Merge tag 'mlx5-fixes-2021-09-30' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-starfive.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "net-sysfs.h"
155
156 #define MAX_GRO_SKBS 8
157
158 /* This should be increased if a protocol with a bigger head is added. */
159 #define GRO_MAX_HEAD (MAX_HEADER + 128)
160
161 static DEFINE_SPINLOCK(ptype_lock);
162 static DEFINE_SPINLOCK(offload_lock);
163 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164 struct list_head ptype_all __read_mostly;       /* Taps */
165 static struct list_head offload_base __read_mostly;
166
167 static int netif_rx_internal(struct sk_buff *skb);
168 static int call_netdevice_notifiers_info(unsigned long val,
169                                          struct netdev_notifier_info *info);
170 static int call_netdevice_notifiers_extack(unsigned long val,
171                                            struct net_device *dev,
172                                            struct netlink_ext_ack *extack);
173 static struct napi_struct *napi_by_id(unsigned int napi_id);
174
175 /*
176  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177  * semaphore.
178  *
179  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
180  *
181  * Writers must hold the rtnl semaphore while they loop through the
182  * dev_base_head list, and hold dev_base_lock for writing when they do the
183  * actual updates.  This allows pure readers to access the list even
184  * while a writer is preparing to update it.
185  *
186  * To put it another way, dev_base_lock is held for writing only to
187  * protect against pure readers; the rtnl semaphore provides the
188  * protection against other writers.
189  *
190  * See, for example usages, register_netdevice() and
191  * unregister_netdevice(), which must be called with the rtnl
192  * semaphore held.
193  */
194 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
196
197 static DEFINE_MUTEX(ifalias_mutex);
198
199 /* protects napi_hash addition/deletion and napi_gen_id */
200 static DEFINE_SPINLOCK(napi_hash_lock);
201
202 static unsigned int napi_gen_id = NR_CPUS;
203 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
204
205 static DECLARE_RWSEM(devnet_rename_sem);
206
207 static inline void dev_base_seq_inc(struct net *net)
208 {
209         while (++net->dev_base_seq == 0)
210                 ;
211 }
212
213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214 {
215         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
216
217         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218 }
219
220 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221 {
222         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223 }
224
225 static inline void rps_lock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_lock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 static inline void rps_unlock(struct softnet_data *sd)
233 {
234 #ifdef CONFIG_RPS
235         spin_unlock(&sd->input_pkt_queue.lock);
236 #endif
237 }
238
239 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240                                                        const char *name)
241 {
242         struct netdev_name_node *name_node;
243
244         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245         if (!name_node)
246                 return NULL;
247         INIT_HLIST_NODE(&name_node->hlist);
248         name_node->dev = dev;
249         name_node->name = name;
250         return name_node;
251 }
252
253 static struct netdev_name_node *
254 netdev_name_node_head_alloc(struct net_device *dev)
255 {
256         struct netdev_name_node *name_node;
257
258         name_node = netdev_name_node_alloc(dev, dev->name);
259         if (!name_node)
260                 return NULL;
261         INIT_LIST_HEAD(&name_node->list);
262         return name_node;
263 }
264
265 static void netdev_name_node_free(struct netdev_name_node *name_node)
266 {
267         kfree(name_node);
268 }
269
270 static void netdev_name_node_add(struct net *net,
271                                  struct netdev_name_node *name_node)
272 {
273         hlist_add_head_rcu(&name_node->hlist,
274                            dev_name_hash(net, name_node->name));
275 }
276
277 static void netdev_name_node_del(struct netdev_name_node *name_node)
278 {
279         hlist_del_rcu(&name_node->hlist);
280 }
281
282 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283                                                         const char *name)
284 {
285         struct hlist_head *head = dev_name_hash(net, name);
286         struct netdev_name_node *name_node;
287
288         hlist_for_each_entry(name_node, head, hlist)
289                 if (!strcmp(name_node->name, name))
290                         return name_node;
291         return NULL;
292 }
293
294 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295                                                             const char *name)
296 {
297         struct hlist_head *head = dev_name_hash(net, name);
298         struct netdev_name_node *name_node;
299
300         hlist_for_each_entry_rcu(name_node, head, hlist)
301                 if (!strcmp(name_node->name, name))
302                         return name_node;
303         return NULL;
304 }
305
306 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
307 {
308         struct netdev_name_node *name_node;
309         struct net *net = dev_net(dev);
310
311         name_node = netdev_name_node_lookup(net, name);
312         if (name_node)
313                 return -EEXIST;
314         name_node = netdev_name_node_alloc(dev, name);
315         if (!name_node)
316                 return -ENOMEM;
317         netdev_name_node_add(net, name_node);
318         /* The node that holds dev->name acts as a head of per-device list. */
319         list_add_tail(&name_node->list, &dev->name_node->list);
320
321         return 0;
322 }
323 EXPORT_SYMBOL(netdev_name_node_alt_create);
324
325 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
326 {
327         list_del(&name_node->list);
328         netdev_name_node_del(name_node);
329         kfree(name_node->name);
330         netdev_name_node_free(name_node);
331 }
332
333 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
334 {
335         struct netdev_name_node *name_node;
336         struct net *net = dev_net(dev);
337
338         name_node = netdev_name_node_lookup(net, name);
339         if (!name_node)
340                 return -ENOENT;
341         /* lookup might have found our primary name or a name belonging
342          * to another device.
343          */
344         if (name_node == dev->name_node || name_node->dev != dev)
345                 return -EINVAL;
346
347         __netdev_name_node_alt_destroy(name_node);
348
349         return 0;
350 }
351 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
352
353 static void netdev_name_node_alt_flush(struct net_device *dev)
354 {
355         struct netdev_name_node *name_node, *tmp;
356
357         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
358                 __netdev_name_node_alt_destroy(name_node);
359 }
360
361 /* Device list insertion */
362 static void list_netdevice(struct net_device *dev)
363 {
364         struct net *net = dev_net(dev);
365
366         ASSERT_RTNL();
367
368         write_lock_bh(&dev_base_lock);
369         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
370         netdev_name_node_add(net, dev->name_node);
371         hlist_add_head_rcu(&dev->index_hlist,
372                            dev_index_hash(net, dev->ifindex));
373         write_unlock_bh(&dev_base_lock);
374
375         dev_base_seq_inc(net);
376 }
377
378 /* Device list removal
379  * caller must respect a RCU grace period before freeing/reusing dev
380  */
381 static void unlist_netdevice(struct net_device *dev)
382 {
383         ASSERT_RTNL();
384
385         /* Unlink dev from the device chain */
386         write_lock_bh(&dev_base_lock);
387         list_del_rcu(&dev->dev_list);
388         netdev_name_node_del(dev->name_node);
389         hlist_del_rcu(&dev->index_hlist);
390         write_unlock_bh(&dev_base_lock);
391
392         dev_base_seq_inc(dev_net(dev));
393 }
394
395 /*
396  *      Our notifier list
397  */
398
399 static RAW_NOTIFIER_HEAD(netdev_chain);
400
401 /*
402  *      Device drivers call our routines to queue packets here. We empty the
403  *      queue in the local softnet handler.
404  */
405
406 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
407 EXPORT_PER_CPU_SYMBOL(softnet_data);
408
409 #ifdef CONFIG_LOCKDEP
410 /*
411  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
412  * according to dev->type
413  */
414 static const unsigned short netdev_lock_type[] = {
415          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
416          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
417          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
418          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
419          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
420          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
421          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
422          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
423          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
424          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
425          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
426          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
427          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
428          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
429          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
430
431 static const char *const netdev_lock_name[] = {
432         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
433         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
434         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
435         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
436         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
437         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
438         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
439         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
440         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
441         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
442         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
443         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
444         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
445         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
446         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
447
448 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
449 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
450
451 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
452 {
453         int i;
454
455         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
456                 if (netdev_lock_type[i] == dev_type)
457                         return i;
458         /* the last key is used by default */
459         return ARRAY_SIZE(netdev_lock_type) - 1;
460 }
461
462 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
463                                                  unsigned short dev_type)
464 {
465         int i;
466
467         i = netdev_lock_pos(dev_type);
468         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
469                                    netdev_lock_name[i]);
470 }
471
472 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
473 {
474         int i;
475
476         i = netdev_lock_pos(dev->type);
477         lockdep_set_class_and_name(&dev->addr_list_lock,
478                                    &netdev_addr_lock_key[i],
479                                    netdev_lock_name[i]);
480 }
481 #else
482 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
483                                                  unsigned short dev_type)
484 {
485 }
486
487 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
488 {
489 }
490 #endif
491
492 /*******************************************************************************
493  *
494  *              Protocol management and registration routines
495  *
496  *******************************************************************************/
497
498
499 /*
500  *      Add a protocol ID to the list. Now that the input handler is
501  *      smarter we can dispense with all the messy stuff that used to be
502  *      here.
503  *
504  *      BEWARE!!! Protocol handlers, mangling input packets,
505  *      MUST BE last in hash buckets and checking protocol handlers
506  *      MUST start from promiscuous ptype_all chain in net_bh.
507  *      It is true now, do not change it.
508  *      Explanation follows: if protocol handler, mangling packet, will
509  *      be the first on list, it is not able to sense, that packet
510  *      is cloned and should be copied-on-write, so that it will
511  *      change it and subsequent readers will get broken packet.
512  *                                                      --ANK (980803)
513  */
514
515 static inline struct list_head *ptype_head(const struct packet_type *pt)
516 {
517         if (pt->type == htons(ETH_P_ALL))
518                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
519         else
520                 return pt->dev ? &pt->dev->ptype_specific :
521                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
522 }
523
524 /**
525  *      dev_add_pack - add packet handler
526  *      @pt: packet type declaration
527  *
528  *      Add a protocol handler to the networking stack. The passed &packet_type
529  *      is linked into kernel lists and may not be freed until it has been
530  *      removed from the kernel lists.
531  *
532  *      This call does not sleep therefore it can not
533  *      guarantee all CPU's that are in middle of receiving packets
534  *      will see the new packet type (until the next received packet).
535  */
536
537 void dev_add_pack(struct packet_type *pt)
538 {
539         struct list_head *head = ptype_head(pt);
540
541         spin_lock(&ptype_lock);
542         list_add_rcu(&pt->list, head);
543         spin_unlock(&ptype_lock);
544 }
545 EXPORT_SYMBOL(dev_add_pack);
546
547 /**
548  *      __dev_remove_pack        - remove packet handler
549  *      @pt: packet type declaration
550  *
551  *      Remove a protocol handler that was previously added to the kernel
552  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
553  *      from the kernel lists and can be freed or reused once this function
554  *      returns.
555  *
556  *      The packet type might still be in use by receivers
557  *      and must not be freed until after all the CPU's have gone
558  *      through a quiescent state.
559  */
560 void __dev_remove_pack(struct packet_type *pt)
561 {
562         struct list_head *head = ptype_head(pt);
563         struct packet_type *pt1;
564
565         spin_lock(&ptype_lock);
566
567         list_for_each_entry(pt1, head, list) {
568                 if (pt == pt1) {
569                         list_del_rcu(&pt->list);
570                         goto out;
571                 }
572         }
573
574         pr_warn("dev_remove_pack: %p not found\n", pt);
575 out:
576         spin_unlock(&ptype_lock);
577 }
578 EXPORT_SYMBOL(__dev_remove_pack);
579
580 /**
581  *      dev_remove_pack  - remove packet handler
582  *      @pt: packet type declaration
583  *
584  *      Remove a protocol handler that was previously added to the kernel
585  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
586  *      from the kernel lists and can be freed or reused once this function
587  *      returns.
588  *
589  *      This call sleeps to guarantee that no CPU is looking at the packet
590  *      type after return.
591  */
592 void dev_remove_pack(struct packet_type *pt)
593 {
594         __dev_remove_pack(pt);
595
596         synchronize_net();
597 }
598 EXPORT_SYMBOL(dev_remove_pack);
599
600
601 /**
602  *      dev_add_offload - register offload handlers
603  *      @po: protocol offload declaration
604  *
605  *      Add protocol offload handlers to the networking stack. The passed
606  *      &proto_offload is linked into kernel lists and may not be freed until
607  *      it has been removed from the kernel lists.
608  *
609  *      This call does not sleep therefore it can not
610  *      guarantee all CPU's that are in middle of receiving packets
611  *      will see the new offload handlers (until the next received packet).
612  */
613 void dev_add_offload(struct packet_offload *po)
614 {
615         struct packet_offload *elem;
616
617         spin_lock(&offload_lock);
618         list_for_each_entry(elem, &offload_base, list) {
619                 if (po->priority < elem->priority)
620                         break;
621         }
622         list_add_rcu(&po->list, elem->list.prev);
623         spin_unlock(&offload_lock);
624 }
625 EXPORT_SYMBOL(dev_add_offload);
626
627 /**
628  *      __dev_remove_offload     - remove offload handler
629  *      @po: packet offload declaration
630  *
631  *      Remove a protocol offload handler that was previously added to the
632  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
633  *      is removed from the kernel lists and can be freed or reused once this
634  *      function returns.
635  *
636  *      The packet type might still be in use by receivers
637  *      and must not be freed until after all the CPU's have gone
638  *      through a quiescent state.
639  */
640 static void __dev_remove_offload(struct packet_offload *po)
641 {
642         struct list_head *head = &offload_base;
643         struct packet_offload *po1;
644
645         spin_lock(&offload_lock);
646
647         list_for_each_entry(po1, head, list) {
648                 if (po == po1) {
649                         list_del_rcu(&po->list);
650                         goto out;
651                 }
652         }
653
654         pr_warn("dev_remove_offload: %p not found\n", po);
655 out:
656         spin_unlock(&offload_lock);
657 }
658
659 /**
660  *      dev_remove_offload       - remove packet offload handler
661  *      @po: packet offload declaration
662  *
663  *      Remove a packet offload handler that was previously added to the kernel
664  *      offload handlers by dev_add_offload(). The passed &offload_type is
665  *      removed from the kernel lists and can be freed or reused once this
666  *      function returns.
667  *
668  *      This call sleeps to guarantee that no CPU is looking at the packet
669  *      type after return.
670  */
671 void dev_remove_offload(struct packet_offload *po)
672 {
673         __dev_remove_offload(po);
674
675         synchronize_net();
676 }
677 EXPORT_SYMBOL(dev_remove_offload);
678
679 /*******************************************************************************
680  *
681  *                          Device Interface Subroutines
682  *
683  *******************************************************************************/
684
685 /**
686  *      dev_get_iflink  - get 'iflink' value of a interface
687  *      @dev: targeted interface
688  *
689  *      Indicates the ifindex the interface is linked to.
690  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
691  */
692
693 int dev_get_iflink(const struct net_device *dev)
694 {
695         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
696                 return dev->netdev_ops->ndo_get_iflink(dev);
697
698         return dev->ifindex;
699 }
700 EXPORT_SYMBOL(dev_get_iflink);
701
702 /**
703  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
704  *      @dev: targeted interface
705  *      @skb: The packet.
706  *
707  *      For better visibility of tunnel traffic OVS needs to retrieve
708  *      egress tunnel information for a packet. Following API allows
709  *      user to get this info.
710  */
711 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
712 {
713         struct ip_tunnel_info *info;
714
715         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
716                 return -EINVAL;
717
718         info = skb_tunnel_info_unclone(skb);
719         if (!info)
720                 return -ENOMEM;
721         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
722                 return -EINVAL;
723
724         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
725 }
726 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
727
728 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
729 {
730         int k = stack->num_paths++;
731
732         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
733                 return NULL;
734
735         return &stack->path[k];
736 }
737
738 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
739                           struct net_device_path_stack *stack)
740 {
741         const struct net_device *last_dev;
742         struct net_device_path_ctx ctx = {
743                 .dev    = dev,
744                 .daddr  = daddr,
745         };
746         struct net_device_path *path;
747         int ret = 0;
748
749         stack->num_paths = 0;
750         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
751                 last_dev = ctx.dev;
752                 path = dev_fwd_path(stack);
753                 if (!path)
754                         return -1;
755
756                 memset(path, 0, sizeof(struct net_device_path));
757                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
758                 if (ret < 0)
759                         return -1;
760
761                 if (WARN_ON_ONCE(last_dev == ctx.dev))
762                         return -1;
763         }
764         path = dev_fwd_path(stack);
765         if (!path)
766                 return -1;
767         path->type = DEV_PATH_ETHERNET;
768         path->dev = ctx.dev;
769
770         return ret;
771 }
772 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
773
774 /**
775  *      __dev_get_by_name       - find a device by its name
776  *      @net: the applicable net namespace
777  *      @name: name to find
778  *
779  *      Find an interface by name. Must be called under RTNL semaphore
780  *      or @dev_base_lock. If the name is found a pointer to the device
781  *      is returned. If the name is not found then %NULL is returned. The
782  *      reference counters are not incremented so the caller must be
783  *      careful with locks.
784  */
785
786 struct net_device *__dev_get_by_name(struct net *net, const char *name)
787 {
788         struct netdev_name_node *node_name;
789
790         node_name = netdev_name_node_lookup(net, name);
791         return node_name ? node_name->dev : NULL;
792 }
793 EXPORT_SYMBOL(__dev_get_by_name);
794
795 /**
796  * dev_get_by_name_rcu  - find a device by its name
797  * @net: the applicable net namespace
798  * @name: name to find
799  *
800  * Find an interface by name.
801  * If the name is found a pointer to the device is returned.
802  * If the name is not found then %NULL is returned.
803  * The reference counters are not incremented so the caller must be
804  * careful with locks. The caller must hold RCU lock.
805  */
806
807 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
808 {
809         struct netdev_name_node *node_name;
810
811         node_name = netdev_name_node_lookup_rcu(net, name);
812         return node_name ? node_name->dev : NULL;
813 }
814 EXPORT_SYMBOL(dev_get_by_name_rcu);
815
816 /**
817  *      dev_get_by_name         - find a device by its name
818  *      @net: the applicable net namespace
819  *      @name: name to find
820  *
821  *      Find an interface by name. This can be called from any
822  *      context and does its own locking. The returned handle has
823  *      the usage count incremented and the caller must use dev_put() to
824  *      release it when it is no longer needed. %NULL is returned if no
825  *      matching device is found.
826  */
827
828 struct net_device *dev_get_by_name(struct net *net, const char *name)
829 {
830         struct net_device *dev;
831
832         rcu_read_lock();
833         dev = dev_get_by_name_rcu(net, name);
834         dev_hold(dev);
835         rcu_read_unlock();
836         return dev;
837 }
838 EXPORT_SYMBOL(dev_get_by_name);
839
840 /**
841  *      __dev_get_by_index - find a device by its ifindex
842  *      @net: the applicable net namespace
843  *      @ifindex: index of device
844  *
845  *      Search for an interface by index. Returns %NULL if the device
846  *      is not found or a pointer to the device. The device has not
847  *      had its reference counter increased so the caller must be careful
848  *      about locking. The caller must hold either the RTNL semaphore
849  *      or @dev_base_lock.
850  */
851
852 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
853 {
854         struct net_device *dev;
855         struct hlist_head *head = dev_index_hash(net, ifindex);
856
857         hlist_for_each_entry(dev, head, index_hlist)
858                 if (dev->ifindex == ifindex)
859                         return dev;
860
861         return NULL;
862 }
863 EXPORT_SYMBOL(__dev_get_by_index);
864
865 /**
866  *      dev_get_by_index_rcu - find a device by its ifindex
867  *      @net: the applicable net namespace
868  *      @ifindex: index of device
869  *
870  *      Search for an interface by index. Returns %NULL if the device
871  *      is not found or a pointer to the device. The device has not
872  *      had its reference counter increased so the caller must be careful
873  *      about locking. The caller must hold RCU lock.
874  */
875
876 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
877 {
878         struct net_device *dev;
879         struct hlist_head *head = dev_index_hash(net, ifindex);
880
881         hlist_for_each_entry_rcu(dev, head, index_hlist)
882                 if (dev->ifindex == ifindex)
883                         return dev;
884
885         return NULL;
886 }
887 EXPORT_SYMBOL(dev_get_by_index_rcu);
888
889
890 /**
891  *      dev_get_by_index - find a device by its ifindex
892  *      @net: the applicable net namespace
893  *      @ifindex: index of device
894  *
895  *      Search for an interface by index. Returns NULL if the device
896  *      is not found or a pointer to the device. The device returned has
897  *      had a reference added and the pointer is safe until the user calls
898  *      dev_put to indicate they have finished with it.
899  */
900
901 struct net_device *dev_get_by_index(struct net *net, int ifindex)
902 {
903         struct net_device *dev;
904
905         rcu_read_lock();
906         dev = dev_get_by_index_rcu(net, ifindex);
907         dev_hold(dev);
908         rcu_read_unlock();
909         return dev;
910 }
911 EXPORT_SYMBOL(dev_get_by_index);
912
913 /**
914  *      dev_get_by_napi_id - find a device by napi_id
915  *      @napi_id: ID of the NAPI struct
916  *
917  *      Search for an interface by NAPI ID. Returns %NULL if the device
918  *      is not found or a pointer to the device. The device has not had
919  *      its reference counter increased so the caller must be careful
920  *      about locking. The caller must hold RCU lock.
921  */
922
923 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
924 {
925         struct napi_struct *napi;
926
927         WARN_ON_ONCE(!rcu_read_lock_held());
928
929         if (napi_id < MIN_NAPI_ID)
930                 return NULL;
931
932         napi = napi_by_id(napi_id);
933
934         return napi ? napi->dev : NULL;
935 }
936 EXPORT_SYMBOL(dev_get_by_napi_id);
937
938 /**
939  *      netdev_get_name - get a netdevice name, knowing its ifindex.
940  *      @net: network namespace
941  *      @name: a pointer to the buffer where the name will be stored.
942  *      @ifindex: the ifindex of the interface to get the name from.
943  */
944 int netdev_get_name(struct net *net, char *name, int ifindex)
945 {
946         struct net_device *dev;
947         int ret;
948
949         down_read(&devnet_rename_sem);
950         rcu_read_lock();
951
952         dev = dev_get_by_index_rcu(net, ifindex);
953         if (!dev) {
954                 ret = -ENODEV;
955                 goto out;
956         }
957
958         strcpy(name, dev->name);
959
960         ret = 0;
961 out:
962         rcu_read_unlock();
963         up_read(&devnet_rename_sem);
964         return ret;
965 }
966
967 /**
968  *      dev_getbyhwaddr_rcu - find a device by its hardware address
969  *      @net: the applicable net namespace
970  *      @type: media type of device
971  *      @ha: hardware address
972  *
973  *      Search for an interface by MAC address. Returns NULL if the device
974  *      is not found or a pointer to the device.
975  *      The caller must hold RCU or RTNL.
976  *      The returned device has not had its ref count increased
977  *      and the caller must therefore be careful about locking
978  *
979  */
980
981 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
982                                        const char *ha)
983 {
984         struct net_device *dev;
985
986         for_each_netdev_rcu(net, dev)
987                 if (dev->type == type &&
988                     !memcmp(dev->dev_addr, ha, dev->addr_len))
989                         return dev;
990
991         return NULL;
992 }
993 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
994
995 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
996 {
997         struct net_device *dev, *ret = NULL;
998
999         rcu_read_lock();
1000         for_each_netdev_rcu(net, dev)
1001                 if (dev->type == type) {
1002                         dev_hold(dev);
1003                         ret = dev;
1004                         break;
1005                 }
1006         rcu_read_unlock();
1007         return ret;
1008 }
1009 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1010
1011 /**
1012  *      __dev_get_by_flags - find any device with given flags
1013  *      @net: the applicable net namespace
1014  *      @if_flags: IFF_* values
1015  *      @mask: bitmask of bits in if_flags to check
1016  *
1017  *      Search for any interface with the given flags. Returns NULL if a device
1018  *      is not found or a pointer to the device. Must be called inside
1019  *      rtnl_lock(), and result refcount is unchanged.
1020  */
1021
1022 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1023                                       unsigned short mask)
1024 {
1025         struct net_device *dev, *ret;
1026
1027         ASSERT_RTNL();
1028
1029         ret = NULL;
1030         for_each_netdev(net, dev) {
1031                 if (((dev->flags ^ if_flags) & mask) == 0) {
1032                         ret = dev;
1033                         break;
1034                 }
1035         }
1036         return ret;
1037 }
1038 EXPORT_SYMBOL(__dev_get_by_flags);
1039
1040 /**
1041  *      dev_valid_name - check if name is okay for network device
1042  *      @name: name string
1043  *
1044  *      Network device names need to be valid file names to
1045  *      allow sysfs to work.  We also disallow any kind of
1046  *      whitespace.
1047  */
1048 bool dev_valid_name(const char *name)
1049 {
1050         if (*name == '\0')
1051                 return false;
1052         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1053                 return false;
1054         if (!strcmp(name, ".") || !strcmp(name, ".."))
1055                 return false;
1056
1057         while (*name) {
1058                 if (*name == '/' || *name == ':' || isspace(*name))
1059                         return false;
1060                 name++;
1061         }
1062         return true;
1063 }
1064 EXPORT_SYMBOL(dev_valid_name);
1065
1066 /**
1067  *      __dev_alloc_name - allocate a name for a device
1068  *      @net: network namespace to allocate the device name in
1069  *      @name: name format string
1070  *      @buf:  scratch buffer and result name string
1071  *
1072  *      Passed a format string - eg "lt%d" it will try and find a suitable
1073  *      id. It scans list of devices to build up a free map, then chooses
1074  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1075  *      while allocating the name and adding the device in order to avoid
1076  *      duplicates.
1077  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1078  *      Returns the number of the unit assigned or a negative errno code.
1079  */
1080
1081 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1082 {
1083         int i = 0;
1084         const char *p;
1085         const int max_netdevices = 8*PAGE_SIZE;
1086         unsigned long *inuse;
1087         struct net_device *d;
1088
1089         if (!dev_valid_name(name))
1090                 return -EINVAL;
1091
1092         p = strchr(name, '%');
1093         if (p) {
1094                 /*
1095                  * Verify the string as this thing may have come from
1096                  * the user.  There must be either one "%d" and no other "%"
1097                  * characters.
1098                  */
1099                 if (p[1] != 'd' || strchr(p + 2, '%'))
1100                         return -EINVAL;
1101
1102                 /* Use one page as a bit array of possible slots */
1103                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1104                 if (!inuse)
1105                         return -ENOMEM;
1106
1107                 for_each_netdev(net, d) {
1108                         struct netdev_name_node *name_node;
1109                         list_for_each_entry(name_node, &d->name_node->list, list) {
1110                                 if (!sscanf(name_node->name, name, &i))
1111                                         continue;
1112                                 if (i < 0 || i >= max_netdevices)
1113                                         continue;
1114
1115                                 /*  avoid cases where sscanf is not exact inverse of printf */
1116                                 snprintf(buf, IFNAMSIZ, name, i);
1117                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1118                                         set_bit(i, inuse);
1119                         }
1120                         if (!sscanf(d->name, name, &i))
1121                                 continue;
1122                         if (i < 0 || i >= max_netdevices)
1123                                 continue;
1124
1125                         /*  avoid cases where sscanf is not exact inverse of printf */
1126                         snprintf(buf, IFNAMSIZ, name, i);
1127                         if (!strncmp(buf, d->name, IFNAMSIZ))
1128                                 set_bit(i, inuse);
1129                 }
1130
1131                 i = find_first_zero_bit(inuse, max_netdevices);
1132                 free_page((unsigned long) inuse);
1133         }
1134
1135         snprintf(buf, IFNAMSIZ, name, i);
1136         if (!__dev_get_by_name(net, buf))
1137                 return i;
1138
1139         /* It is possible to run out of possible slots
1140          * when the name is long and there isn't enough space left
1141          * for the digits, or if all bits are used.
1142          */
1143         return -ENFILE;
1144 }
1145
1146 static int dev_alloc_name_ns(struct net *net,
1147                              struct net_device *dev,
1148                              const char *name)
1149 {
1150         char buf[IFNAMSIZ];
1151         int ret;
1152
1153         BUG_ON(!net);
1154         ret = __dev_alloc_name(net, name, buf);
1155         if (ret >= 0)
1156                 strlcpy(dev->name, buf, IFNAMSIZ);
1157         return ret;
1158 }
1159
1160 /**
1161  *      dev_alloc_name - allocate a name for a device
1162  *      @dev: device
1163  *      @name: name format string
1164  *
1165  *      Passed a format string - eg "lt%d" it will try and find a suitable
1166  *      id. It scans list of devices to build up a free map, then chooses
1167  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1168  *      while allocating the name and adding the device in order to avoid
1169  *      duplicates.
1170  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1171  *      Returns the number of the unit assigned or a negative errno code.
1172  */
1173
1174 int dev_alloc_name(struct net_device *dev, const char *name)
1175 {
1176         return dev_alloc_name_ns(dev_net(dev), dev, name);
1177 }
1178 EXPORT_SYMBOL(dev_alloc_name);
1179
1180 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1181                               const char *name)
1182 {
1183         BUG_ON(!net);
1184
1185         if (!dev_valid_name(name))
1186                 return -EINVAL;
1187
1188         if (strchr(name, '%'))
1189                 return dev_alloc_name_ns(net, dev, name);
1190         else if (__dev_get_by_name(net, name))
1191                 return -EEXIST;
1192         else if (dev->name != name)
1193                 strlcpy(dev->name, name, IFNAMSIZ);
1194
1195         return 0;
1196 }
1197
1198 /**
1199  *      dev_change_name - change name of a device
1200  *      @dev: device
1201  *      @newname: name (or format string) must be at least IFNAMSIZ
1202  *
1203  *      Change name of a device, can pass format strings "eth%d".
1204  *      for wildcarding.
1205  */
1206 int dev_change_name(struct net_device *dev, const char *newname)
1207 {
1208         unsigned char old_assign_type;
1209         char oldname[IFNAMSIZ];
1210         int err = 0;
1211         int ret;
1212         struct net *net;
1213
1214         ASSERT_RTNL();
1215         BUG_ON(!dev_net(dev));
1216
1217         net = dev_net(dev);
1218
1219         /* Some auto-enslaved devices e.g. failover slaves are
1220          * special, as userspace might rename the device after
1221          * the interface had been brought up and running since
1222          * the point kernel initiated auto-enslavement. Allow
1223          * live name change even when these slave devices are
1224          * up and running.
1225          *
1226          * Typically, users of these auto-enslaving devices
1227          * don't actually care about slave name change, as
1228          * they are supposed to operate on master interface
1229          * directly.
1230          */
1231         if (dev->flags & IFF_UP &&
1232             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1233                 return -EBUSY;
1234
1235         down_write(&devnet_rename_sem);
1236
1237         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1238                 up_write(&devnet_rename_sem);
1239                 return 0;
1240         }
1241
1242         memcpy(oldname, dev->name, IFNAMSIZ);
1243
1244         err = dev_get_valid_name(net, dev, newname);
1245         if (err < 0) {
1246                 up_write(&devnet_rename_sem);
1247                 return err;
1248         }
1249
1250         if (oldname[0] && !strchr(oldname, '%'))
1251                 netdev_info(dev, "renamed from %s\n", oldname);
1252
1253         old_assign_type = dev->name_assign_type;
1254         dev->name_assign_type = NET_NAME_RENAMED;
1255
1256 rollback:
1257         ret = device_rename(&dev->dev, dev->name);
1258         if (ret) {
1259                 memcpy(dev->name, oldname, IFNAMSIZ);
1260                 dev->name_assign_type = old_assign_type;
1261                 up_write(&devnet_rename_sem);
1262                 return ret;
1263         }
1264
1265         up_write(&devnet_rename_sem);
1266
1267         netdev_adjacent_rename_links(dev, oldname);
1268
1269         write_lock_bh(&dev_base_lock);
1270         netdev_name_node_del(dev->name_node);
1271         write_unlock_bh(&dev_base_lock);
1272
1273         synchronize_rcu();
1274
1275         write_lock_bh(&dev_base_lock);
1276         netdev_name_node_add(net, dev->name_node);
1277         write_unlock_bh(&dev_base_lock);
1278
1279         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1280         ret = notifier_to_errno(ret);
1281
1282         if (ret) {
1283                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1284                 if (err >= 0) {
1285                         err = ret;
1286                         down_write(&devnet_rename_sem);
1287                         memcpy(dev->name, oldname, IFNAMSIZ);
1288                         memcpy(oldname, newname, IFNAMSIZ);
1289                         dev->name_assign_type = old_assign_type;
1290                         old_assign_type = NET_NAME_RENAMED;
1291                         goto rollback;
1292                 } else {
1293                         pr_err("%s: name change rollback failed: %d\n",
1294                                dev->name, ret);
1295                 }
1296         }
1297
1298         return err;
1299 }
1300
1301 /**
1302  *      dev_set_alias - change ifalias of a device
1303  *      @dev: device
1304  *      @alias: name up to IFALIASZ
1305  *      @len: limit of bytes to copy from info
1306  *
1307  *      Set ifalias for a device,
1308  */
1309 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1310 {
1311         struct dev_ifalias *new_alias = NULL;
1312
1313         if (len >= IFALIASZ)
1314                 return -EINVAL;
1315
1316         if (len) {
1317                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1318                 if (!new_alias)
1319                         return -ENOMEM;
1320
1321                 memcpy(new_alias->ifalias, alias, len);
1322                 new_alias->ifalias[len] = 0;
1323         }
1324
1325         mutex_lock(&ifalias_mutex);
1326         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1327                                         mutex_is_locked(&ifalias_mutex));
1328         mutex_unlock(&ifalias_mutex);
1329
1330         if (new_alias)
1331                 kfree_rcu(new_alias, rcuhead);
1332
1333         return len;
1334 }
1335 EXPORT_SYMBOL(dev_set_alias);
1336
1337 /**
1338  *      dev_get_alias - get ifalias of a device
1339  *      @dev: device
1340  *      @name: buffer to store name of ifalias
1341  *      @len: size of buffer
1342  *
1343  *      get ifalias for a device.  Caller must make sure dev cannot go
1344  *      away,  e.g. rcu read lock or own a reference count to device.
1345  */
1346 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1347 {
1348         const struct dev_ifalias *alias;
1349         int ret = 0;
1350
1351         rcu_read_lock();
1352         alias = rcu_dereference(dev->ifalias);
1353         if (alias)
1354                 ret = snprintf(name, len, "%s", alias->ifalias);
1355         rcu_read_unlock();
1356
1357         return ret;
1358 }
1359
1360 /**
1361  *      netdev_features_change - device changes features
1362  *      @dev: device to cause notification
1363  *
1364  *      Called to indicate a device has changed features.
1365  */
1366 void netdev_features_change(struct net_device *dev)
1367 {
1368         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1369 }
1370 EXPORT_SYMBOL(netdev_features_change);
1371
1372 /**
1373  *      netdev_state_change - device changes state
1374  *      @dev: device to cause notification
1375  *
1376  *      Called to indicate a device has changed state. This function calls
1377  *      the notifier chains for netdev_chain and sends a NEWLINK message
1378  *      to the routing socket.
1379  */
1380 void netdev_state_change(struct net_device *dev)
1381 {
1382         if (dev->flags & IFF_UP) {
1383                 struct netdev_notifier_change_info change_info = {
1384                         .info.dev = dev,
1385                 };
1386
1387                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1388                                               &change_info.info);
1389                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1390         }
1391 }
1392 EXPORT_SYMBOL(netdev_state_change);
1393
1394 /**
1395  * __netdev_notify_peers - notify network peers about existence of @dev,
1396  * to be called when rtnl lock is already held.
1397  * @dev: network device
1398  *
1399  * Generate traffic such that interested network peers are aware of
1400  * @dev, such as by generating a gratuitous ARP. This may be used when
1401  * a device wants to inform the rest of the network about some sort of
1402  * reconfiguration such as a failover event or virtual machine
1403  * migration.
1404  */
1405 void __netdev_notify_peers(struct net_device *dev)
1406 {
1407         ASSERT_RTNL();
1408         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1409         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1410 }
1411 EXPORT_SYMBOL(__netdev_notify_peers);
1412
1413 /**
1414  * netdev_notify_peers - notify network peers about existence of @dev
1415  * @dev: network device
1416  *
1417  * Generate traffic such that interested network peers are aware of
1418  * @dev, such as by generating a gratuitous ARP. This may be used when
1419  * a device wants to inform the rest of the network about some sort of
1420  * reconfiguration such as a failover event or virtual machine
1421  * migration.
1422  */
1423 void netdev_notify_peers(struct net_device *dev)
1424 {
1425         rtnl_lock();
1426         __netdev_notify_peers(dev);
1427         rtnl_unlock();
1428 }
1429 EXPORT_SYMBOL(netdev_notify_peers);
1430
1431 static int napi_threaded_poll(void *data);
1432
1433 static int napi_kthread_create(struct napi_struct *n)
1434 {
1435         int err = 0;
1436
1437         /* Create and wake up the kthread once to put it in
1438          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1439          * warning and work with loadavg.
1440          */
1441         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1442                                 n->dev->name, n->napi_id);
1443         if (IS_ERR(n->thread)) {
1444                 err = PTR_ERR(n->thread);
1445                 pr_err("kthread_run failed with err %d\n", err);
1446                 n->thread = NULL;
1447         }
1448
1449         return err;
1450 }
1451
1452 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1453 {
1454         const struct net_device_ops *ops = dev->netdev_ops;
1455         int ret;
1456
1457         ASSERT_RTNL();
1458
1459         if (!netif_device_present(dev)) {
1460                 /* may be detached because parent is runtime-suspended */
1461                 if (dev->dev.parent)
1462                         pm_runtime_resume(dev->dev.parent);
1463                 if (!netif_device_present(dev))
1464                         return -ENODEV;
1465         }
1466
1467         /* Block netpoll from trying to do any rx path servicing.
