bpf, sockmap: Add skb_adjust_room to pop bytes off ingress payload
[platform/kernel/linux-starfive.git] / net / core / filter.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *      Jay Schulist <jschlst@samba.org>
13  *      Alexei Starovoitov <ast@plumgrid.com>
14  *      Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/mm.h>
23 #include <linux/fcntl.h>
24 #include <linux/socket.h>
25 #include <linux/sock_diag.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/netdevice.h>
29 #include <linux/if_packet.h>
30 #include <linux/if_arp.h>
31 #include <linux/gfp.h>
32 #include <net/inet_common.h>
33 #include <net/ip.h>
34 #include <net/protocol.h>
35 #include <net/netlink.h>
36 #include <linux/skbuff.h>
37 #include <linux/skmsg.h>
38 #include <net/sock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/errno.h>
41 #include <linux/timer.h>
42 #include <linux/uaccess.h>
43 #include <asm/unaligned.h>
44 #include <asm/cmpxchg.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80
81 static const struct bpf_func_proto *
82 bpf_sk_base_func_proto(enum bpf_func_id func_id);
83
84 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
85 {
86         if (in_compat_syscall()) {
87                 struct compat_sock_fprog f32;
88
89                 if (len != sizeof(f32))
90                         return -EINVAL;
91                 if (copy_from_sockptr(&f32, src, sizeof(f32)))
92                         return -EFAULT;
93                 memset(dst, 0, sizeof(*dst));
94                 dst->len = f32.len;
95                 dst->filter = compat_ptr(f32.filter);
96         } else {
97                 if (len != sizeof(*dst))
98                         return -EINVAL;
99                 if (copy_from_sockptr(dst, src, sizeof(*dst)))
100                         return -EFAULT;
101         }
102
103         return 0;
104 }
105 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
106
107 /**
108  *      sk_filter_trim_cap - run a packet through a socket filter
109  *      @sk: sock associated with &sk_buff
110  *      @skb: buffer to filter
111  *      @cap: limit on how short the eBPF program may trim the packet
112  *
113  * Run the eBPF program and then cut skb->data to correct size returned by
114  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
115  * than pkt_len we keep whole skb->data. This is the socket level
116  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
117  * be accepted or -EPERM if the packet should be tossed.
118  *
119  */
120 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
121 {
122         int err;
123         struct sk_filter *filter;
124
125         /*
126          * If the skb was allocated from pfmemalloc reserves, only
127          * allow SOCK_MEMALLOC sockets to use it as this socket is
128          * helping free memory
129          */
130         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
131                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
132                 return -ENOMEM;
133         }
134         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
135         if (err)
136                 return err;
137
138         err = security_sock_rcv_skb(sk, skb);
139         if (err)
140                 return err;
141
142         rcu_read_lock();
143         filter = rcu_dereference(sk->sk_filter);
144         if (filter) {
145                 struct sock *save_sk = skb->sk;
146                 unsigned int pkt_len;
147
148                 skb->sk = sk;
149                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
150                 skb->sk = save_sk;
151                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
152         }
153         rcu_read_unlock();
154
155         return err;
156 }
157 EXPORT_SYMBOL(sk_filter_trim_cap);
158
159 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
160 {
161         return skb_get_poff(skb);
162 }
163
164 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
165 {
166         struct nlattr *nla;
167
168         if (skb_is_nonlinear(skb))
169                 return 0;
170
171         if (skb->len < sizeof(struct nlattr))
172                 return 0;
173
174         if (a > skb->len - sizeof(struct nlattr))
175                 return 0;
176
177         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
178         if (nla)
179                 return (void *) nla - (void *) skb->data;
180
181         return 0;
182 }
183
184 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
185 {
186         struct nlattr *nla;
187
188         if (skb_is_nonlinear(skb))
189                 return 0;
190
191         if (skb->len < sizeof(struct nlattr))
192                 return 0;
193
194         if (a > skb->len - sizeof(struct nlattr))
195                 return 0;
196
197         nla = (struct nlattr *) &skb->data[a];
198         if (nla->nla_len > skb->len - a)
199                 return 0;
200
201         nla = nla_find_nested(nla, x);
202         if (nla)
203                 return (void *) nla - (void *) skb->data;
204
205         return 0;
206 }
207
208 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
209            data, int, headlen, int, offset)
210 {
211         u8 tmp, *ptr;
212         const int len = sizeof(tmp);
213
214         if (offset >= 0) {
215                 if (headlen - offset >= len)
216                         return *(u8 *)(data + offset);
217                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
218                         return tmp;
219         } else {
220                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
221                 if (likely(ptr))
222                         return *(u8 *)ptr;
223         }
224
225         return -EFAULT;
226 }
227
228 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
229            int, offset)
230 {
231         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
232                                          offset);
233 }
234
235 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
236            data, int, headlen, int, offset)
237 {
238         u16 tmp, *ptr;
239         const int len = sizeof(tmp);
240
241         if (offset >= 0) {
242                 if (headlen - offset >= len)
243                         return get_unaligned_be16(data + offset);
244                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
245                         return be16_to_cpu(tmp);
246         } else {
247                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
248                 if (likely(ptr))
249                         return get_unaligned_be16(ptr);
250         }
251
252         return -EFAULT;
253 }
254
255 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
256            int, offset)
257 {
258         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
259                                           offset);
260 }
261
262 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
263            data, int, headlen, int, offset)
264 {
265         u32 tmp, *ptr;
266         const int len = sizeof(tmp);
267
268         if (likely(offset >= 0)) {
269                 if (headlen - offset >= len)
270                         return get_unaligned_be32(data + offset);
271                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
272                         return be32_to_cpu(tmp);
273         } else {
274                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
275                 if (likely(ptr))
276                         return get_unaligned_be32(ptr);
277         }
278
279         return -EFAULT;
280 }
281
282 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
283            int, offset)
284 {
285         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
286                                           offset);
287 }
288
289 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
290                               struct bpf_insn *insn_buf)
291 {
292         struct bpf_insn *insn = insn_buf;
293
294         switch (skb_field) {
295         case SKF_AD_MARK:
296                 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
297
298                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
299                                       offsetof(struct sk_buff, mark));
300                 break;
301
302         case SKF_AD_PKTTYPE:
303                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
304                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
305 #ifdef __BIG_ENDIAN_BITFIELD
306                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
307 #endif
308                 break;
309
310         case SKF_AD_QUEUE:
311                 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
312
313                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
314                                       offsetof(struct sk_buff, queue_mapping));
315                 break;
316
317         case SKF_AD_VLAN_TAG:
318                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
319
320                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
321                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
322                                       offsetof(struct sk_buff, vlan_tci));
323                 break;
324         case SKF_AD_VLAN_TAG_PRESENT:
325                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
326                 if (PKT_VLAN_PRESENT_BIT)
327                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
328                 if (PKT_VLAN_PRESENT_BIT < 7)
329                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
330                 break;
331         }
332
333         return insn - insn_buf;
334 }
335
336 static bool convert_bpf_extensions(struct sock_filter *fp,
337                                    struct bpf_insn **insnp)
338 {
339         struct bpf_insn *insn = *insnp;
340         u32 cnt;
341
342         switch (fp->k) {
343         case SKF_AD_OFF + SKF_AD_PROTOCOL:
344                 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
345
346                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
347                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
348                                       offsetof(struct sk_buff, protocol));
349                 /* A = ntohs(A) [emitting a nop or swap16] */
350                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
351                 break;
352
353         case SKF_AD_OFF + SKF_AD_PKTTYPE:
354                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
355                 insn += cnt - 1;
356                 break;
357
358         case SKF_AD_OFF + SKF_AD_IFINDEX:
359         case SKF_AD_OFF + SKF_AD_HATYPE:
360                 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
361                 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
362
363                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
364                                       BPF_REG_TMP, BPF_REG_CTX,
365                                       offsetof(struct sk_buff, dev));
366                 /* if (tmp != 0) goto pc + 1 */
367                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
368                 *insn++ = BPF_EXIT_INSN();
369                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
370                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
371                                             offsetof(struct net_device, ifindex));
372                 else
373                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
374                                             offsetof(struct net_device, type));
375                 break;
376
377         case SKF_AD_OFF + SKF_AD_MARK:
378                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
379                 insn += cnt - 1;
380                 break;
381
382         case SKF_AD_OFF + SKF_AD_RXHASH:
383                 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
384
385                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
386                                     offsetof(struct sk_buff, hash));
387                 break;
388
389         case SKF_AD_OFF + SKF_AD_QUEUE:
390                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
391                 insn += cnt - 1;
392                 break;
393
394         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
395                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
396                                          BPF_REG_A, BPF_REG_CTX, insn);
397                 insn += cnt - 1;
398                 break;
399
400         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
401                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
402                                          BPF_REG_A, BPF_REG_CTX, insn);
403                 insn += cnt - 1;
404                 break;
405
406         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
407                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
408
409                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
410                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
411                                       offsetof(struct sk_buff, vlan_proto));
412                 /* A = ntohs(A) [emitting a nop or swap16] */
413                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
414                 break;
415
416         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
417         case SKF_AD_OFF + SKF_AD_NLATTR:
418         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
419         case SKF_AD_OFF + SKF_AD_CPU:
420         case SKF_AD_OFF + SKF_AD_RANDOM:
421                 /* arg1 = CTX */
422                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
423                 /* arg2 = A */
424                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
425                 /* arg3 = X */
426                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
427                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
428                 switch (fp->k) {
429                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
430                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
431                         break;
432                 case SKF_AD_OFF + SKF_AD_NLATTR:
433                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
434                         break;
435                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
436                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
437                         break;
438                 case SKF_AD_OFF + SKF_AD_CPU:
439                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
440                         break;
441                 case SKF_AD_OFF + SKF_AD_RANDOM:
442                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
443                         bpf_user_rnd_init_once();
444                         break;
445                 }
446                 break;
447
448         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
449                 /* A ^= X */
450                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
451                 break;
452
453         default:
454                 /* This is just a dummy call to avoid letting the compiler
455                  * evict __bpf_call_base() as an optimization. Placed here
456                  * where no-one bothers.
457                  */
458                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
459                 return false;
460         }
461
462         *insnp = insn;
463         return true;
464 }
465
466 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
467 {
468         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
469         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
470         bool endian = BPF_SIZE(fp->code) == BPF_H ||
471                       BPF_SIZE(fp->code) == BPF_W;
472         bool indirect = BPF_MODE(fp->code) == BPF_IND;
473         const int ip_align = NET_IP_ALIGN;
474         struct bpf_insn *insn = *insnp;
475         int offset = fp->k;
476
477         if (!indirect &&
478             ((unaligned_ok && offset >= 0) ||
479              (!unaligned_ok && offset >= 0 &&
480               offset + ip_align >= 0 &&
481               offset + ip_align % size == 0))) {
482                 bool ldx_off_ok = offset <= S16_MAX;
483
484                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
485                 if (offset)
486                         *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
487                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
488                                       size, 2 + endian + (!ldx_off_ok * 2));
489                 if (ldx_off_ok) {
490                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
491                                               BPF_REG_D, offset);
492                 } else {
493                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
494                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
495                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
496                                               BPF_REG_TMP, 0);
497                 }
498                 if (endian)
499                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
500                 *insn++ = BPF_JMP_A(8);
501         }
502
503         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
504         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
505         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
506         if (!indirect) {
507                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
508         } else {
509                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
510                 if (fp->k)
511                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
512         }
513
514         switch (BPF_SIZE(fp->code)) {
515         case BPF_B:
516                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
517                 break;
518         case BPF_H:
519                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
520                 break;
521         case BPF_W:
522                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
523                 break;
524         default:
525                 return false;
526         }
527
528         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
529         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
530         *insn   = BPF_EXIT_INSN();
531
532         *insnp = insn;
533         return true;
534 }
535
536 /**
537  *      bpf_convert_filter - convert filter program
538  *      @prog: the user passed filter program
539  *      @len: the length of the user passed filter program
540  *      @new_prog: allocated 'struct bpf_prog' or NULL
541  *      @new_len: pointer to store length of converted program
542  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
543  *
544  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
545  * style extended BPF (eBPF).
546  * Conversion workflow:
547  *
548  * 1) First pass for calculating the new program length:
549  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
550  *
551  * 2) 2nd pass to remap in two passes: 1st pass finds new
552  *    jump offsets, 2nd pass remapping:
553  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
554  */
555 static int bpf_convert_filter(struct sock_filter *prog, int len,
556                               struct bpf_prog *new_prog, int *new_len,
557                               bool *seen_ld_abs)
558 {
559         int new_flen = 0, pass = 0, target, i, stack_off;
560         struct bpf_insn *new_insn, *first_insn = NULL;
561         struct sock_filter *fp;
562         int *addrs = NULL;
563         u8 bpf_src;
564
565         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
566         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
567
568         if (len <= 0 || len > BPF_MAXINSNS)
569                 return -EINVAL;
570
571         if (new_prog) {
572                 first_insn = new_prog->insnsi;
573                 addrs = kcalloc(len, sizeof(*addrs),
574                                 GFP_KERNEL | __GFP_NOWARN);
575                 if (!addrs)
576                         return -ENOMEM;
577         }
578
579 do_pass:
580         new_insn = first_insn;
581         fp = prog;
582
583         /* Classic BPF related prologue emission. */
584         if (new_prog) {
585                 /* Classic BPF expects A and X to be reset first. These need
586                  * to be guaranteed to be the first two instructions.
587                  */
588                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
589                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
590
591                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
592                  * In eBPF case it's done by the compiler, here we need to
593                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
594                  */
595                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
596                 if (*seen_ld_abs) {
597                         /* For packet access in classic BPF, cache skb->data
598                          * in callee-saved BPF R8 and skb->len - skb->data_len
599                          * (headlen) in BPF R9. Since classic BPF is read-only
600                          * on CTX, we only need to cache it once.
601                          */
602                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
603                                                   BPF_REG_D, BPF_REG_CTX,
604                                                   offsetof(struct sk_buff, data));
605                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
606                                                   offsetof(struct sk_buff, len));
607                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
608                                                   offsetof(struct sk_buff, data_len));
609                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
610                 }
611         } else {
612                 new_insn += 3;
613         }
614
615         for (i = 0; i < len; fp++, i++) {
616                 struct bpf_insn tmp_insns[32] = { };
617                 struct bpf_insn *insn = tmp_insns;
618
619                 if (addrs)
620                         addrs[i] = new_insn - first_insn;
621
622                 switch (fp->code) {
623                 /* All arithmetic insns and skb loads map as-is. */
624                 case BPF_ALU | BPF_ADD | BPF_X:
625                 case BPF_ALU | BPF_ADD | BPF_K:
626                 case BPF_ALU | BPF_SUB | BPF_X:
627                 case BPF_ALU | BPF_SUB | BPF_K:
628                 case BPF_ALU | BPF_AND | BPF_X:
629                 case BPF_ALU | BPF_AND | BPF_K:
630                 case BPF_ALU | BPF_OR | BPF_X:
631                 case BPF_ALU | BPF_OR | BPF_K:
632                 case BPF_ALU | BPF_LSH | BPF_X:
633                 case BPF_ALU | BPF_LSH | BPF_K:
634                 case BPF_ALU | BPF_RSH | BPF_X:
635                 case BPF_ALU | BPF_RSH | BPF_K:
636                 case BPF_ALU | BPF_XOR | BPF_X:
637                 case BPF_ALU | BPF_XOR | BPF_K:
638                 case BPF_ALU | BPF_MUL | BPF_X:
639                 case BPF_ALU | BPF_MUL | BPF_K:
640                 case BPF_ALU | BPF_DIV | BPF_X:
641                 case BPF_ALU | BPF_DIV | BPF_K:
642                 case BPF_ALU | BPF_MOD | BPF_X:
643                 case BPF_ALU | BPF_MOD | BPF_K:
644                 case BPF_ALU | BPF_NEG:
645                 case BPF_LD | BPF_ABS | BPF_W:
646                 case BPF_LD | BPF_ABS | BPF_H:
647                 case BPF_LD | BPF_ABS | BPF_B:
648                 case BPF_LD | BPF_IND | BPF_W:
649                 case BPF_LD | BPF_IND | BPF_H:
650                 case BPF_LD | BPF_IND | BPF_B:
651                         /* Check for overloaded BPF extension and
652                          * directly convert it if found, otherwise
653                          * just move on with mapping.
654                          */
655                         if (BPF_CLASS(fp->code) == BPF_LD &&
656                             BPF_MODE(fp->code) == BPF_ABS &&
657                             convert_bpf_extensions(fp, &insn))
658                                 break;
659                         if (BPF_CLASS(fp->code) == BPF_LD &&
660                             convert_bpf_ld_abs(fp, &insn)) {
661                                 *seen_ld_abs = true;
662                                 break;
663                         }
664
665                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
666                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
667                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
668                                 /* Error with exception code on div/mod by 0.
669                                  * For cBPF programs, this was always return 0.
670                                  */
671                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
672                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
673                                 *insn++ = BPF_EXIT_INSN();
674                         }
675
676                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
677                         break;
678
679                 /* Jump transformation cannot use BPF block macros
680                  * everywhere as offset calculation and target updates
681                  * require a bit more work than the rest, i.e. jump
682                  * opcodes map as-is, but offsets need adjustment.
683                  */
684
685 #define BPF_EMIT_JMP                                                    \
686         do {                                                            \
687                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
688                 s32 off;                                                \
689                                                                         \
690                 if (target >= len || target < 0)                        \
691                         goto err;                                       \
692                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
693                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
694                 off -= insn - tmp_insns;                                \
695                 /* Reject anything not fitting into insn->off. */       \
696                 if (off < off_min || off > off_max)                     \
697                         goto err;                                       \
698                 insn->off = off;                                        \
699         } while (0)
700
701                 case BPF_JMP | BPF_JA:
702                         target = i + fp->k + 1;
703                         insn->code = fp->code;
704                         BPF_EMIT_JMP;
705                         break;
706
707                 case BPF_JMP | BPF_JEQ | BPF_K:
708                 case BPF_JMP | BPF_JEQ | BPF_X:
709                 case BPF_JMP | BPF_JSET | BPF_K:
710                 case BPF_JMP | BPF_JSET | BPF_X:
711                 case BPF_JMP | BPF_JGT | BPF_K:
712                 case BPF_JMP | BPF_JGT | BPF_X:
713                 case BPF_JMP | BPF_JGE | BPF_K:
714                 case BPF_JMP | BPF_JGE | BPF_X:
715                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
716                                 /* BPF immediates are signed, zero extend
717                                  * immediate into tmp register and use it
718                                  * in compare insn.
719                                  */
720                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
721
722                                 insn->dst_reg = BPF_REG_A;
723                                 insn->src_reg = BPF_REG_TMP;
724                                 bpf_src = BPF_X;
725                         } else {
726                                 insn->dst_reg = BPF_REG_A;
727                                 insn->imm = fp->k;
728                                 bpf_src = BPF_SRC(fp->code);
729                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
730                         }
731
732                         /* Common case where 'jump_false' is next insn. */
733                         if (fp->jf == 0) {
734                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
735                                 target = i + fp->jt + 1;
736                                 BPF_EMIT_JMP;
737                                 break;
738                         }
739
740                         /* Convert some jumps when 'jump_true' is next insn. */
741                         if (fp->jt == 0) {
742                                 switch (BPF_OP(fp->code)) {
743                                 case BPF_JEQ:
744                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
745                                         break;
746                                 case BPF_JGT:
747                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
748                                         break;
749                                 case BPF_JGE:
750                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
751                                         break;
752                                 default:
753                                         goto jmp_rest;
754                                 }
755
756                                 target = i + fp->jf + 1;
757                                 BPF_EMIT_JMP;
758                                 break;
759                         }
760 jmp_rest:
761                         /* Other jumps are mapped into two insns: Jxx and JA. */
762                         target = i + fp->jt + 1;
763                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
764                         BPF_EMIT_JMP;
765                         insn++;
766
767                         insn->code = BPF_JMP | BPF_JA;
768                         target = i + fp->jf + 1;
769                         BPF_EMIT_JMP;
770                         break;
771
772                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
773                 case BPF_LDX | BPF_MSH | BPF_B: {
774                         struct sock_filter tmp = {
775                                 .code   = BPF_LD | BPF_ABS | BPF_B,
776                                 .k      = fp->k,
777                         };
778
779                         *seen_ld_abs = true;
780
781                         /* X = A */
782                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
783                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
784                         convert_bpf_ld_abs(&tmp, &insn);
785                         insn++;
786                         /* A &= 0xf */
787                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
788                         /* A <<= 2 */
789                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
790                         /* tmp = X */
791                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
792                         /* X = A */
793                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
794                         /* A = tmp */
795                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
796                         break;
797                 }
798                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
799                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
800                  */
801                 case BPF_RET | BPF_A:
802                 case BPF_RET | BPF_K:
803                         if (BPF_RVAL(fp->code) == BPF_K)
804                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
805                                                         0, fp->k);
806                         *insn = BPF_EXIT_INSN();
807                         break;
808
809                 /* Store to stack. */
810                 case BPF_ST:
811                 case BPF_STX:
812                         stack_off = fp->k * 4  + 4;
813                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
814                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
815                                             -stack_off);
816                         /* check_load_and_stores() verifies that classic BPF can
817                          * load from stack only after write, so tracking
818                          * stack_depth for ST|STX insns is enough
819                          */
820                         if (new_prog && new_prog->aux->stack_depth < stack_off)
821                                 new_prog->aux->stack_depth = stack_off;
822                         break;
823
824                 /* Load from stack. */
825                 case BPF_LD | BPF_MEM:
826                 case BPF_LDX | BPF_MEM:
827                         stack_off = fp->k * 4  + 4;
828                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
829                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
830                                             -stack_off);
831                         break;
832
833                 /* A = K or X = K */
834                 case BPF_LD | BPF_IMM:
835                 case BPF_LDX | BPF_IMM:
836                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
837                                               BPF_REG_A : BPF_REG_X, fp->k);
838                         break;
839
840                 /* X = A */
841                 case BPF_MISC | BPF_TAX:
842                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
843                         break;
844
845                 /* A = X */
846                 case BPF_MISC | BPF_TXA:
847                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
848                         break;
849
850                 /* A = skb->len or X = skb->len */
851                 case BPF_LD | BPF_W | BPF_LEN:
852                 case BPF_LDX | BPF_W | BPF_LEN:
853                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
854                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
855                                             offsetof(struct sk_buff, len));
856                         break;
857
858                 /* Access seccomp_data fields. */
859                 case BPF_LDX | BPF_ABS | BPF_W:
860                         /* A = *(u32 *) (ctx + K) */
861                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
862                         break;
863
864                 /* Unknown instruction. */
865                 default:
866                         goto err;
867                 }
868
869                 insn++;
870                 if (new_prog)
871                         memcpy(new_insn, tmp_insns,
872                                sizeof(*insn) * (insn - tmp_insns));
873                 new_insn += insn - tmp_insns;
874         }
875
876         if (!new_prog) {
877                 /* Only calculating new length. */
878                 *new_len = new_insn - first_insn;
879                 if (*seen_ld_abs)
880                         *new_len += 4; /* Prologue bits. */
881                 return 0;
882         }
883
884         pass++;
885         if (new_flen != new_insn - first_insn) {
886                 new_flen = new_insn - first_insn;
887                 if (pass > 2)
888                         goto err;
889                 goto do_pass;
890         }
891
892         kfree(addrs);
893         BUG_ON(*new_len != new_flen);
894         return 0;
895 err:
896         kfree(addrs);
897         return -EINVAL;
898 }
899
900 /* Security:
901  *
902  * As we dont want to clear mem[] array for each packet going through
903  * __bpf_prog_run(), we check that filter loaded by user never try to read
904  * a cell if not previously written, and we check all branches to be sure
905  * a malicious user doesn't try to abuse us.
906  */
907 static int check_load_and_stores(const struct sock_filter *filter, int flen)
908 {
909         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
910         int pc, ret = 0;
911
912         BUILD_BUG_ON(BPF_MEMWORDS > 16);
913
914         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
915         if (!masks)
916                 return -ENOMEM;
917
918         memset(masks, 0xff, flen * sizeof(*masks));
919
920         for (pc = 0; pc < flen; pc++) {
921                 memvalid &= masks[pc];
922
923                 switch (filter[pc].code) {
924                 case BPF_ST:
925                 case BPF_STX:
926                         memvalid |= (1 << filter[pc].k);
927                         break;
928                 case BPF_LD | BPF_MEM:
929                 case BPF_LDX | BPF_MEM:
930                         if (!(memvalid & (1 << filter[pc].k))) {
931                                 ret = -EINVAL;
932                                 goto error;
933                         }
934                         break;
935                 case BPF_JMP | BPF_JA:
936                         /* A jump must set masks on target */
937                         masks[pc + 1 + filter[pc].k] &= memvalid;
938                         memvalid = ~0;
939                         break;
940                 case BPF_JMP | BPF_JEQ | BPF_K:
941                 case BPF_JMP | BPF_JEQ | BPF_X:
942                 case BPF_JMP | BPF_JGE | BPF_K:
943                 case BPF_JMP | BPF_JGE | BPF_X:
944                 case BPF_JMP | BPF_JGT | BPF_K:
945                 case BPF_JMP | BPF_JGT | BPF_X:
946                 case BPF_JMP | BPF_JSET | BPF_K:
947                 case BPF_JMP | BPF_JSET | BPF_X:
948                         /* A jump must set masks on targets */
949                         masks[pc + 1 + filter[pc].jt] &= memvalid;
950                         masks[pc + 1 + filter[pc].jf] &= memvalid;
951                         memvalid = ~0;
952                         break;
953                 }
954         }
955 error:
956         kfree(masks);
957         return ret;
958 }
959
960 static bool chk_code_allowed(u16 code_to_probe)
961 {
962         static const bool codes[] = {
963                 /* 32 bit ALU operations */
964                 [BPF_ALU | BPF_ADD | BPF_K] = true,
965                 [BPF_ALU | BPF_ADD | BPF_X] = true,
966                 [BPF_ALU | BPF_SUB | BPF_K] = true,
967                 [BPF_ALU | BPF_SUB | BPF_X] = true,
968                 [BPF_ALU | BPF_MUL | BPF_K] = true,
969                 [BPF_ALU | BPF_MUL | BPF_X] = true,
970                 [BPF_ALU | BPF_DIV | BPF_K] = true,
971                 [BPF_ALU | BPF_DIV | BPF_X] = true,
972                 [BPF_ALU | BPF_MOD | BPF_K] = true,
973                 [BPF_ALU | BPF_MOD | BPF_X] = true,
974                 [BPF_ALU | BPF_AND | BPF_K] = true,
975                 [BPF_ALU | BPF_AND | BPF_X] = true,
976                 [BPF_ALU | BPF_OR | BPF_K] = true,
977                 [BPF_ALU | BPF_OR | BPF_X] = true,
978                 [BPF_ALU | BPF_XOR | BPF_K] = true,
979                 [BPF_ALU | BPF_XOR | BPF_X] = true,
980                 [BPF_ALU | BPF_LSH | BPF_K] = true,
981                 [BPF_ALU | BPF_LSH | BPF_X] = true,
982                 [BPF_ALU | BPF_RSH | BPF_K] = true,
983                 [BPF_ALU | BPF_RSH | BPF_X] = true,
984                 [BPF_ALU | BPF_NEG] = true,
985                 /* Load instructions */
986                 [BPF_LD | BPF_W | BPF_ABS] = true,
987                 [BPF_LD | BPF_H | BPF_ABS] = true,
988                 [BPF_LD | BPF_B | BPF_ABS] = true,
989                 [BPF_LD | BPF_W | BPF_LEN] = true,
990                 [BPF_LD | BPF_W | BPF_IND] = true,
991                 [BPF_LD | BPF_H | BPF_IND] = true,
992                 [BPF_LD | BPF_B | BPF_IND] = true,
993                 [BPF_LD | BPF_IMM] = true,
994                 [BPF_LD | BPF_MEM] = true,
995                 [BPF_LDX | BPF_W | BPF_LEN] = true,
996                 [BPF_LDX | BPF_B | BPF_MSH] = true,
997                 [BPF_LDX | BPF_IMM] = true,
998                 [BPF_LDX | BPF_MEM] = true,
999                 /* Store instructions */
1000                 [BPF_ST] = true,
1001                 [BPF_STX] = true,
1002                 /* Misc instructions */
1003                 [BPF_MISC | BPF_TAX] = true,
1004                 [BPF_MISC | BPF_TXA] = true,
1005                 /* Return instructions */
1006                 [BPF_RET | BPF_K] = true,
1007                 [BPF_RET | BPF_A] = true,
1008                 /* Jump instructions */
1009                 [BPF_JMP | BPF_JA] = true,
1010                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1011                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1012                 [BPF_JMP | BPF_JGE | BPF_K] = true,
1013                 [BPF_JMP | BPF_JGE | BPF_X] = true,
1014                 [BPF_JMP | BPF_JGT | BPF_K] = true,
1015                 [BPF_JMP | BPF_JGT | BPF_X] = true,
1016                 [BPF_JMP | BPF_JSET | BPF_K] = true,
1017                 [BPF_JMP | BPF_JSET | BPF_X] = true,
1018         };
1019
1020         if (code_to_probe >= ARRAY_SIZE(codes))
1021                 return false;
1022
1023         return codes[code_to_probe];
1024 }
1025
1026 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1027                                 unsigned int flen)
1028 {
1029         if (filter == NULL)
1030                 return false;
1031         if (flen == 0 || flen > BPF_MAXINSNS)
1032                 return false;
1033
1034         return true;
1035 }
1036
1037 /**
1038  *      bpf_check_classic - verify socket filter code
1039  *      @filter: filter to verify
1040  *      @flen: length of filter
1041  *
1042  * Check the user's filter code. If we let some ugly
1043  * filter code slip through kaboom! The filter must contain
1044  * no references or jumps that are out of range, no illegal
1045  * instructions, and must end with a RET instruction.
1046  *
1047  * All jumps are forward as they are not signed.
1048  *
1049  * Returns 0 if the rule set is legal or -EINVAL if not.
1050  */
1051 static int bpf_check_classic(const struct sock_filter *filter,
1052                              unsigned int flen)
1053 {
1054         bool anc_found;
1055         int pc;
1056
1057         /* Check the filter code now */
1058         for (pc = 0; pc < flen; pc++) {
1059                 const struct sock_filter *ftest = &filter[pc];
1060
1061                 /* May we actually operate on this code? */
1062                 if (!chk_code_allowed(ftest->code))
1063                         return -EINVAL;
1064
1065                 /* Some instructions need special checks */
1066                 switch (ftest->code) {
1067                 case BPF_ALU | BPF_DIV | BPF_K:
1068                 case BPF_ALU | BPF_MOD | BPF_K:
1069                         /* Check for division by zero */
1070                         if (ftest->k == 0)
1071                                 return -EINVAL;
1072                         break;
1073                 case BPF_ALU | BPF_LSH | BPF_K:
1074                 case BPF_ALU | BPF_RSH | BPF_K:
1075                         if (ftest->k >= 32)
1076                                 return -EINVAL;
1077                         break;
1078                 case BPF_LD | BPF_MEM:
1079                 case BPF_LDX | BPF_MEM:
1080                 case BPF_ST:
1081                 case BPF_STX:
1082                         /* Check for invalid memory addresses */
1083                         if (ftest->k >= BPF_MEMWORDS)
1084                                 return -EINVAL;
1085                         break;
1086                 case BPF_JMP | BPF_JA:
1087                         /* Note, the large ftest->k might cause loops.
1088                          * Compare this with conditional jumps below,
1089                          * where offsets are limited. --ANK (981016)
1090                          */
1091                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1092                                 return -EINVAL;
1093                         break;
1094                 case BPF_JMP | BPF_JEQ | BPF_K:
1095                 case BPF_JMP | BPF_JEQ | BPF_X:
1096                 case BPF_JMP | BPF_JGE | BPF_K:
1097                 case BPF_JMP | BPF_JGE | BPF_X:
1098                 case BPF_JMP | BPF_JGT | BPF_K:
1099                 case BPF_JMP | BPF_JGT | BPF_X:
1100                 case BPF_JMP | BPF_JSET | BPF_K:
1101                 case BPF_JMP | BPF_JSET | BPF_X:
1102                         /* Both conditionals must be safe */
1103                         if (pc + ftest->jt + 1 >= flen ||
1104                             pc + ftest->jf + 1 >= flen)
1105                                 return -EINVAL;
1106                         break;
1107                 case BPF_LD | BPF_W | BPF_ABS:
1108                 case BPF_LD | BPF_H | BPF_ABS:
1109                 case BPF_LD | BPF_B | BPF_ABS:
1110                         anc_found = false;
1111                         if (bpf_anc_helper(ftest) & BPF_ANC)
1112                                 anc_found = true;
1113                         /* Ancillary operation unknown or unsupported */
1114                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1115                                 return -EINVAL;
1116                 }
1117         }
1118
1119         /* Last instruction must be a RET code */
1120         switch (filter[flen - 1].code) {
1121         case BPF_RET | BPF_K:
1122         case BPF_RET | BPF_A:
1123                 return check_load_and_stores(filter, flen);
1124         }
1125
1126         return -EINVAL;
1127 }
1128
1129 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1130                                       const struct sock_fprog *fprog)
1131 {
1132         unsigned int fsize = bpf_classic_proglen(fprog);
1133         struct sock_fprog_kern *fkprog;
1134
1135         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1136         if (!fp->orig_prog)
1137                 return -ENOMEM;
1138
1139         fkprog = fp->orig_prog;
1140         fkprog->len = fprog->len;
1141
1142         fkprog->filter = kmemdup(fp->insns, fsize,
1143                                  GFP_KERNEL | __GFP_NOWARN);
1144         if (!fkprog->filter) {
1145                 kfree(fp->orig_prog);
1146                 return -ENOMEM;
1147         }
1148
1149         return 0;
1150 }
1151
1152 static void bpf_release_orig_filter(struct bpf_prog *fp)
1153 {
1154         struct sock_fprog_kern *fprog = fp->orig_prog;
1155
1156         if (fprog) {
1157                 kfree(fprog->filter);
1158                 kfree(fprog);
1159         }
1160 }
1161
1162 static void __bpf_prog_release(struct bpf_prog *prog)
1163 {
1164         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1165                 bpf_prog_put(prog);
1166         } else {
1167                 bpf_release_orig_filter(prog);
1168                 bpf_prog_free(prog);
1169         }
1170 }
1171
1172 static void __sk_filter_release(struct sk_filter *fp)
1173 {
1174         __bpf_prog_release(fp->prog);
1175         kfree(fp);
1176 }
1177
1178 /**
1179  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1180  *      @rcu: rcu_head that contains the sk_filter to free
1181  */
1182 static void sk_filter_release_rcu(struct rcu_head *rcu)
1183 {
1184         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1185
1186         __sk_filter_release(fp);
1187 }
1188
1189 /**
1190  *      sk_filter_release - release a socket filter
1191  *      @fp: filter to remove
1192  *
1193  *      Remove a filter from a socket and release its resources.
1194  */
1195 static void sk_filter_release(struct sk_filter *fp)
1196 {
1197         if (refcount_dec_and_test(&fp->refcnt))
1198                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1199 }
1200
1201 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1202 {
1203         u32 filter_size = bpf_prog_size(fp->prog->len);
1204
1205         atomic_sub(filter_size, &sk->sk_omem_alloc);
1206         sk_filter_release(fp);
1207 }
1208
1209 /* try to charge the socket memory if there is space available
1210  * return true on success
1211  */
1212 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1213 {
1214         u32 filter_size = bpf_prog_size(fp->prog->len);
1215
1216         /* same check as in sock_kmalloc() */
1217         if (filter_size <= sysctl_optmem_max &&
1218             atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1219                 atomic_add(filter_size, &sk->sk_omem_alloc);
1220                 return true;
1221         }
1222         return false;
1223 }
1224
1225 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1226 {
1227         if (!refcount_inc_not_zero(&fp->refcnt))
1228                 return false;
1229
1230         if (!__sk_filter_charge(sk, fp)) {
1231                 sk_filter_release(fp);
1232                 return false;
1233         }
1234         return true;
1235 }
1236
1237 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1238 {
1239         struct sock_filter *old_prog;
1240         struct bpf_prog *old_fp;
1241         int err, new_len, old_len = fp->len;
1242         bool seen_ld_abs = false;
1243
1244         /* We are free to overwrite insns et al right here as it
1245          * won't be used at this point in time anymore internally
1246          * after the migration to the internal BPF instruction
1247          * representation.
1248          */
1249         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1250                      sizeof(struct bpf_insn));
1251
1252         /* Conversion cannot happen on overlapping memory areas,
1253          * so we need to keep the user BPF around until the 2nd
1254          * pass. At this time, the user BPF is stored in fp->insns.
1255          */
1256         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1257                            GFP_KERNEL | __GFP_NOWARN);
1258         if (!old_prog) {
1259                 err = -ENOMEM;
1260                 goto out_err;
1261         }
1262
1263         /* 1st pass: calculate the new program length. */
1264         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1265                                  &seen_ld_abs);
1266         if (err)
1267                 goto out_err_free;
1268
1269         /* Expand fp for appending the new filter representation. */
1270         old_fp = fp;
1271         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1272         if (!fp) {
1273                 /* The old_fp is still around in case we couldn't
1274                  * allocate new memory, so uncharge on that one.
1275                  */
1276                 fp = old_fp;
1277                 err = -ENOMEM;
1278                 goto out_err_free;
1279         }
1280
1281         fp->len = new_len;
1282
1283         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1284         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1285                                  &seen_ld_abs);
1286         if (err)
1287                 /* 2nd bpf_convert_filter() can fail only if it fails
1288                  * to allocate memory, remapping must succeed. Note,
1289                  * that at this time old_fp has already been released
1290                  * by krealloc().
1291                  */
1292                 goto out_err_free;
1293
1294         fp = bpf_prog_select_runtime(fp, &err);
1295         if (err)
1296                 goto out_err_free;
1297
1298         kfree(old_prog);
1299         return fp;
1300
1301 out_err_free:
1302         kfree(old_prog);
1303 out_err:
1304         __bpf_prog_release(fp);
1305         return ERR_PTR(err);
1306 }
1307
1308 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1309                                            bpf_aux_classic_check_t trans)
1310 {
1311         int err;
1312
1313         fp->bpf_func = NULL;
1314         fp->jited = 0;
1315
1316         err = bpf_check_classic(fp->insns, fp->len);
1317         if (err) {
1318                 __bpf_prog_release(fp);
1319                 return ERR_PTR(err);
1320         }
1321
1322         /* There might be additional checks and transformations
1323          * needed on classic filters, f.e. in case of seccomp.
1324          */
1325         if (trans) {
1326                 err = trans(fp->insns, fp->len);
1327                 if (err) {
1328                         __bpf_prog_release(fp);
1329                         return ERR_PTR(err);
1330                 }
1331         }
1332
1333         /* Probe if we can JIT compile the filter and if so, do
1334          * the compilation of the filter.
1335          */
1336         bpf_jit_compile(fp);
1337
1338         /* JIT compiler couldn't process this filter, so do the
1339          * internal BPF translation for the optimized interpreter.
1340          */
1341         if (!fp->jited)
1342                 fp = bpf_migrate_filter(fp);
1343
1344         return fp;
1345 }
1346
1347 /**
1348  *      bpf_prog_create - create an unattached filter
1349  *      @pfp: the unattached filter that is created
1350  *      @fprog: the filter program
1351  *
1352  * Create a filter independent of any socket. We first run some
1353  * sanity checks on it to make sure it does not explode on us later.
1354  * If an error occurs or there is insufficient memory for the filter
1355  * a negative errno code is returned. On success the return is zero.
1356  */
1357 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1358 {
1359         unsigned int fsize = bpf_classic_proglen(fprog);
1360         struct bpf_prog *fp;
1361
1362         /* Make sure new filter is there and in the right amounts. */
1363         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1364                 return -EINVAL;
1365
1366         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1367         if (!fp)
1368                 return -ENOMEM;
1369
1370         memcpy(fp->insns, fprog->filter, fsize);
1371
1372         fp->len = fprog->len;
1373         /* Since unattached filters are not copied back to user
1374          * space through sk_get_filter(), we do not need to hold
1375          * a copy here, and can spare us the work.
1376          */
1377         fp->orig_prog = NULL;
1378
1379         /* bpf_prepare_filter() already takes care of freeing
1380          * memory in case something goes wrong.
1381          */
1382         fp = bpf_prepare_filter(fp, NULL);
1383         if (IS_ERR(fp))
1384                 return PTR_ERR(fp);
1385
1386         *pfp = fp;
1387         return 0;
1388 }
1389 EXPORT_SYMBOL_GPL(bpf_prog_create);
1390
1391 /**
1392  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1393  *      @pfp: the unattached filter that is created
1394  *      @fprog: the filter program
1395  *      @trans: post-classic verifier transformation handler
1396  *      @save_orig: save classic BPF program
1397  *
1398  * This function effectively does the same as bpf_prog_create(), only
1399  * that it builds up its insns buffer from user space provided buffer.
1400  * It also allows for passing a bpf_aux_classic_check_t handler.
