf_sk_base_func_proto(func_id);
8097         }
8098 }
8099
8100 static const struct bpf_func_proto *
8101 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8102 {
8103         switch (func_id) {
8104         case BPF_FUNC_skb_load_bytes:
8105                 return &bpf_skb_load_bytes_proto;
8106         case BPF_FUNC_skb_pull_data:
8107                 return &bpf_skb_pull_data_proto;
8108         case BPF_FUNC_csum_diff:
8109                 return &bpf_csum_diff_proto;
8110         case BPF_FUNC_get_cgroup_classid:
8111                 return &bpf_get_cgroup_classid_proto;
8112         case BPF_FUNC_get_route_realm:
8113                 return &bpf_get_route_realm_proto;
8114         case BPF_FUNC_get_hash_recalc:
8115                 return &bpf_get_hash_recalc_proto;
8116         case BPF_FUNC_perf_event_output:
8117                 return &bpf_skb_event_output_proto;
8118         case BPF_FUNC_get_smp_processor_id:
8119                 return &bpf_get_smp_processor_id_proto;
8120         case BPF_FUNC_skb_under_cgroup:
8121                 return &bpf_skb_under_cgroup_proto;
8122         default:
8123                 return bpf_sk_base_func_proto(func_id);
8124         }
8125 }
8126
8127 static const struct bpf_func_proto *
8128 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8129 {
8130         switch (func_id) {
8131         case BPF_FUNC_lwt_push_encap:
8132                 return &bpf_lwt_in_push_encap_proto;
8133         default:
8134                 return lwt_out_func_proto(func_id, prog);
8135         }
8136 }
8137
8138 static const struct bpf_func_proto *
8139 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8140 {
8141         switch (func_id) {
8142         case BPF_FUNC_skb_get_tunnel_key:
8143                 return &bpf_skb_get_tunnel_key_proto;
8144         case BPF_FUNC_skb_set_tunnel_key:
8145                 return bpf_get_skb_set_tunnel_proto(func_id);
8146         case BPF_FUNC_skb_get_tunnel_opt:
8147                 return &bpf_skb_get_tunnel_opt_proto;
8148         case BPF_FUNC_skb_set_tunnel_opt:
8149                 return bpf_get_skb_set_tunnel_proto(func_id);
8150         case BPF_FUNC_redirect:
8151                 return &bpf_redirect_proto;
8152         case BPF_FUNC_clone_redirect:
8153                 return &bpf_clone_redirect_proto;
8154         case BPF_FUNC_skb_change_tail:
8155                 return &bpf_skb_change_tail_proto;
8156         case BPF_FUNC_skb_change_head:
8157                 return &bpf_skb_change_head_proto;
8158         case BPF_FUNC_skb_store_bytes:
8159                 return &bpf_skb_store_bytes_proto;
8160         case BPF_FUNC_csum_update:
8161                 return &bpf_csum_update_proto;
8162         case BPF_FUNC_csum_level:
8163                 return &bpf_csum_level_proto;
8164         case BPF_FUNC_l3_csum_replace:
8165                 return &bpf_l3_csum_replace_proto;
8166         case BPF_FUNC_l4_csum_replace:
8167                 return &bpf_l4_csum_replace_proto;
8168         case BPF_FUNC_set_hash_invalid:
8169                 return &bpf_set_hash_invalid_proto;
8170         case BPF_FUNC_lwt_push_encap:
8171                 return &bpf_lwt_xmit_push_encap_proto;
8172         default:
8173                 return lwt_out_func_proto(func_id, prog);
8174         }
8175 }
8176
8177 static const struct bpf_func_proto *
8178 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8179 {
8180         switch (func_id) {
8181 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8182         case BPF_FUNC_lwt_seg6_store_bytes:
8183                 return &bpf_lwt_seg6_store_bytes_proto;
8184         case BPF_FUNC_lwt_seg6_action:
8185                 return &bpf_lwt_seg6_action_proto;
8186         case BPF_FUNC_lwt_seg6_adjust_srh:
8187                 return &bpf_lwt_seg6_adjust_srh_proto;
8188 #endif
8189         default:
8190                 return lwt_out_func_proto(func_id, prog);
8191         }
8192 }
8193
8194 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8195                                     const struct bpf_prog *prog,
8196                                     struct bpf_insn_access_aux *info)
8197 {
8198         const int size_default = sizeof(__u32);
8199
8200         if (off < 0 || off >= sizeof(struct __sk_buff))
8201                 return false;
8202
8203         /* The verifier guarantees that size > 0. */
8204         if (off % size != 0)
8205                 return false;
8206
8207         switch (off) {
8208         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8209                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
8210                         return false;
8211                 break;
8212         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8213         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8214         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8215         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8216         case bpf_ctx_range(struct __sk_buff, data):
8217         case bpf_ctx_range(struct __sk_buff, data_meta):
8218         case bpf_ctx_range(struct __sk_buff, data_end):
8219                 if (size != size_default)
8220                         return false;
8221                 break;
8222         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8223                 return false;
8224         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8225                 if (type == BPF_WRITE || size != sizeof(__u64))
8226                         return false;
8227                 break;
8228         case bpf_ctx_range(struct __sk_buff, tstamp):
8229                 if (size != sizeof(__u64))
8230                         return false;
8231                 break;
8232         case offsetof(struct __sk_buff, sk):
8233                 if (type == BPF_WRITE || size != sizeof(__u64))
8234                         return false;
8235                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8236                 break;
8237         case offsetof(struct __sk_buff, tstamp_type):
8238                 return false;
8239         case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8240                 /* Explicitly prohibit access to padding in __sk_buff. */
8241                 return false;
8242         default:
8243                 /* Only narrow read access allowed for now. */
8244                 if (type == BPF_WRITE) {
8245                         if (size != size_default)
8246                                 return false;
8247                 } else {
8248                         bpf_ctx_record_field_size(info, size_default);
8249                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8250                                 return false;
8251                 }
8252         }
8253
8254         return true;
8255 }
8256
8257 static bool sk_filter_is_valid_access(int off, int size,
8258                                       enum bpf_access_type type,
8259                                       const struct bpf_prog *prog,
8260                                       struct bpf_insn_access_aux *info)
8261 {
8262         switch (off) {
8263         case bpf_ctx_range(struct __sk_buff, tc_classid):
8264         case bpf_ctx_range(struct __sk_buff, data):
8265         case bpf_ctx_range(struct __sk_buff, data_meta):
8266         case bpf_ctx_range(struct __sk_buff, data_end):
8267         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8268         case bpf_ctx_range(struct __sk_buff, tstamp):
8269         case bpf_ctx_range(struct __sk_buff, wire_len):
8270         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8271                 return false;
8272         }
8273
8274         if (type == BPF_WRITE) {
8275                 switch (off) {
8276                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8277                         break;
8278                 default:
8279                         return false;
8280                 }
8281         }
8282
8283         return bpf_skb_is_valid_access(off, size, type, prog, info);
8284 }
8285
8286 static bool cg_skb_is_valid_access(int off, int size,
8287                                    enum bpf_access_type type,
8288                                    const struct bpf_prog *prog,
8289                                    struct bpf_insn_access_aux *info)
8290 {
8291         switch (off) {
8292         case bpf_ctx_range(struct __sk_buff, tc_classid):
8293         case bpf_ctx_range(struct __sk_buff, data_meta):
8294         case bpf_ctx_range(struct __sk_buff, wire_len):
8295                 return false;
8296         case bpf_ctx_range(struct __sk_buff, data):
8297         case bpf_ctx_range(struct __sk_buff, data_end):
8298                 if (!bpf_capable())
8299                         return false;
8300                 break;
8301         }
8302
8303         if (type == BPF_WRITE) {
8304                 switch (off) {
8305                 case bpf_ctx_range(struct __sk_buff, mark):
8306                 case bpf_ctx_range(struct __sk_buff, priority):
8307                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8308                         break;
8309                 case bpf_ctx_range(struct __sk_buff, tstamp):
8310                         if (!bpf_capable())
8311                                 return false;
8312                         break;
8313                 default:
8314                         return false;
8315                 }
8316         }
8317
8318         switch (off) {
8319         case bpf_ctx_range(struct __sk_buff, data):
8320                 info->reg_type = PTR_TO_PACKET;
8321                 break;
8322         case bpf_ctx_range(struct __sk_buff, data_end):
8323                 info->reg_type = PTR_TO_PACKET_END;
8324                 break;
8325         }
8326
8327         return bpf_skb_is_valid_access(off, size, type, prog, info);
8328 }
8329
8330 static bool lwt_is_valid_access(int off, int size,
8331                                 enum bpf_access_type type,
8332                                 const struct bpf_prog *prog,
8333                                 struct bpf_insn_access_aux *info)
8334 {
8335         switch (off) {
8336         case bpf_ctx_range(struct __sk_buff, tc_classid):
8337         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8338         case bpf_ctx_range(struct __sk_buff, data_meta):
8339         case bpf_ctx_range(struct __sk_buff, tstamp):
8340         case bpf_ctx_range(struct __sk_buff, wire_len):
8341         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8342                 return false;
8343         }
8344
8345         if (type == BPF_WRITE) {
8346                 switch (off) {
8347                 case bpf_ctx_range(struct __sk_buff, mark):
8348                 case bpf_ctx_range(struct __sk_buff, priority):
8349                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8350                         break;
8351                 default:
8352                         return false;
8353                 }
8354         }
8355
8356         switch (off) {
8357         case bpf_ctx_range(struct __sk_buff, data):
8358                 info->reg_type = PTR_TO_PACKET;
8359                 break;
8360         case bpf_ctx_range(struct __sk_buff, data_end):
8361                 info->reg_type = PTR_TO_PACKET_END;
8362                 break;
8363         }
8364
8365         return bpf_skb_is_valid_access(off, size, type, prog, info);
8366 }
8367
8368 /* Attach type specific accesses */
8369 static bool __sock_filter_check_attach_type(int off,
8370                                             enum bpf_access_type access_type,
8371                                             enum bpf_attach_type attach_type)
8372 {
8373         switch (off) {
8374         case offsetof(struct bpf_sock, bound_dev_if):
8375         case offsetof(struct bpf_sock, mark):
8376         case offsetof(struct bpf_sock, priority):
8377                 switch (attach_type) {
8378                 case BPF_CGROUP_INET_SOCK_CREATE:
8379                 case BPF_CGROUP_INET_SOCK_RELEASE:
8380                         goto full_access;
8381                 default:
8382                         return false;
8383                 }
8384         case bpf_ctx_range(struct bpf_sock, src_ip4):
8385                 switch (attach_type) {
8386                 case BPF_CGROUP_INET4_POST_BIND:
8387                         goto read_only;
8388                 default:
8389                         return false;
8390                 }
8391         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8392                 switch (attach_type) {
8393                 case BPF_CGROUP_INET6_POST_BIND:
8394                         goto read_only;
8395                 default:
8396                         return false;
8397                 }
8398         case bpf_ctx_range(struct bpf_sock, src_port):
8399                 switch (attach_type) {
8400                 case BPF_CGROUP_INET4_POST_BIND:
8401                 case BPF_CGROUP_INET6_POST_BIND:
8402                         goto read_only;
8403                 default:
8404                         return false;
8405                 }
8406         }
8407 read_only:
8408         return access_type == BPF_READ;
8409 full_access:
8410         return true;
8411 }
8412
8413 bool bpf_sock_common_is_valid_access(int off, int size,
8414                                      enum bpf_access_type type,
8415                                      struct bpf_insn_access_aux *info)
8416 {
8417         switch (off) {
8418         case bpf_ctx_range_till(struct bpf_sock, type, priority):
8419                 return false;
8420         default:
8421                 return bpf_sock_is_valid_access(off, size, type, info);
8422         }
8423 }
8424
8425 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8426                               struct bpf_insn_access_aux *info)
8427 {
8428         const int size_default = sizeof(__u32);
8429         int field_size;
8430
8431         if (off < 0 || off >= sizeof(struct bpf_sock))
8432                 return false;
8433         if (off % size != 0)
8434                 return false;
8435
8436         switch (off) {
8437         case offsetof(struct bpf_sock, state):
8438         case offsetof(struct bpf_sock, family):
8439         case offsetof(struct bpf_sock, type):
8440         case offsetof(struct bpf_sock, protocol):
8441         case offsetof(struct bpf_sock, src_port):
8442         case offsetof(struct bpf_sock, rx_queue_mapping):
8443         case bpf_ctx_range(struct bpf_sock, src_ip4):
8444         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8445         case bpf_ctx_range(struct bpf_sock, dst_ip4):
8446         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8447                 bpf_ctx_record_field_size(info, size_default);
8448                 return bpf_ctx_narrow_access_ok(off, size, size_default);
8449         case bpf_ctx_range(struct bpf_sock, dst_port):
8450                 field_size = size == size_default ?
8451                         size_default : sizeof_field(struct bpf_sock, dst_port);
8452                 bpf_ctx_record_field_size(info, field_size);
8453                 return bpf_ctx_narrow_access_ok(off, size, field_size);
8454         case offsetofend(struct bpf_sock, dst_port) ...
8455              offsetof(struct bpf_sock, dst_ip4) - 1:
8456                 return false;
8457         }
8458
8459         return size == size_default;
8460 }
8461
8462 static bool sock_filter_is_valid_access(int off, int size,
8463                                         enum bpf_access_type type,
8464                                         const struct bpf_prog *prog,
8465                                         struct bpf_insn_access_aux *info)
8466 {
8467         if (!bpf_sock_is_valid_access(off, size, type, info))
8468                 return false;
8469         return __sock_filter_check_attach_type(off, type,
8470                                                prog->expected_attach_type);
8471 }
8472
8473 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8474                              const struct bpf_prog *prog)
8475 {
8476         /* Neither direct read nor direct write requires any preliminary
8477          * action.