1468          * If we don't do this there is a chance ndo_poll_controller
1469          * or ndo_poll may be running while we open the device
1470          */
1471         netpoll_poll_disable(dev);
1472
1473         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1474         ret = notifier_to_errno(ret);
1475         if (ret)
1476                 return ret;
1477
1478         set_bit(__LINK_STATE_START, &dev->state);
1479
1480         if (ops->ndo_validate_addr)
1481                 ret = ops->ndo_validate_addr(dev);
1482
1483         if (!ret && ops->ndo_open)
1484                 ret = ops->ndo_open(dev);
1485
1486         netpoll_poll_enable(dev);
1487
1488         if (ret)
1489                 clear_bit(__LINK_STATE_START, &dev->state);
1490         else {
1491                 dev->flags |= IFF_UP;
1492                 dev_set_rx_mode(dev);
1493                 dev_activate(dev);
1494                 add_device_randomness(dev->dev_addr, dev->addr_len);
1495         }
1496
1497         return ret;
1498 }
1499
1500 /**
1501  *      dev_open        - prepare an interface for use.
1502  *      @dev: device to open
1503  *      @extack: netlink extended ack
1504  *
1505  *      Takes a device from down to up state. The device's private open
1506  *      function is invoked and then the multicast lists are loaded. Finally
1507  *      the device is moved into the up state and a %NETDEV_UP message is
1508  *      sent to the netdev notifier chain.
1509  *
1510  *      Calling this function on an active interface is a nop. On a failure
1511  *      a negative errno code is returned.
1512  */
1513 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1514 {
1515         int ret;
1516
1517         if (dev->flags & IFF_UP)
1518                 return 0;
1519
1520         ret = __dev_open(dev, extack);
1521         if (ret < 0)
1522                 return ret;
1523
1524         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1525         call_netdevice_notifiers(NETDEV_UP, dev);
1526
1527         return ret;
1528 }
1529 EXPORT_SYMBOL(dev_open);
1530
1531 static void __dev_close_many(struct list_head *head)
1532 {
1533         struct net_device *dev;
1534
1535         ASSERT_RTNL();
1536         might_sleep();
1537
1538         list_for_each_entry(dev, head, close_list) {
1539                 /* Temporarily disable netpoll until the interface is down */
1540                 netpoll_poll_disable(dev);
1541
1542                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1543
1544                 clear_bit(__LINK_STATE_START, &dev->state);
1545
1546                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1547                  * can be even on different cpu. So just clear netif_running().
1548                  *
1549                  * dev->stop() will invoke napi_disable() on all of it's
1550                  * napi_struct instances on this device.
1551                  */
1552                 smp_mb__after_atomic(); /* Commit netif_running(). */
1553         }
1554
1555         dev_deactivate_many(head);
1556
1557         list_for_each_entry(dev, head, close_list) {
1558                 const struct net_device_ops *ops = dev->netdev_ops;
1559
1560                 /*
1561                  *      Call the device specific close. This cannot fail.
1562                  *      Only if device is UP
1563                  *
1564                  *      We allow it to be called even after a DETACH hot-plug
1565                  *      event.
1566                  */
1567                 if (ops->ndo_stop)
1568                         ops->ndo_stop(dev);
1569
1570                 dev->flags &= ~IFF_UP;
1571                 netpoll_poll_enable(dev);
1572         }
1573 }
1574
1575 static void __dev_close(struct net_device *dev)
1576 {
1577         LIST_HEAD(single);
1578
1579         list_add(&dev->close_list, &single);
1580         __dev_close_many(&single);
1581         list_del(&single);
1582 }
1583
1584 void dev_close_many(struct list_head *head, bool unlink)
1585 {
1586         struct net_device *dev, *tmp;
1587
1588         /* Remove the devices that don't need to be closed */
1589         list_for_each_entry_safe(dev, tmp, head, close_list)
1590                 if (!(dev->flags & IFF_UP))
1591                         list_del_init(&dev->close_list);
1592
1593         __dev_close_many(head);
1594
1595         list_for_each_entry_safe(dev, tmp, head, close_list) {
1596                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1597                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1598                 if (unlink)
1599                         list_del_init(&dev->close_list);
1600         }
1601 }
1602 EXPORT_SYMBOL(dev_close_many);
1603
1604 /**
1605  *      dev_close - shutdown an interface.
1606  *      @dev: device to shutdown
1607  *
1608  *      This function moves an active device into down state. A
1609  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1610  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1611  *      chain.
1612  */
1613 void dev_close(struct net_device *dev)
1614 {
1615         if (dev->flags & IFF_UP) {
1616                 LIST_HEAD(single);
1617
1618                 list_add(&dev->close_list, &single);
1619                 dev_close_many(&single, true);
1620                 list_del(&single);
1621         }
1622 }
1623 EXPORT_SYMBOL(dev_close);
1624
1625
1626 /**
1627  *      dev_disable_lro - disable Large Receive Offload on a device
1628  *      @dev: device
1629  *
1630  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1631  *      called under RTNL.  This is needed if received packets may be
1632  *      forwarded to another interface.
1633  */
1634 void dev_disable_lro(struct net_device *dev)
1635 {
1636         struct net_device *lower_dev;
1637         struct list_head *iter;
1638
1639         dev->wanted_features &= ~NETIF_F_LRO;
1640         netdev_update_features(dev);
1641
1642         if (unlikely(dev->features & NETIF_F_LRO))
1643                 netdev_WARN(dev, "failed to disable LRO!\n");
1644
1645         netdev_for_each_lower_dev(dev, lower_dev, iter)
1646                 dev_disable_lro(lower_dev);
1647 }
1648 EXPORT_SYMBOL(dev_disable_lro);
1649
1650 /**
1651  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1652  *      @dev: device
1653  *
1654  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1655  *      called under RTNL.  This is needed if Generic XDP is installed on
1656  *      the device.
1657  */
1658 static void dev_disable_gro_hw(struct net_device *dev)
1659 {
1660         dev->wanted_features &= ~NETIF_F_GRO_HW;
1661         netdev_update_features(dev);
1662
1663         if (unlikely(dev->features & NETIF_F_GRO_HW))
1664                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1665 }
1666
1667 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1668 {
1669 #define N(val)                                          \
1670         case NETDEV_##val:                              \
1671                 return "NETDEV_" __stringify(val);
1672         switch (cmd) {
1673         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1674         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1675         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1676         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1677         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1678         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1679         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1680         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1681         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1682         N(PRE_CHANGEADDR)
1683         }
1684 #undef N
1685         return "UNKNOWN_NETDEV_EVENT";
1686 }
1687 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1688
1689 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1690                                    struct net_device *dev)
1691 {
1692         struct netdev_notifier_info info = {
1693                 .dev = dev,
1694         };
1695
1696         return nb->notifier_call(nb, val, &info);
1697 }
1698
1699 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1700                                              struct net_device *dev)
1701 {
1702         int err;
1703
1704         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1705         err = notifier_to_errno(err);
1706         if (err)
1707                 return err;
1708
1709         if (!(dev->flags & IFF_UP))
1710                 return 0;
1711
1712         call_netdevice_notifier(nb, NETDEV_UP, dev);
1713         return 0;
1714 }
1715
1716 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1717                                                 struct net_device *dev)
1718 {
1719         if (dev->flags & IFF_UP) {
1720                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1721                                         dev);
1722                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1723         }
1724         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1725 }
1726
1727 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1728                                                  struct net *net)
1729 {
1730         struct net_device *dev;
1731         int err;
1732
1733         for_each_netdev(net, dev) {
1734                 err = call_netdevice_register_notifiers(nb, dev);
1735                 if (err)
1736                         goto rollback;
1737         }
1738         return 0;
1739
1740 rollback:
1741         for_each_netdev_continue_reverse(net, dev)
1742                 call_netdevice_unregister_notifiers(nb, dev);
1743         return err;
1744 }
1745
1746 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1747                                                     struct net *net)
1748 {
1749         struct net_device *dev;
1750
1751         for_each_netdev(net, dev)
1752                 call_netdevice_unregister_notifiers(nb, dev);
1753 }
1754
1755 static int dev_boot_phase = 1;
1756
1757 /**
1758  * register_netdevice_notifier - register a network notifier block
1759  * @nb: notifier
1760  *
1761  * Register a notifier to be called when network device events occur.
1762  * The notifier passed is linked into the kernel structures and must
1763  * not be reused until it has been unregistered. A negative errno code
1764  * is returned on a failure.
1765  *
1766  * When registered all registration and up events are replayed
1767  * to the new notifier to allow device to have a race free
1768  * view of the network device list.
1769  */
1770
1771 int register_netdevice_notifier(struct notifier_block *nb)
1772 {
1773         struct net *net;
1774         int err;
1775
1776         /* Close race with setup_net() and cleanup_net() */
1777         down_write(&pernet_ops_rwsem);
1778         rtnl_lock();
1779         err = raw_notifier_chain_register(&netdev_chain, nb);
1780         if (err)
1781                 goto unlock;
1782         if (dev_boot_phase)
1783                 goto unlock;
1784         for_each_net(net) {
1785                 err = call_netdevice_register_net_notifiers(nb, net);
1786                 if (err)
1787                         goto rollback;
1788         }
1789
1790 unlock:
1791         rtnl_unlock();
1792         up_write(&pernet_ops_rwsem);
1793         return err;
1794
1795 rollback:
1796         for_each_net_continue_reverse(net)
1797                 call_netdevice_unregister_net_notifiers(nb, net);
1798
1799         raw_notifier_chain_unregister(&netdev_chain, nb);
1800         goto unlock;
1801 }
1802 EXPORT_SYMBOL(register_netdevice_notifier);
1803
1804 /**
1805  * unregister_netdevice_notifier - unregister a network notifier block
1806  * @nb: notifier
1807  *
1808  * Unregister a notifier previously registered by
1809  * register_netdevice_notifier(). The notifier is unlinked into the
1810  * kernel structures and may then be reused. A negative errno code
1811  * is returned on a failure.
1812  *
1813  * After unregistering unregister and down device events are synthesized
1814  * for all devices on the device list to the removed notifier to remove
1815  * the need for special case cleanup code.
1816  */
1817
1818 int unregister_netdevice_notifier(struct notifier_block *nb)
1819 {
1820         struct net *net;
1821         int err;
1822
1823         /* Close race with setup_net() and cleanup_net() */
1824         down_write(&pernet_ops_rwsem);
1825         rtnl_lock();
1826         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1827         if (err)
1828                 goto unlock;
1829
1830         for_each_net(net)
1831                 call_netdevice_unregister_net_notifiers(nb, net);
1832
1833 unlock:
1834         rtnl_unlock();
1835         up_write(&pernet_ops_rwsem);
1836         return err;
1837 }
1838 EXPORT_SYMBOL(unregister_netdevice_notifier);
1839
1840 static int __register_netdevice_notifier_net(struct net *net,
1841                                              struct notifier_block *nb,
1842                                              bool ignore_call_fail)
1843 {
1844         int err;
1845
1846         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1847         if (err)
1848                 return err;
1849         if (dev_boot_phase)
1850                 return 0;
1851
1852         err = call_netdevice_register_net_notifiers(nb, net);
1853         if (err && !ignore_call_fail)
1854                 goto chain_unregister;
1855
1856         return 0;
1857
1858 chain_unregister:
1859         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1860         return err;
1861 }
1862
1863 static int __unregister_netdevice_notifier_net(struct net *net,
1864                                                struct notifier_block *nb)
1865 {
1866         int err;
1867
1868         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1869         if (err)
1870                 return err;
1871
1872         call_netdevice_unregister_net_notifiers(nb, net);
1873         return 0;
1874 }
1875
1876 /**
1877  * register_netdevice_notifier_net - register a per-netns network notifier block
1878  * @net: network namespace
1879  * @nb: notifier
1880  *
1881  * Register a notifier to be called when network device events occur.
1882  * The notifier passed is linked into the kernel structures and must
1883  * not be reused until it has been unregistered. A negative errno code
1884  * is returned on a failure.
1885  *
1886  * When registered all registration and up events are replayed
1887  * to the new notifier to allow device to have a race free
1888  * view of the network device list.
1889  */
1890
1891 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1892 {
1893         int err;
1894
1895         rtnl_lock();
1896         err = __register_netdevice_notifier_net(net, nb, false);
1897         rtnl_unlock();
1898         return err;
1899 }
1900 EXPORT_SYMBOL(register_netdevice_notifier_net);
1901
1902 /**
1903  * unregister_netdevice_notifier_net - unregister a per-netns
1904  *                                     network notifier block
1905  * @net: network namespace
1906  * @nb: notifier
1907  *
1908  * Unregister a notifier previously registered by
1909  * register_netdevice_notifier(). The notifier is unlinked into the
1910  * kernel structures and may then be reused. A negative errno code
1911  * is returned on a failure.
1912  *
1913  * After unregistering unregister and down device events are synthesized
1914  * for all devices on the device list to the removed notifier to remove
1915  * the need for special case cleanup code.
1916  */
1917
1918 int unregister_netdevice_notifier_net(struct net *net,
1919                                       struct notifier_block *nb)
1920 {
1921         int err;
1922
1923         rtnl_lock();
1924         err = __unregister_netdevice_notifier_net(net, nb);
1925         rtnl_unlock();
1926         return err;
1927 }
1928 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1929
1930 int register_netdevice_notifier_dev_net(struct net_device *dev,
1931                                         struct notifier_block *nb,
1932                                         struct netdev_net_notifier *nn)
1933 {
1934         int err;
1935
1936         rtnl_lock();
1937         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1938         if (!err) {
1939                 nn->nb = nb;
1940                 list_add(&nn->list, &dev->net_notifier_list);
1941         }
1942         rtnl_unlock();
1943         return err;
1944 }
1945 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1946
1947 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1948                                           struct notifier_block *nb,
1949                                           struct netdev_net_notifier *nn)
1950 {
1951         int err;
1952
1953         rtnl_lock();
1954         list_del(&nn->list);
1955         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1956         rtnl_unlock();
1957         return err;
1958 }
1959 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1960
1961 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1962                                              struct net *net)
1963 {
1964         struct netdev_net_notifier *nn;
1965
1966         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1967                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1968                 __register_netdevice_notifier_net(net, nn->nb, true);
1969         }
1970 }
1971
1972 /**
1973  *      call_netdevice_notifiers_info - call all network notifier blocks
1974  *      @val: value passed unmodified to notifier function
1975  *      @info: notifier information data
1976  *
1977  *      Call all network notifier blocks.  Parameters and return value
1978  *      are as for raw_notifier_call_chain().
1979  */
1980
1981 static int call_netdevice_notifiers_info(unsigned long val,
1982                                          struct netdev_notifier_info *info)
1983 {
1984         struct net *net = dev_net(info->dev);
1985         int ret;
1986
1987         ASSERT_RTNL();
1988
1989         /* Run per-netns notifier block chain first, then run the global one.
1990          * Hopefully, one day, the global one is going to be removed after
1991          * all notifier block registrators get converted to be per-netns.
1992          */
1993         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1994         if (ret & NOTIFY_STOP_MASK)
1995                 return ret;
1996         return raw_notifier_call_chain(&netdev_chain, val, info);
1997 }
1998
1999 static int call_netdevice_notifiers_extack(unsigned long val,
2000                                            struct net_device *dev,
2001                                            struct netlink_ext_ack *extack)
2002 {
2003         struct netdev_notifier_info info = {
2004                 .dev = dev,
2005                 .extack = extack,
2006         };
2007
2008         return call_netdevice_notifiers_info(val, &info);
2009 }
2010
2011 /**
2012  *      call_netdevice_notifiers - call all network notifier blocks
2013  *      @val: value passed unmodified to notifier function
2014  *      @dev: net_device pointer passed unmodified to notifier function
2015  *
2016  *      Call all network notifier blocks.  Parameters and return value
2017  *      are as for raw_notifier_call_chain().
2018  */
2019
2020 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2021 {
2022         return call_netdevice_notifiers_extack(val, dev, NULL);
2023 }
2024 EXPORT_SYMBOL(call_netdevice_notifiers);
2025
2026 /**
2027  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2028  *      @val: value passed unmodified to notifier function
2029  *      @dev: net_device pointer passed unmodified to notifier function
2030  *      @arg: additional u32 argument passed to the notifier function
2031  *
2032  *      Call all network notifier blocks.  Parameters and return value
2033  *      are as for raw_notifier_call_chain().
2034  */
2035 static int call_netdevice_notifiers_mtu(unsigned long val,
2036                                         struct net_device *dev, u32 arg)
2037 {
2038         struct netdev_notifier_info_ext info = {
2039                 .info.dev = dev,
2040                 .ext.mtu = arg,
2041         };
2042
2043         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2044
2045         return call_netdevice_notifiers_info(val, &info.info);
2046 }
2047
2048 #ifdef CONFIG_NET_INGRESS
2049 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2050
2051 void net_inc_ingress_queue(void)
2052 {
2053         static_branch_inc(&ingress_needed_key);
2054 }
2055 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2056
2057 void net_dec_ingress_queue(void)
2058 {
2059         static_branch_dec(&ingress_needed_key);
2060 }
2061 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2062 #endif
2063
2064 #ifdef CONFIG_NET_EGRESS
2065 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2066
2067 void net_inc_egress_queue(void)
2068 {
2069         static_branch_inc(&egress_needed_key);
2070 }
2071 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2072
2073 void net_dec_egress_queue(void)
2074 {
2075         static_branch_dec(&egress_needed_key);
2076 }
2077 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2078 #endif
2079
2080 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2081 #ifdef CONFIG_JUMP_LABEL
2082 static atomic_t netstamp_needed_deferred;
2083 static atomic_t netstamp_wanted;
2084 static void netstamp_clear(struct work_struct *work)
2085 {
2086         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2087         int wanted;
2088
2089         wanted = atomic_add_return(deferred, &netstamp_wanted);
2090         if (wanted > 0)
2091                 static_branch_enable(&netstamp_needed_key);
2092         else
2093                 static_branch_disable(&netstamp_needed_key);
2094 }
2095 static DECLARE_WORK(netstamp_work, netstamp_clear);
2096 #endif
2097
2098 void net_enable_timestamp(void)
2099 {
2100 #ifdef CONFIG_JUMP_LABEL
2101         int wanted;
2102
2103         while (1) {
2104                 wanted = atomic_read(&netstamp_wanted);
2105                 if (wanted <= 0)
2106                         break;
2107                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2108                         return;
2109         }
2110         atomic_inc(&netstamp_needed_deferred);
2111         schedule_work(&netstamp_work);
2112 #else
2113         static_branch_inc(&netstamp_needed_key);
2114 #endif
2115 }
2116 EXPORT_SYMBOL(net_enable_timestamp);
2117
2118 void net_disable_timestamp(void)
2119 {
2120 #ifdef CONFIG_JUMP_LABEL
2121         int wanted;
2122
2123         while (1) {
2124                 wanted = atomic_read(&netstamp_wanted);
2125                 if (wanted <= 1)
2126                         break;
2127                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2128                         return;
2129         }
2130         atomic_dec(&netstamp_needed_deferred);
2131         schedule_work(&netstamp_work);
2132 #else
2133         static_branch_dec(&netstamp_needed_key);
2134 #endif
2135 }
2136 EXPORT_SYMBOL(net_disable_timestamp);
2137
2138 static inline void net_timestamp_set(struct sk_buff *skb)
2139 {
2140         skb->tstamp = 0;
2141         if (static_branch_unlikely(&netstamp_needed_key))
2142                 __net_timestamp(skb);
2143 }
2144
2145 #define net_timestamp_check(COND, SKB)                          \
2146         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2147                 if ((COND) && !(SKB)->tstamp)                   \
2148                         __net_timestamp(SKB);                   \
2149         }                                                       \
2150
2151 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2152 {
2153         return __is_skb_forwardable(dev, skb, true);
2154 }
2155 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2156
2157 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2158                               bool check_mtu)
2159 {
2160         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2161
2162         if (likely(!ret)) {
2163                 skb->protocol = eth_type_trans(skb, dev);
2164                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2165         }
2166
2167         return ret;
2168 }
2169
2170 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2171 {
2172         return __dev_forward_skb2(dev, skb, true);
2173 }
2174 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2175
2176 /**
2177  * dev_forward_skb - loopback an skb to another netif
2178  *
2179  * @dev: destination network device
2180  * @skb: buffer to forward
2181  *
2182  * return values:
2183  *      NET_RX_SUCCESS  (no congestion)
2184  *      NET_RX_DROP     (packet was dropped, but freed)
2185  *
2186  * dev_forward_skb can be used for injecting an skb from the
2187  * start_xmit function of one device into the receive queue
2188  * of another device.
2189  *
2190  * The receiving device may be in another namespace, so
2191  * we have to clear all information in the skb that could
2192  * impact namespace isolation.
2193  */
2194 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2195 {
2196         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2197 }
2198 EXPORT_SYMBOL_GPL(dev_forward_skb);
2199
2200 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2201 {
2202         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2203 }
2204
2205 static inline int deliver_skb(struct sk_buff *skb,
2206                               struct packet_type *pt_prev,
2207                               struct net_device *orig_dev)
2208 {
2209         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2210                 return -ENOMEM;
2211         refcount_inc(&skb->users);
2212         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2213 }
2214
2215 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2216                                           struct packet_type **pt,
2217                                           struct net_device *orig_dev,
2218                                           __be16 type,
2219                                           struct list_head *ptype_list)
2220 {
2221         struct packet_type *ptype, *pt_prev = *pt;
2222
2223         list_for_each_entry_rcu(ptype, ptype_list, list) {
2224                 if (ptype->type != type)
2225                         continue;
2226                 if (pt_prev)
2227                         deliver_skb(skb, pt_prev, orig_dev);
2228                 pt_prev = ptype;
2229         }
2230         *pt = pt_prev;
2231 }
2232
2233 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2234 {
2235         if (!ptype->af_packet_priv || !skb->sk)
2236                 return false;
2237
2238         if (ptype->id_match)
2239                 return ptype->id_match(ptype, skb->sk);
2240         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2241                 return true;
2242
2243         return false;
2244 }
2245
2246 /**
2247  * dev_nit_active - return true if any network interface taps are in use
2248  *
2249  * @dev: network device to check for the presence of taps
2250  */
2251 bool dev_nit_active(struct net_device *dev)
2252 {
2253         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2254 }
2255 EXPORT_SYMBOL_GPL(dev_nit_active);
2256
2257 /*
2258  *      Support routine. Sends outgoing frames to any network
2259  *      taps currently in use.
2260  */
2261
2262 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2263 {
2264         struct packet_type *ptype;
2265         struct sk_buff *skb2 = NULL;
2266         struct packet_type *pt_prev = NULL;
2267         struct list_head *ptype_list = &ptype_all;
2268
2269         rcu_read_lock();
2270 again:
2271         list_for_each_entry_rcu(ptype, ptype_list, list) {
2272                 if (ptype->ignore_outgoing)
2273                         continue;
2274
2275                 /* Never send packets back to the socket
2276                  * they originated from - MvS (miquels@drinkel.ow.org)
2277                  */
2278                 if (skb_loop_sk(ptype, skb))
2279                         continue;
2280
2281                 if (pt_prev) {
2282                         deliver_skb(skb2, pt_prev, skb->dev);
2283                         pt_prev = ptype;
2284                         continue;
2285                 }
2286
2287                 /* need to clone skb, done only once */
2288                 skb2 = skb_clone(skb, GFP_ATOMIC);
2289                 if (!skb2)
2290                         goto out_unlock;
2291
2292                 net_timestamp_set(skb2);
2293
2294                 /* skb->nh should be correctly
2295                  * set by sender, so that the second statement is
2296                  * just protection against buggy protocols.
2297                  */
2298                 skb_reset_mac_header(skb2);
2299
2300                 if (skb_network_header(skb2) < skb2->data ||
2301                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2302                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2303                                              ntohs(skb2->protocol),
2304                                              dev->name);
2305                         skb_reset_network_header(skb2);
2306                 }
2307
2308                 skb2->transport_header = skb2->network_header;
2309                 skb2->pkt_type = PACKET_OUTGOING;
2310                 pt_prev = ptype;
2311         }
2312
2313         if (ptype_list == &ptype_all) {
2314                 ptype_list = &dev->ptype_all;
2315                 goto again;
2316         }
2317 out_unlock:
2318         if (pt_prev) {
2319                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2320                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2321                 else
2322                         kfree_skb(skb2);
2323         }
2324         rcu_read_unlock();
2325 }
2326 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2327
2328 /**
2329  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2330  * @dev: Network device
2331  * @txq: number of queues available
2332  *
2333  * If real_num_tx_queues is changed the tc mappings may no longer be
2334  * valid. To resolve this verify the tc mapping remains valid and if
2335  * not NULL the mapping. With no priorities mapping to this
2336  * offset/count pair it will no longer be used. In the worst case TC0
2337  * is invalid nothing can be done so disable priority mappings. If is
2338  * expected that drivers will fix this mapping if they can before
2339  * calling netif_set_real_num_tx_queues.
2340  */
2341 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2342 {
2343         int i;
2344         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2345
2346         /* If TC0 is invalidated disable TC mapping */
2347         if (tc->offset + tc->count > txq) {
2348                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2349                 dev->num_tc = 0;
2350                 return;
2351         }
2352
2353         /* Invalidated prio to tc mappings set to TC0 */
2354         for (i = 1; i < TC_BITMASK + 1; i++) {
2355                 int q = netdev_get_prio_tc_map(dev, i);
2356
2357                 tc = &dev->tc_to_txq[q];
2358                 if (tc->offset + tc->count > txq) {
2359                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2360                                 i, q);
2361                         netdev_set_prio_tc_map(dev, i, 0);
2362                 }
2363         }
2364 }
2365
2366 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2367 {
2368         if (dev->num_tc) {
2369                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2370                 int i;
2371
2372                 /* walk through the TCs and see if it falls into any of them */
2373                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2374                         if ((txq - tc->offset) < tc->count)
2375                                 return i;
2376                 }
2377
2378                 /* didn't find it, just return -1 to indicate no match */
2379                 return -1;
2380         }
2381
2382         return 0;
2383 }
2384 EXPORT_SYMBOL(netdev_txq_to_tc);
2385
2386 #ifdef CONFIG_XPS
2387 static struct static_key xps_needed __read_mostly;
2388 static struct static_key xps_rxqs_needed __read_mostly;
2389 static DEFINE_MUTEX(xps_map_mutex);
2390 #define xmap_dereference(P)             \
2391         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2392
2393 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2394                              struct xps_dev_maps *old_maps, int tci, u16 index)
2395 {
2396         struct xps_map *map = NULL;
2397         int pos;
2398
2399         if (dev_maps)
2400                 map = xmap_dereference(dev_maps->attr_map[tci]);
2401         if (!map)
2402                 return false;
2403
2404         for (pos = map->len; pos--;) {
2405                 if (map->queues[pos] != index)
2406                         continue;
2407
2408                 if (map->len > 1) {
2409                         map->queues[pos] = map->queues[--map->len];
2410                         break;
2411                 }
2412
2413                 if (old_maps)
2414                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2415                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2416                 kfree_rcu(map, rcu);
2417                 return false;
2418         }
2419
2420         return true;
2421 }
2422
2423 static bool remove_xps_queue_cpu(struct net_device *dev,
2424                                  struct xps_dev_maps *dev_maps,
2425                                  int cpu, u16 offset, u16 count)
2426 {
2427         int num_tc = dev_maps->num_tc;
2428         bool active = false;
2429         int tci;
2430
2431         for (tci = cpu * num_tc; num_tc--; tci++) {
2432                 int i, j;
2433
2434                 for (i = count, j = offset; i--; j++) {
2435                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2436                                 break;
2437                 }
2438
2439                 active |= i < 0;
2440         }
2441
2442         return active;
2443 }
2444
2445 static void reset_xps_maps(struct net_device *dev,
2446                            struct xps_dev_maps *dev_maps,
2447                            enum xps_map_type type)
2448 {
2449         static_key_slow_dec_cpuslocked(&xps_needed);
2450         if (type == XPS_RXQS)
2451                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2452
2453         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2454
2455         kfree_rcu(dev_maps, rcu);
2456 }
2457
2458 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2459                            u16 offset, u16 count)
2460 {
2461         struct xps_dev_maps *dev_maps;
2462         bool active = false;
2463         int i, j;
2464
2465         dev_maps = xmap_dereference(dev->xps_maps[type]);
2466         if (!dev_maps)
2467                 return;
2468
2469         for (j = 0; j < dev_maps->nr_ids; j++)
2470                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2471         if (!active)
2472                 reset_xps_maps(dev, dev_maps, type);
2473
2474         if (type == XPS_CPUS) {
2475                 for (i = offset + (count - 1); count--; i--)
2476                         netdev_queue_numa_node_write(
2477                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2478         }
2479 }
2480
2481 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2482                                    u16 count)
2483 {
2484         if (!static_key_false(&xps_needed))
2485                 return;
2486
2487         cpus_read_lock();
2488         mutex_lock(&xps_map_mutex);
2489
2490         if (static_key_false(&xps_rxqs_needed))
2491                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2492
2493         clean_xps_maps(dev, XPS_CPUS, offset, count);
2494
2495         mutex_unlock(&xps_map_mutex);
2496         cpus_read_unlock();
2497 }
2498
2499 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2500 {
2501         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2502 }
2503
2504 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2505                                       u16 index, bool is_rxqs_map)
2506 {
2507         struct xps_map *new_map;
2508         int alloc_len = XPS_MIN_MAP_ALLOC;
2509         int i, pos;
2510
2511         for (pos = 0; map && pos < map->len; pos++) {
2512                 if (map->queues[pos] != index)
2513                         continue;
2514                 return map;
2515         }
2516
2517         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2518         if (map) {
2519                 if (pos < map->alloc_len)
2520                         return map;
2521
2522                 alloc_len = map->alloc_len * 2;
2523         }
2524
2525         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2526          *  map
2527          */
2528         if (is_rxqs_map)
2529                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2530         else
2531                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2532                                        cpu_to_node(attr_index));
2533         if (!new_map)
2534                 return NULL;
2535
2536         for (i = 0; i < pos; i++)
2537                 new_map->queues[i] = map->queues[i];
2538         new_map->alloc_len = alloc_len;
2539         new_map->len = pos;
2540
2541         return new_map;
2542 }
2543
2544 /* Copy xps maps at a given index */
2545 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2546                               struct xps_dev_maps *new_dev_maps, int index,
2547                               int tc, bool skip_tc)
2548 {
2549         int i, tci = index * dev_maps->num_tc;
2550         struct xps_map *map;
2551
2552         /* copy maps belonging to foreign traffic classes */
2553         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2554                 if (i == tc && skip_tc)
2555                         continue;
2556
2557                 /* fill in the new device map from the old device map */
2558                 map = xmap_dereference(dev_maps->attr_map[tci]);
2559                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2560         }
2561 }
2562
2563 /* Must be called under cpus_read_lock */
2564 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2565                           u16 index, enum xps_map_type type)
2566 {
2567         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2568         const unsigned long *online_mask = NULL;
2569         bool active = false, copy = false;
2570         int i, j, tci, numa_node_id = -2;
2571         int maps_sz, num_tc = 1, tc = 0;
2572         struct xps_map *map, *new_map;
2573         unsigned int nr_ids;
2574
2575         if (dev->num_tc) {
2576                 /* Do not allow XPS on subordinate device directly */
2577                 num_tc = dev->num_tc;
2578                 if (num_tc < 0)
2579                         return -EINVAL;
2580
2581                 /* If queue belongs to subordinate dev use its map */
2582                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2583
2584                 tc = netdev_txq_to_tc(dev, index);
2585                 if (tc < 0)
2586                         return -EINVAL;
2587         }
2588
2589         mutex_lock(&xps_map_mutex);
2590
2591         dev_maps = xmap_dereference(dev->xps_maps[type]);
2592         if (type == XPS_RXQS) {
2593                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2594                 nr_ids = dev->num_rx_queues;
2595         } else {
2596                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2597                 if (num_possible_cpus() > 1)
2598                         online_mask = cpumask_bits(cpu_online_mask);
2599                 nr_ids = nr_cpu_ids;
2600         }
2601
2602         if (maps_sz < L1_CACHE_BYTES)
2603                 maps_sz = L1_CACHE_BYTES;
2604
2605         /* The old dev_maps could be larger or smaller than the one we're
2606          * setting up now, as dev->num_tc or nr_ids could have been updated in
2607          * between. We could try to be smart, but let's be safe instead and only
2608          * copy foreign traffic classes if the two map sizes match.
2609          */
2610         if (dev_maps &&
2611             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2612                 copy = true;
2613
2614         /* allocate memory for queue storage */
2615         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2616              j < nr_ids;) {
2617                 if (!new_dev_maps) {
2618                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2619                         if (!new_dev_maps) {
2620                                 mutex_unlock(&xps_map_mutex);
2621                                 return -ENOMEM;
2622                         }
2623
2624                         new_dev_maps->nr_ids = nr_ids;
2625                         new_dev_maps->num_tc = num_tc;
2626                 }
2627
2628                 tci = j * num_tc + tc;
2629                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2630
2631                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2632                 if (!map)
2633                         goto error;
2634
2635                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2636         }
2637
2638         if (!new_dev_maps)
2639                 goto out_no_new_maps;
2640
2641         if (!dev_maps) {
2642                 /* Increment static keys at most once per type */
2643                 static_key_slow_inc_cpuslocked(&xps_needed);
2644                 if (type == XPS_RXQS)
2645                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2646         }
2647
2648         for (j = 0; j < nr_ids; j++) {
2649                 bool skip_tc = false;
2650
2651                 tci = j * num_tc + tc;
2652                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2653                     netif_attr_test_online(j, online_mask, nr_ids)) {
2654                         /* add tx-queue to CPU/rx-queue maps */
2655                         int pos = 0;
2656
2657                         skip_tc = true;
2658
2659                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2660                         while ((pos < map->len) && (map->queues[pos] != index))
2661                                 pos++;
2662
2663                         if (pos == map->len)
2664                                 map->queues[map->len++] = index;
2665 #ifdef CONFIG_NUMA
2666                         if (type == XPS_CPUS) {
2667                                 if (numa_node_id == -2)
2668                                         numa_node_id = cpu_to_node(j);
2669                                 else if (numa_node_id != cpu_to_node(j))
2670                                         numa_node_id = -1;
2671                         }
2672 #endif
2673                 }
2674
2675                 if (copy)
2676                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2677                                           skip_tc);
2678         }
2679
2680         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2681
2682         /* Cleanup old maps */
2683         if (!dev_maps)
2684                 goto out_no_old_maps;
2685
2686         for (j = 0; j < dev_maps->nr_ids; j++) {
2687                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2688                         map = xmap_dereference(dev_maps->attr_map[tci]);
2689                         if (!map)
2690                                 continue;
2691
2692                         if (copy) {
2693                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2694                                 if (map == new_map)
2695                                         continue;
2696                         }
2697
2698                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2699                         kfree_rcu(map, rcu);
2700                 }
2701         }
2702
2703         old_dev_maps = dev_maps;
2704
2705 out_no_old_maps:
2706         dev_maps = new_dev_maps;
2707         active = true;
2708
2709 out_no_new_maps:
2710         if (type == XPS_CPUS)
2711                 /* update Tx queue numa node */
2712                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2713                                              (numa_node_id >= 0) ?
2714                                              numa_node_id : NUMA_NO_NODE);
2715
2716         if (!dev_maps)
2717                 goto out_no_maps;
2718
2719         /* removes tx-queue from unused CPUs/rx-queues */
2720         for (j = 0; j < dev_maps->nr_ids; j++) {
2721                 tci = j * dev_maps->num_tc;
2722
2723                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2724                         if (i == tc &&
2725                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2726                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2727                                 continue;
2728
2729                         active |= remove_xps_queue(dev_maps,
2730                                                    copy ? old_dev_maps : NULL,
2731                                                    tci, index);
2732                 }
2733         }
2734
2735         if (old_dev_maps)
2736                 kfree_rcu(old_dev_maps, rcu);
2737
2738         /* free map if not active */
2739         if (!active)
2740                 reset_xps_maps(dev, dev_maps, type);
2741
2742 out_no_maps:
2743         mutex_unlock(&xps_map_mutex);
2744
2745         return 0;
2746 error:
2747         /* remove any maps that we added */
2748         for (j = 0; j < nr_ids; j++) {
2749                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2750                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2751                         map = copy ?