1401  */
1402 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1403                               bpf_aux_classic_check_t trans, bool save_orig)
1404 {
1405         unsigned int fsize = bpf_classic_proglen(fprog);
1406         struct bpf_prog *fp;
1407         int err;
1408
1409         /* Make sure new filter is there and in the right amounts. */
1410         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1411                 return -EINVAL;
1412
1413         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1414         if (!fp)
1415                 return -ENOMEM;
1416
1417         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1418                 __bpf_prog_free(fp);
1419                 return -EFAULT;
1420         }
1421
1422         fp->len = fprog->len;
1423         fp->orig_prog = NULL;
1424
1425         if (save_orig) {
1426                 err = bpf_prog_store_orig_filter(fp, fprog);
1427                 if (err) {
1428                         __bpf_prog_free(fp);
1429                         return -ENOMEM;
1430                 }
1431         }
1432
1433         /* bpf_prepare_filter() already takes care of freeing
1434          * memory in case something goes wrong.
1435          */
1436         fp = bpf_prepare_filter(fp, trans);
1437         if (IS_ERR(fp))
1438                 return PTR_ERR(fp);
1439
1440         *pfp = fp;
1441         return 0;
1442 }
1443 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1444
1445 void bpf_prog_destroy(struct bpf_prog *fp)
1446 {
1447         __bpf_prog_release(fp);
1448 }
1449 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1450
1451 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1452 {
1453         struct sk_filter *fp, *old_fp;
1454
1455         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1456         if (!fp)
1457                 return -ENOMEM;
1458
1459         fp->prog = prog;
1460
1461         if (!__sk_filter_charge(sk, fp)) {
1462                 kfree(fp);
1463                 return -ENOMEM;
1464         }
1465         refcount_set(&fp->refcnt, 1);
1466
1467         old_fp = rcu_dereference_protected(sk->sk_filter,
1468                                            lockdep_sock_is_held(sk));
1469         rcu_assign_pointer(sk->sk_filter, fp);
1470
1471         if (old_fp)
1472                 sk_filter_uncharge(sk, old_fp);
1473
1474         return 0;
1475 }
1476
1477 static
1478 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1479 {
1480         unsigned int fsize = bpf_classic_proglen(fprog);
1481         struct bpf_prog *prog;
1482         int err;
1483
1484         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1485                 return ERR_PTR(-EPERM);
1486
1487         /* Make sure new filter is there and in the right amounts. */
1488         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1489                 return ERR_PTR(-EINVAL);
1490
1491         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1492         if (!prog)
1493                 return ERR_PTR(-ENOMEM);
1494
1495         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1496                 __bpf_prog_free(prog);
1497                 return ERR_PTR(-EFAULT);
1498         }
1499
1500         prog->len = fprog->len;
1501
1502         err = bpf_prog_store_orig_filter(prog, fprog);
1503         if (err) {
1504                 __bpf_prog_free(prog);
1505                 return ERR_PTR(-ENOMEM);
1506         }
1507
1508         /* bpf_prepare_filter() already takes care of freeing
1509          * memory in case something goes wrong.
1510          */
1511         return bpf_prepare_filter(prog, NULL);
1512 }
1513
1514 /**
1515  *      sk_attach_filter - attach a socket filter
1516  *      @fprog: the filter program
1517  *      @sk: the socket to use
1518  *
1519  * Attach the user's filter code. We first run some sanity checks on
1520  * it to make sure it does not explode on us later. If an error
1521  * occurs or there is insufficient memory for the filter a negative
1522  * errno code is returned. On success the return is zero.
1523  */
1524 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1525 {
1526         struct bpf_prog *prog = __get_filter(fprog, sk);
1527         int err;
1528
1529         if (IS_ERR(prog))
1530                 return PTR_ERR(prog);
1531
1532         err = __sk_attach_prog(prog, sk);
1533         if (err < 0) {
1534                 __bpf_prog_release(prog);
1535                 return err;
1536         }
1537
1538         return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(sk_attach_filter);
1541
1542 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1543 {
1544         struct bpf_prog *prog = __get_filter(fprog, sk);
1545         int err;
1546
1547         if (IS_ERR(prog))
1548                 return PTR_ERR(prog);
1549
1550         if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1551                 err = -ENOMEM;
1552         else
1553                 err = reuseport_attach_prog(sk, prog);
1554
1555         if (err)
1556                 __bpf_prog_release(prog);
1557
1558         return err;
1559 }
1560
1561 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1562 {
1563         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1564                 return ERR_PTR(-EPERM);
1565
1566         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1567 }
1568
1569 int sk_attach_bpf(u32 ufd, struct sock *sk)
1570 {
1571         struct bpf_prog *prog = __get_bpf(ufd, sk);
1572         int err;
1573
1574         if (IS_ERR(prog))
1575                 return PTR_ERR(prog);
1576
1577         err = __sk_attach_prog(prog, sk);
1578         if (err < 0) {
1579                 bpf_prog_put(prog);
1580                 return err;
1581         }
1582
1583         return 0;
1584 }
1585
1586 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1587 {
1588         struct bpf_prog *prog;
1589         int err;
1590
1591         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1592                 return -EPERM;
1593
1594         prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1595         if (PTR_ERR(prog) == -EINVAL)
1596                 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1597         if (IS_ERR(prog))
1598                 return PTR_ERR(prog);
1599
1600         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1601                 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1602                  * bpf prog (e.g. sockmap).  It depends on the
1603                  * limitation imposed by bpf_prog_load().
1604                  * Hence, sysctl_optmem_max is not checked.
1605                  */
1606                 if ((sk->sk_type != SOCK_STREAM &&
1607                      sk->sk_type != SOCK_DGRAM) ||
1608                     (sk->sk_protocol != IPPROTO_UDP &&
1609                      sk->sk_protocol != IPPROTO_TCP) ||
1610                     (sk->sk_family != AF_INET &&
1611                      sk->sk_family != AF_INET6)) {
1612                         err = -ENOTSUPP;
1613                         goto err_prog_put;
1614                 }
1615         } else {
1616                 /* BPF_PROG_TYPE_SOCKET_FILTER */
1617                 if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1618                         err = -ENOMEM;
1619                         goto err_prog_put;
1620                 }
1621         }
1622
1623         err = reuseport_attach_prog(sk, prog);
1624 err_prog_put:
1625         if (err)
1626                 bpf_prog_put(prog);
1627
1628         return err;
1629 }
1630
1631 void sk_reuseport_prog_free(struct bpf_prog *prog)
1632 {
1633         if (!prog)
1634                 return;
1635
1636         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1637                 bpf_prog_put(prog);
1638         else
1639                 bpf_prog_destroy(prog);
1640 }
1641
1642 struct bpf_scratchpad {
1643         union {
1644                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1645                 u8     buff[MAX_BPF_STACK];
1646         };
1647 };
1648
1649 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1650
1651 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1652                                           unsigned int write_len)
1653 {
1654         return skb_ensure_writable(skb, write_len);
1655 }
1656
1657 static inline int bpf_try_make_writable(struct sk_buff *skb,
1658                                         unsigned int write_len)
1659 {
1660         int err = __bpf_try_make_writable(skb, write_len);
1661
1662         bpf_compute_data_pointers(skb);
1663         return err;
1664 }
1665
1666 static int bpf_try_make_head_writable(struct sk_buff *skb)
1667 {
1668         return bpf_try_make_writable(skb, skb_headlen(skb));
1669 }
1670
1671 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1672 {
1673         if (skb_at_tc_ingress(skb))
1674                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1675 }
1676
1677 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1678 {
1679         if (skb_at_tc_ingress(skb))
1680                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1681 }
1682
1683 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1684            const void *, from, u32, len, u64, flags)
1685 {
1686         void *ptr;
1687
1688         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1689                 return -EINVAL;
1690         if (unlikely(offset > 0xffff))
1691                 return -EFAULT;
1692         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1693                 return -EFAULT;
1694
1695         ptr = skb->data + offset;
1696         if (flags & BPF_F_RECOMPUTE_CSUM)
1697                 __skb_postpull_rcsum(skb, ptr, len, offset);
1698
1699         memcpy(ptr, from, len);
1700
1701         if (flags & BPF_F_RECOMPUTE_CSUM)
1702                 __skb_postpush_rcsum(skb, ptr, len, offset);
1703         if (flags & BPF_F_INVALIDATE_HASH)
1704                 skb_clear_hash(skb);
1705
1706         return 0;
1707 }
1708
1709 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1710         .func           = bpf_skb_store_bytes,
1711         .gpl_only       = false,
1712         .ret_type       = RET_INTEGER,
1713         .arg1_type      = ARG_PTR_TO_CTX,
1714         .arg2_type      = ARG_ANYTHING,
1715         .arg3_type      = ARG_PTR_TO_MEM,
1716         .arg4_type      = ARG_CONST_SIZE,
1717         .arg5_type      = ARG_ANYTHING,
1718 };
1719
1720 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1721            void *, to, u32, len)
1722 {
1723         void *ptr;
1724
1725         if (unlikely(offset > 0xffff))
1726                 goto err_clear;
1727
1728         ptr = skb_header_pointer(skb, offset, len, to);
1729         if (unlikely(!ptr))
1730                 goto err_clear;
1731         if (ptr != to)
1732                 memcpy(to, ptr, len);
1733
1734         return 0;
1735 err_clear:
1736         memset(to, 0, len);
1737         return -EFAULT;
1738 }
1739
1740 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1741         .func           = bpf_skb_load_bytes,
1742         .gpl_only       = false,
1743         .ret_type       = RET_INTEGER,
1744         .arg1_type      = ARG_PTR_TO_CTX,
1745         .arg2_type      = ARG_ANYTHING,
1746         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1747         .arg4_type      = ARG_CONST_SIZE,
1748 };
1749
1750 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1751            const struct bpf_flow_dissector *, ctx, u32, offset,
1752            void *, to, u32, len)
1753 {
1754         void *ptr;
1755
1756         if (unlikely(offset > 0xffff))
1757                 goto err_clear;
1758
1759         if (unlikely(!ctx->skb))
1760                 goto err_clear;
1761
1762         ptr = skb_header_pointer(ctx->skb, offset, len, to);
1763         if (unlikely(!ptr))
1764                 goto err_clear;
1765         if (ptr != to)
1766                 memcpy(to, ptr, len);
1767
1768         return 0;
1769 err_clear:
1770         memset(to, 0, len);
1771         return -EFAULT;
1772 }
1773
1774 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1775         .func           = bpf_flow_dissector_load_bytes,
1776         .gpl_only       = false,
1777         .ret_type       = RET_INTEGER,
1778         .arg1_type      = ARG_PTR_TO_CTX,
1779         .arg2_type      = ARG_ANYTHING,
1780         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1781         .arg4_type      = ARG_CONST_SIZE,
1782 };
1783
1784 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1785            u32, offset, void *, to, u32, len, u32, start_header)
1786 {
1787         u8 *end = skb_tail_pointer(skb);
1788         u8 *start, *ptr;
1789
1790         if (unlikely(offset > 0xffff))
1791                 goto err_clear;
1792
1793         switch (start_header) {
1794         case BPF_HDR_START_MAC:
1795                 if (unlikely(!skb_mac_header_was_set(skb)))
1796                         goto err_clear;
1797                 start = skb_mac_header(skb);
1798                 break;
1799         case BPF_HDR_START_NET:
1800                 start = skb_network_header(skb);
1801                 break;
1802         default:
1803                 goto err_clear;
1804         }
1805
1806         ptr = start + offset;
1807
1808         if (likely(ptr + len <= end)) {
1809                 memcpy(to, ptr, len);
1810                 return 0;
1811         }
1812
1813 err_clear:
1814         memset(to, 0, len);
1815         return -EFAULT;
1816 }
1817
1818 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1819         .func           = bpf_skb_load_bytes_relative,
1820         .gpl_only       = false,
1821         .ret_type       = RET_INTEGER,
1822         .arg1_type      = ARG_PTR_TO_CTX,
1823         .arg2_type      = ARG_ANYTHING,
1824         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1825         .arg4_type      = ARG_CONST_SIZE,
1826         .arg5_type      = ARG_ANYTHING,
1827 };
1828
1829 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1830 {
1831         /* Idea is the following: should the needed direct read/write
1832          * test fail during runtime, we can pull in more data and redo
1833          * again, since implicitly, we invalidate previous checks here.
1834          *
1835          * Or, since we know how much we need to make read/writeable,
1836          * this can be done once at the program beginning for direct
1837          * access case. By this we overcome limitations of only current
1838          * headroom being accessible.
1839          */
1840         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1841 }
1842
1843 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1844         .func           = bpf_skb_pull_data,
1845         .gpl_only       = false,
1846         .ret_type       = RET_INTEGER,
1847         .arg1_type      = ARG_PTR_TO_CTX,
1848         .arg2_type      = ARG_ANYTHING,
1849 };
1850
1851 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1852 {
1853         return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1854 }
1855
1856 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1857         .func           = bpf_sk_fullsock,
1858         .gpl_only       = false,
1859         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1860         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1861 };
1862
1863 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1864                                            unsigned int write_len)
1865 {
1866         int err = __bpf_try_make_writable(skb, write_len);
1867
1868         bpf_compute_data_end_sk_skb(skb);
1869         return err;
1870 }
1871
1872 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1873 {
1874         /* Idea is the following: should the needed direct read/write
1875          * test fail during runtime, we can pull in more data and redo
1876          * again, since implicitly, we invalidate previous checks here.
1877          *
1878          * Or, since we know how much we need to make read/writeable,
1879          * this can be done once at the program beginning for direct
1880          * access case. By this we overcome limitations of only current
1881          * headroom being accessible.
1882          */
1883         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1884 }
1885
1886 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1887         .func           = sk_skb_pull_data,
1888         .gpl_only       = false,
1889         .ret_type       = RET_INTEGER,
1890         .arg1_type      = ARG_PTR_TO_CTX,
1891         .arg2_type      = ARG_ANYTHING,
1892 };
1893
1894 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1895            u64, from, u64, to, u64, flags)
1896 {
1897         __sum16 *ptr;
1898
1899         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1900                 return -EINVAL;
1901         if (unlikely(offset > 0xffff || offset & 1))
1902                 return -EFAULT;
1903         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1904                 return -EFAULT;
1905
1906         ptr = (__sum16 *)(skb->data + offset);
1907         switch (flags & BPF_F_HDR_FIELD_MASK) {
1908         case 0:
1909                 if (unlikely(from != 0))
1910                         return -EINVAL;
1911
1912                 csum_replace_by_diff(ptr, to);
1913                 break;
1914         case 2:
1915                 csum_replace2(ptr, from, to);
1916                 break;
1917         case 4:
1918                 csum_replace4(ptr, from, to);
1919                 break;
1920         default:
1921                 return -EINVAL;
1922         }
1923
1924         return 0;
1925 }
1926
1927 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1928         .func           = bpf_l3_csum_replace,
1929         .gpl_only       = false,
1930         .ret_type       = RET_INTEGER,
1931         .arg1_type      = ARG_PTR_TO_CTX,
1932         .arg2_type      = ARG_ANYTHING,
1933         .arg3_type      = ARG_ANYTHING,
1934         .arg4_type      = ARG_ANYTHING,
1935         .arg5_type      = ARG_ANYTHING,
1936 };
1937
1938 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1939            u64, from, u64, to, u64, flags)
1940 {
1941         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1942         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1943         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1944         __sum16 *ptr;
1945
1946         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1947                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1948                 return -EINVAL;
1949         if (unlikely(offset > 0xffff || offset & 1))
1950                 return -EFAULT;
1951         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1952                 return -EFAULT;
1953
1954         ptr = (__sum16 *)(skb->data + offset);
1955         if (is_mmzero && !do_mforce && !*ptr)
1956                 return 0;
1957
1958         switch (flags & BPF_F_HDR_FIELD_MASK) {
1959         case 0:
1960                 if (unlikely(from != 0))
1961                         return -EINVAL;
1962
1963                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1964                 break;
1965         case 2:
1966                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1967                 break;
1968         case 4:
1969                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1970                 break;
1971         default:
1972                 return -EINVAL;
1973         }
1974
1975         if (is_mmzero && !*ptr)
1976                 *ptr = CSUM_MANGLED_0;
1977         return 0;
1978 }
1979
1980 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1981         .func           = bpf_l4_csum_replace,
1982         .gpl_only       = false,
1983         .ret_type       = RET_INTEGER,
1984         .arg1_type      = ARG_PTR_TO_CTX,
1985         .arg2_type      = ARG_ANYTHING,
1986         .arg3_type      = ARG_ANYTHING,
1987         .arg4_type      = ARG_ANYTHING,
1988         .arg5_type      = ARG_ANYTHING,
1989 };
1990
1991 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1992            __be32 *, to, u32, to_size, __wsum, seed)
1993 {
1994         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1995         u32 diff_size = from_size + to_size;
1996         int i, j = 0;
1997
1998         /* This is quite flexible, some examples:
1999          *
2000          * from_size == 0, to_size > 0,  seed := csum --> pushing data
2001          * from_size > 0,  to_size == 0, seed := csum --> pulling data
2002          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2003          *
2004          * Even for diffing, from_size and to_size don't need to be equal.
2005          */
2006         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2007                      diff_size > sizeof(sp->diff)))
2008                 return -EINVAL;
2009
2010         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2011                 sp->diff[j] = ~from[i];
2012         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2013                 sp->diff[j] = to[i];
2014
2015         return csum_partial(sp->diff, diff_size, seed);
2016 }
2017
2018 static const struct bpf_func_proto bpf_csum_diff_proto = {
2019         .func           = bpf_csum_diff,
2020         .gpl_only       = false,
2021         .pkt_access     = true,
2022         .ret_type       = RET_INTEGER,
2023         .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
2024         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2025         .arg3_type      = ARG_PTR_TO_MEM_OR_NULL,
2026         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2027         .arg5_type      = ARG_ANYTHING,
2028 };
2029
2030 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2031 {
2032         /* The interface is to be used in combination with bpf_csum_diff()
2033          * for direct packet writes. csum rotation for alignment as well
2034          * as emulating csum_sub() can be done from the eBPF program.
2035          */
2036         if (skb->ip_summed == CHECKSUM_COMPLETE)
2037                 return (skb->csum = csum_add(skb->csum, csum));
2038
2039         return -ENOTSUPP;
2040 }
2041
2042 static const struct bpf_func_proto bpf_csum_update_proto = {
2043         .func           = bpf_csum_update,
2044         .gpl_only       = false,
2045         .ret_type       = RET_INTEGER,
2046         .arg1_type      = ARG_PTR_TO_CTX,
2047         .arg2_type      = ARG_ANYTHING,
2048 };
2049
2050 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2051 {
2052         /* The interface is to be used in combination with bpf_skb_adjust_room()
2053          * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2054          * is passed as flags, for example.
2055          */
2056         switch (level) {
2057         case BPF_CSUM_LEVEL_INC:
2058                 __skb_incr_checksum_unnecessary(skb);
2059                 break;
2060         case BPF_CSUM_LEVEL_DEC:
2061                 __skb_decr_checksum_unnecessary(skb);
2062                 break;
2063         case BPF_CSUM_LEVEL_RESET:
2064                 __skb_reset_checksum_unnecessary(skb);
2065                 break;
2066         case BPF_CSUM_LEVEL_QUERY:
2067                 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2068                        skb->csum_level : -EACCES;
2069         default:
2070                 return -EINVAL;
2071         }
2072
2073         return 0;
2074 }
2075
2076 static const struct bpf_func_proto bpf_csum_level_proto = {
2077         .func           = bpf_csum_level,
2078         .gpl_only       = false,
2079         .ret_type       = RET_INTEGER,
2080         .arg1_type      = ARG_PTR_TO_CTX,
2081         .arg2_type      = ARG_ANYTHING,
2082 };
2083
2084 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2085 {
2086         return dev_forward_skb(dev, skb);
2087 }
2088
2089 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2090                                       struct sk_buff *skb)
2091 {
2092         int ret = ____dev_forward_skb(dev, skb);
2093
2094         if (likely(!ret)) {
2095                 skb->dev = dev;
2096                 ret = netif_rx(skb);
2097         }
2098
2099         return ret;
2100 }
2101
2102 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2103 {
2104         int ret;
2105
2106         if (dev_xmit_recursion()) {
2107                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2108                 kfree_skb(skb);
2109                 return -ENETDOWN;
2110         }
2111
2112         skb->dev = dev;
2113         skb->tstamp = 0;
2114
2115         dev_xmit_recursion_inc();
2116         ret = dev_queue_xmit(skb);
2117         dev_xmit_recursion_dec();
2118
2119         return ret;
2120 }
2121
2122 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2123                                  u32 flags)
2124 {
2125         unsigned int mlen = skb_network_offset(skb);
2126
2127         if (mlen) {
2128                 __skb_pull(skb, mlen);
2129
2130                 /* At ingress, the mac header has already been pulled once.
2131                  * At egress, skb_pospull_rcsum has to be done in case that
2132                  * the skb is originated from ingress (i.e. a forwarded skb)
2133                  * to ensure that rcsum starts at net header.
2134                  */
2135                 if (!skb_at_tc_ingress(skb))
2136                         skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2137         }
2138         skb_pop_mac_header(skb);
2139         skb_reset_mac_len(skb);
2140         return flags & BPF_F_INGRESS ?
2141                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2142 }
2143
2144 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2145                                  u32 flags)
2146 {
2147         /* Verify that a link layer header is carried */
2148         if (unlikely(skb->mac_header >= skb->network_header)) {
2149                 kfree_skb(skb);
2150                 return -ERANGE;
2151         }
2152
2153         bpf_push_mac_rcsum(skb);
2154         return flags & BPF_F_INGRESS ?
2155                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2156 }
2157
2158 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2159                           u32 flags)
2160 {
2161         if (dev_is_mac_header_xmit(dev))
2162                 return __bpf_redirect_common(skb, dev, flags);
2163         else
2164                 return __bpf_redirect_no_mac(skb, dev, flags);
2165 }
2166
2167 #if IS_ENABLED(CONFIG_IPV6)
2168 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb)
2169 {
2170         struct dst_entry *dst = skb_dst(skb);
2171         struct net_device *dev = dst->dev;
2172         u32 hh_len = LL_RESERVED_SPACE(dev);
2173         const struct in6_addr *nexthop;
2174         struct neighbour *neigh;
2175
2176         if (dev_xmit_recursion()) {
2177                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2178                 goto out_drop;
2179         }
2180
2181         skb->dev = dev;
2182         skb->tstamp = 0;
2183
2184         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2185                 struct sk_buff *skb2;
2186
2187                 skb2 = skb_realloc_headroom(skb, hh_len);
2188                 if (unlikely(!skb2)) {
2189                         kfree_skb(skb);
2190                         return -ENOMEM;
2191                 }
2192                 if (skb->sk)
2193                         skb_set_owner_w(skb2, skb->sk);
2194                 consume_skb(skb);
2195                 skb = skb2;
2196         }
2197
2198         rcu_read_lock_bh();
2199         nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2200                               &ipv6_hdr(skb)->daddr);
2201         neigh = ip_neigh_gw6(dev, nexthop);
2202         if (likely(!IS_ERR(neigh))) {
2203                 int ret;
2204
2205                 sock_confirm_neigh(skb, neigh);
2206                 dev_xmit_recursion_inc();
2207                 ret = neigh_output(neigh, skb, false);
2208                 dev_xmit_recursion_dec();
2209                 rcu_read_unlock_bh();
2210                 return ret;
2211         }
2212         rcu_read_unlock_bh();
2213         IP6_INC_STATS(dev_net(dst->dev),
2214                       ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2215 out_drop:
2216         kfree_skb(skb);
2217         return -ENETDOWN;
2218 }
2219
2220 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev)
2221 {
2222         const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2223         struct net *net = dev_net(dev);
2224         int err, ret = NET_XMIT_DROP;
2225         struct dst_entry *dst;
2226         struct flowi6 fl6 = {
2227                 .flowi6_flags   = FLOWI_FLAG_ANYSRC,
2228                 .flowi6_mark    = skb->mark,
2229                 .flowlabel      = ip6_flowinfo(ip6h),
2230                 .flowi6_oif     = dev->ifindex,
2231                 .flowi6_proto   = ip6h->nexthdr,
2232                 .daddr          = ip6h->daddr,
2233                 .saddr          = ip6h->saddr,
2234         };
2235
2236         dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2237         if (IS_ERR(dst))
2238                 goto out_drop;
2239
2240         skb_dst_set(skb, dst);
2241
2242         err = bpf_out_neigh_v6(net, skb);
2243         if (unlikely(net_xmit_eval(err)))
2244                 dev->stats.tx_errors++;
2245         else
2246                 ret = NET_XMIT_SUCCESS;
2247         goto out_xmit;
2248 out_drop:
2249         dev->stats.tx_errors++;
2250         kfree_skb(skb);
2251 out_xmit:
2252         return ret;
2253 }
2254 #else
2255 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev)
2256 {
2257         kfree_skb(skb);
2258         return NET_XMIT_DROP;
2259 }
2260 #endif /* CONFIG_IPV6 */
2261
2262 #if IS_ENABLED(CONFIG_INET)
2263 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb)
2264 {
2265         struct dst_entry *dst = skb_dst(skb);
2266         struct rtable *rt = container_of(dst, struct rtable, dst);
2267         struct net_device *dev = dst->dev;
2268         u32 hh_len = LL_RESERVED_SPACE(dev);
2269         struct neighbour *neigh;
2270         bool is_v6gw = false;
2271
2272         if (dev_xmit_recursion()) {
2273                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2274                 goto out_drop;
2275         }
2276
2277         skb->dev = dev;
2278         skb->tstamp = 0;
2279
2280         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2281                 struct sk_buff *skb2;
2282
2283                 skb2 = skb_realloc_headroom(skb, hh_len);
2284                 if (unlikely(!skb2)) {
2285                         kfree_skb(skb);
2286                         return -ENOMEM;
2287                 }
2288                 if (skb->sk)
2289                         skb_set_owner_w(skb2, skb->sk);
2290                 consume_skb(skb);
2291                 skb = skb2;
2292         }
2293
2294         rcu_read_lock_bh();
2295         neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2296         if (likely(!IS_ERR(neigh))) {
2297                 int ret;
2298
2299                 sock_confirm_neigh(skb, neigh);
2300                 dev_xmit_recursion_inc();
2301                 ret = neigh_output(neigh, skb, is_v6gw);
2302                 dev_xmit_recursion_dec();
2303                 rcu_read_unlock_bh();
2304                 return ret;
2305         }
2306         rcu_read_unlock_bh();
2307 out_drop:
2308         kfree_skb(skb);
2309         return -ENETDOWN;
2310 }
2311
2312 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev)
2313 {
2314         const struct iphdr *ip4h = ip_hdr(skb);
2315         struct net *net = dev_net(dev);
2316         int err, ret = NET_XMIT_DROP;
2317         struct rtable *rt;
2318         struct flowi4 fl4 = {
2319                 .flowi4_flags   = FLOWI_FLAG_ANYSRC,
2320                 .flowi4_mark    = skb->mark,
2321                 .flowi4_tos     = RT_TOS(ip4h->tos),
2322                 .flowi4_oif     = dev->ifindex,
2323                 .flowi4_proto   = ip4h->protocol,
2324                 .daddr          = ip4h->daddr,
2325                 .saddr          = ip4h->saddr,
2326         };
2327
2328         rt = ip_route_output_flow(net, &fl4, NULL);
2329         if (IS_ERR(rt))
2330                 goto out_drop;
2331         if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2332                 ip_rt_put(rt);
2333                 goto out_drop;
2334         }
2335
2336         skb_dst_set(skb, &rt->dst);
2337
2338         err = bpf_out_neigh_v4(net, skb);
2339         if (unlikely(net_xmit_eval(err)))
2340                 dev->stats.tx_errors++;
2341         else
2342                 ret = NET_XMIT_SUCCESS;
2343         goto out_xmit;
2344 out_drop:
2345         dev->stats.tx_errors++;
2346         kfree_skb(skb);
2347 out_xmit:
2348         return ret;
2349 }
2350 #else
2351 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev)
2352 {
2353         kfree_skb(skb);
2354         return NET_XMIT_DROP;
2355 }
2356 #endif /* CONFIG_INET */
2357
2358 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev)
2359 {
2360         struct ethhdr *ethh = eth_hdr(skb);
2361
2362         if (unlikely(skb->mac_header >= skb->network_header))
2363                 goto out;
2364         bpf_push_mac_rcsum(skb);
2365         if (is_multicast_ether_addr(ethh->h_dest))
2366                 goto out;
2367
2368         skb_pull(skb, sizeof(*ethh));
2369         skb_unset_mac_header(skb);
2370         skb_reset_network_header(skb);
2371
2372         if (skb->protocol == htons(ETH_P_IP))
2373                 return __bpf_redirect_neigh_v4(skb, dev);
2374         else if (skb->protocol == htons(ETH_P_IPV6))
2375                 return __bpf_redirect_neigh_v6(skb, dev);
2376 out:
2377         kfree_skb(skb);
2378         return -ENOTSUPP;
2379 }
2380
2381 /* Internal, non-exposed redirect flags. */
2382 enum {
2383         BPF_F_NEIGH = (1ULL << 1),
2384 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH)
2385 };
2386
2387 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2388 {
2389         struct net_device *dev;
2390         struct sk_buff *clone;
2391         int ret;
2392
2393         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2394                 return -EINVAL;
2395
2396         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2397         if (unlikely(!dev))
2398                 return -EINVAL;
2399
2400         clone = skb_clone(skb, GFP_ATOMIC);
2401         if (unlikely(!clone))
2402                 return -ENOMEM;
2403
2404         /* For direct write, we need to keep the invariant that the skbs
2405          * we're dealing with need to be uncloned. Should uncloning fail
2406          * here, we need to free the just generated clone to unclone once
2407          * again.
2408          */
2409         ret = bpf_try_make_head_writable(skb);
2410         if (unlikely(ret)) {
2411                 kfree_skb(clone);
2412                 return -ENOMEM;
2413         }
2414
2415         return __bpf_redirect(clone, dev, flags);
2416 }
2417
2418 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2419         .func           = bpf_clone_redirect,
2420         .gpl_only       = false,
2421         .ret_type       = RET_INTEGER,
2422         .arg1_type      = ARG_PTR_TO_CTX,
2423         .arg2_type      = ARG_ANYTHING,
2424         .arg3_type      = ARG_ANYTHING,
2425 };
2426
2427 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2428 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2429
2430 int skb_do_redirect(struct sk_buff *skb)
2431 {
2432         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2433         struct net_device *dev;
2434         u32 flags = ri->flags;
2435
2436         dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->tgt_index);
2437         ri->tgt_index = 0;
2438         if (unlikely(!dev)) {
2439                 kfree_skb(skb);
2440                 return -EINVAL;
2441         }
2442
2443         return flags & BPF_F_NEIGH ?
2444                __bpf_redirect_neigh(skb, dev) :
2445                __bpf_redirect(skb, dev, flags);
2446 }
2447
2448 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2449 {
2450         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2451
2452         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2453                 return TC_ACT_SHOT;
2454
2455         ri->flags = flags;
2456         ri->tgt_index = ifindex;
2457
2458         return TC_ACT_REDIRECT;
2459 }
2460
2461 static const struct bpf_func_proto bpf_redirect_proto = {
2462         .func           = bpf_redirect,
2463         .gpl_only       = false,
2464         .ret_type       = RET_INTEGER,
2465         .arg1_type      = ARG_ANYTHING,
2466         .arg2_type      = ARG_ANYTHING,
2467 };
2468
2469 BPF_CALL_2(bpf_redirect_neigh, u32, ifindex, u64, flags)
2470 {
2471         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2472
2473         if (unlikely(flags))
2474                 return TC_ACT_SHOT;
2475
2476         ri->flags = BPF_F_NEIGH;
2477         ri->tgt_index = ifindex;
2478
2479         return TC_ACT_REDIRECT;
2480 }
2481
2482 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2483         .func           = bpf_redirect_neigh,
2484         .gpl_only       = false,
2485         .ret_type       = RET_INTEGER,
2486         .arg1_type      = ARG_ANYTHING,
2487         .arg2_type      = ARG_ANYTHING,
2488 };
2489
2490 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2491 {
2492         msg->apply_bytes = bytes;
2493         return 0;
2494 }
2495
2496 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2497         .func           = bpf_msg_apply_bytes,
2498         .gpl_only       = false,
2499         .ret_type       = RET_INTEGER,
2500         .arg1_type      = ARG_PTR_TO_CTX,
2501         .arg2_type      = ARG_ANYTHING,
2502 };
2503
2504 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2505 {
2506         msg->cork_bytes = bytes;
2507         return 0;
2508 }
2509
2510 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2511         .func           = bpf_msg_cork_bytes,
2512         .gpl_only       = false,
2513         .ret_type       = RET_INTEGER,
2514         .arg1_type      = ARG_PTR_TO_CTX,
2515         .arg2_type      = ARG_ANYTHING,
2516 };
2517
2518 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2519            u32, end, u64, flags)
2520 {
2521         u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2522         u32 first_sge, last_sge, i, shift, bytes_sg_total;
2523         struct scatterlist *sge;
2524         u8 *raw, *to, *from;
2525         struct page *page;
2526
2527         if (unlikely(flags || end <= start))
2528                 return -EINVAL;
2529
2530         /* First find the starting scatterlist element */
2531         i = msg->sg.start;
2532         do {
2533                 offset += len;
2534                 len = sk_msg_elem(msg, i)->length;
2535                 if (start < offset + len)
2536                         break;
2537                 sk_msg_iter_var_next(i);
2538         } while (i != msg->sg.end);
2539
2540         if (unlikely(start >= offset + len))
2541                 return -EINVAL;
2542
2543         first_sge = i;
2544         /* The start may point into the sg element so we need to also
2545          * account for the headroom.
2546          */
2547         bytes_sg_total = start - offset + bytes;
2548         if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2549                 goto out;
2550
2551         /* At this point we need to linearize multiple scatterlist
2552          * elements or a single shared page. Either way we need to
2553          * copy into a linear buffer exclusively owned by BPF. Then
2554          * place the buffer in the scatterlist and fixup the original
2555          * entries by removing the entries now in the linear buffer
2556          * and shifting the remaining entries. For now we do not try
2557          * to copy partial entries to avoid complexity of running out
2558          * of sg_entry slots. The downside is reading a single byte
2559          * will copy the entire sg entry.
2560          */
2561         do {
2562                 copy += sk_msg_elem(msg, i)->length;
2563                 sk_msg_iter_var_next(i);
2564                 if (bytes_sg_total <= copy)
2565                         break;
2566         } while (i != msg->sg.end);
2567         last_sge = i;
2568
2569         if (unlikely(bytes_sg_total > copy))
2570                 return -EINVAL;
2571
2572         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2573                            get_order(copy));
2574         if (unlikely(!page))
2575                 return -ENOMEM;
2576
2577         raw = page_address(page);
2578         i = first_sge;
2579         do {
2580                 sge = sk_msg_elem(msg, i);
2581                 from = sg_virt(sge);
2582                 len = sge->length;
2583                 to = raw + poffset;
2584
2585                 memcpy(to, from, len);
2586                 poffset += len;
2587                 sge->length = 0;
2588                 put_page(sg_page(sge));
2589
2590                 sk_msg_iter_var_next(i);
2591         } while (i != last_sge);
2592
2593         sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2594
2595         /* To repair sg ring we need to shift entries. If we only
2596          * had a single entry though we can just replace it and
2597          * be done. Otherwise walk the ring and shift the entries.
2598          */
2599         WARN_ON_ONCE(last_sge == first_sge);
2600         shift = last_sge > first_sge ?
2601                 last_sge - first_sge - 1 :
2602                 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2603         if (!shift)
2604                 goto out;
2605
2606         i = first_sge;
2607         sk_msg_iter_var_next(i);
2608         do {
2609                 u32 move_from;
2610
2611                 if (i + shift >= NR_MSG_FRAG_IDS)
2612                         move_from = i + shift - NR_MSG_FRAG_IDS;
2613                 else
2614                         move_from = i + shift;
2615                 if (move_from == msg->sg.end)
2616                         break;
2617
2618                 msg->sg.data[i] = msg->sg.data[move_from];
2619                 msg->sg.data[move_from].length = 0;
2620                 msg->sg.data[move_from].page_link = 0;
2621                 msg->sg.data[move_from].offset = 0;
2622                 sk_msg_iter_var_next(i);
2623         } while (1);
2624
2625         msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2626                       msg->sg.end - shift + NR_MSG_FRAG_IDS :
2627                       msg->sg.end - shift;
2628 out:
2629         msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2630         msg->data_end = msg->data + bytes;
2631         return 0;
2632 }
2633
2634 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2635         .func           = bpf_msg_pull_data,
2636         .gpl_only       = false,
2637         .ret_type       = RET_INTEGER,
2638         .arg1_type      = ARG_PTR_TO_CTX,
2639         .arg2_type      = ARG_ANYTHING,
2640         .arg3_type      = ARG_ANYTHING,
2641         .arg4_type      = ARG_ANYTHING,
2642 };
2643
2644 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2645            u32, len, u64, flags)
2646 {
2647         struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2648         u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2649         u8 *raw, *to, *from;
2650         struct page *page;
2651
2652         if (unlikely(flags))
2653                 return -EINVAL;
2654
2655         /* First find the starting scatterlist element */
2656         i = msg->sg.start;
2657         do {
2658                 offset += l;
2659                 l = sk_msg_elem(msg, i)->length;
2660
2661                 if (start < offset + l)
2662                         break;
2663                 sk_msg_iter_var_next(i);
2664         } while (i != msg->sg.end);
2665
2666         if (start >= offset + l)
2667                 return -EINVAL;
2668
2669         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2670
2671         /* If no space available will fallback to copy, we need at
2672          * least one scatterlist elem available to push data into
2673          * when start aligns to the beginning of an element or two
2674          * when it falls inside an element. We handle the start equals
2675          * offset case because its the common case for inserting a
2676          * header.
2677          */
2678         if (!space || (space == 1 && start != offset))
2679                 copy = msg->sg.data[i].length;
2680
2681         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2682                            get_order(copy + len));
2683         if (unlikely(!page))
2684                 return -ENOMEM;
2685
2686         if (copy) {
2687                 int front, back;
2688
2689                 raw = page_address(page);
2690
2691                 psge = sk_msg_elem(msg, i);
2692                 front = start - offset;
2693                 back = psge->length - front;
2694                 from = sg_virt(psge);
2695
2696                 if (front)
2697                         memcpy(raw, from, front);
2698
2699                 if (back) {
2700                         from += front;
2701                         to = raw + front + len;
2702
2703                         memcpy(to, from, back);
2704                 }
2705
2706                 put_page(sg_page(psge));
2707         } else if (start - offset) {
2708                 psge = sk_msg_elem(msg, i);
2709                 rsge = sk_msg_elem_cpy(msg, i);
2710
2711                 psge->length = start - offset;
2712                 rsge.length -= psge->length;
2713                 rsge.offset += start;
2714
2715                 sk_msg_iter_var_next(i);
2716                 sg_unmark_end(psge);
2717                 sg_unmark_end(&rsge);
2718                 sk_msg_iter_next(msg, end);
2719         }
2720
2721         /* Slot(s) to place newly allocated data */
2722         new = i;
2723
2724         /* Shift one or two slots as needed */
2725         if (!copy) {
2726                 sge = sk_msg_elem_cpy(msg, i);
2727
2728                 sk_msg_iter_var_next(i);
2729                 sg_unmark_end(&sge);
2730                 sk_msg_iter_next(msg, end);
2731
2732                 nsge = sk_msg_elem_cpy(msg, i);
2733                 if (rsge.length) {
2734                         sk_msg_iter_var_next(i);
2735                         nnsge = sk_msg_elem_cpy(msg, i);
2736                 }
2737
2738                 while (i != msg->sg.end) {
2739                         msg->sg.data[i] = sge;
2740                         sge = nsge;
2741                         sk_msg_iter_var_next(i);
2742                         if (rsge.length) {
2743                                 nsge = nnsge;
2744                                 nnsge = sk_msg_elem_cpy(msg, i);
2745                         } else {
2746                                 nsge = sk_msg_elem_cpy(msg, i);
2747                         }
2748                 }
2749         }
2750
2751         /* Place newly allocated data buffer */
2752         sk_mem_charge(msg->sk, len);
2753         msg->sg.size += len;
2754         __clear_bit(new, &msg->sg.copy);
2755         sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2756         if (rsge.length) {
2757                 get_page(sg_page(&rsge));
2758                 sk_msg_iter_var_next(new);
2759                 msg->sg.data[new] = rsge;
2760         }
2761
2762         sk_msg_compute_data_pointers(msg);
2763         return 0;
2764 }
2765
2766 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2767         .func           = bpf_msg_push_data,
2768         .gpl_only       = false,
2769         .ret_type       = RET_INTEGER,
2770         .arg1_type      = ARG_PTR_TO_CTX,
2771         .arg2_type      = ARG_ANYTHING,
2772         .arg3_type      = ARG_ANYTHING,
2773         .arg4_type      = ARG_ANYTHING,
2774 };
2775
2776 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2777 {
2778         int prev;
2779
2780         do {
2781                 prev = i;
2782                 sk_msg_iter_var_next(i);
2783                 msg->sg.data[prev] = msg->sg.data[i];
2784         } while (i != msg->sg.end);
2785
2786         sk_msg_iter_prev(msg, end);
2787 }
2788
2789 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2790 {
2791         struct scatterlist tmp, sge;
2792
2793         sk_msg_iter_next(msg, end);
2794         sge = sk_msg_elem_cpy(msg, i);
2795         sk_msg_iter_var_next(i);
2796         tmp = sk_msg_elem_cpy(msg, i);
2797
2798         while (i != msg->sg.end) {
2799                 msg->sg.data[i] = sge;
2800                 sk_msg_iter_var_next(i);
2801                 sge = tmp;
2802                 tmp = sk_msg_elem_cpy(msg, i);
2803         }
2804 }
2805
2806 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2807            u32, len, u64, flags)
2808 {
2809         u32 i = 0, l = 0, space, offset = 0;
2810         u64 last = start + len;
2811         int pop;
2812
2813         if (unlikely(flags))
2814                 return -EINVAL;
2815
2816         /* First find the starting scatterlist element */
2817         i = msg->sg.start;
2818         do {
2819                 offset += l;
2820                 l = sk_msg_elem(msg, i)->length;
2821
2822                 if (start < offset + l)
2823                         break;
2824                 sk_msg_iter_var_next(i);
2825         } while (i != msg->sg.end);
2826
2827         /* Bounds checks: start and pop must be inside message */
2828         if (start >= offset + l || last >= msg->sg.size)
2829                 return -EINVAL;
2830
2831         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2832
2833         pop = len;
2834         /* --------------| offset
2835          * -| start      |-------- len -------|
2836          *
2837          *  |----- a ----|-------- pop -------|----- b ----|
2838          *  |______________________________________________| length
2839          *
2840          *
2841          * a:   region at front of scatter element to save
2842          * b:   region at back of scatter element to save when length > A + pop
2843          * pop: region to pop from element, same as input 'pop' here will be
2844          *      decremented below per iteration.