8478          */
8479         return 0;
8480 }
8481
8482 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8483                                 const struct bpf_prog *prog, int drop_verdict)
8484 {
8485         struct bpf_insn *insn = insn_buf;
8486
8487         if (!direct_write)
8488                 return 0;
8489
8490         /* if (!skb->cloned)
8491          *       goto start;
8492          *
8493          * (Fast-path, otherwise approximation that we might be
8494          *  a clone, do the rest in helper.)
8495          */
8496         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8497         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8498         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8499
8500         /* ret = bpf_skb_pull_data(skb, 0); */
8501         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8502         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8503         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8504                                BPF_FUNC_skb_pull_data);
8505         /* if (!ret)
8506          *      goto restore;
8507          * return TC_ACT_SHOT;
8508          */
8509         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8510         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8511         *insn++ = BPF_EXIT_INSN();
8512
8513         /* restore: */
8514         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8515         /* start: */
8516         *insn++ = prog->insnsi[0];
8517
8518         return insn - insn_buf;
8519 }
8520
8521 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8522                           struct bpf_insn *insn_buf)
8523 {
8524         bool indirect = BPF_MODE(orig->code) == BPF_IND;
8525         struct bpf_insn *insn = insn_buf;
8526
8527         if (!indirect) {
8528                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8529         } else {
8530                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8531                 if (orig->imm)
8532                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8533         }
8534         /* We're guaranteed here that CTX is in R6. */
8535         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8536
8537         switch (BPF_SIZE(orig->code)) {
8538         case BPF_B:
8539                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8540                 break;
8541         case BPF_H:
8542                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8543                 break;
8544         case BPF_W:
8545                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8546                 break;
8547         }
8548
8549         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8550         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8551         *insn++ = BPF_EXIT_INSN();
8552
8553         return insn - insn_buf;
8554 }
8555
8556 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8557                                const struct bpf_prog *prog)
8558 {
8559         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8560 }
8561
8562 static bool tc_cls_act_is_valid_access(int off, int size,
8563                                        enum bpf_access_type type,
8564                                        const struct bpf_prog *prog,
8565                                        struct bpf_insn_access_aux *info)
8566 {
8567         if (type == BPF_WRITE) {
8568                 switch (off) {
8569                 case bpf_ctx_range(struct __sk_buff, mark):
8570                 case bpf_ctx_range(struct __sk_buff, tc_index):
8571                 case bpf_ctx_range(struct __sk_buff, priority):
8572                 case bpf_ctx_range(struct __sk_buff, tc_classid):
8573                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8574                 case bpf_ctx_range(struct __sk_buff, tstamp):
8575                 case bpf_ctx_range(struct __sk_buff, queue_mapping):
8576                         break;
8577                 default:
8578                         return false;
8579                 }
8580         }
8581
8582         switch (off) {
8583         case bpf_ctx_range(struct __sk_buff, data):
8584                 info->reg_type = PTR_TO_PACKET;
8585                 break;
8586         case bpf_ctx_range(struct __sk_buff, data_meta):
8587                 info->reg_type = PTR_TO_PACKET_META;
8588                 break;
8589         case bpf_ctx_range(struct __sk_buff, data_end):
8590                 info->reg_type = PTR_TO_PACKET_END;
8591                 break;
8592         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8593                 return false;
8594         case offsetof(struct __sk_buff, tstamp_type):
8595                 /* The convert_ctx_access() on reading and writing
8596                  * __sk_buff->tstamp depends on whether the bpf prog
8597                  * has used __sk_buff->tstamp_type or not.
8598                  * Thus, we need to set prog->tstamp_type_access
8599                  * earlier during is_valid_access() here.
8600                  */
8601                 ((struct bpf_prog *)prog)->tstamp_type_access = 1;
8602                 return size == sizeof(__u8);
8603         }
8604
8605         return bpf_skb_is_valid_access(off, size, type, prog, info);
8606 }
8607
8608 static bool __is_valid_xdp_access(int off, int size)
8609 {
8610         if (off < 0 || off >= sizeof(struct xdp_md))
8611                 return false;
8612         if (off % size != 0)
8613                 return false;
8614         if (size != sizeof(__u32))
8615                 return false;
8616
8617         return true;
8618 }
8619
8620 static bool xdp_is_valid_access(int off, int size,
8621                                 enum bpf_access_type type,
8622                                 const struct bpf_prog *prog,
8623                                 struct bpf_insn_access_aux *info)
8624 {
8625         if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8626                 switch (off) {
8627                 case offsetof(struct xdp_md, egress_ifindex):
8628                         return false;
8629                 }
8630         }
8631
8632         if (type == BPF_WRITE) {
8633                 if (bpf_prog_is_dev_bound(prog->aux)) {
8634                         switch (off) {
8635                         case offsetof(struct xdp_md, rx_queue_index):
8636                                 return __is_valid_xdp_access(off, size);
8637                         }
8638                 }
8639                 return false;
8640         }
8641
8642         switch (off) {
8643         case offsetof(struct xdp_md, data):
8644                 info->reg_type = PTR_TO_PACKET;
8645                 break;
8646         case offsetof(struct xdp_md, data_meta):
8647                 info->reg_type = PTR_TO_PACKET_META;
8648                 break;
8649         case offsetof(struct xdp_md, data_end):
8650                 info->reg_type = PTR_TO_PACKET_END;
8651                 break;
8652         }
8653
8654         return __is_valid_xdp_access(off, size);
8655 }
8656
8657 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8658 {
8659         const u32 act_max = XDP_REDIRECT;
8660
8661         pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
8662                      act > act_max ? "Illegal" : "Driver unsupported",
8663                      act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
8664 }
8665 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8666
8667 static bool sock_addr_is_valid_access(int off, int size,
8668                                       enum bpf_access_type type,
8669                                       const struct bpf_prog *prog,
8670                                       struct bpf_insn_access_aux *info)
8671 {
8672         const int size_default = sizeof(__u32);
8673
8674         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8675                 return false;
8676         if (off % size != 0)
8677                 return false;
8678
8679         /* Disallow access to IPv6 fields from IPv4 contex and vise
8680          * versa.
8681          */
8682         switch (off) {
8683         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8684                 switch (prog->expected_attach_type) {
8685                 case BPF_CGROUP_INET4_BIND:
8686                 case BPF_CGROUP_INET4_CONNECT:
8687                 case BPF_CGROUP_INET4_GETPEERNAME:
8688                 case BPF_CGROUP_INET4_GETSOCKNAME:
8689                 case BPF_CGROUP_UDP4_SENDMSG:
8690                 case BPF_CGROUP_UDP4_RECVMSG:
8691                         break;
8692                 default:
8693                         return false;
8694                 }
8695                 break;
8696         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8697                 switch (prog->expected_attach_type) {
8698                 case BPF_CGROUP_INET6_BIND:
8699                 case BPF_CGROUP_INET6_CONNECT:
8700                 case BPF_CGROUP_INET6_GETPEERNAME:
8701                 case BPF_CGROUP_INET6_GETSOCKNAME:
8702                 case BPF_CGROUP_UDP6_SENDMSG:
8703                 case BPF_CGROUP_UDP6_RECVMSG:
8704                         break;
8705                 default:
8706                         return false;
8707                 }
8708                 break;
8709         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8710                 switch (prog->expected_attach_type) {
8711                 case BPF_CGROUP_UDP4_SENDMSG:
8712                         break;
8713                 default:
8714                         return false;
8715                 }
8716                 break;
8717         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8718                                 msg_src_ip6[3]):
8719                 switch (prog->expected_attach_type) {
8720                 case BPF_CGROUP_UDP6_SENDMSG:
8721                         break;
8722                 default:
8723                         return false;
8724                 }
8725                 break;
8726         }
8727
8728         switch (off) {
8729         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8730         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8731         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8732         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8733                                 msg_src_ip6[3]):
8734         case bpf_ctx_range(struct bpf_sock_addr, user_port):
8735                 if (type == BPF_READ) {
8736                         bpf_ctx_record_field_size(info, size_default);
8737
8738                         if (bpf_ctx_wide_access_ok(off, size,
8739                                                    struct bpf_sock_addr,
8740                                                    user_ip6))
8741                                 return true;
8742
8743                         if (bpf_ctx_wide_access_ok(off, size,
8744                                                    struct bpf_sock_addr,
8745                                                    msg_src_ip6))
8746                                 return true;
8747
8748                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8749                                 return false;
8750                 } else {
8751                         if (bpf_ctx_wide_access_ok(off, size,
8752                                                    struct bpf_sock_addr,
8753                                                    user_ip6))
8754                                 return true;
8755
8756                         if (bpf_ctx_wide_access_ok(off, size,
8757                                                    struct bpf_sock_addr,
8758                                                    msg_src_ip6))
8759                                 return true;
8760
8761                         if (size != size_default)
8762                                 return false;
8763                 }
8764                 break;
8765         case offsetof(struct bpf_sock_addr, sk):
8766                 if (type != BPF_READ)
8767                         return false;
8768                 if (size != sizeof(__u64))
8769                         return false;
8770                 info->reg_type = PTR_TO_SOCKET;
8771                 break;
8772         default:
8773                 if (type == BPF_READ) {
8774                         if (size != size_default)
8775                                 return false;
8776                 } else {
8777                         return false;
8778                 }
8779         }
8780
8781         return true;
8782 }
8783
8784 static bool sock_ops_is_valid_access(int off, int size,
8785                                      enum bpf_access_type type,
8786                                      const struct bpf_prog *prog,
8787                                      struct bpf_insn_access_aux *info)
8788 {
8789         const int size_default = sizeof(__u32);
8790
8791         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8792                 return false;
8793
8794         /* The verifier guarantees that size > 0. */
8795         if (off % size != 0)
8796                 return false;
8797
8798         if (type == BPF_WRITE) {
8799                 switch (off) {
8800                 case offsetof(struct bpf_sock_ops, reply):
8801                 case offsetof(struct bpf_sock_ops, sk_txhash):
8802                         if (size != size_default)
8803                                 return false;
8804                         break;
8805                 default:
8806                         return false;
8807                 }
8808         } else {
8809                 switch (off) {
8810                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8811                                         bytes_acked):
8812                         if (size != sizeof(__u64))
8813                                 return false;
8814                         break;
8815                 case offsetof(struct bpf_sock_ops, sk):
8816                         if (size != sizeof(__u64))
8817                                 return false;
8818                         info->reg_type = PTR_TO_SOCKET_OR_NULL;
8819                         break;
8820                 case offsetof(struct bpf_sock_ops, skb_data):
8821                         if (size != sizeof(__u64))
8822                                 return false;
8823                         info->reg_type = PTR_TO_PACKET;
8824                         break;
8825                 case offsetof(struct bpf_sock_ops, skb_data_end):
8826                         if (size != sizeof(__u64))
8827                                 return false;
8828                         info->reg_type = PTR_TO_PACKET_END;
8829                         break;
8830                 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8831                         bpf_ctx_record_field_size(info, size_default);
8832                         return bpf_ctx_narrow_access_ok(off, size,
8833                                                         size_default);
8834                 default:
8835                         if (size != size_default)
8836                                 return false;
8837                         break;
8838                 }
8839         }
8840
8841         return true;
8842 }
8843
8844 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8845                            const struct bpf_prog *prog)
8846 {
8847         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8848 }
8849
8850 static bool sk_skb_is_valid_access(int off, int size,
8851                                    enum bpf_access_type type,
8852                                    const struct bpf_prog *prog,
8853                                    struct bpf_insn_access_aux *info)
8854 {
8855         switch (off) {
8856         case bpf_ctx_range(struct __sk_buff, tc_classid):
8857         case bpf_ctx_range(struct __sk_buff, data_meta):
8858         case bpf_ctx_range(struct __sk_buff, tstamp):
8859         case bpf_ctx_range(struct __sk_buff, wire_len):
8860         case bpf_ctx_range(struct __sk_buff, hwtstamp):
8861                 return false;
8862         }
8863
8864         if (type == BPF_WRITE) {
8865                 switch (off) {
8866                 case bpf_ctx_range(struct __sk_buff, tc_index):
8867                 case bpf_ctx_range(struct __sk_buff, priority):
8868                         break;
8869                 default:
8870                         return false;
8871                 }
8872         }
8873
8874         switch (off) {
8875         case bpf_ctx_range(struct __sk_buff, mark):
8876                 return false;
8877         case bpf_ctx_range(struct __sk_buff, data):
8878                 info->reg_type = PTR_TO_PACKET;
8879                 break;
8880         case bpf_ctx_range(struct __sk_buff, data_end):
8881                 info->reg_type = PTR_TO_PACKET_END;
8882                 break;
8883         }
8884
8885         return bpf_skb_is_valid_access(off, size, type, prog, info);
8886 }
8887
8888 static bool sk_msg_is_valid_access(int off, int size,
8889                                    enum bpf_access_type type,
8890                                    const struct bpf_prog *prog,
8891                                    struct bpf_insn_access_aux *info)
8892 {
8893         if (type == BPF_WRITE)
8894                 return false;
8895
8896         if (off % size != 0)
8897                 return false;
8898
8899         switch (off) {
8900         case offsetof(struct sk_msg_md, data):
8901                 info->reg_type = PTR_TO_PACKET;
8902                 if (size != sizeof(__u64))
8903                         return false;
8904                 break;
8905         case offsetof(struct sk_msg_md, data_end):
8906                 info->reg_type = PTR_TO_PACKET_END;
8907                 if (size != sizeof(__u64))
8908                         return false;
8909                 break;
8910         case offsetof(struct sk_msg_md, sk):
8911                 if (size != sizeof(__u64))
8912                         return false;
8913                 info->reg_type = PTR_TO_SOCKET;
8914                 break;
8915         case bpf_ctx_range(struct sk_msg_md, family):
8916         case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8917         case bpf_ctx_range(struct sk_msg_md, local_ip4):
8918         case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8919         case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8920         case bpf_ctx_range(struct sk_msg_md, remote_port):
8921         case bpf_ctx_range(struct sk_msg_md, local_port):
8922         case bpf_ctx_range(struct sk_msg_md, size):
8923                 if (size != sizeof(__u32))
8924                         return false;
8925                 break;
8926         default:
8927                 return false;
8928         }
8929         return true;
8930 }
8931
8932 static bool flow_dissector_is_valid_access(int off, int size,
8933                                            enum bpf_access_type type,
8934                                            const struct bpf_prog *prog,
8935                                            struct bpf_insn_access_aux *info)
8936 {
8937         const int size_default = sizeof(__u32);
8938
8939         if (off < 0 || off >= sizeof(struct __sk_buff))
8940                 return false;
8941
8942         if (type == BPF_WRITE)
8943                 return false;
8944
8945         switch (off) {
8946         case bpf_ctx_range(struct __sk_buff, data):
8947                 if (size != size_default)
8948                         return false;
8949                 info->reg_type = PTR_TO_PACKET;
8950                 return true;
8951         case bpf_ctx_range(struct __sk_buff, data_end):