2752                               xmap_dereference(dev_maps->attr_map[tci]) :
2753                               NULL;
2754                         if (new_map && new_map != map)
2755                                 kfree(new_map);
2756                 }
2757         }
2758
2759         mutex_unlock(&xps_map_mutex);
2760
2761         kfree(new_dev_maps);
2762         return -ENOMEM;
2763 }
2764 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2765
2766 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2767                         u16 index)
2768 {
2769         int ret;
2770
2771         cpus_read_lock();
2772         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2773         cpus_read_unlock();
2774
2775         return ret;
2776 }
2777 EXPORT_SYMBOL(netif_set_xps_queue);
2778
2779 #endif
2780 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2781 {
2782         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2783
2784         /* Unbind any subordinate channels */
2785         while (txq-- != &dev->_tx[0]) {
2786                 if (txq->sb_dev)
2787                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2788         }
2789 }
2790
2791 void netdev_reset_tc(struct net_device *dev)
2792 {
2793 #ifdef CONFIG_XPS
2794         netif_reset_xps_queues_gt(dev, 0);
2795 #endif
2796         netdev_unbind_all_sb_channels(dev);
2797
2798         /* Reset TC configuration of device */
2799         dev->num_tc = 0;
2800         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2801         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2802 }
2803 EXPORT_SYMBOL(netdev_reset_tc);
2804
2805 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2806 {
2807         if (tc >= dev->num_tc)
2808                 return -EINVAL;
2809
2810 #ifdef CONFIG_XPS
2811         netif_reset_xps_queues(dev, offset, count);
2812 #endif
2813         dev->tc_to_txq[tc].count = count;
2814         dev->tc_to_txq[tc].offset = offset;
2815         return 0;
2816 }
2817 EXPORT_SYMBOL(netdev_set_tc_queue);
2818
2819 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2820 {
2821         if (num_tc > TC_MAX_QUEUE)
2822                 return -EINVAL;
2823
2824 #ifdef CONFIG_XPS
2825         netif_reset_xps_queues_gt(dev, 0);
2826 #endif
2827         netdev_unbind_all_sb_channels(dev);
2828
2829         dev->num_tc = num_tc;
2830         return 0;
2831 }
2832 EXPORT_SYMBOL(netdev_set_num_tc);
2833
2834 void netdev_unbind_sb_channel(struct net_device *dev,
2835                               struct net_device *sb_dev)
2836 {
2837         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2838
2839 #ifdef CONFIG_XPS
2840         netif_reset_xps_queues_gt(sb_dev, 0);
2841 #endif
2842         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2843         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2844
2845         while (txq-- != &dev->_tx[0]) {
2846                 if (txq->sb_dev == sb_dev)
2847                         txq->sb_dev = NULL;
2848         }
2849 }
2850 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2851
2852 int netdev_bind_sb_channel_queue(struct net_device *dev,
2853                                  struct net_device *sb_dev,
2854                                  u8 tc, u16 count, u16 offset)
2855 {
2856         /* Make certain the sb_dev and dev are already configured */
2857         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2858                 return -EINVAL;
2859
2860         /* We cannot hand out queues we don't have */
2861         if ((offset + count) > dev->real_num_tx_queues)
2862                 return -EINVAL;
2863
2864         /* Record the mapping */
2865         sb_dev->tc_to_txq[tc].count = count;
2866         sb_dev->tc_to_txq[tc].offset = offset;
2867
2868         /* Provide a way for Tx queue to find the tc_to_txq map or
2869          * XPS map for itself.
2870          */
2871         while (count--)
2872                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2873
2874         return 0;
2875 }
2876 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2877
2878 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2879 {
2880         /* Do not use a multiqueue device to represent a subordinate channel */
2881         if (netif_is_multiqueue(dev))
2882                 return -ENODEV;
2883
2884         /* We allow channels 1 - 32767 to be used for subordinate channels.
2885          * Channel 0 is meant to be "native" mode and used only to represent
2886          * the main root device. We allow writing 0 to reset the device back
2887          * to normal mode after being used as a subordinate channel.
2888          */
2889         if (channel > S16_MAX)
2890                 return -EINVAL;
2891
2892         dev->num_tc = -channel;
2893
2894         return 0;
2895 }
2896 EXPORT_SYMBOL(netdev_set_sb_channel);
2897
2898 /*
2899  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2900  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2901  */
2902 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2903 {
2904         bool disabling;
2905         int rc;
2906
2907         disabling = txq < dev->real_num_tx_queues;
2908
2909         if (txq < 1 || txq > dev->num_tx_queues)
2910                 return -EINVAL;
2911
2912         if (dev->reg_state == NETREG_REGISTERED ||
2913             dev->reg_state == NETREG_UNREGISTERING) {
2914                 ASSERT_RTNL();
2915
2916                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2917                                                   txq);
2918                 if (rc)
2919                         return rc;
2920
2921                 if (dev->num_tc)
2922                         netif_setup_tc(dev, txq);
2923
2924                 dev_qdisc_change_real_num_tx(dev, txq);
2925
2926                 dev->real_num_tx_queues = txq;
2927
2928                 if (disabling) {
2929                         synchronize_net();
2930                         qdisc_reset_all_tx_gt(dev, txq);
2931 #ifdef CONFIG_XPS
2932                         netif_reset_xps_queues_gt(dev, txq);
2933 #endif
2934                 }
2935         } else {
2936                 dev->real_num_tx_queues = txq;
2937         }
2938
2939         return 0;
2940 }
2941 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2942
2943 #ifdef CONFIG_SYSFS
2944 /**
2945  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2946  *      @dev: Network device
2947  *      @rxq: Actual number of RX queues
2948  *
2949  *      This must be called either with the rtnl_lock held or before
2950  *      registration of the net device.  Returns 0 on success, or a
2951  *      negative error code.  If called before registration, it always
2952  *      succeeds.
2953  */
2954 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2955 {
2956         int rc;
2957
2958         if (rxq < 1 || rxq > dev->num_rx_queues)
2959                 return -EINVAL;
2960
2961         if (dev->reg_state == NETREG_REGISTERED) {
2962                 ASSERT_RTNL();
2963
2964                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2965                                                   rxq);
2966                 if (rc)
2967                         return rc;
2968         }
2969
2970         dev->real_num_rx_queues = rxq;
2971         return 0;
2972 }
2973 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2974 #endif
2975
2976 /**
2977  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2978  *      @dev: Network device
2979  *      @txq: Actual number of TX queues
2980  *      @rxq: Actual number of RX queues
2981  *
2982  *      Set the real number of both TX and RX queues.
2983  *      Does nothing if the number of queues is already correct.
2984  */
2985 int netif_set_real_num_queues(struct net_device *dev,
2986                               unsigned int txq, unsigned int rxq)
2987 {
2988         unsigned int old_rxq = dev->real_num_rx_queues;
2989         int err;
2990
2991         if (txq < 1 || txq > dev->num_tx_queues ||
2992             rxq < 1 || rxq > dev->num_rx_queues)
2993                 return -EINVAL;
2994
2995         /* Start from increases, so the error path only does decreases -
2996          * decreases can't fail.
2997          */
2998         if (rxq > dev->real_num_rx_queues) {
2999                 err = netif_set_real_num_rx_queues(dev, rxq);
3000                 if (err)
3001                         return err;
3002         }
3003         if (txq > dev->real_num_tx_queues) {
3004                 err = netif_set_real_num_tx_queues(dev, txq);
3005                 if (err)
3006                         goto undo_rx;
3007         }
3008         if (rxq < dev->real_num_rx_queues)
3009                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3010         if (txq < dev->real_num_tx_queues)
3011                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3012
3013         return 0;
3014 undo_rx:
3015         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3016         return err;
3017 }
3018 EXPORT_SYMBOL(netif_set_real_num_queues);
3019
3020 /**
3021  * netif_get_num_default_rss_queues - default number of RSS queues
3022  *
3023  * This routine should set an upper limit on the number of RSS queues
3024  * used by default by multiqueue devices.
3025  */
3026 int netif_get_num_default_rss_queues(void)
3027 {
3028         return is_kdump_kernel() ?
3029                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3030 }
3031 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3032
3033 static void __netif_reschedule(struct Qdisc *q)
3034 {
3035         struct softnet_data *sd;
3036         unsigned long flags;
3037
3038         local_irq_save(flags);
3039         sd = this_cpu_ptr(&softnet_data);
3040         q->next_sched = NULL;
3041         *sd->output_queue_tailp = q;
3042         sd->output_queue_tailp = &q->next_sched;
3043         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3044         local_irq_restore(flags);
3045 }
3046
3047 void __netif_schedule(struct Qdisc *q)
3048 {
3049         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3050                 __netif_reschedule(q);
3051 }
3052 EXPORT_SYMBOL(__netif_schedule);
3053
3054 struct dev_kfree_skb_cb {
3055         enum skb_free_reason reason;
3056 };
3057
3058 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3059 {
3060         return (struct dev_kfree_skb_cb *)skb->cb;
3061 }
3062
3063 void netif_schedule_queue(struct netdev_queue *txq)
3064 {
3065         rcu_read_lock();
3066         if (!netif_xmit_stopped(txq)) {
3067                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3068
3069                 __netif_schedule(q);
3070         }
3071         rcu_read_unlock();
3072 }
3073 EXPORT_SYMBOL(netif_schedule_queue);
3074
3075 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3076 {
3077         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3078                 struct Qdisc *q;
3079
3080                 rcu_read_lock();
3081                 q = rcu_dereference(dev_queue->qdisc);
3082                 __netif_schedule(q);
3083                 rcu_read_unlock();
3084         }
3085 }
3086 EXPORT_SYMBOL(netif_tx_wake_queue);
3087
3088 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3089 {
3090         unsigned long flags;
3091
3092         if (unlikely(!skb))
3093                 return;
3094
3095         if (likely(refcount_read(&skb->users) == 1)) {
3096                 smp_rmb();
3097                 refcount_set(&skb->users, 0);
3098         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3099                 return;
3100         }
3101         get_kfree_skb_cb(skb)->reason = reason;
3102         local_irq_save(flags);
3103         skb->next = __this_cpu_read(softnet_data.completion_queue);
3104         __this_cpu_write(softnet_data.completion_queue, skb);
3105         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3106         local_irq_restore(flags);
3107 }
3108 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3109
3110 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3111 {
3112         if (in_hardirq() || irqs_disabled())
3113                 __dev_kfree_skb_irq(skb, reason);
3114         else
3115                 dev_kfree_skb(skb);
3116 }
3117 EXPORT_SYMBOL(__dev_kfree_skb_any);
3118
3119
3120 /**
3121  * netif_device_detach - mark device as removed
3122  * @dev: network device
3123  *
3124  * Mark device as removed from system and therefore no longer available.
3125  */
3126 void netif_device_detach(struct net_device *dev)
3127 {
3128         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3129             netif_running(dev)) {
3130                 netif_tx_stop_all_queues(dev);
3131         }
3132 }
3133 EXPORT_SYMBOL(netif_device_detach);
3134
3135 /**
3136  * netif_device_attach - mark device as attached
3137  * @dev: network device
3138  *
3139  * Mark device as attached from system and restart if needed.
3140  */
3141 void netif_device_attach(struct net_device *dev)
3142 {
3143         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3144             netif_running(dev)) {
3145                 netif_tx_wake_all_queues(dev);
3146                 __netdev_watchdog_up(dev);
3147         }
3148 }
3149 EXPORT_SYMBOL(netif_device_attach);
3150
3151 /*
3152  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3153  * to be used as a distribution range.
3154  */
3155 static u16 skb_tx_hash(const struct net_device *dev,
3156                        const struct net_device *sb_dev,
3157                        struct sk_buff *skb)
3158 {
3159         u32 hash;
3160         u16 qoffset = 0;
3161         u16 qcount = dev->real_num_tx_queues;
3162
3163         if (dev->num_tc) {
3164                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3165
3166                 qoffset = sb_dev->tc_to_txq[tc].offset;
3167                 qcount = sb_dev->tc_to_txq[tc].count;
3168         }
3169
3170         if (skb_rx_queue_recorded(skb)) {
3171                 hash = skb_get_rx_queue(skb);
3172                 if (hash >= qoffset)
3173                         hash -= qoffset;
3174                 while (unlikely(hash >= qcount))
3175                         hash -= qcount;
3176                 return hash + qoffset;
3177         }
3178
3179         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3180 }
3181
3182 static void skb_warn_bad_offload(const struct sk_buff *skb)
3183 {
3184         static const netdev_features_t null_features;
3185         struct net_device *dev = skb->dev;
3186         const char *name = "";
3187
3188         if (!net_ratelimit())
3189                 return;
3190
3191         if (dev) {
3192                 if (dev->dev.parent)
3193                         name = dev_driver_string(dev->dev.parent);
3194                 else
3195                         name = netdev_name(dev);
3196         }
3197         skb_dump(KERN_WARNING, skb, false);
3198         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3199              name, dev ? &dev->features : &null_features,
3200              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3201 }
3202
3203 /*
3204  * Invalidate hardware checksum when packet is to be mangled, and
3205  * complete checksum manually on outgoing path.
3206  */
3207 int skb_checksum_help(struct sk_buff *skb)
3208 {
3209         __wsum csum;
3210         int ret = 0, offset;
3211
3212         if (skb->ip_summed == CHECKSUM_COMPLETE)
3213                 goto out_set_summed;
3214
3215         if (unlikely(skb_is_gso(skb))) {
3216                 skb_warn_bad_offload(skb);
3217                 return -EINVAL;
3218         }
3219
3220         /* Before computing a checksum, we should make sure no frag could
3221          * be modified by an external entity : checksum could be wrong.
3222          */
3223         if (skb_has_shared_frag(skb)) {
3224                 ret = __skb_linearize(skb);
3225                 if (ret)
3226                         goto out;
3227         }
3228
3229         offset = skb_checksum_start_offset(skb);
3230         BUG_ON(offset >= skb_headlen(skb));
3231         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3232
3233         offset += skb->csum_offset;
3234         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3235
3236         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3237         if (ret)
3238                 goto out;
3239
3240         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3241 out_set_summed:
3242         skb->ip_summed = CHECKSUM_NONE;
3243 out:
3244         return ret;
3245 }
3246 EXPORT_SYMBOL(skb_checksum_help);
3247
3248 int skb_crc32c_csum_help(struct sk_buff *skb)
3249 {
3250         __le32 crc32c_csum;
3251         int ret = 0, offset, start;
3252
3253         if (skb->ip_summed != CHECKSUM_PARTIAL)
3254                 goto out;
3255
3256         if (unlikely(skb_is_gso(skb)))
3257                 goto out;
3258
3259         /* Before computing a checksum, we should make sure no frag could
3260          * be modified by an external entity : checksum could be wrong.
3261          */
3262         if (unlikely(skb_has_shared_frag(skb))) {
3263                 ret = __skb_linearize(skb);
3264                 if (ret)
3265                         goto out;
3266         }
3267         start = skb_checksum_start_offset(skb);
3268         offset = start + offsetof(struct sctphdr, checksum);
3269         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3270                 ret = -EINVAL;
3271                 goto out;
3272         }
3273
3274         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3275         if (ret)
3276                 goto out;
3277
3278         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3279                                                   skb->len - start, ~(__u32)0,
3280                                                   crc32c_csum_stub));
3281         *(__le32 *)(skb->data + offset) = crc32c_csum;
3282         skb->ip_summed = CHECKSUM_NONE;
3283         skb->csum_not_inet = 0;
3284 out:
3285         return ret;
3286 }
3287
3288 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3289 {
3290         __be16 type = skb->protocol;
3291
3292         /* Tunnel gso handlers can set protocol to ethernet. */
3293         if (type == htons(ETH_P_TEB)) {
3294                 struct ethhdr *eth;
3295
3296                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3297                         return 0;
3298
3299                 eth = (struct ethhdr *)skb->data;
3300                 type = eth->h_proto;
3301         }
3302
3303         return __vlan_get_protocol(skb, type, depth);
3304 }
3305
3306 /**
3307  *      skb_mac_gso_segment - mac layer segmentation handler.
3308  *      @skb: buffer to segment
3309  *      @features: features for the output path (see dev->features)
3310  */
3311 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3312                                     netdev_features_t features)
3313 {
3314         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3315         struct packet_offload *ptype;
3316         int vlan_depth = skb->mac_len;
3317         __be16 type = skb_network_protocol(skb, &vlan_depth);
3318
3319         if (unlikely(!type))
3320                 return ERR_PTR(-EINVAL);
3321
3322         __skb_pull(skb, vlan_depth);
3323
3324         rcu_read_lock();
3325         list_for_each_entry_rcu(ptype, &offload_base, list) {
3326                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3327                         segs = ptype->callbacks.gso_segment(skb, features);
3328                         break;
3329                 }
3330         }
3331         rcu_read_unlock();
3332
3333         __skb_push(skb, skb->data - skb_mac_header(skb));
3334
3335         return segs;
3336 }
3337 EXPORT_SYMBOL(skb_mac_gso_segment);
3338
3339
3340 /* openvswitch calls this on rx path, so we need a different check.
3341  */
3342 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3343 {
3344         if (tx_path)
3345                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3346                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3347
3348         return skb->ip_summed == CHECKSUM_NONE;
3349 }
3350
3351 /**
3352  *      __skb_gso_segment - Perform segmentation on skb.
3353  *      @skb: buffer to segment
3354  *      @features: features for the output path (see dev->features)
3355  *      @tx_path: whether it is called in TX path
3356  *
3357  *      This function segments the given skb and returns a list of segments.
3358  *
3359  *      It may return NULL if the skb requires no segmentation.  This is
3360  *      only possible when GSO is used for verifying header integrity.
3361  *
3362  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3363  */
3364 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3365                                   netdev_features_t features, bool tx_path)
3366 {
3367         struct sk_buff *segs;
3368
3369         if (unlikely(skb_needs_check(skb, tx_path))) {
3370                 int err;
3371
3372                 /* We're going to init ->check field in TCP or UDP header */
3373                 err = skb_cow_head(skb, 0);
3374                 if (err < 0)
3375                         return ERR_PTR(err);
3376         }
3377
3378         /* Only report GSO partial support if it will enable us to
3379          * support segmentation on this frame without needing additional
3380          * work.
3381          */
3382         if (features & NETIF_F_GSO_PARTIAL) {
3383                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3384                 struct net_device *dev = skb->dev;
3385
3386                 partial_features |= dev->features & dev->gso_partial_features;
3387                 if (!skb_gso_ok(skb, features | partial_features))
3388                         features &= ~NETIF_F_GSO_PARTIAL;
3389         }
3390
3391         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3392                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3393
3394         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3395         SKB_GSO_CB(skb)->encap_level = 0;
3396
3397         skb_reset_mac_header(skb);
3398         skb_reset_mac_len(skb);
3399
3400         segs = skb_mac_gso_segment(skb, features);
3401
3402         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3403                 skb_warn_bad_offload(skb);
3404
3405         return segs;
3406 }
3407 EXPORT_SYMBOL(__skb_gso_segment);
3408
3409 /* Take action when hardware reception checksum errors are detected. */
3410 #ifdef CONFIG_BUG
3411 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3412 {
3413         pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3414         skb_dump(KERN_ERR, skb, true);
3415         dump_stack();
3416 }
3417
3418 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3419 {
3420         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3421 }
3422 EXPORT_SYMBOL(netdev_rx_csum_fault);
3423 #endif
3424
3425 /* XXX: check that highmem exists at all on the given machine. */
3426 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3427 {
3428 #ifdef CONFIG_HIGHMEM
3429         int i;
3430
3431         if (!(dev->features & NETIF_F_HIGHDMA)) {
3432                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3433                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3434
3435                         if (PageHighMem(skb_frag_page(frag)))
3436                                 return 1;
3437                 }
3438         }
3439 #endif
3440         return 0;
3441 }
3442
3443 /* If MPLS offload request, verify we are testing hardware MPLS features
3444  * instead of standard features for the netdev.
3445  */
3446 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3447 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3448                                            netdev_features_t features,
3449                                            __be16 type)
3450 {
3451         if (eth_p_mpls(type))
3452                 features &= skb->dev->mpls_features;
3453
3454         return features;
3455 }
3456 #else
3457 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3458                                            netdev_features_t features,
3459                                            __be16 type)
3460 {
3461         return features;
3462 }
3463 #endif
3464
3465 static netdev_features_t harmonize_features(struct sk_buff *skb,
3466         netdev_features_t features)
3467 {
3468         __be16 type;
3469
3470         type = skb_network_protocol(skb, NULL);
3471         features = net_mpls_features(skb, features, type);
3472
3473         if (skb->ip_summed != CHECKSUM_NONE &&
3474             !can_checksum_protocol(features, type)) {
3475                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3476         }
3477         if (illegal_highdma(skb->dev, skb))
3478                 features &= ~NETIF_F_SG;
3479
3480         return features;
3481 }
3482
3483 netdev_features_t passthru_features_check(struct sk_buff *skb,
3484                                           struct net_device *dev,
3485                                           netdev_features_t features)
3486 {
3487         return features;
3488 }
3489 EXPORT_SYMBOL(passthru_features_check);
3490
3491 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3492                                              struct net_device *dev,
3493                                              netdev_features_t features)
3494 {
3495         return vlan_features_check(skb, features);
3496 }
3497
3498 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3499                                             struct net_device *dev,
3500                                             netdev_features_t features)
3501 {
3502         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3503
3504         if (gso_segs > dev->gso_max_segs)
3505                 return features & ~NETIF_F_GSO_MASK;
3506
3507         if (!skb_shinfo(skb)->gso_type) {
3508                 skb_warn_bad_offload(skb);
3509                 return features & ~NETIF_F_GSO_MASK;
3510         }
3511
3512         /* Support for GSO partial features requires software
3513          * intervention before we can actually process the packets
3514          * so we need to strip support for any partial features now
3515          * and we can pull them back in after we have partially
3516          * segmented the frame.
3517          */
3518         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3519                 features &= ~dev->gso_partial_features;
3520
3521         /* Make sure to clear the IPv4 ID mangling feature if the
3522          * IPv4 header has the potential to be fragmented.
3523          */
3524         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3525                 struct iphdr *iph = skb->encapsulation ?
3526                                     inner_ip_hdr(skb) : ip_hdr(skb);
3527
3528                 if (!(iph->frag_off & htons(IP_DF)))
3529                         features &= ~NETIF_F_TSO_MANGLEID;
3530         }
3531
3532         return features;
3533 }
3534
3535 netdev_features_t netif_skb_features(struct sk_buff *skb)
3536 {
3537         struct net_device *dev = skb->dev;
3538         netdev_features_t features = dev->features;
3539
3540         if (skb_is_gso(skb))
3541                 features = gso_features_check(skb, dev, features);
3542
3543         /* If encapsulation offload request, verify we are testing
3544          * hardware encapsulation features instead of standard
3545          * features for the netdev
3546          */
3547         if (skb->encapsulation)
3548                 features &= dev->hw_enc_features;
3549
3550         if (skb_vlan_tagged(skb))
3551                 features = netdev_intersect_features(features,
3552                                                      dev->vlan_features |
3553                                                      NETIF_F_HW_VLAN_CTAG_TX |
3554                                                      NETIF_F_HW_VLAN_STAG_TX);
3555
3556         if (dev->netdev_ops->ndo_features_check)
3557                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3558                                                                 features);
3559         else
3560                 features &= dflt_features_check(skb, dev, features);
3561
3562         return harmonize_features(skb, features);
3563 }
3564 EXPORT_SYMBOL(netif_skb_features);
3565
3566 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3567                     struct netdev_queue *txq, bool more)
3568 {
3569         unsigned int len;
3570         int rc;
3571
3572         if (dev_nit_active(dev))
3573                 dev_queue_xmit_nit(skb, dev);
3574
3575         len = skb->len;
3576         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3577         trace_net_dev_start_xmit(skb, dev);
3578         rc = netdev_start_xmit(skb, dev, txq, more);
3579         trace_net_dev_xmit(skb, rc, dev, len);
3580
3581         return rc;
3582 }
3583
3584 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3585                                     struct netdev_queue *txq, int *ret)
3586 {
3587         struct sk_buff *skb = first;
3588         int rc = NETDEV_TX_OK;
3589
3590         while (skb) {
3591                 struct sk_buff *next = skb->next;
3592
3593                 skb_mark_not_on_list(skb);
3594                 rc = xmit_one(skb, dev, txq, next != NULL);
3595                 if (unlikely(!dev_xmit_complete(rc))) {
3596                         skb->next = next;
3597                         goto out;
3598                 }
3599
3600                 skb = next;
3601                 if (netif_tx_queue_stopped(txq) && skb) {
3602                         rc = NETDEV_TX_BUSY;
3603                         break;
3604                 }
3605         }
3606
3607 out:
3608         *ret = rc;
3609         return skb;
3610 }
3611
3612 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3613                                           netdev_features_t features)
3614 {
3615         if (skb_vlan_tag_present(skb) &&
3616             !vlan_hw_offload_capable(features, skb->vlan_proto))
3617                 skb = __vlan_hwaccel_push_inside(skb);
3618         return skb;
3619 }
3620
3621 int skb_csum_hwoffload_help(struct sk_buff *skb,
3622                             const netdev_features_t features)
3623 {
3624         if (unlikely(skb_csum_is_sctp(skb)))
3625                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3626                         skb_crc32c_csum_help(skb);
3627
3628         if (features & NETIF_F_HW_CSUM)
3629                 return 0;
3630
3631         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3632                 switch (skb->csum_offset) {
3633                 case offsetof(struct tcphdr, check):
3634                 case offsetof(struct udphdr, check):
3635                         return 0;
3636                 }
3637         }
3638
3639         return skb_checksum_help(skb);
3640 }
3641 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3642
3643 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3644 {
3645         netdev_features_t features;
3646
3647         features = netif_skb_features(skb);
3648         skb = validate_xmit_vlan(skb, features);
3649         if (unlikely(!skb))
3650                 goto out_null;
3651
3652         skb = sk_validate_xmit_skb(skb, dev);
3653         if (unlikely(!skb))
3654                 goto out_null;
3655
3656         if (netif_needs_gso(skb, features)) {
3657                 struct sk_buff *segs;
3658
3659                 segs = skb_gso_segment(skb, features);
3660                 if (IS_ERR(segs)) {
3661                         goto out_kfree_skb;
3662                 } else if (segs) {
3663                         consume_skb(skb);
3664                         skb = segs;
3665                 }
3666         } else {
3667                 if (skb_needs_linearize(skb, features) &&
3668                     __skb_linearize(skb))
3669                         goto out_kfree_skb;
3670
3671                 /* If packet is not checksummed and device does not
3672                  * support checksumming for this protocol, complete
3673                  * checksumming here.
3674                  */
3675                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3676                         if (skb->encapsulation)
3677                                 skb_set_inner_transport_header(skb,
3678                                                                skb_checksum_start_offset(skb));
3679                         else
3680                                 skb_set_transport_header(skb,
3681                                                          skb_checksum_start_offset(skb));
3682                         if (skb_csum_hwoffload_help(skb, features))
3683                                 goto out_kfree_skb;
3684                 }
3685         }
3686
3687         skb = validate_xmit_xfrm(skb, features, again);
3688
3689         return skb;
3690
3691 out_kfree_skb:
3692         kfree_skb(skb);
3693 out_null:
3694         atomic_long_inc(&dev->tx_dropped);
3695         return NULL;
3696 }
3697
3698 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3699 {
3700         struct sk_buff *next, *head = NULL, *tail;
3701
3702         for (; skb != NULL; skb = next) {
3703                 next = skb->next;
3704                 skb_mark_not_on_list(skb);
3705
3706                 /* in case skb wont be segmented, point to itself */
3707                 skb->prev = skb;
3708
3709                 skb = validate_xmit_skb(skb, dev, again);
3710                 if (!skb)
3711                         continue;
3712
3713                 if (!head)
3714                         head = skb;
3715                 else
3716                         tail->next = skb;
3717                 /* If skb was segmented, skb->prev points to
3718                  * the last segment. If not, it still contains skb.
3719                  */
3720                 tail = skb->prev;
3721         }
3722         return head;
3723 }
3724 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3725
3726 static void qdisc_pkt_len_init(struct sk_buff *skb)
3727 {
3728         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3729
3730         qdisc_skb_cb(skb)->pkt_len = skb->len;
3731
3732         /* To get more precise estimation of bytes sent on wire,
3733          * we add to pkt_len the headers size of all segments
3734          */
3735         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3736                 unsigned int hdr_len;
3737                 u16 gso_segs = shinfo->gso_segs;
3738
3739                 /* mac layer + network layer */
3740                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3741
3742                 /* + transport layer */
3743                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3744                         const struct tcphdr *th;
3745                         struct tcphdr _tcphdr;
3746
3747                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3748                                                 sizeof(_tcphdr), &_tcphdr);
3749                         if (likely(th))
3750                                 hdr_len += __tcp_hdrlen(th);
3751                 } else {
3752                         struct udphdr _udphdr;
3753
3754                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3755                                                sizeof(_udphdr), &_udphdr))
3756                                 hdr_len += sizeof(struct udphdr);
3757                 }
3758
3759                 if (shinfo->gso_type & SKB_GSO_DODGY)
3760                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3761                                                 shinfo->gso_size);
3762
3763                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3764         }
3765 }
3766
3767 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3768                              struct sk_buff **to_free,
3769                              struct netdev_queue *txq)
3770 {
3771         int rc;
3772
3773         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3774         if (rc == NET_XMIT_SUCCESS)
3775                 trace_qdisc_enqueue(q, txq, skb);
3776         return rc;
3777 }
3778
3779 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3780                                  struct net_device *dev,
3781                                  struct netdev_queue *txq)
3782 {
3783         spinlock_t *root_lock = qdisc_lock(q);
3784         struct sk_buff *to_free = NULL;
3785         bool contended;
3786         int rc;
3787
3788         qdisc_calculate_pkt_len(skb, q);
3789
3790         if (q->flags & TCQ_F_NOLOCK) {
3791                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3792                     qdisc_run_begin(q)) {
3793                         /* Retest nolock_qdisc_is_empty() within the protection
3794                          * of q->seqlock to protect from racing with requeuing.
3795                          */
3796                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3797                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3798                                 __qdisc_run(q);
3799                                 qdisc_run_end(q);
3800
3801                                 goto no_lock_out;
3802                         }
3803
3804                         qdisc_bstats_cpu_update(q, skb);
3805                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3806                             !nolock_qdisc_is_empty(q))
3807                                 __qdisc_run(q);
3808
3809                         qdisc_run_end(q);
3810                         return NET_XMIT_SUCCESS;
3811                 }
3812
3813                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3814                 qdisc_run(q);
3815
3816 no_lock_out:
3817                 if (unlikely(to_free))
3818                         kfree_skb_list(to_free);
3819                 return rc;
3820         }
3821
3822         /*
3823          * Heuristic to force contended enqueues to serialize on a
3824          * separate lock before trying to get qdisc main lock.
3825          * This permits qdisc->running owner to get the lock more
3826          * often and dequeue packets faster.
3827          */
3828         contended = qdisc_is_running(q);
3829         if (unlikely(contended))
3830                 spin_lock(&q->busylock);
3831
3832         spin_lock(root_lock);
3833         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3834                 __qdisc_drop(skb, &to_free);
3835                 rc = NET_XMIT_DROP;
3836         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3837                    qdisc_run_begin(q)) {
3838                 /*
3839                  * This is a work-conserving queue; there are no old skbs
3840                  * waiting to be sent out; and the qdisc is not running -
3841                  * xmit the skb directly.
3842                  */
3843
3844                 qdisc_bstats_update(q, skb);
3845
3846                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3847                         if (unlikely(contended)) {
3848                                 spin_unlock(&q->busylock);
3849                                 contended = false;
3850                         }
3851                         __qdisc_run(q);
3852                 }
3853
3854                 qdisc_run_end(q);
3855                 rc = NET_XMIT_SUCCESS;
3856         } else {
3857                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3858                 if (qdisc_run_begin(q)) {
3859                         if (unlikely(contended)) {
3860                                 spin_unlock(&q->busylock);
3861                                 contended = false;
3862                         }
3863                         __qdisc_run(q);
3864                         qdisc_run_end(q);
3865                 }
3866         }
3867         spin_unlock(root_lock);
3868         if (unlikely(to_free))
3869                 kfree_skb_list(to_free);
3870         if (unlikely(contended))
3871                 spin_unlock(&q->busylock);
3872         return rc;
3873 }
3874
3875 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3876 static void skb_update_prio(struct sk_buff *skb)
3877 {
3878         const struct netprio_map *map;
3879         const struct sock *sk;
3880         unsigned int prioidx;
3881
3882         if (skb->priority)
3883                 return;
3884         map = rcu_dereference_bh(skb->dev->priomap);
3885         if (!map)
3886                 return;
3887         sk = skb_to_full_sk(skb);
3888         if (!sk)
3889                 return;
3890
3891         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3892
3893         if (prioidx < map->priomap_len)
3894                 skb->priority = map->priomap[prioidx];
3895 }
3896 #else
3897 #define skb_update_prio(skb)
3898 #endif
3899
3900 /**
3901  *      dev_loopback_xmit - loop back @skb
3902  *      @net: network namespace this loopback is happening in
3903  *      @sk:  sk needed to be a netfilter okfn
3904  *      @skb: buffer to transmit
3905  */
3906 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3907 {
3908         skb_reset_mac_header(skb);
3909         __skb_pull(skb, skb_network_offset(skb));
3910         skb->pkt_type = PACKET_LOOPBACK;
3911         skb->ip_summed = CHECKSUM_UNNECESSARY;
3912         WARN_ON(!skb_dst(skb));
3913         skb_dst_force(skb);
3914         netif_rx_ni(skb);
3915         return 0;
3916 }
3917 EXPORT_SYMBOL(dev_loopback_xmit);
3918
3919 #ifdef CONFIG_NET_EGRESS
3920 static struct sk_buff *
3921 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3922 {
3923         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3924         struct tcf_result cl_res;
3925
3926         if (!miniq)
3927                 return skb;
3928
3929         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3930         qdisc_skb_cb(skb)->mru = 0;
3931         qdisc_skb_cb(skb)->post_ct = false;
3932         mini_qdisc_bstats_cpu_update(miniq, skb);
3933
3934         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3935         case TC_ACT_OK:
3936         case TC_ACT_RECLASSIFY:
3937                 skb->tc_index = TC_H_MIN(cl_res.classid);
3938                 break;
3939         case TC_ACT_SHOT:
3940                 mini_qdisc_qstats_cpu_drop(miniq);
3941                 *ret = NET_XMIT_DROP;
3942                 kfree_skb(skb);
3943                 return NULL;
3944         case TC_ACT_STOLEN:
3945         case TC_ACT_QUEUED:
3946         case TC_ACT_TRAP:
3947                 *ret = NET_XMIT_SUCCESS;
3948                 consume_skb(skb);
3949                 return NULL;
3950         case TC_ACT_REDIRECT:
3951                 /* No need to push/pop skb's mac_header here on egress! */
3952                 skb_do_redirect(skb);
3953                 *ret = NET_XMIT_SUCCESS;
3954                 return NULL;
3955         default:
3956                 break;
3957         }
3958
3959         return skb;
3960 }
3961 #endif /* CONFIG_NET_EGRESS */
3962
3963 #ifdef CONFIG_XPS
3964 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3965                                struct xps_dev_maps *dev_maps, unsigned int tci)
3966 {
3967         int tc = netdev_get_prio_tc_map(dev, skb->priority);
3968         struct xps_map *map;
3969         int queue_index = -1;
3970
3971         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3972                 return queue_index;
3973
3974         tci *= dev_maps->num_tc;
3975         tci += tc;
3976
3977         map = rcu_dereference(dev_maps->attr_map[tci]);
3978         if (map) {
3979                 if (map->len == 1)
3980                         queue_index = map->queues[0];
3981                 else
3982                         queue_index = map->queues[reciprocal_scale(
3983                                                 skb_get_hash(skb), map->len)];
3984                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3985                         queue_index = -1;
3986         }
3987         return queue_index;
3988 }
3989 #endif
3990
3991 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3992                          struct sk_buff *skb)
3993 {
3994 #ifdef CONFIG_XPS
3995         struct xps_dev_maps *dev_maps;
3996         struct sock *sk = skb->sk;
3997         int queue_index = -1;
3998
3999         if (!static_key_false(&xps_needed))
4000                 return -1;
4001
4002         rcu_read_lock();
4003         if (!static_key_false(&xps_rxqs_needed))
4004                 goto get_cpus_map;
4005
4006         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4007         if (dev_maps) {
4008                 int tci = sk_rx_queue_get(sk);
4009
4010                 if (tci >= 0)
4011                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4012                                                           tci);
4013         }
4014
4015 get_cpus_map:
4016         if (queue_index < 0) {
4017                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4018                 if (dev_maps) {
4019                         unsigned int tci = skb->sender_cpu - 1;
4020
4021                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4022                                                           tci);
4023                 }
4024         }
4025         rcu_read_unlock();
4026
4027         return queue_index;
4028 #else
4029         return -1;
4030 #endif
4031 }
4032
4033 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4034                      struct net_device *sb_dev)
4035 {
4036         return 0;
4037 }
4038 EXPORT_SYMBOL(dev_pick_tx_zero);
4039
4040 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4041                        struct net_device *sb_dev)
4042 {
4043         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4044 }
4045 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4046
4047 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4048                      struct net_device *sb_dev)
4049 {
4050         struct sock *sk = skb->sk;
4051         int queue_index = sk_tx_queue_get(sk);
4052
4053         sb_dev = sb_dev ? : dev;
4054
4055         if (queue_index < 0 || skb->ooo_okay ||
4056             queue_index >= dev->real_num_tx_queues) {
4057                 int new_index = get_xps_queue(dev, sb_dev, skb);
4058
4059                 if (new_index < 0)
4060                         new_index = skb_tx_hash(dev, sb_dev, skb);
4061
4062                 if (queue_index != new_index && sk &&
4063                     sk_fullsock(sk) &&
4064                     rcu_access_pointer(sk->sk_dst_cache))
4065                         sk_tx_queue_set(sk, new_index);
4066
4067                 queue_index = new_index;
4068         }
4069
4070         return queue_index;
4071 }
4072 EXPORT_SYMBOL(netdev_pick_tx);
4073
4074 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4075                                          struct sk_buff *skb,
4076                                          struct net_device *sb_dev)
4077 {
4078         int queue_index = 0;
4079
4080 #ifdef CONFIG_XPS
4081         u32 sender_cpu = skb->sender_cpu - 1;
4082
4083         if (sender_cpu >= (u32)NR_CPUS)
4084                 skb->sender_cpu = raw_smp_processor_id() + 1;
4085 #endif
4086
4087         if (dev->real_num_tx_queues != 1) {
4088                 const struct net_device_ops *ops = dev->netdev_ops;
4089
4090                 if (ops->ndo_select_queue)
4091                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4092                 else
4093                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4094
4095                 queue_index = netdev_cap_txqueue(dev, queue_index);
4096         }
4097
4098         skb_set_queue_mapping(skb, queue_index);
4099         return netdev_get_tx_queue(dev, queue_index);
4100 }
4101
4102 /**
4103  *      __dev_queue_xmit - transmit a buffer
4104  *      @skb: buffer to transmit
4105  *      @sb_dev: suboordinate device used for L2 forwarding offload
4106  *
4107  *      Queue a buffer for transmission to a network device. The caller must
4108  *      have set the device and priority and built the buffer before calling
4109  *      this function. The function can be called from an interrupt.