2845          *
2846          * Two top-level cases to handle when start != offset, first B is non
2847          * zero and second B is zero corresponding to when a pop includes more
2848          * than one element.
2849          *
2850          * Then if B is non-zero AND there is no space allocate space and
2851          * compact A, B regions into page. If there is space shift ring to
2852          * the rigth free'ing the next element in ring to place B, leaving
2853          * A untouched except to reduce length.
2854          */
2855         if (start != offset) {
2856                 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2857                 int a = start;
2858                 int b = sge->length - pop - a;
2859
2860                 sk_msg_iter_var_next(i);
2861
2862                 if (pop < sge->length - a) {
2863                         if (space) {
2864                                 sge->length = a;
2865                                 sk_msg_shift_right(msg, i);
2866                                 nsge = sk_msg_elem(msg, i);
2867                                 get_page(sg_page(sge));
2868                                 sg_set_page(nsge,
2869                                             sg_page(sge),
2870                                             b, sge->offset + pop + a);
2871                         } else {
2872                                 struct page *page, *orig;
2873                                 u8 *to, *from;
2874
2875                                 page = alloc_pages(__GFP_NOWARN |
2876                                                    __GFP_COMP   | GFP_ATOMIC,
2877                                                    get_order(a + b));
2878                                 if (unlikely(!page))
2879                                         return -ENOMEM;
2880
2881                                 sge->length = a;
2882                                 orig = sg_page(sge);
2883                                 from = sg_virt(sge);
2884                                 to = page_address(page);
2885                                 memcpy(to, from, a);
2886                                 memcpy(to + a, from + a + pop, b);
2887                                 sg_set_page(sge, page, a + b, 0);
2888                                 put_page(orig);
2889                         }
2890                         pop = 0;
2891                 } else if (pop >= sge->length - a) {
2892                         pop -= (sge->length - a);
2893                         sge->length = a;
2894                 }
2895         }
2896
2897         /* From above the current layout _must_ be as follows,
2898          *
2899          * -| offset
2900          * -| start
2901          *
2902          *  |---- pop ---|---------------- b ------------|
2903          *  |____________________________________________| length
2904          *
2905          * Offset and start of the current msg elem are equal because in the
2906          * previous case we handled offset != start and either consumed the
2907          * entire element and advanced to the next element OR pop == 0.
2908          *
2909          * Two cases to handle here are first pop is less than the length
2910          * leaving some remainder b above. Simply adjust the element's layout
2911          * in this case. Or pop >= length of the element so that b = 0. In this
2912          * case advance to next element decrementing pop.
2913          */
2914         while (pop) {
2915                 struct scatterlist *sge = sk_msg_elem(msg, i);
2916
2917                 if (pop < sge->length) {
2918                         sge->length -= pop;
2919                         sge->offset += pop;
2920                         pop = 0;
2921                 } else {
2922                         pop -= sge->length;
2923                         sk_msg_shift_left(msg, i);
2924                 }
2925                 sk_msg_iter_var_next(i);
2926         }
2927
2928         sk_mem_uncharge(msg->sk, len - pop);
2929         msg->sg.size -= (len - pop);
2930         sk_msg_compute_data_pointers(msg);
2931         return 0;
2932 }
2933
2934 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2935         .func           = bpf_msg_pop_data,
2936         .gpl_only       = false,
2937         .ret_type       = RET_INTEGER,
2938         .arg1_type      = ARG_PTR_TO_CTX,
2939         .arg2_type      = ARG_ANYTHING,
2940         .arg3_type      = ARG_ANYTHING,
2941         .arg4_type      = ARG_ANYTHING,
2942 };
2943
2944 #ifdef CONFIG_CGROUP_NET_CLASSID
2945 BPF_CALL_0(bpf_get_cgroup_classid_curr)
2946 {
2947         return __task_get_classid(current);
2948 }
2949
2950 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
2951         .func           = bpf_get_cgroup_classid_curr,
2952         .gpl_only       = false,
2953         .ret_type       = RET_INTEGER,
2954 };
2955
2956 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
2957 {
2958         struct sock *sk = skb_to_full_sk(skb);
2959
2960         if (!sk || !sk_fullsock(sk))
2961                 return 0;
2962
2963         return sock_cgroup_classid(&sk->sk_cgrp_data);
2964 }
2965
2966 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
2967         .func           = bpf_skb_cgroup_classid,
2968         .gpl_only       = false,
2969         .ret_type       = RET_INTEGER,
2970         .arg1_type      = ARG_PTR_TO_CTX,
2971 };
2972 #endif
2973
2974 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2975 {
2976         return task_get_classid(skb);
2977 }
2978
2979 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2980         .func           = bpf_get_cgroup_classid,
2981         .gpl_only       = false,
2982         .ret_type       = RET_INTEGER,
2983         .arg1_type      = ARG_PTR_TO_CTX,
2984 };
2985
2986 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2987 {
2988         return dst_tclassid(skb);
2989 }
2990
2991 static const struct bpf_func_proto bpf_get_route_realm_proto = {
2992         .func           = bpf_get_route_realm,
2993         .gpl_only       = false,
2994         .ret_type       = RET_INTEGER,
2995         .arg1_type      = ARG_PTR_TO_CTX,
2996 };
2997
2998 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2999 {
3000         /* If skb_clear_hash() was called due to mangling, we can
3001          * trigger SW recalculation here. Later access to hash
3002          * can then use the inline skb->hash via context directly
3003          * instead of calling this helper again.
3004          */
3005         return skb_get_hash(skb);
3006 }
3007
3008 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3009         .func           = bpf_get_hash_recalc,
3010         .gpl_only       = false,
3011         .ret_type       = RET_INTEGER,
3012         .arg1_type      = ARG_PTR_TO_CTX,
3013 };
3014
3015 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3016 {
3017         /* After all direct packet write, this can be used once for
3018          * triggering a lazy recalc on next skb_get_hash() invocation.
3019          */
3020         skb_clear_hash(skb);
3021         return 0;
3022 }
3023
3024 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3025         .func           = bpf_set_hash_invalid,
3026         .gpl_only       = false,
3027         .ret_type       = RET_INTEGER,
3028         .arg1_type      = ARG_PTR_TO_CTX,
3029 };
3030
3031 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3032 {
3033         /* Set user specified hash as L4(+), so that it gets returned
3034          * on skb_get_hash() call unless BPF prog later on triggers a
3035          * skb_clear_hash().
3036          */
3037         __skb_set_sw_hash(skb, hash, true);
3038         return 0;
3039 }
3040
3041 static const struct bpf_func_proto bpf_set_hash_proto = {
3042         .func           = bpf_set_hash,
3043         .gpl_only       = false,
3044         .ret_type       = RET_INTEGER,
3045         .arg1_type      = ARG_PTR_TO_CTX,
3046         .arg2_type      = ARG_ANYTHING,
3047 };
3048
3049 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3050            u16, vlan_tci)
3051 {
3052         int ret;
3053
3054         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3055                      vlan_proto != htons(ETH_P_8021AD)))
3056                 vlan_proto = htons(ETH_P_8021Q);
3057
3058         bpf_push_mac_rcsum(skb);
3059         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3060         bpf_pull_mac_rcsum(skb);
3061
3062         bpf_compute_data_pointers(skb);
3063         return ret;
3064 }
3065
3066 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3067         .func           = bpf_skb_vlan_push,
3068         .gpl_only       = false,
3069         .ret_type       = RET_INTEGER,
3070         .arg1_type      = ARG_PTR_TO_CTX,
3071         .arg2_type      = ARG_ANYTHING,
3072         .arg3_type      = ARG_ANYTHING,
3073 };
3074
3075 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3076 {
3077         int ret;
3078
3079         bpf_push_mac_rcsum(skb);
3080         ret = skb_vlan_pop(skb);
3081         bpf_pull_mac_rcsum(skb);
3082
3083         bpf_compute_data_pointers(skb);
3084         return ret;
3085 }
3086
3087 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3088         .func           = bpf_skb_vlan_pop,
3089         .gpl_only       = false,
3090         .ret_type       = RET_INTEGER,
3091         .arg1_type      = ARG_PTR_TO_CTX,
3092 };
3093
3094 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3095 {
3096         /* Caller already did skb_cow() with len as headroom,
3097          * so no need to do it here.
3098          */
3099         skb_push(skb, len);
3100         memmove(skb->data, skb->data + len, off);
3101         memset(skb->data + off, 0, len);
3102
3103         /* No skb_postpush_rcsum(skb, skb->data + off, len)
3104          * needed here as it does not change the skb->csum
3105          * result for checksum complete when summing over
3106          * zeroed blocks.
3107          */
3108         return 0;
3109 }
3110
3111 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3112 {
3113         /* skb_ensure_writable() is not needed here, as we're
3114          * already working on an uncloned skb.
3115          */
3116         if (unlikely(!pskb_may_pull(skb, off + len)))
3117                 return -ENOMEM;
3118
3119         skb_postpull_rcsum(skb, skb->data + off, len);
3120         memmove(skb->data + len, skb->data, off);
3121         __skb_pull(skb, len);
3122
3123         return 0;
3124 }
3125
3126 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3127 {
3128         bool trans_same = skb->transport_header == skb->network_header;
3129         int ret;
3130
3131         /* There's no need for __skb_push()/__skb_pull() pair to
3132          * get to the start of the mac header as we're guaranteed
3133          * to always start from here under eBPF.
3134          */
3135         ret = bpf_skb_generic_push(skb, off, len);
3136         if (likely(!ret)) {
3137                 skb->mac_header -= len;
3138                 skb->network_header -= len;
3139                 if (trans_same)
3140                         skb->transport_header = skb->network_header;
3141         }
3142
3143         return ret;
3144 }
3145
3146 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3147 {
3148         bool trans_same = skb->transport_header == skb->network_header;
3149         int ret;
3150
3151         /* Same here, __skb_push()/__skb_pull() pair not needed. */
3152         ret = bpf_skb_generic_pop(skb, off, len);
3153         if (likely(!ret)) {
3154                 skb->mac_header += len;
3155                 skb->network_header += len;
3156                 if (trans_same)
3157                         skb->transport_header = skb->network_header;
3158         }
3159
3160         return ret;
3161 }
3162
3163 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3164 {
3165         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3166         u32 off = skb_mac_header_len(skb);
3167         int ret;
3168
3169         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
3170                 return -ENOTSUPP;
3171
3172         ret = skb_cow(skb, len_diff);
3173         if (unlikely(ret < 0))
3174                 return ret;
3175
3176         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3177         if (unlikely(ret < 0))
3178                 return ret;
3179
3180         if (skb_is_gso(skb)) {
3181                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3182
3183                 /* SKB_GSO_TCPV4 needs to be changed into
3184                  * SKB_GSO_TCPV6.
3185                  */
3186                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3187                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
3188                         shinfo->gso_type |=  SKB_GSO_TCPV6;
3189                 }
3190
3191                 /* Due to IPv6 header, MSS needs to be downgraded. */
3192                 skb_decrease_gso_size(shinfo, len_diff);
3193                 /* Header must be checked, and gso_segs recomputed. */
3194                 shinfo->gso_type |= SKB_GSO_DODGY;
3195                 shinfo->gso_segs = 0;
3196         }
3197
3198         skb->protocol = htons(ETH_P_IPV6);
3199         skb_clear_hash(skb);
3200
3201         return 0;
3202 }
3203
3204 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3205 {
3206         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3207         u32 off = skb_mac_header_len(skb);
3208         int ret;
3209
3210         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
3211                 return -ENOTSUPP;
3212
3213         ret = skb_unclone(skb, GFP_ATOMIC);
3214         if (unlikely(ret < 0))
3215                 return ret;
3216
3217         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3218         if (unlikely(ret < 0))
3219                 return ret;
3220
3221         if (skb_is_gso(skb)) {
3222                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3223
3224                 /* SKB_GSO_TCPV6 needs to be changed into
3225                  * SKB_GSO_TCPV4.
3226                  */
3227                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3228                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
3229                         shinfo->gso_type |=  SKB_GSO_TCPV4;
3230                 }
3231
3232                 /* Due to IPv4 header, MSS can be upgraded. */
3233                 skb_increase_gso_size(shinfo, len_diff);
3234                 /* Header must be checked, and gso_segs recomputed. */
3235                 shinfo->gso_type |= SKB_GSO_DODGY;
3236                 shinfo->gso_segs = 0;
3237         }
3238
3239         skb->protocol = htons(ETH_P_IP);
3240         skb_clear_hash(skb);
3241
3242         return 0;
3243 }
3244
3245 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3246 {
3247         __be16 from_proto = skb->protocol;
3248
3249         if (from_proto == htons(ETH_P_IP) &&
3250               to_proto == htons(ETH_P_IPV6))
3251                 return bpf_skb_proto_4_to_6(skb);
3252
3253         if (from_proto == htons(ETH_P_IPV6) &&
3254               to_proto == htons(ETH_P_IP))
3255                 return bpf_skb_proto_6_to_4(skb);
3256
3257         return -ENOTSUPP;
3258 }
3259
3260 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3261            u64, flags)
3262 {
3263         int ret;
3264
3265         if (unlikely(flags))
3266                 return -EINVAL;
3267
3268         /* General idea is that this helper does the basic groundwork
3269          * needed for changing the protocol, and eBPF program fills the
3270          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3271          * and other helpers, rather than passing a raw buffer here.
3272          *
3273          * The rationale is to keep this minimal and without a need to
3274          * deal with raw packet data. F.e. even if we would pass buffers
3275          * here, the program still needs to call the bpf_lX_csum_replace()
3276          * helpers anyway. Plus, this way we keep also separation of
3277          * concerns, since f.e. bpf_skb_store_bytes() should only take
3278          * care of stores.
3279          *
3280          * Currently, additional options and extension header space are
3281          * not supported, but flags register is reserved so we can adapt
3282          * that. For offloads, we mark packet as dodgy, so that headers
3283          * need to be verified first.
3284          */
3285         ret = bpf_skb_proto_xlat(skb, proto);
3286         bpf_compute_data_pointers(skb);
3287         return ret;
3288 }
3289
3290 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3291         .func           = bpf_skb_change_proto,
3292         .gpl_only       = false,
3293         .ret_type       = RET_INTEGER,
3294         .arg1_type      = ARG_PTR_TO_CTX,
3295         .arg2_type      = ARG_ANYTHING,
3296         .arg3_type      = ARG_ANYTHING,
3297 };
3298
3299 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3300 {
3301         /* We only allow a restricted subset to be changed for now. */
3302         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3303                      !skb_pkt_type_ok(pkt_type)))
3304                 return -EINVAL;
3305
3306         skb->pkt_type = pkt_type;
3307         return 0;
3308 }
3309
3310 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3311         .func           = bpf_skb_change_type,
3312         .gpl_only       = false,
3313         .ret_type       = RET_INTEGER,
3314         .arg1_type      = ARG_PTR_TO_CTX,
3315         .arg2_type      = ARG_ANYTHING,
3316 };
3317
3318 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3319 {
3320         switch (skb->protocol) {
3321         case htons(ETH_P_IP):
3322                 return sizeof(struct iphdr);
3323         case htons(ETH_P_IPV6):
3324                 return sizeof(struct ipv6hdr);
3325         default:
3326                 return ~0U;
3327         }
3328 }
3329
3330 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3331                                          BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3332
3333 #define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3334                                          BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3335                                          BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3336                                          BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3337                                          BPF_F_ADJ_ROOM_ENCAP_L2( \
3338                                           BPF_ADJ_ROOM_ENCAP_L2_MASK))
3339
3340 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3341                             u64 flags)
3342 {
3343         u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3344         bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3345         u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3346         unsigned int gso_type = SKB_GSO_DODGY;
3347         int ret;
3348
3349         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3350                 /* udp gso_size delineates datagrams, only allow if fixed */
3351                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3352                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3353                         return -ENOTSUPP;
3354         }
3355
3356         ret = skb_cow_head(skb, len_diff);
3357         if (unlikely(ret < 0))
3358                 return ret;
3359
3360         if (encap) {
3361                 if (skb->protocol != htons(ETH_P_IP) &&
3362                     skb->protocol != htons(ETH_P_IPV6))
3363                         return -ENOTSUPP;
3364
3365                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3366                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3367                         return -EINVAL;
3368
3369                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3370                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3371                         return -EINVAL;
3372
3373                 if (skb->encapsulation)
3374                         return -EALREADY;
3375
3376                 mac_len = skb->network_header - skb->mac_header;
3377                 inner_net = skb->network_header;
3378                 if (inner_mac_len > len_diff)
3379                         return -EINVAL;
3380                 inner_trans = skb->transport_header;
3381         }
3382
3383         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3384         if (unlikely(ret < 0))
3385                 return ret;
3386
3387         if (encap) {
3388                 skb->inner_mac_header = inner_net - inner_mac_len;
3389                 skb->inner_network_header = inner_net;
3390                 skb->inner_transport_header = inner_trans;
3391                 skb_set_inner_protocol(skb, skb->protocol);
3392
3393                 skb->encapsulation = 1;
3394                 skb_set_network_header(skb, mac_len);
3395
3396                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3397                         gso_type |= SKB_GSO_UDP_TUNNEL;
3398                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3399                         gso_type |= SKB_GSO_GRE;
3400                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3401                         gso_type |= SKB_GSO_IPXIP6;
3402                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3403                         gso_type |= SKB_GSO_IPXIP4;
3404
3405                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3406                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3407                         int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3408                                         sizeof(struct ipv6hdr) :
3409                                         sizeof(struct iphdr);
3410
3411                         skb_set_transport_header(skb, mac_len + nh_len);
3412                 }
3413
3414                 /* Match skb->protocol to new outer l3 protocol */
3415                 if (skb->protocol == htons(ETH_P_IP) &&
3416                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3417                         skb->protocol = htons(ETH_P_IPV6);
3418                 else if (skb->protocol == htons(ETH_P_IPV6) &&
3419                          flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3420                         skb->protocol = htons(ETH_P_IP);
3421         }
3422
3423         if (skb_is_gso(skb)) {
3424                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3425
3426                 /* Due to header grow, MSS needs to be downgraded. */
3427                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3428                         skb_decrease_gso_size(shinfo, len_diff);
3429
3430                 /* Header must be checked, and gso_segs recomputed. */
3431                 shinfo->gso_type |= gso_type;
3432                 shinfo->gso_segs = 0;
3433         }
3434
3435         return 0;
3436 }
3437
3438 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3439                               u64 flags)
3440 {
3441         int ret;
3442
3443         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3444                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3445                 return -EINVAL;
3446
3447         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3448                 /* udp gso_size delineates datagrams, only allow if fixed */
3449                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3450                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3451                         return -ENOTSUPP;
3452         }
3453
3454         ret = skb_unclone(skb, GFP_ATOMIC);
3455         if (unlikely(ret < 0))
3456                 return ret;
3457
3458         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3459         if (unlikely(ret < 0))
3460                 return ret;
3461
3462         if (skb_is_gso(skb)) {
3463                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3464
3465                 /* Due to header shrink, MSS can be upgraded. */
3466                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3467                         skb_increase_gso_size(shinfo, len_diff);
3468
3469                 /* Header must be checked, and gso_segs recomputed. */
3470                 shinfo->gso_type |= SKB_GSO_DODGY;
3471                 shinfo->gso_segs = 0;
3472         }
3473
3474         return 0;
3475 }
3476
3477 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
3478 {
3479         return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
3480                           SKB_MAX_ALLOC;
3481 }
3482
3483 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3484            u32, mode, u64, flags)
3485 {
3486         u32 len_diff_abs = abs(len_diff);
3487         bool shrink = len_diff < 0;
3488         int ret = 0;
3489
3490         if (unlikely(flags || mode))
3491                 return -EINVAL;
3492         if (unlikely(len_diff_abs > 0xfffU))
3493                 return -EFAULT;
3494
3495         if (!shrink) {
3496                 ret = skb_cow(skb, len_diff);
3497                 if (unlikely(ret < 0))
3498                         return ret;
3499                 __skb_push(skb, len_diff_abs);
3500                 memset(skb->data, 0, len_diff_abs);
3501         } else {
3502                 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3503                         return -ENOMEM;
3504                 __skb_pull(skb, len_diff_abs);
3505         }
3506         bpf_compute_data_end_sk_skb(skb);
3507         if (tls_sw_has_ctx_rx(skb->sk)) {
3508                 struct strp_msg *rxm = strp_msg(skb);
3509
3510                 rxm->full_len += len_diff;
3511         }
3512         return ret;
3513 }
3514
3515 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3516         .func           = sk_skb_adjust_room,
3517         .gpl_only       = false,
3518         .ret_type       = RET_INTEGER,
3519         .arg1_type      = ARG_PTR_TO_CTX,
3520         .arg2_type      = ARG_ANYTHING,
3521         .arg3_type      = ARG_ANYTHING,
3522         .arg4_type      = ARG_ANYTHING,
3523 };
3524
3525 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3526            u32, mode, u64, flags)
3527 {
3528         u32 len_cur, len_diff_abs = abs(len_diff);
3529         u32 len_min = bpf_skb_net_base_len(skb);
3530         u32 len_max = __bpf_skb_max_len(skb);
3531         __be16 proto = skb->protocol;
3532         bool shrink = len_diff < 0;
3533         u32 off;
3534         int ret;
3535
3536         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3537                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3538                 return -EINVAL;
3539         if (unlikely(len_diff_abs > 0xfffU))
3540                 return -EFAULT;
3541         if (unlikely(proto != htons(ETH_P_IP) &&
3542                      proto != htons(ETH_P_IPV6)))
3543                 return -ENOTSUPP;
3544
3545         off = skb_mac_header_len(skb);
3546         switch (mode) {
3547         case BPF_ADJ_ROOM_NET:
3548                 off += bpf_skb_net_base_len(skb);
3549                 break;
3550         case BPF_ADJ_ROOM_MAC:
3551                 break;
3552         default:
3553                 return -ENOTSUPP;
3554         }
3555
3556         len_cur = skb->len - skb_network_offset(skb);
3557         if ((shrink && (len_diff_abs >= len_cur ||
3558                         len_cur - len_diff_abs < len_min)) ||
3559             (!shrink && (skb->len + len_diff_abs > len_max &&
3560                          !skb_is_gso(skb))))
3561                 return -ENOTSUPP;
3562
3563         ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3564                        bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3565         if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3566                 __skb_reset_checksum_unnecessary(skb);
3567
3568         bpf_compute_data_pointers(skb);
3569         return ret;
3570 }
3571
3572 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3573         .func           = bpf_skb_adjust_room,
3574         .gpl_only       = false,
3575         .ret_type       = RET_INTEGER,
3576         .arg1_type      = ARG_PTR_TO_CTX,
3577         .arg2_type      = ARG_ANYTHING,
3578         .arg3_type      = ARG_ANYTHING,
3579         .arg4_type      = ARG_ANYTHING,
3580 };
3581
3582 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3583 {
3584         u32 min_len = skb_network_offset(skb);
3585
3586         if (skb_transport_header_was_set(skb))
3587                 min_len = skb_transport_offset(skb);
3588         if (skb->ip_summed == CHECKSUM_PARTIAL)
3589                 min_len = skb_checksum_start_offset(skb) +
3590                           skb->csum_offset + sizeof(__sum16);
3591         return min_len;
3592 }
3593
3594 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3595 {
3596         unsigned int old_len = skb->len;
3597         int ret;
3598
3599         ret = __skb_grow_rcsum(skb, new_len);
3600         if (!ret)
3601                 memset(skb->data + old_len, 0, new_len - old_len);
3602         return ret;
3603 }
3604
3605 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3606 {
3607         return __skb_trim_rcsum(skb, new_len);
3608 }
3609
3610 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3611                                         u64 flags)
3612 {
3613         u32 max_len = __bpf_skb_max_len(skb);
3614         u32 min_len = __bpf_skb_min_len(skb);
3615         int ret;
3616
3617         if (unlikely(flags || new_len > max_len || new_len < min_len))
3618                 return -EINVAL;
3619         if (skb->encapsulation)
3620                 return -ENOTSUPP;
3621
3622         /* The basic idea of this helper is that it's performing the
3623          * needed work to either grow or trim an skb, and eBPF program
3624          * rewrites the rest via helpers like bpf_skb_store_bytes(),
3625          * bpf_lX_csum_replace() and others rather than passing a raw
3626          * buffer here. This one is a slow path helper and intended
3627          * for replies with control messages.
3628          *
3629          * Like in bpf_skb_change_proto(), we want to keep this rather
3630          * minimal and without protocol specifics so that we are able
3631          * to separate concerns as in bpf_skb_store_bytes() should only
3632          * be the one responsible for writing buffers.
3633          *
3634          * It's really expected to be a slow path operation here for
3635          * control message replies, so we're implicitly linearizing,
3636          * uncloning and drop offloads from the skb by this.
3637          */
3638         ret = __bpf_try_make_writable(skb, skb->len);
3639         if (!ret) {
3640                 if (new_len > skb->len)
3641                         ret = bpf_skb_grow_rcsum(skb, new_len);
3642                 else if (new_len < skb->len)
3643                         ret = bpf_skb_trim_rcsum(skb, new_len);
3644                 if (!ret && skb_is_gso(skb))
3645                         skb_gso_reset(skb);
3646         }
3647         return ret;
3648 }
3649
3650 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3651            u64, flags)
3652 {
3653         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3654
3655         bpf_compute_data_pointers(skb);
3656         return ret;
3657 }
3658
3659 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3660         .func           = bpf_skb_change_tail,
3661         .gpl_only       = false,
3662         .ret_type       = RET_INTEGER,
3663         .arg1_type      = ARG_PTR_TO_CTX,
3664         .arg2_type      = ARG_ANYTHING,
3665         .arg3_type      = ARG_ANYTHING,
3666 };
3667
3668 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3669            u64, flags)
3670 {
3671         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3672
3673         bpf_compute_data_end_sk_skb(skb);
3674         return ret;
3675 }
3676
3677 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3678         .func           = sk_skb_change_tail,
3679         .gpl_only       = false,
3680         .ret_type       = RET_INTEGER,
3681         .arg1_type      = ARG_PTR_TO_CTX,
3682         .arg2_type      = ARG_ANYTHING,
3683         .arg3_type      = ARG_ANYTHING,
3684 };
3685
3686 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3687                                         u64 flags)
3688 {
3689         u32 max_len = __bpf_skb_max_len(skb);
3690         u32 new_len = skb->len + head_room;
3691         int ret;
3692
3693         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3694                      new_len < skb->len))
3695                 return -EINVAL;
3696
3697         ret = skb_cow(skb, head_room);
3698         if (likely(!ret)) {
3699                 /* Idea for this helper is that we currently only
3700                  * allow to expand on mac header. This means that
3701                  * skb->protocol network header, etc, stay as is.
3702                  * Compared to bpf_skb_change_tail(), we're more
3703                  * flexible due to not needing to linearize or
3704                  * reset GSO. Intention for this helper is to be
3705                  * used by an L3 skb that needs to push mac header
3706                  * for redirection into L2 device.
3707                  */
3708                 __skb_push(skb, head_room);
3709                 memset(skb->data, 0, head_room);
3710                 skb_reset_mac_header(skb);
3711         }
3712
3713         return ret;
3714 }
3715
3716 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3717            u64, flags)
3718 {
3719         int ret = __bpf_skb_change_head(skb, head_room, flags);
3720
3721         bpf_compute_data_pointers(skb);
3722         return ret;
3723 }
3724
3725 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3726         .func           = bpf_skb_change_head,
3727         .gpl_only       = false,
3728         .ret_type       = RET_INTEGER,
3729         .arg1_type      = ARG_PTR_TO_CTX,
3730         .arg2_type      = ARG_ANYTHING,
3731         .arg3_type      = ARG_ANYTHING,
3732 };
3733
3734 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3735            u64, flags)
3736 {
3737         int ret = __bpf_skb_change_head(skb, head_room, flags);
3738
3739         bpf_compute_data_end_sk_skb(skb);
3740         return ret;
3741 }
3742
3743 static const struct bpf_func_proto sk_skb_change_head_proto = {
3744         .func           = sk_skb_change_head,
3745         .gpl_only       = false,
3746         .ret_type       = RET_INTEGER,
3747         .arg1_type      = ARG_PTR_TO_CTX,
3748         .arg2_type      = ARG_ANYTHING,
3749         .arg3_type      = ARG_ANYTHING,
3750 };
3751 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3752 {
3753         return xdp_data_meta_unsupported(xdp) ? 0 :
3754                xdp->data - xdp->data_meta;
3755 }
3756
3757 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3758 {
3759         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3760         unsigned long metalen = xdp_get_metalen(xdp);
3761         void *data_start = xdp_frame_end + metalen;
3762         void *data = xdp->data + offset;
3763
3764         if (unlikely(data < data_start ||
3765                      data > xdp->data_end - ETH_HLEN))
3766                 return -EINVAL;
3767
3768         if (metalen)
3769                 memmove(xdp->data_meta + offset,
3770                         xdp->data_meta, metalen);
3771         xdp->data_meta += offset;
3772         xdp->data = data;
3773
3774         return 0;
3775 }
3776
3777 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3778         .func           = bpf_xdp_adjust_head,
3779         .gpl_only       = false,
3780         .ret_type       = RET_INTEGER,
3781         .arg1_type      = ARG_PTR_TO_CTX,
3782         .arg2_type      = ARG_ANYTHING,
3783 };
3784
3785 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3786 {
3787         void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
3788         void *data_end = xdp->data_end + offset;
3789
3790         /* Notice that xdp_data_hard_end have reserved some tailroom */
3791         if (unlikely(data_end > data_hard_end))
3792                 return -EINVAL;
3793
3794         /* ALL drivers MUST init xdp->frame_sz, chicken check below */
3795         if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
3796                 WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
3797                 return -EINVAL;
3798         }
3799
3800         if (unlikely(data_end < xdp->data + ETH_HLEN))
3801                 return -EINVAL;
3802
3803         /* Clear memory area on grow, can contain uninit kernel memory */
3804         if (offset > 0)
3805                 memset(xdp->data_end, 0, offset);
3806
3807         xdp->data_end = data_end;
3808
3809         return 0;
3810 }
3811
3812 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3813         .func           = bpf_xdp_adjust_tail,
3814         .gpl_only       = false,
3815         .ret_type       = RET_INTEGER,
3816         .arg1_type      = ARG_PTR_TO_CTX,
3817         .arg2_type      = ARG_ANYTHING,
3818 };
3819
3820 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3821 {
3822         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3823         void *meta = xdp->data_meta + offset;
3824         unsigned long metalen = xdp->data - meta;
3825
3826         if (xdp_data_meta_unsupported(xdp))
3827                 return -ENOTSUPP;
3828         if (unlikely(meta < xdp_frame_end ||
3829                      meta > xdp->data))
3830                 return -EINVAL;
3831         if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3832                      (metalen > 32)))
3833                 return -EACCES;
3834
3835         xdp->data_meta = meta;
3836
3837         return 0;
3838 }
3839
3840 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3841         .func           = bpf_xdp_adjust_meta,
3842         .gpl_only       = false,
3843         .ret_type       = RET_INTEGER,
3844         .arg1_type      = ARG_PTR_TO_CTX,
3845         .arg2_type      = ARG_ANYTHING,
3846 };
3847
3848 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3849                             struct bpf_map *map, struct xdp_buff *xdp)
3850 {
3851         switch (map->map_type) {
3852         case BPF_MAP_TYPE_DEVMAP:
3853         case BPF_MAP_TYPE_DEVMAP_HASH:
3854                 return dev_map_enqueue(fwd, xdp, dev_rx);
3855         case BPF_MAP_TYPE_CPUMAP:
3856                 return cpu_map_enqueue(fwd, xdp, dev_rx);
3857         case BPF_MAP_TYPE_XSKMAP:
3858                 return __xsk_map_redirect(fwd, xdp);
3859         default:
3860                 return -EBADRQC;
3861         }
3862         return 0;
3863 }
3864
3865 void xdp_do_flush(void)
3866 {
3867         __dev_flush();
3868         __cpu_map_flush();
3869         __xsk_map_flush();
3870 }
3871 EXPORT_SYMBOL_GPL(xdp_do_flush);
3872
3873 static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3874 {
3875         switch (map->map_type) {
3876         case BPF_MAP_TYPE_DEVMAP:
3877                 return __dev_map_lookup_elem(map, index);
3878         case BPF_MAP_TYPE_DEVMAP_HASH:
3879                 return __dev_map_hash_lookup_elem(map, index);
3880         case BPF_MAP_TYPE_CPUMAP:
3881                 return __cpu_map_lookup_elem(map, index);
3882         case BPF_MAP_TYPE_XSKMAP:
3883                 return __xsk_map_lookup_elem(map, index);
3884         default:
3885                 return NULL;
3886         }
3887 }
3888
3889 void bpf_clear_redirect_map(struct bpf_map *map)
3890 {
3891         struct bpf_redirect_info *ri;
3892         int cpu;
3893
3894         for_each_possible_cpu(cpu) {
3895                 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3896                 /* Avoid polluting remote cacheline due to writes if
3897                  * not needed. Once we pass this test, we need the
3898                  * cmpxchg() to make sure it hasn't been changed in
3899                  * the meantime by remote CPU.
3900                  */
3901                 if (unlikely(READ_ONCE(ri->map) == map))
3902                         cmpxchg(&ri->map, map, NULL);
3903         }
3904 }
3905
3906 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3907                     struct bpf_prog *xdp_prog)
3908 {
3909         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3910         struct bpf_map *map = READ_ONCE(ri->map);
3911         u32 index = ri->tgt_index;
3912         void *fwd = ri->tgt_value;
3913         int err;
3914
3915         ri->tgt_index = 0;
3916         ri->tgt_value = NULL;
3917         WRITE_ONCE(ri->map, NULL);
3918
3919         if (unlikely(!map)) {
3920                 fwd = dev_get_by_index_rcu(dev_net(dev), index);
3921                 if (unlikely(!fwd)) {
3922                         err = -EINVAL;
3923                         goto err;
3924                 }
3925
3926                 err = dev_xdp_enqueue(fwd, xdp, dev);
3927         } else {
3928                 err = __bpf_tx_xdp_map(dev, fwd, map, xdp);
3929         }
3930
3931         if (unlikely(err))
3932                 goto err;
3933
3934         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3935         return 0;
3936 err:
3937         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3938         return err;
3939 }
3940 EXPORT_SYMBOL_GPL(xdp_do_redirect);
3941
3942 static int xdp_do_generic_redirect_map(struct net_device *dev,
3943                                        struct sk_buff *skb,
3944                                        struct xdp_buff *xdp,
3945                                        struct bpf_prog *xdp_prog,
3946                                        struct bpf_map *map)
3947 {
3948         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3949         u32 index = ri->tgt_index;
3950         void *fwd = ri->tgt_value;
3951         int err = 0;
3952
3953         ri->tgt_index = 0;
3954         ri->tgt_value = NULL;
3955         WRITE_ONCE(ri->map, NULL);
3956
3957         if (map->map_type == BPF_MAP_TYPE_DEVMAP ||
3958             map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
3959                 struct bpf_dtab_netdev *dst = fwd;
3960
3961                 err = dev_map_generic_redirect(dst, skb, xdp_prog);
3962                 if (unlikely(err))
3963                         goto err;
3964         } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
3965                 struct xdp_sock *xs = fwd;
3966
3967                 err = xsk_generic_rcv(xs, xdp);
3968                 if (err)
3969                         goto err;
3970                 consume_skb(skb);
3971         } else {
3972                 /* TODO: Handle BPF_MAP_TYPE_CPUMAP */
3973                 err = -EBADRQC;
3974                 goto err;
3975         }
3976
3977         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3978         return 0;
3979 err:
3980         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3981         return err;
3982 }
3983
3984 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3985                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3986 {
3987         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3988         struct bpf_map *map = READ_ONCE(ri->map);
3989         u32 index = ri->tgt_index;
3990         struct net_device *fwd;
3991         int err = 0;
3992
3993         if (map)
3994                 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
3995                                                    map);
3996         ri->tgt_index = 0;
3997         fwd = dev_get_by_index_rcu(dev_net(dev), index);
3998         if (unlikely(!fwd)) {
3999                 err = -EINVAL;
4000                 goto err;
4001         }
4002
4003         err = xdp_ok_fwd_dev(fwd, skb->len);
4004         if (unlikely(err))
4005                 goto err;
4006
4007         skb->dev = fwd;
4008         _trace_xdp_redirect(dev, xdp_prog, index);
4009         generic_xdp_tx(skb, xdp_prog);
4010         return 0;
4011 err:
4012         _trace_xdp_redirect_err(dev, xdp_prog, index, err);
4013         return err;
4014 }
4015
4016 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4017 {
4018         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4019
4020         if (unlikely(flags))
4021                 return XDP_ABORTED;
4022
4023         ri->flags = flags;
4024         ri->tgt_index = ifindex;
4025         ri->tgt_value = NULL;
4026         WRITE_ONCE(ri->map, NULL);
4027
4028         return XDP_REDIRECT;
4029 }
4030
4031 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4032         .func           = bpf_xdp_redirect,
4033         .gpl_only       = false,
4034         .ret_type       = RET_INTEGER,
4035         .arg1_type      = ARG_ANYTHING,
4036         .arg2_type      = ARG_ANYTHING,
4037 };
4038
4039 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4040            u64, flags)
4041 {
4042         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4043
4044         /* Lower bits of the flags are used as return code on lookup failure */
4045         if (unlikely(flags > XDP_TX))
4046                 return XDP_ABORTED;
4047
4048         ri->tgt_value = __xdp_map_lookup_elem(map, ifindex);
4049         if (unlikely(!ri->tgt_value)) {
4050                 /* If the lookup fails we want to clear out the state in the
4051                  * redirect_info struct completely, so that if an eBPF program
4052                  * performs multiple lookups, the last one always takes
4053                  * precedence.
4054                  */
4055                 WRITE_ONCE(ri->map, NULL);
4056                 return flags;
4057         }
4058
4059         ri->flags = flags;
4060         ri->tgt_index = ifindex;
4061         WRITE_ONCE(ri->map, map);
4062
4063         return XDP_REDIRECT;
4064 }
4065
4066 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4067         .func           = bpf_xdp_redirect_map,
4068         .gpl_only       = false,
4069         .ret_type       = RET_INTEGER,
4070         .arg1_type      = ARG_CONST_MAP_PTR,
4071         .arg2_type      = ARG_ANYTHING,
4072         .arg3_type      = ARG_ANYTHING,
4073 };
4074
4075 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4076                                   unsigned long off, unsigned long len)
4077 {
4078         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4079
4080         if (unlikely(!ptr))
4081                 return len;
4082         if (ptr != dst_buff)
4083                 memcpy(dst_buff, ptr, len);
4084
4085         return 0;
4086 }
4087
4088 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4089            u64, flags, void *, meta, u64, meta_size)
4090 {
4091         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4092
4093         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4094                 return -EINVAL;
4095         if (unlikely(!skb || skb_size > skb->len))
4096                 return -EFAULT;
4097
4098         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4099                                 bpf_skb_copy);
4100 }
4101
4102 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4103         .func           = bpf_skb_event_output,
4104         .gpl_only       = true,
4105         .ret_type       = RET_INTEGER,
4106         .arg1_type      = ARG_PTR_TO_CTX,
4107         .arg2_type      = ARG_CONST_MAP_PTR,
4108         .arg3_type      = ARG_ANYTHING,
4109         .arg4_type      = ARG_PTR_TO_MEM,
4110         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4111 };
4112
4113 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4114
4115 const struct bpf_func_proto bpf_skb_output_proto = {
4116         .func           = bpf_skb_event_output,
4117         .gpl_only       = true,
4118         .ret_type       = RET_INTEGER,
4119         .arg1_type      = ARG_PTR_TO_BTF_ID,
4120         .arg1_btf_id    = &bpf_skb_output_btf_ids[0],
4121         .arg2_type      = ARG_CONST_MAP_PTR,
4122         .arg3_type      = ARG_ANYTHING,
4123         .arg4_type      = ARG_PTR_TO_MEM,
4124         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4125 };
4126
4127 static unsigned short bpf_tunnel_key_af(u64 flags)
4128 {
4129         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4130 }
4131
4132 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4133            u32, size, u64, flags)
4134 {
4135         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4136         u8 compat[sizeof(struct bpf_tunnel_key)];
4137         void *to_orig = to;
4138         int err;
4139
4140         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4141                 err = -EINVAL;
4142                 goto err_clear;
4143         }
4144         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4145                 err = -EPROTO;
4146                 goto err_clear;
4147         }
4148         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4149                 err = -EINVAL;
4150                 switch (size) {
4151                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4152                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4153                         goto set_compat;
4154                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4155                         /* Fixup deprecated structure layouts here, so we have
4156                          * a common path later on.