8952                 if (size != size_default)
8953                         return false;
8954                 info->reg_type = PTR_TO_PACKET_END;
8955                 return true;
8956         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8957                 if (size != sizeof(__u64))
8958                         return false;
8959                 info->reg_type = PTR_TO_FLOW_KEYS;
8960                 return true;
8961         default:
8962                 return false;
8963         }
8964 }
8965
8966 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8967                                              const struct bpf_insn *si,
8968                                              struct bpf_insn *insn_buf,
8969                                              struct bpf_prog *prog,
8970                                              u32 *target_size)
8971
8972 {
8973         struct bpf_insn *insn = insn_buf;
8974
8975         switch (si->off) {
8976         case offsetof(struct __sk_buff, data):
8977                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8978                                       si->dst_reg, si->src_reg,
8979                                       offsetof(struct bpf_flow_dissector, data));
8980                 break;
8981
8982         case offsetof(struct __sk_buff, data_end):
8983                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8984                                       si->dst_reg, si->src_reg,
8985                                       offsetof(struct bpf_flow_dissector, data_end));
8986                 break;
8987
8988         case offsetof(struct __sk_buff, flow_keys):
8989                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8990                                       si->dst_reg, si->src_reg,
8991                                       offsetof(struct bpf_flow_dissector, flow_keys));
8992                 break;
8993         }
8994
8995         return insn - insn_buf;
8996 }
8997
8998 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
8999                                                      struct bpf_insn *insn)
9000 {
9001         __u8 value_reg = si->dst_reg;
9002         __u8 skb_reg = si->src_reg;
9003         /* AX is needed because src_reg and dst_reg could be the same */
9004         __u8 tmp_reg = BPF_REG_AX;
9005
9006         *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9007                               PKT_VLAN_PRESENT_OFFSET);
9008         *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9009                                 SKB_MONO_DELIVERY_TIME_MASK, 2);
9010         *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9011         *insn++ = BPF_JMP_A(1);
9012         *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9013
9014         return insn;
9015 }
9016
9017 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
9018                                                   struct bpf_insn *insn)
9019 {
9020         /* si->dst_reg = skb_shinfo(SKB); */
9021 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9022         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9023                               BPF_REG_AX, si->src_reg,
9024                               offsetof(struct sk_buff, end));
9025         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9026                               si->dst_reg, si->src_reg,
9027                               offsetof(struct sk_buff, head));
9028         *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
9029 #else
9030         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9031                               si->dst_reg, si->src_reg,
9032                               offsetof(struct sk_buff, end));
9033 #endif
9034
9035         return insn;
9036 }
9037
9038 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9039                                                 const struct bpf_insn *si,
9040                                                 struct bpf_insn *insn)
9041 {
9042         __u8 value_reg = si->dst_reg;
9043         __u8 skb_reg = si->src_reg;
9044
9045 #ifdef CONFIG_NET_CLS_ACT
9046         /* If the tstamp_type is read,
9047          * the bpf prog is aware the tstamp could have delivery time.
9048          * Thus, read skb->tstamp as is if tstamp_type_access is true.
9049          */
9050         if (!prog->tstamp_type_access) {
9051                 /* AX is needed because src_reg and dst_reg could be the same */
9052                 __u8 tmp_reg = BPF_REG_AX;
9053
9054                 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9055                 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9056                                         TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9057                 *insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9058                                         TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9059                 /* skb->tc_at_ingress && skb->mono_delivery_time,
9060                  * read 0 as the (rcv) timestamp.
9061                  */
9062                 *insn++ = BPF_MOV64_IMM(value_reg, 0);
9063                 *insn++ = BPF_JMP_A(1);
9064         }
9065 #endif
9066
9067         *insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9068                               offsetof(struct sk_buff, tstamp));
9069         return insn;
9070 }
9071
9072 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9073                                                  const struct bpf_insn *si,
9074                                                  struct bpf_insn *insn)
9075 {
9076         __u8 value_reg = si->src_reg;
9077         __u8 skb_reg = si->dst_reg;
9078
9079 #ifdef CONFIG_NET_CLS_ACT
9080         /* If the tstamp_type is read,
9081          * the bpf prog is aware the tstamp could have delivery time.
9082          * Thus, write skb->tstamp as is if tstamp_type_access is true.
9083          * Otherwise, writing at ingress will have to clear the
9084          * mono_delivery_time bit also.
9085          */
9086         if (!prog->tstamp_type_access) {
9087                 __u8 tmp_reg = BPF_REG_AX;
9088
9089                 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9090                 /* Writing __sk_buff->tstamp as ingress, goto <clear> */
9091                 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9092                 /* goto <store> */
9093                 *insn++ = BPF_JMP_A(2);
9094                 /* <clear>: mono_delivery_time */
9095                 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9096                 *insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, PKT_VLAN_PRESENT_OFFSET);
9097         }
9098 #endif
9099
9100         /* <store>: skb->tstamp = tstamp */
9101         *insn++ = BPF_STX_MEM(BPF_DW, skb_reg, value_reg,
9102                               offsetof(struct sk_buff, tstamp));
9103         return insn;
9104 }
9105
9106 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9107                                   const struct bpf_insn *si,
9108                                   struct bpf_insn *insn_buf,
9109                                   struct bpf_prog *prog, u32 *target_size)
9110 {
9111         struct bpf_insn *insn = insn_buf;
9112         int off;
9113
9114         switch (si->off) {
9115         case offsetof(struct __sk_buff, len):
9116                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9117                                       bpf_target_off(struct sk_buff, len, 4,
9118                                                      target_size));
9119                 break;
9120
9121         case offsetof(struct __sk_buff, protocol):
9122                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9123                                       bpf_target_off(struct sk_buff, protocol, 2,
9124                                                      target_size));
9125                 break;
9126
9127         case offsetof(struct __sk_buff, vlan_proto):
9128                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9129                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
9130                                                      target_size));
9131                 break;
9132
9133         case offsetof(struct __sk_buff, priority):
9134                 if (type == BPF_WRITE)
9135                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9136                                               bpf_target_off(struct sk_buff, priority, 4,
9137                                                              target_size));
9138                 else
9139                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9140                                               bpf_target_off(struct sk_buff, priority, 4,
9141                                                              target_size));
9142                 break;
9143
9144         case offsetof(struct __sk_buff, ingress_ifindex):
9145                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9146                                       bpf_target_off(struct sk_buff, skb_iif, 4,
9147                                                      target_size));
9148                 break;
9149
9150         case offsetof(struct __sk_buff, ifindex):
9151                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9152                                       si->dst_reg, si->src_reg,
9153                                       offsetof(struct sk_buff, dev));
9154                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9155                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9156                                       bpf_target_off(struct net_device, ifindex, 4,
9157                                                      target_size));
9158                 break;
9159
9160         case offsetof(struct __sk_buff, hash):
9161                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9162                                       bpf_target_off(struct sk_buff, hash, 4,
9163                                                      target_size));
9164                 break;
9165
9166         case offsetof(struct __sk_buff, mark):
9167                 if (type == BPF_WRITE)
9168                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9169                                               bpf_target_off(struct sk_buff, mark, 4,
9170                                                              target_size));
9171                 else
9172                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9173                                               bpf_target_off(struct sk_buff, mark, 4,
9174                                                              target_size));
9175                 break;
9176
9177         case offsetof(struct __sk_buff, pkt_type):
9178                 *target_size = 1;
9179                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9180                                       PKT_TYPE_OFFSET);
9181                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9182 #ifdef __BIG_ENDIAN_BITFIELD
9183                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9184 #endif
9185                 break;
9186
9187         case offsetof(struct __sk_buff, queue_mapping):
9188                 if (type == BPF_WRITE) {
9189                         *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9190                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9191                                               bpf_target_off(struct sk_buff,
9192                                                              queue_mapping,
9193                                                              2, target_size));
9194                 } else {
9195                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9196                                               bpf_target_off(struct sk_buff,
9197                                                              queue_mapping,
9198                                                              2, target_size));
9199                 }
9200                 break;
9201
9202         case offsetof(struct __sk_buff, vlan_present):
9203                 *target_size = 1;
9204                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9205                                       PKT_VLAN_PRESENT_OFFSET);
9206                 if (PKT_VLAN_PRESENT_BIT)
9207                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
9208                 if (PKT_VLAN_PRESENT_BIT < 7)
9209                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
9210                 break;
9211
9212         case offsetof(struct __sk_buff, vlan_tci):
9213                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9214                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
9215                                                      target_size));
9216                 break;
9217
9218         case offsetof(struct __sk_buff, cb[0]) ...
9219              offsetofend(struct __sk_buff, cb[4]) - 1:
9220                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9221                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9222                               offsetof(struct qdisc_skb_cb, data)) %
9223                              sizeof(__u64));
9224
9225                 prog->cb_access = 1;
9226                 off  = si->off;
9227                 off -= offsetof(struct __sk_buff, cb[0]);
9228                 off += offsetof(struct sk_buff, cb);
9229                 off += offsetof(struct qdisc_skb_cb, data);
9230                 if (type == BPF_WRITE)
9231                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9232                                               si->src_reg, off);
9233                 else
9234                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9235                                               si->src_reg, off);
9236                 break;
9237
9238         case offsetof(struct __sk_buff, tc_classid):
9239                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9240
9241                 off  = si->off;
9242                 off -= offsetof(struct __sk_buff, tc_classid);
9243                 off += offsetof(struct sk_buff, cb);
9244                 off += offsetof(struct qdisc_skb_cb, tc_classid);
9245                 *target_size = 2;
9246                 if (type == BPF_WRITE)
9247                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
9248                                               si->src_reg, off);
9249                 else
9250                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9251                                               si->src_reg, off);
9252                 break;
9253
9254         case offsetof(struct __sk_buff, data):
9255                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9256                                       si->dst_reg, si->src_reg,
9257                                       offsetof(struct sk_buff, data));
9258                 break;
9259
9260         case offsetof(struct __sk_buff, data_meta):
9261                 off  = si->off;
9262                 off -= offsetof(struct __sk_buff, data_meta);
9263                 off += offsetof(struct sk_buff, cb);
9264                 off += offsetof(struct bpf_skb_data_end, data_meta);
9265                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9266                                       si->src_reg, off);
9267                 break;
9268
9269         case offsetof(struct __sk_buff, data_end):
9270                 off  = si->off;
9271                 off -= offsetof(struct __sk_buff, data_end);
9272                 off += offsetof(struct sk_buff, cb);
9273                 off += offsetof(struct bpf_skb_data_end, data_end);
9274                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9275                                       si->src_reg, off);
9276                 break;
9277
9278         case offsetof(struct __sk_buff, tc_index):
9279 #ifdef CONFIG_NET_SCHED
9280                 if (type == BPF_WRITE)
9281                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9282                                               bpf_target_off(struct sk_buff, tc_index, 2,
9283                                                              target_size));
9284                 else
9285                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9286                                               bpf_target_off(struct sk_buff, tc_index, 2,
9287                                                              target_size));
9288 #else
9289                 *target_size = 2;
9290                 if (type == BPF_WRITE)
9291                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9292                 else
9293                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9294 #endif
9295                 break;
9296
9297         case offsetof(struct __sk_buff, napi_id):
9298 #if defined(CONFIG_NET_RX_BUSY_POLL)
9299                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9300                                       bpf_target_off(struct sk_buff, napi_id, 4,
9301                                                      target_size));
9302                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9303                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9304 #else
9305                 *target_size = 4;
9306                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9307 #endif
9308                 break;
9309         case offsetof(struct __sk_buff, family):
9310                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9311
9312                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9313                                       si->dst_reg, si->src_reg,
9314                                       offsetof(struct sk_buff, sk));
9315                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9316                                       bpf_target_off(struct sock_common,
9317                                                      skc_family,
9318                                                      2, target_size));
9319                 break;
9320         case offsetof(struct __sk_buff, remote_ip4):
9321                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9322
9323                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9324                                       si->dst_reg, si->src_reg,
9325                                       offsetof(struct sk_buff, sk));
9326                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9327                                       bpf_target_off(struct sock_common,
9328                                                      skc_daddr,
9329                                                      4, target_size));
9330                 break;
9331         case offsetof(struct __sk_buff, local_ip4):
9332                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9333                                           skc_rcv_saddr) != 4);
9334
9335                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9336                                       si->dst_reg, si->src_reg,
9337                                       offsetof(struct sk_buff, sk));
9338                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9339                                       bpf_target_off(struct sock_common,
9340                                                      skc_rcv_saddr,
9341                                                      4, target_size));
9342                 break;
9343         case offsetof(struct __sk_buff, remote_ip6[0]) ...