4110  *
4111  *      A negative errno code is returned on a failure. A success does not
4112  *      guarantee the frame will be transmitted as it may be dropped due
4113  *      to congestion or traffic shaping.
4114  *
4115  * -----------------------------------------------------------------------------------
4116  *      I notice this method can also return errors from the queue disciplines,
4117  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4118  *      be positive.
4119  *
4120  *      Regardless of the return value, the skb is consumed, so it is currently
4121  *      difficult to retry a send to this method.  (You can bump the ref count
4122  *      before sending to hold a reference for retry if you are careful.)
4123  *
4124  *      When calling this method, interrupts MUST be enabled.  This is because
4125  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4126  *          --BLG
4127  */
4128 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4129 {
4130         struct net_device *dev = skb->dev;
4131         struct netdev_queue *txq;
4132         struct Qdisc *q;
4133         int rc = -ENOMEM;
4134         bool again = false;
4135
4136         skb_reset_mac_header(skb);
4137
4138         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4139                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4140
4141         /* Disable soft irqs for various locks below. Also
4142          * stops preemption for RCU.
4143          */
4144         rcu_read_lock_bh();
4145
4146         skb_update_prio(skb);
4147
4148         qdisc_pkt_len_init(skb);
4149 #ifdef CONFIG_NET_CLS_ACT
4150         skb->tc_at_ingress = 0;
4151 # ifdef CONFIG_NET_EGRESS
4152         if (static_branch_unlikely(&egress_needed_key)) {
4153                 skb = sch_handle_egress(skb, &rc, dev);
4154                 if (!skb)
4155                         goto out;
4156         }
4157 # endif
4158 #endif
4159         /* If device/qdisc don't need skb->dst, release it right now while
4160          * its hot in this cpu cache.
4161          */
4162         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4163                 skb_dst_drop(skb);
4164         else
4165                 skb_dst_force(skb);
4166
4167         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4168         q = rcu_dereference_bh(txq->qdisc);
4169
4170         trace_net_dev_queue(skb);
4171         if (q->enqueue) {
4172                 rc = __dev_xmit_skb(skb, q, dev, txq);
4173                 goto out;
4174         }
4175
4176         /* The device has no queue. Common case for software devices:
4177          * loopback, all the sorts of tunnels...
4178
4179          * Really, it is unlikely that netif_tx_lock protection is necessary
4180          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4181          * counters.)
4182          * However, it is possible, that they rely on protection
4183          * made by us here.
4184
4185          * Check this and shot the lock. It is not prone from deadlocks.
4186          *Either shot noqueue qdisc, it is even simpler 8)
4187          */
4188         if (dev->flags & IFF_UP) {
4189                 int cpu = smp_processor_id(); /* ok because BHs are off */
4190
4191                 if (txq->xmit_lock_owner != cpu) {
4192                         if (dev_xmit_recursion())
4193                                 goto recursion_alert;
4194
4195                         skb = validate_xmit_skb(skb, dev, &again);
4196                         if (!skb)
4197                                 goto out;
4198
4199                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4200                         HARD_TX_LOCK(dev, txq, cpu);
4201
4202                         if (!netif_xmit_stopped(txq)) {
4203                                 dev_xmit_recursion_inc();
4204                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4205                                 dev_xmit_recursion_dec();
4206                                 if (dev_xmit_complete(rc)) {
4207                                         HARD_TX_UNLOCK(dev, txq);
4208                                         goto out;
4209                                 }
4210                         }
4211                         HARD_TX_UNLOCK(dev, txq);
4212                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4213                                              dev->name);
4214                 } else {
4215                         /* Recursion is detected! It is possible,
4216                          * unfortunately
4217                          */
4218 recursion_alert:
4219                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4220                                              dev->name);
4221                 }
4222         }
4223
4224         rc = -ENETDOWN;
4225         rcu_read_unlock_bh();
4226
4227         atomic_long_inc(&dev->tx_dropped);
4228         kfree_skb_list(skb);
4229         return rc;
4230 out:
4231         rcu_read_unlock_bh();
4232         return rc;
4233 }
4234
4235 int dev_queue_xmit(struct sk_buff *skb)
4236 {
4237         return __dev_queue_xmit(skb, NULL);
4238 }
4239 EXPORT_SYMBOL(dev_queue_xmit);
4240
4241 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4242 {
4243         return __dev_queue_xmit(skb, sb_dev);
4244 }
4245 EXPORT_SYMBOL(dev_queue_xmit_accel);
4246
4247 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4248 {
4249         struct net_device *dev = skb->dev;
4250         struct sk_buff *orig_skb = skb;
4251         struct netdev_queue *txq;
4252         int ret = NETDEV_TX_BUSY;
4253         bool again = false;
4254
4255         if (unlikely(!netif_running(dev) ||
4256                      !netif_carrier_ok(dev)))
4257                 goto drop;
4258
4259         skb = validate_xmit_skb_list(skb, dev, &again);
4260         if (skb != orig_skb)
4261                 goto drop;
4262
4263         skb_set_queue_mapping(skb, queue_id);
4264         txq = skb_get_tx_queue(dev, skb);
4265         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4266
4267         local_bh_disable();
4268
4269         dev_xmit_recursion_inc();
4270         HARD_TX_LOCK(dev, txq, smp_processor_id());
4271         if (!netif_xmit_frozen_or_drv_stopped(txq))
4272                 ret = netdev_start_xmit(skb, dev, txq, false);
4273         HARD_TX_UNLOCK(dev, txq);
4274         dev_xmit_recursion_dec();
4275
4276         local_bh_enable();
4277         return ret;
4278 drop:
4279         atomic_long_inc(&dev->tx_dropped);
4280         kfree_skb_list(skb);
4281         return NET_XMIT_DROP;
4282 }
4283 EXPORT_SYMBOL(__dev_direct_xmit);
4284
4285 /*************************************************************************
4286  *                      Receiver routines
4287  *************************************************************************/
4288
4289 int netdev_max_backlog __read_mostly = 1000;
4290 EXPORT_SYMBOL(netdev_max_backlog);
4291
4292 int netdev_tstamp_prequeue __read_mostly = 1;
4293 int netdev_budget __read_mostly = 300;
4294 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4295 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4296 int weight_p __read_mostly = 64;           /* old backlog weight */
4297 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4298 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4299 int dev_rx_weight __read_mostly = 64;
4300 int dev_tx_weight __read_mostly = 64;
4301 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4302 int gro_normal_batch __read_mostly = 8;
4303
4304 /* Called with irq disabled */
4305 static inline void ____napi_schedule(struct softnet_data *sd,
4306                                      struct napi_struct *napi)
4307 {
4308         struct task_struct *thread;
4309
4310         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4311                 /* Paired with smp_mb__before_atomic() in
4312                  * napi_enable()/dev_set_threaded().
4313                  * Use READ_ONCE() to guarantee a complete
4314                  * read on napi->thread. Only call
4315                  * wake_up_process() when it's not NULL.
4316                  */
4317                 thread = READ_ONCE(napi->thread);
4318                 if (thread) {
4319                         /* Avoid doing set_bit() if the thread is in
4320                          * INTERRUPTIBLE state, cause napi_thread_wait()
4321                          * makes sure to proceed with napi polling
4322                          * if the thread is explicitly woken from here.
4323                          */
4324                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4325                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4326                         wake_up_process(thread);
4327                         return;
4328                 }
4329         }
4330
4331         list_add_tail(&napi->poll_list, &sd->poll_list);
4332         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4333 }
4334
4335 #ifdef CONFIG_RPS
4336
4337 /* One global table that all flow-based protocols share. */
4338 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4339 EXPORT_SYMBOL(rps_sock_flow_table);
4340 u32 rps_cpu_mask __read_mostly;
4341 EXPORT_SYMBOL(rps_cpu_mask);
4342
4343 struct static_key_false rps_needed __read_mostly;
4344 EXPORT_SYMBOL(rps_needed);
4345 struct static_key_false rfs_needed __read_mostly;
4346 EXPORT_SYMBOL(rfs_needed);
4347
4348 static struct rps_dev_flow *
4349 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4350             struct rps_dev_flow *rflow, u16 next_cpu)
4351 {
4352         if (next_cpu < nr_cpu_ids) {
4353 #ifdef CONFIG_RFS_ACCEL
4354                 struct netdev_rx_queue *rxqueue;
4355                 struct rps_dev_flow_table *flow_table;
4356                 struct rps_dev_flow *old_rflow;
4357                 u32 flow_id;
4358                 u16 rxq_index;
4359                 int rc;
4360
4361                 /* Should we steer this flow to a different hardware queue? */
4362                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4363                     !(dev->features & NETIF_F_NTUPLE))
4364                         goto out;
4365                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4366                 if (rxq_index == skb_get_rx_queue(skb))
4367                         goto out;
4368
4369                 rxqueue = dev->_rx + rxq_index;
4370                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4371                 if (!flow_table)
4372                         goto out;
4373                 flow_id = skb_get_hash(skb) & flow_table->mask;
4374                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4375                                                         rxq_index, flow_id);
4376                 if (rc < 0)
4377                         goto out;
4378                 old_rflow = rflow;
4379                 rflow = &flow_table->flows[flow_id];
4380                 rflow->filter = rc;
4381                 if (old_rflow->filter == rflow->filter)
4382                         old_rflow->filter = RPS_NO_FILTER;
4383         out:
4384 #endif
4385                 rflow->last_qtail =
4386                         per_cpu(softnet_data, next_cpu).input_queue_head;
4387         }
4388
4389         rflow->cpu = next_cpu;
4390         return rflow;
4391 }
4392
4393 /*
4394  * get_rps_cpu is called from netif_receive_skb and returns the target
4395  * CPU from the RPS map of the receiving queue for a given skb.
4396  * rcu_read_lock must be held on entry.
4397  */
4398 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4399                        struct rps_dev_flow **rflowp)
4400 {
4401         const struct rps_sock_flow_table *sock_flow_table;
4402         struct netdev_rx_queue *rxqueue = dev->_rx;
4403         struct rps_dev_flow_table *flow_table;
4404         struct rps_map *map;
4405         int cpu = -1;
4406         u32 tcpu;
4407         u32 hash;
4408
4409         if (skb_rx_queue_recorded(skb)) {
4410                 u16 index = skb_get_rx_queue(skb);
4411
4412                 if (unlikely(index >= dev->real_num_rx_queues)) {
4413                         WARN_ONCE(dev->real_num_rx_queues > 1,
4414                                   "%s received packet on queue %u, but number "
4415                                   "of RX queues is %u\n",
4416                                   dev->name, index, dev->real_num_rx_queues);
4417                         goto done;
4418                 }
4419                 rxqueue += index;
4420         }
4421
4422         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4423
4424         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4425         map = rcu_dereference(rxqueue->rps_map);
4426         if (!flow_table && !map)
4427                 goto done;
4428
4429         skb_reset_network_header(skb);
4430         hash = skb_get_hash(skb);
4431         if (!hash)
4432                 goto done;
4433
4434         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4435         if (flow_table && sock_flow_table) {
4436                 struct rps_dev_flow *rflow;
4437                 u32 next_cpu;
4438                 u32 ident;
4439
4440                 /* First check into global flow table if there is a match */
4441                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4442                 if ((ident ^ hash) & ~rps_cpu_mask)
4443                         goto try_rps;
4444
4445                 next_cpu = ident & rps_cpu_mask;
4446
4447                 /* OK, now we know there is a match,
4448                  * we can look at the local (per receive queue) flow table
4449                  */
4450                 rflow = &flow_table->flows[hash & flow_table->mask];
4451                 tcpu = rflow->cpu;
4452
4453                 /*
4454                  * If the desired CPU (where last recvmsg was done) is
4455                  * different from current CPU (one in the rx-queue flow
4456                  * table entry), switch if one of the following holds:
4457                  *   - Current CPU is unset (>= nr_cpu_ids).
4458                  *   - Current CPU is offline.
4459                  *   - The current CPU's queue tail has advanced beyond the
4460                  *     last packet that was enqueued using this table entry.
4461                  *     This guarantees that all previous packets for the flow
4462                  *     have been dequeued, thus preserving in order delivery.
4463                  */
4464                 if (unlikely(tcpu != next_cpu) &&
4465                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4466                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4467                       rflow->last_qtail)) >= 0)) {
4468                         tcpu = next_cpu;
4469                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4470                 }
4471
4472                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4473                         *rflowp = rflow;
4474                         cpu = tcpu;
4475                         goto done;
4476                 }
4477         }
4478
4479 try_rps:
4480
4481         if (map) {
4482                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4483                 if (cpu_online(tcpu)) {
4484                         cpu = tcpu;
4485                         goto done;
4486                 }
4487         }
4488
4489 done:
4490         return cpu;
4491 }
4492
4493 #ifdef CONFIG_RFS_ACCEL
4494
4495 /**
4496  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4497  * @dev: Device on which the filter was set
4498  * @rxq_index: RX queue index
4499  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4500  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4501  *
4502  * Drivers that implement ndo_rx_flow_steer() should periodically call
4503  * this function for each installed filter and remove the filters for
4504  * which it returns %true.
4505  */
4506 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4507                          u32 flow_id, u16 filter_id)
4508 {
4509         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4510         struct rps_dev_flow_table *flow_table;
4511         struct rps_dev_flow *rflow;
4512         bool expire = true;
4513         unsigned int cpu;
4514
4515         rcu_read_lock();
4516         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4517         if (flow_table && flow_id <= flow_table->mask) {
4518                 rflow = &flow_table->flows[flow_id];
4519                 cpu = READ_ONCE(rflow->cpu);
4520                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4521                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4522                            rflow->last_qtail) <
4523                      (int)(10 * flow_table->mask)))
4524                         expire = false;
4525         }
4526         rcu_read_unlock();
4527         return expire;
4528 }
4529 EXPORT_SYMBOL(rps_may_expire_flow);
4530
4531 #endif /* CONFIG_RFS_ACCEL */
4532
4533 /* Called from hardirq (IPI) context */
4534 static void rps_trigger_softirq(void *data)
4535 {
4536         struct softnet_data *sd = data;
4537
4538         ____napi_schedule(sd, &sd->backlog);
4539         sd->received_rps++;
4540 }
4541
4542 #endif /* CONFIG_RPS */
4543
4544 /*
4545  * Check if this softnet_data structure is another cpu one
4546  * If yes, queue it to our IPI list and return 1
4547  * If no, return 0
4548  */
4549 static int rps_ipi_queued(struct softnet_data *sd)
4550 {
4551 #ifdef CONFIG_RPS
4552         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4553
4554         if (sd != mysd) {
4555                 sd->rps_ipi_next = mysd->rps_ipi_list;
4556                 mysd->rps_ipi_list = sd;
4557
4558                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4559                 return 1;
4560         }
4561 #endif /* CONFIG_RPS */
4562         return 0;
4563 }
4564
4565 #ifdef CONFIG_NET_FLOW_LIMIT
4566 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4567 #endif
4568
4569 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4570 {
4571 #ifdef CONFIG_NET_FLOW_LIMIT
4572         struct sd_flow_limit *fl;
4573         struct softnet_data *sd;
4574         unsigned int old_flow, new_flow;
4575
4576         if (qlen < (netdev_max_backlog >> 1))
4577                 return false;
4578
4579         sd = this_cpu_ptr(&softnet_data);
4580
4581         rcu_read_lock();
4582         fl = rcu_dereference(sd->flow_limit);
4583         if (fl) {
4584                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4585                 old_flow = fl->history[fl->history_head];
4586                 fl->history[fl->history_head] = new_flow;
4587
4588                 fl->history_head++;
4589                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4590
4591                 if (likely(fl->buckets[old_flow]))
4592                         fl->buckets[old_flow]--;
4593
4594                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4595                         fl->count++;
4596                         rcu_read_unlock();
4597                         return true;
4598                 }
4599         }
4600         rcu_read_unlock();
4601 #endif
4602         return false;
4603 }
4604
4605 /*
4606  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4607  * queue (may be a remote CPU queue).
4608  */
4609 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4610                               unsigned int *qtail)
4611 {
4612         struct softnet_data *sd;
4613         unsigned long flags;
4614         unsigned int qlen;
4615
4616         sd = &per_cpu(softnet_data, cpu);
4617
4618         local_irq_save(flags);
4619
4620         rps_lock(sd);
4621         if (!netif_running(skb->dev))
4622                 goto drop;
4623         qlen = skb_queue_len(&sd->input_pkt_queue);
4624         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4625                 if (qlen) {
4626 enqueue:
4627                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4628                         input_queue_tail_incr_save(sd, qtail);
4629                         rps_unlock(sd);
4630                         local_irq_restore(flags);
4631                         return NET_RX_SUCCESS;
4632                 }
4633
4634                 /* Schedule NAPI for backlog device
4635                  * We can use non atomic operation since we own the queue lock
4636                  */
4637                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4638                         if (!rps_ipi_queued(sd))
4639                                 ____napi_schedule(sd, &sd->backlog);
4640                 }
4641                 goto enqueue;
4642         }
4643
4644 drop:
4645         sd->dropped++;
4646         rps_unlock(sd);
4647
4648         local_irq_restore(flags);
4649
4650         atomic_long_inc(&skb->dev->rx_dropped);
4651         kfree_skb(skb);
4652         return NET_RX_DROP;
4653 }
4654
4655 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4656 {
4657         struct net_device *dev = skb->dev;
4658         struct netdev_rx_queue *rxqueue;
4659
4660         rxqueue = dev->_rx;
4661
4662         if (skb_rx_queue_recorded(skb)) {
4663                 u16 index = skb_get_rx_queue(skb);
4664
4665                 if (unlikely(index >= dev->real_num_rx_queues)) {
4666                         WARN_ONCE(dev->real_num_rx_queues > 1,
4667                                   "%s received packet on queue %u, but number "
4668                                   "of RX queues is %u\n",
4669                                   dev->name, index, dev->real_num_rx_queues);
4670
4671                         return rxqueue; /* Return first rxqueue */
4672                 }
4673                 rxqueue += index;
4674         }
4675         return rxqueue;
4676 }
4677
4678 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4679                              struct bpf_prog *xdp_prog)
4680 {
4681         void *orig_data, *orig_data_end, *hard_start;
4682         struct netdev_rx_queue *rxqueue;
4683         bool orig_bcast, orig_host;
4684         u32 mac_len, frame_sz;
4685         __be16 orig_eth_type;
4686         struct ethhdr *eth;
4687         u32 metalen, act;
4688         int off;
4689
4690         /* The XDP program wants to see the packet starting at the MAC
4691          * header.
4692          */
4693         mac_len = skb->data - skb_mac_header(skb);
4694         hard_start = skb->data - skb_headroom(skb);
4695
4696         /* SKB "head" area always have tailroom for skb_shared_info */
4697         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4698         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4699
4700         rxqueue = netif_get_rxqueue(skb);
4701         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4702         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4703                          skb_headlen(skb) + mac_len, true);
4704
4705         orig_data_end = xdp->data_end;
4706         orig_data = xdp->data;
4707         eth = (struct ethhdr *)xdp->data;
4708         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4709         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4710         orig_eth_type = eth->h_proto;
4711
4712         act = bpf_prog_run_xdp(xdp_prog, xdp);
4713
4714         /* check if bpf_xdp_adjust_head was used */
4715         off = xdp->data - orig_data;
4716         if (off) {
4717                 if (off > 0)
4718                         __skb_pull(skb, off);
4719                 else if (off < 0)
4720                         __skb_push(skb, -off);
4721
4722                 skb->mac_header += off;
4723                 skb_reset_network_header(skb);
4724         }
4725
4726         /* check if bpf_xdp_adjust_tail was used */
4727         off = xdp->data_end - orig_data_end;
4728         if (off != 0) {
4729                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4730                 skb->len += off; /* positive on grow, negative on shrink */
4731         }
4732
4733         /* check if XDP changed eth hdr such SKB needs update */
4734         eth = (struct ethhdr *)xdp->data;
4735         if ((orig_eth_type != eth->h_proto) ||
4736             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4737                                                   skb->dev->dev_addr)) ||
4738             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4739                 __skb_push(skb, ETH_HLEN);
4740                 skb->pkt_type = PACKET_HOST;
4741                 skb->protocol = eth_type_trans(skb, skb->dev);
4742         }
4743
4744         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4745          * before calling us again on redirect path. We do not call do_redirect
4746          * as we leave that up to the caller.
4747          *
4748          * Caller is responsible for managing lifetime of skb (i.e. calling
4749          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4750          */
4751         switch (act) {
4752         case XDP_REDIRECT:
4753         case XDP_TX:
4754                 __skb_push(skb, mac_len);
4755                 break;
4756         case XDP_PASS:
4757                 metalen = xdp->data - xdp->data_meta;
4758                 if (metalen)
4759                         skb_metadata_set(skb, metalen);
4760                 break;
4761         }
4762
4763         return act;
4764 }
4765
4766 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4767                                      struct xdp_buff *xdp,
4768                                      struct bpf_prog *xdp_prog)
4769 {
4770         u32 act = XDP_DROP;
4771
4772         /* Reinjected packets coming from act_mirred or similar should
4773          * not get XDP generic processing.
4774          */
4775         if (skb_is_redirected(skb))
4776                 return XDP_PASS;
4777
4778         /* XDP packets must be linear and must have sufficient headroom
4779          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4780          * native XDP provides, thus we need to do it here as well.
4781          */
4782         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4783             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4784                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4785                 int troom = skb->tail + skb->data_len - skb->end;
4786
4787                 /* In case we have to go down the path and also linearize,
4788                  * then lets do the pskb_expand_head() work just once here.
4789                  */
4790                 if (pskb_expand_head(skb,
4791                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4792                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4793                         goto do_drop;
4794                 if (skb_linearize(skb))
4795                         goto do_drop;
4796         }
4797
4798         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4799         switch (act) {
4800         case XDP_REDIRECT:
4801         case XDP_TX:
4802         case XDP_PASS:
4803                 break;
4804         default:
4805                 bpf_warn_invalid_xdp_action(act);
4806                 fallthrough;
4807         case XDP_ABORTED:
4808                 trace_xdp_exception(skb->dev, xdp_prog, act);
4809                 fallthrough;
4810         case XDP_DROP:
4811         do_drop:
4812                 kfree_skb(skb);
4813                 break;
4814         }
4815
4816         return act;
4817 }
4818
4819 /* When doing generic XDP we have to bypass the qdisc layer and the
4820  * network taps in order to match in-driver-XDP behavior.
4821  */
4822 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4823 {
4824         struct net_device *dev = skb->dev;
4825         struct netdev_queue *txq;
4826         bool free_skb = true;
4827         int cpu, rc;
4828
4829         txq = netdev_core_pick_tx(dev, skb, NULL);
4830         cpu = smp_processor_id();
4831         HARD_TX_LOCK(dev, txq, cpu);
4832         if (!netif_xmit_stopped(txq)) {
4833                 rc = netdev_start_xmit(skb, dev, txq, 0);
4834                 if (dev_xmit_complete(rc))
4835                         free_skb = false;
4836         }
4837         HARD_TX_UNLOCK(dev, txq);
4838         if (free_skb) {
4839                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4840                 kfree_skb(skb);
4841         }
4842 }
4843
4844 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4845
4846 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4847 {
4848         if (xdp_prog) {
4849                 struct xdp_buff xdp;
4850                 u32 act;
4851                 int err;
4852
4853                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4854                 if (act != XDP_PASS) {
4855                         switch (act) {
4856                         case XDP_REDIRECT:
4857                                 err = xdp_do_generic_redirect(skb->dev, skb,
4858                                                               &xdp, xdp_prog);
4859                                 if (err)
4860                                         goto out_redir;
4861                                 break;
4862                         case XDP_TX:
4863                                 generic_xdp_tx(skb, xdp_prog);
4864                                 break;
4865                         }
4866                         return XDP_DROP;
4867                 }
4868         }
4869         return XDP_PASS;
4870 out_redir:
4871         kfree_skb(skb);
4872         return XDP_DROP;
4873 }
4874 EXPORT_SYMBOL_GPL(do_xdp_generic);
4875
4876 static int netif_rx_internal(struct sk_buff *skb)
4877 {
4878         int ret;
4879
4880         net_timestamp_check(netdev_tstamp_prequeue, skb);
4881
4882         trace_netif_rx(skb);
4883
4884 #ifdef CONFIG_RPS
4885         if (static_branch_unlikely(&rps_needed)) {
4886                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4887                 int cpu;
4888
4889                 preempt_disable();
4890                 rcu_read_lock();
4891
4892                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4893                 if (cpu < 0)
4894                         cpu = smp_processor_id();
4895
4896                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4897
4898                 rcu_read_unlock();
4899                 preempt_enable();
4900         } else
4901 #endif
4902         {
4903                 unsigned int qtail;
4904
4905                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4906                 put_cpu();
4907         }
4908         return ret;
4909 }
4910
4911 /**
4912  *      netif_rx        -       post buffer to the network code
4913  *      @skb: buffer to post
4914  *
4915  *      This function receives a packet from a device driver and queues it for
4916  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4917  *      may be dropped during processing for congestion control or by the
4918  *      protocol layers.
4919  *
4920  *      return values:
4921  *      NET_RX_SUCCESS  (no congestion)
4922  *      NET_RX_DROP     (packet was dropped)
4923  *
4924  */
4925
4926 int netif_rx(struct sk_buff *skb)
4927 {
4928         int ret;
4929
4930         trace_netif_rx_entry(skb);
4931
4932         ret = netif_rx_internal(skb);
4933         trace_netif_rx_exit(ret);
4934
4935         return ret;
4936 }
4937 EXPORT_SYMBOL(netif_rx);
4938
4939 int netif_rx_ni(struct sk_buff *skb)
4940 {
4941         int err;
4942
4943         trace_netif_rx_ni_entry(skb);
4944
4945         preempt_disable();
4946         err = netif_rx_internal(skb);
4947         if (local_softirq_pending())
4948                 do_softirq();
4949         preempt_enable();
4950         trace_netif_rx_ni_exit(err);
4951
4952         return err;
4953 }
4954 EXPORT_SYMBOL(netif_rx_ni);
4955
4956 int netif_rx_any_context(struct sk_buff *skb)
4957 {
4958         /*
4959          * If invoked from contexts which do not invoke bottom half
4960          * processing either at return from interrupt or when softrqs are
4961          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4962          * directly.
4963          */
4964         if (in_interrupt())
4965                 return netif_rx(skb);
4966         else
4967                 return netif_rx_ni(skb);
4968 }
4969 EXPORT_SYMBOL(netif_rx_any_context);
4970
4971 static __latent_entropy void net_tx_action(struct softirq_action *h)
4972 {
4973         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4974
4975         if (sd->completion_queue) {
4976                 struct sk_buff *clist;
4977
4978                 local_irq_disable();
4979                 clist = sd->completion_queue;
4980                 sd->completion_queue = NULL;
4981                 local_irq_enable();
4982
4983                 while (clist) {
4984                         struct sk_buff *skb = clist;
4985
4986                         clist = clist->next;
4987
4988                         WARN_ON(refcount_read(&skb->users));
4989                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4990                                 trace_consume_skb(skb);
4991                         else
4992                                 trace_kfree_skb(skb, net_tx_action);
4993
4994                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4995                                 __kfree_skb(skb);
4996                         else
4997                                 __kfree_skb_defer(skb);
4998                 }
4999         }
5000
5001         if (sd->output_queue) {
5002                 struct Qdisc *head;
5003
5004                 local_irq_disable();
5005                 head = sd->output_queue;
5006                 sd->output_queue = NULL;
5007                 sd->output_queue_tailp = &sd->output_queue;
5008                 local_irq_enable();
5009
5010                 rcu_read_lock();
5011
5012                 while (head) {
5013                         struct Qdisc *q = head;
5014                         spinlock_t *root_lock = NULL;
5015
5016                         head = head->next_sched;
5017
5018                         /* We need to make sure head->next_sched is read
5019                          * before clearing __QDISC_STATE_SCHED
5020                          */
5021                         smp_mb__before_atomic();
5022
5023                         if (!(q->flags & TCQ_F_NOLOCK)) {
5024                                 root_lock = qdisc_lock(q);
5025                                 spin_lock(root_lock);
5026                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5027                                                      &q->state))) {
5028                                 /* There is a synchronize_net() between
5029                                  * STATE_DEACTIVATED flag being set and
5030                                  * qdisc_reset()/some_qdisc_is_busy() in
5031                                  * dev_deactivate(), so we can safely bail out
5032                                  * early here to avoid data race between
5033                                  * qdisc_deactivate() and some_qdisc_is_busy()
5034                                  * for lockless qdisc.
5035                                  */
5036                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5037                                 continue;
5038                         }
5039
5040                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5041                         qdisc_run(q);
5042                         if (root_lock)
5043                                 spin_unlock(root_lock);
5044                 }
5045
5046                 rcu_read_unlock();
5047         }
5048
5049         xfrm_dev_backlog(sd);
5050 }
5051
5052 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5053 /* This hook is defined here for ATM LANE */
5054 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5055                              unsigned char *addr) __read_mostly;
5056 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5057 #endif
5058
5059 static inline struct sk_buff *
5060 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5061                    struct net_device *orig_dev, bool *another)
5062 {
5063 #ifdef CONFIG_NET_CLS_ACT
5064         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5065         struct tcf_result cl_res;
5066
5067         /* If there's at least one ingress present somewhere (so
5068          * we get here via enabled static key), remaining devices
5069          * that are not configured with an ingress qdisc will bail
5070          * out here.
5071          */
5072         if (!miniq)
5073                 return skb;
5074
5075         if (*pt_prev) {
5076                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5077                 *pt_prev = NULL;
5078         }
5079
5080         qdisc_skb_cb(skb)->pkt_len = skb->len;
5081         qdisc_skb_cb(skb)->mru = 0;
5082         qdisc_skb_cb(skb)->post_ct = false;
5083         skb->tc_at_ingress = 1;
5084         mini_qdisc_bstats_cpu_update(miniq, skb);
5085
5086         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5087         case TC_ACT_OK:
5088         case TC_ACT_RECLASSIFY:
5089                 skb->tc_index = TC_H_MIN(cl_res.classid);
5090                 break;
5091         case TC_ACT_SHOT:
5092                 mini_qdisc_qstats_cpu_drop(miniq);
5093                 kfree_skb(skb);
5094                 return NULL;
5095         case TC_ACT_STOLEN:
5096         case TC_ACT_QUEUED:
5097         case TC_ACT_TRAP:
5098                 consume_skb(skb);
5099                 return NULL;
5100         case TC_ACT_REDIRECT:
5101                 /* skb_mac_header check was done by cls/act_bpf, so
5102                  * we can safely push the L2 header back before
5103                  * redirecting to another netdev
5104                  */
5105                 __skb_push(skb, skb->mac_len);
5106                 if (skb_do_redirect(skb) == -EAGAIN) {
5107                         __skb_pull(skb, skb->mac_len);
5108                         *another = true;
5109                         break;
5110                 }
5111                 return NULL;
5112         case TC_ACT_CONSUMED:
5113                 return NULL;
5114         default:
5115                 break;
5116         }
5117 #endif /* CONFIG_NET_CLS_ACT */
5118         return skb;
5119 }
5120
5121 /**
5122  *      netdev_is_rx_handler_busy - check if receive handler is registered
5123  *      @dev: device to check
5124  *
5125  *      Check if a receive handler is already registered for a given device.
5126  *      Return true if there one.
5127  *
5128  *      The caller must hold the rtnl_mutex.
5129  */
5130 bool netdev_is_rx_handler_busy(struct net_device *dev)
5131 {
5132         ASSERT_RTNL();
5133         return dev && rtnl_dereference(dev->rx_handler);
5134 }
5135 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5136
5137 /**
5138  *      netdev_rx_handler_register - register receive handler
5139  *      @dev: device to register a handler for
5140  *      @rx_handler: receive handler to register
5141  *      @rx_handler_data: data pointer that is used by rx handler
5142  *
5143  *      Register a receive handler for a device. This handler will then be
5144  *      called from __netif_receive_skb. A negative errno code is returned
5145  *      on a failure.
5146  *
5147  *      The caller must hold the rtnl_mutex.
5148  *
5149  *      For a general description of rx_handler, see enum rx_handler_result.
5150  */
5151 int netdev_rx_handler_register(struct net_device *dev,
5152                                rx_handler_func_t *rx_handler,
5153                                void *rx_handler_data)
5154 {
5155         if (netdev_is_rx_handler_busy(dev))
5156                 return -EBUSY;
5157
5158         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5159                 return -EINVAL;
5160
5161         /* Note: rx_handler_data must be set before rx_handler */
5162         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5163         rcu_assign_pointer(dev->rx_handler, rx_handler);
5164
5165         return 0;
5166 }
5167 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5168
5169 /**
5170  *      netdev_rx_handler_unregister - unregister receive handler
5171  *      @dev: device to unregister a handler from
5172  *
5173  *      Unregister a receive handler from a device.
5174  *
5175  *      The caller must hold the rtnl_mutex.
5176  */
5177 void netdev_rx_handler_unregister(struct net_device *dev)
5178 {
5179
5180         ASSERT_RTNL();
5181         RCU_INIT_POINTER(dev->rx_handler, NULL);
5182         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5183          * section has a guarantee to see a non NULL rx_handler_data
5184          * as well.
5185          */
5186         synchronize_net();
5187         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5188 }
5189 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5190
5191 /*
5192  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5193  * the special handling of PFMEMALLOC skbs.
5194  */
5195 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5196 {
5197         switch (skb->protocol) {
5198         case htons(ETH_P_ARP):
5199         case htons(ETH_P_IP):
5200         case htons(ETH_P_IPV6):
5201         case htons(ETH_P_8021Q):
5202         case htons(ETH_P_8021AD):
5203                 return true;
5204         default:
5205                 return false;
5206         }
5207 }
5208
5209 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5210                              int *ret, struct net_device *orig_dev)
5211 {
5212         if (nf_hook_ingress_active(skb)) {
5213                 int ingress_retval;
5214
5215                 if (*pt_prev) {
5216                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5217                         *pt_prev = NULL;
5218                 }
5219
5220                 rcu_read_lock();
5221                 ingress_retval = nf_hook_ingress(skb);
5222                 rcu_read_unlock();
5223                 return ingress_retval;
5224         }
5225         return 0;
5226 }
5227
5228 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5229                                     struct packet_type **ppt_prev)
5230 {
5231         struct packet_type *ptype, *pt_prev;
5232         rx_handler_func_t *rx_handler;
5233         struct sk_buff *skb = *pskb;
5234         struct net_device *orig_dev;
5235         bool deliver_exact = false;
5236         int ret = NET_RX_DROP;
5237         __be16 type;
5238
5239         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5240
5241         trace_netif_receive_skb(skb);
5242
5243         orig_dev = skb->dev;
5244
5245         skb_reset_network_header(skb);
5246         if (!skb_transport_header_was_set(skb))
5247                 skb_reset_transport_header(skb);
5248         skb_reset_mac_len(skb);
5249
5250         pt_prev = NULL;
5251
5252 another_round:
5253         skb->skb_iif = skb->dev->ifindex;
5254
5255         __this_cpu_inc(softnet_data.processed);
5256
5257         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5258                 int ret2;
5259
5260                 migrate_disable();
5261                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5262                 migrate_enable();
5263
5264                 if (ret2 != XDP_PASS) {
5265                         ret = NET_RX_DROP;
5266                         goto out;
5267                 }
5268         }
5269
5270         if (eth_type_vlan(skb->protocol)) {
5271                 skb = skb_vlan_untag(skb);
5272                 if (unlikely(!skb))
5273                         goto out;
5274         }
5275
5276         if (skb_skip_tc_classify(skb))
5277                 goto skip_classify;
5278
5279         if (pfmemalloc)
5280                 goto skip_taps;
5281
5282         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5283                 if (pt_prev)
5284                         ret = deliver_skb(skb, pt_prev, orig_dev);
5285                 pt_prev = ptype;
5286         }
5287
5288         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5289                 if (pt_prev)
5290                         ret = deliver_skb(skb, pt_prev, orig_dev);
5291                 pt_prev = ptype;
5292         }
5293
5294 skip_taps:
5295 #ifdef CONFIG_NET_INGRESS
5296         if (static_branch_unlikely(&ingress_needed_key)) {
5297                 bool another = false;
5298
5299                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5300                                          &another);
5301                 if (another)
5302                         goto another_round;
5303                 if (!skb)
5304                         goto out;
5305
5306                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5307                         goto out;
5308         }
5309 #endif
5310         skb_reset_redirect(skb);
5311 skip_classify:
5312         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5313                 goto drop;
5314
5315         if (skb_vlan_tag_present(skb)) {
5316                 if (pt_prev) {
5317                         ret = deliver_skb(skb, pt_prev, orig_dev);
5318                         pt_prev = NULL;
5319                 }
5320                 if (vlan_do_receive(&skb))
5321                         goto another_round;
5322                 else if (unlikely(!skb))
5323                         goto out;
5324         }
5325
5326         rx_handler = rcu_dereference(skb->dev->rx_handler);
5327         if (rx_handler) {
5328                 if (pt_prev) {
5329                         ret = deliver_skb(skb, pt_prev, orig_dev);
5330                         pt_prev = NULL;
5331                 }
5332                 switch (rx_handler(&skb)) {
5333                 case RX_HANDLER_CONSUMED:
5334                         ret = NET_RX_SUCCESS;
5335                         goto out;
5336                 case RX_HANDLER_ANOTHER:
5337                         goto another_round;
5338                 case RX_HANDLER_EXACT:
5339                         deliver_exact = true;
5340                         break;
5341                 case RX_HANDLER_PASS:
5342                         break;
5343                 default:
5344                         BUG();
5345                 }
5346         }
5347
5348         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5349 check_vlan_id:
5350                 if (skb_vlan_tag_get_id(skb)) {
5351                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5352                          * find vlan device.