4157                          */
4158                         if (ip_tunnel_info_af(info) != AF_INET)
4159                                 goto err_clear;
4160 set_compat:
4161                         to = (struct bpf_tunnel_key *)compat;
4162                         break;
4163                 default:
4164                         goto err_clear;
4165                 }
4166         }
4167
4168         to->tunnel_id = be64_to_cpu(info->key.tun_id);
4169         to->tunnel_tos = info->key.tos;
4170         to->tunnel_ttl = info->key.ttl;
4171         to->tunnel_ext = 0;
4172
4173         if (flags & BPF_F_TUNINFO_IPV6) {
4174                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4175                        sizeof(to->remote_ipv6));
4176                 to->tunnel_label = be32_to_cpu(info->key.label);
4177         } else {
4178                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4179                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4180                 to->tunnel_label = 0;
4181         }
4182
4183         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4184                 memcpy(to_orig, to, size);
4185
4186         return 0;
4187 err_clear:
4188         memset(to_orig, 0, size);
4189         return err;
4190 }
4191
4192 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4193         .func           = bpf_skb_get_tunnel_key,
4194         .gpl_only       = false,
4195         .ret_type       = RET_INTEGER,
4196         .arg1_type      = ARG_PTR_TO_CTX,
4197         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4198         .arg3_type      = ARG_CONST_SIZE,
4199         .arg4_type      = ARG_ANYTHING,
4200 };
4201
4202 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4203 {
4204         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4205         int err;
4206
4207         if (unlikely(!info ||
4208                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4209                 err = -ENOENT;
4210                 goto err_clear;
4211         }
4212         if (unlikely(size < info->options_len)) {
4213                 err = -ENOMEM;
4214                 goto err_clear;
4215         }
4216
4217         ip_tunnel_info_opts_get(to, info);
4218         if (size > info->options_len)
4219                 memset(to + info->options_len, 0, size - info->options_len);
4220
4221         return info->options_len;
4222 err_clear:
4223         memset(to, 0, size);
4224         return err;
4225 }
4226
4227 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4228         .func           = bpf_skb_get_tunnel_opt,
4229         .gpl_only       = false,
4230         .ret_type       = RET_INTEGER,
4231         .arg1_type      = ARG_PTR_TO_CTX,
4232         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4233         .arg3_type      = ARG_CONST_SIZE,
4234 };
4235
4236 static struct metadata_dst __percpu *md_dst;
4237
4238 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4239            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4240 {
4241         struct metadata_dst *md = this_cpu_ptr(md_dst);
4242         u8 compat[sizeof(struct bpf_tunnel_key)];
4243         struct ip_tunnel_info *info;
4244
4245         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4246                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4247                 return -EINVAL;
4248         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4249                 switch (size) {
4250                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4251                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4252                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4253                         /* Fixup deprecated structure layouts here, so we have
4254                          * a common path later on.
4255                          */
4256                         memcpy(compat, from, size);
4257                         memset(compat + size, 0, sizeof(compat) - size);
4258                         from = (const struct bpf_tunnel_key *) compat;
4259                         break;
4260                 default:
4261                         return -EINVAL;
4262                 }
4263         }
4264         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4265                      from->tunnel_ext))
4266                 return -EINVAL;
4267
4268         skb_dst_drop(skb);
4269         dst_hold((struct dst_entry *) md);
4270         skb_dst_set(skb, (struct dst_entry *) md);
4271
4272         info = &md->u.tun_info;
4273         memset(info, 0, sizeof(*info));
4274         info->mode = IP_TUNNEL_INFO_TX;
4275
4276         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4277         if (flags & BPF_F_DONT_FRAGMENT)
4278                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4279         if (flags & BPF_F_ZERO_CSUM_TX)
4280                 info->key.tun_flags &= ~TUNNEL_CSUM;
4281         if (flags & BPF_F_SEQ_NUMBER)
4282                 info->key.tun_flags |= TUNNEL_SEQ;
4283
4284         info->key.tun_id = cpu_to_be64(from->tunnel_id);
4285         info->key.tos = from->tunnel_tos;
4286         info->key.ttl = from->tunnel_ttl;
4287
4288         if (flags & BPF_F_TUNINFO_IPV6) {
4289                 info->mode |= IP_TUNNEL_INFO_IPV6;
4290                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4291                        sizeof(from->remote_ipv6));
4292                 info->key.label = cpu_to_be32(from->tunnel_label) &
4293                                   IPV6_FLOWLABEL_MASK;
4294         } else {
4295                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4296         }
4297
4298         return 0;
4299 }
4300
4301 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4302         .func           = bpf_skb_set_tunnel_key,
4303         .gpl_only       = false,
4304         .ret_type       = RET_INTEGER,
4305         .arg1_type      = ARG_PTR_TO_CTX,
4306         .arg2_type      = ARG_PTR_TO_MEM,
4307         .arg3_type      = ARG_CONST_SIZE,
4308         .arg4_type      = ARG_ANYTHING,
4309 };
4310
4311 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4312            const u8 *, from, u32, size)
4313 {
4314         struct ip_tunnel_info *info = skb_tunnel_info(skb);
4315         const struct metadata_dst *md = this_cpu_ptr(md_dst);
4316
4317         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4318                 return -EINVAL;
4319         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4320                 return -ENOMEM;
4321
4322         ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4323
4324         return 0;
4325 }
4326
4327 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4328         .func           = bpf_skb_set_tunnel_opt,
4329         .gpl_only       = false,
4330         .ret_type       = RET_INTEGER,
4331         .arg1_type      = ARG_PTR_TO_CTX,
4332         .arg2_type      = ARG_PTR_TO_MEM,
4333         .arg3_type      = ARG_CONST_SIZE,
4334 };
4335
4336 static const struct bpf_func_proto *
4337 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4338 {
4339         if (!md_dst) {
4340                 struct metadata_dst __percpu *tmp;
4341
4342                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4343                                                 METADATA_IP_TUNNEL,
4344                                                 GFP_KERNEL);
4345                 if (!tmp)
4346                         return NULL;
4347                 if (cmpxchg(&md_dst, NULL, tmp))
4348                         metadata_dst_free_percpu(tmp);
4349         }
4350
4351         switch (which) {
4352         case BPF_FUNC_skb_set_tunnel_key:
4353                 return &bpf_skb_set_tunnel_key_proto;
4354         case BPF_FUNC_skb_set_tunnel_opt:
4355                 return &bpf_skb_set_tunnel_opt_proto;
4356         default:
4357                 return NULL;
4358         }
4359 }
4360
4361 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4362            u32, idx)
4363 {
4364         struct bpf_array *array = container_of(map, struct bpf_array, map);
4365         struct cgroup *cgrp;
4366         struct sock *sk;
4367
4368         sk = skb_to_full_sk(skb);
4369         if (!sk || !sk_fullsock(sk))
4370                 return -ENOENT;
4371         if (unlikely(idx >= array->map.max_entries))
4372                 return -E2BIG;
4373
4374         cgrp = READ_ONCE(array->ptrs[idx]);
4375         if (unlikely(!cgrp))
4376                 return -EAGAIN;
4377
4378         return sk_under_cgroup_hierarchy(sk, cgrp);
4379 }
4380
4381 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4382         .func           = bpf_skb_under_cgroup,
4383         .gpl_only       = false,
4384         .ret_type       = RET_INTEGER,
4385         .arg1_type      = ARG_PTR_TO_CTX,
4386         .arg2_type      = ARG_CONST_MAP_PTR,
4387         .arg3_type      = ARG_ANYTHING,
4388 };
4389
4390 #ifdef CONFIG_SOCK_CGROUP_DATA
4391 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4392 {
4393         struct cgroup *cgrp;
4394
4395         sk = sk_to_full_sk(sk);
4396         if (!sk || !sk_fullsock(sk))
4397                 return 0;
4398
4399         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4400         return cgroup_id(cgrp);
4401 }
4402
4403 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4404 {
4405         return __bpf_sk_cgroup_id(skb->sk);
4406 }
4407
4408 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4409         .func           = bpf_skb_cgroup_id,
4410         .gpl_only       = false,
4411         .ret_type       = RET_INTEGER,
4412         .arg1_type      = ARG_PTR_TO_CTX,
4413 };
4414
4415 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4416                                               int ancestor_level)
4417 {
4418         struct cgroup *ancestor;
4419         struct cgroup *cgrp;
4420
4421         sk = sk_to_full_sk(sk);
4422         if (!sk || !sk_fullsock(sk))
4423                 return 0;
4424
4425         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4426         ancestor = cgroup_ancestor(cgrp, ancestor_level);
4427         if (!ancestor)
4428                 return 0;
4429
4430         return cgroup_id(ancestor);
4431 }
4432
4433 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4434            ancestor_level)
4435 {
4436         return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4437 }
4438
4439 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4440         .func           = bpf_skb_ancestor_cgroup_id,
4441         .gpl_only       = false,
4442         .ret_type       = RET_INTEGER,
4443         .arg1_type      = ARG_PTR_TO_CTX,
4444         .arg2_type      = ARG_ANYTHING,
4445 };
4446
4447 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4448 {
4449         return __bpf_sk_cgroup_id(sk);
4450 }
4451
4452 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4453         .func           = bpf_sk_cgroup_id,
4454         .gpl_only       = false,
4455         .ret_type       = RET_INTEGER,
4456         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4457 };
4458
4459 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4460 {
4461         return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4462 }
4463
4464 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4465         .func           = bpf_sk_ancestor_cgroup_id,
4466         .gpl_only       = false,
4467         .ret_type       = RET_INTEGER,
4468         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4469         .arg2_type      = ARG_ANYTHING,
4470 };
4471 #endif
4472
4473 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4474                                   unsigned long off, unsigned long len)
4475 {
4476         memcpy(dst_buff, src_buff + off, len);
4477         return 0;
4478 }
4479
4480 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4481            u64, flags, void *, meta, u64, meta_size)
4482 {
4483         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4484
4485         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4486                 return -EINVAL;
4487         if (unlikely(!xdp ||
4488                      xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4489                 return -EFAULT;
4490
4491         return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4492                                 xdp_size, bpf_xdp_copy);
4493 }
4494
4495 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4496         .func           = bpf_xdp_event_output,
4497         .gpl_only       = true,
4498         .ret_type       = RET_INTEGER,
4499         .arg1_type      = ARG_PTR_TO_CTX,
4500         .arg2_type      = ARG_CONST_MAP_PTR,
4501         .arg3_type      = ARG_ANYTHING,
4502         .arg4_type      = ARG_PTR_TO_MEM,
4503         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4504 };
4505
4506 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4507
4508 const struct bpf_func_proto bpf_xdp_output_proto = {
4509         .func           = bpf_xdp_event_output,
4510         .gpl_only       = true,
4511         .ret_type       = RET_INTEGER,
4512         .arg1_type      = ARG_PTR_TO_BTF_ID,
4513         .arg1_btf_id    = &bpf_xdp_output_btf_ids[0],
4514         .arg2_type      = ARG_CONST_MAP_PTR,
4515         .arg3_type      = ARG_ANYTHING,
4516         .arg4_type      = ARG_PTR_TO_MEM,
4517         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4518 };
4519
4520 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4521 {
4522         return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4523 }
4524
4525 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4526         .func           = bpf_get_socket_cookie,
4527         .gpl_only       = false,
4528         .ret_type       = RET_INTEGER,
4529         .arg1_type      = ARG_PTR_TO_CTX,
4530 };
4531
4532 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4533 {
4534         return __sock_gen_cookie(ctx->sk);
4535 }
4536
4537 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4538         .func           = bpf_get_socket_cookie_sock_addr,
4539         .gpl_only       = false,
4540         .ret_type       = RET_INTEGER,
4541         .arg1_type      = ARG_PTR_TO_CTX,
4542 };
4543
4544 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4545 {
4546         return __sock_gen_cookie(ctx);
4547 }
4548
4549 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4550         .func           = bpf_get_socket_cookie_sock,
4551         .gpl_only       = false,
4552         .ret_type       = RET_INTEGER,
4553         .arg1_type      = ARG_PTR_TO_CTX,
4554 };
4555
4556 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4557 {
4558         return __sock_gen_cookie(ctx->sk);
4559 }
4560
4561 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4562         .func           = bpf_get_socket_cookie_sock_ops,
4563         .gpl_only       = false,
4564         .ret_type       = RET_INTEGER,
4565         .arg1_type      = ARG_PTR_TO_CTX,
4566 };
4567
4568 static u64 __bpf_get_netns_cookie(struct sock *sk)
4569 {
4570 #ifdef CONFIG_NET_NS
4571         return __net_gen_cookie(sk ? sk->sk_net.net : &init_net);
4572 #else
4573         return 0;
4574 #endif
4575 }
4576
4577 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4578 {
4579         return __bpf_get_netns_cookie(ctx);
4580 }
4581
4582 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4583         .func           = bpf_get_netns_cookie_sock,
4584         .gpl_only       = false,
4585         .ret_type       = RET_INTEGER,
4586         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4587 };
4588
4589 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4590 {
4591         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4592 }
4593
4594 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4595         .func           = bpf_get_netns_cookie_sock_addr,
4596         .gpl_only       = false,
4597         .ret_type       = RET_INTEGER,
4598         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4599 };
4600
4601 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4602 {
4603         struct sock *sk = sk_to_full_sk(skb->sk);
4604         kuid_t kuid;
4605
4606         if (!sk || !sk_fullsock(sk))
4607                 return overflowuid;
4608         kuid = sock_net_uid(sock_net(sk), sk);
4609         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4610 }
4611
4612 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4613         .func           = bpf_get_socket_uid,
4614         .gpl_only       = false,
4615         .ret_type       = RET_INTEGER,
4616         .arg1_type      = ARG_PTR_TO_CTX,
4617 };
4618
4619 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
4620                            char *optval, int optlen)
4621 {
4622         char devname[IFNAMSIZ];
4623         int val, valbool;
4624         struct net *net;
4625         int ifindex;
4626         int ret = 0;
4627
4628         if (!sk_fullsock(sk))
4629                 return -EINVAL;
4630
4631         sock_owned_by_me(sk);
4632
4633         if (level == SOL_SOCKET) {
4634                 if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
4635                         return -EINVAL;
4636                 val = *((int *)optval);
4637                 valbool = val ? 1 : 0;
4638
4639                 /* Only some socketops are supported */
4640                 switch (optname) {
4641                 case SO_RCVBUF:
4642                         val = min_t(u32, val, sysctl_rmem_max);
4643                         sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4644                         WRITE_ONCE(sk->sk_rcvbuf,
4645                                    max_t(int, val * 2, SOCK_MIN_RCVBUF));
4646                         break;
4647                 case SO_SNDBUF:
4648                         val = min_t(u32, val, sysctl_wmem_max);
4649                         sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4650                         WRITE_ONCE(sk->sk_sndbuf,
4651                                    max_t(int, val * 2, SOCK_MIN_SNDBUF));
4652                         break;
4653                 case SO_MAX_PACING_RATE: /* 32bit version */
4654                         if (val != ~0U)
4655                                 cmpxchg(&sk->sk_pacing_status,
4656                                         SK_PACING_NONE,
4657                                         SK_PACING_NEEDED);
4658                         sk->sk_max_pacing_rate = (val == ~0U) ? ~0UL : val;
4659                         sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4660                                                  sk->sk_max_pacing_rate);
4661                         break;
4662                 case SO_PRIORITY:
4663                         sk->sk_priority = val;
4664                         break;
4665                 case SO_RCVLOWAT:
4666                         if (val < 0)
4667                                 val = INT_MAX;
4668                         WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4669                         break;
4670                 case SO_MARK:
4671                         if (sk->sk_mark != val) {
4672                                 sk->sk_mark = val;
4673                                 sk_dst_reset(sk);
4674                         }
4675                         break;
4676                 case SO_BINDTODEVICE:
4677                         optlen = min_t(long, optlen, IFNAMSIZ - 1);
4678                         strncpy(devname, optval, optlen);
4679                         devname[optlen] = 0;
4680
4681                         ifindex = 0;
4682                         if (devname[0] != '\0') {
4683                                 struct net_device *dev;
4684
4685                                 ret = -ENODEV;
4686
4687                                 net = sock_net(sk);
4688                                 dev = dev_get_by_name(net, devname);
4689                                 if (!dev)
4690                                         break;
4691                                 ifindex = dev->ifindex;
4692                                 dev_put(dev);
4693                         }
4694                         ret = sock_bindtoindex(sk, ifindex, false);
4695                         break;
4696                 case SO_KEEPALIVE:
4697                         if (sk->sk_prot->keepalive)
4698                                 sk->sk_prot->keepalive(sk, valbool);
4699                         sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
4700                         break;
4701                 default:
4702                         ret = -EINVAL;
4703                 }
4704 #ifdef CONFIG_INET
4705         } else if (level == SOL_IP) {
4706                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4707                         return -EINVAL;
4708
4709                 val = *((int *)optval);
4710                 /* Only some options are supported */
4711                 switch (optname) {
4712                 case IP_TOS:
4713                         if (val < -1 || val > 0xff) {
4714                                 ret = -EINVAL;
4715                         } else {
4716                                 struct inet_sock *inet = inet_sk(sk);
4717
4718                                 if (val == -1)
4719                                         val = 0;
4720                                 inet->tos = val;
4721                         }
4722                         break;
4723                 default:
4724                         ret = -EINVAL;
4725                 }
4726 #if IS_ENABLED(CONFIG_IPV6)
4727         } else if (level == SOL_IPV6) {
4728                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4729                         return -EINVAL;
4730
4731                 val = *((int *)optval);
4732                 /* Only some options are supported */
4733                 switch (optname) {
4734                 case IPV6_TCLASS:
4735                         if (val < -1 || val > 0xff) {
4736                                 ret = -EINVAL;
4737                         } else {
4738                                 struct ipv6_pinfo *np = inet6_sk(sk);
4739
4740                                 if (val == -1)
4741                                         val = 0;
4742                                 np->tclass = val;
4743                         }
4744                         break;
4745                 default:
4746                         ret = -EINVAL;
4747                 }
4748 #endif
4749         } else if (level == SOL_TCP &&
4750                    sk->sk_prot->setsockopt == tcp_setsockopt) {
4751                 if (optname == TCP_CONGESTION) {
4752                         char name[TCP_CA_NAME_MAX];
4753
4754                         strncpy(name, optval, min_t(long, optlen,
4755                                                     TCP_CA_NAME_MAX-1));
4756                         name[TCP_CA_NAME_MAX-1] = 0;
4757                         ret = tcp_set_congestion_control(sk, name, false, true);
4758                 } else {
4759                         struct inet_connection_sock *icsk = inet_csk(sk);
4760                         struct tcp_sock *tp = tcp_sk(sk);
4761                         unsigned long timeout;
4762
4763                         if (optlen != sizeof(int))
4764                                 return -EINVAL;
4765
4766                         val = *((int *)optval);
4767                         /* Only some options are supported */
4768                         switch (optname) {
4769                         case TCP_BPF_IW:
4770                                 if (val <= 0 || tp->data_segs_out > tp->syn_data)
4771                                         ret = -EINVAL;
4772                                 else
4773                                         tp->snd_cwnd = val;
4774                                 break;
4775                         case TCP_BPF_SNDCWND_CLAMP:
4776                                 if (val <= 0) {
4777                                         ret = -EINVAL;
4778                                 } else {
4779                                         tp->snd_cwnd_clamp = val;
4780                                         tp->snd_ssthresh = val;
4781                                 }
4782                                 break;
4783                         case TCP_BPF_DELACK_MAX:
4784                                 timeout = usecs_to_jiffies(val);
4785                                 if (timeout > TCP_DELACK_MAX ||
4786                                     timeout < TCP_TIMEOUT_MIN)
4787                                         return -EINVAL;
4788                                 inet_csk(sk)->icsk_delack_max = timeout;
4789                                 break;
4790                         case TCP_BPF_RTO_MIN:
4791                                 timeout = usecs_to_jiffies(val);
4792                                 if (timeout > TCP_RTO_MIN ||
4793                                     timeout < TCP_TIMEOUT_MIN)
4794                                         return -EINVAL;
4795                                 inet_csk(sk)->icsk_rto_min = timeout;
4796                                 break;
4797                         case TCP_SAVE_SYN:
4798                                 if (val < 0 || val > 1)
4799                                         ret = -EINVAL;
4800                                 else
4801                                         tp->save_syn = val;
4802                                 break;
4803                         case TCP_KEEPIDLE:
4804                                 ret = tcp_sock_set_keepidle_locked(sk, val);
4805                                 break;
4806                         case TCP_KEEPINTVL:
4807                                 if (val < 1 || val > MAX_TCP_KEEPINTVL)
4808                                         ret = -EINVAL;
4809                                 else
4810                                         tp->keepalive_intvl = val * HZ;
4811                                 break;
4812                         case TCP_KEEPCNT:
4813                                 if (val < 1 || val > MAX_TCP_KEEPCNT)
4814                                         ret = -EINVAL;
4815                                 else
4816                                         tp->keepalive_probes = val;
4817                                 break;
4818                         case TCP_SYNCNT:
4819                                 if (val < 1 || val > MAX_TCP_SYNCNT)
4820                                         ret = -EINVAL;
4821                                 else
4822                                         icsk->icsk_syn_retries = val;
4823                                 break;
4824                         case TCP_USER_TIMEOUT:
4825                                 if (val < 0)
4826                                         ret = -EINVAL;
4827                                 else
4828                                         icsk->icsk_user_timeout = val;
4829                                 break;
4830                         default:
4831                                 ret = -EINVAL;
4832                         }
4833                 }
4834 #endif
4835         } else {
4836                 ret = -EINVAL;
4837         }
4838         return ret;
4839 }
4840
4841 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
4842                            char *optval, int optlen)
4843 {
4844         if (!sk_fullsock(sk))
4845                 goto err_clear;
4846
4847         sock_owned_by_me(sk);
4848
4849 #ifdef CONFIG_INET
4850         if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4851                 struct inet_connection_sock *icsk;
4852                 struct tcp_sock *tp;
4853
4854                 switch (optname) {
4855                 case TCP_CONGESTION:
4856                         icsk = inet_csk(sk);
4857
4858                         if (!icsk->icsk_ca_ops || optlen <= 1)
4859                                 goto err_clear;
4860                         strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4861                         optval[optlen - 1] = 0;
4862                         break;
4863                 case TCP_SAVED_SYN:
4864                         tp = tcp_sk(sk);
4865
4866                         if (optlen <= 0 || !tp->saved_syn ||
4867                             optlen > tcp_saved_syn_len(tp->saved_syn))
4868                                 goto err_clear;
4869                         memcpy(optval, tp->saved_syn->data, optlen);
4870                         break;
4871                 default:
4872                         goto err_clear;
4873                 }
4874         } else if (level == SOL_IP) {
4875                 struct inet_sock *inet = inet_sk(sk);
4876
4877                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4878                         goto err_clear;
4879
4880                 /* Only some options are supported */
4881                 switch (optname) {
4882                 case IP_TOS:
4883                         *((int *)optval) = (int)inet->tos;
4884                         break;
4885                 default:
4886                         goto err_clear;
4887                 }
4888 #if IS_ENABLED(CONFIG_IPV6)
4889         } else if (level == SOL_IPV6) {
4890                 struct ipv6_pinfo *np = inet6_sk(sk);
4891
4892                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4893                         goto err_clear;
4894
4895                 /* Only some options are supported */
4896                 switch (optname) {
4897                 case IPV6_TCLASS:
4898                         *((int *)optval) = (int)np->tclass;
4899                         break;
4900                 default:
4901                         goto err_clear;
4902                 }
4903 #endif
4904         } else {
4905                 goto err_clear;
4906         }
4907         return 0;
4908 #endif
4909 err_clear:
4910         memset(optval, 0, optlen);
4911         return -EINVAL;
4912 }
4913
4914 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
4915            int, level, int, optname, char *, optval, int, optlen)
4916 {
4917         return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
4918 }
4919
4920 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
4921         .func           = bpf_sock_addr_setsockopt,
4922         .gpl_only       = false,
4923         .ret_type       = RET_INTEGER,
4924         .arg1_type      = ARG_PTR_TO_CTX,
4925         .arg2_type      = ARG_ANYTHING,
4926         .arg3_type      = ARG_ANYTHING,
4927         .arg4_type      = ARG_PTR_TO_MEM,
4928         .arg5_type      = ARG_CONST_SIZE,
4929 };
4930
4931 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
4932            int, level, int, optname, char *, optval, int, optlen)
4933 {
4934         return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
4935 }
4936
4937 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
4938         .func           = bpf_sock_addr_getsockopt,
4939         .gpl_only       = false,
4940         .ret_type       = RET_INTEGER,
4941         .arg1_type      = ARG_PTR_TO_CTX,
4942         .arg2_type      = ARG_ANYTHING,
4943         .arg3_type      = ARG_ANYTHING,
4944         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
4945         .arg5_type      = ARG_CONST_SIZE,
4946 };
4947
4948 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4949            int, level, int, optname, char *, optval, int, optlen)
4950 {
4951         return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
4952 }
4953
4954 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
4955         .func           = bpf_sock_ops_setsockopt,
4956         .gpl_only       = false,
4957         .ret_type       = RET_INTEGER,
4958         .arg1_type      = ARG_PTR_TO_CTX,
4959         .arg2_type      = ARG_ANYTHING,
4960         .arg3_type      = ARG_ANYTHING,
4961         .arg4_type      = ARG_PTR_TO_MEM,
4962         .arg5_type      = ARG_CONST_SIZE,
4963 };
4964
4965 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
4966                                 int optname, const u8 **start)
4967 {
4968         struct sk_buff *syn_skb = bpf_sock->syn_skb;
4969         const u8 *hdr_start;
4970         int ret;
4971
4972         if (syn_skb) {
4973                 /* sk is a request_sock here */
4974
4975                 if (optname == TCP_BPF_SYN) {
4976                         hdr_start = syn_skb->data;
4977                         ret = tcp_hdrlen(syn_skb);
4978                 } else if (optname == TCP_BPF_SYN_IP) {
4979                         hdr_start = skb_network_header(syn_skb);
4980                         ret = skb_network_header_len(syn_skb) +
4981                                 tcp_hdrlen(syn_skb);
4982                 } else {
4983                         /* optname == TCP_BPF_SYN_MAC */
4984                         hdr_start = skb_mac_header(syn_skb);
4985                         ret = skb_mac_header_len(syn_skb) +
4986                                 skb_network_header_len(syn_skb) +
4987                                 tcp_hdrlen(syn_skb);
4988                 }
4989         } else {
4990                 struct sock *sk = bpf_sock->sk;
4991                 struct saved_syn *saved_syn;
4992
4993                 if (sk->sk_state == TCP_NEW_SYN_RECV)
4994                         /* synack retransmit. bpf_sock->syn_skb will
4995                          * not be available.  It has to resort to
4996                          * saved_syn (if it is saved).
4997                          */
4998                         saved_syn = inet_reqsk(sk)->saved_syn;
4999                 else
5000                         saved_syn = tcp_sk(sk)->saved_syn;
5001
5002                 if (!saved_syn)
5003                         return -ENOENT;
5004
5005                 if (optname == TCP_BPF_SYN) {
5006                         hdr_start = saved_syn->data +
5007                                 saved_syn->mac_hdrlen +
5008                                 saved_syn->network_hdrlen;
5009                         ret = saved_syn->tcp_hdrlen;
5010                 } else if (optname == TCP_BPF_SYN_IP) {
5011                         hdr_start = saved_syn->data +
5012                                 saved_syn->mac_hdrlen;
5013                         ret = saved_syn->network_hdrlen +
5014                                 saved_syn->tcp_hdrlen;
5015                 } else {
5016                         /* optname == TCP_BPF_SYN_MAC */
5017
5018                         /* TCP_SAVE_SYN may not have saved the mac hdr */
5019                         if (!saved_syn->mac_hdrlen)
5020                                 return -ENOENT;
5021
5022                         hdr_start = saved_syn->data;
5023                         ret = saved_syn->mac_hdrlen +
5024                                 saved_syn->network_hdrlen +
5025                                 saved_syn->tcp_hdrlen;
5026                 }
5027         }
5028
5029         *start = hdr_start;
5030         return ret;
5031 }
5032
5033 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5034            int, level, int, optname, char *, optval, int, optlen)
5035 {
5036         if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5037             optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5038                 int ret, copy_len = 0;
5039                 const u8 *start;
5040
5041                 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5042                 if (ret > 0) {
5043                         copy_len = ret;
5044                         if (optlen < copy_len) {
5045                                 copy_len = optlen;
5046                                 ret = -ENOSPC;
5047                         }
5048
5049                         memcpy(optval, start, copy_len);
5050                 }
5051
5052                 /* Zero out unused buffer at the end */
5053                 memset(optval + copy_len, 0, optlen - copy_len);
5054
5055                 return ret;
5056         }
5057
5058         return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5059 }
5060
5061 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5062         .func           = bpf_sock_ops_getsockopt,
5063         .gpl_only       = false,
5064         .ret_type       = RET_INTEGER,
5065         .arg1_type      = ARG_PTR_TO_CTX,
5066         .arg2_type      = ARG_ANYTHING,
5067         .arg3_type      = ARG_ANYTHING,
5068         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5069         .arg5_type      = ARG_CONST_SIZE,
5070 };
5071
5072 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5073            int, argval)
5074 {
5075         struct sock *sk = bpf_sock->sk;
5076         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5077
5078         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5079                 return -EINVAL;
5080
5081         tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5082
5083         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5084 }
5085
5086 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5087         .func           = bpf_sock_ops_cb_flags_set,
5088         .gpl_only       = false,
5089         .ret_type       = RET_INTEGER,
5090         .arg1_type      = ARG_PTR_TO_CTX,
5091         .arg2_type      = ARG_ANYTHING,
5092 };
5093
5094 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5095 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5096
5097 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5098            int, addr_len)
5099 {
5100 #ifdef CONFIG_INET
5101         struct sock *sk = ctx->sk;
5102         u32 flags = BIND_FROM_BPF;
5103         int err;
5104
5105         err = -EINVAL;
5106         if (addr_len < offsetofend(struct sockaddr, sa_family))
5107                 return err;
5108         if (addr->sa_family == AF_INET) {
5109                 if (addr_len < sizeof(struct sockaddr_in))
5110                         return err;
5111                 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5112                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5113                 return __inet_bind(sk, addr, addr_len, flags);
5114 #if IS_ENABLED(CONFIG_IPV6)
5115         } else if (addr->sa_family == AF_INET6) {
5116                 if (addr_len < SIN6_LEN_RFC2133)
5117                         return err;
5118                 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5119                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5120                 /* ipv6_bpf_stub cannot be NULL, since it's called from
5121                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5122                  */
5123                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5124 #endif /* CONFIG_IPV6 */
5125         }
5126 #endif /* CONFIG_INET */
5127
5128         return -EAFNOSUPPORT;
5129 }
5130
5131 static const struct bpf_func_proto bpf_bind_proto = {
5132         .func           = bpf_bind,
5133         .gpl_only       = false,
5134         .ret_type       = RET_INTEGER,
5135         .arg1_type      = ARG_PTR_TO_CTX,
5136         .arg2_type      = ARG_PTR_TO_MEM,
5137         .arg3_type      = ARG_CONST_SIZE,
5138 };
5139
5140 #ifdef CONFIG_XFRM
5141 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5142            struct bpf_xfrm_state *, to, u32, size, u64, flags)
5143 {
5144         const struct sec_path *sp = skb_sec_path(skb);
5145         const struct xfrm_state *x;
5146
5147         if (!sp || unlikely(index >= sp->len || flags))
5148                 goto err_clear;
5149
5150         x = sp->xvec[index];
5151
5152         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5153                 goto err_clear;
5154
5155         to->reqid = x->props.reqid;
5156         to->spi = x->id.spi;
5157         to->family = x->props.family;
5158         to->ext = 0;
5159
5160         if (to->family == AF_INET6) {
5161                 memcpy(to->remote_ipv6, x->props.saddr.a6,
5162                        sizeof(to->remote_ipv6));
5163         } else {
5164                 to->remote_ipv4 = x->props.saddr.a4;
5165                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5166         }
5167
5168         return 0;
5169 err_clear:
5170         memset(to, 0, size);
5171         return -EINVAL;
5172 }
5173
5174 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5175         .func           = bpf_skb_get_xfrm_state,
5176         .gpl_only       = false,
5177         .ret_type       = RET_INTEGER,
5178         .arg1_type      = ARG_PTR_TO_CTX,
5179         .arg2_type      = ARG_ANYTHING,
5180         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
5181         .arg4_type      = ARG_CONST_SIZE,
5182         .arg5_type      = ARG_ANYTHING,
5183 };
5184 #endif
5185
5186 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5187 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5188                                   const struct neighbour *neigh,
5189                                   const struct net_device *dev)
5190 {
5191         memcpy(params->dmac, neigh->ha, ETH_ALEN);
5192         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5193         params->h_vlan_TCI = 0;
5194         params->h_vlan_proto = 0;
5195         params->ifindex = dev->ifindex;
5196
5197         return 0;
5198 }
5199 #endif
5200
5201 #if IS_ENABLED(CONFIG_INET)
5202 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5203                                u32 flags, bool check_mtu)
5204 {
5205         struct fib_nh_common *nhc;
5206         struct in_device *in_dev;
5207         struct neighbour *neigh;
5208         struct net_device *dev;
5209         struct fib_result res;
5210         struct flowi4 fl4;
5211         int err;
5212         u32 mtu;
5213
5214         dev = dev_get_by_index_rcu(net, params->ifindex);
5215         if (unlikely(!dev))
5216                 return -ENODEV;
5217
5218         /* verify forwarding is enabled on this interface */
5219         in_dev = __in_dev_get_rcu(dev);
5220         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5221                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5222
5223         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5224                 fl4.flowi4_iif = 1;
5225                 fl4.flowi4_oif = params->ifindex;
5226         } else {
5227                 fl4.flowi4_iif = params->ifindex;
5228                 fl4.flowi4_oif = 0;
5229         }
5230         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5231         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5232         fl4.flowi4_flags = 0;
5233
5234         fl4.flowi4_proto = params->l4_protocol;
5235         fl4.daddr = params->ipv4_dst;
5236         fl4.saddr = params->ipv4_src;
5237         fl4.fl4_sport = params->sport;
5238         fl4.fl4_dport = params->dport;
5239         fl4.flowi4_multipath_hash = 0;
5240
5241         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5242                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5243                 struct fib_table *tb;
5244
5245                 tb = fib_get_table(net, tbid);
5246                 if (unlikely(!tb))
5247                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5248
5249                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5250         } else {
5251                 fl4.flowi4_mark = 0;
5252                 fl4.flowi4_secid = 0;
5253                 fl4.flowi4_tun_key.tun_id = 0;
5254                 fl4.flowi4_uid = sock_net_uid(net, NULL);
5255
5256                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5257         }
5258
5259         if (err) {
5260                 /* map fib lookup errors to RTN_ type */
5261                 if (err == -EINVAL)
5262                         return BPF_FIB_LKUP_RET_BLACKHOLE;
5263                 if (err == -EHOSTUNREACH)
5264                         return BPF_FIB_LKUP_RET_UNREACHABLE;
5265                 if (err == -EACCES)
5266                         return BPF_FIB_LKUP_RET_PROHIBIT;
5267
5268                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5269         }
5270
5271         if (res.type != RTN_UNICAST)
5272                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5273
5274         if (fib_info_num_path(res.fi) > 1)
5275                 fib_select_path(net, &res, &fl4, NULL);
5276
5277         if (check_mtu) {
5278                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5279                 if (params->tot_len > mtu)
5280                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5281         }
5282
5283         nhc = res.nhc;
5284
5285         /* do not handle lwt encaps right now */
5286         if (nhc->nhc_lwtstate)
5287                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5288
5289         dev = nhc->nhc_dev;
5290
5291         params->rt_metric = res.fi->fib_priority;
5292
5293         /* xdp and cls_bpf programs are run in RCU-bh so
5294          * rcu_read_lock_bh is not needed here
5295          */
5296         if (likely(nhc->nhc_gw_family != AF_INET6)) {
5297                 if (nhc->nhc_gw_family)
5298                         params->ipv4_dst = nhc->nhc_gw.ipv4;
5299
5300                 neigh = __ipv4_neigh_lookup_noref(dev,
5301                                                  (__force u32)params->ipv4_dst);
5302         } else {
5303                 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5304
5305                 params->family = AF_INET6;
5306                 *dst = nhc->nhc_gw.ipv6;
5307                 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5308         }
5309
5310         if (!neigh)
5311                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5312
5313         return bpf_fib_set_fwd_params(params, neigh, dev);
5314 }
5315 #endif
5316
5317 #if IS_ENABLED(CONFIG_IPV6)
5318 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5319                                u32 flags, bool check_mtu)
5320 {
5321         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5322         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5323         struct fib6_result res = {};
5324         struct neighbour *neigh;
5325         struct net_device *dev;
5326         struct inet6_dev *idev;
5327         struct flowi6 fl6;
5328         int strict = 0;
5329         int oif, err;
5330         u32 mtu;
5331
5332         /* link local addresses are never forwarded */
5333         if (rt6_need_strict(dst) || rt6_need_strict(src))
5334                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5335
5336         dev = dev_get_by_index_rcu(net, params->ifindex);
5337         if (unlikely(!dev))
5338                 return -ENODEV;
5339
5340         idev = __in6_dev_get_safely(dev);
5341         if (unlikely(!idev || !idev->cnf.forwarding))
5342                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5343
5344         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5345                 fl6.flowi6_iif = 1;
5346                 oif = fl6.flowi6_oif = params->ifindex;
5347         } else {
5348                 oif = fl6.flowi6_iif = params->ifindex;
5349                 fl6.flowi6_oif = 0;
5350                 strict = RT6_LOOKUP_F_HAS_SADDR;
5351         }
5352         fl6.flowlabel = params->flowinfo;
5353         fl6.flowi6_scope = 0;
5354         fl6.flowi6_flags = 0;
5355         fl6.mp_hash = 0;
5356
5357         fl6.flowi6_proto = params->l4_protocol;
5358         fl6.daddr = *dst;
5359         fl6.saddr = *src;
5360         fl6.fl6_sport = params->sport;
5361         fl6.fl6_dport = params->dport;
5362
5363         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5364                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5365                 struct fib6_table *tb;
5366
5367                 tb = ipv6_stub->fib6_get_table(net, tbid);
5368                 if (unlikely(!tb))
5369                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5370
5371                 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5372                                                    strict);
5373         } else {
5374                 fl6.flowi6_mark = 0;
5375                 fl6.flowi6_secid = 0;
5376                 fl6.flowi6_tun_key.tun_id = 0;
5377                 fl6.flowi6_uid = sock_net_uid(net, NULL);
5378
5379                 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5380         }
5381
5382         if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5383                      res.f6i == net->ipv6.fib6_null_entry))
5384                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5385
5386         switch (res.fib6_type) {
5387         /* only unicast is forwarded */
5388         case RTN_UNICAST:
5389                 break;
5390         case RTN_BLACKHOLE:
5391                 return BPF_FIB_LKUP_RET_BLACKHOLE;
5392         case RTN_UNREACHABLE:
5393                 return BPF_FIB_LKUP_RET_UNREACHABLE;
5394         case RTN_PROHIBIT:
5395                 return BPF_FIB_LKUP_RET_PROHIBIT;
5396         default:
5397                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5398         }
5399
5400         ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5401                                     fl6.flowi6_oif != 0, NULL, strict);
5402
5403         if (check_mtu) {
5404                 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5405                 if (params->tot_len > mtu)
5406                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5407         }
5408
5409         if (res.nh->fib_nh_lws)
5410                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5411
5412         if (res.nh->fib_nh_gw_family)
5413                 *dst = res.nh->fib_nh_gw6;
5414
5415         dev = res.nh->fib_nh_dev;
5416         params->rt_metric = res.f6i->fib6_metric;
5417
5418         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5419          * not needed here.