9344              offsetof(struct __sk_buff, remote_ip6[3]):
9345 #if IS_ENABLED(CONFIG_IPV6)
9346                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9347                                           skc_v6_daddr.s6_addr32[0]) != 4);
9348
9349                 off = si->off;
9350                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
9351
9352                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9353                                       si->dst_reg, si->src_reg,
9354                                       offsetof(struct sk_buff, sk));
9355                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9356                                       offsetof(struct sock_common,
9357                                                skc_v6_daddr.s6_addr32[0]) +
9358                                       off);
9359 #else
9360                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9361 #endif
9362                 break;
9363         case offsetof(struct __sk_buff, local_ip6[0]) ...
9364              offsetof(struct __sk_buff, local_ip6[3]):
9365 #if IS_ENABLED(CONFIG_IPV6)
9366                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9367                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9368
9369                 off = si->off;
9370                 off -= offsetof(struct __sk_buff, local_ip6[0]);
9371
9372                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9373                                       si->dst_reg, si->src_reg,
9374                                       offsetof(struct sk_buff, sk));
9375                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9376                                       offsetof(struct sock_common,
9377                                                skc_v6_rcv_saddr.s6_addr32[0]) +
9378                                       off);
9379 #else
9380                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9381 #endif
9382                 break;
9383
9384         case offsetof(struct __sk_buff, remote_port):
9385                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9386
9387                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9388                                       si->dst_reg, si->src_reg,
9389                                       offsetof(struct sk_buff, sk));
9390                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9391                                       bpf_target_off(struct sock_common,
9392                                                      skc_dport,
9393                                                      2, target_size));
9394 #ifndef __BIG_ENDIAN_BITFIELD
9395                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9396 #endif
9397                 break;
9398
9399         case offsetof(struct __sk_buff, local_port):
9400                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9401
9402                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9403                                       si->dst_reg, si->src_reg,
9404                                       offsetof(struct sk_buff, sk));
9405                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9406                                       bpf_target_off(struct sock_common,
9407                                                      skc_num, 2, target_size));
9408                 break;
9409
9410         case offsetof(struct __sk_buff, tstamp):
9411                 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9412
9413                 if (type == BPF_WRITE)
9414                         insn = bpf_convert_tstamp_write(prog, si, insn);
9415                 else
9416                         insn = bpf_convert_tstamp_read(prog, si, insn);
9417                 break;
9418
9419         case offsetof(struct __sk_buff, tstamp_type):
9420                 insn = bpf_convert_tstamp_type_read(si, insn);
9421                 break;
9422
9423         case offsetof(struct __sk_buff, gso_segs):
9424                 insn = bpf_convert_shinfo_access(si, insn);
9425                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9426                                       si->dst_reg, si->dst_reg,
9427                                       bpf_target_off(struct skb_shared_info,
9428                                                      gso_segs, 2,
9429                                                      target_size));
9430                 break;
9431         case offsetof(struct __sk_buff, gso_size):
9432                 insn = bpf_convert_shinfo_access(si, insn);
9433                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9434                                       si->dst_reg, si->dst_reg,
9435                                       bpf_target_off(struct skb_shared_info,
9436                                                      gso_size, 2,
9437                                                      target_size));
9438                 break;
9439         case offsetof(struct __sk_buff, wire_len):
9440                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9441
9442                 off = si->off;
9443                 off -= offsetof(struct __sk_buff, wire_len);
9444                 off += offsetof(struct sk_buff, cb);
9445                 off += offsetof(struct qdisc_skb_cb, pkt_len);
9446                 *target_size = 4;
9447                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9448                 break;
9449
9450         case offsetof(struct __sk_buff, sk):
9451                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9452                                       si->dst_reg, si->src_reg,
9453                                       offsetof(struct sk_buff, sk));
9454                 break;
9455         case offsetof(struct __sk_buff, hwtstamp):
9456                 BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9457                 BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9458
9459                 insn = bpf_convert_shinfo_access(si, insn);
9460                 *insn++ = BPF_LDX_MEM(BPF_DW,
9461                                       si->dst_reg, si->dst_reg,
9462                                       bpf_target_off(struct skb_shared_info,
9463                                                      hwtstamps, 8,
9464                                                      target_size));
9465                 break;
9466         }
9467
9468         return insn - insn_buf;
9469 }
9470
9471 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9472                                 const struct bpf_insn *si,
9473                                 struct bpf_insn *insn_buf,
9474                                 struct bpf_prog *prog, u32 *target_size)
9475 {
9476         struct bpf_insn *insn = insn_buf;
9477         int off;
9478
9479         switch (si->off) {
9480         case offsetof(struct bpf_sock, bound_dev_if):
9481                 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9482
9483                 if (type == BPF_WRITE)
9484                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9485                                         offsetof(struct sock, sk_bound_dev_if));
9486                 else
9487                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9488                                       offsetof(struct sock, sk_bound_dev_if));
9489                 break;
9490
9491         case offsetof(struct bpf_sock, mark):
9492                 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9493
9494                 if (type == BPF_WRITE)
9495                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9496                                         offsetof(struct sock, sk_mark));
9497                 else
9498                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9499                                       offsetof(struct sock, sk_mark));
9500                 break;
9501
9502         case offsetof(struct bpf_sock, priority):
9503                 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9504
9505                 if (type == BPF_WRITE)
9506                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9507                                         offsetof(struct sock, sk_priority));
9508                 else
9509                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9510                                       offsetof(struct sock, sk_priority));
9511                 break;
9512
9513         case offsetof(struct bpf_sock, family):
9514                 *insn++ = BPF_LDX_MEM(
9515                         BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9516                         si->dst_reg, si->src_reg,
9517                         bpf_target_off(struct sock_common,
9518                                        skc_family,
9519                                        sizeof_field(struct sock_common,
9520                                                     skc_family),
9521                                        target_size));
9522                 break;
9523
9524         case offsetof(struct bpf_sock, type):
9525                 *insn++ = BPF_LDX_MEM(
9526                         BPF_FIELD_SIZEOF(struct sock, sk_type),
9527                         si->dst_reg, si->src_reg,
9528                         bpf_target_off(struct sock, sk_type,
9529                                        sizeof_field(struct sock, sk_type),
9530                                        target_size));
9531                 break;
9532
9533         case offsetof(struct bpf_sock, protocol):
9534                 *insn++ = BPF_LDX_MEM(
9535                         BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9536                         si->dst_reg, si->src_reg,
9537                         bpf_target_off(struct sock, sk_protocol,
9538                                        sizeof_field(struct sock, sk_protocol),
9539                                        target_size));
9540                 break;
9541
9542         case offsetof(struct bpf_sock, src_ip4):
9543                 *insn++ = BPF_LDX_MEM(
9544                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9545                         bpf_target_off(struct sock_common, skc_rcv_saddr,
9546                                        sizeof_field(struct sock_common,
9547                                                     skc_rcv_saddr),
9548                                        target_size));
9549                 break;
9550
9551         case offsetof(struct bpf_sock, dst_ip4):
9552                 *insn++ = BPF_LDX_MEM(
9553                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9554                         bpf_target_off(struct sock_common, skc_daddr,
9555                                        sizeof_field(struct sock_common,
9556                                                     skc_daddr),
9557                                        target_size));
9558                 break;
9559
9560         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9561 #if IS_ENABLED(CONFIG_IPV6)
9562                 off = si->off;
9563                 off -= offsetof(struct bpf_sock, src_ip6[0]);
9564                 *insn++ = BPF_LDX_MEM(
9565                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9566                         bpf_target_off(
9567                                 struct sock_common,
9568                                 skc_v6_rcv_saddr.s6_addr32[0],
9569                                 sizeof_field(struct sock_common,
9570                                              skc_v6_rcv_saddr.s6_addr32[0]),
9571                                 target_size) + off);
9572 #else
9573                 (void)off;
9574                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9575 #endif
9576                 break;
9577
9578         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9579 #if IS_ENABLED(CONFIG_IPV6)
9580                 off = si->off;
9581                 off -= offsetof(struct bpf_sock, dst_ip6[0]);
9582                 *insn++ = BPF_LDX_MEM(
9583                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9584                         bpf_target_off(struct sock_common,
9585                                        skc_v6_daddr.s6_addr32[0],
9586                                        sizeof_field(struct sock_common,
9587                                                     skc_v6_daddr.s6_addr32[0]),
9588                                        target_size) + off);
9589 #else
9590                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9591                 *target_size = 4;
9592 #endif
9593                 break;
9594
9595         case offsetof(struct bpf_sock, src_port):
9596                 *insn++ = BPF_LDX_MEM(
9597                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9598                         si->dst_reg, si->src_reg,
9599                         bpf_target_off(struct sock_common, skc_num,
9600                                        sizeof_field(struct sock_common,
9601                                                     skc_num),
9602                                        target_size));
9603                 break;
9604
9605         case offsetof(struct bpf_sock, dst_port):
9606                 *insn++ = BPF_LDX_MEM(
9607                         BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9608                         si->dst_reg, si->src_reg,
9609                         bpf_target_off(struct sock_common, skc_dport,
9610                                        sizeof_field(struct sock_common,
9611                                                     skc_dport),
9612                                        target_size));
9613                 break;
9614
9615         case offsetof(struct bpf_sock, state):
9616                 *insn++ = BPF_LDX_MEM(
9617                         BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9618                         si->dst_reg, si->src_reg,
9619                         bpf_target_off(struct sock_common, skc_state,
9620                                        sizeof_field(struct sock_common,
9621                                                     skc_state),
9622                                        target_size));
9623                 break;
9624         case offsetof(struct bpf_sock, rx_queue_mapping):
9625 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9626                 *insn++ = BPF_LDX_MEM(
9627                         BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9628                         si->dst_reg, si->src_reg,
9629                         bpf_target_off(struct sock, sk_rx_queue_mapping,
9630                                        sizeof_field(struct sock,
9631                                                     sk_rx_queue_mapping),
9632                                        target_size));
9633                 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9634                                       1);
9635                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9636 #else
9637                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9638                 *target_size = 2;
9639 #endif
9640                 break;
9641         }
9642
9643         return insn - insn_buf;
9644 }
9645
9646 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9647                                          const struct bpf_insn *si,
9648                                          struct bpf_insn *insn_buf,
9649                                          struct bpf_prog *prog, u32 *target_size)
9650 {
9651         struct bpf_insn *insn = insn_buf;
9652
9653         switch (si->off) {
9654         case offsetof(struct __sk_buff, ifindex):
9655                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9656                                       si->dst_reg, si->src_reg,
9657                                       offsetof(struct sk_buff, dev));
9658                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9659                                       bpf_target_off(struct net_device, ifindex, 4,
9660                                                      target_size));
9661                 break;
9662         default:
9663                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9664                                               target_size);
9665         }
9666
9667         return insn - insn_buf;
9668 }
9669
9670 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9671                                   const struct bpf_insn *si,
9672                                   struct bpf_insn *insn_buf,
9673                                   struct bpf_prog *prog, u32 *target_size)
9674 {
9675         struct bpf_insn *insn = insn_buf;
9676
9677         switch (si->off) {
9678         case offsetof(struct xdp_md, data):
9679                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9680                                       si->dst_reg, si->src_reg,
9681                                       offsetof(struct xdp_buff, data));
9682                 break;
9683         case offsetof(struct xdp_md, data_meta):
9684                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9685                                       si->dst_reg, si->src_reg,
9686                                       offsetof(struct xdp_buff, data_meta));
9687                 break;
9688         case offsetof(struct xdp_md, data_end):
9689                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9690                                       si->dst_reg, si->src_reg,
9691                                       offsetof(struct xdp_buff, data_end));
9692                 break;
9693         case offsetof(struct xdp_md, ingress_ifindex):
9694                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9695                                       si->dst_reg, si->src_reg,
9696                                       offsetof(struct xdp_buff, rxq));
9697                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9698                                       si->dst_reg, si->dst_reg,
9699                                       offsetof(struct xdp_rxq_info, dev));
9700                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9701                                       offsetof(struct net_device, ifindex));
9702                 break;
9703         case offsetof(struct xdp_md, rx_queue_index):
9704                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9705                                       si->dst_reg, si->src_reg,
9706                                       offsetof(struct xdp_buff, rxq));
9707                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9708                                       offsetof(struct xdp_rxq_info,
9709                                                queue_index));
9710                 break;
9711         case offsetof(struct xdp_md, egress_ifindex):
9712                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9713                                       si->dst_reg, si->src_reg,
9714                                       offsetof(struct xdp_buff, txq));
9715                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9716                                       si->dst_reg, si->dst_reg,
9717                                       offsetof(struct xdp_txq_info, dev));
9718                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9719                                       offsetof(struct net_device, ifindex));
9720                 break;
9721         }
9722
9723         return insn - insn_buf;
9724 }
9725
9726 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9727  * context Structure, F is Field in context structure that contains a pointer
9728  * to Nested Structure of type NS that has the field NF.
9729  *
9730  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9731  * sure that SIZE is not greater than actual size of S.F.NF.
9732  *
9733  * If offset OFF is provided, the load happens from that offset relative to
9734  * offset of NF.