5353                          */
5354                         skb->pkt_type = PACKET_OTHERHOST;
5355                 } else if (eth_type_vlan(skb->protocol)) {
5356                         /* Outer header is 802.1P with vlan 0, inner header is
5357                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5358                          * not find vlan dev for vlan id 0.
5359                          */
5360                         __vlan_hwaccel_clear_tag(skb);
5361                         skb = skb_vlan_untag(skb);
5362                         if (unlikely(!skb))
5363                                 goto out;
5364                         if (vlan_do_receive(&skb))
5365                                 /* After stripping off 802.1P header with vlan 0
5366                                  * vlan dev is found for inner header.
5367                                  */
5368                                 goto another_round;
5369                         else if (unlikely(!skb))
5370                                 goto out;
5371                         else
5372                                 /* We have stripped outer 802.1P vlan 0 header.
5373                                  * But could not find vlan dev.
5374                                  * check again for vlan id to set OTHERHOST.
5375                                  */
5376                                 goto check_vlan_id;
5377                 }
5378                 /* Note: we might in the future use prio bits
5379                  * and set skb->priority like in vlan_do_receive()
5380                  * For the time being, just ignore Priority Code Point
5381                  */
5382                 __vlan_hwaccel_clear_tag(skb);
5383         }
5384
5385         type = skb->protocol;
5386
5387         /* deliver only exact match when indicated */
5388         if (likely(!deliver_exact)) {
5389                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5390                                        &ptype_base[ntohs(type) &
5391                                                    PTYPE_HASH_MASK]);
5392         }
5393
5394         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5395                                &orig_dev->ptype_specific);
5396
5397         if (unlikely(skb->dev != orig_dev)) {
5398                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5399                                        &skb->dev->ptype_specific);
5400         }
5401
5402         if (pt_prev) {
5403                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5404                         goto drop;
5405                 *ppt_prev = pt_prev;
5406         } else {
5407 drop:
5408                 if (!deliver_exact)
5409                         atomic_long_inc(&skb->dev->rx_dropped);
5410                 else
5411                         atomic_long_inc(&skb->dev->rx_nohandler);
5412                 kfree_skb(skb);
5413                 /* Jamal, now you will not able to escape explaining
5414                  * me how you were going to use this. :-)
5415                  */
5416                 ret = NET_RX_DROP;
5417         }
5418
5419 out:
5420         /* The invariant here is that if *ppt_prev is not NULL
5421          * then skb should also be non-NULL.
5422          *
5423          * Apparently *ppt_prev assignment above holds this invariant due to
5424          * skb dereferencing near it.
5425          */
5426         *pskb = skb;
5427         return ret;
5428 }
5429
5430 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5431 {
5432         struct net_device *orig_dev = skb->dev;
5433         struct packet_type *pt_prev = NULL;
5434         int ret;
5435
5436         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5437         if (pt_prev)
5438                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5439                                          skb->dev, pt_prev, orig_dev);
5440         return ret;
5441 }
5442
5443 /**
5444  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5445  *      @skb: buffer to process
5446  *
5447  *      More direct receive version of netif_receive_skb().  It should
5448  *      only be used by callers that have a need to skip RPS and Generic XDP.
5449  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5450  *
5451  *      This function may only be called from softirq context and interrupts
5452  *      should be enabled.
5453  *
5454  *      Return values (usually ignored):
5455  *      NET_RX_SUCCESS: no congestion
5456  *      NET_RX_DROP: packet was dropped
5457  */
5458 int netif_receive_skb_core(struct sk_buff *skb)
5459 {
5460         int ret;
5461
5462         rcu_read_lock();
5463         ret = __netif_receive_skb_one_core(skb, false);
5464         rcu_read_unlock();
5465
5466         return ret;
5467 }
5468 EXPORT_SYMBOL(netif_receive_skb_core);
5469
5470 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5471                                                   struct packet_type *pt_prev,
5472                                                   struct net_device *orig_dev)
5473 {
5474         struct sk_buff *skb, *next;
5475
5476         if (!pt_prev)
5477                 return;
5478         if (list_empty(head))
5479                 return;
5480         if (pt_prev->list_func != NULL)
5481                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5482                                    ip_list_rcv, head, pt_prev, orig_dev);
5483         else
5484                 list_for_each_entry_safe(skb, next, head, list) {
5485                         skb_list_del_init(skb);
5486                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5487                 }
5488 }
5489
5490 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5491 {
5492         /* Fast-path assumptions:
5493          * - There is no RX handler.
5494          * - Only one packet_type matches.
5495          * If either of these fails, we will end up doing some per-packet
5496          * processing in-line, then handling the 'last ptype' for the whole
5497          * sublist.  This can't cause out-of-order delivery to any single ptype,
5498          * because the 'last ptype' must be constant across the sublist, and all
5499          * other ptypes are handled per-packet.
5500          */
5501         /* Current (common) ptype of sublist */
5502         struct packet_type *pt_curr = NULL;
5503         /* Current (common) orig_dev of sublist */
5504         struct net_device *od_curr = NULL;
5505         struct list_head sublist;
5506         struct sk_buff *skb, *next;
5507
5508         INIT_LIST_HEAD(&sublist);
5509         list_for_each_entry_safe(skb, next, head, list) {
5510                 struct net_device *orig_dev = skb->dev;
5511                 struct packet_type *pt_prev = NULL;
5512
5513                 skb_list_del_init(skb);
5514                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5515                 if (!pt_prev)
5516                         continue;
5517                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5518                         /* dispatch old sublist */
5519                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5520                         /* start new sublist */
5521                         INIT_LIST_HEAD(&sublist);
5522                         pt_curr = pt_prev;
5523                         od_curr = orig_dev;
5524                 }
5525                 list_add_tail(&skb->list, &sublist);
5526         }
5527
5528         /* dispatch final sublist */
5529         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5530 }
5531
5532 static int __netif_receive_skb(struct sk_buff *skb)
5533 {
5534         int ret;
5535
5536         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5537                 unsigned int noreclaim_flag;
5538
5539                 /*
5540                  * PFMEMALLOC skbs are special, they should
5541                  * - be delivered to SOCK_MEMALLOC sockets only
5542                  * - stay away from userspace
5543                  * - have bounded memory usage
5544                  *
5545                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5546                  * context down to all allocation sites.
5547                  */
5548                 noreclaim_flag = memalloc_noreclaim_save();
5549                 ret = __netif_receive_skb_one_core(skb, true);
5550                 memalloc_noreclaim_restore(noreclaim_flag);
5551         } else
5552                 ret = __netif_receive_skb_one_core(skb, false);
5553
5554         return ret;
5555 }
5556
5557 static void __netif_receive_skb_list(struct list_head *head)
5558 {
5559         unsigned long noreclaim_flag = 0;
5560         struct sk_buff *skb, *next;
5561         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5562
5563         list_for_each_entry_safe(skb, next, head, list) {
5564                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5565                         struct list_head sublist;
5566
5567                         /* Handle the previous sublist */
5568                         list_cut_before(&sublist, head, &skb->list);
5569                         if (!list_empty(&sublist))
5570                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5571                         pfmemalloc = !pfmemalloc;
5572                         /* See comments in __netif_receive_skb */
5573                         if (pfmemalloc)
5574                                 noreclaim_flag = memalloc_noreclaim_save();
5575                         else
5576                                 memalloc_noreclaim_restore(noreclaim_flag);
5577                 }
5578         }
5579         /* Handle the remaining sublist */
5580         if (!list_empty(head))
5581                 __netif_receive_skb_list_core(head, pfmemalloc);
5582         /* Restore pflags */
5583         if (pfmemalloc)
5584                 memalloc_noreclaim_restore(noreclaim_flag);
5585 }
5586
5587 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5588 {
5589         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5590         struct bpf_prog *new = xdp->prog;
5591         int ret = 0;
5592
5593         switch (xdp->command) {
5594         case XDP_SETUP_PROG:
5595                 rcu_assign_pointer(dev->xdp_prog, new);
5596                 if (old)
5597                         bpf_prog_put(old);
5598
5599                 if (old && !new) {
5600                         static_branch_dec(&generic_xdp_needed_key);
5601                 } else if (new && !old) {
5602                         static_branch_inc(&generic_xdp_needed_key);
5603                         dev_disable_lro(dev);
5604                         dev_disable_gro_hw(dev);
5605                 }
5606                 break;
5607
5608         default:
5609                 ret = -EINVAL;
5610                 break;
5611         }
5612
5613         return ret;
5614 }
5615
5616 static int netif_receive_skb_internal(struct sk_buff *skb)
5617 {
5618         int ret;
5619
5620         net_timestamp_check(netdev_tstamp_prequeue, skb);
5621
5622         if (skb_defer_rx_timestamp(skb))
5623                 return NET_RX_SUCCESS;
5624
5625         rcu_read_lock();
5626 #ifdef CONFIG_RPS
5627         if (static_branch_unlikely(&rps_needed)) {
5628                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5629                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5630
5631                 if (cpu >= 0) {
5632                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5633                         rcu_read_unlock();
5634                         return ret;
5635                 }
5636         }
5637 #endif
5638         ret = __netif_receive_skb(skb);
5639         rcu_read_unlock();
5640         return ret;
5641 }
5642
5643 static void netif_receive_skb_list_internal(struct list_head *head)
5644 {
5645         struct sk_buff *skb, *next;
5646         struct list_head sublist;
5647
5648         INIT_LIST_HEAD(&sublist);
5649         list_for_each_entry_safe(skb, next, head, list) {
5650                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5651                 skb_list_del_init(skb);
5652                 if (!skb_defer_rx_timestamp(skb))
5653                         list_add_tail(&skb->list, &sublist);
5654         }
5655         list_splice_init(&sublist, head);
5656
5657         rcu_read_lock();
5658 #ifdef CONFIG_RPS
5659         if (static_branch_unlikely(&rps_needed)) {
5660                 list_for_each_entry_safe(skb, next, head, list) {
5661                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5662                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5663
5664                         if (cpu >= 0) {
5665                                 /* Will be handled, remove from list */
5666                                 skb_list_del_init(skb);
5667                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5668                         }
5669                 }
5670         }
5671 #endif
5672         __netif_receive_skb_list(head);
5673         rcu_read_unlock();
5674 }
5675
5676 /**
5677  *      netif_receive_skb - process receive buffer from network
5678  *      @skb: buffer to process
5679  *
5680  *      netif_receive_skb() is the main receive data processing function.
5681  *      It always succeeds. The buffer may be dropped during processing
5682  *      for congestion control or by the protocol layers.
5683  *
5684  *      This function may only be called from softirq context and interrupts
5685  *      should be enabled.
5686  *
5687  *      Return values (usually ignored):
5688  *      NET_RX_SUCCESS: no congestion
5689  *      NET_RX_DROP: packet was dropped
5690  */
5691 int netif_receive_skb(struct sk_buff *skb)
5692 {
5693         int ret;
5694
5695         trace_netif_receive_skb_entry(skb);
5696
5697         ret = netif_receive_skb_internal(skb);
5698         trace_netif_receive_skb_exit(ret);
5699
5700         return ret;
5701 }
5702 EXPORT_SYMBOL(netif_receive_skb);
5703
5704 /**
5705  *      netif_receive_skb_list - process many receive buffers from network
5706  *      @head: list of skbs to process.
5707  *
5708  *      Since return value of netif_receive_skb() is normally ignored, and
5709  *      wouldn't be meaningful for a list, this function returns void.
5710  *
5711  *      This function may only be called from softirq context and interrupts
5712  *      should be enabled.
5713  */
5714 void netif_receive_skb_list(struct list_head *head)
5715 {
5716         struct sk_buff *skb;
5717
5718         if (list_empty(head))
5719                 return;
5720         if (trace_netif_receive_skb_list_entry_enabled()) {
5721                 list_for_each_entry(skb, head, list)
5722                         trace_netif_receive_skb_list_entry(skb);
5723         }
5724         netif_receive_skb_list_internal(head);
5725         trace_netif_receive_skb_list_exit(0);
5726 }
5727 EXPORT_SYMBOL(netif_receive_skb_list);
5728
5729 static DEFINE_PER_CPU(struct work_struct, flush_works);
5730
5731 /* Network device is going away, flush any packets still pending */
5732 static void flush_backlog(struct work_struct *work)
5733 {
5734         struct sk_buff *skb, *tmp;
5735         struct softnet_data *sd;
5736
5737         local_bh_disable();
5738         sd = this_cpu_ptr(&softnet_data);
5739
5740         local_irq_disable();
5741         rps_lock(sd);
5742         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5743                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5744                         __skb_unlink(skb, &sd->input_pkt_queue);
5745                         dev_kfree_skb_irq(skb);
5746                         input_queue_head_incr(sd);
5747                 }
5748         }
5749         rps_unlock(sd);
5750         local_irq_enable();
5751
5752         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5753                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5754                         __skb_unlink(skb, &sd->process_queue);
5755                         kfree_skb(skb);
5756                         input_queue_head_incr(sd);
5757                 }
5758         }
5759         local_bh_enable();
5760 }
5761
5762 static bool flush_required(int cpu)
5763 {
5764 #if IS_ENABLED(CONFIG_RPS)
5765         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5766         bool do_flush;
5767
5768         local_irq_disable();
5769         rps_lock(sd);
5770
5771         /* as insertion into process_queue happens with the rps lock held,
5772          * process_queue access may race only with dequeue
5773          */
5774         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5775                    !skb_queue_empty_lockless(&sd->process_queue);
5776         rps_unlock(sd);
5777         local_irq_enable();
5778
5779         return do_flush;
5780 #endif
5781         /* without RPS we can't safely check input_pkt_queue: during a
5782          * concurrent remote skb_queue_splice() we can detect as empty both
5783          * input_pkt_queue and process_queue even if the latter could end-up
5784          * containing a lot of packets.
5785          */
5786         return true;
5787 }
5788
5789 static void flush_all_backlogs(void)
5790 {
5791         static cpumask_t flush_cpus;
5792         unsigned int cpu;
5793
5794         /* since we are under rtnl lock protection we can use static data
5795          * for the cpumask and avoid allocating on stack the possibly
5796          * large mask
5797          */
5798         ASSERT_RTNL();
5799
5800         cpus_read_lock();
5801
5802         cpumask_clear(&flush_cpus);
5803         for_each_online_cpu(cpu) {
5804                 if (flush_required(cpu)) {
5805                         queue_work_on(cpu, system_highpri_wq,
5806                                       per_cpu_ptr(&flush_works, cpu));
5807                         cpumask_set_cpu(cpu, &flush_cpus);
5808                 }
5809         }
5810
5811         /* we can have in flight packet[s] on the cpus we are not flushing,
5812          * synchronize_net() in unregister_netdevice_many() will take care of
5813          * them
5814          */
5815         for_each_cpu(cpu, &flush_cpus)
5816                 flush_work(per_cpu_ptr(&flush_works, cpu));
5817
5818         cpus_read_unlock();
5819 }
5820
5821 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5822 static void gro_normal_list(struct napi_struct *napi)
5823 {
5824         if (!napi->rx_count)
5825                 return;
5826         netif_receive_skb_list_internal(&napi->rx_list);
5827         INIT_LIST_HEAD(&napi->rx_list);
5828         napi->rx_count = 0;
5829 }
5830
5831 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5832  * pass the whole batch up to the stack.
5833  */
5834 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5835 {
5836         list_add_tail(&skb->list, &napi->rx_list);
5837         napi->rx_count += segs;
5838         if (napi->rx_count >= gro_normal_batch)
5839                 gro_normal_list(napi);
5840 }
5841
5842 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5843 {
5844         struct packet_offload *ptype;
5845         __be16 type = skb->protocol;
5846         struct list_head *head = &offload_base;
5847         int err = -ENOENT;
5848
5849         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5850
5851         if (NAPI_GRO_CB(skb)->count == 1) {
5852                 skb_shinfo(skb)->gso_size = 0;
5853                 goto out;
5854         }
5855
5856         rcu_read_lock();
5857         list_for_each_entry_rcu(ptype, head, list) {
5858                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5859                         continue;
5860
5861                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5862                                          ipv6_gro_complete, inet_gro_complete,
5863                                          skb, 0);
5864                 break;
5865         }
5866         rcu_read_unlock();
5867
5868         if (err) {
5869                 WARN_ON(&ptype->list == head);
5870                 kfree_skb(skb);
5871                 return NET_RX_SUCCESS;
5872         }
5873
5874 out:
5875         gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5876         return NET_RX_SUCCESS;
5877 }
5878
5879 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5880                                    bool flush_old)
5881 {
5882         struct list_head *head = &napi->gro_hash[index].list;
5883         struct sk_buff *skb, *p;
5884
5885         list_for_each_entry_safe_reverse(skb, p, head, list) {
5886                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5887                         return;
5888                 skb_list_del_init(skb);
5889                 napi_gro_complete(napi, skb);
5890                 napi->gro_hash[index].count--;
5891         }
5892
5893         if (!napi->gro_hash[index].count)
5894                 __clear_bit(index, &napi->gro_bitmask);
5895 }
5896
5897 /* napi->gro_hash[].list contains packets ordered by age.
5898  * youngest packets at the head of it.
5899  * Complete skbs in reverse order to reduce latencies.
5900  */
5901 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5902 {
5903         unsigned long bitmask = napi->gro_bitmask;
5904         unsigned int i, base = ~0U;
5905
5906         while ((i = ffs(bitmask)) != 0) {
5907                 bitmask >>= i;
5908                 base += i;
5909                 __napi_gro_flush_chain(napi, base, flush_old);
5910         }
5911 }
5912 EXPORT_SYMBOL(napi_gro_flush);
5913
5914 static void gro_list_prepare(const struct list_head *head,
5915                              const struct sk_buff *skb)
5916 {
5917         unsigned int maclen = skb->dev->hard_header_len;
5918         u32 hash = skb_get_hash_raw(skb);
5919         struct sk_buff *p;
5920
5921         list_for_each_entry(p, head, list) {
5922                 unsigned long diffs;
5923
5924                 NAPI_GRO_CB(p)->flush = 0;
5925
5926                 if (hash != skb_get_hash_raw(p)) {
5927                         NAPI_GRO_CB(p)->same_flow = 0;
5928                         continue;
5929                 }
5930
5931                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5932                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5933                 if (skb_vlan_tag_present(p))
5934                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5935                 diffs |= skb_metadata_differs(p, skb);
5936                 if (maclen == ETH_HLEN)
5937                         diffs |= compare_ether_header(skb_mac_header(p),
5938                                                       skb_mac_header(skb));
5939                 else if (!diffs)
5940                         diffs = memcmp(skb_mac_header(p),
5941                                        skb_mac_header(skb),
5942                                        maclen);
5943
5944                 /* in most common scenarions 'slow_gro' is 0
5945                  * otherwise we are already on some slower paths
5946                  * either skip all the infrequent tests altogether or
5947                  * avoid trying too hard to skip each of them individually
5948                  */
5949                 if (!diffs && unlikely(skb->slow_gro | p->slow_gro)) {
5950 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5951                         struct tc_skb_ext *skb_ext;
5952                         struct tc_skb_ext *p_ext;
5953 #endif
5954
5955                         diffs |= p->sk != skb->sk;
5956                         diffs |= skb_metadata_dst_cmp(p, skb);
5957                         diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5958
5959 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5960                         skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5961                         p_ext = skb_ext_find(p, TC_SKB_EXT);
5962
5963                         diffs |= (!!p_ext) ^ (!!skb_ext);
5964                         if (!diffs && unlikely(skb_ext))
5965                                 diffs |= p_ext->chain ^ skb_ext->chain;
5966 #endif
5967                 }
5968
5969                 NAPI_GRO_CB(p)->same_flow = !diffs;
5970         }
5971 }
5972
5973 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5974 {
5975         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5976         const skb_frag_t *frag0 = &pinfo->frags[0];
5977
5978         NAPI_GRO_CB(skb)->data_offset = 0;
5979         NAPI_GRO_CB(skb)->frag0 = NULL;
5980         NAPI_GRO_CB(skb)->frag0_len = 0;
5981
5982         if (!skb_headlen(skb) && pinfo->nr_frags &&
5983             !PageHighMem(skb_frag_page(frag0)) &&
5984             (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
5985                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5986                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5987                                                     skb_frag_size(frag0),
5988                                                     skb->end - skb->tail);
5989         }
5990 }
5991
5992 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5993 {
5994         struct skb_shared_info *pinfo = skb_shinfo(skb);
5995
5996         BUG_ON(skb->end - skb->tail < grow);
5997
5998         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5999
6000         skb->data_len -= grow;
6001         skb->tail += grow;
6002
6003         skb_frag_off_add(&pinfo->frags[0], grow);
6004         skb_frag_size_sub(&pinfo->frags[0], grow);
6005
6006         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6007                 skb_frag_unref(skb, 0);
6008                 memmove(pinfo->frags, pinfo->frags + 1,
6009                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6010         }
6011 }
6012
6013 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6014 {
6015         struct sk_buff *oldest;
6016
6017         oldest = list_last_entry(head, struct sk_buff, list);
6018
6019         /* We are called with head length >= MAX_GRO_SKBS, so this is
6020          * impossible.
6021          */
6022         if (WARN_ON_ONCE(!oldest))
6023                 return;
6024
6025         /* Do not adjust napi->gro_hash[].count, caller is adding a new
6026          * SKB to the chain.
6027          */
6028         skb_list_del_init(oldest);
6029         napi_gro_complete(napi, oldest);
6030 }
6031
6032 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6033 {
6034         u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6035         struct gro_list *gro_list = &napi->gro_hash[bucket];
6036         struct list_head *head = &offload_base;
6037         struct packet_offload *ptype;
6038         __be16 type = skb->protocol;
6039         struct sk_buff *pp = NULL;
6040         enum gro_result ret;
6041         int same_flow;
6042         int grow;
6043
6044         if (netif_elide_gro(skb->dev))
6045                 goto normal;
6046
6047         gro_list_prepare(&gro_list->list, skb);
6048
6049         rcu_read_lock();
6050         list_for_each_entry_rcu(ptype, head, list) {
6051                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6052                         continue;
6053
6054                 skb_set_network_header(skb, skb_gro_offset(skb));
6055                 skb_reset_mac_len(skb);
6056                 NAPI_GRO_CB(skb)->same_flow = 0;
6057                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6058                 NAPI_GRO_CB(skb)->free = 0;
6059                 NAPI_GRO_CB(skb)->encap_mark = 0;
6060                 NAPI_GRO_CB(skb)->recursion_counter = 0;
6061                 NAPI_GRO_CB(skb)->is_fou = 0;
6062                 NAPI_GRO_CB(skb)->is_atomic = 1;
6063                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6064
6065                 /* Setup for GRO checksum validation */
6066                 switch (skb->ip_summed) {
6067                 case CHECKSUM_COMPLETE:
6068                         NAPI_GRO_CB(skb)->csum = skb->csum;
6069                         NAPI_GRO_CB(skb)->csum_valid = 1;
6070                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6071                         break;
6072                 case CHECKSUM_UNNECESSARY:
6073                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6074                         NAPI_GRO_CB(skb)->csum_valid = 0;
6075                         break;
6076                 default:
6077                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6078                         NAPI_GRO_CB(skb)->csum_valid = 0;
6079                 }
6080
6081                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6082                                         ipv6_gro_receive, inet_gro_receive,
6083                                         &gro_list->list, skb);
6084                 break;
6085         }
6086         rcu_read_unlock();
6087
6088         if (&ptype->list == head)
6089                 goto normal;
6090
6091         if (PTR_ERR(pp) == -EINPROGRESS) {
6092                 ret = GRO_CONSUMED;
6093                 goto ok;
6094         }
6095
6096         same_flow = NAPI_GRO_CB(skb)->same_flow;
6097         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6098
6099         if (pp) {
6100                 skb_list_del_init(pp);
6101                 napi_gro_complete(napi, pp);
6102                 gro_list->count--;
6103         }
6104
6105         if (same_flow)
6106                 goto ok;
6107
6108         if (NAPI_GRO_CB(skb)->flush)
6109                 goto normal;
6110
6111         if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6112                 gro_flush_oldest(napi, &gro_list->list);
6113         else
6114                 gro_list->count++;
6115
6116         NAPI_GRO_CB(skb)->count = 1;
6117         NAPI_GRO_CB(skb)->age = jiffies;
6118         NAPI_GRO_CB(skb)->last = skb;
6119         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6120         list_add(&skb->list, &gro_list->list);
6121         ret = GRO_HELD;
6122
6123 pull:
6124         grow = skb_gro_offset(skb) - skb_headlen(skb);
6125         if (grow > 0)
6126                 gro_pull_from_frag0(skb, grow);
6127 ok:
6128         if (gro_list->count) {
6129                 if (!test_bit(bucket, &napi->gro_bitmask))
6130                         __set_bit(bucket, &napi->gro_bitmask);
6131         } else if (test_bit(bucket, &napi->gro_bitmask)) {
6132                 __clear_bit(bucket, &napi->gro_bitmask);
6133         }
6134
6135         return ret;
6136
6137 normal:
6138         ret = GRO_NORMAL;
6139         goto pull;
6140 }
6141
6142 struct packet_offload *gro_find_receive_by_type(__be16 type)
6143 {
6144         struct list_head *offload_head = &offload_base;
6145         struct packet_offload *ptype;
6146
6147         list_for_each_entry_rcu(ptype, offload_head, list) {
6148                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6149                         continue;
6150                 return ptype;
6151         }
6152         return NULL;
6153 }
6154 EXPORT_SYMBOL(gro_find_receive_by_type);
6155
6156 struct packet_offload *gro_find_complete_by_type(__be16 type)
6157 {
6158         struct list_head *offload_head = &offload_base;
6159         struct packet_offload *ptype;
6160
6161         list_for_each_entry_rcu(ptype, offload_head, list) {
6162                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6163                         continue;
6164                 return ptype;
6165         }
6166         return NULL;
6167 }
6168 EXPORT_SYMBOL(gro_find_complete_by_type);
6169
6170 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6171                                     struct sk_buff *skb,
6172                                     gro_result_t ret)
6173 {
6174         switch (ret) {
6175         case GRO_NORMAL:
6176                 gro_normal_one(napi, skb, 1);
6177                 break;
6178
6179         case GRO_MERGED_FREE:
6180                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6181                         napi_skb_free_stolen_head(skb);
6182                 else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6183                         __kfree_skb(skb);
6184                 else
6185                         __kfree_skb_defer(skb);
6186                 break;
6187
6188         case GRO_HELD:
6189         case GRO_MERGED:
6190         case GRO_CONSUMED:
6191                 break;
6192         }
6193
6194         return ret;
6195 }
6196
6197 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6198 {
6199         gro_result_t ret;
6200
6201         skb_mark_napi_id(skb, napi);
6202         trace_napi_gro_receive_entry(skb);
6203
6204         skb_gro_reset_offset(skb, 0);
6205
6206         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6207         trace_napi_gro_receive_exit(ret);
6208
6209         return ret;
6210 }
6211 EXPORT_SYMBOL(napi_gro_receive);
6212
6213 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6214 {
6215         if (unlikely(skb->pfmemalloc)) {
6216                 consume_skb(skb);
6217                 return;
6218         }
6219         __skb_pull(skb, skb_headlen(skb));
6220         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6221         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6222         __vlan_hwaccel_clear_tag(skb);
6223         skb->dev = napi->dev;
6224         skb->skb_iif = 0;
6225
6226         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6227         skb->pkt_type = PACKET_HOST;
6228
6229         skb->encapsulation = 0;
6230         skb_shinfo(skb)->gso_type = 0;
6231         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6232         if (unlikely(skb->slow_gro)) {
6233                 skb_orphan(skb);
6234                 skb_ext_reset(skb);
6235                 nf_reset_ct(skb);
6236                 skb->slow_gro = 0;
6237         }
6238
6239         napi->skb = skb;
6240 }
6241
6242 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6243 {
6244         struct sk_buff *skb = napi->skb;
6245
6246         if (!skb) {
6247                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6248                 if (skb) {
6249                         napi->skb = skb;
6250                         skb_mark_napi_id(skb, napi);
6251                 }
6252         }
6253         return skb;
6254 }
6255 EXPORT_SYMBOL(napi_get_frags);
6256
6257 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6258                                       struct sk_buff *skb,
6259                                       gro_result_t ret)
6260 {
6261         switch (ret) {
6262         case GRO_NORMAL:
6263         case GRO_HELD:
6264                 __skb_push(skb, ETH_HLEN);
6265                 skb->protocol = eth_type_trans(skb, skb->dev);
6266                 if (ret == GRO_NORMAL)
6267                         gro_normal_one(napi, skb, 1);
6268                 break;
6269
6270         case GRO_MERGED_FREE:
6271                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6272                         napi_skb_free_stolen_head(skb);
6273                 else
6274                         napi_reuse_skb(napi, skb);
6275                 break;
6276
6277         case GRO_MERGED:
6278         case GRO_CONSUMED:
6279                 break;
6280         }
6281
6282         return ret;
6283 }
6284
6285 /* Upper GRO stack assumes network header starts at gro_offset=0
6286  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6287  * We copy ethernet header into skb->data to have a common layout.
6288  */
6289 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6290 {
6291         struct sk_buff *skb = napi->skb;
6292         const struct ethhdr *eth;
6293         unsigned int hlen = sizeof(*eth);
6294
6295         napi->skb = NULL;
6296
6297         skb_reset_mac_header(skb);
6298         skb_gro_reset_offset(skb, hlen);
6299
6300         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6301                 eth = skb_gro_header_slow(skb, hlen, 0);
6302                 if (unlikely(!eth)) {
6303                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6304                                              __func__, napi->dev->name);
6305                         napi_reuse_skb(napi, skb);
6306                         return NULL;
6307                 }
6308         } else {
6309                 eth = (const struct ethhdr *)skb->data;
6310                 gro_pull_from_frag0(skb, hlen);
6311                 NAPI_GRO_CB(skb)->frag0 += hlen;
6312                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6313         }
6314         __skb_pull(skb, hlen);
6315
6316         /*
6317          * This works because the only protocols we care about don't require
6318          * special handling.
6319          * We'll fix it up properly in napi_frags_finish()
6320          */
6321         skb->protocol = eth->h_proto;
6322
6323         return skb;
6324 }
6325
6326 gro_result_t napi_gro_frags(struct napi_struct *napi)
6327 {
6328         gro_result_t ret;
6329         struct sk_buff *skb = napi_frags_skb(napi);
6330
6331         trace_napi_gro_frags_entry(skb);
6332
6333         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6334         trace_napi_gro_frags_exit(ret);
6335
6336         return ret;
6337 }
6338 EXPORT_SYMBOL(napi_gro_frags);
6339
6340 /* Compute the checksum from gro_offset and return the folded value
6341  * after adding in any pseudo checksum.
6342  */
6343 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6344 {
6345         __wsum wsum;
6346         __sum16 sum;
6347
6348         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6349
6350         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6351         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6352         /* See comments in __skb_checksum_complete(). */
6353         if (likely(!sum)) {
6354                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6355                     !skb->csum_complete_sw)
6356                         netdev_rx_csum_fault(skb->dev, skb);
6357         }
6358
6359         NAPI_GRO_CB(skb)->csum = wsum;
6360         NAPI_GRO_CB(skb)->csum_valid = 1;
6361
6362         return sum;
6363 }
6364 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6365
6366 static void net_rps_send_ipi(struct softnet_data *remsd)
6367 {
6368 #ifdef CONFIG_RPS
6369         while (remsd) {
6370                 struct softnet_data *next = remsd->rps_ipi_next;
6371
6372                 if (cpu_online(remsd->cpu))
6373                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6374                 remsd = next;
6375         }
6376 #endif
6377 }
6378
6379 /*
6380  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6381  * Note: called with local irq disabled, but exits with local irq enabled.
6382  */
6383 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6384 {
6385 #ifdef CONFIG_RPS
6386         struct softnet_data *remsd = sd->rps_ipi_list;
6387
6388         if (remsd) {
6389                 sd->rps_ipi_list = NULL;
6390
6391                 local_irq_enable();
6392
6393                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6394                 net_rps_send_ipi(remsd);
6395         } else
6396 #endif
6397                 local_irq_enable();
6398 }
6399
6400 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6401 {
6402 #ifdef CONFIG_RPS
6403         return sd->rps_ipi_list != NULL;
6404 #else
6405         return false;
6406 #endif
6407 }
6408
6409 static int process_backlog(struct napi_struct *napi, int quota)
6410 {
6411         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6412         bool again = true;
6413         int work = 0;
6414
6415         /* Check if we have pending ipi, its better to send them now,
6416          * not waiting net_rx_action() end.
6417          */
6418         if (sd_has_rps_ipi_waiting(sd)) {
6419                 local_irq_disable();
6420                 net_rps_action_and_irq_enable(sd);
6421         }
6422
6423         napi->weight = dev_rx_weight;
6424         while (again) {
6425                 struct sk_buff *skb;
6426
6427                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6428                         rcu_read_lock();
6429                         __netif_receive_skb(skb);
6430                         rcu_read_unlock();
6431                         input_queue_head_incr(sd);
6432                         if (++work >= quota)
6433                                 return work;
6434
6435                 }
6436
6437                 local_irq_disable();
6438                 rps_lock(sd);
6439                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6440                         /*
6441                          * Inline a custom version of __napi_complete().
6442                          * only current cpu owns and manipulates this napi,
6443                          * and NAPI_STATE_SCHED is the only possible flag set
6444                          * on backlog.
6445                          * We can use a plain write instead of clear_bit(),
6446                          * and we dont need an smp_mb() memory barrier.
6447                          */
6448                         napi->state = 0;
6449                         again = false;
6450                 } else {
6451                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6452                                                    &sd->process_queue);
6453                 }
6454                 rps_unlock(sd);
6455                 local_irq_enable();
6456         }
6457
6458         return work;
6459 }
6460
6461 /**
6462  * __napi_schedule - schedule for receive
6463  * @n: entry to schedule
6464  *
6465  * The entry's receive function will be scheduled to run.
6466  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6467  */
6468 void __napi_schedule(struct napi_struct *n)
6469 {
6470         unsigned long flags;
6471
6472         local_irq_save(flags);
6473         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6474         local_irq_restore(flags);
6475 }
6476 EXPORT_SYMBOL(__napi_schedule);
6477
6478 /**
6479  *      napi_schedule_prep - check if napi can be scheduled
6480  *      @n: napi context
6481  *
6482  * Test if NAPI routine is already running, and if not mark
6483  * it as running.  This is used as a condition variable to
6484  * insure only one NAPI poll instance runs.  We also make
6485  * sure there is no pending NAPI disable.
6486  */
6487 bool napi_schedule_prep(struct napi_struct *n)
6488 {
6489         unsigned long val, new;
6490
6491         do {
6492                 val = READ_ONCE(n->state);
6493                 if (unlikely(val & NAPIF_STATE_DISABLE))
6494                         return false;
6495                 new = val | NAPIF_STATE_SCHED;
6496
6497                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6498                  * This was suggested by Alexander Duyck, as compiler
6499                  * emits better code than :
6500                  * if (val & NAPIF_STATE_SCHED)
6501                  *     new |= NAPIF_STATE_MISSED;
6502                  */
6503                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6504                                                    NAPIF_STATE_MISSED;
6505         } while (cmpxchg(&n->state, val, new) != val);
6506
6507         return !(val & NAPIF_STATE_SCHED);
6508 }
6509 EXPORT_SYMBOL(napi_schedule_prep);
6510
6511 /**
6512  * __napi_schedule_irqoff - schedule for receive
6513  * @n: entry to schedule
6514  *
6515  * Variant of __napi_schedule() assuming hard irqs are masked.
6516  *
6517  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6518  * because the interrupt disabled assumption might not be true
6519  * due to force-threaded interrupts and spinlock substitution.
6520  */
6521 void __napi_schedule_irqoff(struct napi_struct *n)
6522 {
6523         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6524                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6525         else
6526                 __napi_schedule(n);
6527 }
6528 EXPORT_SYMBOL(__napi_schedule_irqoff);
6529
6530 bool napi_complete_done(struct napi_struct *n, int work_done)
6531 {
6532         unsigned long flags, val, new, timeout = 0;
6533         bool ret = true;
6534
6535         /*
6536          * 1) Don't let napi dequeue from the cpu poll list
6537          *    just in case its running on a different cpu.