5420          */
5421         neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5422         if (!neigh)
5423                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5424
5425         return bpf_fib_set_fwd_params(params, neigh, dev);
5426 }
5427 #endif
5428
5429 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5430            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5431 {
5432         if (plen < sizeof(*params))
5433                 return -EINVAL;
5434
5435         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5436                 return -EINVAL;
5437
5438         switch (params->family) {
5439 #if IS_ENABLED(CONFIG_INET)
5440         case AF_INET:
5441                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5442                                            flags, true);
5443 #endif
5444 #if IS_ENABLED(CONFIG_IPV6)
5445         case AF_INET6:
5446                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5447                                            flags, true);
5448 #endif
5449         }
5450         return -EAFNOSUPPORT;
5451 }
5452
5453 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5454         .func           = bpf_xdp_fib_lookup,
5455         .gpl_only       = true,
5456         .ret_type       = RET_INTEGER,
5457         .arg1_type      = ARG_PTR_TO_CTX,
5458         .arg2_type      = ARG_PTR_TO_MEM,
5459         .arg3_type      = ARG_CONST_SIZE,
5460         .arg4_type      = ARG_ANYTHING,
5461 };
5462
5463 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5464            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5465 {
5466         struct net *net = dev_net(skb->dev);
5467         int rc = -EAFNOSUPPORT;
5468
5469         if (plen < sizeof(*params))
5470                 return -EINVAL;
5471
5472         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5473                 return -EINVAL;
5474
5475         switch (params->family) {
5476 #if IS_ENABLED(CONFIG_INET)
5477         case AF_INET:
5478                 rc = bpf_ipv4_fib_lookup(net, params, flags, false);
5479                 break;
5480 #endif
5481 #if IS_ENABLED(CONFIG_IPV6)
5482         case AF_INET6:
5483                 rc = bpf_ipv6_fib_lookup(net, params, flags, false);
5484                 break;
5485 #endif
5486         }
5487
5488         if (!rc) {
5489                 struct net_device *dev;
5490
5491                 dev = dev_get_by_index_rcu(net, params->ifindex);
5492                 if (!is_skb_forwardable(dev, skb))
5493                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5494         }
5495
5496         return rc;
5497 }
5498
5499 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5500         .func           = bpf_skb_fib_lookup,
5501         .gpl_only       = true,
5502         .ret_type       = RET_INTEGER,
5503         .arg1_type      = ARG_PTR_TO_CTX,
5504         .arg2_type      = ARG_PTR_TO_MEM,
5505         .arg3_type      = ARG_CONST_SIZE,
5506         .arg4_type      = ARG_ANYTHING,
5507 };
5508
5509 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5510 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
5511 {
5512         int err;
5513         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
5514
5515         if (!seg6_validate_srh(srh, len, false))
5516                 return -EINVAL;
5517
5518         switch (type) {
5519         case BPF_LWT_ENCAP_SEG6_INLINE:
5520                 if (skb->protocol != htons(ETH_P_IPV6))
5521                         return -EBADMSG;
5522
5523                 err = seg6_do_srh_inline(skb, srh);
5524                 break;
5525         case BPF_LWT_ENCAP_SEG6:
5526                 skb_reset_inner_headers(skb);
5527                 skb->encapsulation = 1;
5528                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
5529                 break;
5530         default:
5531                 return -EINVAL;
5532         }
5533
5534         bpf_compute_data_pointers(skb);
5535         if (err)
5536                 return err;
5537
5538         ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5539         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
5540
5541         return seg6_lookup_nexthop(skb, NULL, 0);
5542 }
5543 #endif /* CONFIG_IPV6_SEG6_BPF */
5544
5545 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5546 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
5547                              bool ingress)
5548 {
5549         return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
5550 }
5551 #endif
5552
5553 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
5554            u32, len)
5555 {
5556         switch (type) {
5557 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5558         case BPF_LWT_ENCAP_SEG6:
5559         case BPF_LWT_ENCAP_SEG6_INLINE:
5560                 return bpf_push_seg6_encap(skb, type, hdr, len);
5561 #endif
5562 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5563         case BPF_LWT_ENCAP_IP:
5564                 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
5565 #endif
5566         default:
5567                 return -EINVAL;
5568         }
5569 }
5570
5571 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
5572            void *, hdr, u32, len)
5573 {
5574         switch (type) {
5575 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5576         case BPF_LWT_ENCAP_IP:
5577                 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5578 #endif
5579         default:
5580                 return -EINVAL;
5581         }
5582 }
5583
5584 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5585         .func           = bpf_lwt_in_push_encap,
5586         .gpl_only       = false,
5587         .ret_type       = RET_INTEGER,
5588         .arg1_type      = ARG_PTR_TO_CTX,
5589         .arg2_type      = ARG_ANYTHING,
5590         .arg3_type      = ARG_PTR_TO_MEM,
5591         .arg4_type      = ARG_CONST_SIZE
5592 };
5593
5594 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5595         .func           = bpf_lwt_xmit_push_encap,
5596         .gpl_only       = false,
5597         .ret_type       = RET_INTEGER,
5598         .arg1_type      = ARG_PTR_TO_CTX,
5599         .arg2_type      = ARG_ANYTHING,
5600         .arg3_type      = ARG_PTR_TO_MEM,
5601         .arg4_type      = ARG_CONST_SIZE
5602 };
5603
5604 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5605 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5606            const void *, from, u32, len)
5607 {
5608         struct seg6_bpf_srh_state *srh_state =
5609                 this_cpu_ptr(&seg6_bpf_srh_states);
5610         struct ipv6_sr_hdr *srh = srh_state->srh;
5611         void *srh_tlvs, *srh_end, *ptr;
5612         int srhoff = 0;
5613
5614         if (srh == NULL)
5615                 return -EINVAL;
5616
5617         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5618         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5619
5620         ptr = skb->data + offset;
5621         if (ptr >= srh_tlvs && ptr + len <= srh_end)
5622                 srh_state->valid = false;
5623         else if (ptr < (void *)&srh->flags ||
5624                  ptr + len > (void *)&srh->segments)
5625                 return -EFAULT;
5626
5627         if (unlikely(bpf_try_make_writable(skb, offset + len)))
5628                 return -EFAULT;
5629         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5630                 return -EINVAL;
5631         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5632
5633         memcpy(skb->data + offset, from, len);
5634         return 0;
5635 }
5636
5637 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5638         .func           = bpf_lwt_seg6_store_bytes,
5639         .gpl_only       = false,
5640         .ret_type       = RET_INTEGER,
5641         .arg1_type      = ARG_PTR_TO_CTX,
5642         .arg2_type      = ARG_ANYTHING,
5643         .arg3_type      = ARG_PTR_TO_MEM,
5644         .arg4_type      = ARG_CONST_SIZE
5645 };
5646
5647 static void bpf_update_srh_state(struct sk_buff *skb)
5648 {
5649         struct seg6_bpf_srh_state *srh_state =
5650                 this_cpu_ptr(&seg6_bpf_srh_states);
5651         int srhoff = 0;
5652
5653         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5654                 srh_state->srh = NULL;
5655         } else {
5656                 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5657                 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5658                 srh_state->valid = true;
5659         }
5660 }
5661
5662 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5663            u32, action, void *, param, u32, param_len)
5664 {
5665         struct seg6_bpf_srh_state *srh_state =
5666                 this_cpu_ptr(&seg6_bpf_srh_states);
5667         int hdroff = 0;
5668         int err;
5669
5670         switch (action) {
5671         case SEG6_LOCAL_ACTION_END_X:
5672                 if (!seg6_bpf_has_valid_srh(skb))
5673                         return -EBADMSG;
5674                 if (param_len != sizeof(struct in6_addr))
5675                         return -EINVAL;
5676                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5677         case SEG6_LOCAL_ACTION_END_T:
5678                 if (!seg6_bpf_has_valid_srh(skb))
5679                         return -EBADMSG;
5680                 if (param_len != sizeof(int))
5681                         return -EINVAL;
5682                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5683         case SEG6_LOCAL_ACTION_END_DT6:
5684                 if (!seg6_bpf_has_valid_srh(skb))
5685                         return -EBADMSG;
5686                 if (param_len != sizeof(int))
5687                         return -EINVAL;
5688
5689                 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5690                         return -EBADMSG;
5691                 if (!pskb_pull(skb, hdroff))
5692                         return -EBADMSG;
5693
5694                 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5695                 skb_reset_network_header(skb);
5696                 skb_reset_transport_header(skb);
5697                 skb->encapsulation = 0;
5698
5699                 bpf_compute_data_pointers(skb);
5700                 bpf_update_srh_state(skb);
5701                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5702         case SEG6_LOCAL_ACTION_END_B6:
5703                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5704                         return -EBADMSG;
5705                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5706                                           param, param_len);
5707                 if (!err)
5708                         bpf_update_srh_state(skb);
5709
5710                 return err;
5711         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5712                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5713                         return -EBADMSG;
5714                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5715                                           param, param_len);
5716                 if (!err)
5717                         bpf_update_srh_state(skb);
5718
5719                 return err;
5720         default:
5721                 return -EINVAL;
5722         }
5723 }
5724
5725 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5726         .func           = bpf_lwt_seg6_action,
5727         .gpl_only       = false,
5728         .ret_type       = RET_INTEGER,
5729         .arg1_type      = ARG_PTR_TO_CTX,
5730         .arg2_type      = ARG_ANYTHING,
5731         .arg3_type      = ARG_PTR_TO_MEM,
5732         .arg4_type      = ARG_CONST_SIZE
5733 };
5734
5735 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5736            s32, len)
5737 {
5738         struct seg6_bpf_srh_state *srh_state =
5739                 this_cpu_ptr(&seg6_bpf_srh_states);
5740         struct ipv6_sr_hdr *srh = srh_state->srh;
5741         void *srh_end, *srh_tlvs, *ptr;
5742         struct ipv6hdr *hdr;
5743         int srhoff = 0;
5744         int ret;
5745
5746         if (unlikely(srh == NULL))
5747                 return -EINVAL;
5748
5749         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5750                         ((srh->first_segment + 1) << 4));
5751         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5752                         srh_state->hdrlen);
5753         ptr = skb->data + offset;
5754
5755         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5756                 return -EFAULT;
5757         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5758                 return -EFAULT;
5759
5760         if (len > 0) {
5761                 ret = skb_cow_head(skb, len);
5762                 if (unlikely(ret < 0))
5763                         return ret;
5764
5765                 ret = bpf_skb_net_hdr_push(skb, offset, len);
5766         } else {
5767                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
5768         }
5769
5770         bpf_compute_data_pointers(skb);
5771         if (unlikely(ret < 0))
5772                 return ret;
5773
5774         hdr = (struct ipv6hdr *)skb->data;
5775         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5776
5777         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5778                 return -EINVAL;
5779         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5780         srh_state->hdrlen += len;
5781         srh_state->valid = false;
5782         return 0;
5783 }
5784
5785 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
5786         .func           = bpf_lwt_seg6_adjust_srh,
5787         .gpl_only       = false,
5788         .ret_type       = RET_INTEGER,
5789         .arg1_type      = ARG_PTR_TO_CTX,
5790         .arg2_type      = ARG_ANYTHING,
5791         .arg3_type      = ARG_ANYTHING,
5792 };
5793 #endif /* CONFIG_IPV6_SEG6_BPF */
5794
5795 #ifdef CONFIG_INET
5796 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
5797                               int dif, int sdif, u8 family, u8 proto)
5798 {
5799         bool refcounted = false;
5800         struct sock *sk = NULL;
5801
5802         if (family == AF_INET) {
5803                 __be32 src4 = tuple->ipv4.saddr;
5804                 __be32 dst4 = tuple->ipv4.daddr;
5805
5806                 if (proto == IPPROTO_TCP)
5807                         sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
5808                                            src4, tuple->ipv4.sport,
5809                                            dst4, tuple->ipv4.dport,
5810                                            dif, sdif, &refcounted);
5811                 else
5812                         sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
5813                                                dst4, tuple->ipv4.dport,
5814                                                dif, sdif, &udp_table, NULL);
5815 #if IS_ENABLED(CONFIG_IPV6)
5816         } else {
5817                 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
5818                 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
5819
5820                 if (proto == IPPROTO_TCP)
5821                         sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
5822                                             src6, tuple->ipv6.sport,
5823                                             dst6, ntohs(tuple->ipv6.dport),
5824                                             dif, sdif, &refcounted);
5825                 else if (likely(ipv6_bpf_stub))
5826                         sk = ipv6_bpf_stub->udp6_lib_lookup(net,
5827                                                             src6, tuple->ipv6.sport,
5828                                                             dst6, tuple->ipv6.dport,
5829                                                             dif, sdif,
5830                                                             &udp_table, NULL);
5831 #endif
5832         }
5833
5834         if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
5835                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5836                 sk = NULL;
5837         }
5838         return sk;
5839 }
5840
5841 /* bpf_skc_lookup performs the core lookup for different types of sockets,
5842  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
5843  * Returns the socket as an 'unsigned long' to simplify the casting in the
5844  * callers to satisfy BPF_CALL declarations.
5845  */
5846 static struct sock *
5847 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5848                  struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5849                  u64 flags)
5850 {
5851         struct sock *sk = NULL;
5852         u8 family = AF_UNSPEC;
5853         struct net *net;
5854         int sdif;
5855
5856         if (len == sizeof(tuple->ipv4))
5857                 family = AF_INET;
5858         else if (len == sizeof(tuple->ipv6))
5859                 family = AF_INET6;
5860         else
5861                 return NULL;
5862
5863         if (unlikely(family == AF_UNSPEC || flags ||
5864                      !((s32)netns_id < 0 || netns_id <= S32_MAX)))
5865                 goto out;
5866
5867         if (family == AF_INET)
5868                 sdif = inet_sdif(skb);
5869         else
5870                 sdif = inet6_sdif(skb);
5871
5872         if ((s32)netns_id < 0) {
5873                 net = caller_net;
5874                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5875         } else {
5876                 net = get_net_ns_by_id(caller_net, netns_id);
5877                 if (unlikely(!net))
5878                         goto out;
5879                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5880                 put_net(net);
5881         }
5882
5883 out:
5884         return sk;
5885 }
5886
5887 static struct sock *
5888 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5889                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5890                 u64 flags)
5891 {
5892         struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
5893                                            ifindex, proto, netns_id, flags);
5894
5895         if (sk) {
5896                 sk = sk_to_full_sk(sk);
5897                 if (!sk_fullsock(sk)) {
5898                         sock_gen_put(sk);
5899                         return NULL;
5900                 }
5901         }
5902
5903         return sk;
5904 }
5905
5906 static struct sock *
5907 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5908                u8 proto, u64 netns_id, u64 flags)
5909 {
5910         struct net *caller_net;
5911         int ifindex;
5912
5913         if (skb->dev) {
5914                 caller_net = dev_net(skb->dev);
5915                 ifindex = skb->dev->ifindex;
5916         } else {
5917                 caller_net = sock_net(skb->sk);
5918                 ifindex = 0;
5919         }
5920
5921         return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
5922                                 netns_id, flags);
5923 }
5924
5925 static struct sock *
5926 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5927               u8 proto, u64 netns_id, u64 flags)
5928 {
5929         struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
5930                                          flags);
5931
5932         if (sk) {
5933                 sk = sk_to_full_sk(sk);
5934                 if (!sk_fullsock(sk)) {
5935                         sock_gen_put(sk);
5936                         return NULL;
5937                 }
5938         }
5939
5940         return sk;
5941 }
5942
5943 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
5944            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5945 {
5946         return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
5947                                              netns_id, flags);
5948 }
5949
5950 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
5951         .func           = bpf_skc_lookup_tcp,
5952         .gpl_only       = false,
5953         .pkt_access     = true,
5954         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5955         .arg1_type      = ARG_PTR_TO_CTX,
5956         .arg2_type      = ARG_PTR_TO_MEM,
5957         .arg3_type      = ARG_CONST_SIZE,
5958         .arg4_type      = ARG_ANYTHING,
5959         .arg5_type      = ARG_ANYTHING,
5960 };
5961
5962 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
5963            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5964 {
5965         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
5966                                             netns_id, flags);
5967 }
5968
5969 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
5970         .func           = bpf_sk_lookup_tcp,
5971         .gpl_only       = false,
5972         .pkt_access     = true,
5973         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5974         .arg1_type      = ARG_PTR_TO_CTX,
5975         .arg2_type      = ARG_PTR_TO_MEM,
5976         .arg3_type      = ARG_CONST_SIZE,
5977         .arg4_type      = ARG_ANYTHING,
5978         .arg5_type      = ARG_ANYTHING,
5979 };
5980
5981 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
5982            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5983 {
5984         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
5985                                             netns_id, flags);
5986 }
5987
5988 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
5989         .func           = bpf_sk_lookup_udp,
5990         .gpl_only       = false,
5991         .pkt_access     = true,
5992         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5993         .arg1_type      = ARG_PTR_TO_CTX,
5994         .arg2_type      = ARG_PTR_TO_MEM,
5995         .arg3_type      = ARG_CONST_SIZE,
5996         .arg4_type      = ARG_ANYTHING,
5997         .arg5_type      = ARG_ANYTHING,
5998 };
5999
6000 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6001 {
6002         if (sk && sk_is_refcounted(sk))
6003                 sock_gen_put(sk);
6004         return 0;
6005 }
6006
6007 static const struct bpf_func_proto bpf_sk_release_proto = {
6008         .func           = bpf_sk_release,
6009         .gpl_only       = false,
6010         .ret_type       = RET_INTEGER,
6011         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6012 };
6013
6014 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6015            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6016 {
6017         struct net *caller_net = dev_net(ctx->rxq->dev);
6018         int ifindex = ctx->rxq->dev->ifindex;
6019
6020         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6021                                               ifindex, IPPROTO_UDP, netns_id,
6022                                               flags);
6023 }
6024
6025 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6026         .func           = bpf_xdp_sk_lookup_udp,
6027         .gpl_only       = false,
6028         .pkt_access     = true,
6029         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6030         .arg1_type      = ARG_PTR_TO_CTX,
6031         .arg2_type      = ARG_PTR_TO_MEM,
6032         .arg3_type      = ARG_CONST_SIZE,
6033         .arg4_type      = ARG_ANYTHING,
6034         .arg5_type      = ARG_ANYTHING,
6035 };
6036
6037 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6038            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6039 {
6040         struct net *caller_net = dev_net(ctx->rxq->dev);
6041         int ifindex = ctx->rxq->dev->ifindex;
6042
6043         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6044                                                ifindex, IPPROTO_TCP, netns_id,
6045                                                flags);
6046 }
6047
6048 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6049         .func           = bpf_xdp_skc_lookup_tcp,
6050         .gpl_only       = false,
6051         .pkt_access     = true,
6052         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6053         .arg1_type      = ARG_PTR_TO_CTX,
6054         .arg2_type      = ARG_PTR_TO_MEM,
6055         .arg3_type      = ARG_CONST_SIZE,
6056         .arg4_type      = ARG_ANYTHING,
6057         .arg5_type      = ARG_ANYTHING,
6058 };
6059
6060 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6061            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6062 {
6063         struct net *caller_net = dev_net(ctx->rxq->dev);
6064         int ifindex = ctx->rxq->dev->ifindex;
6065
6066         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6067                                               ifindex, IPPROTO_TCP, netns_id,
6068                                               flags);
6069 }
6070
6071 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6072         .func           = bpf_xdp_sk_lookup_tcp,
6073         .gpl_only       = false,
6074         .pkt_access     = true,
6075         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6076         .arg1_type      = ARG_PTR_TO_CTX,
6077         .arg2_type      = ARG_PTR_TO_MEM,
6078         .arg3_type      = ARG_CONST_SIZE,
6079         .arg4_type      = ARG_ANYTHING,
6080         .arg5_type      = ARG_ANYTHING,
6081 };
6082
6083 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6084            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6085 {
6086         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6087                                                sock_net(ctx->sk), 0,
6088                                                IPPROTO_TCP, netns_id, flags);
6089 }
6090
6091 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6092         .func           = bpf_sock_addr_skc_lookup_tcp,
6093         .gpl_only       = false,
6094         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6095         .arg1_type      = ARG_PTR_TO_CTX,
6096         .arg2_type      = ARG_PTR_TO_MEM,
6097         .arg3_type      = ARG_CONST_SIZE,
6098         .arg4_type      = ARG_ANYTHING,
6099         .arg5_type      = ARG_ANYTHING,
6100 };
6101
6102 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6103            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6104 {
6105         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6106                                               sock_net(ctx->sk), 0, IPPROTO_TCP,
6107                                               netns_id, flags);
6108 }
6109
6110 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6111         .func           = bpf_sock_addr_sk_lookup_tcp,
6112         .gpl_only       = false,
6113         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6114         .arg1_type      = ARG_PTR_TO_CTX,
6115         .arg2_type      = ARG_PTR_TO_MEM,
6116         .arg3_type      = ARG_CONST_SIZE,
6117         .arg4_type      = ARG_ANYTHING,
6118         .arg5_type      = ARG_ANYTHING,
6119 };
6120
6121 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6122            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6123 {
6124         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6125                                               sock_net(ctx->sk), 0, IPPROTO_UDP,
6126                                               netns_id, flags);
6127 }
6128
6129 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6130         .func           = bpf_sock_addr_sk_lookup_udp,
6131         .gpl_only       = false,
6132         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6133         .arg1_type      = ARG_PTR_TO_CTX,
6134         .arg2_type      = ARG_PTR_TO_MEM,
6135         .arg3_type      = ARG_CONST_SIZE,
6136         .arg4_type      = ARG_ANYTHING,
6137         .arg5_type      = ARG_ANYTHING,
6138 };
6139
6140 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6141                                   struct bpf_insn_access_aux *info)
6142 {
6143         if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6144                                           icsk_retransmits))
6145                 return false;
6146
6147         if (off % size != 0)
6148                 return false;
6149
6150         switch (off) {
6151         case offsetof(struct bpf_tcp_sock, bytes_received):
6152         case offsetof(struct bpf_tcp_sock, bytes_acked):
6153                 return size == sizeof(__u64);
6154         default:
6155                 return size == sizeof(__u32);
6156         }
6157 }
6158
6159 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6160                                     const struct bpf_insn *si,
6161                                     struct bpf_insn *insn_buf,
6162                                     struct bpf_prog *prog, u32 *target_size)
6163 {
6164         struct bpf_insn *insn = insn_buf;
6165
6166 #define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
6167         do {                                                            \
6168                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >     \
6169                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6170                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6171                                       si->dst_reg, si->src_reg,         \
6172                                       offsetof(struct tcp_sock, FIELD)); \
6173         } while (0)
6174
6175 #define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
6176         do {                                                            \
6177                 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,  \
6178                                           FIELD) >                      \
6179                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6180                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
6181                                         struct inet_connection_sock,    \
6182                                         FIELD),                         \
6183                                       si->dst_reg, si->src_reg,         \
6184                                       offsetof(                         \
6185                                         struct inet_connection_sock,    \
6186                                         FIELD));                        \
6187         } while (0)
6188
6189         if (insn > insn_buf)
6190                 return insn - insn_buf;
6191
6192         switch (si->off) {
6193         case offsetof(struct bpf_tcp_sock, rtt_min):
6194                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6195                              sizeof(struct minmax));
6196                 BUILD_BUG_ON(sizeof(struct minmax) <
6197                              sizeof(struct minmax_sample));
6198
6199                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6200                                       offsetof(struct tcp_sock, rtt_min) +
6201                                       offsetof(struct minmax_sample, v));
6202                 break;
6203         case offsetof(struct bpf_tcp_sock, snd_cwnd):
6204                 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6205                 break;
6206         case offsetof(struct bpf_tcp_sock, srtt_us):
6207                 BPF_TCP_SOCK_GET_COMMON(srtt_us);
6208                 break;
6209         case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6210                 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6211                 break;
6212         case offsetof(struct bpf_tcp_sock, rcv_nxt):
6213                 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6214                 break;
6215         case offsetof(struct bpf_tcp_sock, snd_nxt):
6216                 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6217                 break;
6218         case offsetof(struct bpf_tcp_sock, snd_una):
6219                 BPF_TCP_SOCK_GET_COMMON(snd_una);
6220                 break;
6221         case offsetof(struct bpf_tcp_sock, mss_cache):
6222                 BPF_TCP_SOCK_GET_COMMON(mss_cache);
6223                 break;
6224         case offsetof(struct bpf_tcp_sock, ecn_flags):
6225                 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6226                 break;
6227         case offsetof(struct bpf_tcp_sock, rate_delivered):
6228                 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6229                 break;
6230         case offsetof(struct bpf_tcp_sock, rate_interval_us):
6231                 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6232                 break;
6233         case offsetof(struct bpf_tcp_sock, packets_out):
6234                 BPF_TCP_SOCK_GET_COMMON(packets_out);
6235                 break;
6236         case offsetof(struct bpf_tcp_sock, retrans_out):
6237                 BPF_TCP_SOCK_GET_COMMON(retrans_out);
6238                 break;
6239         case offsetof(struct bpf_tcp_sock, total_retrans):
6240                 BPF_TCP_SOCK_GET_COMMON(total_retrans);
6241                 break;
6242         case offsetof(struct bpf_tcp_sock, segs_in):
6243                 BPF_TCP_SOCK_GET_COMMON(segs_in);
6244                 break;
6245         case offsetof(struct bpf_tcp_sock, data_segs_in):
6246                 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6247                 break;
6248         case offsetof(struct bpf_tcp_sock, segs_out):
6249                 BPF_TCP_SOCK_GET_COMMON(segs_out);
6250                 break;
6251         case offsetof(struct bpf_tcp_sock, data_segs_out):
6252                 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6253                 break;
6254         case offsetof(struct bpf_tcp_sock, lost_out):
6255                 BPF_TCP_SOCK_GET_COMMON(lost_out);
6256                 break;
6257         case offsetof(struct bpf_tcp_sock, sacked_out):
6258                 BPF_TCP_SOCK_GET_COMMON(sacked_out);
6259                 break;
6260         case offsetof(struct bpf_tcp_sock, bytes_received):
6261                 BPF_TCP_SOCK_GET_COMMON(bytes_received);
6262                 break;
6263         case offsetof(struct bpf_tcp_sock, bytes_acked):
6264                 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6265                 break;
6266         case offsetof(struct bpf_tcp_sock, dsack_dups):
6267                 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6268                 break;
6269         case offsetof(struct bpf_tcp_sock, delivered):
6270                 BPF_TCP_SOCK_GET_COMMON(delivered);
6271                 break;
6272         case offsetof(struct bpf_tcp_sock, delivered_ce):
6273                 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6274                 break;
6275         case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6276                 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6277                 break;
6278         }
6279
6280         return insn - insn_buf;
6281 }
6282
6283 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6284 {
6285         if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6286                 return (unsigned long)sk;
6287
6288         return (unsigned long)NULL;
6289 }
6290
6291 const struct bpf_func_proto bpf_tcp_sock_proto = {
6292         .func           = bpf_tcp_sock,
6293         .gpl_only       = false,
6294         .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
6295         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6296 };
6297
6298 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6299 {
6300         sk = sk_to_full_sk(sk);
6301
6302         if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6303                 return (unsigned long)sk;
6304
6305         return (unsigned long)NULL;
6306 }
6307
6308 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6309         .func           = bpf_get_listener_sock,
6310         .gpl_only       = false,
6311         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6312         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6313 };
6314
6315 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6316 {
6317         unsigned int iphdr_len;
6318
6319         switch (skb_protocol(skb, true)) {
6320         case cpu_to_be16(ETH_P_IP):
6321                 iphdr_len = sizeof(struct iphdr);
6322                 break;
6323         case cpu_to_be16(ETH_P_IPV6):
6324                 iphdr_len = sizeof(struct ipv6hdr);
6325                 break;
6326         default:
6327                 return 0;
6328         }
6329
6330         if (skb_headlen(skb) < iphdr_len)
6331                 return 0;
6332
6333         if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6334                 return 0;
6335
6336         return INET_ECN_set_ce(skb);
6337 }
6338
6339 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6340                                   struct bpf_insn_access_aux *info)
6341 {
6342         if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6343                 return false;
6344
6345         if (off % size != 0)
6346                 return false;
6347
6348         switch (off) {
6349         default:
6350                 return size == sizeof(__u32);
6351         }
6352 }
6353
6354 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6355                                     const struct bpf_insn *si,
6356                                     struct bpf_insn *insn_buf,
6357                                     struct bpf_prog *prog, u32 *target_size)
6358 {
6359         struct bpf_insn *insn = insn_buf;
6360
6361 #define BPF_XDP_SOCK_GET(FIELD)                                         \
6362         do {                                                            \
6363                 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >     \
6364                              sizeof_field(struct bpf_xdp_sock, FIELD)); \
6365                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6366                                       si->dst_reg, si->src_reg,         \
6367                                       offsetof(struct xdp_sock, FIELD)); \
6368         } while (0)
6369
6370         switch (si->off) {
6371         case offsetof(struct bpf_xdp_sock, queue_id):
6372                 BPF_XDP_SOCK_GET(queue_id);
6373                 break;
6374         }
6375
6376         return insn - insn_buf;
6377 }
6378
6379 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
6380         .func           = bpf_skb_ecn_set_ce,
6381         .gpl_only       = false,
6382         .ret_type       = RET_INTEGER,
6383         .arg1_type      = ARG_PTR_TO_CTX,
6384 };
6385
6386 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6387            struct tcphdr *, th, u32, th_len)
6388 {
6389 #ifdef CONFIG_SYN_COOKIES
6390         u32 cookie;
6391         int ret;
6392
6393         if (unlikely(!sk || th_len < sizeof(*th)))
6394                 return -EINVAL;
6395
6396         /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
6397         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6398                 return -EINVAL;
6399
6400         if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6401                 return -EINVAL;
6402
6403         if (!th->ack || th->rst || th->syn)
6404                 return -ENOENT;
6405
6406         if (tcp_synq_no_recent_overflow(sk))
6407                 return -ENOENT;
6408
6409         cookie = ntohl(th->ack_seq) - 1;
6410
6411         switch (sk->sk_family) {
6412         case AF_INET:
6413                 if (unlikely(iph_len < sizeof(struct iphdr)))
6414                         return -EINVAL;
6415
6416                 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
6417                 break;
6418
6419 #if IS_BUILTIN(CONFIG_IPV6)
6420         case AF_INET6:
6421                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6422                         return -EINVAL;
6423
6424                 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
6425                 break;
6426 #endif /* CONFIG_IPV6 */
6427
6428         default:
6429                 return -EPROTONOSUPPORT;
6430         }
6431
6432         if (ret > 0)
6433                 return 0;
6434
6435         return -ENOENT;
6436 #else
6437         return -ENOTSUPP;
6438 #endif
6439 }
6440
6441 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
6442         .func           = bpf_tcp_check_syncookie,
6443         .gpl_only       = true,
6444         .pkt_access     = true,
6445         .ret_type       = RET_INTEGER,
6446         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6447         .arg2_type      = ARG_PTR_TO_MEM,
6448         .arg3_type      = ARG_CONST_SIZE,
6449         .arg4_type      = ARG_PTR_TO_MEM,
6450         .arg5_type      = ARG_CONST_SIZE,
6451 };
6452
6453 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6454            struct tcphdr *, th, u32, th_len)
6455 {
6456 #ifdef CONFIG_SYN_COOKIES
6457         u32 cookie;
6458         u16 mss;
6459
6460         if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
6461                 return -EINVAL;
6462
6463         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6464                 return -EINVAL;
6465
6466         if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6467                 return -ENOENT;
6468
6469         if (!th->syn || th->ack || th->fin || th->rst)
6470                 return -EINVAL;
6471
6472         if (unlikely(iph_len < sizeof(struct iphdr)))
6473                 return -EINVAL;
6474
6475         /* Both struct iphdr and struct ipv6hdr have the version field at the
6476          * same offset so we can cast to the shorter header (struct iphdr).
6477          */
6478         switch (((struct iphdr *)iph)->version) {
6479         case 4:
6480                 if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
6481                         return -EINVAL;
6482
6483                 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
6484                 break;
6485
6486 #if IS_BUILTIN(CONFIG_IPV6)
6487         case 6:
6488                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6489                         return -EINVAL;
6490
6491                 if (sk->sk_family != AF_INET6)
6492                         return -EINVAL;
6493
6494                 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
6495                 break;
6496 #endif /* CONFIG_IPV6 */
6497
6498         default:
6499                 return -EPROTONOSUPPORT;
6500         }
6501         if (mss == 0)
6502                 return -ENOENT;
6503
6504         return cookie | ((u64)mss << 32);
6505 #else
6506         return -EOPNOTSUPP;
6507 #endif /* CONFIG_SYN_COOKIES */
6508 }
6509
6510 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
6511         .func           = bpf_tcp_gen_syncookie,
6512         .gpl_only       = true, /* __cookie_v*_init_sequence() is GPL */
6513         .pkt_access     = true,
6514         .ret_type       = RET_INTEGER,
6515         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6516         .arg2_type      = ARG_PTR_TO_MEM,
6517         .arg3_type      = ARG_CONST_SIZE,
6518         .arg4_type      = ARG_PTR_TO_MEM,
6519         .arg5_type      = ARG_CONST_SIZE,
6520 };
6521
6522 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
6523 {
6524         if (!sk || flags != 0)
6525                 return -EINVAL;
6526         if (!skb_at_tc_ingress(skb))
6527                 return -EOPNOTSUPP;
6528         if (unlikely(dev_net(skb->dev) != sock_net(sk)))
6529                 return -ENETUNREACH;
6530         if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
6531                 return -ESOCKTNOSUPPORT;
6532         if (sk_is_refcounted(sk) &&
6533             unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
6534                 return -ENOENT;
6535
6536         skb_orphan(skb);
6537         skb->sk = sk;
6538         skb->destructor = sock_pfree;
6539
6540         return 0;
6541 }
6542
6543 static const struct bpf_func_proto bpf_sk_assign_proto = {
6544         .func           = bpf_sk_assign,
6545         .gpl_only       = false,
6546         .ret_type       = RET_INTEGER,
6547         .arg1_type      = ARG_PTR_TO_CTX,
6548         .arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6549         .arg3_type      = ARG_ANYTHING,
6550 };
6551
6552 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
6553                                     u8 search_kind, const u8 *magic,
6554                                     u8 magic_len, bool *eol)
6555 {
6556         u8 kind, kind_len;
6557
6558         *eol = false;
6559
6560         while (op < opend) {
6561                 kind = op[0];
6562
6563                 if (kind == TCPOPT_EOL) {
6564                         *eol = true;
6565                         return ERR_PTR(-ENOMSG);
6566                 } else if (kind == TCPOPT_NOP) {
6567                         op++;
6568                         continue;
6569                 }
6570
6571                 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
6572                         /* Something is wrong in the received header.
6573                          * Follow the TCP stack's tcp_parse_options()
6574                          * and just bail here.
6575                          */
6576                         return ERR_PTR(-EFAULT);
6577
6578                 kind_len = op[1];
6579                 if (search_kind == kind) {
6580                         if (!magic_len)
6581                                 return op;
6582
6583                         if (magic_len > kind_len - 2)
6584                                 return ERR_PTR(-ENOMSG);
6585
6586                         if (!memcmp(&op[2], magic, magic_len))
6587                                 return op;
6588                 }
6589
6590                 op += kind_len;
6591         }
6592
6593         return ERR_PTR(-ENOMSG);
6594 }
6595
6596 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6597            void *, search_res, u32, len, u64, flags)
6598 {
6599         bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
6600         const u8 *op, *opend, *magic, *search = search_res;
6601         u8 search_kind, search_len, copy_len, magic_len;
6602         int ret;
6603
6604         /* 2 byte is the minimal option len except TCPOPT_NOP and
6605          * TCPOPT_EOL which are useless for the bpf prog to learn
6606          * and this helper disallow loading them also.
6607          */
6608         if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
6609                 return -EINVAL;
6610
6611         search_kind = search[0];
6612         search_len = search[1];
6613
6614         if (search_len > len || search_kind == TCPOPT_NOP ||
6615             search_kind == TCPOPT_EOL)
6616                 return -EINVAL;
6617
6618         if (search_kind == TCPOPT_EXP || search_kind == 253) {
6619                 /* 16 or 32 bit magic.  +2 for kind and kind length */
6620                 if (search_len != 4 && search_len != 6)
6621                         return -EINVAL;
6622                 magic = &search[2];
6623                 magic_len = search_len - 2;
6624         } else {
6625                 if (search_len)
6626                         return -EINVAL;
6627                 magic = NULL;
6628                 magic_len = 0;
6629         }
6630
6631         if (load_syn) {
6632                 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
6633                 if (ret < 0)
6634                         return ret;
6635
6636                 opend = op + ret;
6637                 op += sizeof(struct tcphdr);
6638         } else {
6639                 if (!bpf_sock->skb ||
6640                     bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6641                         /* This bpf_sock->op cannot call this helper */
6642                         return -EPERM;
6643
6644                 opend = bpf_sock->skb_data_end;
6645                 op = bpf_sock->skb->data + sizeof(struct tcphdr);
6646         }
6647
6648         op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
6649                                 &eol);
6650         if (IS_ERR(op))
6651                 return PTR_ERR(op);
6652
6653         copy_len = op[1];
6654         ret = copy_len;
6655         if (copy_len > len) {
6656                 ret = -ENOSPC;
6657                 copy_len = len;
6658         }
6659
6660         memcpy(search_res, op, copy_len);
6661         return ret;
6662 }
6663
6664 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
6665         .func           = bpf_sock_ops_load_hdr_opt,
6666         .gpl_only       = false,
6667         .ret_type       = RET_INTEGER,
6668         .arg1_type      = ARG_PTR_TO_CTX,
6669         .arg2_type      = ARG_PTR_TO_MEM,
6670         .arg3_type      = ARG_CONST_SIZE,
6671         .arg4_type      = ARG_ANYTHING,
6672 };
6673
6674 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6675            const void *, from, u32, len, u64, flags)
6676 {
6677         u8 new_kind, new_kind_len, magic_len = 0, *opend;
6678         const u8 *op, *new_op, *magic = NULL;
6679         struct sk_buff *skb;
6680         bool eol;
6681
6682         if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
6683                 return -EPERM;
6684
6685         if (len < 2 || flags)
6686                 return -EINVAL;
6687
6688         new_op = from;
6689         new_kind = new_op[0];
6690         new_kind_len = new_op[1];
6691
6692         if (new_kind_len > len || new_kind == TCPOPT_NOP ||
6693             new_kind == TCPOPT_EOL)
6694                 return -EINVAL;
6695
6696         if (new_kind_len > bpf_sock->remaining_opt_len)
6697                 return -ENOSPC;
6698
6699         /* 253 is another experimental kind */
6700         if (new_kind == TCPOPT_EXP || new_kind == 253)  {
6701                 if (new_kind_len < 4)
6702                         return -EINVAL;
6703                 /* Match for the 2 byte magic also.
6704                  * RFC 6994: the magic could be 2 or 4 bytes.
6705                  * Hence, matching by 2 byte only is on the
6706                  * conservative side but it is the right
6707                  * thing to do for the 'search-for-duplication'
6708                  * purpose.
6709                  */
6710                 magic = &new_op[2];
6711                 magic_len = 2;
6712         }
6713
6714         /* Check for duplication */
6715         skb = bpf_sock->skb;
6716         op = skb->data + sizeof(struct tcphdr);
6717         opend = bpf_sock->skb_data_end;
6718
6719         op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
6720                                 &eol);
6721         if (!IS_ERR(op))
6722                 return -EEXIST;
6723
6724         if (PTR_ERR(op) != -ENOMSG)
6725                 return PTR_ERR(op);
6726
6727         if (eol)
6728                 /* The option has been ended.  Treat it as no more
6729                  * header option can be written.