9735  */
9736 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
9737         do {                                                                   \
9738                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9739                                       si->src_reg, offsetof(S, F));            \
9740                 *insn++ = BPF_LDX_MEM(                                         \
9741                         SIZE, si->dst_reg, si->dst_reg,                        \
9742                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9743                                        target_size)                            \
9744                                 + OFF);                                        \
9745         } while (0)
9746
9747 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
9748         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
9749                                              BPF_FIELD_SIZEOF(NS, NF), 0)
9750
9751 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9752  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9753  *
9754  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9755  * "register" since two registers available in convert_ctx_access are not
9756  * enough: we can't override neither SRC, since it contains value to store, nor
9757  * DST since it contains pointer to context that may be used by later
9758  * instructions. But we need a temporary place to save pointer to nested
9759  * structure whose field we want to store to.
9760  */
9761 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
9762         do {                                                                   \
9763                 int tmp_reg = BPF_REG_9;                                       \
9764                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9765                         --tmp_reg;                                             \
9766                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
9767                         --tmp_reg;                                             \
9768                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
9769                                       offsetof(S, TF));                        \
9770                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
9771                                       si->dst_reg, offsetof(S, F));            \
9772                 *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,              \
9773                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
9774                                        target_size)                            \
9775                                 + OFF);                                        \
9776                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
9777                                       offsetof(S, TF));                        \
9778         } while (0)
9779
9780 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9781                                                       TF)                      \
9782         do {                                                                   \
9783                 if (type == BPF_WRITE) {                                       \
9784                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9785                                                          OFF, TF);             \
9786                 } else {                                                       \
9787                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
9788                                 S, NS, F, NF, SIZE, OFF);  \
9789                 }                                                              \
9790         } while (0)
9791
9792 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
9793         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
9794                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9795
9796 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9797                                         const struct bpf_insn *si,
9798                                         struct bpf_insn *insn_buf,
9799                                         struct bpf_prog *prog, u32 *target_size)
9800 {
9801         int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9802         struct bpf_insn *insn = insn_buf;
9803
9804         switch (si->off) {
9805         case offsetof(struct bpf_sock_addr, user_family):
9806                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9807                                             struct sockaddr, uaddr, sa_family);
9808                 break;
9809
9810         case offsetof(struct bpf_sock_addr, user_ip4):
9811                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9812                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9813                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9814                 break;
9815
9816         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9817                 off = si->off;
9818                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9819                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9820                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9821                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9822                         tmp_reg);
9823                 break;
9824
9825         case offsetof(struct bpf_sock_addr, user_port):
9826                 /* To get port we need to know sa_family first and then treat
9827                  * sockaddr as either sockaddr_in or sockaddr_in6.
9828                  * Though we can simplify since port field has same offset and
9829                  * size in both structures.
9830                  * Here we check this invariant and use just one of the
9831                  * structures if it's true.
9832                  */
9833                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9834                              offsetof(struct sockaddr_in6, sin6_port));
9835                 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9836                              sizeof_field(struct sockaddr_in6, sin6_port));
9837                 /* Account for sin6_port being smaller than user_port. */
9838                 port_size = min(port_size, BPF_LDST_BYTES(si));
9839                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9840                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9841                         sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9842                 break;
9843
9844         case offsetof(struct bpf_sock_addr, family):
9845                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9846                                             struct sock, sk, sk_family);
9847                 break;
9848
9849         case offsetof(struct bpf_sock_addr, type):
9850                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9851                                             struct sock, sk, sk_type);
9852                 break;
9853
9854         case offsetof(struct bpf_sock_addr, protocol):
9855                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9856                                             struct sock, sk, sk_protocol);
9857                 break;
9858
9859         case offsetof(struct bpf_sock_addr, msg_src_ip4):
9860                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
9861                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9862                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9863                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9864                 break;
9865
9866         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9867                                 msg_src_ip6[3]):
9868                 off = si->off;
9869                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9870                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9871                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9872                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9873                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9874                 break;
9875         case offsetof(struct bpf_sock_addr, sk):
9876                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9877                                       si->dst_reg, si->src_reg,
9878                                       offsetof(struct bpf_sock_addr_kern, sk));
9879                 break;
9880         }
9881
9882         return insn - insn_buf;
9883 }
9884
9885 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9886                                        const struct bpf_insn *si,
9887                                        struct bpf_insn *insn_buf,
9888                                        struct bpf_prog *prog,
9889                                        u32 *target_size)
9890 {
9891         struct bpf_insn *insn = insn_buf;
9892         int off;
9893
9894 /* Helper macro for adding read access to tcp_sock or sock fields. */
9895 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
9896         do {                                                                  \
9897                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9898                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
9899                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9900                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9901                         reg--;                                                \
9902                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9903                         reg--;                                                \
9904                 if (si->dst_reg == si->src_reg) {                             \
9905                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
9906                                           offsetof(struct bpf_sock_ops_kern,  \
9907                                           temp));                             \
9908                         fullsock_reg = reg;                                   \
9909                         jmp += 2;                                             \
9910                 }                                                             \
9911                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9912                                                 struct bpf_sock_ops_kern,     \
9913                                                 is_fullsock),                 \
9914                                       fullsock_reg, si->src_reg,              \
9915                                       offsetof(struct bpf_sock_ops_kern,      \
9916                                                is_fullsock));                 \
9917                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
9918                 if (si->dst_reg == si->src_reg)                               \
9919                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9920                                       offsetof(struct bpf_sock_ops_kern,      \
9921                                       temp));                                 \
9922                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9923                                                 struct bpf_sock_ops_kern, sk),\
9924                                       si->dst_reg, si->src_reg,               \
9925                                       offsetof(struct bpf_sock_ops_kern, sk));\
9926                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
9927                                                        OBJ_FIELD),            \
9928                                       si->dst_reg, si->dst_reg,               \
9929                                       offsetof(OBJ, OBJ_FIELD));              \
9930                 if (si->dst_reg == si->src_reg) {                             \
9931                         *insn++ = BPF_JMP_A(1);                               \
9932                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9933                                       offsetof(struct bpf_sock_ops_kern,      \
9934                                       temp));                                 \
9935                 }                                                             \
9936         } while (0)
9937
9938 #define SOCK_OPS_GET_SK()                                                             \
9939         do {                                                                  \
9940                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
9941                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9942                         reg--;                                                \
9943                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9944                         reg--;                                                \
9945                 if (si->dst_reg == si->src_reg) {                             \
9946                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
9947                                           offsetof(struct bpf_sock_ops_kern,  \
9948                                           temp));                             \
9949                         fullsock_reg = reg;                                   \
9950                         jmp += 2;                                             \
9951                 }                                                             \
9952                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9953                                                 struct bpf_sock_ops_kern,     \
9954                                                 is_fullsock),                 \
9955                                       fullsock_reg, si->src_reg,              \
9956                                       offsetof(struct bpf_sock_ops_kern,      \
9957                                                is_fullsock));                 \
9958                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
9959                 if (si->dst_reg == si->src_reg)                               \
9960                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9961                                       offsetof(struct bpf_sock_ops_kern,      \
9962                                       temp));                                 \
9963                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9964                                                 struct bpf_sock_ops_kern, sk),\
9965                                       si->dst_reg, si->src_reg,               \
9966                                       offsetof(struct bpf_sock_ops_kern, sk));\
9967                 if (si->dst_reg == si->src_reg) {                             \
9968                         *insn++ = BPF_JMP_A(1);                               \
9969                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9970                                       offsetof(struct bpf_sock_ops_kern,      \
9971                                       temp));                                 \
9972                 }                                                             \
9973         } while (0)
9974
9975 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9976                 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9977
9978 /* Helper macro for adding write access to tcp_sock or sock fields.
9979  * The macro is called with two registers, dst_reg which contains a pointer
9980  * to ctx (context) and src_reg which contains the value that should be
9981  * stored. However, we need an additional register since we cannot overwrite
9982  * dst_reg because it may be used later in the program.
9983  * Instead we "borrow" one of the other register. We first save its value
9984  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9985  * it at the end of the macro.
9986  */
9987 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
9988         do {                                                                  \
9989                 int reg = BPF_REG_9;                                          \
9990                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
9991                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9992                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9993                         reg--;                                                \
9994                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9995                         reg--;                                                \
9996                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
9997                                       offsetof(struct bpf_sock_ops_kern,      \
9998                                                temp));                        \
9999                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10000                                                 struct bpf_sock_ops_kern,     \
10001                                                 is_fullsock),                 \
10002                                       reg, si->dst_reg,                       \
10003                                       offsetof(struct bpf_sock_ops_kern,      \
10004                                                is_fullsock));                 \
10005                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
10006                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
10007                                                 struct bpf_sock_ops_kern, sk),\
10008                                       reg, si->dst_reg,                       \
10009                                       offsetof(struct bpf_sock_ops_kern, sk));\
10010                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
10011                                       reg, si->src_reg,                       \
10012                                       offsetof(OBJ, OBJ_FIELD));              \
10013                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
10014                                       offsetof(struct bpf_sock_ops_kern,      \
10015                                                temp));                        \
10016         } while (0)
10017
10018 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
10019         do {                                                                  \
10020                 if (TYPE == BPF_WRITE)                                        \
10021                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
10022                 else                                                          \
10023                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
10024         } while (0)
10025
10026         if (insn > insn_buf)
10027                 return insn - insn_buf;
10028
10029         switch (si->off) {
10030         case offsetof(struct bpf_sock_ops, op):
10031                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10032                                                        op),
10033                                       si->dst_reg, si->src_reg,
10034                                       offsetof(struct bpf_sock_ops_kern, op));
10035                 break;
10036
10037         case offsetof(struct bpf_sock_ops, replylong[0]) ...