6538          * 2) If we are busy polling, do nothing here, we have
6539          *    the guarantee we will be called later.
6540          */
6541         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6542                                  NAPIF_STATE_IN_BUSY_POLL)))
6543                 return false;
6544
6545         if (work_done) {
6546                 if (n->gro_bitmask)
6547                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6548                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6549         }
6550         if (n->defer_hard_irqs_count > 0) {
6551                 n->defer_hard_irqs_count--;
6552                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6553                 if (timeout)
6554                         ret = false;
6555         }
6556         if (n->gro_bitmask) {
6557                 /* When the NAPI instance uses a timeout and keeps postponing
6558                  * it, we need to bound somehow the time packets are kept in
6559                  * the GRO layer
6560                  */
6561                 napi_gro_flush(n, !!timeout);
6562         }
6563
6564         gro_normal_list(n);
6565
6566         if (unlikely(!list_empty(&n->poll_list))) {
6567                 /* If n->poll_list is not empty, we need to mask irqs */
6568                 local_irq_save(flags);
6569                 list_del_init(&n->poll_list);
6570                 local_irq_restore(flags);
6571         }
6572
6573         do {
6574                 val = READ_ONCE(n->state);
6575
6576                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6577
6578                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6579                               NAPIF_STATE_SCHED_THREADED |
6580                               NAPIF_STATE_PREFER_BUSY_POLL);
6581
6582                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6583                  * because we will call napi->poll() one more time.
6584                  * This C code was suggested by Alexander Duyck to help gcc.
6585                  */
6586                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6587                                                     NAPIF_STATE_SCHED;
6588         } while (cmpxchg(&n->state, val, new) != val);
6589
6590         if (unlikely(val & NAPIF_STATE_MISSED)) {
6591                 __napi_schedule(n);
6592                 return false;
6593         }
6594
6595         if (timeout)
6596                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6597                               HRTIMER_MODE_REL_PINNED);
6598         return ret;
6599 }
6600 EXPORT_SYMBOL(napi_complete_done);
6601
6602 /* must be called under rcu_read_lock(), as we dont take a reference */
6603 static struct napi_struct *napi_by_id(unsigned int napi_id)
6604 {
6605         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6606         struct napi_struct *napi;
6607
6608         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6609                 if (napi->napi_id == napi_id)
6610                         return napi;
6611
6612         return NULL;
6613 }
6614
6615 #if defined(CONFIG_NET_RX_BUSY_POLL)
6616
6617 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6618 {
6619         if (!skip_schedule) {
6620                 gro_normal_list(napi);
6621                 __napi_schedule(napi);
6622                 return;
6623         }
6624
6625         if (napi->gro_bitmask) {
6626                 /* flush too old packets
6627                  * If HZ < 1000, flush all packets.
6628                  */
6629                 napi_gro_flush(napi, HZ >= 1000);
6630         }
6631
6632         gro_normal_list(napi);
6633         clear_bit(NAPI_STATE_SCHED, &napi->state);
6634 }
6635
6636 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6637                            u16 budget)
6638 {
6639         bool skip_schedule = false;
6640         unsigned long timeout;
6641         int rc;
6642
6643         /* Busy polling means there is a high chance device driver hard irq
6644          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6645          * set in napi_schedule_prep().
6646          * Since we are about to call napi->poll() once more, we can safely
6647          * clear NAPI_STATE_MISSED.
6648          *
6649          * Note: x86 could use a single "lock and ..." instruction
6650          * to perform these two clear_bit()
6651          */
6652         clear_bit(NAPI_STATE_MISSED, &napi->state);
6653         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6654
6655         local_bh_disable();
6656
6657         if (prefer_busy_poll) {
6658                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6659                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6660                 if (napi->defer_hard_irqs_count && timeout) {
6661                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6662                         skip_schedule = true;
6663                 }
6664         }
6665
6666         /* All we really want here is to re-enable device interrupts.
6667          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6668          */
6669         rc = napi->poll(napi, budget);
6670         /* We can't gro_normal_list() here, because napi->poll() might have
6671          * rearmed the napi (napi_complete_done()) in which case it could
6672          * already be running on another CPU.
6673          */
6674         trace_napi_poll(napi, rc, budget);
6675         netpoll_poll_unlock(have_poll_lock);
6676         if (rc == budget)
6677                 __busy_poll_stop(napi, skip_schedule);
6678         local_bh_enable();
6679 }
6680
6681 void napi_busy_loop(unsigned int napi_id,
6682                     bool (*loop_end)(void *, unsigned long),
6683                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6684 {
6685         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6686         int (*napi_poll)(struct napi_struct *napi, int budget);
6687         void *have_poll_lock = NULL;
6688         struct napi_struct *napi;
6689
6690 restart:
6691         napi_poll = NULL;
6692
6693         rcu_read_lock();
6694
6695         napi = napi_by_id(napi_id);
6696         if (!napi)
6697                 goto out;
6698
6699         preempt_disable();
6700         for (;;) {
6701                 int work = 0;
6702
6703                 local_bh_disable();
6704                 if (!napi_poll) {
6705                         unsigned long val = READ_ONCE(napi->state);
6706
6707                         /* If multiple threads are competing for this napi,
6708                          * we avoid dirtying napi->state as much as we can.
6709                          */
6710                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6711                                    NAPIF_STATE_IN_BUSY_POLL)) {
6712                                 if (prefer_busy_poll)
6713                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6714                                 goto count;
6715                         }
6716                         if (cmpxchg(&napi->state, val,
6717                                     val | NAPIF_STATE_IN_BUSY_POLL |
6718                                           NAPIF_STATE_SCHED) != val) {
6719                                 if (prefer_busy_poll)
6720                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6721                                 goto count;
6722                         }
6723                         have_poll_lock = netpoll_poll_lock(napi);
6724                         napi_poll = napi->poll;
6725                 }
6726                 work = napi_poll(napi, budget);
6727                 trace_napi_poll(napi, work, budget);
6728                 gro_normal_list(napi);
6729 count:
6730                 if (work > 0)
6731                         __NET_ADD_STATS(dev_net(napi->dev),
6732                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6733                 local_bh_enable();
6734
6735                 if (!loop_end || loop_end(loop_end_arg, start_time))
6736                         break;
6737
6738                 if (unlikely(need_resched())) {
6739                         if (napi_poll)
6740                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6741                         preempt_enable();
6742                         rcu_read_unlock();
6743                         cond_resched();
6744                         if (loop_end(loop_end_arg, start_time))
6745                                 return;
6746                         goto restart;
6747                 }
6748                 cpu_relax();
6749         }
6750         if (napi_poll)
6751                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6752         preempt_enable();
6753 out:
6754         rcu_read_unlock();
6755 }
6756 EXPORT_SYMBOL(napi_busy_loop);
6757
6758 #endif /* CONFIG_NET_RX_BUSY_POLL */
6759
6760 static void napi_hash_add(struct napi_struct *napi)
6761 {
6762         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6763                 return;
6764
6765         spin_lock(&napi_hash_lock);
6766
6767         /* 0..NR_CPUS range is reserved for sender_cpu use */
6768         do {
6769                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6770                         napi_gen_id = MIN_NAPI_ID;
6771         } while (napi_by_id(napi_gen_id));
6772         napi->napi_id = napi_gen_id;
6773
6774         hlist_add_head_rcu(&napi->napi_hash_node,
6775                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6776
6777         spin_unlock(&napi_hash_lock);
6778 }
6779
6780 /* Warning : caller is responsible to make sure rcu grace period
6781  * is respected before freeing memory containing @napi
6782  */
6783 static void napi_hash_del(struct napi_struct *napi)
6784 {
6785         spin_lock(&napi_hash_lock);
6786
6787         hlist_del_init_rcu(&napi->napi_hash_node);
6788
6789         spin_unlock(&napi_hash_lock);
6790 }
6791
6792 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6793 {
6794         struct napi_struct *napi;
6795
6796         napi = container_of(timer, struct napi_struct, timer);
6797
6798         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6799          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6800          */
6801         if (!napi_disable_pending(napi) &&
6802             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6803                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6804                 __napi_schedule_irqoff(napi);
6805         }
6806
6807         return HRTIMER_NORESTART;
6808 }
6809
6810 static void init_gro_hash(struct napi_struct *napi)
6811 {
6812         int i;
6813
6814         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6815                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6816                 napi->gro_hash[i].count = 0;
6817         }
6818         napi->gro_bitmask = 0;
6819 }
6820
6821 int dev_set_threaded(struct net_device *dev, bool threaded)
6822 {
6823         struct napi_struct *napi;
6824         int err = 0;
6825
6826         if (dev->threaded == threaded)
6827                 return 0;
6828
6829         if (threaded) {
6830                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6831                         if (!napi->thread) {
6832                                 err = napi_kthread_create(napi);
6833                                 if (err) {
6834                                         threaded = false;
6835                                         break;
6836                                 }
6837                         }
6838                 }
6839         }
6840
6841         dev->threaded = threaded;
6842
6843         /* Make sure kthread is created before THREADED bit
6844          * is set.
6845          */
6846         smp_mb__before_atomic();
6847
6848         /* Setting/unsetting threaded mode on a napi might not immediately
6849          * take effect, if the current napi instance is actively being
6850          * polled. In this case, the switch between threaded mode and
6851          * softirq mode will happen in the next round of napi_schedule().
6852          * This should not cause hiccups/stalls to the live traffic.
6853          */
6854         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6855                 if (threaded)
6856                         set_bit(NAPI_STATE_THREADED, &napi->state);
6857                 else
6858                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6859         }
6860
6861         return err;
6862 }
6863 EXPORT_SYMBOL(dev_set_threaded);
6864
6865 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6866                     int (*poll)(struct napi_struct *, int), int weight)
6867 {
6868         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6869                 return;
6870
6871         INIT_LIST_HEAD(&napi->poll_list);
6872         INIT_HLIST_NODE(&napi->napi_hash_node);
6873         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6874         napi->timer.function = napi_watchdog;
6875         init_gro_hash(napi);
6876         napi->skb = NULL;
6877         INIT_LIST_HEAD(&napi->rx_list);
6878         napi->rx_count = 0;
6879         napi->poll = poll;
6880         if (weight > NAPI_POLL_WEIGHT)
6881                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6882                                 weight);
6883         napi->weight = weight;
6884         napi->dev = dev;
6885 #ifdef CONFIG_NETPOLL
6886         napi->poll_owner = -1;
6887 #endif
6888         set_bit(NAPI_STATE_SCHED, &napi->state);
6889         set_bit(NAPI_STATE_NPSVC, &napi->state);
6890         list_add_rcu(&napi->dev_list, &dev->napi_list);
6891         napi_hash_add(napi);
6892         /* Create kthread for this napi if dev->threaded is set.
6893          * Clear dev->threaded if kthread creation failed so that
6894          * threaded mode will not be enabled in napi_enable().
6895          */
6896         if (dev->threaded && napi_kthread_create(napi))
6897                 dev->threaded = 0;
6898 }
6899 EXPORT_SYMBOL(netif_napi_add);
6900
6901 void napi_disable(struct napi_struct *n)
6902 {
6903         unsigned long val, new;
6904
6905         might_sleep();
6906         set_bit(NAPI_STATE_DISABLE, &n->state);
6907
6908         do {
6909                 val = READ_ONCE(n->state);
6910                 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6911                         usleep_range(20, 200);
6912                         continue;
6913                 }
6914
6915                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6916                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6917         } while (cmpxchg(&n->state, val, new) != val);
6918
6919         hrtimer_cancel(&n->timer);
6920
6921         clear_bit(NAPI_STATE_DISABLE, &n->state);
6922 }
6923 EXPORT_SYMBOL(napi_disable);
6924
6925 /**
6926  *      napi_enable - enable NAPI scheduling
6927  *      @n: NAPI context
6928  *
6929  * Resume NAPI from being scheduled on this context.
6930  * Must be paired with napi_disable.
6931  */
6932 void napi_enable(struct napi_struct *n)
6933 {
6934         unsigned long val, new;
6935
6936         do {
6937                 val = READ_ONCE(n->state);
6938                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6939
6940                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6941                 if (n->dev->threaded && n->thread)
6942                         new |= NAPIF_STATE_THREADED;
6943         } while (cmpxchg(&n->state, val, new) != val);
6944 }
6945 EXPORT_SYMBOL(napi_enable);
6946
6947 static void flush_gro_hash(struct napi_struct *napi)
6948 {
6949         int i;
6950
6951         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6952                 struct sk_buff *skb, *n;
6953
6954                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6955                         kfree_skb(skb);
6956                 napi->gro_hash[i].count = 0;
6957         }
6958 }
6959
6960 /* Must be called in process context */
6961 void __netif_napi_del(struct napi_struct *napi)
6962 {
6963         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6964                 return;
6965
6966         napi_hash_del(napi);
6967         list_del_rcu(&napi->dev_list);
6968         napi_free_frags(napi);
6969
6970         flush_gro_hash(napi);
6971         napi->gro_bitmask = 0;
6972
6973         if (napi->thread) {
6974                 kthread_stop(napi->thread);
6975                 napi->thread = NULL;
6976         }
6977 }
6978 EXPORT_SYMBOL(__netif_napi_del);
6979
6980 static int __napi_poll(struct napi_struct *n, bool *repoll)
6981 {
6982         int work, weight;
6983
6984         weight = n->weight;
6985
6986         /* This NAPI_STATE_SCHED test is for avoiding a race
6987          * with netpoll's poll_napi().  Only the entity which
6988          * obtains the lock and sees NAPI_STATE_SCHED set will
6989          * actually make the ->poll() call.  Therefore we avoid
6990          * accidentally calling ->poll() when NAPI is not scheduled.
6991          */
6992         work = 0;
6993         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6994                 work = n->poll(n, weight);
6995                 trace_napi_poll(n, work, weight);
6996         }
6997
6998         if (unlikely(work > weight))
6999                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7000                             n->poll, work, weight);
7001
7002         if (likely(work < weight))
7003                 return work;
7004
7005         /* Drivers must not modify the NAPI state if they
7006          * consume the entire weight.  In such cases this code
7007          * still "owns" the NAPI instance and therefore can
7008          * move the instance around on the list at-will.
7009          */
7010         if (unlikely(napi_disable_pending(n))) {
7011                 napi_complete(n);
7012                 return work;
7013         }
7014
7015         /* The NAPI context has more processing work, but busy-polling
7016          * is preferred. Exit early.
7017          */
7018         if (napi_prefer_busy_poll(n)) {
7019                 if (napi_complete_done(n, work)) {
7020                         /* If timeout is not set, we need to make sure
7021                          * that the NAPI is re-scheduled.
7022                          */
7023                         napi_schedule(n);
7024                 }
7025                 return work;
7026         }
7027
7028         if (n->gro_bitmask) {
7029                 /* flush too old packets
7030                  * If HZ < 1000, flush all packets.
7031                  */
7032                 napi_gro_flush(n, HZ >= 1000);
7033         }
7034
7035         gro_normal_list(n);
7036
7037         /* Some drivers may have called napi_schedule
7038          * prior to exhausting their budget.
7039          */
7040         if (unlikely(!list_empty(&n->poll_list))) {
7041                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7042                              n->dev ? n->dev->name : "backlog");
7043                 return work;
7044         }
7045
7046         *repoll = true;
7047
7048         return work;
7049 }
7050
7051 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7052 {
7053         bool do_repoll = false;
7054         void *have;
7055         int work;
7056
7057         list_del_init(&n->poll_list);
7058
7059         have = netpoll_poll_lock(n);
7060
7061         work = __napi_poll(n, &do_repoll);
7062
7063         if (do_repoll)
7064                 list_add_tail(&n->poll_list, repoll);
7065
7066         netpoll_poll_unlock(have);
7067
7068         return work;
7069 }
7070
7071 static int napi_thread_wait(struct napi_struct *napi)
7072 {
7073         bool woken = false;
7074
7075         set_current_state(TASK_INTERRUPTIBLE);
7076
7077         while (!kthread_should_stop()) {
7078                 /* Testing SCHED_THREADED bit here to make sure the current
7079                  * kthread owns this napi and could poll on this napi.
7080                  * Testing SCHED bit is not enough because SCHED bit might be
7081                  * set by some other busy poll thread or by napi_disable().
7082                  */
7083                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7084                         WARN_ON(!list_empty(&napi->poll_list));
7085                         __set_current_state(TASK_RUNNING);
7086                         return 0;
7087                 }
7088
7089                 schedule();
7090                 /* woken being true indicates this thread owns this napi. */
7091                 woken = true;
7092                 set_current_state(TASK_INTERRUPTIBLE);
7093         }
7094         __set_current_state(TASK_RUNNING);
7095
7096         return -1;
7097 }
7098
7099 static int napi_threaded_poll(void *data)
7100 {
7101         struct napi_struct *napi = data;
7102         void *have;
7103
7104         while (!napi_thread_wait(napi)) {
7105                 for (;;) {
7106                         bool repoll = false;
7107
7108                         local_bh_disable();
7109
7110                         have = netpoll_poll_lock(napi);
7111                         __napi_poll(napi, &repoll);
7112                         netpoll_poll_unlock(have);
7113
7114                         local_bh_enable();
7115
7116                         if (!repoll)
7117                                 break;
7118
7119                         cond_resched();
7120                 }
7121         }
7122         return 0;
7123 }
7124
7125 static __latent_entropy void net_rx_action(struct softirq_action *h)
7126 {
7127         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7128         unsigned long time_limit = jiffies +
7129                 usecs_to_jiffies(netdev_budget_usecs);
7130         int budget = netdev_budget;
7131         LIST_HEAD(list);
7132         LIST_HEAD(repoll);
7133
7134         local_irq_disable();
7135         list_splice_init(&sd->poll_list, &list);
7136         local_irq_enable();
7137
7138         for (;;) {
7139                 struct napi_struct *n;
7140
7141                 if (list_empty(&list)) {
7142                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7143                                 return;
7144                         break;
7145                 }
7146
7147                 n = list_first_entry(&list, struct napi_struct, poll_list);
7148                 budget -= napi_poll(n, &repoll);
7149
7150                 /* If softirq window is exhausted then punt.
7151                  * Allow this to run for 2 jiffies since which will allow
7152                  * an average latency of 1.5/HZ.
7153                  */
7154                 if (unlikely(budget <= 0 ||
7155                              time_after_eq(jiffies, time_limit))) {
7156                         sd->time_squeeze++;
7157                         break;
7158                 }
7159         }
7160
7161         local_irq_disable();
7162
7163         list_splice_tail_init(&sd->poll_list, &list);
7164         list_splice_tail(&repoll, &list);
7165         list_splice(&list, &sd->poll_list);
7166         if (!list_empty(&sd->poll_list))
7167                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7168
7169         net_rps_action_and_irq_enable(sd);
7170 }
7171
7172 struct netdev_adjacent {
7173         struct net_device *dev;
7174
7175         /* upper master flag, there can only be one master device per list */
7176         bool master;
7177
7178         /* lookup ignore flag */
7179         bool ignore;
7180
7181         /* counter for the number of times this device was added to us */
7182         u16 ref_nr;
7183
7184         /* private field for the users */
7185         void *private;
7186
7187         struct list_head list;
7188         struct rcu_head rcu;
7189 };
7190
7191 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7192                                                  struct list_head *adj_list)
7193 {
7194         struct netdev_adjacent *adj;
7195
7196         list_for_each_entry(adj, adj_list, list) {
7197                 if (adj->dev == adj_dev)
7198                         return adj;
7199         }
7200         return NULL;
7201 }
7202
7203 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7204                                     struct netdev_nested_priv *priv)
7205 {
7206         struct net_device *dev = (struct net_device *)priv->data;
7207
7208         return upper_dev == dev;
7209 }
7210
7211 /**
7212  * netdev_has_upper_dev - Check if device is linked to an upper device
7213  * @dev: device
7214  * @upper_dev: upper device to check
7215  *
7216  * Find out if a device is linked to specified upper device and return true
7217  * in case it is. Note that this checks only immediate upper device,
7218  * not through a complete stack of devices. The caller must hold the RTNL lock.
7219  */
7220 bool netdev_has_upper_dev(struct net_device *dev,
7221                           struct net_device *upper_dev)
7222 {
7223         struct netdev_nested_priv priv = {
7224                 .data = (void *)upper_dev,
7225         };
7226
7227         ASSERT_RTNL();
7228
7229         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7230                                              &priv);
7231 }
7232 EXPORT_SYMBOL(netdev_has_upper_dev);
7233
7234 /**
7235  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7236  * @dev: device
7237  * @upper_dev: upper device to check
7238  *
7239  * Find out if a device is linked to specified upper device and return true
7240  * in case it is. Note that this checks the entire upper device chain.
7241  * The caller must hold rcu lock.
7242  */
7243
7244 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7245                                   struct net_device *upper_dev)
7246 {
7247         struct netdev_nested_priv priv = {
7248                 .data = (void *)upper_dev,
7249         };
7250
7251         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7252                                                &priv);
7253 }
7254 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7255
7256 /**
7257  * netdev_has_any_upper_dev - Check if device is linked to some device
7258  * @dev: device
7259  *
7260  * Find out if a device is linked to an upper device and return true in case
7261  * it is. The caller must hold the RTNL lock.
7262  */
7263 bool netdev_has_any_upper_dev(struct net_device *dev)
7264 {
7265         ASSERT_RTNL();
7266
7267         return !list_empty(&dev->adj_list.upper);
7268 }
7269 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7270
7271 /**
7272  * netdev_master_upper_dev_get - Get master upper device
7273  * @dev: device
7274  *
7275  * Find a master upper device and return pointer to it or NULL in case
7276  * it's not there. The caller must hold the RTNL lock.
7277  */
7278 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7279 {
7280         struct netdev_adjacent *upper;
7281
7282         ASSERT_RTNL();
7283
7284         if (list_empty(&dev->adj_list.upper))
7285                 return NULL;
7286
7287         upper = list_first_entry(&dev->adj_list.upper,
7288                                  struct netdev_adjacent, list);
7289         if (likely(upper->master))
7290                 return upper->dev;
7291         return NULL;
7292 }
7293 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7294
7295 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7296 {
7297         struct netdev_adjacent *upper;
7298
7299         ASSERT_RTNL();
7300
7301         if (list_empty(&dev->adj_list.upper))
7302                 return NULL;
7303
7304         upper = list_first_entry(&dev->adj_list.upper,
7305                                  struct netdev_adjacent, list);
7306         if (likely(upper->master) && !upper->ignore)
7307                 return upper->dev;
7308         return NULL;
7309 }
7310
7311 /**
7312  * netdev_has_any_lower_dev - Check if device is linked to some device
7313  * @dev: device
7314  *
7315  * Find out if a device is linked to a lower device and return true in case
7316  * it is. The caller must hold the RTNL lock.
7317  */
7318 static bool netdev_has_any_lower_dev(struct net_device *dev)
7319 {
7320         ASSERT_RTNL();
7321
7322         return !list_empty(&dev->adj_list.lower);
7323 }
7324
7325 void *netdev_adjacent_get_private(struct list_head *adj_list)
7326 {
7327         struct netdev_adjacent *adj;
7328
7329         adj = list_entry(adj_list, struct netdev_adjacent, list);
7330
7331         return adj->private;
7332 }
7333 EXPORT_SYMBOL(netdev_adjacent_get_private);
7334
7335 /**
7336  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7337  * @dev: device
7338  * @iter: list_head ** of the current position
7339  *
7340  * Gets the next device from the dev's upper list, starting from iter
7341  * position. The caller must hold RCU read lock.
7342  */
7343 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7344                                                  struct list_head **iter)
7345 {
7346         struct netdev_adjacent *upper;
7347
7348         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7349
7350         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7351
7352         if (&upper->list == &dev->adj_list.upper)
7353                 return NULL;
7354
7355         *iter = &upper->list;
7356
7357         return upper->dev;
7358 }
7359 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7360
7361 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7362                                                   struct list_head **iter,
7363                                                   bool *ignore)
7364 {
7365         struct netdev_adjacent *upper;
7366
7367         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7368
7369         if (&upper->list == &dev->adj_list.upper)
7370                 return NULL;
7371
7372         *iter = &upper->list;
7373         *ignore = upper->ignore;
7374
7375         return upper->dev;
7376 }
7377
7378 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7379                                                     struct list_head **iter)
7380 {
7381         struct netdev_adjacent *upper;
7382
7383         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7384
7385         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7386
7387         if (&upper->list == &dev->adj_list.upper)
7388                 return NULL;
7389
7390         *iter = &upper->list;
7391
7392         return upper->dev;
7393 }
7394
7395 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7396                                        int (*fn)(struct net_device *dev,
7397                                          struct netdev_nested_priv *priv),
7398                                        struct netdev_nested_priv *priv)
7399 {
7400         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7401         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7402         int ret, cur = 0;
7403         bool ignore;
7404
7405         now = dev;
7406         iter = &dev->adj_list.upper;
7407
7408         while (1) {
7409                 if (now != dev) {
7410                         ret = fn(now, priv);
7411                         if (ret)
7412                                 return ret;
7413                 }
7414
7415                 next = NULL;
7416                 while (1) {
7417                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7418                         if (!udev)
7419                                 break;
7420                         if (ignore)
7421                                 continue;
7422
7423                         next = udev;
7424                         niter = &udev->adj_list.upper;
7425                         dev_stack[cur] = now;
7426                         iter_stack[cur++] = iter;
7427                         break;
7428                 }
7429
7430                 if (!next) {
7431                         if (!cur)
7432                                 return 0;
7433                         next = dev_stack[--cur];
7434                         niter = iter_stack[cur];
7435                 }
7436
7437                 now = next;
7438                 iter = niter;
7439         }
7440
7441         return 0;
7442 }
7443
7444 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7445                                   int (*fn)(struct net_device *dev,
7446                                             struct netdev_nested_priv *priv),
7447                                   struct netdev_nested_priv *priv)
7448 {
7449         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7450         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7451         int ret, cur = 0;
7452
7453         now = dev;
7454         iter = &dev->adj_list.upper;
7455
7456         while (1) {
7457                 if (now != dev) {
7458                         ret = fn(now, priv);
7459                         if (ret)
7460                                 return ret;
7461                 }
7462
7463                 next = NULL;
7464                 while (1) {
7465                         udev = netdev_next_upper_dev_rcu(now, &iter);
7466                         if (!udev)
7467                                 break;
7468
7469                         next = udev;
7470                         niter = &udev->adj_list.upper;
7471                         dev_stack[cur] = now;
7472                         iter_stack[cur++] = iter;
7473                         break;
7474                 }
7475
7476                 if (!next) {
7477                         if (!cur)
7478                                 return 0;
7479                         next = dev_stack[--cur];
7480                         niter = iter_stack[cur];
7481                 }
7482
7483                 now = next;
7484                 iter = niter;
7485         }
7486
7487         return 0;
7488 }
7489 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7490
7491 static bool __netdev_has_upper_dev(struct net_device *dev,
7492                                    struct net_device *upper_dev)
7493 {
7494         struct netdev_nested_priv priv = {
7495                 .flags = 0,
7496                 .data = (void *)upper_dev,
7497         };
7498
7499         ASSERT_RTNL();
7500
7501         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7502                                            &priv);
7503 }
7504
7505 /**
7506  * netdev_lower_get_next_private - Get the next ->private from the
7507  *                                 lower neighbour list
7508  * @dev: device
7509  * @iter: list_head ** of the current position
7510  *
7511  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7512  * list, starting from iter position. The caller must hold either hold the
7513  * RTNL lock or its own locking that guarantees that the neighbour lower
7514  * list will remain unchanged.
7515  */
7516 void *netdev_lower_get_next_private(struct net_device *dev,
7517                                     struct list_head **iter)
7518 {
7519         struct netdev_adjacent *lower;
7520
7521         lower = list_entry(*iter, struct netdev_adjacent, list);
7522
7523         if (&lower->list == &dev->adj_list.lower)
7524                 return NULL;
7525
7526         *iter = lower->list.next;
7527
7528         return lower->private;
7529 }
7530 EXPORT_SYMBOL(netdev_lower_get_next_private);
7531
7532 /**
7533  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7534  *                                     lower neighbour list, RCU
7535  *                                     variant
7536  * @dev: device
7537  * @iter: list_head ** of the current position
7538  *
7539  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7540  * list, starting from iter position. The caller must hold RCU read lock.
7541  */
7542 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7543                                         struct list_head **iter)
7544 {
7545         struct netdev_adjacent *lower;
7546
7547         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7548
7549         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7550
7551         if (&lower->list == &dev->adj_list.lower)
7552                 return NULL;
7553
7554         *iter = &lower->list;
7555
7556         return lower->private;
7557 }
7558 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7559
7560 /**
7561  * netdev_lower_get_next - Get the next device from the lower neighbour
7562  *                         list
7563  * @dev: device
7564  * @iter: list_head ** of the current position
7565  *
7566  * Gets the next netdev_adjacent from the dev's lower neighbour
7567  * list, starting from iter position. The caller must hold RTNL lock or
7568  * its own locking that guarantees that the neighbour lower
7569  * list will remain unchanged.
7570  */
7571 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7572 {
7573         struct netdev_adjacent *lower;
7574
7575         lower = list_entry(*iter, struct netdev_adjacent, list);
7576
7577         if (&lower->list == &dev->adj_list.lower)
7578                 return NULL;
7579
7580         *iter = lower->list.next;
7581
7582         return lower->dev;
7583 }
7584 EXPORT_SYMBOL(netdev_lower_get_next);
7585
7586 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7587                                                 struct list_head **iter)
7588 {
7589         struct netdev_adjacent *lower;
7590
7591         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7592
7593         if (&lower->list == &dev->adj_list.lower)
7594                 return NULL;
7595
7596         *iter = &lower->list;
7597
7598         return lower->dev;
7599 }
7600
7601 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7602                                                   struct list_head **iter,
7603                                                   bool *ignore)
7604 {
7605         struct netdev_adjacent *lower;
7606
7607         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7608
7609         if (&lower->list == &dev->adj_list.lower)
7610                 return NULL;
7611
7612         *iter = &lower->list;
7613         *ignore = lower->ignore;
7614
7615         return lower->dev;
7616 }
7617
7618 int netdev_walk_all_lower_dev(struct net_device *dev,
7619                               int (*fn)(struct net_device *dev,
7620                                         struct netdev_nested_priv *priv),
7621                               struct netdev_nested_priv *priv)
7622 {
7623         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7624         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7625         int ret, cur = 0;
7626
7627         now = dev;
7628         iter = &dev->adj_list.lower;
7629
7630         while (1) {
7631                 if (now != dev) {
7632                         ret = fn(now, priv);
7633                         if (ret)
7634                                 return ret;
7635                 }
7636
7637                 next = NULL;
7638                 while (1) {
7639                         ldev = netdev_next_lower_dev(now, &iter);
7640                         if (!ldev)
7641                                 break;
7642
7643                         next = ldev;
7644                         niter = &ldev->adj_list.lower;
7645                         dev_stack[cur] = now;
7646                         iter_stack[cur++] = iter;
7647                         break;
7648                 }
7649
7650                 if (!next) {
7651                         if (!cur)
7652                                 return 0;
7653                         next = dev_stack[--cur];
7654                         niter = iter_stack[cur];
7655                 }
7656
7657                 now = next;
7658                 iter = niter;
7659         }
7660
7661         return 0;
7662 }
7663 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7664
7665 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7666                                        int (*fn)(struct net_device *dev,
7667                                          struct netdev_nested_priv *priv),
7668                                        struct netdev_nested_priv *priv)
7669 {
7670         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7671         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7672         int ret, cur = 0;
7673         bool ignore;
7674
7675         now = dev;
7676         iter = &dev->adj_list.lower;
7677
7678         while (1) {
7679                 if (now != dev) {
7680                         ret = fn(now, priv);
7681                         if (ret)
7682                                 return ret;
7683                 }
7684
7685                 next = NULL;
7686                 while (1) {
7687                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7688                         if (!ldev)
7689                                 break;
7690                         if (ignore)
7691                                 continue;
7692
7693                         next = ldev;
7694                         niter = &ldev->adj_list.lower;
7695                         dev_stack[cur] = now;
7696                         iter_stack[cur++] = iter;
7697                         break;
7698                 }
7699
7700                 if (!next) {
7701                         if (!cur)
7702                                 return 0;
7703                         next = dev_stack[--cur];
7704                         niter = iter_stack[cur];
7705                 }
7706
7707                 now = next;
7708                 iter = niter;
7709         }
7710
7711         return 0;
7712 }
7713
7714 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7715                                              struct list_head **iter)
7716 {
7717         struct netdev_adjacent *lower;
7718
7719         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7720         if (&lower->list == &dev->adj_list.lower)
7721                 return NULL;
7722
7723         *iter = &lower->list;
7724
7725         return lower->dev;
7726 }
7727 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7728
7729 static u8 __netdev_upper_depth(struct net_device *dev)
7730 {
7731         struct net_device *udev;
7732         struct list_head *iter;
7733         u8 max_depth = 0;
7734         bool ignore;
7735
7736         for (iter = &dev->adj_list.upper,
7737              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7738              udev;
7739              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7740                 if (ignore)
7741                         continue;
7742                 if (max_depth < udev->upper_level)
7743                         max_depth = udev->upper_level;
7744         }
7745
7746         return max_depth;
7747 }
7748
7749 static u8 __netdev_lower_depth(struct net_device *dev)
7750 {
7751         struct net_device *ldev;
7752         struct list_head *iter;
7753         u8 max_depth = 0;
7754         bool ignore;
7755
7756         for (iter = &dev->adj_list.lower,
7757              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7758              ldev;
7759              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7760                 if (ignore)
7761                         continue;
7762                 if (max_depth < ldev->lower_level)
7763                         max_depth = ldev->lower_level;
7764         }
7765
7766         return max_depth;
7767 }
7768
7769 static int __netdev_update_upper_level(struct net_device *dev,
7770                                        struct netdev_nested_priv *__unused)
7771 {
7772         dev->upper_level = __netdev_upper_depth(dev) + 1;
7773         return 0;
7774 }
7775
7776 static int __netdev_update_lower_level(struct net_device *dev,
7777                                        struct netdev_nested_priv *priv)
7778 {
7779         dev->lower_level = __netdev_lower_depth(dev) + 1;
7780
7781 #ifdef CONFIG_LOCKDEP
7782         if (!priv)
7783                 return 0;
7784
7785         if (priv->flags & NESTED_SYNC_IMM)
7786                 dev->nested_level = dev->lower_level - 1;
7787         if (priv->flags & NESTED_SYNC_TODO)
7788                 net_unlink_todo(dev);
7789 #endif
7790         return 0;
7791 }
7792
7793 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7794                                   int (*fn)(struct net_device *dev,
7795                                             struct netdev_nested_priv *priv),
7796                                   struct netdev_nested_priv *priv)
7797 {
7798         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7799         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7800         int ret, cur = 0;
7801
7802         now = dev;
7803         iter = &dev->adj_list.lower;
7804
7805         while (1) {
7806                 if (now != dev) {
7807                         ret = fn(now, priv);
7808                         if (ret)
7809                                 return ret;
7810                 }
7811
7812                 next = NULL;
7813                 while (1) {
7814                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7815                         if (!ldev)
7816                                 break;
7817
7818                         next = ldev;
7819                         niter = &ldev->adj_list.lower;
7820                         dev_stack[cur] = now;
7821                         iter_stack[cur++] = iter;
7822                         break;
7823                 }
7824
7825                 if (!next) {
7826                         if (!cur)
7827                                 return 0;
7828                         next = dev_stack[--cur];
7829                         niter = iter_stack[cur];
7830                 }
7831
7832                 now = next;
7833                 iter = niter;
7834         }
7835
7836         return 0;
7837 }
7838 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7839
7840 /**
7841  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7842  *                                     lower neighbour list, RCU
7843  *                                     variant
7844  * @dev: device
7845  *
7846  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7847  * list. The caller must hold RCU read lock.
7848  */
7849 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7850 {
7851         struct netdev_adjacent *lower;
7852
7853         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7854                         struct netdev_adjacent, list);
7855         if (lower)
7856                 return lower->private;
7857         return NULL;
7858 }
7859 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7860
7861 /**
7862  * netdev_master_upper_dev_get_rcu - Get master upper device
7863  * @dev: device
7864  *
7865  * Find a master upper device and return pointer to it or NULL in case
7866  * it's not there. The caller must hold the RCU read lock.