6730                  */
6731                 return -ENOSPC;
6732
6733         /* No duplication found.  Store the header option. */
6734         memcpy(opend, from, new_kind_len);
6735
6736         bpf_sock->remaining_opt_len -= new_kind_len;
6737         bpf_sock->skb_data_end += new_kind_len;
6738
6739         return 0;
6740 }
6741
6742 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
6743         .func           = bpf_sock_ops_store_hdr_opt,
6744         .gpl_only       = false,
6745         .ret_type       = RET_INTEGER,
6746         .arg1_type      = ARG_PTR_TO_CTX,
6747         .arg2_type      = ARG_PTR_TO_MEM,
6748         .arg3_type      = ARG_CONST_SIZE,
6749         .arg4_type      = ARG_ANYTHING,
6750 };
6751
6752 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6753            u32, len, u64, flags)
6754 {
6755         if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6756                 return -EPERM;
6757
6758         if (flags || len < 2)
6759                 return -EINVAL;
6760
6761         if (len > bpf_sock->remaining_opt_len)
6762                 return -ENOSPC;
6763
6764         bpf_sock->remaining_opt_len -= len;
6765
6766         return 0;
6767 }
6768
6769 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
6770         .func           = bpf_sock_ops_reserve_hdr_opt,
6771         .gpl_only       = false,
6772         .ret_type       = RET_INTEGER,
6773         .arg1_type      = ARG_PTR_TO_CTX,
6774         .arg2_type      = ARG_ANYTHING,
6775         .arg3_type      = ARG_ANYTHING,
6776 };
6777
6778 #endif /* CONFIG_INET */
6779
6780 bool bpf_helper_changes_pkt_data(void *func)
6781 {
6782         if (func == bpf_skb_vlan_push ||
6783             func == bpf_skb_vlan_pop ||
6784             func == bpf_skb_store_bytes ||
6785             func == bpf_skb_change_proto ||
6786             func == bpf_skb_change_head ||
6787             func == sk_skb_change_head ||
6788             func == bpf_skb_change_tail ||
6789             func == sk_skb_change_tail ||
6790             func == bpf_skb_adjust_room ||
6791             func == sk_skb_adjust_room ||
6792             func == bpf_skb_pull_data ||
6793             func == sk_skb_pull_data ||
6794             func == bpf_clone_redirect ||
6795             func == bpf_l3_csum_replace ||
6796             func == bpf_l4_csum_replace ||
6797             func == bpf_xdp_adjust_head ||
6798             func == bpf_xdp_adjust_meta ||
6799             func == bpf_msg_pull_data ||
6800             func == bpf_msg_push_data ||
6801             func == bpf_msg_pop_data ||
6802             func == bpf_xdp_adjust_tail ||
6803 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6804             func == bpf_lwt_seg6_store_bytes ||
6805             func == bpf_lwt_seg6_adjust_srh ||
6806             func == bpf_lwt_seg6_action ||
6807 #endif
6808 #ifdef CONFIG_INET
6809             func == bpf_sock_ops_store_hdr_opt ||
6810 #endif
6811             func == bpf_lwt_in_push_encap ||
6812             func == bpf_lwt_xmit_push_encap)
6813                 return true;
6814
6815         return false;
6816 }
6817
6818 const struct bpf_func_proto bpf_event_output_data_proto __weak;
6819 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
6820
6821 static const struct bpf_func_proto *
6822 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6823 {
6824         switch (func_id) {
6825         /* inet and inet6 sockets are created in a process
6826          * context so there is always a valid uid/gid
6827          */
6828         case BPF_FUNC_get_current_uid_gid:
6829                 return &bpf_get_current_uid_gid_proto;
6830         case BPF_FUNC_get_local_storage:
6831                 return &bpf_get_local_storage_proto;
6832         case BPF_FUNC_get_socket_cookie:
6833                 return &bpf_get_socket_cookie_sock_proto;
6834         case BPF_FUNC_get_netns_cookie:
6835                 return &bpf_get_netns_cookie_sock_proto;
6836         case BPF_FUNC_perf_event_output:
6837                 return &bpf_event_output_data_proto;
6838         case BPF_FUNC_get_current_pid_tgid:
6839                 return &bpf_get_current_pid_tgid_proto;
6840         case BPF_FUNC_get_current_comm:
6841                 return &bpf_get_current_comm_proto;
6842 #ifdef CONFIG_CGROUPS
6843         case BPF_FUNC_get_current_cgroup_id:
6844                 return &bpf_get_current_cgroup_id_proto;
6845         case BPF_FUNC_get_current_ancestor_cgroup_id:
6846                 return &bpf_get_current_ancestor_cgroup_id_proto;
6847 #endif
6848 #ifdef CONFIG_CGROUP_NET_CLASSID
6849         case BPF_FUNC_get_cgroup_classid:
6850                 return &bpf_get_cgroup_classid_curr_proto;
6851 #endif
6852         case BPF_FUNC_sk_storage_get:
6853                 return &bpf_sk_storage_get_cg_sock_proto;
6854         default:
6855                 return bpf_base_func_proto(func_id);
6856         }
6857 }
6858
6859 static const struct bpf_func_proto *
6860 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6861 {
6862         switch (func_id) {
6863         /* inet and inet6 sockets are created in a process
6864          * context so there is always a valid uid/gid
6865          */
6866         case BPF_FUNC_get_current_uid_gid:
6867                 return &bpf_get_current_uid_gid_proto;
6868         case BPF_FUNC_bind:
6869                 switch (prog->expected_attach_type) {
6870                 case BPF_CGROUP_INET4_CONNECT:
6871                 case BPF_CGROUP_INET6_CONNECT:
6872                         return &bpf_bind_proto;
6873                 default:
6874                         return NULL;
6875                 }
6876         case BPF_FUNC_get_socket_cookie:
6877                 return &bpf_get_socket_cookie_sock_addr_proto;
6878         case BPF_FUNC_get_netns_cookie:
6879                 return &bpf_get_netns_cookie_sock_addr_proto;
6880         case BPF_FUNC_get_local_storage:
6881                 return &bpf_get_local_storage_proto;
6882         case BPF_FUNC_perf_event_output:
6883                 return &bpf_event_output_data_proto;
6884         case BPF_FUNC_get_current_pid_tgid:
6885                 return &bpf_get_current_pid_tgid_proto;
6886         case BPF_FUNC_get_current_comm:
6887                 return &bpf_get_current_comm_proto;
6888 #ifdef CONFIG_CGROUPS
6889         case BPF_FUNC_get_current_cgroup_id:
6890                 return &bpf_get_current_cgroup_id_proto;
6891         case BPF_FUNC_get_current_ancestor_cgroup_id:
6892                 return &bpf_get_current_ancestor_cgroup_id_proto;
6893 #endif
6894 #ifdef CONFIG_CGROUP_NET_CLASSID
6895         case BPF_FUNC_get_cgroup_classid:
6896                 return &bpf_get_cgroup_classid_curr_proto;
6897 #endif
6898 #ifdef CONFIG_INET
6899         case BPF_FUNC_sk_lookup_tcp:
6900                 return &bpf_sock_addr_sk_lookup_tcp_proto;
6901         case BPF_FUNC_sk_lookup_udp:
6902                 return &bpf_sock_addr_sk_lookup_udp_proto;
6903         case BPF_FUNC_sk_release:
6904                 return &bpf_sk_release_proto;
6905         case BPF_FUNC_skc_lookup_tcp:
6906                 return &bpf_sock_addr_skc_lookup_tcp_proto;
6907 #endif /* CONFIG_INET */
6908         case BPF_FUNC_sk_storage_get:
6909                 return &bpf_sk_storage_get_proto;
6910         case BPF_FUNC_sk_storage_delete:
6911                 return &bpf_sk_storage_delete_proto;
6912         case BPF_FUNC_setsockopt:
6913                 switch (prog->expected_attach_type) {
6914                 case BPF_CGROUP_INET4_CONNECT:
6915                 case BPF_CGROUP_INET6_CONNECT:
6916                         return &bpf_sock_addr_setsockopt_proto;
6917                 default:
6918                         return NULL;
6919                 }
6920         case BPF_FUNC_getsockopt:
6921                 switch (prog->expected_attach_type) {
6922                 case BPF_CGROUP_INET4_CONNECT:
6923                 case BPF_CGROUP_INET6_CONNECT:
6924                         return &bpf_sock_addr_getsockopt_proto;
6925                 default:
6926                         return NULL;
6927                 }
6928         default:
6929                 return bpf_sk_base_func_proto(func_id);
6930         }
6931 }
6932
6933 static const struct bpf_func_proto *
6934 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6935 {
6936         switch (func_id) {
6937         case BPF_FUNC_skb_load_bytes:
6938                 return &bpf_skb_load_bytes_proto;
6939         case BPF_FUNC_skb_load_bytes_relative:
6940                 return &bpf_skb_load_bytes_relative_proto;
6941         case BPF_FUNC_get_socket_cookie:
6942                 return &bpf_get_socket_cookie_proto;
6943         case BPF_FUNC_get_socket_uid:
6944                 return &bpf_get_socket_uid_proto;
6945         case BPF_FUNC_perf_event_output:
6946                 return &bpf_skb_event_output_proto;
6947         default:
6948                 return bpf_sk_base_func_proto(func_id);
6949         }
6950 }
6951
6952 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
6953 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
6954
6955 static const struct bpf_func_proto *
6956 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6957 {
6958         switch (func_id) {
6959         case BPF_FUNC_get_local_storage:
6960                 return &bpf_get_local_storage_proto;
6961         case BPF_FUNC_sk_fullsock:
6962                 return &bpf_sk_fullsock_proto;
6963         case BPF_FUNC_sk_storage_get:
6964                 return &bpf_sk_storage_get_proto;
6965         case BPF_FUNC_sk_storage_delete:
6966                 return &bpf_sk_storage_delete_proto;
6967         case BPF_FUNC_perf_event_output:
6968                 return &bpf_skb_event_output_proto;
6969 #ifdef CONFIG_SOCK_CGROUP_DATA
6970         case BPF_FUNC_skb_cgroup_id:
6971                 return &bpf_skb_cgroup_id_proto;
6972         case BPF_FUNC_skb_ancestor_cgroup_id:
6973                 return &bpf_skb_ancestor_cgroup_id_proto;
6974         case BPF_FUNC_sk_cgroup_id:
6975                 return &bpf_sk_cgroup_id_proto;
6976         case BPF_FUNC_sk_ancestor_cgroup_id:
6977                 return &bpf_sk_ancestor_cgroup_id_proto;
6978 #endif
6979 #ifdef CONFIG_INET
6980         case BPF_FUNC_sk_lookup_tcp:
6981                 return &bpf_sk_lookup_tcp_proto;
6982         case BPF_FUNC_sk_lookup_udp:
6983                 return &bpf_sk_lookup_udp_proto;
6984         case BPF_FUNC_sk_release:
6985                 return &bpf_sk_release_proto;
6986         case BPF_FUNC_skc_lookup_tcp:
6987                 return &bpf_skc_lookup_tcp_proto;
6988         case BPF_FUNC_tcp_sock:
6989                 return &bpf_tcp_sock_proto;
6990         case BPF_FUNC_get_listener_sock:
6991                 return &bpf_get_listener_sock_proto;
6992         case BPF_FUNC_skb_ecn_set_ce:
6993                 return &bpf_skb_ecn_set_ce_proto;
6994 #endif
6995         default:
6996                 return sk_filter_func_proto(func_id, prog);
6997         }
6998 }
6999
7000 static const struct bpf_func_proto *
7001 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7002 {
7003         switch (func_id) {
7004         case BPF_FUNC_skb_store_bytes:
7005                 return &bpf_skb_store_bytes_proto;
7006         case BPF_FUNC_skb_load_bytes:
7007                 return &bpf_skb_load_bytes_proto;
7008         case BPF_FUNC_skb_load_bytes_relative:
7009                 return &bpf_skb_load_bytes_relative_proto;
7010         case BPF_FUNC_skb_pull_data:
7011                 return &bpf_skb_pull_data_proto;
7012         case BPF_FUNC_csum_diff:
7013                 return &bpf_csum_diff_proto;
7014         case BPF_FUNC_csum_update:
7015                 return &bpf_csum_update_proto;
7016         case BPF_FUNC_csum_level:
7017                 return &bpf_csum_level_proto;
7018         case BPF_FUNC_l3_csum_replace:
7019                 return &bpf_l3_csum_replace_proto;
7020         case BPF_FUNC_l4_csum_replace:
7021                 return &bpf_l4_csum_replace_proto;
7022         case BPF_FUNC_clone_redirect:
7023                 return &bpf_clone_redirect_proto;
7024         case BPF_FUNC_get_cgroup_classid:
7025                 return &bpf_get_cgroup_classid_proto;
7026         case BPF_FUNC_skb_vlan_push:
7027                 return &bpf_skb_vlan_push_proto;
7028         case BPF_FUNC_skb_vlan_pop:
7029                 return &bpf_skb_vlan_pop_proto;
7030         case BPF_FUNC_skb_change_proto:
7031                 return &bpf_skb_change_proto_proto;
7032         case BPF_FUNC_skb_change_type:
7033                 return &bpf_skb_change_type_proto;
7034         case BPF_FUNC_skb_adjust_room:
7035                 return &bpf_skb_adjust_room_proto;
7036         case BPF_FUNC_skb_change_tail:
7037                 return &bpf_skb_change_tail_proto;
7038         case BPF_FUNC_skb_change_head:
7039                 return &bpf_skb_change_head_proto;
7040         case BPF_FUNC_skb_get_tunnel_key:
7041                 return &bpf_skb_get_tunnel_key_proto;
7042         case BPF_FUNC_skb_set_tunnel_key:
7043                 return bpf_get_skb_set_tunnel_proto(func_id);
7044         case BPF_FUNC_skb_get_tunnel_opt:
7045                 return &bpf_skb_get_tunnel_opt_proto;
7046         case BPF_FUNC_skb_set_tunnel_opt:
7047                 return bpf_get_skb_set_tunnel_proto(func_id);
7048         case BPF_FUNC_redirect:
7049                 return &bpf_redirect_proto;
7050         case BPF_FUNC_redirect_neigh:
7051                 return &bpf_redirect_neigh_proto;
7052         case BPF_FUNC_get_route_realm:
7053                 return &bpf_get_route_realm_proto;
7054         case BPF_FUNC_get_hash_recalc:
7055                 return &bpf_get_hash_recalc_proto;
7056         case BPF_FUNC_set_hash_invalid:
7057                 return &bpf_set_hash_invalid_proto;
7058         case BPF_FUNC_set_hash:
7059                 return &bpf_set_hash_proto;
7060         case BPF_FUNC_perf_event_output:
7061                 return &bpf_skb_event_output_proto;
7062         case BPF_FUNC_get_smp_processor_id:
7063                 return &bpf_get_smp_processor_id_proto;
7064         case BPF_FUNC_skb_under_cgroup:
7065                 return &bpf_skb_under_cgroup_proto;
7066         case BPF_FUNC_get_socket_cookie:
7067                 return &bpf_get_socket_cookie_proto;
7068         case BPF_FUNC_get_socket_uid:
7069                 return &bpf_get_socket_uid_proto;
7070         case BPF_FUNC_fib_lookup:
7071                 return &bpf_skb_fib_lookup_proto;
7072         case BPF_FUNC_sk_fullsock:
7073                 return &bpf_sk_fullsock_proto;
7074         case BPF_FUNC_sk_storage_get:
7075                 return &bpf_sk_storage_get_proto;
7076         case BPF_FUNC_sk_storage_delete:
7077                 return &bpf_sk_storage_delete_proto;
7078 #ifdef CONFIG_XFRM
7079         case BPF_FUNC_skb_get_xfrm_state:
7080                 return &bpf_skb_get_xfrm_state_proto;
7081 #endif
7082 #ifdef CONFIG_CGROUP_NET_CLASSID
7083         case BPF_FUNC_skb_cgroup_classid:
7084                 return &bpf_skb_cgroup_classid_proto;
7085 #endif
7086 #ifdef CONFIG_SOCK_CGROUP_DATA
7087         case BPF_FUNC_skb_cgroup_id:
7088                 return &bpf_skb_cgroup_id_proto;
7089         case BPF_FUNC_skb_ancestor_cgroup_id:
7090                 return &bpf_skb_ancestor_cgroup_id_proto;
7091 #endif
7092 #ifdef CONFIG_INET
7093         case BPF_FUNC_sk_lookup_tcp:
7094                 return &bpf_sk_lookup_tcp_proto;
7095         case BPF_FUNC_sk_lookup_udp:
7096                 return &bpf_sk_lookup_udp_proto;
7097         case BPF_FUNC_sk_release:
7098                 return &bpf_sk_release_proto;
7099         case BPF_FUNC_tcp_sock:
7100                 return &bpf_tcp_sock_proto;
7101         case BPF_FUNC_get_listener_sock:
7102                 return &bpf_get_listener_sock_proto;
7103         case BPF_FUNC_skc_lookup_tcp:
7104                 return &bpf_skc_lookup_tcp_proto;
7105         case BPF_FUNC_tcp_check_syncookie:
7106                 return &bpf_tcp_check_syncookie_proto;
7107         case BPF_FUNC_skb_ecn_set_ce:
7108                 return &bpf_skb_ecn_set_ce_proto;
7109         case BPF_FUNC_tcp_gen_syncookie:
7110                 return &bpf_tcp_gen_syncookie_proto;
7111         case BPF_FUNC_sk_assign:
7112                 return &bpf_sk_assign_proto;
7113 #endif
7114         default:
7115                 return bpf_sk_base_func_proto(func_id);
7116         }
7117 }
7118
7119 static const struct bpf_func_proto *
7120 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7121 {
7122         switch (func_id) {
7123         case BPF_FUNC_perf_event_output:
7124                 return &bpf_xdp_event_output_proto;
7125         case BPF_FUNC_get_smp_processor_id:
7126                 return &bpf_get_smp_processor_id_proto;
7127         case BPF_FUNC_csum_diff:
7128                 return &bpf_csum_diff_proto;
7129         case BPF_FUNC_xdp_adjust_head:
7130                 return &bpf_xdp_adjust_head_proto;
7131         case BPF_FUNC_xdp_adjust_meta:
7132                 return &bpf_xdp_adjust_meta_proto;
7133         case BPF_FUNC_redirect:
7134                 return &bpf_xdp_redirect_proto;
7135         case BPF_FUNC_redirect_map:
7136                 return &bpf_xdp_redirect_map_proto;
7137         case BPF_FUNC_xdp_adjust_tail:
7138                 return &bpf_xdp_adjust_tail_proto;
7139         case BPF_FUNC_fib_lookup:
7140                 return &bpf_xdp_fib_lookup_proto;
7141 #ifdef CONFIG_INET
7142         case BPF_FUNC_sk_lookup_udp:
7143                 return &bpf_xdp_sk_lookup_udp_proto;
7144         case BPF_FUNC_sk_lookup_tcp:
7145                 return &bpf_xdp_sk_lookup_tcp_proto;
7146         case BPF_FUNC_sk_release:
7147                 return &bpf_sk_release_proto;
7148         case BPF_FUNC_skc_lookup_tcp:
7149                 return &bpf_xdp_skc_lookup_tcp_proto;
7150         case BPF_FUNC_tcp_check_syncookie:
7151                 return &bpf_tcp_check_syncookie_proto;
7152         case BPF_FUNC_tcp_gen_syncookie:
7153                 return &bpf_tcp_gen_syncookie_proto;
7154 #endif
7155         default:
7156                 return bpf_sk_base_func_proto(func_id);
7157         }
7158 }
7159
7160 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7161 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7162
7163 static const struct bpf_func_proto *
7164 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7165 {
7166         switch (func_id) {
7167         case BPF_FUNC_setsockopt:
7168                 return &bpf_sock_ops_setsockopt_proto;
7169         case BPF_FUNC_getsockopt:
7170                 return &bpf_sock_ops_getsockopt_proto;
7171         case BPF_FUNC_sock_ops_cb_flags_set:
7172                 return &bpf_sock_ops_cb_flags_set_proto;
7173         case BPF_FUNC_sock_map_update:
7174                 return &bpf_sock_map_update_proto;
7175         case BPF_FUNC_sock_hash_update:
7176                 return &bpf_sock_hash_update_proto;
7177         case BPF_FUNC_get_socket_cookie:
7178                 return &bpf_get_socket_cookie_sock_ops_proto;
7179         case BPF_FUNC_get_local_storage:
7180                 return &bpf_get_local_storage_proto;
7181         case BPF_FUNC_perf_event_output:
7182                 return &bpf_event_output_data_proto;
7183         case BPF_FUNC_sk_storage_get:
7184                 return &bpf_sk_storage_get_proto;
7185         case BPF_FUNC_sk_storage_delete:
7186                 return &bpf_sk_storage_delete_proto;
7187 #ifdef CONFIG_INET
7188         case BPF_FUNC_load_hdr_opt:
7189                 return &bpf_sock_ops_load_hdr_opt_proto;
7190         case BPF_FUNC_store_hdr_opt:
7191                 return &bpf_sock_ops_store_hdr_opt_proto;
7192         case BPF_FUNC_reserve_hdr_opt:
7193                 return &bpf_sock_ops_reserve_hdr_opt_proto;
7194         case BPF_FUNC_tcp_sock:
7195                 return &bpf_tcp_sock_proto;
7196 #endif /* CONFIG_INET */
7197         default:
7198                 return bpf_sk_base_func_proto(func_id);
7199         }
7200 }
7201
7202 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7203 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7204
7205 static const struct bpf_func_proto *
7206 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7207 {
7208         switch (func_id) {
7209         case BPF_FUNC_msg_redirect_map:
7210                 return &bpf_msg_redirect_map_proto;
7211         case BPF_FUNC_msg_redirect_hash:
7212                 return &bpf_msg_redirect_hash_proto;
7213         case BPF_FUNC_msg_apply_bytes:
7214                 return &bpf_msg_apply_bytes_proto;
7215         case BPF_FUNC_msg_cork_bytes:
7216                 return &bpf_msg_cork_bytes_proto;
7217         case BPF_FUNC_msg_pull_data:
7218                 return &bpf_msg_pull_data_proto;
7219         case BPF_FUNC_msg_push_data:
7220                 return &bpf_msg_push_data_proto;
7221         case BPF_FUNC_msg_pop_data:
7222                 return &bpf_msg_pop_data_proto;
7223         case BPF_FUNC_perf_event_output:
7224                 return &bpf_event_output_data_proto;
7225         case BPF_FUNC_get_current_uid_gid:
7226                 return &bpf_get_current_uid_gid_proto;
7227         case BPF_FUNC_get_current_pid_tgid:
7228                 return &bpf_get_current_pid_tgid_proto;
7229         case BPF_FUNC_sk_storage_get:
7230                 return &bpf_sk_storage_get_proto;
7231         case BPF_FUNC_sk_storage_delete:
7232                 return &bpf_sk_storage_delete_proto;
7233 #ifdef CONFIG_CGROUPS
7234         case BPF_FUNC_get_current_cgroup_id:
7235                 return &bpf_get_current_cgroup_id_proto;
7236         case BPF_FUNC_get_current_ancestor_cgroup_id:
7237                 return &bpf_get_current_ancestor_cgroup_id_proto;
7238 #endif
7239 #ifdef CONFIG_CGROUP_NET_CLASSID
7240         case BPF_FUNC_get_cgroup_classid:
7241                 return &bpf_get_cgroup_classid_curr_proto;
7242 #endif
7243         default:
7244                 return bpf_sk_base_func_proto(func_id);
7245         }
7246 }
7247
7248 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
7249 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
7250
7251 static const struct bpf_func_proto *
7252 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7253 {
7254         switch (func_id) {
7255         case BPF_FUNC_skb_store_bytes:
7256                 return &bpf_skb_store_bytes_proto;
7257         case BPF_FUNC_skb_load_bytes:
7258                 return &bpf_skb_load_bytes_proto;
7259         case BPF_FUNC_skb_pull_data:
7260                 return &sk_skb_pull_data_proto;
7261         case BPF_FUNC_skb_change_tail:
7262                 return &sk_skb_change_tail_proto;
7263         case BPF_FUNC_skb_change_head:
7264                 return &sk_skb_change_head_proto;
7265         case BPF_FUNC_skb_adjust_room:
7266                 return &sk_skb_adjust_room_proto;
7267         case BPF_FUNC_get_socket_cookie:
7268                 return &bpf_get_socket_cookie_proto;
7269         case BPF_FUNC_get_socket_uid:
7270                 return &bpf_get_socket_uid_proto;
7271         case BPF_FUNC_sk_redirect_map:
7272                 return &bpf_sk_redirect_map_proto;
7273         case BPF_FUNC_sk_redirect_hash:
7274                 return &bpf_sk_redirect_hash_proto;
7275         case BPF_FUNC_perf_event_output:
7276                 return &bpf_skb_event_output_proto;
7277 #ifdef CONFIG_INET
7278         case BPF_FUNC_sk_lookup_tcp:
7279                 return &bpf_sk_lookup_tcp_proto;
7280         case BPF_FUNC_sk_lookup_udp:
7281                 return &bpf_sk_lookup_udp_proto;
7282         case BPF_FUNC_sk_release:
7283                 return &bpf_sk_release_proto;
7284         case BPF_FUNC_skc_lookup_tcp:
7285                 return &bpf_skc_lookup_tcp_proto;
7286 #endif
7287         default:
7288                 return bpf_sk_base_func_proto(func_id);
7289         }
7290 }
7291
7292 static const struct bpf_func_proto *
7293 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7294 {
7295         switch (func_id) {
7296         case BPF_FUNC_skb_load_bytes:
7297                 return &bpf_flow_dissector_load_bytes_proto;
7298         default:
7299                 return bpf_sk_base_func_proto(func_id);
7300         }
7301 }
7302
7303 static const struct bpf_func_proto *
7304 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7305 {
7306         switch (func_id) {
7307         case BPF_FUNC_skb_load_bytes:
7308                 return &bpf_skb_load_bytes_proto;
7309         case BPF_FUNC_skb_pull_data:
7310                 return &bpf_skb_pull_data_proto;
7311         case BPF_FUNC_csum_diff:
7312                 return &bpf_csum_diff_proto;
7313         case BPF_FUNC_get_cgroup_classid:
7314                 return &bpf_get_cgroup_classid_proto;
7315         case BPF_FUNC_get_route_realm:
7316                 return &bpf_get_route_realm_proto;
7317         case BPF_FUNC_get_hash_recalc:
7318                 return &bpf_get_hash_recalc_proto;
7319         case BPF_FUNC_perf_event_output:
7320                 return &bpf_skb_event_output_proto;
7321         case BPF_FUNC_get_smp_processor_id:
7322                 return &bpf_get_smp_processor_id_proto;
7323         case BPF_FUNC_skb_under_cgroup:
7324                 return &bpf_skb_under_cgroup_proto;
7325         default:
7326                 return bpf_sk_base_func_proto(func_id);
7327         }
7328 }
7329
7330 static const struct bpf_func_proto *
7331 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7332 {
7333         switch (func_id) {
7334         case BPF_FUNC_lwt_push_encap:
7335                 return &bpf_lwt_in_push_encap_proto;
7336         default:
7337                 return lwt_out_func_proto(func_id, prog);
7338         }
7339 }
7340
7341 static const struct bpf_func_proto *
7342 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7343 {
7344         switch (func_id) {
7345         case BPF_FUNC_skb_get_tunnel_key:
7346                 return &bpf_skb_get_tunnel_key_proto;
7347         case BPF_FUNC_skb_set_tunnel_key:
7348                 return bpf_get_skb_set_tunnel_proto(func_id);
7349         case BPF_FUNC_skb_get_tunnel_opt:
7350                 return &bpf_skb_get_tunnel_opt_proto;
7351         case BPF_FUNC_skb_set_tunnel_opt:
7352                 return bpf_get_skb_set_tunnel_proto(func_id);
7353         case BPF_FUNC_redirect:
7354                 return &bpf_redirect_proto;
7355         case BPF_FUNC_clone_redirect:
7356                 return &bpf_clone_redirect_proto;
7357         case BPF_FUNC_skb_change_tail:
7358                 return &bpf_skb_change_tail_proto;
7359         case BPF_FUNC_skb_change_head:
7360                 return &bpf_skb_change_head_proto;
7361         case BPF_FUNC_skb_store_bytes:
7362                 return &bpf_skb_store_bytes_proto;
7363         case BPF_FUNC_csum_update:
7364                 return &bpf_csum_update_proto;
7365         case BPF_FUNC_csum_level:
7366                 return &bpf_csum_level_proto;
7367         case BPF_FUNC_l3_csum_replace:
7368                 return &bpf_l3_csum_replace_proto;
7369         case BPF_FUNC_l4_csum_replace:
7370                 return &bpf_l4_csum_replace_proto;
7371         case BPF_FUNC_set_hash_invalid:
7372                 return &bpf_set_hash_invalid_proto;
7373         case BPF_FUNC_lwt_push_encap:
7374                 return &bpf_lwt_xmit_push_encap_proto;
7375         default:
7376                 return lwt_out_func_proto(func_id, prog);
7377         }
7378 }
7379
7380 static const struct bpf_func_proto *
7381 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7382 {
7383         switch (func_id) {
7384 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7385         case BPF_FUNC_lwt_seg6_store_bytes:
7386                 return &bpf_lwt_seg6_store_bytes_proto;
7387         case BPF_FUNC_lwt_seg6_action:
7388                 return &bpf_lwt_seg6_action_proto;
7389         case BPF_FUNC_lwt_seg6_adjust_srh:
7390                 return &bpf_lwt_seg6_adjust_srh_proto;
7391 #endif
7392         default:
7393                 return lwt_out_func_proto(func_id, prog);
7394         }
7395 }
7396
7397 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
7398                                     const struct bpf_prog *prog,
7399                                     struct bpf_insn_access_aux *info)
7400 {
7401         const int size_default = sizeof(__u32);
7402
7403         if (off < 0 || off >= sizeof(struct __sk_buff))
7404                 return false;
7405
7406         /* The verifier guarantees that size > 0. */
7407         if (off % size != 0)
7408                 return false;
7409
7410         switch (off) {
7411         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7412                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
7413                         return false;
7414                 break;
7415         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
7416         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
7417         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
7418         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
7419         case bpf_ctx_range(struct __sk_buff, data):
7420         case bpf_ctx_range(struct __sk_buff, data_meta):
7421         case bpf_ctx_range(struct __sk_buff, data_end):
7422                 if (size != size_default)
7423                         return false;
7424                 break;
7425         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7426                 return false;
7427         case bpf_ctx_range(struct __sk_buff, tstamp):
7428                 if (size != sizeof(__u64))
7429                         return false;
7430                 break;
7431         case offsetof(struct __sk_buff, sk):
7432                 if (type == BPF_WRITE || size != sizeof(__u64))
7433                         return false;
7434                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
7435                 break;
7436         default:
7437                 /* Only narrow read access allowed for now. */
7438                 if (type == BPF_WRITE) {
7439                         if (size != size_default)
7440                                 return false;
7441                 } else {
7442                         bpf_ctx_record_field_size(info, size_default);
7443                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7444                                 return false;
7445                 }
7446         }
7447
7448         return true;
7449 }
7450
7451 static bool sk_filter_is_valid_access(int off, int size,
7452                                       enum bpf_access_type type,
7453                                       const struct bpf_prog *prog,
7454                                       struct bpf_insn_access_aux *info)
7455 {
7456         switch (off) {
7457         case bpf_ctx_range(struct __sk_buff, tc_classid):
7458         case bpf_ctx_range(struct __sk_buff, data):
7459         case bpf_ctx_range(struct __sk_buff, data_meta):
7460         case bpf_ctx_range(struct __sk_buff, data_end):
7461         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7462         case bpf_ctx_range(struct __sk_buff, tstamp):
7463         case bpf_ctx_range(struct __sk_buff, wire_len):
7464                 return false;
7465         }
7466
7467         if (type == BPF_WRITE) {
7468                 switch (off) {
7469                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7470                         break;
7471                 default:
7472                         return false;
7473                 }
7474         }
7475
7476         return bpf_skb_is_valid_access(off, size, type, prog, info);
7477 }
7478
7479 static bool cg_skb_is_valid_access(int off, int size,
7480                                    enum bpf_access_type type,
7481                                    const struct bpf_prog *prog,
7482                                    struct bpf_insn_access_aux *info)
7483 {
7484         switch (off) {
7485         case bpf_ctx_range(struct __sk_buff, tc_classid):
7486         case bpf_ctx_range(struct __sk_buff, data_meta):
7487         case bpf_ctx_range(struct __sk_buff, wire_len):
7488                 return false;
7489         case bpf_ctx_range(struct __sk_buff, data):
7490         case bpf_ctx_range(struct __sk_buff, data_end):
7491                 if (!bpf_capable())
7492                         return false;
7493                 break;
7494         }
7495
7496         if (type == BPF_WRITE) {
7497                 switch (off) {
7498                 case bpf_ctx_range(struct __sk_buff, mark):
7499                 case bpf_ctx_range(struct __sk_buff, priority):
7500                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7501                         break;
7502                 case bpf_ctx_range(struct __sk_buff, tstamp):
7503                         if (!bpf_capable())
7504                                 return false;
7505                         break;
7506                 default:
7507                         return false;
7508                 }
7509         }
7510
7511         switch (off) {
7512         case bpf_ctx_range(struct __sk_buff, data):
7513                 info->reg_type = PTR_TO_PACKET;
7514                 break;
7515         case bpf_ctx_range(struct __sk_buff, data_end):
7516                 info->reg_type = PTR_TO_PACKET_END;
7517                 break;
7518         }
7519
7520         return bpf_skb_is_valid_access(off, size, type, prog, info);
7521 }
7522
7523 static bool lwt_is_valid_access(int off, int size,
7524                                 enum bpf_access_type type,
7525                                 const struct bpf_prog *prog,
7526                                 struct bpf_insn_access_aux *info)
7527 {
7528         switch (off) {
7529         case bpf_ctx_range(struct __sk_buff, tc_classid):
7530         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7531         case bpf_ctx_range(struct __sk_buff, data_meta):
7532         case bpf_ctx_range(struct __sk_buff, tstamp):
7533         case bpf_ctx_range(struct __sk_buff, wire_len):
7534                 return false;
7535         }
7536
7537         if (type == BPF_WRITE) {
7538                 switch (off) {
7539                 case bpf_ctx_range(struct __sk_buff, mark):
7540                 case bpf_ctx_range(struct __sk_buff, priority):
7541                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7542                         break;
7543                 default:
7544                         return false;
7545                 }
7546         }
7547
7548         switch (off) {
7549         case bpf_ctx_range(struct __sk_buff, data):
7550                 info->reg_type = PTR_TO_PACKET;
7551                 break;
7552         case bpf_ctx_range(struct __sk_buff, data_end):
7553                 info->reg_type = PTR_TO_PACKET_END;
7554                 break;
7555         }
7556
7557         return bpf_skb_is_valid_access(off, size, type, prog, info);
7558 }
7559
7560 /* Attach type specific accesses */
7561 static bool __sock_filter_check_attach_type(int off,
7562                                             enum bpf_access_type access_type,
7563                                             enum bpf_attach_type attach_type)
7564 {
7565         switch (off) {
7566         case offsetof(struct bpf_sock, bound_dev_if):
7567         case offsetof(struct bpf_sock, mark):
7568         case offsetof(struct bpf_sock, priority):
7569                 switch (attach_type) {
7570                 case BPF_CGROUP_INET_SOCK_CREATE:
7571                 case BPF_CGROUP_INET_SOCK_RELEASE:
7572                         goto full_access;
7573                 default:
7574                         return false;
7575                 }
7576         case bpf_ctx_range(struct bpf_sock, src_ip4):
7577                 switch (attach_type) {
7578                 case BPF_CGROUP_INET4_POST_BIND:
7579                         goto read_only;
7580                 default:
7581                         return false;
7582                 }
7583         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7584                 switch (attach_type) {
7585                 case BPF_CGROUP_INET6_POST_BIND:
7586                         goto read_only;
7587                 default:
7588                         return false;
7589                 }
7590         case bpf_ctx_range(struct bpf_sock, src_port):
7591                 switch (attach_type) {
7592                 case BPF_CGROUP_INET4_POST_BIND:
7593                 case BPF_CGROUP_INET6_POST_BIND:
7594                         goto read_only;
7595                 default:
7596                         return false;
7597                 }
7598         }
7599 read_only:
7600         return access_type == BPF_READ;
7601 full_access:
7602         return true;
7603 }
7604
7605 bool bpf_sock_common_is_valid_access(int off, int size,
7606                                      enum bpf_access_type type,
7607                                      struct bpf_insn_access_aux *info)
7608 {
7609         switch (off) {
7610         case bpf_ctx_range_till(struct bpf_sock, type, priority):
7611                 return false;
7612         default:
7613                 return bpf_sock_is_valid_access(off, size, type, info);
7614         }
7615 }
7616
7617 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7618                               struct bpf_insn_access_aux *info)
7619 {
7620         const int size_default = sizeof(__u32);
7621
7622         if (off < 0 || off >= sizeof(struct bpf_sock))
7623                 return false;
7624         if (off % size != 0)
7625                 return false;
7626
7627         switch (off) {
7628         case offsetof(struct bpf_sock, state):
7629         case offsetof(struct bpf_sock, family):
7630         case offsetof(struct bpf_sock, type):
7631         case offsetof(struct bpf_sock, protocol):
7632         case offsetof(struct bpf_sock, dst_port):
7633         case offsetof(struct bpf_sock, src_port):
7634         case offsetof(struct bpf_sock, rx_queue_mapping):
7635         case bpf_ctx_range(struct bpf_sock, src_ip4):
7636         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7637         case bpf_ctx_range(struct bpf_sock, dst_ip4):
7638         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7639                 bpf_ctx_record_field_size(info, size_default);
7640                 return bpf_ctx_narrow_access_ok(off, size, size_default);
7641         }
7642
7643         return size == size_default;
7644 }
7645
7646 static bool sock_filter_is_valid_access(int off, int size,
7647                                         enum bpf_access_type type,
7648                                         const struct bpf_prog *prog,
7649                                         struct bpf_insn_access_aux *info)
7650 {
7651         if (!bpf_sock_is_valid_access(off, size, type, info))
7652                 return false;
7653         return __sock_filter_check_attach_type(off, type,
7654                                                prog->expected_attach_type);
7655 }
7656
7657 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
7658                              const struct bpf_prog *prog)
7659 {
7660         /* Neither direct read nor direct write requires any preliminary
7661          * action.
7662          */
7663         return 0;
7664 }
7665
7666 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
7667                                 const struct bpf_prog *prog, int drop_verdict)
7668 {
7669         struct bpf_insn *insn = insn_buf;
7670
7671         if (!direct_write)
7672                 return 0;
7673
7674         /* if (!skb->cloned)
7675          *       goto start;
7676          *
7677          * (Fast-path, otherwise approximation that we might be
7678          *  a clone, do the rest in helper.)
7679          */
7680         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
7681         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
7682         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
7683
7684         /* ret = bpf_skb_pull_data(skb, 0); */
7685         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
7686         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
7687         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
7688                                BPF_FUNC_skb_pull_data);
7689         /* if (!ret)
7690          *      goto restore;
7691          * return TC_ACT_SHOT;
7692          */
7693         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
7694         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
7695         *insn++ = BPF_EXIT_INSN();
7696
7697         /* restore: */
7698         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
7699         /* start: */
7700         *insn++ = prog->insnsi[0];
7701
7702         return insn - insn_buf;
7703 }
7704
7705 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
7706                           struct bpf_insn *insn_buf)
7707 {
7708         bool indirect = BPF_MODE(orig->code) == BPF_IND;
7709         struct bpf_insn *insn = insn_buf;
7710
7711         if (!indirect) {
7712                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
7713         } else {
7714                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
7715                 if (orig->imm)
7716                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
7717         }
7718         /* We're guaranteed here that CTX is in R6. */
7719         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
7720
7721         switch (BPF_SIZE(orig->code)) {
7722         case BPF_B:
7723                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
7724                 break;
7725         case BPF_H:
7726                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
7727                 break;
7728         case BPF_W:
7729                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
7730                 break;
7731         }
7732
7733         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
7734         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
7735         *insn++ = BPF_EXIT_INSN();
7736
7737         return insn - insn_buf;
7738 }
7739
7740 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
7741                                const struct bpf_prog *prog)
7742 {
7743         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
7744 }
7745
7746 static bool tc_cls_act_is_valid_access(int off, int size,
7747                                        enum bpf_access_type type,
7748                                        const struct bpf_prog *prog,
7749                                        struct bpf_insn_access_aux *info)
7750 {
7751         if (type == BPF_WRITE) {
7752                 switch (off) {
7753                 case bpf_ctx_range(struct __sk_buff, mark):
7754                 case bpf_ctx_range(struct __sk_buff, tc_index):
7755                 case bpf_ctx_range(struct __sk_buff, priority):
7756                 case bpf_ctx_range(struct __sk_buff, tc_classid):
7757                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7758                 case bpf_ctx_range(struct __sk_buff, tstamp):
7759                 case bpf_ctx_range(struct __sk_buff, queue_mapping):
7760                         break;
7761                 default:
7762                         return false;
7763                 }
7764         }
7765
7766         switch (off) {
7767         case bpf_ctx_range(struct __sk_buff, data):
7768                 info->reg_type = PTR_TO_PACKET;
7769                 break;
7770         case bpf_ctx_range(struct __sk_buff, data_meta):
7771                 info->reg_type = PTR_TO_PACKET_META;
7772                 break;
7773         case bpf_ctx_range(struct __sk_buff, data_end):
7774                 info->reg_type = PTR_TO_PACKET_END;
7775                 break;
7776         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7777                 return false;
7778         }
7779
7780         return bpf_skb_is_valid_access(off, size, type, prog, info);
7781 }
7782
7783 static bool __is_valid_xdp_access(int off, int size)
7784 {
7785         if (off < 0 || off >= sizeof(struct xdp_md))
7786                 return false;
7787         if (off % size != 0)
7788                 return false;
7789         if (size != sizeof(__u32))
7790                 return false;
7791
7792         return true;
7793 }
7794
7795 static bool xdp_is_valid_access(int off, int size,
7796                                 enum bpf_access_type type,
7797                                 const struct bpf_prog *prog,
7798                                 struct bpf_insn_access_aux *info)
7799 {
7800         if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
7801                 switch (off) {
7802                 case offsetof(struct xdp_md, egress_ifindex):
7803                         return false;
7804                 }
7805         }
7806
7807         if (type == BPF_WRITE) {
7808                 if (bpf_prog_is_dev_bound(prog->aux)) {
7809                         switch (off) {
7810                         case offsetof(struct xdp_md, rx_queue_index):
7811                                 return __is_valid_xdp_access(off, size);
7812                         }
7813                 }
7814                 return false;
7815         }
7816
7817         switch (off) {
7818         case offsetof(struct xdp_md, data):
7819                 info->reg_type = PTR_TO_PACKET;
7820                 break;
7821         case offsetof(struct xdp_md, data_meta):
7822                 info->reg_type = PTR_TO_PACKET_META;
7823                 break;
7824         case offsetof(struct xdp_md, data_end):
7825                 info->reg_type = PTR_TO_PACKET_END;
7826                 break;
7827         }
7828
7829         return __is_valid_xdp_access(off, size);
7830 }
7831
7832 void bpf_warn_invalid_xdp_action(u32 act)
7833 {
7834         const u32 act_max = XDP_REDIRECT;
7835
7836         WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
7837                   act > act_max ? "Illegal" : "Driver unsupported",
7838                   act);
7839 }
7840 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
7841
7842 static bool sock_addr_is_valid_access(int off, int size,
7843                                       enum bpf_access_type type,
7844                                       const struct bpf_prog *prog,
7845                                       struct bpf_insn_access_aux *info)
7846 {
7847         const int size_default = sizeof(__u32);
7848
7849         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
7850                 return false;
7851         if (off % size != 0)
7852                 return false;
7853
7854         /* Disallow access to IPv6 fields from IPv4 contex and vise
7855          * versa.