10038              offsetof(struct bpf_sock_ops, replylong[3]):
10039                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10040                              sizeof_field(struct bpf_sock_ops_kern, reply));
10041                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10042                              sizeof_field(struct bpf_sock_ops_kern, replylong));
10043                 off = si->off;
10044                 off -= offsetof(struct bpf_sock_ops, replylong[0]);
10045                 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10046                 if (type == BPF_WRITE)
10047                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
10048                                               off);
10049                 else
10050                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10051                                               off);
10052                 break;
10053
10054         case offsetof(struct bpf_sock_ops, family):
10055                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10056
10057                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10058                                               struct bpf_sock_ops_kern, sk),
10059                                       si->dst_reg, si->src_reg,
10060                                       offsetof(struct bpf_sock_ops_kern, sk));
10061                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10062                                       offsetof(struct sock_common, skc_family));
10063                 break;
10064
10065         case offsetof(struct bpf_sock_ops, remote_ip4):
10066                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10067
10068                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10069                                                 struct bpf_sock_ops_kern, sk),
10070                                       si->dst_reg, si->src_reg,
10071                                       offsetof(struct bpf_sock_ops_kern, sk));
10072                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10073                                       offsetof(struct sock_common, skc_daddr));
10074                 break;
10075
10076         case offsetof(struct bpf_sock_ops, local_ip4):
10077                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10078                                           skc_rcv_saddr) != 4);
10079
10080                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10081                                               struct bpf_sock_ops_kern, sk),
10082                                       si->dst_reg, si->src_reg,
10083                                       offsetof(struct bpf_sock_ops_kern, sk));
10084                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10085                                       offsetof(struct sock_common,
10086                                                skc_rcv_saddr));
10087                 break;
10088
10089         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10090              offsetof(struct bpf_sock_ops, remote_ip6[3]):
10091 #if IS_ENABLED(CONFIG_IPV6)
10092                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10093                                           skc_v6_daddr.s6_addr32[0]) != 4);
10094
10095                 off = si->off;
10096                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10097                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10098                                                 struct bpf_sock_ops_kern, sk),
10099                                       si->dst_reg, si->src_reg,
10100                                       offsetof(struct bpf_sock_ops_kern, sk));
10101                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10102                                       offsetof(struct sock_common,
10103                                                skc_v6_daddr.s6_addr32[0]) +
10104                                       off);
10105 #else
10106                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10107 #endif
10108                 break;
10109
10110         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10111              offsetof(struct bpf_sock_ops, local_ip6[3]):
10112 #if IS_ENABLED(CONFIG_IPV6)
10113                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10114                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10115
10116                 off = si->off;
10117                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10118                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10119                                                 struct bpf_sock_ops_kern, sk),
10120                                       si->dst_reg, si->src_reg,
10121                                       offsetof(struct bpf_sock_ops_kern, sk));
10122                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10123                                       offsetof(struct sock_common,
10124                                                skc_v6_rcv_saddr.s6_addr32[0]) +
10125                                       off);
10126 #else
10127                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10128 #endif
10129                 break;
10130
10131         case offsetof(struct bpf_sock_ops, remote_port):
10132                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10133
10134                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10135                                                 struct bpf_sock_ops_kern, sk),
10136                                       si->dst_reg, si->src_reg,
10137                                       offsetof(struct bpf_sock_ops_kern, sk));
10138                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10139                                       offsetof(struct sock_common, skc_dport));
10140 #ifndef __BIG_ENDIAN_BITFIELD
10141                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10142 #endif
10143                 break;
10144
10145         case offsetof(struct bpf_sock_ops, local_port):
10146                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10147
10148                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10149                                                 struct bpf_sock_ops_kern, sk),
10150                                       si->dst_reg, si->src_reg,
10151                                       offsetof(struct bpf_sock_ops_kern, sk));
10152                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10153                                       offsetof(struct sock_common, skc_num));
10154                 break;
10155
10156         case offsetof(struct bpf_sock_ops, is_fullsock):
10157                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10158                                                 struct bpf_sock_ops_kern,
10159                                                 is_fullsock),
10160                                       si->dst_reg, si->src_reg,
10161                                       offsetof(struct bpf_sock_ops_kern,
10162                                                is_fullsock));
10163                 break;
10164
10165         case offsetof(struct bpf_sock_ops, state):
10166                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10167
10168                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10169                                                 struct bpf_sock_ops_kern, sk),
10170                                       si->dst_reg, si->src_reg,
10171                                       offsetof(struct bpf_sock_ops_kern, sk));
10172                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10173                                       offsetof(struct sock_common, skc_state));
10174                 break;
10175
10176         case offsetof(struct bpf_sock_ops, rtt_min):
10177                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10178                              sizeof(struct minmax));
10179                 BUILD_BUG_ON(sizeof(struct minmax) <
10180                              sizeof(struct minmax_sample));
10181
10182                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10183                                                 struct bpf_sock_ops_kern, sk),
10184                                       si->dst_reg, si->src_reg,
10185                                       offsetof(struct bpf_sock_ops_kern, sk));
10186                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10187                                       offsetof(struct tcp_sock, rtt_min) +
10188                                       sizeof_field(struct minmax_sample, t));
10189                 break;
10190
10191         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10192                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10193                                    struct tcp_sock);
10194                 break;
10195
10196         case offsetof(struct bpf_sock_ops, sk_txhash):
10197                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10198                                           struct sock, type);
10199                 break;
10200         case offsetof(struct bpf_sock_ops, snd_cwnd):
10201                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10202                 break;
10203         case offsetof(struct bpf_sock_ops, srtt_us):
10204                 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10205                 break;
10206         case offsetof(struct bpf_sock_ops, snd_ssthresh):
10207                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10208                 break;
10209         case offsetof(struct bpf_sock_ops, rcv_nxt):
10210                 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10211                 break;
10212         case offsetof(struct bpf_sock_ops, snd_nxt):
10213                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10214                 break;
10215         case offsetof(struct bpf_sock_ops, snd_una):
10216                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10217                 break;
10218         case offsetof(struct bpf_sock_ops, mss_cache):
10219                 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10220                 break;
10221         case offsetof(struct bpf_sock_ops, ecn_flags):
10222                 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10223                 break;
10224         case offsetof(struct bpf_sock_ops, rate_delivered):
10225                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10226                 break;
10227         case offsetof(struct bpf_sock_ops, rate_interval_us):
10228                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10229                 break;
10230         case offsetof(struct bpf_sock_ops, packets_out):
10231                 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10232                 break;
10233         case offsetof(struct bpf_sock_ops, retrans_out):
10234                 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10235                 break;
10236         case offsetof(struct bpf_sock_ops, total_retrans):
10237                 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10238                 break;
10239         case offsetof(struct bpf_sock_ops, segs_in):
10240                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10241                 break;
10242         case offsetof(struct bpf_sock_ops, data_segs_in):
10243                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10244                 break;
10245         case offsetof(struct bpf_sock_ops, segs_out):
10246                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10247                 break;
10248         case offsetof(struct bpf_sock_ops, data_segs_out):
10249                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10250                 break;
10251         case offsetof(struct bpf_sock_ops, lost_out):
10252                 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10253                 break;
10254         case offsetof(struct bpf_sock_ops, sacked_out):
10255                 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10256                 break;
10257         case offsetof(struct bpf_sock_ops, bytes_received):
10258                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10259                 break;
10260         case offsetof(struct bpf_sock_ops, bytes_acked):
10261                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10262                 break;
10263         case offsetof(struct bpf_sock_ops, sk):
10264                 SOCK_OPS_GET_SK();
10265                 break;
10266         case offsetof(struct bpf_sock_ops, skb_data_end):
10267                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10268                                                        skb_data_end),
10269                                       si->dst_reg, si->src_reg,
10270                                       offsetof(struct bpf_sock_ops_kern,
10271                                                skb_data_end));
10272                 break;
10273         case offsetof(struct bpf_sock_ops, skb_data):
10274                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10275                                                        skb),
10276                                       si->dst_reg, si->src_reg,
10277                                       offsetof(struct bpf_sock_ops_kern,
10278                                                skb));
10279                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10280                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10281                                       si->dst_reg, si->dst_reg,
10282                                       offsetof(struct sk_buff, data));
10283                 break;
10284         case offsetof(struct bpf_sock_ops, skb_len):
10285                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10286                                                        skb),
10287                                       si->dst_reg, si->src_reg,
10288                                       offsetof(struct bpf_sock_ops_kern,
10289                                                skb));
10290                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10291                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10292                                       si->dst_reg, si->dst_reg,
10293                                       offsetof(struct sk_buff, len));
10294                 break;
10295         case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10296                 off = offsetof(struct sk_buff, cb);
10297                 off += offsetof(struct tcp_skb_cb, tcp_flags);
10298                 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10299                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10300                                                        skb),
10301                                       si->dst_reg, si->src_reg,
10302                                       offsetof(struct bpf_sock_ops_kern,
10303                                                skb));
10304                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10305                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10306                                                        tcp_flags),
10307                                       si->dst_reg, si->dst_reg, off);
10308                 break;
10309         }
10310         return insn - insn_buf;
10311 }
10312
10313 /* data_end = skb->data + skb_headlen() */
10314 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10315                                                     struct bpf_insn *insn)
10316 {
10317         int reg;
10318         int temp_reg_off = offsetof(struct sk_buff, cb) +
10319                            offsetof(struct sk_skb_cb, temp_reg);
10320
10321         if (si->src_reg == si->dst_reg) {
10322                 /* We need an extra register, choose and save a register. */
10323                 reg = BPF_REG_9;
10324                 if (si->src_reg == reg || si->dst_reg == reg)
10325                         reg--;
10326                 if (si->src_reg == reg || si->dst_reg == reg)
10327                         reg--;
10328                 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10329         } else {
10330                 reg = si->dst_reg;
10331         }
10332
10333         /* reg = skb->data */
10334         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10335                               reg, si->src_reg,
10336                               offsetof(struct sk_buff, data));
10337         /* AX = skb->len */
10338         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10339                               BPF_REG_AX, si->src_reg,
10340                               offsetof(struct sk_buff, len));
10341         /* reg = skb->data + skb->len */
10342         *insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10343         /* AX = skb->data_len */
10344         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10345                               BPF_REG_AX, si->src_reg,
10346                               offsetof(struct sk_buff, data_len));
10347
10348         /* reg = skb->data + skb->len - skb->data_len */
10349         *insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10350
10351         if (si->src_reg == si->dst_reg) {
10352                 /* Restore the saved register */
10353                 *insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10354                 *insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10355                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10356         }
10357
10358         return insn;
10359 }
10360
10361 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10362                                      const struct bpf_insn *si,
10363                                      struct bpf_insn *insn_buf,
10364                                      struct bpf_prog *prog, u32 *target_size)
10365 {
10366         struct bpf_insn *insn = insn_buf;
10367         int off;
10368
10369         switch (si->off) {
10370         case offsetof(struct __sk_buff, data_end):
10371                 insn = bpf_convert_data_end_access(si, insn);
10372                 break;
10373         case offsetof(struct __sk_buff, cb[0]) ...
10374              offsetofend(struct __sk_buff, cb[4]) - 1:
10375                 BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10376                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10377                               offsetof(struct sk_skb_cb, data)) %
10378                              sizeof(__u64));
10379
10380                 prog->cb_access = 1;
10381                 off  = si->off;
10382                 off -= offsetof(struct __sk_buff, cb[0]);
10383                 off += offsetof(struct sk_buff, cb);
10384                 off += offsetof(struct sk_skb_cb, data);
10385                 if (type == BPF_WRITE)
10386                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
10387                                               si->src_reg, off);
10388                 else
10389                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10390                                               si->src_reg, off);
10391                 break;
10392
10393
10394         default:
10395                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10396                                               target_size);
10397         }
10398
10399         return insn - insn_buf;
10400 }
10401
10402 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10403                                      const struct bpf_insn *si,
10404                                      struct bpf_insn *insn_buf,
10405                                      struct bpf_prog *prog, u32 *target_size)
10406 {
10407         struct bpf_insn *insn = insn_buf;
10408 #if IS_ENABLED(CONFIG_IPV6)
10409         int off;
10410 #endif
10411
10412         /* convert ctx uses the fact sg element is first in struct */
10413         BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10414
10415         switch (si->off) {
10416         case offsetof(struct sk_msg_md, data):
10417                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10418                                       si->dst_reg, si->src_reg,
10419                                       offsetof(struct sk_msg, data));
10420                 break;
10421         case offsetof(struct sk_msg_md, data_end):
10422                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10423                                       si->dst_reg, si->src_reg,
10424                                       offsetof(struct sk_msg, data_end));
10425                 break;
10426         case offsetof(struct sk_msg_md, family):
10427                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10428
10429                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10430                                               struct sk_msg, sk),
10431                                       si->dst_reg, si->src_reg,
10432                                       offsetof(struct sk_msg, sk));
10433                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10434                                       offsetof(struct sock_common, skc_family));
10435                 break;
10436
10437         case offsetof(struct sk_msg_md, remote_ip4):
10438                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10439
10440                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10441                                                 struct sk_msg, sk),
10442                                       si->dst_reg, si->src_reg,
10443                                       offsetof(struct sk_msg, sk));
10444                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10445                                       offsetof(struct sock_common, skc_daddr));
10446                 break;
10447
10448         case offsetof(struct sk_msg_md, local_ip4):
10449                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10450                                           skc_rcv_saddr) != 4);
10451
10452                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10453                                               struct sk_msg, sk),
10454                                       si->dst_reg, si->src_reg,
10455                                       offsetof(struct sk_msg, sk));
10456                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10457                                       offsetof(struct sock_common,
10458                                                skc_rcv_saddr));
10459                 break;
10460
10461         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10462              offsetof(struct sk_msg_md, remote_ip6[3]):
10463 #if IS_ENABLED(CONFIG_IPV6)
10464                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10465                                           skc_v6_daddr.s6_addr32[0]) != 4);
10466
10467                 off = si->off;
10468                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10469                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10470                                                 struct sk_msg, sk),
10471                                       si->dst_reg, si->src_reg,
10472                                       offsetof(struct sk_msg, sk));
10473                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10474                                       offsetof(struct sock_common,
10475                                                skc_v6_daddr.s6_addr32[0]) +
10476                                       off);
10477 #else
10478                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10479 #endif
10480                 break;
10481
10482         case offsetof(struct sk_msg_md, local_ip6[0]) ...