7867  */
7868 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7869 {
7870         struct netdev_adjacent *upper;
7871
7872         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7873                                        struct netdev_adjacent, list);
7874         if (upper && likely(upper->master))
7875                 return upper->dev;
7876         return NULL;
7877 }
7878 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7879
7880 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7881                               struct net_device *adj_dev,
7882                               struct list_head *dev_list)
7883 {
7884         char linkname[IFNAMSIZ+7];
7885
7886         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7887                 "upper_%s" : "lower_%s", adj_dev->name);
7888         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7889                                  linkname);
7890 }
7891 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7892                                char *name,
7893                                struct list_head *dev_list)
7894 {
7895         char linkname[IFNAMSIZ+7];
7896
7897         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7898                 "upper_%s" : "lower_%s", name);
7899         sysfs_remove_link(&(dev->dev.kobj), linkname);
7900 }
7901
7902 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7903                                                  struct net_device *adj_dev,
7904                                                  struct list_head *dev_list)
7905 {
7906         return (dev_list == &dev->adj_list.upper ||
7907                 dev_list == &dev->adj_list.lower) &&
7908                 net_eq(dev_net(dev), dev_net(adj_dev));
7909 }
7910
7911 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7912                                         struct net_device *adj_dev,
7913                                         struct list_head *dev_list,
7914                                         void *private, bool master)
7915 {
7916         struct netdev_adjacent *adj;
7917         int ret;
7918
7919         adj = __netdev_find_adj(adj_dev, dev_list);
7920
7921         if (adj) {
7922                 adj->ref_nr += 1;
7923                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7924                          dev->name, adj_dev->name, adj->ref_nr);
7925
7926                 return 0;
7927         }
7928
7929         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7930         if (!adj)
7931                 return -ENOMEM;
7932
7933         adj->dev = adj_dev;
7934         adj->master = master;
7935         adj->ref_nr = 1;
7936         adj->private = private;
7937         adj->ignore = false;
7938         dev_hold(adj_dev);
7939
7940         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7941                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7942
7943         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7944                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7945                 if (ret)
7946                         goto free_adj;
7947         }
7948
7949         /* Ensure that master link is always the first item in list. */
7950         if (master) {
7951                 ret = sysfs_create_link(&(dev->dev.kobj),
7952                                         &(adj_dev->dev.kobj), "master");
7953                 if (ret)
7954                         goto remove_symlinks;
7955
7956                 list_add_rcu(&adj->list, dev_list);
7957         } else {
7958                 list_add_tail_rcu(&adj->list, dev_list);
7959         }
7960
7961         return 0;
7962
7963 remove_symlinks:
7964         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7965                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7966 free_adj:
7967         kfree(adj);
7968         dev_put(adj_dev);
7969
7970         return ret;
7971 }
7972
7973 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7974                                          struct net_device *adj_dev,
7975                                          u16 ref_nr,
7976                                          struct list_head *dev_list)
7977 {
7978         struct netdev_adjacent *adj;
7979
7980         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7981                  dev->name, adj_dev->name, ref_nr);
7982
7983         adj = __netdev_find_adj(adj_dev, dev_list);
7984
7985         if (!adj) {
7986                 pr_err("Adjacency does not exist for device %s from %s\n",
7987                        dev->name, adj_dev->name);
7988                 WARN_ON(1);
7989                 return;
7990         }
7991
7992         if (adj->ref_nr > ref_nr) {
7993                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7994                          dev->name, adj_dev->name, ref_nr,
7995                          adj->ref_nr - ref_nr);
7996                 adj->ref_nr -= ref_nr;
7997                 return;
7998         }
7999
8000         if (adj->master)
8001                 sysfs_remove_link(&(dev->dev.kobj), "master");
8002
8003         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8004                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8005
8006         list_del_rcu(&adj->list);
8007         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8008                  adj_dev->name, dev->name, adj_dev->name);
8009         dev_put(adj_dev);
8010         kfree_rcu(adj, rcu);
8011 }
8012
8013 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8014                                             struct net_device *upper_dev,
8015                                             struct list_head *up_list,
8016                                             struct list_head *down_list,
8017                                             void *private, bool master)
8018 {
8019         int ret;
8020
8021         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8022                                            private, master);
8023         if (ret)
8024                 return ret;
8025
8026         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8027                                            private, false);
8028         if (ret) {
8029                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8030                 return ret;
8031         }
8032
8033         return 0;
8034 }
8035
8036 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8037                                                struct net_device *upper_dev,
8038                                                u16 ref_nr,
8039                                                struct list_head *up_list,
8040                                                struct list_head *down_list)
8041 {
8042         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8043         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8044 }
8045
8046 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8047                                                 struct net_device *upper_dev,
8048                                                 void *private, bool master)
8049 {
8050         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8051                                                 &dev->adj_list.upper,
8052                                                 &upper_dev->adj_list.lower,
8053                                                 private, master);
8054 }
8055
8056 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8057                                                    struct net_device *upper_dev)
8058 {
8059         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8060                                            &dev->adj_list.upper,
8061                                            &upper_dev->adj_list.lower);
8062 }
8063
8064 static int __netdev_upper_dev_link(struct net_device *dev,
8065                                    struct net_device *upper_dev, bool master,
8066                                    void *upper_priv, void *upper_info,
8067                                    struct netdev_nested_priv *priv,
8068                                    struct netlink_ext_ack *extack)
8069 {
8070         struct netdev_notifier_changeupper_info changeupper_info = {
8071                 .info = {
8072                         .dev = dev,
8073                         .extack = extack,
8074                 },
8075                 .upper_dev = upper_dev,
8076                 .master = master,
8077                 .linking = true,
8078                 .upper_info = upper_info,
8079         };
8080         struct net_device *master_dev;
8081         int ret = 0;
8082
8083         ASSERT_RTNL();
8084
8085         if (dev == upper_dev)
8086                 return -EBUSY;
8087
8088         /* To prevent loops, check if dev is not upper device to upper_dev. */
8089         if (__netdev_has_upper_dev(upper_dev, dev))
8090                 return -EBUSY;
8091
8092         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8093                 return -EMLINK;
8094
8095         if (!master) {
8096                 if (__netdev_has_upper_dev(dev, upper_dev))
8097                         return -EEXIST;
8098         } else {
8099                 master_dev = __netdev_master_upper_dev_get(dev);
8100                 if (master_dev)
8101                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
8102         }
8103
8104         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8105                                             &changeupper_info.info);
8106         ret = notifier_to_errno(ret);
8107         if (ret)
8108                 return ret;
8109
8110         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8111                                                    master);
8112         if (ret)
8113                 return ret;
8114
8115         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8116                                             &changeupper_info.info);
8117         ret = notifier_to_errno(ret);
8118         if (ret)
8119                 goto rollback;
8120
8121         __netdev_update_upper_level(dev, NULL);
8122         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8123
8124         __netdev_update_lower_level(upper_dev, priv);
8125         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8126                                     priv);
8127
8128         return 0;
8129
8130 rollback:
8131         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8132
8133         return ret;
8134 }
8135
8136 /**
8137  * netdev_upper_dev_link - Add a link to the upper device
8138  * @dev: device
8139  * @upper_dev: new upper device
8140  * @extack: netlink extended ack
8141  *
8142  * Adds a link to device which is upper to this one. The caller must hold
8143  * the RTNL lock. On a failure a negative errno code is returned.
8144  * On success the reference counts are adjusted and the function
8145  * returns zero.
8146  */
8147 int netdev_upper_dev_link(struct net_device *dev,
8148                           struct net_device *upper_dev,
8149                           struct netlink_ext_ack *extack)
8150 {
8151         struct netdev_nested_priv priv = {
8152                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8153                 .data = NULL,
8154         };
8155
8156         return __netdev_upper_dev_link(dev, upper_dev, false,
8157                                        NULL, NULL, &priv, extack);
8158 }
8159 EXPORT_SYMBOL(netdev_upper_dev_link);
8160
8161 /**
8162  * netdev_master_upper_dev_link - Add a master link to the upper device
8163  * @dev: device
8164  * @upper_dev: new upper device
8165  * @upper_priv: upper device private
8166  * @upper_info: upper info to be passed down via notifier
8167  * @extack: netlink extended ack
8168  *
8169  * Adds a link to device which is upper to this one. In this case, only
8170  * one master upper device can be linked, although other non-master devices
8171  * might be linked as well. The caller must hold the RTNL lock.
8172  * On a failure a negative errno code is returned. On success the reference
8173  * counts are adjusted and the function returns zero.
8174  */
8175 int netdev_master_upper_dev_link(struct net_device *dev,
8176                                  struct net_device *upper_dev,
8177                                  void *upper_priv, void *upper_info,
8178                                  struct netlink_ext_ack *extack)
8179 {
8180         struct netdev_nested_priv priv = {
8181                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8182                 .data = NULL,
8183         };
8184
8185         return __netdev_upper_dev_link(dev, upper_dev, true,
8186                                        upper_priv, upper_info, &priv, extack);
8187 }
8188 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8189
8190 static void __netdev_upper_dev_unlink(struct net_device *dev,
8191                                       struct net_device *upper_dev,
8192                                       struct netdev_nested_priv *priv)
8193 {
8194         struct netdev_notifier_changeupper_info changeupper_info = {
8195                 .info = {
8196                         .dev = dev,
8197                 },
8198                 .upper_dev = upper_dev,
8199                 .linking = false,
8200         };
8201
8202         ASSERT_RTNL();
8203
8204         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8205
8206         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8207                                       &changeupper_info.info);
8208
8209         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8210
8211         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8212                                       &changeupper_info.info);
8213
8214         __netdev_update_upper_level(dev, NULL);
8215         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8216
8217         __netdev_update_lower_level(upper_dev, priv);
8218         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8219                                     priv);
8220 }
8221
8222 /**
8223  * netdev_upper_dev_unlink - Removes a link to upper device
8224  * @dev: device
8225  * @upper_dev: new upper device
8226  *
8227  * Removes a link to device which is upper to this one. The caller must hold
8228  * the RTNL lock.
8229  */
8230 void netdev_upper_dev_unlink(struct net_device *dev,
8231                              struct net_device *upper_dev)
8232 {
8233         struct netdev_nested_priv priv = {
8234                 .flags = NESTED_SYNC_TODO,
8235                 .data = NULL,
8236         };
8237
8238         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8239 }
8240 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8241
8242 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8243                                       struct net_device *lower_dev,
8244                                       bool val)
8245 {
8246         struct netdev_adjacent *adj;
8247
8248         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8249         if (adj)
8250                 adj->ignore = val;
8251
8252         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8253         if (adj)
8254                 adj->ignore = val;
8255 }
8256
8257 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8258                                         struct net_device *lower_dev)
8259 {
8260         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8261 }
8262
8263 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8264                                        struct net_device *lower_dev)
8265 {
8266         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8267 }
8268
8269 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8270                                    struct net_device *new_dev,
8271                                    struct net_device *dev,
8272                                    struct netlink_ext_ack *extack)
8273 {
8274         struct netdev_nested_priv priv = {
8275                 .flags = 0,
8276                 .data = NULL,
8277         };
8278         int err;
8279
8280         if (!new_dev)
8281                 return 0;
8282
8283         if (old_dev && new_dev != old_dev)
8284                 netdev_adjacent_dev_disable(dev, old_dev);
8285         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8286                                       extack);
8287         if (err) {
8288                 if (old_dev && new_dev != old_dev)
8289                         netdev_adjacent_dev_enable(dev, old_dev);
8290                 return err;
8291         }
8292
8293         return 0;
8294 }
8295 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8296
8297 void netdev_adjacent_change_commit(struct net_device *old_dev,
8298                                    struct net_device *new_dev,
8299                                    struct net_device *dev)
8300 {
8301         struct netdev_nested_priv priv = {
8302                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8303                 .data = NULL,
8304         };
8305
8306         if (!new_dev || !old_dev)
8307                 return;
8308
8309         if (new_dev == old_dev)
8310                 return;
8311
8312         netdev_adjacent_dev_enable(dev, old_dev);
8313         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8314 }
8315 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8316
8317 void netdev_adjacent_change_abort(struct net_device *old_dev,
8318                                   struct net_device *new_dev,
8319                                   struct net_device *dev)
8320 {
8321         struct netdev_nested_priv priv = {
8322                 .flags = 0,
8323                 .data = NULL,
8324         };
8325
8326         if (!new_dev)
8327                 return;
8328
8329         if (old_dev && new_dev != old_dev)
8330                 netdev_adjacent_dev_enable(dev, old_dev);
8331
8332         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8333 }
8334 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8335
8336 /**
8337  * netdev_bonding_info_change - Dispatch event about slave change
8338  * @dev: device
8339  * @bonding_info: info to dispatch
8340  *
8341  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8342  * The caller must hold the RTNL lock.
8343  */
8344 void netdev_bonding_info_change(struct net_device *dev,
8345                                 struct netdev_bonding_info *bonding_info)
8346 {
8347         struct netdev_notifier_bonding_info info = {
8348                 .info.dev = dev,
8349         };
8350
8351         memcpy(&info.bonding_info, bonding_info,
8352                sizeof(struct netdev_bonding_info));
8353         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8354                                       &info.info);
8355 }
8356 EXPORT_SYMBOL(netdev_bonding_info_change);
8357
8358 /**
8359  * netdev_get_xmit_slave - Get the xmit slave of master device
8360  * @dev: device
8361  * @skb: The packet
8362  * @all_slaves: assume all the slaves are active
8363  *
8364  * The reference counters are not incremented so the caller must be
8365  * careful with locks. The caller must hold RCU lock.
8366  * %NULL is returned if no slave is found.
8367  */
8368
8369 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8370                                          struct sk_buff *skb,
8371                                          bool all_slaves)
8372 {
8373         const struct net_device_ops *ops = dev->netdev_ops;
8374
8375         if (!ops->ndo_get_xmit_slave)
8376                 return NULL;
8377         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8378 }
8379 EXPORT_SYMBOL(netdev_get_xmit_slave);
8380
8381 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8382                                                   struct sock *sk)
8383 {
8384         const struct net_device_ops *ops = dev->netdev_ops;
8385
8386         if (!ops->ndo_sk_get_lower_dev)
8387                 return NULL;
8388         return ops->ndo_sk_get_lower_dev(dev, sk);
8389 }
8390
8391 /**
8392  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8393  * @dev: device
8394  * @sk: the socket
8395  *
8396  * %NULL is returned if no lower device is found.
8397  */
8398
8399 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8400                                             struct sock *sk)
8401 {
8402         struct net_device *lower;
8403
8404         lower = netdev_sk_get_lower_dev(dev, sk);
8405         while (lower) {
8406                 dev = lower;
8407                 lower = netdev_sk_get_lower_dev(dev, sk);
8408         }
8409
8410         return dev;
8411 }
8412 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8413
8414 static void netdev_adjacent_add_links(struct net_device *dev)
8415 {
8416         struct netdev_adjacent *iter;
8417
8418         struct net *net = dev_net(dev);
8419
8420         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8421                 if (!net_eq(net, dev_net(iter->dev)))
8422                         continue;
8423                 netdev_adjacent_sysfs_add(iter->dev, dev,
8424                                           &iter->dev->adj_list.lower);
8425                 netdev_adjacent_sysfs_add(dev, iter->dev,
8426                                           &dev->adj_list.upper);
8427         }
8428
8429         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8430                 if (!net_eq(net, dev_net(iter->dev)))
8431                         continue;
8432                 netdev_adjacent_sysfs_add(iter->dev, dev,
8433                                           &iter->dev->adj_list.upper);
8434                 netdev_adjacent_sysfs_add(dev, iter->dev,
8435                                           &dev->adj_list.lower);
8436         }
8437 }
8438
8439 static void netdev_adjacent_del_links(struct net_device *dev)
8440 {
8441         struct netdev_adjacent *iter;
8442
8443         struct net *net = dev_net(dev);
8444
8445         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8446                 if (!net_eq(net, dev_net(iter->dev)))
8447                         continue;
8448                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8449                                           &iter->dev->adj_list.lower);
8450                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8451                                           &dev->adj_list.upper);
8452         }
8453
8454         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8455                 if (!net_eq(net, dev_net(iter->dev)))
8456                         continue;
8457                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8458                                           &iter->dev->adj_list.upper);
8459                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8460                                           &dev->adj_list.lower);
8461         }
8462 }
8463
8464 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8465 {
8466         struct netdev_adjacent *iter;
8467
8468         struct net *net = dev_net(dev);
8469
8470         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8471                 if (!net_eq(net, dev_net(iter->dev)))
8472                         continue;
8473                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8474                                           &iter->dev->adj_list.lower);
8475                 netdev_adjacent_sysfs_add(iter->dev, dev,
8476                                           &iter->dev->adj_list.lower);
8477         }
8478
8479         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8480                 if (!net_eq(net, dev_net(iter->dev)))
8481                         continue;
8482                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8483                                           &iter->dev->adj_list.upper);
8484                 netdev_adjacent_sysfs_add(iter->dev, dev,
8485                                           &iter->dev->adj_list.upper);
8486         }
8487 }
8488
8489 void *netdev_lower_dev_get_private(struct net_device *dev,
8490                                    struct net_device *lower_dev)
8491 {
8492         struct netdev_adjacent *lower;
8493
8494         if (!lower_dev)
8495                 return NULL;
8496         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8497         if (!lower)
8498                 return NULL;
8499
8500         return lower->private;
8501 }
8502 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8503
8504
8505 /**
8506  * netdev_lower_state_changed - Dispatch event about lower device state change
8507  * @lower_dev: device
8508  * @lower_state_info: state to dispatch
8509  *
8510  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8511  * The caller must hold the RTNL lock.
8512  */
8513 void netdev_lower_state_changed(struct net_device *lower_dev,
8514                                 void *lower_state_info)
8515 {
8516         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8517                 .info.dev = lower_dev,
8518         };
8519
8520         ASSERT_RTNL();
8521         changelowerstate_info.lower_state_info = lower_state_info;
8522         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8523                                       &changelowerstate_info.info);
8524 }
8525 EXPORT_SYMBOL(netdev_lower_state_changed);
8526
8527 static void dev_change_rx_flags(struct net_device *dev, int flags)
8528 {
8529         const struct net_device_ops *ops = dev->netdev_ops;
8530
8531         if (ops->ndo_change_rx_flags)
8532                 ops->ndo_change_rx_flags(dev, flags);
8533 }
8534
8535 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8536 {
8537         unsigned int old_flags = dev->flags;
8538         kuid_t uid;
8539         kgid_t gid;
8540
8541         ASSERT_RTNL();
8542
8543         dev->flags |= IFF_PROMISC;
8544         dev->promiscuity += inc;
8545         if (dev->promiscuity == 0) {
8546                 /*
8547                  * Avoid overflow.
8548                  * If inc causes overflow, untouch promisc and return error.
8549                  */
8550                 if (inc < 0)
8551                         dev->flags &= ~IFF_PROMISC;
8552                 else {
8553                         dev->promiscuity -= inc;
8554                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8555                                 dev->name);
8556                         return -EOVERFLOW;
8557                 }
8558         }
8559         if (dev->flags != old_flags) {
8560                 pr_info("device %s %s promiscuous mode\n",
8561                         dev->name,
8562                         dev->flags & IFF_PROMISC ? "entered" : "left");
8563                 if (audit_enabled) {
8564                         current_uid_gid(&uid, &gid);
8565                         audit_log(audit_context(), GFP_ATOMIC,
8566                                   AUDIT_ANOM_PROMISCUOUS,
8567                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8568                                   dev->name, (dev->flags & IFF_PROMISC),
8569                                   (old_flags & IFF_PROMISC),
8570                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8571                                   from_kuid(&init_user_ns, uid),
8572                                   from_kgid(&init_user_ns, gid),
8573                                   audit_get_sessionid(current));
8574                 }
8575
8576                 dev_change_rx_flags(dev, IFF_PROMISC);
8577         }
8578         if (notify)
8579                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8580         return 0;
8581 }
8582
8583 /**
8584  *      dev_set_promiscuity     - update promiscuity count on a device
8585  *      @dev: device
8586  *      @inc: modifier
8587  *
8588  *      Add or remove promiscuity from a device. While the count in the device
8589  *      remains above zero the interface remains promiscuous. Once it hits zero
8590  *      the device reverts back to normal filtering operation. A negative inc
8591  *      value is used to drop promiscuity on the device.
8592  *      Return 0 if successful or a negative errno code on error.
8593  */
8594 int dev_set_promiscuity(struct net_device *dev, int inc)
8595 {
8596         unsigned int old_flags = dev->flags;
8597         int err;
8598
8599         err = __dev_set_promiscuity(dev, inc, true);
8600         if (err < 0)
8601                 return err;
8602         if (dev->flags != old_flags)
8603                 dev_set_rx_mode(dev);
8604         return err;
8605 }
8606 EXPORT_SYMBOL(dev_set_promiscuity);
8607
8608 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8609 {
8610         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8611
8612         ASSERT_RTNL();
8613
8614         dev->flags |= IFF_ALLMULTI;
8615         dev->allmulti += inc;
8616         if (dev->allmulti == 0) {
8617                 /*
8618                  * Avoid overflow.
8619                  * If inc causes overflow, untouch allmulti and return error.
8620                  */
8621                 if (inc < 0)
8622                         dev->flags &= ~IFF_ALLMULTI;
8623                 else {
8624                         dev->allmulti -= inc;
8625                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8626                                 dev->name);
8627                         return -EOVERFLOW;
8628                 }
8629         }
8630         if (dev->flags ^ old_flags) {
8631                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8632                 dev_set_rx_mode(dev);
8633                 if (notify)
8634                         __dev_notify_flags(dev, old_flags,
8635                                            dev->gflags ^ old_gflags);
8636         }
8637         return 0;
8638 }
8639
8640 /**
8641  *      dev_set_allmulti        - update allmulti count on a device
8642  *      @dev: device
8643  *      @inc: modifier
8644  *
8645  *      Add or remove reception of all multicast frames to a device. While the
8646  *      count in the device remains above zero the interface remains listening
8647  *      to all interfaces. Once it hits zero the device reverts back to normal
8648  *      filtering operation. A negative @inc value is used to drop the counter
8649  *      when releasing a resource needing all multicasts.
8650  *      Return 0 if successful or a negative errno code on error.
8651  */
8652
8653 int dev_set_allmulti(struct net_device *dev, int inc)
8654 {
8655         return __dev_set_allmulti(dev, inc, true);
8656 }
8657 EXPORT_SYMBOL(dev_set_allmulti);
8658
8659 /*
8660  *      Upload unicast and multicast address lists to device and
8661  *      configure RX filtering. When the device doesn't support unicast
8662  *      filtering it is put in promiscuous mode while unicast addresses
8663  *      are present.
8664  */
8665 void __dev_set_rx_mode(struct net_device *dev)
8666 {
8667         const struct net_device_ops *ops = dev->netdev_ops;
8668
8669         /* dev_open will call this function so the list will stay sane. */
8670         if (!(dev->flags&IFF_UP))
8671                 return;
8672
8673         if (!netif_device_present(dev))
8674                 return;
8675
8676         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8677                 /* Unicast addresses changes may only happen under the rtnl,
8678                  * therefore calling __dev_set_promiscuity here is safe.
8679                  */
8680                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8681                         __dev_set_promiscuity(dev, 1, false);
8682                         dev->uc_promisc = true;
8683                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8684                         __dev_set_promiscuity(dev, -1, false);
8685                         dev->uc_promisc = false;
8686                 }
8687         }
8688
8689         if (ops->ndo_set_rx_mode)
8690                 ops->ndo_set_rx_mode(dev);
8691 }
8692
8693 void dev_set_rx_mode(struct net_device *dev)
8694 {
8695         netif_addr_lock_bh(dev);
8696         __dev_set_rx_mode(dev);
8697         netif_addr_unlock_bh(dev);
8698 }
8699
8700 /**
8701  *      dev_get_flags - get flags reported to userspace
8702  *      @dev: device
8703  *
8704  *      Get the combination of flag bits exported through APIs to userspace.
8705  */
8706 unsigned int dev_get_flags(const struct net_device *dev)
8707 {
8708         unsigned int flags;
8709
8710         flags = (dev->flags & ~(IFF_PROMISC |
8711                                 IFF_ALLMULTI |
8712                                 IFF_RUNNING |
8713                                 IFF_LOWER_UP |
8714                                 IFF_DORMANT)) |
8715                 (dev->gflags & (IFF_PROMISC |
8716                                 IFF_ALLMULTI));
8717
8718         if (netif_running(dev)) {
8719                 if (netif_oper_up(dev))
8720                         flags |= IFF_RUNNING;
8721                 if (netif_carrier_ok(dev))
8722                         flags |= IFF_LOWER_UP;
8723                 if (netif_dormant(dev))
8724                         flags |= IFF_DORMANT;
8725         }
8726
8727         return flags;
8728 }
8729 EXPORT_SYMBOL(dev_get_flags);
8730
8731 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8732                        struct netlink_ext_ack *extack)
8733 {
8734         unsigned int old_flags = dev->flags;
8735         int ret;
8736
8737         ASSERT_RTNL();
8738
8739         /*
8740          *      Set the flags on our device.
8741          */
8742
8743         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8744                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8745                                IFF_AUTOMEDIA)) |
8746                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8747                                     IFF_ALLMULTI));
8748
8749         /*
8750          *      Load in the correct multicast list now the flags have changed.
8751          */
8752
8753         if ((old_flags ^ flags) & IFF_MULTICAST)
8754                 dev_change_rx_flags(dev, IFF_MULTICAST);
8755
8756         dev_set_rx_mode(dev);
8757
8758         /*
8759          *      Have we downed the interface. We handle IFF_UP ourselves
8760          *      according to user attempts to set it, rather than blindly
8761          *      setting it.
8762          */
8763
8764         ret = 0;
8765         if ((old_flags ^ flags) & IFF_UP) {
8766                 if (old_flags & IFF_UP)
8767                         __dev_close(dev);
8768                 else
8769                         ret = __dev_open(dev, extack);
8770         }
8771
8772         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8773                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8774                 unsigned int old_flags = dev->flags;
8775
8776                 dev->gflags ^= IFF_PROMISC;
8777
8778                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8779                         if (dev->flags != old_flags)
8780                                 dev_set_rx_mode(dev);
8781         }
8782
8783         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8784          * is important. Some (broken) drivers set IFF_PROMISC, when
8785          * IFF_ALLMULTI is requested not asking us and not reporting.
8786          */
8787         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8788                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8789
8790                 dev->gflags ^= IFF_ALLMULTI;
8791                 __dev_set_allmulti(dev, inc, false);
8792         }
8793
8794         return ret;
8795 }
8796
8797 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8798                         unsigned int gchanges)
8799 {
8800         unsigned int changes = dev->flags ^ old_flags;
8801
8802         if (gchanges)
8803                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8804
8805         if (changes & IFF_UP) {
8806                 if (dev->flags & IFF_UP)
8807                         call_netdevice_notifiers(NETDEV_UP, dev);
8808                 else
8809                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8810         }
8811
8812         if (dev->flags & IFF_UP &&
8813             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8814                 struct netdev_notifier_change_info change_info = {
8815                         .info = {
8816                                 .dev = dev,
8817                         },
8818                         .flags_changed = changes,
8819                 };
8820
8821                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8822         }
8823 }
8824
8825 /**
8826  *      dev_change_flags - change device settings
8827  *      @dev: device
8828  *      @flags: device state flags
8829  *      @extack: netlink extended ack
8830  *
8831  *      Change settings on device based state flags. The flags are
8832  *      in the userspace exported format.
8833  */
8834 int dev_change_flags(struct net_device *dev, unsigned int flags,
8835                      struct netlink_ext_ack *extack)
8836 {
8837         int ret;
8838         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8839
8840         ret = __dev_change_flags(dev, flags, extack);
8841         if (ret < 0)
8842                 return ret;
8843
8844         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8845         __dev_notify_flags(dev, old_flags, changes);
8846         return ret;
8847 }
8848 EXPORT_SYMBOL(dev_change_flags);
8849
8850 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8851 {
8852         const struct net_device_ops *ops = dev->netdev_ops;
8853
8854         if (ops->ndo_change_mtu)
8855                 return ops->ndo_change_mtu(dev, new_mtu);
8856
8857         /* Pairs with all the lockless reads of dev->mtu in the stack */
8858         WRITE_ONCE(dev->mtu, new_mtu);
8859         return 0;
8860 }
8861 EXPORT_SYMBOL(__dev_set_mtu);
8862
8863 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8864                      struct netlink_ext_ack *extack)
8865 {
8866         /* MTU must be positive, and in range */
8867         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8868                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8869                 return -EINVAL;
8870         }
8871
8872         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8873                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8874                 return -EINVAL;
8875         }
8876         return 0;
8877 }
8878
8879 /**
8880  *      dev_set_mtu_ext - Change maximum transfer unit
8881  *      @dev: device
8882  *      @new_mtu: new transfer unit
8883  *      @extack: netlink extended ack
8884  *
8885  *      Change the maximum transfer size of the network device.
8886  */
8887 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8888                     struct netlink_ext_ack *extack)
8889 {
8890         int err, orig_mtu;
8891
8892         if (new_mtu == dev->mtu)
8893                 return 0;
8894
8895         err = dev_validate_mtu(dev, new_mtu, extack);
8896         if (err)
8897                 return err;
8898
8899         if (!netif_device_present(dev))
8900                 return -ENODEV;
8901
8902         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8903         err = notifier_to_errno(err);
8904         if (err)
8905                 return err;
8906
8907         orig_mtu = dev->mtu;
8908         err = __dev_set_mtu(dev, new_mtu);
8909
8910         if (!err) {
8911                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8912                                                    orig_mtu);
8913                 err = notifier_to_errno(err);
8914                 if (err) {
8915                         /* setting mtu back and notifying everyone again,
8916                          * so that they have a chance to revert changes.
8917                          */
8918                         __dev_set_mtu(dev, orig_mtu);
8919                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8920                                                      new_mtu);
8921                 }
8922         }
8923         return err;
8924 }
8925
8926 int dev_set_mtu(struct net_device *dev, int new_mtu)
8927 {
8928         struct netlink_ext_ack extack;
8929         int err;
8930
8931         memset(&extack, 0, sizeof(extack));
8932         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8933         if (err && extack._msg)
8934                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8935         return err;
8936 }
8937 EXPORT_SYMBOL(dev_set_mtu);
8938
8939 /**
8940  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8941  *      @dev: device
8942  *      @new_len: new tx queue length
8943  */
8944 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8945 {
8946         unsigned int orig_len = dev->tx_queue_len;
8947         int res;
8948
8949         if (new_len != (unsigned int)new_len)
8950                 return -ERANGE;
8951
8952         if (new_len != orig_len) {
8953                 dev->tx_queue_len = new_len;
8954                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8955                 res = notifier_to_errno(res);
8956                 if (res)
8957                         goto err_rollback;
8958                 res = dev_qdisc_change_tx_queue_len(dev);
8959                 if (res)
8960                         goto err_rollback;
8961         }
8962
8963         return 0;
8964
8965 err_rollback:
8966         netdev_err(dev, "refused to change device tx_queue_len\n");
8967         dev->tx_queue_len = orig_len;
8968         return res;
8969 }
8970
8971 /**
8972  *      dev_set_group - Change group this device belongs to
8973  *      @dev: device
8974  *      @new_group: group this device should belong to
8975  */
8976 void dev_set_group(struct net_device *dev, int new_group)
8977 {
8978         dev->group = new_group;
8979 }
8980 EXPORT_SYMBOL(dev_set_group);
8981
8982 /**
8983  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8984  *      @dev: device
8985  *      @addr: new address
8986  *      @extack: netlink extended ack
8987  */
8988 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8989                               struct netlink_ext_ack *extack)
8990 {
8991         struct netdev_notifier_pre_changeaddr_info info = {
8992                 .info.dev = dev,
8993                 .info.extack = extack,
8994                 .dev_addr = addr,
8995         };
8996         int rc;
8997
8998         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8999         return notifier_to_errno(rc);
9000 }
9001 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9002
9003 /**
9004  *      dev_set_mac_address - Change Media Access Control Address
9005  *      @dev: device
9006  *      @sa: new address
9007  *      @extack: netlink extended ack
9008  *
9009  *      Change the hardware (MAC) address of the device
9010  */
9011 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9012                         struct netlink_ext_ack *extack)
9013 {
9014         const struct net_device_ops *ops = dev->netdev_ops;
9015         int err;
9016
9017         if (!ops->ndo_set_mac_address)
9018                 return -EOPNOTSUPP;
9019         if (sa->sa_family != dev->type)
9020                 return -EINVAL;
9021         if (!netif_device_present(dev))
9022                 return -ENODEV;
9023         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9024         if (err)
9025                 return err;
9026         err = ops->ndo_set_mac_address(dev, sa);
9027         if (err)
9028                 return err;
9029         dev->addr_assign_type = NET_ADDR_SET;
9030         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9031         add_device_randomness(dev->dev_addr, dev->addr_len);
9032         return 0;
9033 }
9034 EXPORT_SYMBOL(dev_set_mac_address);
9035
9036 static DECLARE_RWSEM(dev_addr_sem);
9037
9038 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9039                              struct netlink_ext_ack *extack)
9040 {
9041         int ret;
9042
9043         down_write(&dev_addr_sem);
9044         ret = dev_set_mac_address(dev, sa, extack);
9045         up_write(&dev_addr_sem);
9046         return ret;
9047 }
9048 EXPORT_SYMBOL(dev_set_mac_address_user);
9049
9050 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9051 {
9052         size_t size = sizeof(sa->sa_data);
9053         struct net_device *dev;
9054         int ret = 0;
9055
9056         down_read(&dev_addr_sem);
9057         rcu_read_lock();
9058
9059         dev = dev_get_by_name_rcu(net, dev_name);
9060         if (!dev) {
9061                 ret = -ENODEV;
9062                 goto unlock;
9063         }
9064         if (!dev->addr_len)
9065                 memset(sa->sa_data, 0, size);
9066         else
9067                 memcpy(sa->sa_data, dev->dev_addr,
9068                        min_t(size_t, size, dev->addr_len));
9069         sa->sa_family = dev->type;
9070
9071 unlock:
9072         rcu_read_unlock();
9073         up_read(&dev_addr_sem);
9074         return ret;
9075 }
9076 EXPORT_SYMBOL(dev_get_mac_address);
9077
9078 /**
9079  *      dev_change_carrier - Change device carrier
9080  *      @dev: device
9081  *      @new_carrier: new value
9082  *
9083  *      Change device carrier
9084  */
9085 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9086 {
9087         const struct net_device_ops *ops = dev->netdev_ops;
9088
9089         if (!ops->ndo_change_carrier)
9090                 return -EOPNOTSUPP;
9091         if (!netif_device_present(dev))
9092                 return -ENODEV;
9093         return ops->ndo_change_carrier(dev, new_carrier);
9094 }
9095 EXPORT_SYMBOL(dev_change_carrier);
9096
9097 /**
9098  *      dev_get_phys_port_id - Get device physical port ID
9099  *      @dev: device
9100  *      @ppid: port ID
9101  *
9102  *      Get device physical port ID
9103  */
9104 int dev_get_phys_port_id(struct net_device *dev,
9105                          struct netdev_phys_item_id *ppid)
9106 {
9107         const struct net_device_ops *ops = dev->netdev_ops;
9108
9109         if (!ops->ndo_get_phys_port_id)
9110                 return -EOPNOTSUPP;
9111         return ops->ndo_get_phys_port_id(dev, ppid);
9112 }
9113 EXPORT_SYMBOL(dev_get_phys_port_id);
9114
9115 /**
9116  *      dev_get_phys_port_name - Get device physical port name
9117  *      @dev: device
9118  *      @name: port name
9119  *      @len: limit of bytes to copy to name
9120  *
9121  *      Get device physical port name
9122  */
9123 int dev_get_phys_port_name(struct net_device *dev,
9124                            char *name, size_t len)
9125 {
9126         const struct net_device_ops *ops = dev->netdev_ops;
9127         int err;
9128
9129         if (ops->ndo_get_phys_port_name) {
9130                 err = ops->ndo_get_phys_port_name(dev, name, len);
9131                 if (err != -EOPNOTSUPP)
9132                         return err;
9133         }
9134         return devlink_compat_phys_port_name_get(dev, name, len);
9135 }
9136 EXPORT_SYMBOL(dev_get_phys_port_name);
9137
9138 /**
9139  *      dev_get_port_parent_id - Get the device's port parent identifier
9140  *      @dev: network device
9141  *      @ppid: pointer to a storage for the port's parent identifier
9142  *      @recurse: allow/disallow recursion to lower devices
9143  *
9144  *      Get the devices's port parent identifier
9145  */
9146 int dev_get_port_parent_id(struct net_device *dev,
9147                            struct netdev_phys_item_id *ppid,
9148                            bool recurse)
9149 {
9150         const struct net_device_ops *ops = dev->netdev_ops;
9151         struct netdev_phys_item_id first = { };
9152         struct net_device *lower_dev;
9153         struct list_head *iter;
9154         int err;
9155
9156         if (ops->ndo_get_port_parent_id) {
9157                 err = ops->ndo_get_port_parent_id(dev, ppid);
9158                 if (err != -EOPNOTSUPP)
9159                         return err;
9160         }
9161
9162         err = devlink_compat_switch_id_get(dev, ppid);
9163         if (!err || err != -EOPNOTSUPP)
9164                 return err;
9165
9166         if (!recurse)
9167                 return -EOPNOTSUPP;
9168
9169         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9170                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9171                 if (err)
9172                         break;
9173                 if (!first.id_len)
9174                         first = *ppid;
9175                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9176                         return -EOPNOTSUPP;
9177         }
9178
9179         return err;
9180 }
9181 EXPORT_SYMBOL(dev_get_port_parent_id);
9182
9183 /**
9184  *      netdev_port_same_parent_id - Indicate if two network devices have
9185  *      the same port parent identifier
9186  *      @a: first network device
9187  *      @b: second network device
9188  */
9189 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9190 {
9191         struct netdev_phys_item_id a_id = { };
9192         struct netdev_phys_item_id b_id = { };
9193
9194         if (dev_get_port_parent_id(a, &a_id, true) ||
9195             dev_get_port_parent_id(b, &b_id, true))
9196                 return false;
9197
9198         return netdev_phys_item_id_same(&a_id, &b_id);
9199 }
9200 EXPORT_SYMBOL(netdev_port_same_parent_id);
9201
9202 /**
9203  *      dev_change_proto_down - update protocol port state information
9204  *      @dev: device
9205  *      @proto_down: new value
9206  *
9207  *      This info can be used by switch drivers to set the phys state of the
9208  *      port.