7856          */
7857         switch (off) {
7858         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
7859                 switch (prog->expected_attach_type) {
7860                 case BPF_CGROUP_INET4_BIND:
7861                 case BPF_CGROUP_INET4_CONNECT:
7862                 case BPF_CGROUP_INET4_GETPEERNAME:
7863                 case BPF_CGROUP_INET4_GETSOCKNAME:
7864                 case BPF_CGROUP_UDP4_SENDMSG:
7865                 case BPF_CGROUP_UDP4_RECVMSG:
7866                         break;
7867                 default:
7868                         return false;
7869                 }
7870                 break;
7871         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7872                 switch (prog->expected_attach_type) {
7873                 case BPF_CGROUP_INET6_BIND:
7874                 case BPF_CGROUP_INET6_CONNECT:
7875                 case BPF_CGROUP_INET6_GETPEERNAME:
7876                 case BPF_CGROUP_INET6_GETSOCKNAME:
7877                 case BPF_CGROUP_UDP6_SENDMSG:
7878                 case BPF_CGROUP_UDP6_RECVMSG:
7879                         break;
7880                 default:
7881                         return false;
7882                 }
7883                 break;
7884         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
7885                 switch (prog->expected_attach_type) {
7886                 case BPF_CGROUP_UDP4_SENDMSG:
7887                         break;
7888                 default:
7889                         return false;
7890                 }
7891                 break;
7892         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7893                                 msg_src_ip6[3]):
7894                 switch (prog->expected_attach_type) {
7895                 case BPF_CGROUP_UDP6_SENDMSG:
7896                         break;
7897                 default:
7898                         return false;
7899                 }
7900                 break;
7901         }
7902
7903         switch (off) {
7904         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
7905         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7906         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
7907         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7908                                 msg_src_ip6[3]):
7909         case bpf_ctx_range(struct bpf_sock_addr, user_port):
7910                 if (type == BPF_READ) {
7911                         bpf_ctx_record_field_size(info, size_default);
7912
7913                         if (bpf_ctx_wide_access_ok(off, size,
7914                                                    struct bpf_sock_addr,
7915                                                    user_ip6))
7916                                 return true;
7917
7918                         if (bpf_ctx_wide_access_ok(off, size,
7919                                                    struct bpf_sock_addr,
7920                                                    msg_src_ip6))
7921                                 return true;
7922
7923                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7924                                 return false;
7925                 } else {
7926                         if (bpf_ctx_wide_access_ok(off, size,
7927                                                    struct bpf_sock_addr,
7928                                                    user_ip6))
7929                                 return true;
7930
7931                         if (bpf_ctx_wide_access_ok(off, size,
7932                                                    struct bpf_sock_addr,
7933                                                    msg_src_ip6))
7934                                 return true;
7935
7936                         if (size != size_default)
7937                                 return false;
7938                 }
7939                 break;
7940         case offsetof(struct bpf_sock_addr, sk):
7941                 if (type != BPF_READ)
7942                         return false;
7943                 if (size != sizeof(__u64))
7944                         return false;
7945                 info->reg_type = PTR_TO_SOCKET;
7946                 break;
7947         default:
7948                 if (type == BPF_READ) {
7949                         if (size != size_default)
7950                                 return false;
7951                 } else {
7952                         return false;
7953                 }
7954         }
7955
7956         return true;
7957 }
7958
7959 static bool sock_ops_is_valid_access(int off, int size,
7960                                      enum bpf_access_type type,
7961                                      const struct bpf_prog *prog,
7962                                      struct bpf_insn_access_aux *info)
7963 {
7964         const int size_default = sizeof(__u32);
7965
7966         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
7967                 return false;
7968
7969         /* The verifier guarantees that size > 0. */
7970         if (off % size != 0)
7971                 return false;
7972
7973         if (type == BPF_WRITE) {
7974                 switch (off) {
7975                 case offsetof(struct bpf_sock_ops, reply):
7976                 case offsetof(struct bpf_sock_ops, sk_txhash):
7977                         if (size != size_default)
7978                                 return false;
7979                         break;
7980                 default:
7981                         return false;
7982                 }
7983         } else {
7984                 switch (off) {
7985                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
7986                                         bytes_acked):
7987                         if (size != sizeof(__u64))
7988                                 return false;
7989                         break;
7990                 case offsetof(struct bpf_sock_ops, sk):
7991                         if (size != sizeof(__u64))
7992                                 return false;
7993                         info->reg_type = PTR_TO_SOCKET_OR_NULL;
7994                         break;
7995                 case offsetof(struct bpf_sock_ops, skb_data):
7996                         if (size != sizeof(__u64))
7997                                 return false;
7998                         info->reg_type = PTR_TO_PACKET;
7999                         break;
8000                 case offsetof(struct bpf_sock_ops, skb_data_end):
8001                         if (size != sizeof(__u64))
8002                                 return false;
8003                         info->reg_type = PTR_TO_PACKET_END;
8004                         break;
8005                 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8006                         bpf_ctx_record_field_size(info, size_default);
8007                         return bpf_ctx_narrow_access_ok(off, size,
8008                                                         size_default);
8009                 default:
8010                         if (size != size_default)
8011                                 return false;
8012                         break;
8013                 }
8014         }
8015
8016         return true;
8017 }
8018
8019 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8020                            const struct bpf_prog *prog)
8021 {
8022         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8023 }
8024
8025 static bool sk_skb_is_valid_access(int off, int size,
8026                                    enum bpf_access_type type,
8027                                    const struct bpf_prog *prog,
8028                                    struct bpf_insn_access_aux *info)
8029 {
8030         switch (off) {
8031         case bpf_ctx_range(struct __sk_buff, tc_classid):
8032         case bpf_ctx_range(struct __sk_buff, data_meta):
8033         case bpf_ctx_range(struct __sk_buff, tstamp):
8034         case bpf_ctx_range(struct __sk_buff, wire_len):
8035                 return false;
8036         }
8037
8038         if (type == BPF_WRITE) {
8039                 switch (off) {
8040                 case bpf_ctx_range(struct __sk_buff, tc_index):
8041                 case bpf_ctx_range(struct __sk_buff, priority):
8042                         break;
8043                 default:
8044                         return false;
8045                 }
8046         }
8047
8048         switch (off) {
8049         case bpf_ctx_range(struct __sk_buff, mark):
8050                 return false;
8051         case bpf_ctx_range(struct __sk_buff, data):
8052                 info->reg_type = PTR_TO_PACKET;
8053                 break;
8054         case bpf_ctx_range(struct __sk_buff, data_end):
8055                 info->reg_type = PTR_TO_PACKET_END;
8056                 break;
8057         }
8058
8059         return bpf_skb_is_valid_access(off, size, type, prog, info);
8060 }
8061
8062 static bool sk_msg_is_valid_access(int off, int size,
8063                                    enum bpf_access_type type,
8064                                    const struct bpf_prog *prog,
8065                                    struct bpf_insn_access_aux *info)
8066 {
8067         if (type == BPF_WRITE)
8068                 return false;
8069
8070         if (off % size != 0)
8071                 return false;
8072
8073         switch (off) {
8074         case offsetof(struct sk_msg_md, data):
8075                 info->reg_type = PTR_TO_PACKET;
8076                 if (size != sizeof(__u64))
8077                         return false;
8078                 break;
8079         case offsetof(struct sk_msg_md, data_end):
8080                 info->reg_type = PTR_TO_PACKET_END;
8081                 if (size != sizeof(__u64))
8082                         return false;
8083                 break;
8084         case offsetof(struct sk_msg_md, sk):
8085                 if (size != sizeof(__u64))
8086                         return false;
8087                 info->reg_type = PTR_TO_SOCKET;
8088                 break;
8089         case bpf_ctx_range(struct sk_msg_md, family):
8090         case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8091         case bpf_ctx_range(struct sk_msg_md, local_ip4):
8092         case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8093         case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8094         case bpf_ctx_range(struct sk_msg_md, remote_port):
8095         case bpf_ctx_range(struct sk_msg_md, local_port):
8096         case bpf_ctx_range(struct sk_msg_md, size):
8097                 if (size != sizeof(__u32))
8098                         return false;
8099                 break;
8100         default:
8101                 return false;
8102         }
8103         return true;
8104 }
8105
8106 static bool flow_dissector_is_valid_access(int off, int size,
8107                                            enum bpf_access_type type,
8108                                            const struct bpf_prog *prog,
8109                                            struct bpf_insn_access_aux *info)
8110 {
8111         const int size_default = sizeof(__u32);
8112
8113         if (off < 0 || off >= sizeof(struct __sk_buff))
8114                 return false;
8115
8116         if (type == BPF_WRITE)
8117                 return false;
8118
8119         switch (off) {
8120         case bpf_ctx_range(struct __sk_buff, data):
8121                 if (size != size_default)
8122                         return false;
8123                 info->reg_type = PTR_TO_PACKET;
8124                 return true;
8125         case bpf_ctx_range(struct __sk_buff, data_end):
8126                 if (size != size_default)
8127                         return false;
8128                 info->reg_type = PTR_TO_PACKET_END;
8129                 return true;
8130         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8131                 if (size != sizeof(__u64))
8132                         return false;
8133                 info->reg_type = PTR_TO_FLOW_KEYS;
8134                 return true;
8135         default:
8136                 return false;
8137         }
8138 }
8139
8140 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8141                                              const struct bpf_insn *si,
8142                                              struct bpf_insn *insn_buf,
8143                                              struct bpf_prog *prog,
8144                                              u32 *target_size)
8145
8146 {
8147         struct bpf_insn *insn = insn_buf;
8148
8149         switch (si->off) {
8150         case offsetof(struct __sk_buff, data):
8151                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8152                                       si->dst_reg, si->src_reg,
8153                                       offsetof(struct bpf_flow_dissector, data));
8154                 break;
8155
8156         case offsetof(struct __sk_buff, data_end):
8157                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8158                                       si->dst_reg, si->src_reg,
8159                                       offsetof(struct bpf_flow_dissector, data_end));
8160                 break;
8161
8162         case offsetof(struct __sk_buff, flow_keys):
8163                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8164                                       si->dst_reg, si->src_reg,
8165                                       offsetof(struct bpf_flow_dissector, flow_keys));
8166                 break;
8167         }
8168
8169         return insn - insn_buf;
8170 }
8171
8172 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
8173                                                   struct bpf_insn *insn)
8174 {
8175         /* si->dst_reg = skb_shinfo(SKB); */
8176 #ifdef NET_SKBUFF_DATA_USES_OFFSET
8177         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8178                               BPF_REG_AX, si->src_reg,
8179                               offsetof(struct sk_buff, end));
8180         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
8181                               si->dst_reg, si->src_reg,
8182                               offsetof(struct sk_buff, head));
8183         *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
8184 #else
8185         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8186                               si->dst_reg, si->src_reg,
8187                               offsetof(struct sk_buff, end));
8188 #endif
8189
8190         return insn;
8191 }
8192
8193 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
8194                                   const struct bpf_insn *si,
8195                                   struct bpf_insn *insn_buf,
8196                                   struct bpf_prog *prog, u32 *target_size)
8197 {
8198         struct bpf_insn *insn = insn_buf;
8199         int off;
8200
8201         switch (si->off) {
8202         case offsetof(struct __sk_buff, len):
8203                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8204                                       bpf_target_off(struct sk_buff, len, 4,
8205                                                      target_size));
8206                 break;
8207
8208         case offsetof(struct __sk_buff, protocol):
8209                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8210                                       bpf_target_off(struct sk_buff, protocol, 2,
8211                                                      target_size));
8212                 break;
8213
8214         case offsetof(struct __sk_buff, vlan_proto):
8215                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8216                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
8217                                                      target_size));
8218                 break;
8219
8220         case offsetof(struct __sk_buff, priority):
8221                 if (type == BPF_WRITE)
8222                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8223                                               bpf_target_off(struct sk_buff, priority, 4,
8224                                                              target_size));
8225                 else
8226                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8227                                               bpf_target_off(struct sk_buff, priority, 4,
8228                                                              target_size));
8229                 break;
8230
8231         case offsetof(struct __sk_buff, ingress_ifindex):
8232                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8233                                       bpf_target_off(struct sk_buff, skb_iif, 4,
8234                                                      target_size));
8235                 break;
8236
8237         case offsetof(struct __sk_buff, ifindex):
8238                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8239                                       si->dst_reg, si->src_reg,
8240                                       offsetof(struct sk_buff, dev));
8241                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8242                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8243                                       bpf_target_off(struct net_device, ifindex, 4,
8244                                                      target_size));
8245                 break;
8246
8247         case offsetof(struct __sk_buff, hash):
8248                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8249                                       bpf_target_off(struct sk_buff, hash, 4,
8250                                                      target_size));
8251                 break;
8252
8253         case offsetof(struct __sk_buff, mark):
8254                 if (type == BPF_WRITE)
8255                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8256                                               bpf_target_off(struct sk_buff, mark, 4,
8257                                                              target_size));
8258                 else
8259                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8260                                               bpf_target_off(struct sk_buff, mark, 4,
8261                                                              target_size));
8262                 break;
8263
8264         case offsetof(struct __sk_buff, pkt_type):
8265                 *target_size = 1;
8266                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8267                                       PKT_TYPE_OFFSET());
8268                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
8269 #ifdef __BIG_ENDIAN_BITFIELD
8270                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
8271 #endif
8272                 break;
8273
8274         case offsetof(struct __sk_buff, queue_mapping):
8275                 if (type == BPF_WRITE) {
8276                         *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
8277                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8278                                               bpf_target_off(struct sk_buff,
8279                                                              queue_mapping,
8280                                                              2, target_size));
8281                 } else {
8282                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8283                                               bpf_target_off(struct sk_buff,
8284                                                              queue_mapping,
8285                                                              2, target_size));
8286                 }
8287                 break;
8288
8289         case offsetof(struct __sk_buff, vlan_present):
8290                 *target_size = 1;
8291                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8292                                       PKT_VLAN_PRESENT_OFFSET());
8293                 if (PKT_VLAN_PRESENT_BIT)
8294                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
8295                 if (PKT_VLAN_PRESENT_BIT < 7)
8296                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
8297                 break;
8298
8299         case offsetof(struct __sk_buff, vlan_tci):
8300                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8301                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
8302                                                      target_size));
8303                 break;
8304
8305         case offsetof(struct __sk_buff, cb[0]) ...
8306              offsetofend(struct __sk_buff, cb[4]) - 1:
8307                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
8308                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
8309                               offsetof(struct qdisc_skb_cb, data)) %
8310                              sizeof(__u64));
8311
8312                 prog->cb_access = 1;
8313                 off  = si->off;
8314                 off -= offsetof(struct __sk_buff, cb[0]);
8315                 off += offsetof(struct sk_buff, cb);
8316                 off += offsetof(struct qdisc_skb_cb, data);
8317                 if (type == BPF_WRITE)
8318                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
8319                                               si->src_reg, off);
8320                 else
8321                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
8322                                               si->src_reg, off);
8323                 break;
8324
8325         case offsetof(struct __sk_buff, tc_classid):
8326                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
8327
8328                 off  = si->off;
8329                 off -= offsetof(struct __sk_buff, tc_classid);
8330                 off += offsetof(struct sk_buff, cb);
8331                 off += offsetof(struct qdisc_skb_cb, tc_classid);
8332                 *target_size = 2;
8333                 if (type == BPF_WRITE)
8334                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
8335                                               si->src_reg, off);
8336                 else
8337                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
8338                                               si->src_reg, off);
8339                 break;
8340
8341         case offsetof(struct __sk_buff, data):
8342                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
8343                                       si->dst_reg, si->src_reg,
8344                                       offsetof(struct sk_buff, data));
8345                 break;
8346
8347         case offsetof(struct __sk_buff, data_meta):
8348                 off  = si->off;
8349                 off -= offsetof(struct __sk_buff, data_meta);
8350                 off += offsetof(struct sk_buff, cb);
8351                 off += offsetof(struct bpf_skb_data_end, data_meta);
8352                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8353                                       si->src_reg, off);
8354                 break;
8355
8356         case offsetof(struct __sk_buff, data_end):
8357                 off  = si->off;
8358                 off -= offsetof(struct __sk_buff, data_end);
8359                 off += offsetof(struct sk_buff, cb);
8360                 off += offsetof(struct bpf_skb_data_end, data_end);
8361                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8362                                       si->src_reg, off);
8363                 break;
8364
8365         case offsetof(struct __sk_buff, tc_index):
8366 #ifdef CONFIG_NET_SCHED
8367                 if (type == BPF_WRITE)
8368                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8369                                               bpf_target_off(struct sk_buff, tc_index, 2,
8370                                                              target_size));
8371                 else
8372                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8373                                               bpf_target_off(struct sk_buff, tc_index, 2,
8374                                                              target_size));
8375 #else
8376                 *target_size = 2;
8377                 if (type == BPF_WRITE)
8378                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
8379                 else
8380                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8381 #endif
8382                 break;
8383
8384         case offsetof(struct __sk_buff, napi_id):
8385 #if defined(CONFIG_NET_RX_BUSY_POLL)
8386                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8387                                       bpf_target_off(struct sk_buff, napi_id, 4,
8388                                                      target_size));
8389                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
8390                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8391 #else
8392                 *target_size = 4;
8393                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8394 #endif
8395                 break;
8396         case offsetof(struct __sk_buff, family):
8397                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8398
8399                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8400                                       si->dst_reg, si->src_reg,
8401                                       offsetof(struct sk_buff, sk));
8402                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8403                                       bpf_target_off(struct sock_common,
8404                                                      skc_family,
8405                                                      2, target_size));
8406                 break;
8407         case offsetof(struct __sk_buff, remote_ip4):
8408                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8409
8410                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8411                                       si->dst_reg, si->src_reg,
8412                                       offsetof(struct sk_buff, sk));
8413                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8414                                       bpf_target_off(struct sock_common,
8415                                                      skc_daddr,
8416                                                      4, target_size));
8417                 break;
8418         case offsetof(struct __sk_buff, local_ip4):
8419                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8420                                           skc_rcv_saddr) != 4);
8421
8422                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8423                                       si->dst_reg, si->src_reg,
8424                                       offsetof(struct sk_buff, sk));
8425                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8426                                       bpf_target_off(struct sock_common,
8427                                                      skc_rcv_saddr,
8428                                                      4, target_size));
8429                 break;
8430         case offsetof(struct __sk_buff, remote_ip6[0]) ...
8431              offsetof(struct __sk_buff, remote_ip6[3]):
8432 #if IS_ENABLED(CONFIG_IPV6)
8433                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8434                                           skc_v6_daddr.s6_addr32[0]) != 4);
8435
8436                 off = si->off;
8437                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
8438
8439                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8440                                       si->dst_reg, si->src_reg,
8441                                       offsetof(struct sk_buff, sk));
8442                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8443                                       offsetof(struct sock_common,
8444                                                skc_v6_daddr.s6_addr32[0]) +
8445                                       off);
8446 #else
8447                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8448 #endif
8449                 break;
8450         case offsetof(struct __sk_buff, local_ip6[0]) ...
8451              offsetof(struct __sk_buff, local_ip6[3]):
8452 #if IS_ENABLED(CONFIG_IPV6)
8453                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8454                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8455
8456                 off = si->off;
8457                 off -= offsetof(struct __sk_buff, local_ip6[0]);
8458
8459                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8460                                       si->dst_reg, si->src_reg,
8461                                       offsetof(struct sk_buff, sk));
8462                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8463                                       offsetof(struct sock_common,
8464                                                skc_v6_rcv_saddr.s6_addr32[0]) +
8465                                       off);
8466 #else
8467                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8468 #endif
8469                 break;
8470
8471         case offsetof(struct __sk_buff, remote_port):
8472                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8473
8474                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8475                                       si->dst_reg, si->src_reg,
8476                                       offsetof(struct sk_buff, sk));
8477                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8478                                       bpf_target_off(struct sock_common,
8479                                                      skc_dport,
8480                                                      2, target_size));
8481 #ifndef __BIG_ENDIAN_BITFIELD
8482                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8483 #endif
8484                 break;
8485
8486         case offsetof(struct __sk_buff, local_port):
8487                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8488
8489                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8490                                       si->dst_reg, si->src_reg,
8491                                       offsetof(struct sk_buff, sk));
8492                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8493                                       bpf_target_off(struct sock_common,
8494                                                      skc_num, 2, target_size));
8495                 break;
8496
8497         case offsetof(struct __sk_buff, tstamp):
8498                 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
8499
8500                 if (type == BPF_WRITE)
8501                         *insn++ = BPF_STX_MEM(BPF_DW,
8502                                               si->dst_reg, si->src_reg,
8503                                               bpf_target_off(struct sk_buff,
8504                                                              tstamp, 8,
8505                                                              target_size));
8506                 else
8507                         *insn++ = BPF_LDX_MEM(BPF_DW,
8508                                               si->dst_reg, si->src_reg,
8509                                               bpf_target_off(struct sk_buff,
8510                                                              tstamp, 8,
8511                                                              target_size));
8512                 break;
8513
8514         case offsetof(struct __sk_buff, gso_segs):
8515                 insn = bpf_convert_shinfo_access(si, insn);
8516                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
8517                                       si->dst_reg, si->dst_reg,
8518                                       bpf_target_off(struct skb_shared_info,
8519                                                      gso_segs, 2,
8520                                                      target_size));
8521                 break;
8522         case offsetof(struct __sk_buff, gso_size):
8523                 insn = bpf_convert_shinfo_access(si, insn);
8524                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
8525                                       si->dst_reg, si->dst_reg,
8526                                       bpf_target_off(struct skb_shared_info,
8527                                                      gso_size, 2,
8528                                                      target_size));
8529                 break;
8530         case offsetof(struct __sk_buff, wire_len):
8531                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
8532
8533                 off = si->off;
8534                 off -= offsetof(struct __sk_buff, wire_len);
8535                 off += offsetof(struct sk_buff, cb);
8536                 off += offsetof(struct qdisc_skb_cb, pkt_len);
8537                 *target_size = 4;
8538                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
8539                 break;
8540
8541         case offsetof(struct __sk_buff, sk):
8542                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8543                                       si->dst_reg, si->src_reg,
8544                                       offsetof(struct sk_buff, sk));
8545                 break;
8546         }
8547
8548         return insn - insn_buf;
8549 }
8550
8551 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
8552                                 const struct bpf_insn *si,
8553                                 struct bpf_insn *insn_buf,
8554                                 struct bpf_prog *prog, u32 *target_size)
8555 {
8556         struct bpf_insn *insn = insn_buf;
8557         int off;
8558
8559         switch (si->off) {
8560         case offsetof(struct bpf_sock, bound_dev_if):
8561                 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
8562
8563                 if (type == BPF_WRITE)
8564                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8565                                         offsetof(struct sock, sk_bound_dev_if));
8566                 else
8567                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8568                                       offsetof(struct sock, sk_bound_dev_if));
8569                 break;
8570
8571         case offsetof(struct bpf_sock, mark):
8572                 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
8573
8574                 if (type == BPF_WRITE)
8575                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8576                                         offsetof(struct sock, sk_mark));
8577                 else
8578                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8579                                       offsetof(struct sock, sk_mark));
8580                 break;
8581
8582         case offsetof(struct bpf_sock, priority):
8583                 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
8584
8585                 if (type == BPF_WRITE)
8586                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8587                                         offsetof(struct sock, sk_priority));
8588                 else
8589                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8590                                       offsetof(struct sock, sk_priority));
8591                 break;
8592
8593         case offsetof(struct bpf_sock, family):
8594                 *insn++ = BPF_LDX_MEM(
8595                         BPF_FIELD_SIZEOF(struct sock_common, skc_family),
8596                         si->dst_reg, si->src_reg,
8597                         bpf_target_off(struct sock_common,
8598                                        skc_family,
8599                                        sizeof_field(struct sock_common,
8600                                                     skc_family),
8601                                        target_size));
8602                 break;
8603
8604         case offsetof(struct bpf_sock, type):
8605                 *insn++ = BPF_LDX_MEM(
8606                         BPF_FIELD_SIZEOF(struct sock, sk_type),
8607                         si->dst_reg, si->src_reg,
8608                         bpf_target_off(struct sock, sk_type,
8609                                        sizeof_field(struct sock, sk_type),
8610                                        target_size));
8611                 break;
8612
8613         case offsetof(struct bpf_sock, protocol):
8614                 *insn++ = BPF_LDX_MEM(
8615                         BPF_FIELD_SIZEOF(struct sock, sk_protocol),
8616                         si->dst_reg, si->src_reg,
8617                         bpf_target_off(struct sock, sk_protocol,
8618                                        sizeof_field(struct sock, sk_protocol),
8619                                        target_size));
8620                 break;
8621
8622         case offsetof(struct bpf_sock, src_ip4):
8623                 *insn++ = BPF_LDX_MEM(
8624                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8625                         bpf_target_off(struct sock_common, skc_rcv_saddr,
8626                                        sizeof_field(struct sock_common,
8627                                                     skc_rcv_saddr),
8628                                        target_size));
8629                 break;
8630
8631         case offsetof(struct bpf_sock, dst_ip4):
8632                 *insn++ = BPF_LDX_MEM(
8633                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8634                         bpf_target_off(struct sock_common, skc_daddr,
8635                                        sizeof_field(struct sock_common,
8636                                                     skc_daddr),
8637                                        target_size));
8638                 break;
8639
8640         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8641 #if IS_ENABLED(CONFIG_IPV6)
8642                 off = si->off;
8643                 off -= offsetof(struct bpf_sock, src_ip6[0]);
8644                 *insn++ = BPF_LDX_MEM(
8645                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8646                         bpf_target_off(
8647                                 struct sock_common,
8648                                 skc_v6_rcv_saddr.s6_addr32[0],
8649                                 sizeof_field(struct sock_common,
8650                                              skc_v6_rcv_saddr.s6_addr32[0]),
8651                                 target_size) + off);
8652 #else
8653                 (void)off;
8654                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8655 #endif
8656                 break;
8657
8658         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8659 #if IS_ENABLED(CONFIG_IPV6)
8660                 off = si->off;
8661                 off -= offsetof(struct bpf_sock, dst_ip6[0]);
8662                 *insn++ = BPF_LDX_MEM(
8663                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8664                         bpf_target_off(struct sock_common,
8665                                        skc_v6_daddr.s6_addr32[0],
8666                                        sizeof_field(struct sock_common,
8667                                                     skc_v6_daddr.s6_addr32[0]),
8668                                        target_size) + off);
8669 #else
8670                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8671                 *target_size = 4;
8672 #endif
8673                 break;
8674
8675         case offsetof(struct bpf_sock, src_port):
8676                 *insn++ = BPF_LDX_MEM(
8677                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
8678                         si->dst_reg, si->src_reg,
8679                         bpf_target_off(struct sock_common, skc_num,
8680                                        sizeof_field(struct sock_common,
8681                                                     skc_num),
8682                                        target_size));
8683                 break;
8684
8685         case offsetof(struct bpf_sock, dst_port):
8686                 *insn++ = BPF_LDX_MEM(
8687                         BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
8688                         si->dst_reg, si->src_reg,
8689                         bpf_target_off(struct sock_common, skc_dport,
8690                                        sizeof_field(struct sock_common,
8691                                                     skc_dport),
8692                                        target_size));
8693                 break;
8694
8695         case offsetof(struct bpf_sock, state):
8696                 *insn++ = BPF_LDX_MEM(
8697                         BPF_FIELD_SIZEOF(struct sock_common, skc_state),
8698                         si->dst_reg, si->src_reg,
8699                         bpf_target_off(struct sock_common, skc_state,
8700                                        sizeof_field(struct sock_common,
8701                                                     skc_state),
8702                                        target_size));
8703                 break;
8704         case offsetof(struct bpf_sock, rx_queue_mapping):
8705 #ifdef CONFIG_XPS
8706                 *insn++ = BPF_LDX_MEM(
8707                         BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
8708                         si->dst_reg, si->src_reg,
8709                         bpf_target_off(struct sock, sk_rx_queue_mapping,
8710                                        sizeof_field(struct sock,
8711                                                     sk_rx_queue_mapping),
8712                                        target_size));
8713                 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
8714                                       1);
8715                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8716 #else
8717                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8718                 *target_size = 2;
8719 #endif
8720                 break;
8721         }
8722
8723         return insn - insn_buf;
8724 }
8725
8726 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
8727                                          const struct bpf_insn *si,
8728                                          struct bpf_insn *insn_buf,
8729                                          struct bpf_prog *prog, u32 *target_size)
8730 {
8731         struct bpf_insn *insn = insn_buf;
8732
8733         switch (si->off) {
8734         case offsetof(struct __sk_buff, ifindex):
8735                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8736                                       si->dst_reg, si->src_reg,
8737                                       offsetof(struct sk_buff, dev));
8738                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8739                                       bpf_target_off(struct net_device, ifindex, 4,
8740                                                      target_size));
8741                 break;
8742         default:
8743                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
8744                                               target_size);
8745         }
8746
8747         return insn - insn_buf;
8748 }
8749
8750 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
8751                                   const struct bpf_insn *si,
8752                                   struct bpf_insn *insn_buf,
8753                                   struct bpf_prog *prog, u32 *target_size)
8754 {
8755         struct bpf_insn *insn = insn_buf;
8756
8757         switch (si->off) {
8758         case offsetof(struct xdp_md, data):
8759                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
8760                                       si->dst_reg, si->src_reg,
8761                                       offsetof(struct xdp_buff, data));
8762                 break;
8763         case offsetof(struct xdp_md, data_meta):
8764                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
8765                                       si->dst_reg, si->src_reg,
8766                                       offsetof(struct xdp_buff, data_meta));
8767                 break;
8768         case offsetof(struct xdp_md, data_end):
8769                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
8770                                       si->dst_reg, si->src_reg,
8771                                       offsetof(struct xdp_buff, data_end));
8772                 break;
8773         case offsetof(struct xdp_md, ingress_ifindex):
8774                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8775                                       si->dst_reg, si->src_reg,
8776                                       offsetof(struct xdp_buff, rxq));
8777                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
8778                                       si->dst_reg, si->dst_reg,
8779                                       offsetof(struct xdp_rxq_info, dev));
8780                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8781                                       offsetof(struct net_device, ifindex));
8782                 break;
8783         case offsetof(struct xdp_md, rx_queue_index):
8784                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8785                                       si->dst_reg, si->src_reg,
8786                                       offsetof(struct xdp_buff, rxq));
8787                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8788                                       offsetof(struct xdp_rxq_info,
8789                                                queue_index));
8790                 break;
8791         case offsetof(struct xdp_md, egress_ifindex):
8792                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
8793                                       si->dst_reg, si->src_reg,
8794                                       offsetof(struct xdp_buff, txq));
8795                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
8796                                       si->dst_reg, si->dst_reg,
8797                                       offsetof(struct xdp_txq_info, dev));
8798                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8799                                       offsetof(struct net_device, ifindex));
8800                 break;
8801         }
8802
8803         return insn - insn_buf;
8804 }
8805
8806 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
8807  * context Structure, F is Field in context structure that contains a pointer
8808  * to Nested Structure of type NS that has the field NF.
8809  *
8810  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
8811  * sure that SIZE is not greater than actual size of S.F.NF.
8812  *
8813  * If offset OFF is provided, the load happens from that offset relative to
8814  * offset of NF.
8815  */
8816 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
8817         do {                                                                   \
8818                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
8819                                       si->src_reg, offsetof(S, F));            \
8820                 *insn++ = BPF_LDX_MEM(                                         \
8821                         SIZE, si->dst_reg, si->dst_reg,                        \
8822                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
8823                                        target_size)                            \
8824                                 + OFF);                                        \
8825         } while (0)
8826
8827 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
8828         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
8829                                              BPF_FIELD_SIZEOF(NS, NF), 0)
8830
8831 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
8832  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
8833  *
8834  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
8835  * "register" since two registers available in convert_ctx_access are not
8836  * enough: we can't override neither SRC, since it contains value to store, nor
8837  * DST since it contains pointer to context that may be used by later
8838  * instructions. But we need a temporary place to save pointer to nested
8839  * structure whose field we want to store to.
8840  */
8841 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
8842         do {                                                                   \
8843                 int tmp_reg = BPF_REG_9;                                       \
8844                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
8845                         --tmp_reg;                                             \
8846                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
8847                         --tmp_reg;                                             \
8848                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
8849                                       offsetof(S, TF));                        \
8850                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
8851                                       si->dst_reg, offsetof(S, F));            \
8852                 *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,              \
8853                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
8854                                        target_size)                            \
8855                                 + OFF);                                        \
8856                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
8857                                       offsetof(S, TF));                        \
8858         } while (0)
8859
8860 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
8861                                                       TF)                      \
8862         do {                                                                   \
8863                 if (type == BPF_WRITE) {                                       \
8864                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
8865                                                          OFF, TF);             \
8866                 } else {                                                       \
8867                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
8868                                 S, NS, F, NF, SIZE, OFF);  \
8869                 }                                                              \
8870         } while (0)
8871
8872 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
8873         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
8874                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
8875
8876 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
8877                                         const struct bpf_insn *si,
8878                                         struct bpf_insn *insn_buf,
8879                                         struct bpf_prog *prog, u32 *target_size)
8880 {
8881         int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
8882         struct bpf_insn *insn = insn_buf;
8883
8884         switch (si->off) {
8885         case offsetof(struct bpf_sock_addr, user_family):
8886                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8887                                             struct sockaddr, uaddr, sa_family);
8888                 break;
8889
8890         case offsetof(struct bpf_sock_addr, user_ip4):
8891                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8892                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
8893                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
8894                 break;
8895
8896         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8897                 off = si->off;
8898                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
8899                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8900                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
8901                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
8902                         tmp_reg);
8903                 break;
8904
8905         case offsetof(struct bpf_sock_addr, user_port):
8906                 /* To get port we need to know sa_family first and then treat
8907                  * sockaddr as either sockaddr_in or sockaddr_in6.
8908                  * Though we can simplify since port field has same offset and
8909                  * size in both structures.
8910                  * Here we check this invariant and use just one of the
8911                  * structures if it's true.
8912                  */
8913                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
8914                              offsetof(struct sockaddr_in6, sin6_port));
8915                 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
8916                              sizeof_field(struct sockaddr_in6, sin6_port));
8917                 /* Account for sin6_port being smaller than user_port. */
8918                 port_size = min(port_size, BPF_LDST_BYTES(si));
8919                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8920                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
8921                         sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
8922                 break;
8923
8924         case offsetof(struct bpf_sock_addr, family):
8925                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8926                                             struct sock, sk, sk_family);
8927                 break;
8928
8929         case offsetof(struct bpf_sock_addr, type):
8930                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8931                                             struct sock, sk, sk_type);
8932                 break;
8933
8934         case offsetof(struct bpf_sock_addr, protocol):
8935                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8936                                             struct sock, sk, sk_protocol);
8937                 break;
8938
8939         case offsetof(struct bpf_sock_addr, msg_src_ip4):
8940                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
8941                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8942                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
8943                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
8944                 break;
8945
8946         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8947                                 msg_src_ip6[3]):
8948                 off = si->off;
8949                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
8950                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
8951                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8952                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
8953                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
8954                 break;
8955         case offsetof(struct bpf_sock_addr, sk):
8956                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
8957                                       si->dst_reg, si->src_reg,
8958                                       offsetof(struct bpf_sock_addr_kern, sk));
8959                 break;
8960         }
8961
8962         return insn - insn_buf;
8963 }
8964
8965 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
8966                                        const struct bpf_insn *si,
8967                                        struct bpf_insn *insn_buf,
8968                                        struct bpf_prog *prog,
8969                                        u32 *target_size)
8970 {
8971         struct bpf_insn *insn = insn_buf;
8972         int off;
8973
8974 /* Helper macro for adding read access to tcp_sock or sock fields. */
8975 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
8976         do {                                                                  \
8977                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
8978                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
8979                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
8980                 if (si->dst_reg == reg || si->src_reg == reg)                 \
8981                         reg--;                                                \
8982                 if (si->dst_reg == reg || si->src_reg == reg)                 \
8983                         reg--;                                                \
8984                 if (si->dst_reg == si->src_reg) {                             \
8985                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
8986                                           offsetof(struct bpf_sock_ops_kern,  \
8987                                           temp));                             \
8988                         fullsock_reg = reg;                                   \
8989                         jmp += 2;                                             \
8990                 }                                                             \
8991                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
8992                                                 struct bpf_sock_ops_kern,     \
8993                                                 is_fullsock),                 \
8994                                       fullsock_reg, si->src_reg,              \
8995                                       offsetof(struct bpf_sock_ops_kern,      \
8996                                                is_fullsock));                 \
8997                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
8998                 if (si->dst_reg == si->src_reg)                               \
8999                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9000                                       offsetof(struct bpf_sock_ops_kern,      \
9001                                       temp));                                 \
9002                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9003                                                 struct bpf_sock_ops_kern, sk),\
9004                                       si->dst_reg, si->src_reg,               \
9005                                       offsetof(struct bpf_sock_ops_kern, sk));\
9006                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
9007                                                        OBJ_FIELD),            \
9008                                       si->dst_reg, si->dst_reg,               \
9009                                       offsetof(OBJ, OBJ_FIELD));              \
9010                 if (si->dst_reg == si->src_reg) {                             \
9011                         *insn++ = BPF_JMP_A(1);                               \
9012                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9013                                       offsetof(struct bpf_sock_ops_kern,      \
9014                                       temp));                                 \
9015                 }                                                             \
9016         } while (0)
9017
9018 #define SOCK_OPS_GET_SK()                                                             \
9019         do {                                                                  \
9020                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
9021                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9022                         reg--;                                                \
9023                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9024                         reg--;                                                \
9025                 if (si->dst_reg == si->src_reg) {                             \
9026                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
9027                                           offsetof(struct bpf_sock_ops_kern,  \
9028                                           temp));                             \
9029                         fullsock_reg = reg;                                   \
9030                         jmp += 2;                                             \
9031                 }                                                             \
9032                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9033                                                 struct bpf_sock_ops_kern,     \
9034                                                 is_fullsock),                 \
9035                                       fullsock_reg, si->src_reg,              \
9036                                       offsetof(struct bpf_sock_ops_kern,      \
9037                                                is_fullsock));                 \
9038                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
9039                 if (si->dst_reg == si->src_reg)                               \
9040                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9041                                       offsetof(struct bpf_sock_ops_kern,      \
9042                                       temp));                                 \
9043                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9044                                                 struct bpf_sock_ops_kern, sk),\
9045                                       si->dst_reg, si->src_reg,               \
9046                                       offsetof(struct bpf_sock_ops_kern, sk));\
9047                 if (si->dst_reg == si->src_reg) {                             \
9048                         *insn++ = BPF_JMP_A(1);                               \
9049                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9050                                       offsetof(struct bpf_sock_ops_kern,      \
9051                                       temp));                                 \
9052                 }                                                             \
9053         } while (0)
9054
9055 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9056                 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9057
9058 /* Helper macro for adding write access to tcp_sock or sock fields.
9059  * The macro is called with two registers, dst_reg which contains a pointer
9060  * to ctx (context) and src_reg which contains the value that should be
9061  * stored. However, we need an additional register since we cannot overwrite
9062  * dst_reg because it may be used later in the program.
9063  * Instead we "borrow" one of the other register. We first save its value
9064  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9065  * it at the end of the macro.