10483              offsetof(struct sk_msg_md, local_ip6[3]):
10484 #if IS_ENABLED(CONFIG_IPV6)
10485                 BUILD_BUG_ON(sizeof_field(struct sock_common,
10486                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10487
10488                 off = si->off;
10489                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
10490                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10491                                                 struct sk_msg, sk),
10492                                       si->dst_reg, si->src_reg,
10493                                       offsetof(struct sk_msg, sk));
10494                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10495                                       offsetof(struct sock_common,
10496                                                skc_v6_rcv_saddr.s6_addr32[0]) +
10497                                       off);
10498 #else
10499                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10500 #endif
10501                 break;
10502
10503         case offsetof(struct sk_msg_md, remote_port):
10504                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10505
10506                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10507                                                 struct sk_msg, sk),
10508                                       si->dst_reg, si->src_reg,
10509                                       offsetof(struct sk_msg, sk));
10510                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10511                                       offsetof(struct sock_common, skc_dport));
10512 #ifndef __BIG_ENDIAN_BITFIELD
10513                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10514 #endif
10515                 break;
10516
10517         case offsetof(struct sk_msg_md, local_port):
10518                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10519
10520                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10521                                                 struct sk_msg, sk),
10522                                       si->dst_reg, si->src_reg,
10523                                       offsetof(struct sk_msg, sk));
10524                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10525                                       offsetof(struct sock_common, skc_num));
10526                 break;
10527
10528         case offsetof(struct sk_msg_md, size):
10529                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10530                                       si->dst_reg, si->src_reg,
10531                                       offsetof(struct sk_msg_sg, size));
10532                 break;
10533
10534         case offsetof(struct sk_msg_md, sk):
10535                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10536                                       si->dst_reg, si->src_reg,
10537                                       offsetof(struct sk_msg, sk));
10538                 break;
10539         }
10540
10541         return insn - insn_buf;
10542 }
10543
10544 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10545         .get_func_proto         = sk_filter_func_proto,
10546         .is_valid_access        = sk_filter_is_valid_access,
10547         .convert_ctx_access     = bpf_convert_ctx_access,
10548         .gen_ld_abs             = bpf_gen_ld_abs,
10549 };
10550
10551 const struct bpf_prog_ops sk_filter_prog_ops = {
10552         .test_run               = bpf_prog_test_run_skb,
10553 };
10554
10555 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10556         .get_func_proto         = tc_cls_act_func_proto,
10557         .is_valid_access        = tc_cls_act_is_valid_access,
10558         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
10559         .gen_prologue           = tc_cls_act_prologue,
10560         .gen_ld_abs             = bpf_gen_ld_abs,
10561 };
10562
10563 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10564         .test_run               = bpf_prog_test_run_skb,
10565 };
10566
10567 const struct bpf_verifier_ops xdp_verifier_ops = {
10568         .get_func_proto         = xdp_func_proto,
10569         .is_valid_access        = xdp_is_valid_access,
10570         .convert_ctx_access     = xdp_convert_ctx_access,
10571         .gen_prologue           = bpf_noop_prologue,
10572 };
10573
10574 const struct bpf_prog_ops xdp_prog_ops = {
10575         .test_run               = bpf_prog_test_run_xdp,
10576 };
10577
10578 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10579         .get_func_proto         = cg_skb_func_proto,
10580         .is_valid_access        = cg_skb_is_valid_access,
10581         .convert_ctx_access     = bpf_convert_ctx_access,
10582 };
10583
10584 const struct bpf_prog_ops cg_skb_prog_ops = {
10585         .test_run               = bpf_prog_test_run_skb,
10586 };
10587
10588 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10589         .get_func_proto         = lwt_in_func_proto,
10590         .is_valid_access        = lwt_is_valid_access,
10591         .convert_ctx_access     = bpf_convert_ctx_access,
10592 };
10593
10594 const struct bpf_prog_ops lwt_in_prog_ops = {
10595         .test_run               = bpf_prog_test_run_skb,
10596 };
10597
10598 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10599         .get_func_proto         = lwt_out_func_proto,
10600         .is_valid_access        = lwt_is_valid_access,
10601         .convert_ctx_access     = bpf_convert_ctx_access,
10602 };
10603
10604 const struct bpf_prog_ops lwt_out_prog_ops = {
10605         .test_run               = bpf_prog_test_run_skb,
10606 };
10607
10608 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10609         .get_func_proto         = lwt_xmit_func_proto,
10610         .is_valid_access        = lwt_is_valid_access,
10611         .convert_ctx_access     = bpf_convert_ctx_access,
10612         .gen_prologue           = tc_cls_act_prologue,
10613 };
10614
10615 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10616         .test_run               = bpf_prog_test_run_skb,
10617 };
10618
10619 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10620         .get_func_proto         = lwt_seg6local_func_proto,
10621         .is_valid_access        = lwt_is_valid_access,
10622         .convert_ctx_access     = bpf_convert_ctx_access,
10623 };
10624
10625 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10626         .test_run               = bpf_prog_test_run_skb,
10627 };
10628
10629 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10630         .get_func_proto         = sock_filter_func_proto,
10631         .is_valid_access        = sock_filter_is_valid_access,
10632         .convert_ctx_access     = bpf_sock_convert_ctx_access,
10633 };
10634
10635 const struct bpf_prog_ops cg_sock_prog_ops = {
10636 };
10637
10638 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10639         .get_func_proto         = sock_addr_func_proto,
10640         .is_valid_access        = sock_addr_is_valid_access,
10641         .convert_ctx_access     = sock_addr_convert_ctx_access,
10642 };
10643
10644 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10645 };
10646
10647 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10648         .get_func_proto         = sock_ops_func_proto,
10649         .is_valid_access        = sock_ops_is_valid_access,
10650         .convert_ctx_access     = sock_ops_convert_ctx_access,
10651 };
10652
10653 const struct bpf_prog_ops sock_ops_prog_ops = {
10654 };
10655
10656 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10657         .get_func_proto         = sk_skb_func_proto,
10658         .is_valid_access        = sk_skb_is_valid_access,
10659         .convert_ctx_access     = sk_skb_convert_ctx_access,
10660         .gen_prologue           = sk_skb_prologue,
10661 };
10662
10663 const struct bpf_prog_ops sk_skb_prog_ops = {
10664 };
10665
10666 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10667         .get_func_proto         = sk_msg_func_proto,
10668         .is_valid_access        = sk_msg_is_valid_access,
10669         .convert_ctx_access     = sk_msg_convert_ctx_access,
10670         .gen_prologue           = bpf_noop_prologue,
10671 };
10672
10673 const struct bpf_prog_ops sk_msg_prog_ops = {
10674 };
10675
10676 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10677         .get_func_proto         = flow_dissector_func_proto,
10678         .is_valid_access        = flow_dissector_is_valid_access,
10679         .convert_ctx_access     = flow_dissector_convert_ctx_access,
10680 };
10681
10682 const struct bpf_prog_ops flow_dissector_prog_ops = {
10683         .test_run               = bpf_prog_test_run_flow_dissector,
10684 };
10685
10686 int sk_detach_filter(struct sock *sk)
10687 {
10688         int ret = -ENOENT;
10689         struct sk_filter *filter;
10690
10691         if (sock_flag(sk, SOCK_FILTER_LOCKED))
10692                 return -EPERM;
10693
10694         filter = rcu_dereference_protected(sk->sk_filter,
10695                                            lockdep_sock_is_held(sk));
10696         if (filter) {
10697                 RCU_INIT_POINTER(sk->sk_filter, NULL);
10698                 sk_filter_uncharge(sk, filter);
10699                 ret = 0;
10700         }
10701
10702         return ret;
10703 }
10704 EXPORT_SYMBOL_GPL(sk_detach_filter);
10705
10706 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
10707 {
10708         struct sock_fprog_kern *fprog;
10709         struct sk_filter *filter;
10710         int ret = 0;
10711
10712         sockopt_lock_sock(sk);
10713         filter = rcu_dereference_protected(sk->sk_filter,
10714                                            lockdep_sock_is_held(sk));
10715         if (!filter)
10716                 goto out;
10717
10718         /* We're copying the filter that has been originally attached,
10719          * so no conversion/decode needed anymore. eBPF programs that
10720          * have no original program cannot be dumped through this.
10721          */
10722         ret = -EACCES;
10723         fprog = filter->prog->orig_prog;
10724         if (!fprog)
10725                 goto out;
10726
10727         ret = fprog->len;
10728         if (!len)
10729                 /* User space only enquires number of filter blocks. */
10730                 goto out;
10731
10732         ret = -EINVAL;
10733         if (len < fprog->len)
10734                 goto out;
10735
10736         ret = -EFAULT;
10737         if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
10738                 goto out;
10739
10740         /* Instead of bytes, the API requests to return the number
10741          * of filter blocks.
10742          */
10743         ret = fprog->len;
10744 out:
10745         sockopt_release_sock(sk);
10746         return ret;
10747 }
10748
10749 #ifdef CONFIG_INET
10750 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10751                                     struct sock_reuseport *reuse,
10752                                     struct sock *sk, struct sk_buff *skb,
10753                                     struct sock *migrating_sk,
10754                                     u32 hash)
10755 {
10756         reuse_kern->skb = skb;
10757         reuse_kern->sk = sk;
10758         reuse_kern->selected_sk = NULL;
10759         reuse_kern->migrating_sk = migrating_sk;
10760         reuse_kern->data_end = skb->data + skb_headlen(skb);
10761         reuse_kern->hash = hash;
10762         reuse_kern->reuseport_id = reuse->reuseport_id;
10763         reuse_kern->bind_inany = reuse->bind_inany;
10764 }
10765
10766 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10767                                   struct bpf_prog *prog, struct sk_buff *skb,
10768                                   struct sock *migrating_sk,
10769                                   u32 hash)
10770 {
10771         struct sk_reuseport_kern reuse_kern;
10772         enum sk_action action;
10773
10774         bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10775         action = bpf_prog_run(prog, &reuse_kern);
10776
10777         if (action == SK_PASS)
10778                 return reuse_kern.selected_sk;
10779         else
10780                 return ERR_PTR(-ECONNREFUSED);
10781 }
10782
10783 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10784            struct bpf_map *, map, void *, key, u32, flags)
10785 {
10786         bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10787         struct sock_reuseport *reuse;
10788         struct sock *selected_sk;
10789
10790         selected_sk = map->ops->map_lookup_elem(map, key);
10791         if (!selected_sk)
10792                 return -ENOENT;
10793
10794         reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10795         if (!reuse) {
10796                 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10797                 if (sk_is_refcounted(selected_sk))
10798                         sock_put(selected_sk);
10799
10800                 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
10801                  * The only (!reuse) case here is - the sk has already been
10802                  * unhashed (e.g. by close()), so treat it as -ENOENT.
10803                  *
10804                  * Other maps (e.g. sock_map) do not provide this guarantee and
10805                  * the sk may never be in the reuseport group to begin with.
10806                  */
10807                 return is_sockarray ? -ENOENT : -EINVAL;
10808         }
10809
10810         if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10811                 struct sock *sk = reuse_kern->sk;
10812
10813                 if (sk->sk_protocol != selected_sk->sk_protocol)
10814                         return -EPROTOTYPE;
10815                 else if (sk->sk_family != selected_sk->sk_family)
10816                         return -EAFNOSUPPORT;
10817
10818                 /* Catch all. Likely bound to a different sockaddr. */
10819                 return -EBADFD;
10820         }
10821
10822         reuse_kern->selected_sk = selected_sk;
10823
10824         return 0;
10825 }
10826
10827 static const struct bpf_func_proto sk_select_reuseport_proto = {
10828         .func           = sk_select_reuseport,
10829         .gpl_only       = false,
10830         .ret_type       = RET_INTEGER,
10831         .arg1_type      = ARG_PTR_TO_CTX,
10832         .arg2_type      = ARG_CONST_MAP_PTR,
10833         .arg3_type      = ARG_PTR_TO_MAP_KEY,
10834         .arg4_type      = ARG_ANYTHING,
10835 };
10836
10837 BPF_CALL_4(sk_reuseport_load_bytes,
10838            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10839            void *, to, u32, len)
10840 {
10841         return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10842 }
10843
10844 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10845         .func           = sk_reuseport_load_bytes,
10846         .gpl_only       = false,
10847         .ret_type       = RET_INTEGER,
10848         .arg1_type      = ARG_PTR_TO_CTX,
10849         .arg2_type      = ARG_ANYTHING,
10850         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
10851         .arg4_type      = ARG_CONST_SIZE,
10852 };
10853
10854 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10855            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10856            void *, to, u32, len, u32, start_header)
10857 {
10858         return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10859                                                len, start_header);
10860 }
10861
10862 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10863         .func           = sk_reuseport_load_bytes_relative,
10864         .gpl_only       = false,
10865         .ret_type       = RET_INTEGER,
10866         .arg1_type      = ARG_PTR_TO_CTX,
10867         .arg2_type      = ARG_ANYTHING,
10868         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
10869         .arg4_type      = ARG_CONST_SIZE,
10870         .arg5_type      = ARG_ANYTHING,
10871 };
10872
10873 static const struct bpf_func_proto *
10874 sk_reuseport_func_proto(enum bpf_func_id func_id,
10875                         const struct bpf_prog *prog)
10876 {
10877         switch (func_id) {
10878         case BPF_FUNC_sk_select_reuseport:
10879                 return &sk_select_reuseport_proto;
10880         case BPF_FUNC_skb_load_bytes:
10881                 return &sk_reuseport_load_bytes_proto;
10882         case BPF_FUNC_skb_load_bytes_relative:
10883                 return &sk_reuseport_load_bytes_relative_proto;
10884         case BPF_FUNC_get_socket_cookie:
10885                 return &bpf_get_socket_ptr_cookie_proto;
10886         case BPF_FUNC_ktime_get_coarse_ns:
10887                 return &bpf_ktime_get_coarse_ns_proto;
10888         default:
10889                 return bpf_base_func_proto(func_id);
10890         }
10891 }
10892
10893 static bool
10894 sk_reuseport_is_valid_access(int off, int size,
10895                              enum bpf_access_type type,
10896                              const struct bpf_prog *prog,
10897                              struct bpf_insn_access_aux *info)
10898 {
10899         const u32 size_default = sizeof(__u32);
10900
10901         if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
10902             off % size || type != BPF_READ)
10903                 return false;
10904
10905         switch (off) {
10906         case offsetof(struct sk_reuseport_md, data):
10907                 info->reg_type = PTR_TO_PACKET;
10908                 return size == sizeof(__u64);
10909
10910         case offsetof(struct sk_reuseport_md, data_end):
10911                 info->reg_type = PTR_TO_PACKET_END;
10912                 return size == sizeof(__u64);
10913
10914         case offsetof(struct sk_reuseport_md, hash):
10915                 return size == size_default;
10916
10917         case offsetof(struct sk_reuseport_md, sk):
10918                 info->reg_type = PTR_TO_SOCKET;
10919                 return size == sizeof(__u64);
10920
10921         case offsetof(struct sk_reuseport_md, migrating_sk):
10922                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
10923                 return size == sizeof(__u64);
10924
10925         /* Fields that allow narrowing */
10926         case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
10927                 if (size < sizeof_field(struct sk_buff, protocol))
10928                         return false;
10929                 fallthrough;
10930         case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
10931         case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
10932         case bpf_ctx_range(struct sk_reuseport_md, len):
10933                 bpf_ctx_record_field_size(info, size_default);
10934                 return bpf_ctx_narrow_access_ok(off, size, size_default);
10935
10936         default:
10937                 return false;
10938         }
10939 }
10940
10941 #define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
10942         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
10943                               si->dst_reg, si->src_reg,                 \
10944                               bpf_target_off(struct sk_reuseport_kern, F, \
10945                                              sizeof_field(struct sk_reuseport_kern, F), \
10946                                              target_size));             \
10947         })
10948
10949 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
10950         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
10951                                     struct sk_buff,                     \
10952                                     skb,                                \
10953                                     SKB_FIELD)
10954
10955 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)                            \
10956         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
10957                                     struct sock,                        \
10958                                     sk,                                 \
10959                                     SK_FIELD)
10960
10961 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
10962                                            const struct bpf_insn *si,
10963                                            struct bpf_insn *insn_buf,
10964                                            struct bpf_prog *prog,