9066  */
9067 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
9068         do {                                                                  \
9069                 int reg = BPF_REG_9;                                          \
9070                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
9071                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9072                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9073                         reg--;                                                \
9074                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9075                         reg--;                                                \
9076                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
9077                                       offsetof(struct bpf_sock_ops_kern,      \
9078                                                temp));                        \
9079                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9080                                                 struct bpf_sock_ops_kern,     \
9081                                                 is_fullsock),                 \
9082                                       reg, si->dst_reg,                       \
9083                                       offsetof(struct bpf_sock_ops_kern,      \
9084                                                is_fullsock));                 \
9085                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
9086                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9087                                                 struct bpf_sock_ops_kern, sk),\
9088                                       reg, si->dst_reg,                       \
9089                                       offsetof(struct bpf_sock_ops_kern, sk));\
9090                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
9091                                       reg, si->src_reg,                       \
9092                                       offsetof(OBJ, OBJ_FIELD));              \
9093                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
9094                                       offsetof(struct bpf_sock_ops_kern,      \
9095                                                temp));                        \
9096         } while (0)
9097
9098 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
9099         do {                                                                  \
9100                 if (TYPE == BPF_WRITE)                                        \
9101                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
9102                 else                                                          \
9103                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
9104         } while (0)
9105
9106         if (insn > insn_buf)
9107                 return insn - insn_buf;
9108
9109         switch (si->off) {
9110         case offsetof(struct bpf_sock_ops, op):
9111                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9112                                                        op),
9113                                       si->dst_reg, si->src_reg,
9114                                       offsetof(struct bpf_sock_ops_kern, op));
9115                 break;
9116
9117         case offsetof(struct bpf_sock_ops, replylong[0]) ...
9118              offsetof(struct bpf_sock_ops, replylong[3]):
9119                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
9120                              sizeof_field(struct bpf_sock_ops_kern, reply));
9121                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
9122                              sizeof_field(struct bpf_sock_ops_kern, replylong));
9123                 off = si->off;
9124                 off -= offsetof(struct bpf_sock_ops, replylong[0]);
9125                 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
9126                 if (type == BPF_WRITE)
9127                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9128                                               off);
9129                 else
9130                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9131                                               off);
9132                 break;
9133
9134         case offsetof(struct bpf_sock_ops, family):
9135                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9136
9137                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9138                                               struct bpf_sock_ops_kern, sk),
9139                                       si->dst_reg, si->src_reg,
9140                                       offsetof(struct bpf_sock_ops_kern, sk));
9141                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9142                                       offsetof(struct sock_common, skc_family));
9143                 break;
9144
9145         case offsetof(struct bpf_sock_ops, remote_ip4):
9146                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9147
9148                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9149                                                 struct bpf_sock_ops_kern, sk),
9150                                       si->dst_reg, si->src_reg,
9151                                       offsetof(struct bpf_sock_ops_kern, sk));
9152                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9153                                       offsetof(struct sock_common, skc_daddr));
9154                 break;
9155
9156         case offsetof(struct bpf_sock_ops, local_ip4):
9157                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9158                                           skc_rcv_saddr) != 4);
9159
9160                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9161                                               struct bpf_sock_ops_kern, sk),
9162                                       si->dst_reg, si->src_reg,
9163                                       offsetof(struct bpf_sock_ops_kern, sk));
9164                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9165                                       offsetof(struct sock_common,
9166                                                skc_rcv_saddr));
9167                 break;
9168
9169         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
9170              offsetof(struct bpf_sock_ops, remote_ip6[3]):
9171 #if IS_ENABLED(CONFIG_IPV6)
9172                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9173                                           skc_v6_daddr.s6_addr32[0]) != 4);
9174
9175                 off = si->off;
9176                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
9177                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9178                                                 struct bpf_sock_ops_kern, sk),
9179                                       si->dst_reg, si->src_reg,
9180                                       offsetof(struct bpf_sock_ops_kern, sk));
9181                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9182                                       offsetof(struct sock_common,
9183                                                skc_v6_daddr.s6_addr32[0]) +
9184                                       off);
9185 #else
9186                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9187 #endif
9188                 break;
9189
9190         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
9191              offsetof(struct bpf_sock_ops, local_ip6[3]):
9192 #if IS_ENABLED(CONFIG_IPV6)
9193                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9194                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9195
9196                 off = si->off;
9197                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
9198                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9199                                                 struct bpf_sock_ops_kern, sk),
9200                                       si->dst_reg, si->src_reg,
9201                                       offsetof(struct bpf_sock_ops_kern, sk));
9202                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9203                                       offsetof(struct sock_common,
9204                                                skc_v6_rcv_saddr.s6_addr32[0]) +
9205                                       off);
9206 #else
9207                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9208 #endif
9209                 break;
9210
9211         case offsetof(struct bpf_sock_ops, remote_port):
9212                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9213
9214                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9215                                                 struct bpf_sock_ops_kern, sk),
9216                                       si->dst_reg, si->src_reg,
9217                                       offsetof(struct bpf_sock_ops_kern, sk));
9218                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9219                                       offsetof(struct sock_common, skc_dport));
9220 #ifndef __BIG_ENDIAN_BITFIELD
9221                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9222 #endif
9223                 break;
9224
9225         case offsetof(struct bpf_sock_ops, local_port):
9226                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9227
9228                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9229                                                 struct bpf_sock_ops_kern, sk),
9230                                       si->dst_reg, si->src_reg,
9231                                       offsetof(struct bpf_sock_ops_kern, sk));
9232                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9233                                       offsetof(struct sock_common, skc_num));
9234                 break;
9235
9236         case offsetof(struct bpf_sock_ops, is_fullsock):
9237                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9238                                                 struct bpf_sock_ops_kern,
9239                                                 is_fullsock),
9240                                       si->dst_reg, si->src_reg,
9241                                       offsetof(struct bpf_sock_ops_kern,
9242                                                is_fullsock));
9243                 break;
9244
9245         case offsetof(struct bpf_sock_ops, state):
9246                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
9247
9248                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9249                                                 struct bpf_sock_ops_kern, sk),
9250                                       si->dst_reg, si->src_reg,
9251                                       offsetof(struct bpf_sock_ops_kern, sk));
9252                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
9253                                       offsetof(struct sock_common, skc_state));
9254                 break;
9255
9256         case offsetof(struct bpf_sock_ops, rtt_min):
9257                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
9258                              sizeof(struct minmax));
9259                 BUILD_BUG_ON(sizeof(struct minmax) <
9260                              sizeof(struct minmax_sample));
9261
9262                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9263                                                 struct bpf_sock_ops_kern, sk),
9264                                       si->dst_reg, si->src_reg,
9265                                       offsetof(struct bpf_sock_ops_kern, sk));
9266                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9267                                       offsetof(struct tcp_sock, rtt_min) +
9268                                       sizeof_field(struct minmax_sample, t));
9269                 break;
9270
9271         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
9272                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
9273                                    struct tcp_sock);
9274                 break;
9275
9276         case offsetof(struct bpf_sock_ops, sk_txhash):
9277                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
9278                                           struct sock, type);
9279                 break;
9280         case offsetof(struct bpf_sock_ops, snd_cwnd):
9281                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
9282                 break;
9283         case offsetof(struct bpf_sock_ops, srtt_us):
9284                 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
9285                 break;
9286         case offsetof(struct bpf_sock_ops, snd_ssthresh):
9287                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
9288                 break;
9289         case offsetof(struct bpf_sock_ops, rcv_nxt):
9290                 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
9291                 break;
9292         case offsetof(struct bpf_sock_ops, snd_nxt):
9293                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
9294                 break;
9295         case offsetof(struct bpf_sock_ops, snd_una):
9296                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
9297                 break;
9298         case offsetof(struct bpf_sock_ops, mss_cache):
9299                 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
9300                 break;
9301         case offsetof(struct bpf_sock_ops, ecn_flags):
9302                 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
9303                 break;
9304         case offsetof(struct bpf_sock_ops, rate_delivered):
9305                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
9306                 break;
9307         case offsetof(struct bpf_sock_ops, rate_interval_us):
9308                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
9309                 break;
9310         case offsetof(struct bpf_sock_ops, packets_out):
9311                 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
9312                 break;
9313         case offsetof(struct bpf_sock_ops, retrans_out):
9314                 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
9315                 break;
9316         case offsetof(struct bpf_sock_ops, total_retrans):
9317                 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
9318                 break;
9319         case offsetof(struct bpf_sock_ops, segs_in):
9320                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
9321                 break;
9322         case offsetof(struct bpf_sock_ops, data_segs_in):
9323                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
9324                 break;
9325         case offsetof(struct bpf_sock_ops, segs_out):
9326                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
9327                 break;
9328         case offsetof(struct bpf_sock_ops, data_segs_out):
9329                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
9330                 break;
9331         case offsetof(struct bpf_sock_ops, lost_out):
9332                 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
9333                 break;
9334         case offsetof(struct bpf_sock_ops, sacked_out):
9335                 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
9336                 break;
9337         case offsetof(struct bpf_sock_ops, bytes_received):
9338                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
9339                 break;
9340         case offsetof(struct bpf_sock_ops, bytes_acked):
9341                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
9342                 break;
9343         case offsetof(struct bpf_sock_ops, sk):
9344                 SOCK_OPS_GET_SK();
9345                 break;
9346         case offsetof(struct bpf_sock_ops, skb_data_end):
9347                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9348                                                        skb_data_end),
9349                                       si->dst_reg, si->src_reg,
9350                                       offsetof(struct bpf_sock_ops_kern,
9351                                                skb_data_end));
9352                 break;
9353         case offsetof(struct bpf_sock_ops, skb_data):
9354                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9355                                                        skb),
9356                                       si->dst_reg, si->src_reg,
9357                                       offsetof(struct bpf_sock_ops_kern,
9358                                                skb));
9359                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9360                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9361                                       si->dst_reg, si->dst_reg,
9362                                       offsetof(struct sk_buff, data));
9363                 break;
9364         case offsetof(struct bpf_sock_ops, skb_len):
9365                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9366                                                        skb),
9367                                       si->dst_reg, si->src_reg,
9368                                       offsetof(struct bpf_sock_ops_kern,
9369                                                skb));
9370                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9371                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9372                                       si->dst_reg, si->dst_reg,
9373                                       offsetof(struct sk_buff, len));
9374                 break;
9375         case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9376                 off = offsetof(struct sk_buff, cb);
9377                 off += offsetof(struct tcp_skb_cb, tcp_flags);
9378                 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
9379                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9380                                                        skb),
9381                                       si->dst_reg, si->src_reg,
9382                                       offsetof(struct bpf_sock_ops_kern,
9383                                                skb));
9384                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9385                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
9386                                                        tcp_flags),
9387                                       si->dst_reg, si->dst_reg, off);
9388                 break;
9389         }
9390         return insn - insn_buf;
9391 }
9392
9393 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
9394                                      const struct bpf_insn *si,
9395                                      struct bpf_insn *insn_buf,
9396                                      struct bpf_prog *prog, u32 *target_size)
9397 {
9398         struct bpf_insn *insn = insn_buf;
9399         int off;
9400
9401         switch (si->off) {
9402         case offsetof(struct __sk_buff, data_end):
9403                 off  = si->off;
9404                 off -= offsetof(struct __sk_buff, data_end);
9405                 off += offsetof(struct sk_buff, cb);
9406                 off += offsetof(struct tcp_skb_cb, bpf.data_end);
9407                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9408                                       si->src_reg, off);
9409                 break;
9410         default:
9411                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9412                                               target_size);
9413         }
9414
9415         return insn - insn_buf;
9416 }
9417
9418 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
9419                                      const struct bpf_insn *si,
9420                                      struct bpf_insn *insn_buf,
9421                                      struct bpf_prog *prog, u32 *target_size)
9422 {
9423         struct bpf_insn *insn = insn_buf;
9424 #if IS_ENABLED(CONFIG_IPV6)
9425         int off;
9426 #endif
9427
9428         /* convert ctx uses the fact sg element is first in struct */
9429         BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
9430
9431         switch (si->off) {
9432         case offsetof(struct sk_msg_md, data):
9433                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
9434                                       si->dst_reg, si->src_reg,
9435                                       offsetof(struct sk_msg, data));
9436                 break;
9437         case offsetof(struct sk_msg_md, data_end):
9438                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
9439                                       si->dst_reg, si->src_reg,
9440                                       offsetof(struct sk_msg, data_end));
9441                 break;
9442         case offsetof(struct sk_msg_md, family):
9443                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9444
9445                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9446                                               struct sk_msg, sk),
9447                                       si->dst_reg, si->src_reg,
9448                                       offsetof(struct sk_msg, sk));
9449                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9450                                       offsetof(struct sock_common, skc_family));
9451                 break;
9452
9453         case offsetof(struct sk_msg_md, remote_ip4):
9454                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9455
9456                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9457                                                 struct sk_msg, sk),
9458                                       si->dst_reg, si->src_reg,
9459                                       offsetof(struct sk_msg, sk));
9460                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9461                                       offsetof(struct sock_common, skc_daddr));
9462                 break;
9463
9464         case offsetof(struct sk_msg_md, local_ip4):
9465                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9466                                           skc_rcv_saddr) != 4);
9467
9468                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9469                                               struct sk_msg, sk),
9470                                       si->dst_reg, si->src_reg,
9471                                       offsetof(struct sk_msg, sk));
9472                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9473                                       offsetof(struct sock_common,
9474                                                skc_rcv_saddr));
9475                 break;
9476
9477         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
9478              offsetof(struct sk_msg_md, remote_ip6[3]):
9479 #if IS_ENABLED(CONFIG_IPV6)
9480                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9481                                           skc_v6_daddr.s6_addr32[0]) != 4);
9482
9483                 off = si->off;
9484                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
9485                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9486                                                 struct sk_msg, sk),
9487                                       si->dst_reg, si->src_reg,
9488                                       offsetof(struct sk_msg, sk));
9489                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9490                                       offsetof(struct sock_common,
9491                                                skc_v6_daddr.s6_addr32[0]) +
9492                                       off);
9493 #else
9494                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9495 #endif
9496                 break;
9497
9498         case offsetof(struct sk_msg_md, local_ip6[0]) ...
9499              offsetof(struct sk_msg_md, local_ip6[3]):
9500 #if IS_ENABLED(CONFIG_IPV6)
9501                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9502                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9503
9504                 off = si->off;
9505                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
9506                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9507                                                 struct sk_msg, sk),
9508                                       si->dst_reg, si->src_reg,
9509                                       offsetof(struct sk_msg, sk));
9510                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9511                                       offsetof(struct sock_common,
9512                                                skc_v6_rcv_saddr.s6_addr32[0]) +
9513                                       off);
9514 #else
9515                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9516 #endif
9517                 break;
9518
9519         case offsetof(struct sk_msg_md, remote_port):
9520                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9521
9522                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9523                                                 struct sk_msg, sk),
9524                                       si->dst_reg, si->src_reg,
9525                                       offsetof(struct sk_msg, sk));
9526                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9527                                       offsetof(struct sock_common, skc_dport));
9528 #ifndef __BIG_ENDIAN_BITFIELD
9529                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9530 #endif
9531                 break;
9532
9533         case offsetof(struct sk_msg_md, local_port):
9534                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9535
9536                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9537                                                 struct sk_msg, sk),
9538                                       si->dst_reg, si->src_reg,
9539                                       offsetof(struct sk_msg, sk));
9540                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9541                                       offsetof(struct sock_common, skc_num));
9542                 break;
9543
9544         case offsetof(struct sk_msg_md, size):
9545                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
9546                                       si->dst_reg, si->src_reg,
9547                                       offsetof(struct sk_msg_sg, size));
9548                 break;
9549
9550         case offsetof(struct sk_msg_md, sk):
9551                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
9552                                       si->dst_reg, si->src_reg,
9553                                       offsetof(struct sk_msg, sk));
9554                 break;
9555         }
9556
9557         return insn - insn_buf;
9558 }
9559
9560 const struct bpf_verifier_ops sk_filter_verifier_ops = {
9561         .get_func_proto         = sk_filter_func_proto,
9562         .is_valid_access        = sk_filter_is_valid_access,
9563         .convert_ctx_access     = bpf_convert_ctx_access,
9564         .gen_ld_abs             = bpf_gen_ld_abs,
9565 };
9566
9567 const struct bpf_prog_ops sk_filter_prog_ops = {
9568         .test_run               = bpf_prog_test_run_skb,
9569 };
9570
9571 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
9572         .get_func_proto         = tc_cls_act_func_proto,
9573         .is_valid_access        = tc_cls_act_is_valid_access,
9574         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
9575         .gen_prologue           = tc_cls_act_prologue,
9576         .gen_ld_abs             = bpf_gen_ld_abs,
9577 };
9578
9579 const struct bpf_prog_ops tc_cls_act_prog_ops = {
9580         .test_run               = bpf_prog_test_run_skb,
9581 };
9582
9583 const struct bpf_verifier_ops xdp_verifier_ops = {
9584         .get_func_proto         = xdp_func_proto,
9585         .is_valid_access        = xdp_is_valid_access,
9586         .convert_ctx_access     = xdp_convert_ctx_access,
9587         .gen_prologue           = bpf_noop_prologue,
9588 };
9589
9590 const struct bpf_prog_ops xdp_prog_ops = {
9591         .test_run               = bpf_prog_test_run_xdp,
9592 };
9593
9594 const struct bpf_verifier_ops cg_skb_verifier_ops = {
9595         .get_func_proto         = cg_skb_func_proto,
9596         .is_valid_access        = cg_skb_is_valid_access,
9597         .convert_ctx_access     = bpf_convert_ctx_access,
9598 };
9599
9600 const struct bpf_prog_ops cg_skb_prog_ops = {
9601         .test_run               = bpf_prog_test_run_skb,
9602 };
9603
9604 const struct bpf_verifier_ops lwt_in_verifier_ops = {
9605         .get_func_proto         = lwt_in_func_proto,
9606         .is_valid_access        = lwt_is_valid_access,
9607         .convert_ctx_access     = bpf_convert_ctx_access,
9608 };
9609
9610 const struct bpf_prog_ops lwt_in_prog_ops = {
9611         .test_run               = bpf_prog_test_run_skb,
9612 };
9613
9614 const struct bpf_verifier_ops lwt_out_verifier_ops = {
9615         .get_func_proto         = lwt_out_func_proto,
9616         .is_valid_access        = lwt_is_valid_access,
9617         .convert_ctx_access     = bpf_convert_ctx_access,
9618 };
9619
9620 const struct bpf_prog_ops lwt_out_prog_ops = {
9621         .test_run               = bpf_prog_test_run_skb,
9622 };
9623
9624 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
9625         .get_func_proto         = lwt_xmit_func_proto,
9626         .is_valid_access        = lwt_is_valid_access,
9627         .convert_ctx_access     = bpf_convert_ctx_access,
9628         .gen_prologue           = tc_cls_act_prologue,
9629 };
9630
9631 const struct bpf_prog_ops lwt_xmit_prog_ops = {
9632         .test_run               = bpf_prog_test_run_skb,
9633 };
9634
9635 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
9636         .get_func_proto         = lwt_seg6local_func_proto,
9637         .is_valid_access        = lwt_is_valid_access,
9638         .convert_ctx_access     = bpf_convert_ctx_access,
9639 };
9640
9641 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
9642         .test_run               = bpf_prog_test_run_skb,
9643 };
9644
9645 const struct bpf_verifier_ops cg_sock_verifier_ops = {
9646         .get_func_proto         = sock_filter_func_proto,
9647         .is_valid_access        = sock_filter_is_valid_access,
9648         .convert_ctx_access     = bpf_sock_convert_ctx_access,
9649 };
9650
9651 const struct bpf_prog_ops cg_sock_prog_ops = {
9652 };
9653
9654 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
9655         .get_func_proto         = sock_addr_func_proto,
9656         .is_valid_access        = sock_addr_is_valid_access,
9657         .convert_ctx_access     = sock_addr_convert_ctx_access,
9658 };
9659
9660 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
9661 };
9662
9663 const struct bpf_verifier_ops sock_ops_verifier_ops = {
9664         .get_func_proto         = sock_ops_func_proto,
9665         .is_valid_access        = sock_ops_is_valid_access,
9666         .convert_ctx_access     = sock_ops_convert_ctx_access,
9667 };
9668
9669 const struct bpf_prog_ops sock_ops_prog_ops = {
9670 };
9671
9672 const struct bpf_verifier_ops sk_skb_verifier_ops = {
9673         .get_func_proto         = sk_skb_func_proto,
9674         .is_valid_access        = sk_skb_is_valid_access,
9675         .convert_ctx_access     = sk_skb_convert_ctx_access,
9676         .gen_prologue           = sk_skb_prologue,
9677 };
9678
9679 const struct bpf_prog_ops sk_skb_prog_ops = {
9680 };
9681
9682 const struct bpf_verifier_ops sk_msg_verifier_ops = {
9683         .get_func_proto         = sk_msg_func_proto,
9684         .is_valid_access        = sk_msg_is_valid_access,
9685         .convert_ctx_access     = sk_msg_convert_ctx_access,
9686         .gen_prologue           = bpf_noop_prologue,
9687 };
9688
9689 const struct bpf_prog_ops sk_msg_prog_ops = {
9690 };
9691
9692 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
9693         .get_func_proto         = flow_dissector_func_proto,
9694         .is_valid_access        = flow_dissector_is_valid_access,
9695         .convert_ctx_access     = flow_dissector_convert_ctx_access,
9696 };
9697
9698 const struct bpf_prog_ops flow_dissector_prog_ops = {
9699         .test_run               = bpf_prog_test_run_flow_dissector,
9700 };
9701
9702 int sk_detach_filter(struct sock *sk)
9703 {
9704         int ret = -ENOENT;
9705         struct sk_filter *filter;
9706
9707         if (sock_flag(sk, SOCK_FILTER_LOCKED))
9708                 return -EPERM;
9709
9710         filter = rcu_dereference_protected(sk->sk_filter,
9711                                            lockdep_sock_is_held(sk));
9712         if (filter) {
9713                 RCU_INIT_POINTER(sk->sk_filter, NULL);
9714                 sk_filter_uncharge(sk, filter);
9715                 ret = 0;
9716         }
9717
9718         return ret;
9719 }
9720 EXPORT_SYMBOL_GPL(sk_detach_filter);
9721
9722 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
9723                   unsigned int len)
9724 {
9725         struct sock_fprog_kern *fprog;
9726         struct sk_filter *filter;
9727         int ret = 0;
9728
9729         lock_sock(sk);
9730         filter = rcu_dereference_protected(sk->sk_filter,
9731                                            lockdep_sock_is_held(sk));
9732         if (!filter)
9733                 goto out;
9734
9735         /* We're copying the filter that has been originally attached,
9736          * so no conversion/decode needed anymore. eBPF programs that
9737          * have no original program cannot be dumped through this.
9738          */
9739         ret = -EACCES;
9740         fprog = filter->prog->orig_prog;
9741         if (!fprog)
9742                 goto out;
9743
9744         ret = fprog->len;
9745         if (!len)
9746                 /* User space only enquires number of filter blocks. */
9747                 goto out;
9748
9749         ret = -EINVAL;
9750         if (len < fprog->len)
9751                 goto out;
9752
9753         ret = -EFAULT;
9754         if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
9755                 goto out;
9756
9757         /* Instead of bytes, the API requests to return the number
9758          * of filter blocks.
9759          */
9760         ret = fprog->len;
9761 out:
9762         release_sock(sk);
9763         return ret;
9764 }
9765
9766 #ifdef CONFIG_INET
9767 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
9768                                     struct sock_reuseport *reuse,
9769                                     struct sock *sk, struct sk_buff *skb,
9770                                     u32 hash)
9771 {
9772         reuse_kern->skb = skb;
9773         reuse_kern->sk = sk;
9774         reuse_kern->selected_sk = NULL;
9775         reuse_kern->data_end = skb->data + skb_headlen(skb);
9776         reuse_kern->hash = hash;
9777         reuse_kern->reuseport_id = reuse->reuseport_id;
9778         reuse_kern->bind_inany = reuse->bind_inany;
9779 }
9780
9781 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
9782                                   struct bpf_prog *prog, struct sk_buff *skb,
9783                                   u32 hash)
9784 {
9785         struct sk_reuseport_kern reuse_kern;
9786         enum sk_action action;
9787
9788         bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
9789         action = BPF_PROG_RUN(prog, &reuse_kern);
9790
9791         if (action == SK_PASS)
9792                 return reuse_kern.selected_sk;
9793         else
9794                 return ERR_PTR(-ECONNREFUSED);
9795 }
9796
9797 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
9798            struct bpf_map *, map, void *, key, u32, flags)
9799 {
9800         bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
9801         struct sock_reuseport *reuse;
9802         struct sock *selected_sk;
9803
9804         selected_sk = map->ops->map_lookup_elem(map, key);
9805         if (!selected_sk)
9806                 return -ENOENT;
9807
9808         reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
9809         if (!reuse) {
9810                 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
9811                 if (sk_is_refcounted(selected_sk))
9812                         sock_put(selected_sk);
9813
9814                 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
9815                  * The only (!reuse) case here is - the sk has already been
9816                  * unhashed (e.g. by close()), so treat it as -ENOENT.
9817                  *
9818                  * Other maps (e.g. sock_map) do not provide this guarantee and
9819                  * the sk may never be in the reuseport group to begin with.
9820                  */
9821                 return is_sockarray ? -ENOENT : -EINVAL;
9822         }
9823
9824         if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
9825                 struct sock *sk = reuse_kern->sk;
9826
9827                 if (sk->sk_protocol != selected_sk->sk_protocol)
9828                         return -EPROTOTYPE;
9829                 else if (sk->sk_family != selected_sk->sk_family)
9830                         return -EAFNOSUPPORT;
9831
9832                 /* Catch all. Likely bound to a different sockaddr. */
9833                 return -EBADFD;
9834         }
9835
9836         reuse_kern->selected_sk = selected_sk;
9837
9838         return 0;
9839 }
9840
9841 static const struct bpf_func_proto sk_select_reuseport_proto = {
9842         .func           = sk_select_reuseport,
9843         .gpl_only       = false,
9844         .ret_type       = RET_INTEGER,
9845         .arg1_type      = ARG_PTR_TO_CTX,
9846         .arg2_type      = ARG_CONST_MAP_PTR,
9847         .arg3_type      = ARG_PTR_TO_MAP_KEY,
9848         .arg4_type      = ARG_ANYTHING,
9849 };
9850
9851 BPF_CALL_4(sk_reuseport_load_bytes,
9852            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
9853            void *, to, u32, len)
9854 {
9855         return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
9856 }
9857
9858 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
9859         .func           = sk_reuseport_load_bytes,
9860         .gpl_only       = false,
9861         .ret_type       = RET_INTEGER,
9862         .arg1_type      = ARG_PTR_TO_CTX,
9863         .arg2_type      = ARG_ANYTHING,
9864         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
9865         .arg4_type      = ARG_CONST_SIZE,
9866 };
9867
9868 BPF_CALL_5(sk_reuseport_load_bytes_relative,
9869            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
9870            void *, to, u32, len, u32, start_header)
9871 {
9872         return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
9873                                                len, start_header);
9874 }
9875
9876 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
9877         .func           = sk_reuseport_load_bytes_relative,
9878         .gpl_only       = false,
9879         .ret_type       = RET_INTEGER,
9880         .arg1_type      = ARG_PTR_TO_CTX,
9881         .arg2_type      = ARG_ANYTHING,
9882         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
9883         .arg4_type      = ARG_CONST_SIZE,
9884         .arg5_type      = ARG_ANYTHING,
9885 };
9886
9887 static const struct bpf_func_proto *
9888 sk_reuseport_func_proto(enum bpf_func_id func_id,
9889                         const struct bpf_prog *prog)
9890 {
9891         switch (func_id) {
9892         case BPF_FUNC_sk_select_reuseport:
9893                 return &sk_select_reuseport_proto;
9894         case BPF_FUNC_skb_load_bytes:
9895                 return &sk_reuseport_load_bytes_proto;
9896         case BPF_FUNC_skb_load_bytes_relative:
9897                 return &sk_reuseport_load_bytes_relative_proto;
9898         default:
9899                 return bpf_base_func_proto(func_id);
9900         }
9901 }
9902
9903 static bool
9904 sk_reuseport_is_valid_access(int off, int size,
9905                              enum bpf_access_type type,
9906                              const struct bpf_prog *prog,
9907                              struct bpf_insn_access_aux *info)
9908 {
9909         const u32 size_default = sizeof(__u32);
9910
9911         if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
9912             off % size || type != BPF_READ)
9913                 return false;
9914
9915         switch (off) {
9916         case offsetof(struct sk_reuseport_md, data):
9917                 info->reg_type = PTR_TO_PACKET;
9918                 return size == sizeof(__u64);
9919
9920         case offsetof(struct sk_reuseport_md, data_end):
9921                 info->reg_type = PTR_TO_PACKET_END;
9922                 return size == sizeof(__u64);
9923
9924         case offsetof(struct sk_reuseport_md, hash):
9925                 return size == size_default;
9926
9927         /* Fields that allow narrowing */
9928         case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
9929                 if (size < sizeof_field(struct sk_buff, protocol))
9930                         return false;
9931                 fallthrough;
9932         case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
9933         case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
9934         case bpf_ctx_range(struct sk_reuseport_md, len):
9935                 bpf_ctx_record_field_size(info, size_default);
9936                 return bpf_ctx_narrow_access_ok(off, size, size_default);
9937
9938         default:
9939                 return false;
9940         }
9941 }
9942
9943 #define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
9944         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
9945                               si->dst_reg, si->src_reg,                 \
9946                               bpf_target_off(struct sk_reuseport_kern, F, \
9947                                              sizeof_field(struct sk_reuseport_kern, F), \
9948                                              target_size));             \
9949         })
9950
9951 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
9952         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
9953                                     struct sk_buff,                     \
9954                                     skb,                                \
9955                                     SKB_FIELD)
9956
9957 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)                            \
9958         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
9959                                     struct sock,                        \
9960                                     sk,                                 \
9961                                     SK_FIELD)
9962
9963 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
9964                                            const struct bpf_insn *si,
9965                                            struct bpf_insn *insn_buf,
9966                                            struct bpf_prog *prog,
9967                                            u32 *target_size)
9968 {
9969         struct bpf_insn *insn = insn_buf;
9970
9971         switch (si->off) {
9972         case offsetof(struct sk_reuseport_md, data):
9973                 SK_REUSEPORT_LOAD_SKB_FIELD(data);
9974                 break;
9975
9976         case offsetof(struct sk_reuseport_md, len):
9977                 SK_REUSEPORT_LOAD_SKB_FIELD(len);
9978                 break;
9979
9980         case offsetof(struct sk_reuseport_md, eth_protocol):
9981                 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
9982                 break;
9983
9984         case offsetof(struct sk_reuseport_md, ip_protocol):
9985                 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
9986                 break;
9987
9988         case offsetof(struct sk_reuseport_md, data_end):
9989                 SK_REUSEPORT_LOAD_FIELD(data_end);
9990                 break;
9991
9992         case offsetof(struct sk_reuseport_md, hash):
9993                 SK_REUSEPORT_LOAD_FIELD(hash);
9994                 break;
9995
9996         case offsetof(struct sk_reuseport_md, bind_inany):
9997                 SK_REUSEPORT_LOAD_FIELD(bind_inany);
9998                 break;
9999         }
10000
10001         return insn - insn_buf;
10002 }
10003
10004 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
10005         .get_func_proto         = sk_reuseport_func_proto,
10006         .is_valid_access        = sk_reuseport_is_valid_access,
10007         .convert_ctx_access     = sk_reuseport_convert_ctx_access,
10008 };
10009
10010 const struct bpf_prog_ops sk_reuseport_prog_ops = {
10011 };
10012
10013 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
10014 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
10015
10016 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
10017            struct sock *, sk, u64, flags)
10018 {
10019         if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
10020                                BPF_SK_LOOKUP_F_NO_REUSEPORT)))
10021                 return -EINVAL;
10022         if (unlikely(sk && sk_is_refcounted(sk)))
10023                 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
10024         if (unlikely(sk && sk->sk_state == TCP_ESTABLISHED))
10025                 return -ESOCKTNOSUPPORT; /* reject connected sockets */
10026
10027         /* Check if socket is suitable for packet L3/L4 protocol */
10028         if (sk && sk->sk_protocol != ctx->protocol)
10029                 return -EPROTOTYPE;
10030         if (sk && sk->sk_family != ctx->family &&
10031             (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
10032                 return -EAFNOSUPPORT;
10033
10034         if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
10035                 return -EEXIST;
10036
10037         /* Select socket as lookup result */
10038         ctx->selected_sk = sk;
10039         ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
10040         return 0;
10041 }
10042
10043 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
10044         .func           = bpf_sk_lookup_assign,
10045         .gpl_only       = false,
10046         .ret_type       = RET_INTEGER,
10047         .arg1_type      = ARG_PTR_TO_CTX,
10048         .arg2_type      = ARG_PTR_TO_SOCKET_OR_NULL,
10049         .arg3_type      = ARG_ANYTHING,
10050 };
10051
10052 static const struct bpf_func_proto *
10053 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
10054 {
10055         switch (func_id) {
10056         case BPF_FUNC_perf_event_output:
10057                 return &bpf_event_output_data_proto;
10058         case BPF_FUNC_sk_assign:
10059                 return &bpf_sk_lookup_assign_proto;
10060         case BPF_FUNC_sk_release:
10061                 return &bpf_sk_release_proto;
10062         default:
10063                 return bpf_sk_base_func_proto(func_id);
10064         }
10065 }
10066
10067 static bool sk_lookup_is_valid_access(int off, int size,
10068                                       enum bpf_access_type type,
10069                                       const struct bpf_prog *prog,
10070                                       struct bpf_insn_access_aux *info)
10071 {
10072         if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
10073                 return false;
10074         if (off % size != 0)
10075                 return false;
10076         if (type != BPF_READ)
10077                 return false;
10078
10079         switch (off) {
10080         case offsetof(struct bpf_sk_lookup, sk):
10081                 info->reg_type = PTR_TO_SOCKET_OR_NULL;
10082                 return size == sizeof(__u64);
10083
10084         case bpf_ctx_range(struct bpf_sk_lookup, family):
10085         case bpf_ctx_range(struct bpf_sk_lookup, protocol):
10086         case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
10087         case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
10088         case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
10089         case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
10090         case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
10091         case bpf_ctx_range(struct bpf_sk_lookup, local_port):
10092                 bpf_ctx_record_field_size(info, sizeof(__u32));
10093                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
10094
10095         default:
10096                 return false;
10097         }
10098 }
10099
10100 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
10101                                         const struct bpf_insn *si,
10102                                         struct bpf_insn *insn_buf,
10103                                         struct bpf_prog *prog,
10104                                         u32 *target_size)
10105 {
10106         struct bpf_insn *insn = insn_buf;
10107
10108         switch (si->off) {
10109         case offsetof(struct bpf_sk_lookup, sk):
10110                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10111                                       offsetof(struct bpf_sk_lookup_kern, selected_sk));
10112                 break;
10113
10114         case offsetof(struct bpf_sk_lookup, family):
10115                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10116                                       bpf_target_off(struct bpf_sk_lookup_kern,
10117                                                      family, 2, target_size));
10118                 break;
10119
10120         case offsetof(struct bpf_sk_lookup, protocol):
10121                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10122                                       bpf_target_off(struct bpf_sk_lookup_kern,
10123                                                      protocol, 2, target_size));
10124                 break;
10125
10126         case offsetof(struct bpf_sk_lookup, remote_ip4):
10127                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10128                                       bpf_target_off(struct bpf_sk_lookup_kern,
10129                                                      v4.saddr, 4, target_size));
10130                 break;
10131
10132         case offsetof(struct bpf_sk_lookup, local_ip4):
10133                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10134                                       bpf_target_off(struct bpf_sk_lookup_kern,
10135                                                      v4.daddr, 4, target_size));
10136                 break;
10137
10138         case bpf_ctx_range_till(struct bpf_sk_lookup,
10139                                 remote_ip6[0], remote_ip6[3]): {
10140 #if IS_ENABLED(CONFIG_IPV6)
10141                 int off = si->off;
10142
10143                 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
10144                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10145                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10146                                       offsetof(struct bpf_sk_lookup_kern, v6.saddr));
10147                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10148                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10149 #else
10150                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10151 #endif
10152                 break;
10153         }
10154         case bpf_ctx_range_till(struct bpf_sk_lookup,
10155                                 local_ip6[0], local_ip6[3]): {
10156 #if IS_ENABLED(CONFIG_IPV6)
10157                 int off = si->off;
10158
10159                 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
10160                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10161                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10162                                       offsetof(struct bpf_sk_lookup_kern, v6.daddr));
10163                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10164                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10165 #else
10166                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10167 #endif
10168                 break;
10169         }
10170         case offsetof(struct bpf_sk_lookup, remote_port):
10171                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10172                                       bpf_target_off(struct bpf_sk_lookup_kern,
10173                                                      sport, 2, target_size));
10174                 break;
10175
10176         case offsetof(struct bpf_sk_lookup, local_port):
10177                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10178                                       bpf_target_off(struct bpf_sk_lookup_kern,
10179                                                      dport, 2, target_size));
10180                 break;
10181         }
10182
10183         return insn - insn_buf;
10184 }
10185
10186 const struct bpf_prog_ops sk_lookup_prog_ops = {
10187 };
10188
10189 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
10190         .get_func_proto         = sk_lookup_func_proto,
10191         .is_valid_access        = sk_lookup_is_valid_access,
10192         .convert_ctx_access     = sk_lookup_convert_ctx_access,
10193 };
10194
10195 #endif /* CONFIG_INET */
10196
10197 DEFINE_BPF_DISPATCHER(xdp)
10198
10199 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
10200 {
10201         bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
10202 }
10203
10204 #ifdef CONFIG_DEBUG_INFO_BTF
10205 BTF_ID_LIST_GLOBAL(btf_sock_ids)
10206 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
10207 BTF_SOCK_TYPE_xxx
10208 #undef BTF_SOCK_TYPE
10209 #else
10210 u32 btf_sock_ids[MAX_BTF_SOCK_TYPE];
10211 #endif
10212
10213 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
10214 {
10215         /* tcp6_sock type is not generated in dwarf and hence btf,
10216          * trigger an explicit type generation here.
10217          */
10218         BTF_TYPE_EMIT(struct tcp6_sock);
10219         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
10220             sk->sk_family == AF_INET6)
10221                 return (unsigned long)sk;
10222
10223         return (unsigned long)NULL;
10224 }
10225
10226 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
10227         .func                   = bpf_skc_to_tcp6_sock,
10228         .gpl_only               = false,
10229         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10230         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10231         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
10232 };
10233
10234 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
10235 {
10236         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
10237                 return (unsigned long)sk;
10238
10239         return (unsigned long)NULL;
10240 }
10241
10242 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
10243         .func                   = bpf_skc_to_tcp_sock,
10244         .gpl_only               = false,
10245         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10246         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10247         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
10248 };
10249
10250 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
10251 {
10252 #ifdef CONFIG_INET
10253         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
10254                 return (unsigned long)sk;
10255 #endif
10256
10257 #if IS_BUILTIN(CONFIG_IPV6)
10258         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
10259                 return (unsigned long)sk;
10260 #endif
10261
10262         return (unsigned long)NULL;
10263 }
10264
10265 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
10266         .func                   = bpf_skc_to_tcp_timewait_sock,
10267         .gpl_only               = false,
10268         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10269         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10270         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
10271 };
10272
10273 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
10274 {
10275 #ifdef CONFIG_INET
10276         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10277                 return (unsigned long)sk;
10278 #endif
10279
10280 #if IS_BUILTIN(CONFIG_IPV6)
10281         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10282                 return (unsigned long)sk;
10283 #endif
10284
10285         return (unsigned long)NULL;
10286 }
10287
10288 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
10289         .func                   = bpf_skc_to_tcp_request_sock,
10290         .gpl_only               = false,
10291         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10292         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10293         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
10294 };
10295
10296 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
10297 {
10298         /* udp6_sock type is not generated in dwarf and hence btf,
10299          * trigger an explicit type generation here.
10300          */
10301         BTF_TYPE_EMIT(struct udp6_sock);
10302         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
10303             sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
10304                 return (unsigned long)sk;
10305
10306         return (unsigned long)NULL;
10307 }
10308
10309 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
10310         .func                   = bpf_skc_to_udp6_sock,
10311         .gpl_only               = false,
10312         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10313         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10314         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
10315 };
10316
10317 static const struct bpf_func_proto *
10318 bpf_sk_base_func_proto(enum bpf_func_id func_id)
10319 {
10320         const struct bpf_func_proto *func;
10321
10322         switch (func_id) {
10323         case BPF_FUNC_skc_to_tcp6_sock:
10324                 func = &bpf_skc_to_tcp6_sock_proto;
10325                 break;
10326         case BPF_FUNC_skc_to_tcp_sock:
10327                 func = &bpf_skc_to_tcp_sock_proto;
10328                 break;
10329         case BPF_FUNC_skc_to_tcp_timewait_sock:
10330                 func = &bpf_skc_to_tcp_timewait_sock_proto;
10331                 break;
10332         case BPF_FUNC_skc_to_tcp_request_sock:
10333                 func = &bpf_skc_to_tcp_request_sock_proto;
10334                 break;
10335         case BPF_FUNC_skc_to_udp6_sock:
10336                 func = &bpf_skc_to_udp6_sock_proto;
10337                 break;
10338         default:
10339                 return bpf_base_func_proto(func_id);
10340         }
10341
10342         if (!perfmon_capable())
10343                 return NULL;
10344
10345         return func;
10346 }