10965                                            u32 *target_size)
10966 {
10967         struct bpf_insn *insn = insn_buf;
10968
10969         switch (si->off) {
10970         case offsetof(struct sk_reuseport_md, data):
10971                 SK_REUSEPORT_LOAD_SKB_FIELD(data);
10972                 break;
10973
10974         case offsetof(struct sk_reuseport_md, len):
10975                 SK_REUSEPORT_LOAD_SKB_FIELD(len);
10976                 break;
10977
10978         case offsetof(struct sk_reuseport_md, eth_protocol):
10979                 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
10980                 break;
10981
10982         case offsetof(struct sk_reuseport_md, ip_protocol):
10983                 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
10984                 break;
10985
10986         case offsetof(struct sk_reuseport_md, data_end):
10987                 SK_REUSEPORT_LOAD_FIELD(data_end);
10988                 break;
10989
10990         case offsetof(struct sk_reuseport_md, hash):
10991                 SK_REUSEPORT_LOAD_FIELD(hash);
10992                 break;
10993
10994         case offsetof(struct sk_reuseport_md, bind_inany):
10995                 SK_REUSEPORT_LOAD_FIELD(bind_inany);
10996                 break;
10997
10998         case offsetof(struct sk_reuseport_md, sk):
10999                 SK_REUSEPORT_LOAD_FIELD(sk);
11000                 break;
11001
11002         case offsetof(struct sk_reuseport_md, migrating_sk):
11003                 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11004                 break;
11005         }
11006
11007         return insn - insn_buf;
11008 }
11009
11010 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11011         .get_func_proto         = sk_reuseport_func_proto,
11012         .is_valid_access        = sk_reuseport_is_valid_access,
11013         .convert_ctx_access     = sk_reuseport_convert_ctx_access,
11014 };
11015
11016 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11017 };
11018
11019 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11020 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11021
11022 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11023            struct sock *, sk, u64, flags)
11024 {
11025         if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11026                                BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11027                 return -EINVAL;
11028         if (unlikely(sk && sk_is_refcounted(sk)))
11029                 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11030         if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11031                 return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11032         if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11033                 return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11034
11035         /* Check if socket is suitable for packet L3/L4 protocol */
11036         if (sk && sk->sk_protocol != ctx->protocol)
11037                 return -EPROTOTYPE;
11038         if (sk && sk->sk_family != ctx->family &&
11039             (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11040                 return -EAFNOSUPPORT;
11041
11042         if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11043                 return -EEXIST;
11044
11045         /* Select socket as lookup result */
11046         ctx->selected_sk = sk;
11047         ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11048         return 0;
11049 }
11050
11051 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11052         .func           = bpf_sk_lookup_assign,
11053         .gpl_only       = false,
11054         .ret_type       = RET_INTEGER,
11055         .arg1_type      = ARG_PTR_TO_CTX,
11056         .arg2_type      = ARG_PTR_TO_SOCKET_OR_NULL,
11057         .arg3_type      = ARG_ANYTHING,
11058 };
11059
11060 static const struct bpf_func_proto *
11061 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11062 {
11063         switch (func_id) {
11064         case BPF_FUNC_perf_event_output:
11065                 return &bpf_event_output_data_proto;
11066         case BPF_FUNC_sk_assign:
11067                 return &bpf_sk_lookup_assign_proto;
11068         case BPF_FUNC_sk_release:
11069                 return &bpf_sk_release_proto;
11070         default:
11071                 return bpf_sk_base_func_proto(func_id);
11072         }
11073 }
11074
11075 static bool sk_lookup_is_valid_access(int off, int size,
11076                                       enum bpf_access_type type,
11077                                       const struct bpf_prog *prog,
11078                                       struct bpf_insn_access_aux *info)
11079 {
11080         if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11081                 return false;
11082         if (off % size != 0)
11083                 return false;
11084         if (type != BPF_READ)
11085                 return false;
11086
11087         switch (off) {
11088         case offsetof(struct bpf_sk_lookup, sk):
11089                 info->reg_type = PTR_TO_SOCKET_OR_NULL;
11090                 return size == sizeof(__u64);
11091
11092         case bpf_ctx_range(struct bpf_sk_lookup, family):
11093         case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11094         case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11095         case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11096         case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11097         case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11098         case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11099         case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11100                 bpf_ctx_record_field_size(info, sizeof(__u32));
11101                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11102
11103         case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11104                 /* Allow 4-byte access to 2-byte field for backward compatibility */
11105                 if (size == sizeof(__u32))
11106                         return true;
11107                 bpf_ctx_record_field_size(info, sizeof(__be16));
11108                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11109
11110         case offsetofend(struct bpf_sk_lookup, remote_port) ...
11111              offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11112                 /* Allow access to zero padding for backward compatibility */
11113                 bpf_ctx_record_field_size(info, sizeof(__u16));
11114                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11115
11116         default:
11117                 return false;
11118         }
11119 }
11120
11121 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11122                                         const struct bpf_insn *si,
11123                                         struct bpf_insn *insn_buf,
11124                                         struct bpf_prog *prog,
11125                                         u32 *target_size)
11126 {
11127         struct bpf_insn *insn = insn_buf;
11128
11129         switch (si->off) {
11130         case offsetof(struct bpf_sk_lookup, sk):
11131                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11132                                       offsetof(struct bpf_sk_lookup_kern, selected_sk));
11133                 break;
11134
11135         case offsetof(struct bpf_sk_lookup, family):
11136                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11137                                       bpf_target_off(struct bpf_sk_lookup_kern,
11138                                                      family, 2, target_size));
11139                 break;
11140
11141         case offsetof(struct bpf_sk_lookup, protocol):
11142                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11143                                       bpf_target_off(struct bpf_sk_lookup_kern,
11144                                                      protocol, 2, target_size));
11145                 break;
11146
11147         case offsetof(struct bpf_sk_lookup, remote_ip4):
11148                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11149                                       bpf_target_off(struct bpf_sk_lookup_kern,
11150                                                      v4.saddr, 4, target_size));
11151                 break;
11152
11153         case offsetof(struct bpf_sk_lookup, local_ip4):
11154                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11155                                       bpf_target_off(struct bpf_sk_lookup_kern,
11156                                                      v4.daddr, 4, target_size));
11157                 break;
11158
11159         case bpf_ctx_range_till(struct bpf_sk_lookup,
11160                                 remote_ip6[0], remote_ip6[3]): {
11161 #if IS_ENABLED(CONFIG_IPV6)
11162                 int off = si->off;
11163
11164                 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11165                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11166                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11167                                       offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11168                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11169                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11170 #else
11171                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11172 #endif
11173                 break;
11174         }
11175         case bpf_ctx_range_till(struct bpf_sk_lookup,
11176                                 local_ip6[0], local_ip6[3]): {
11177 #if IS_ENABLED(CONFIG_IPV6)
11178                 int off = si->off;
11179
11180                 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11181                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11182                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11183                                       offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11184                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11185                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11186 #else
11187                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11188 #endif
11189                 break;
11190         }
11191         case offsetof(struct bpf_sk_lookup, remote_port):
11192                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11193                                       bpf_target_off(struct bpf_sk_lookup_kern,
11194                                                      sport, 2, target_size));
11195                 break;
11196
11197         case offsetofend(struct bpf_sk_lookup, remote_port):
11198                 *target_size = 2;
11199                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11200                 break;
11201
11202         case offsetof(struct bpf_sk_lookup, local_port):
11203                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11204                                       bpf_target_off(struct bpf_sk_lookup_kern,
11205                                                      dport, 2, target_size));
11206                 break;
11207
11208         case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11209                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11210                                       bpf_target_off(struct bpf_sk_lookup_kern,
11211                                                      ingress_ifindex, 4, target_size));
11212                 break;
11213         }
11214
11215         return insn - insn_buf;
11216 }
11217
11218 const struct bpf_prog_ops sk_lookup_prog_ops = {
11219         .test_run = bpf_prog_test_run_sk_lookup,
11220 };
11221
11222 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11223         .get_func_proto         = sk_lookup_func_proto,
11224         .is_valid_access        = sk_lookup_is_valid_access,
11225         .convert_ctx_access     = sk_lookup_convert_ctx_access,
11226 };
11227
11228 #endif /* CONFIG_INET */
11229
11230 DEFINE_BPF_DISPATCHER(xdp)
11231
11232 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11233 {
11234         bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11235 }
11236
11237 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11238 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11239 BTF_SOCK_TYPE_xxx
11240 #undef BTF_SOCK_TYPE
11241
11242 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11243 {
11244         /* tcp6_sock type is not generated in dwarf and hence btf,
11245          * trigger an explicit type generation here.
11246          */
11247         BTF_TYPE_EMIT(struct tcp6_sock);
11248         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11249             sk->sk_family == AF_INET6)
11250                 return (unsigned long)sk;
11251
11252         return (unsigned long)NULL;
11253 }
11254
11255 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11256         .func                   = bpf_skc_to_tcp6_sock,
11257         .gpl_only               = false,
11258         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11259         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11260         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11261 };
11262
11263 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11264 {
11265         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11266                 return (unsigned long)sk;
11267
11268         return (unsigned long)NULL;
11269 }
11270
11271 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11272         .func                   = bpf_skc_to_tcp_sock,
11273         .gpl_only               = false,
11274         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11275         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11276         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11277 };
11278
11279 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11280 {
11281         /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11282          * generated if CONFIG_INET=n. Trigger an explicit generation here.
11283          */
11284         BTF_TYPE_EMIT(struct inet_timewait_sock);
11285         BTF_TYPE_EMIT(struct tcp_timewait_sock);
11286
11287 #ifdef CONFIG_INET
11288         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11289                 return (unsigned long)sk;
11290 #endif
11291
11292 #if IS_BUILTIN(CONFIG_IPV6)
11293         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11294                 return (unsigned long)sk;
11295 #endif
11296
11297         return (unsigned long)NULL;
11298 }
11299
11300 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11301         .func                   = bpf_skc_to_tcp_timewait_sock,
11302         .gpl_only               = false,
11303         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11304         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11305         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11306 };
11307
11308 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11309 {
11310 #ifdef CONFIG_INET
11311         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11312                 return (unsigned long)sk;
11313 #endif
11314
11315 #if IS_BUILTIN(CONFIG_IPV6)
11316         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11317                 return (unsigned long)sk;
11318 #endif
11319
11320         return (unsigned long)NULL;
11321 }
11322
11323 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11324         .func                   = bpf_skc_to_tcp_request_sock,
11325         .gpl_only               = false,
11326         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11327         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11328         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11329 };
11330
11331 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11332 {
11333         /* udp6_sock type is not generated in dwarf and hence btf,
11334          * trigger an explicit type generation here.
11335          */
11336         BTF_TYPE_EMIT(struct udp6_sock);
11337         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11338             sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11339                 return (unsigned long)sk;
11340
11341         return (unsigned long)NULL;
11342 }
11343
11344 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11345         .func                   = bpf_skc_to_udp6_sock,
11346         .gpl_only               = false,
11347         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11348         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11349         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11350 };
11351
11352 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11353 {
11354         /* unix_sock type is not generated in dwarf and hence btf,
11355          * trigger an explicit type generation here.
11356          */
11357         BTF_TYPE_EMIT(struct unix_sock);
11358         if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11359                 return (unsigned long)sk;
11360
11361         return (unsigned long)NULL;
11362 }
11363
11364 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11365         .func                   = bpf_skc_to_unix_sock,
11366         .gpl_only               = false,
11367         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
11368         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11369         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11370 };
11371
11372 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11373 {
11374         BTF_TYPE_EMIT(struct mptcp_sock);
11375         return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11376 }
11377
11378 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11379         .func           = bpf_skc_to_mptcp_sock,
11380         .gpl_only       = false,
11381         .ret_type       = RET_PTR_TO_BTF_ID_OR_NULL,
11382         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
11383         .ret_btf_id     = &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11384 };
11385
11386 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11387 {
11388         return (unsigned long)sock_from_file(file);
11389 }
11390
11391 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11392 BTF_ID(struct, socket)
11393 BTF_ID(struct, file)
11394
11395 const struct bpf_func_proto bpf_sock_from_file_proto = {
11396         .func           = bpf_sock_from_file,
11397         .gpl_only       = false,
11398         .ret_type       = RET_PTR_TO_BTF_ID_OR_NULL,
11399         .ret_btf_id     = &bpf_sock_from_file_btf_ids[0],
11400         .arg1_type      = ARG_PTR_TO_BTF_ID,
11401         .arg1_btf_id    = &bpf_sock_from_file_btf_ids[1],
11402 };
11403
11404 static const struct bpf_func_proto *
11405 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11406 {
11407         const struct bpf_func_proto *func;
11408
11409         switch (func_id) {
11410         case BPF_FUNC_skc_to_tcp6_sock:
11411                 func = &bpf_skc_to_tcp6_sock_proto;
11412                 break;
11413         case BPF_FUNC_skc_to_tcp_sock:
11414                 func = &bpf_skc_to_tcp_sock_proto;
11415                 break;
11416         case BPF_FUNC_skc_to_tcp_timewait_sock:
11417                 func = &bpf_skc_to_tcp_timewait_sock_proto;
11418                 break;
11419         case BPF_FUNC_skc_to_tcp_request_sock:
11420                 func = &bpf_skc_to_tcp_request_sock_proto;
11421                 break;
11422         case BPF_FUNC_skc_to_udp6_sock:
11423                 func = &bpf_skc_to_udp6_sock_proto;
11424                 break;
11425         case BPF_FUNC_skc_to_unix_sock:
11426                 func = &bpf_skc_to_unix_sock_proto;
11427                 break;
11428         case BPF_FUNC_skc_to_mptcp_sock:
11429                 func = &bpf_skc_to_mptcp_sock_proto;
11430                 break;
11431         case BPF_FUNC_ktime_get_coarse_ns:
11432                 return &bpf_ktime_get_coarse_ns_proto;
11433         default:
11434                 return bpf_base_func_proto(func_id);
11435         }
11436
11437         if (!perfmon_capable())
11438                 return NULL;
11439
11440         return func;
11441 }