9209  */
9210 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9211 {
9212         const struct net_device_ops *ops = dev->netdev_ops;
9213
9214         if (!ops->ndo_change_proto_down)
9215                 return -EOPNOTSUPP;
9216         if (!netif_device_present(dev))
9217                 return -ENODEV;
9218         return ops->ndo_change_proto_down(dev, proto_down);
9219 }
9220 EXPORT_SYMBOL(dev_change_proto_down);
9221
9222 /**
9223  *      dev_change_proto_down_generic - generic implementation for
9224  *      ndo_change_proto_down that sets carrier according to
9225  *      proto_down.
9226  *
9227  *      @dev: device
9228  *      @proto_down: new value
9229  */
9230 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9231 {
9232         if (proto_down)
9233                 netif_carrier_off(dev);
9234         else
9235                 netif_carrier_on(dev);
9236         dev->proto_down = proto_down;
9237         return 0;
9238 }
9239 EXPORT_SYMBOL(dev_change_proto_down_generic);
9240
9241 /**
9242  *      dev_change_proto_down_reason - proto down reason
9243  *
9244  *      @dev: device
9245  *      @mask: proto down mask
9246  *      @value: proto down value
9247  */
9248 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9249                                   u32 value)
9250 {
9251         int b;
9252
9253         if (!mask) {
9254                 dev->proto_down_reason = value;
9255         } else {
9256                 for_each_set_bit(b, &mask, 32) {
9257                         if (value & (1 << b))
9258                                 dev->proto_down_reason |= BIT(b);
9259                         else
9260                                 dev->proto_down_reason &= ~BIT(b);
9261                 }
9262         }
9263 }
9264 EXPORT_SYMBOL(dev_change_proto_down_reason);
9265
9266 struct bpf_xdp_link {
9267         struct bpf_link link;
9268         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9269         int flags;
9270 };
9271
9272 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9273 {
9274         if (flags & XDP_FLAGS_HW_MODE)
9275                 return XDP_MODE_HW;
9276         if (flags & XDP_FLAGS_DRV_MODE)
9277                 return XDP_MODE_DRV;
9278         if (flags & XDP_FLAGS_SKB_MODE)
9279                 return XDP_MODE_SKB;
9280         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9281 }
9282
9283 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9284 {
9285         switch (mode) {
9286         case XDP_MODE_SKB:
9287                 return generic_xdp_install;
9288         case XDP_MODE_DRV:
9289         case XDP_MODE_HW:
9290                 return dev->netdev_ops->ndo_bpf;
9291         default:
9292                 return NULL;
9293         }
9294 }
9295
9296 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9297                                          enum bpf_xdp_mode mode)
9298 {
9299         return dev->xdp_state[mode].link;
9300 }
9301
9302 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9303                                      enum bpf_xdp_mode mode)
9304 {
9305         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9306
9307         if (link)
9308                 return link->link.prog;
9309         return dev->xdp_state[mode].prog;
9310 }
9311
9312 u8 dev_xdp_prog_count(struct net_device *dev)
9313 {
9314         u8 count = 0;
9315         int i;
9316
9317         for (i = 0; i < __MAX_XDP_MODE; i++)
9318                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9319                         count++;
9320         return count;
9321 }
9322 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9323
9324 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9325 {
9326         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9327
9328         return prog ? prog->aux->id : 0;
9329 }
9330
9331 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9332                              struct bpf_xdp_link *link)
9333 {
9334         dev->xdp_state[mode].link = link;
9335         dev->xdp_state[mode].prog = NULL;
9336 }
9337
9338 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9339                              struct bpf_prog *prog)
9340 {
9341         dev->xdp_state[mode].link = NULL;
9342         dev->xdp_state[mode].prog = prog;
9343 }
9344
9345 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9346                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9347                            u32 flags, struct bpf_prog *prog)
9348 {
9349         struct netdev_bpf xdp;
9350         int err;
9351
9352         memset(&xdp, 0, sizeof(xdp));
9353         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9354         xdp.extack = extack;
9355         xdp.flags = flags;
9356         xdp.prog = prog;
9357
9358         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9359          * "moved" into driver), so they don't increment it on their own, but
9360          * they do decrement refcnt when program is detached or replaced.
9361          * Given net_device also owns link/prog, we need to bump refcnt here
9362          * to prevent drivers from underflowing it.
9363          */
9364         if (prog)
9365                 bpf_prog_inc(prog);
9366         err = bpf_op(dev, &xdp);
9367         if (err) {
9368                 if (prog)
9369                         bpf_prog_put(prog);
9370                 return err;
9371         }
9372
9373         if (mode != XDP_MODE_HW)
9374                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9375
9376         return 0;
9377 }
9378
9379 static void dev_xdp_uninstall(struct net_device *dev)
9380 {
9381         struct bpf_xdp_link *link;
9382         struct bpf_prog *prog;
9383         enum bpf_xdp_mode mode;
9384         bpf_op_t bpf_op;
9385
9386         ASSERT_RTNL();
9387
9388         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9389                 prog = dev_xdp_prog(dev, mode);
9390                 if (!prog)
9391                         continue;
9392
9393                 bpf_op = dev_xdp_bpf_op(dev, mode);
9394                 if (!bpf_op)
9395                         continue;
9396
9397                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9398
9399                 /* auto-detach link from net device */
9400                 link = dev_xdp_link(dev, mode);
9401                 if (link)
9402                         link->dev = NULL;
9403                 else
9404                         bpf_prog_put(prog);
9405
9406                 dev_xdp_set_link(dev, mode, NULL);
9407         }
9408 }
9409
9410 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9411                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9412                           struct bpf_prog *old_prog, u32 flags)
9413 {
9414         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9415         struct bpf_prog *cur_prog;
9416         struct net_device *upper;
9417         struct list_head *iter;
9418         enum bpf_xdp_mode mode;
9419         bpf_op_t bpf_op;
9420         int err;
9421
9422         ASSERT_RTNL();
9423
9424         /* either link or prog attachment, never both */
9425         if (link && (new_prog || old_prog))
9426                 return -EINVAL;
9427         /* link supports only XDP mode flags */
9428         if (link && (flags & ~XDP_FLAGS_MODES)) {
9429                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9430                 return -EINVAL;
9431         }
9432         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9433         if (num_modes > 1) {
9434                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9435                 return -EINVAL;
9436         }
9437         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9438         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9439                 NL_SET_ERR_MSG(extack,
9440                                "More than one program loaded, unset mode is ambiguous");
9441                 return -EINVAL;
9442         }
9443         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9444         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9445                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9446                 return -EINVAL;
9447         }
9448
9449         mode = dev_xdp_mode(dev, flags);
9450         /* can't replace attached link */
9451         if (dev_xdp_link(dev, mode)) {
9452                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9453                 return -EBUSY;
9454         }
9455
9456         /* don't allow if an upper device already has a program */
9457         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9458                 if (dev_xdp_prog_count(upper) > 0) {
9459                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9460                         return -EEXIST;
9461                 }
9462         }
9463
9464         cur_prog = dev_xdp_prog(dev, mode);
9465         /* can't replace attached prog with link */
9466         if (link && cur_prog) {
9467                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9468                 return -EBUSY;
9469         }
9470         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9471                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9472                 return -EEXIST;
9473         }
9474
9475         /* put effective new program into new_prog */
9476         if (link)
9477                 new_prog = link->link.prog;
9478
9479         if (new_prog) {
9480                 bool offload = mode == XDP_MODE_HW;
9481                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9482                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9483
9484                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9485                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9486                         return -EBUSY;
9487                 }
9488                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9489                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9490                         return -EEXIST;
9491                 }
9492                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9493                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9494                         return -EINVAL;
9495                 }
9496                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9497                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9498                         return -EINVAL;
9499                 }
9500                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9501                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9502                         return -EINVAL;
9503                 }
9504         }
9505
9506         /* don't call drivers if the effective program didn't change */
9507         if (new_prog != cur_prog) {
9508                 bpf_op = dev_xdp_bpf_op(dev, mode);
9509                 if (!bpf_op) {
9510                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9511                         return -EOPNOTSUPP;
9512                 }
9513
9514                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9515                 if (err)
9516                         return err;
9517         }
9518
9519         if (link)
9520                 dev_xdp_set_link(dev, mode, link);
9521         else
9522                 dev_xdp_set_prog(dev, mode, new_prog);
9523         if (cur_prog)
9524                 bpf_prog_put(cur_prog);
9525
9526         return 0;
9527 }
9528
9529 static int dev_xdp_attach_link(struct net_device *dev,
9530                                struct netlink_ext_ack *extack,
9531                                struct bpf_xdp_link *link)
9532 {
9533         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9534 }
9535
9536 static int dev_xdp_detach_link(struct net_device *dev,
9537                                struct netlink_ext_ack *extack,
9538                                struct bpf_xdp_link *link)
9539 {
9540         enum bpf_xdp_mode mode;
9541         bpf_op_t bpf_op;
9542
9543         ASSERT_RTNL();
9544
9545         mode = dev_xdp_mode(dev, link->flags);
9546         if (dev_xdp_link(dev, mode) != link)
9547                 return -EINVAL;
9548
9549         bpf_op = dev_xdp_bpf_op(dev, mode);
9550         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9551         dev_xdp_set_link(dev, mode, NULL);
9552         return 0;
9553 }
9554
9555 static void bpf_xdp_link_release(struct bpf_link *link)
9556 {
9557         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9558
9559         rtnl_lock();
9560
9561         /* if racing with net_device's tear down, xdp_link->dev might be
9562          * already NULL, in which case link was already auto-detached
9563          */
9564         if (xdp_link->dev) {
9565                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9566                 xdp_link->dev = NULL;
9567         }
9568
9569         rtnl_unlock();
9570 }
9571
9572 static int bpf_xdp_link_detach(struct bpf_link *link)
9573 {
9574         bpf_xdp_link_release(link);
9575         return 0;
9576 }
9577
9578 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9579 {
9580         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9581
9582         kfree(xdp_link);
9583 }
9584
9585 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9586                                      struct seq_file *seq)
9587 {
9588         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9589         u32 ifindex = 0;
9590
9591         rtnl_lock();
9592         if (xdp_link->dev)
9593                 ifindex = xdp_link->dev->ifindex;
9594         rtnl_unlock();
9595
9596         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9597 }
9598
9599 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9600                                        struct bpf_link_info *info)
9601 {
9602         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9603         u32 ifindex = 0;
9604
9605         rtnl_lock();
9606         if (xdp_link->dev)
9607                 ifindex = xdp_link->dev->ifindex;
9608         rtnl_unlock();
9609
9610         info->xdp.ifindex = ifindex;
9611         return 0;
9612 }
9613
9614 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9615                                struct bpf_prog *old_prog)
9616 {
9617         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9618         enum bpf_xdp_mode mode;
9619         bpf_op_t bpf_op;
9620         int err = 0;
9621
9622         rtnl_lock();
9623
9624         /* link might have been auto-released already, so fail */
9625         if (!xdp_link->dev) {
9626                 err = -ENOLINK;
9627                 goto out_unlock;
9628         }
9629
9630         if (old_prog && link->prog != old_prog) {
9631                 err = -EPERM;
9632                 goto out_unlock;
9633         }
9634         old_prog = link->prog;
9635         if (old_prog == new_prog) {
9636                 /* no-op, don't disturb drivers */
9637                 bpf_prog_put(new_prog);
9638                 goto out_unlock;
9639         }
9640
9641         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9642         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9643         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9644                               xdp_link->flags, new_prog);
9645         if (err)
9646                 goto out_unlock;
9647
9648         old_prog = xchg(&link->prog, new_prog);
9649         bpf_prog_put(old_prog);
9650
9651 out_unlock:
9652         rtnl_unlock();
9653         return err;
9654 }
9655
9656 static const struct bpf_link_ops bpf_xdp_link_lops = {
9657         .release = bpf_xdp_link_release,
9658         .dealloc = bpf_xdp_link_dealloc,
9659         .detach = bpf_xdp_link_detach,
9660         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9661         .fill_link_info = bpf_xdp_link_fill_link_info,
9662         .update_prog = bpf_xdp_link_update,
9663 };
9664
9665 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9666 {
9667         struct net *net = current->nsproxy->net_ns;
9668         struct bpf_link_primer link_primer;
9669         struct bpf_xdp_link *link;
9670         struct net_device *dev;
9671         int err, fd;
9672
9673         rtnl_lock();
9674         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9675         if (!dev) {
9676                 rtnl_unlock();
9677                 return -EINVAL;
9678         }
9679
9680         link = kzalloc(sizeof(*link), GFP_USER);
9681         if (!link) {
9682                 err = -ENOMEM;
9683                 goto unlock;
9684         }
9685
9686         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9687         link->dev = dev;
9688         link->flags = attr->link_create.flags;
9689
9690         err = bpf_link_prime(&link->link, &link_primer);
9691         if (err) {
9692                 kfree(link);
9693                 goto unlock;
9694         }
9695
9696         err = dev_xdp_attach_link(dev, NULL, link);
9697         rtnl_unlock();
9698
9699         if (err) {
9700                 link->dev = NULL;
9701                 bpf_link_cleanup(&link_primer);
9702                 goto out_put_dev;
9703         }
9704
9705         fd = bpf_link_settle(&link_primer);
9706         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9707         dev_put(dev);
9708         return fd;
9709
9710 unlock:
9711         rtnl_unlock();
9712
9713 out_put_dev:
9714         dev_put(dev);
9715         return err;
9716 }
9717
9718 /**
9719  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9720  *      @dev: device
9721  *      @extack: netlink extended ack
9722  *      @fd: new program fd or negative value to clear
9723  *      @expected_fd: old program fd that userspace expects to replace or clear
9724  *      @flags: xdp-related flags
9725  *
9726  *      Set or clear a bpf program for a device
9727  */
9728 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9729                       int fd, int expected_fd, u32 flags)
9730 {
9731         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9732         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9733         int err;
9734
9735         ASSERT_RTNL();
9736
9737         if (fd >= 0) {
9738                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9739                                                  mode != XDP_MODE_SKB);
9740                 if (IS_ERR(new_prog))
9741                         return PTR_ERR(new_prog);
9742         }
9743
9744         if (expected_fd >= 0) {
9745                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9746                                                  mode != XDP_MODE_SKB);
9747                 if (IS_ERR(old_prog)) {
9748                         err = PTR_ERR(old_prog);
9749                         old_prog = NULL;
9750                         goto err_out;
9751                 }
9752         }
9753
9754         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9755
9756 err_out:
9757         if (err && new_prog)
9758                 bpf_prog_put(new_prog);
9759         if (old_prog)
9760                 bpf_prog_put(old_prog);
9761         return err;
9762 }
9763
9764 /**
9765  *      dev_new_index   -       allocate an ifindex
9766  *      @net: the applicable net namespace
9767  *
9768  *      Returns a suitable unique value for a new device interface
9769  *      number.  The caller must hold the rtnl semaphore or the
9770  *      dev_base_lock to be sure it remains unique.
9771  */
9772 static int dev_new_index(struct net *net)
9773 {
9774         int ifindex = net->ifindex;
9775
9776         for (;;) {
9777                 if (++ifindex <= 0)
9778                         ifindex = 1;
9779                 if (!__dev_get_by_index(net, ifindex))
9780                         return net->ifindex = ifindex;
9781         }
9782 }
9783
9784 /* Delayed registration/unregisteration */
9785 static LIST_HEAD(net_todo_list);
9786 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9787
9788 static void net_set_todo(struct net_device *dev)
9789 {
9790         list_add_tail(&dev->todo_list, &net_todo_list);
9791         dev_net(dev)->dev_unreg_count++;
9792 }
9793
9794 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9795         struct net_device *upper, netdev_features_t features)
9796 {
9797         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9798         netdev_features_t feature;
9799         int feature_bit;
9800
9801         for_each_netdev_feature(upper_disables, feature_bit) {
9802                 feature = __NETIF_F_BIT(feature_bit);
9803                 if (!(upper->wanted_features & feature)
9804                     && (features & feature)) {
9805                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9806                                    &feature, upper->name);
9807                         features &= ~feature;
9808                 }
9809         }
9810
9811         return features;
9812 }
9813
9814 static void netdev_sync_lower_features(struct net_device *upper,
9815         struct net_device *lower, netdev_features_t features)
9816 {
9817         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9818         netdev_features_t feature;
9819         int feature_bit;
9820
9821         for_each_netdev_feature(upper_disables, feature_bit) {
9822                 feature = __NETIF_F_BIT(feature_bit);
9823                 if (!(features & feature) && (lower->features & feature)) {
9824                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9825                                    &feature, lower->name);
9826                         lower->wanted_features &= ~feature;
9827                         __netdev_update_features(lower);
9828
9829                         if (unlikely(lower->features & feature))
9830                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9831                                             &feature, lower->name);
9832                         else
9833                                 netdev_features_change(lower);
9834                 }
9835         }
9836 }
9837
9838 static netdev_features_t netdev_fix_features(struct net_device *dev,
9839         netdev_features_t features)
9840 {
9841         /* Fix illegal checksum combinations */
9842         if ((features & NETIF_F_HW_CSUM) &&
9843             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9844                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9845                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9846         }
9847
9848         /* TSO requires that SG is present as well. */
9849         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9850                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9851                 features &= ~NETIF_F_ALL_TSO;
9852         }
9853
9854         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9855                                         !(features & NETIF_F_IP_CSUM)) {
9856                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9857                 features &= ~NETIF_F_TSO;
9858                 features &= ~NETIF_F_TSO_ECN;
9859         }
9860
9861         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9862                                          !(features & NETIF_F_IPV6_CSUM)) {
9863                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9864                 features &= ~NETIF_F_TSO6;
9865         }
9866
9867         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9868         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9869                 features &= ~NETIF_F_TSO_MANGLEID;
9870
9871         /* TSO ECN requires that TSO is present as well. */
9872         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9873                 features &= ~NETIF_F_TSO_ECN;
9874
9875         /* Software GSO depends on SG. */
9876         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9877                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9878                 features &= ~NETIF_F_GSO;
9879         }
9880
9881         /* GSO partial features require GSO partial be set */
9882         if ((features & dev->gso_partial_features) &&
9883             !(features & NETIF_F_GSO_PARTIAL)) {
9884                 netdev_dbg(dev,
9885                            "Dropping partially supported GSO features since no GSO partial.\n");
9886                 features &= ~dev->gso_partial_features;
9887         }
9888
9889         if (!(features & NETIF_F_RXCSUM)) {
9890                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9891                  * successfully merged by hardware must also have the
9892                  * checksum verified by hardware.  If the user does not
9893                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9894                  */
9895                 if (features & NETIF_F_GRO_HW) {
9896                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9897                         features &= ~NETIF_F_GRO_HW;
9898                 }
9899         }
9900
9901         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9902         if (features & NETIF_F_RXFCS) {
9903                 if (features & NETIF_F_LRO) {
9904                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9905                         features &= ~NETIF_F_LRO;
9906                 }
9907
9908                 if (features & NETIF_F_GRO_HW) {
9909                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9910                         features &= ~NETIF_F_GRO_HW;
9911                 }
9912         }
9913
9914         if (features & NETIF_F_HW_TLS_TX) {
9915                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9916                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9917                 bool hw_csum = features & NETIF_F_HW_CSUM;
9918
9919                 if (!ip_csum && !hw_csum) {
9920                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9921                         features &= ~NETIF_F_HW_TLS_TX;
9922                 }
9923         }
9924
9925         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9926                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9927                 features &= ~NETIF_F_HW_TLS_RX;
9928         }
9929
9930         return features;
9931 }
9932
9933 int __netdev_update_features(struct net_device *dev)
9934 {
9935         struct net_device *upper, *lower;
9936         netdev_features_t features;
9937         struct list_head *iter;
9938         int err = -1;
9939
9940         ASSERT_RTNL();
9941
9942         features = netdev_get_wanted_features(dev);
9943
9944         if (dev->netdev_ops->ndo_fix_features)
9945                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9946
9947         /* driver might be less strict about feature dependencies */
9948         features = netdev_fix_features(dev, features);
9949
9950         /* some features can't be enabled if they're off on an upper device */
9951         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9952                 features = netdev_sync_upper_features(dev, upper, features);
9953
9954         if (dev->features == features)
9955                 goto sync_lower;
9956
9957         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9958                 &dev->features, &features);
9959
9960         if (dev->netdev_ops->ndo_set_features)
9961                 err = dev->netdev_ops->ndo_set_features(dev, features);
9962         else
9963                 err = 0;
9964
9965         if (unlikely(err < 0)) {
9966                 netdev_err(dev,
9967                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9968                         err, &features, &dev->features);
9969                 /* return non-0 since some features might have changed and
9970                  * it's better to fire a spurious notification than miss it
9971                  */
9972                 return -1;
9973         }
9974
9975 sync_lower:
9976         /* some features must be disabled on lower devices when disabled
9977          * on an upper device (think: bonding master or bridge)
9978          */
9979         netdev_for_each_lower_dev(dev, lower, iter)
9980                 netdev_sync_lower_features(dev, lower, features);
9981
9982         if (!err) {
9983                 netdev_features_t diff = features ^ dev->features;
9984
9985                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9986                         /* udp_tunnel_{get,drop}_rx_info both need
9987                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9988                          * device, or they won't do anything.
9989                          * Thus we need to update dev->features
9990                          * *before* calling udp_tunnel_get_rx_info,
9991                          * but *after* calling udp_tunnel_drop_rx_info.
9992                          */
9993                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9994                                 dev->features = features;
9995                                 udp_tunnel_get_rx_info(dev);
9996                         } else {
9997                                 udp_tunnel_drop_rx_info(dev);
9998                         }
9999                 }
10000
10001                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10002                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10003                                 dev->features = features;
10004                                 err |= vlan_get_rx_ctag_filter_info(dev);
10005                         } else {
10006                                 vlan_drop_rx_ctag_filter_info(dev);
10007                         }
10008                 }
10009
10010                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10011                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10012                                 dev->features = features;
10013                                 err |= vlan_get_rx_stag_filter_info(dev);
10014                         } else {
10015                                 vlan_drop_rx_stag_filter_info(dev);
10016                         }
10017                 }
10018
10019                 dev->features = features;
10020         }
10021
10022         return err < 0 ? 0 : 1;
10023 }
10024
10025 /**
10026  *      netdev_update_features - recalculate device features
10027  *      @dev: the device to check
10028  *
10029  *      Recalculate dev->features set and send notifications if it
10030  *      has changed. Should be called after driver or hardware dependent
10031  *      conditions might have changed that influence the features.
10032  */
10033 void netdev_update_features(struct net_device *dev)
10034 {
10035         if (__netdev_update_features(dev))
10036                 netdev_features_change(dev);
10037 }
10038 EXPORT_SYMBOL(netdev_update_features);
10039
10040 /**
10041  *      netdev_change_features - recalculate device features
10042  *      @dev: the device to check
10043  *
10044  *      Recalculate dev->features set and send notifications even
10045  *      if they have not changed. Should be called instead of
10046  *      netdev_update_features() if also dev->vlan_features might
10047  *      have changed to allow the changes to be propagated to stacked
10048  *      VLAN devices.
10049  */
10050 void netdev_change_features(struct net_device *dev)
10051 {
10052         __netdev_update_features(dev);
10053         netdev_features_change(dev);
10054 }
10055 EXPORT_SYMBOL(netdev_change_features);
10056
10057 /**
10058  *      netif_stacked_transfer_operstate -      transfer operstate
10059  *      @rootdev: the root or lower level device to transfer state from
10060  *      @dev: the device to transfer operstate to
10061  *
10062  *      Transfer operational state from root to device. This is normally
10063  *      called when a stacking relationship exists between the root
10064  *      device and the device(a leaf device).
10065  */
10066 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10067                                         struct net_device *dev)
10068 {
10069         if (rootdev->operstate == IF_OPER_DORMANT)
10070                 netif_dormant_on(dev);
10071         else
10072                 netif_dormant_off(dev);
10073
10074         if (rootdev->operstate == IF_OPER_TESTING)
10075                 netif_testing_on(dev);
10076         else
10077                 netif_testing_off(dev);
10078
10079         if (netif_carrier_ok(rootdev))
10080                 netif_carrier_on(dev);
10081         else
10082                 netif_carrier_off(dev);
10083 }
10084 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10085
10086 static int netif_alloc_rx_queues(struct net_device *dev)
10087 {
10088         unsigned int i, count = dev->num_rx_queues;
10089         struct netdev_rx_queue *rx;
10090         size_t sz = count * sizeof(*rx);
10091         int err = 0;
10092
10093         BUG_ON(count < 1);
10094
10095         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10096         if (!rx)
10097                 return -ENOMEM;
10098
10099         dev->_rx = rx;
10100
10101         for (i = 0; i < count; i++) {
10102                 rx[i].dev = dev;
10103
10104                 /* XDP RX-queue setup */
10105                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10106                 if (err < 0)
10107                         goto err_rxq_info;
10108         }
10109         return 0;
10110
10111 err_rxq_info:
10112         /* Rollback successful reg's and free other resources */
10113         while (i--)
10114                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10115         kvfree(dev->_rx);
10116         dev->_rx = NULL;
10117         return err;
10118 }
10119
10120 static void netif_free_rx_queues(struct net_device *dev)
10121 {
10122         unsigned int i, count = dev->num_rx_queues;
10123
10124         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10125         if (!dev->_rx)
10126                 return;
10127
10128         for (i = 0; i < count; i++)
10129                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10130
10131         kvfree(dev->_rx);
10132 }
10133
10134 static void netdev_init_one_queue(struct net_device *dev,
10135                                   struct netdev_queue *queue, void *_unused)
10136 {
10137         /* Initialize queue lock */
10138         spin_lock_init(&queue->_xmit_lock);
10139         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10140         queue->xmit_lock_owner = -1;
10141         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10142         queue->dev = dev;
10143 #ifdef CONFIG_BQL
10144         dql_init(&queue->dql, HZ);
10145 #endif
10146 }
10147
10148 static void netif_free_tx_queues(struct net_device *dev)
10149 {
10150         kvfree(dev->_tx);
10151 }
10152
10153 static int netif_alloc_netdev_queues(struct net_device *dev)
10154 {
10155         unsigned int count = dev->num_tx_queues;
10156         struct netdev_queue *tx;
10157         size_t sz = count * sizeof(*tx);
10158
10159         if (count < 1 || count > 0xffff)
10160                 return -EINVAL;
10161
10162         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10163         if (!tx)
10164                 return -ENOMEM;
10165
10166         dev->_tx = tx;
10167
10168         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10169         spin_lock_init(&dev->tx_global_lock);
10170
10171         return 0;
10172 }
10173
10174 void netif_tx_stop_all_queues(struct net_device *dev)
10175 {
10176         unsigned int i;
10177
10178         for (i = 0; i < dev->num_tx_queues; i++) {
10179                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10180
10181                 netif_tx_stop_queue(txq);
10182         }
10183 }
10184 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10185
10186 /**
10187  *      register_netdevice      - register a network device
10188  *      @dev: device to register
10189  *
10190  *      Take a completed network device structure and add it to the kernel
10191  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10192  *      chain. 0 is returned on success. A negative errno code is returned
10193  *      on a failure to set up the device, or if the name is a duplicate.
10194  *
10195  *      Callers must hold the rtnl semaphore. You may want
10196  *      register_netdev() instead of this.
10197  *
10198  *      BUGS:
10199  *      The locking appears insufficient to guarantee two parallel registers
10200  *      will not get the same name.
10201  */
10202
10203 int register_netdevice(struct net_device *dev)
10204 {
10205         int ret;
10206         struct net *net = dev_net(dev);
10207
10208         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10209                      NETDEV_FEATURE_COUNT);
10210         BUG_ON(dev_boot_phase);
10211         ASSERT_RTNL();
10212
10213         might_sleep();
10214
10215         /* When net_device's are persistent, this will be fatal. */
10216         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10217         BUG_ON(!net);
10218
10219         ret = ethtool_check_ops(dev->ethtool_ops);
10220         if (ret)
10221                 return ret;
10222
10223         spin_lock_init(&dev->addr_list_lock);
10224         netdev_set_addr_lockdep_class(dev);
10225
10226         ret = dev_get_valid_name(net, dev, dev->name);
10227         if (ret < 0)
10228                 goto out;
10229
10230         ret = -ENOMEM;
10231         dev->name_node = netdev_name_node_head_alloc(dev);
10232         if (!dev->name_node)
10233                 goto out;
10234
10235         /* Init, if this function is available */
10236         if (dev->netdev_ops->ndo_init) {
10237                 ret = dev->netdev_ops->ndo_init(dev);
10238                 if (ret) {
10239                         if (ret > 0)
10240                                 ret = -EIO;
10241                         goto err_free_name;
10242                 }
10243         }
10244
10245         if (((dev->hw_features | dev->features) &
10246              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10247             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10248              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10249                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10250                 ret = -EINVAL;
10251                 goto err_uninit;
10252         }
10253
10254         ret = -EBUSY;
10255         if (!dev->ifindex)
10256                 dev->ifindex = dev_new_index(net);
10257         else if (__dev_get_by_index(net, dev->ifindex))
10258                 goto err_uninit;
10259
10260         /* Transfer changeable features to wanted_features and enable
10261          * software offloads (GSO and GRO).
10262          */
10263         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10264         dev->features |= NETIF_F_SOFT_FEATURES;
10265
10266         if (dev->udp_tunnel_nic_info) {
10267                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10268                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10269         }
10270
10271         dev->wanted_features = dev->features & dev->hw_features;
10272
10273         if (!(dev->flags & IFF_LOOPBACK))
10274                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10275
10276         /* If IPv4 TCP segmentation offload is supported we should also
10277          * allow the device to enable segmenting the frame with the option
10278          * of ignoring a static IP ID value.  This doesn't enable the
10279          * feature itself but allows the user to enable it later.
10280          */
10281         if (dev->hw_features & NETIF_F_TSO)
10282                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10283         if (dev->vlan_features & NETIF_F_TSO)
10284                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10285         if (dev->mpls_features & NETIF_F_TSO)
10286                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10287         if (dev->hw_enc_features & NETIF_F_TSO)
10288                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10289
10290         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10291          */
10292         dev->vlan_features |= NETIF_F_HIGHDMA;
10293
10294         /* Make NETIF_F_SG inheritable to tunnel devices.
10295          */
10296         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10297
10298         /* Make NETIF_F_SG inheritable to MPLS.
10299          */
10300         dev->mpls_features |= NETIF_F_SG;
10301
10302         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10303         ret = notifier_to_errno(ret);
10304         if (ret)
10305                 goto err_uninit;
10306
10307         ret = netdev_register_kobject(dev);
10308         if (ret) {
10309                 dev->reg_state = NETREG_UNREGISTERED;
10310                 goto err_uninit;
10311         }
10312         dev->reg_state = NETREG_REGISTERED;
10313
10314         __netdev_update_features(dev);
10315
10316         /*
10317          *      Default initial state at registry is that the
10318          *      device is present.
10319          */
10320
10321         set_bit(__LINK_STATE_PRESENT, &dev->state);
10322
10323         linkwatch_init_dev(dev);
10324
10325         dev_init_scheduler(dev);
10326         dev_hold(dev);
10327         list_netdevice(dev);
10328         add_device_randomness(dev->dev_addr, dev->addr_len);
10329
10330         /* If the device has permanent device address, driver should
10331          * set dev_addr and also addr_assign_type should be set to
10332          * NET_ADDR_PERM (default value).
10333          */
10334         if (dev->addr_assign_type == NET_ADDR_PERM)
10335                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10336
10337         /* Notify protocols, that a new device appeared. */
10338         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10339         ret = notifier_to_errno(ret);
10340         if (ret) {
10341                 /* Expect explicit free_netdev() on failure */
10342                 dev->needs_free_netdev = false;
10343                 unregister_netdevice_queue(dev, NULL);
10344                 goto out;
10345         }
10346         /*
10347          *      Prevent userspace races by waiting until the network
10348          *      device is fully setup before sending notifications.
10349          */
10350         if (!dev->rtnl_link_ops ||
10351             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10352                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10353
10354 out:
10355         return ret;
10356
10357 err_uninit:
10358         if (dev->netdev_ops->ndo_uninit)
10359                 dev->netdev_ops->ndo_uninit(dev);
10360         if (dev->priv_destructor)
10361                 dev->priv_destructor(dev);
10362 err_free_name:
10363         netdev_name_node_free(dev->name_node);
10364         goto out;
10365 }
10366 EXPORT_SYMBOL(register_netdevice);
10367
10368 /**
10369  *      init_dummy_netdev       - init a dummy network device for NAPI
10370  *      @dev: device to init
10371  *
10372  *      This takes a network device structure and initialize the minimum
10373  *      amount of fields so it can be used to schedule NAPI polls without
10374  *      registering a full blown interface. This is to be used by drivers
10375  *      that need to tie several hardware interfaces to a single NAPI
10376  *      poll scheduler due to HW limitations.
10377  */
10378 int init_dummy_netdev(struct net_device *dev)
10379 {
10380         /* Clear everything. Note we don't initialize spinlocks
10381          * are they aren't supposed to be taken by any of the
10382          * NAPI code and this dummy netdev is supposed to be
10383          * only ever used for NAPI polls
10384          */
10385         memset(dev, 0, sizeof(struct net_device));
10386
10387         /* make sure we BUG if trying to hit standard
10388          * register/unregister code path
10389          */
10390         dev->reg_state = NETREG_DUMMY;
10391
10392         /* NAPI wants this */
10393         INIT_LIST_HEAD(&dev->napi_list);
10394
10395         /* a dummy interface is started by default */
10396         set_bit(__LINK_STATE_PRESENT, &dev->state);
10397         set_bit(__LINK_STATE_START, &dev->state);
10398
10399         /* napi_busy_loop stats accounting wants this */
10400         dev_net_set(dev, &init_net);
10401
10402         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10403          * because users of this 'device' dont need to change
10404          * its refcount.
10405          */
10406
10407         return 0;
10408 }
10409 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10410
10411
10412 /**
10413  *      register_netdev - register a network device
10414  *      @dev: device to register
10415  *
10416  *      Take a completed network device structure and add it to the kernel
10417  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10418  *      chain. 0 is returned on success. A negative errno code is returned
10419  *      on a failure to set up the device, or if the name is a duplicate.
10420  *
10421  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10422  *      and expands the device name if you passed a format string to
10423  *      alloc_netdev.
10424  */
10425 int register_netdev(struct net_device *dev)
10426 {
10427         int err;
10428
10429         if (rtnl_lock_killable())
10430                 return -EINTR;
10431         err = register_netdevice(dev);
10432         rtnl_unlock();
10433         return err;
10434 }
10435 EXPORT_SYMBOL(register_netdev);
10436
10437 int netdev_refcnt_read(const struct net_device *dev)
10438 {
10439 #ifdef CONFIG_PCPU_DEV_REFCNT
10440         int i, refcnt = 0;
10441
10442         for_each_possible_cpu(i)
10443                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10444         return refcnt;
10445 #else
10446         return refcount_read(&dev->dev_refcnt);
10447 #endif
10448 }
10449 EXPORT_SYMBOL(netdev_refcnt_read);
10450
10451 int netdev_unregister_timeout_secs __read_mostly = 10;
10452
10453 #define WAIT_REFS_MIN_MSECS 1
10454 #define WAIT_REFS_MAX_MSECS 250
10455 /**
10456  * netdev_wait_allrefs - wait until all references are gone.
10457  * @dev: target net_device
10458  *
10459  * This is called when unregistering network devices.
10460  *
10461  * Any protocol or device that holds a reference should register
10462  * for netdevice notification, and cleanup and put back the
10463  * reference if they receive an UNREGISTER event.
10464  * We can get stuck here if buggy protocols don't correctly
10465  * call dev_put.
10466  */
10467 static void netdev_wait_allrefs(struct net_device *dev)
10468 {
10469         unsigned long rebroadcast_time, warning_time;
10470         int wait = 0, refcnt;
10471
10472         linkwatch_forget_dev(dev);
10473
10474         rebroadcast_time = warning_time = jiffies;
10475         refcnt = netdev_refcnt_read(dev);
10476
10477         while (refcnt != 1) {
10478                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10479                         rtnl_lock();
10480
10481                         /* Rebroadcast unregister notification */
10482                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10483
10484                         __rtnl_unlock();
10485                         rcu_barrier();
10486                         rtnl_lock();
10487
10488                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10489                                      &dev->state)) {
10490                                 /* We must not have linkwatch events
10491                                  * pending on unregister. If this
10492                                  * happens, we simply run the queue
10493                                  * unscheduled, resulting in a noop
10494                                  * for this device.
10495                                  */
10496                                 linkwatch_run_queue();
10497                         }
10498
10499                         __rtnl_unlock();
10500
10501                         rebroadcast_time = jiffies;
10502                 }
10503
10504                 if (!wait) {
10505                         rcu_barrier();
10506                         wait = WAIT_REFS_MIN_MSECS;
10507                 } else {
10508                         msleep(wait);
10509                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10510                 }
10511
10512                 refcnt = netdev_refcnt_read(dev);
10513
10514                 if (refcnt != 1 &&
10515                     time_after(jiffies, warning_time +
10516                                netdev_unregister_timeout_secs * HZ)) {
10517                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10518                                  dev->name, refcnt);
10519                         warning_time = jiffies;
10520                 }
10521         }
10522 }
10523
10524 /* The sequence is:
10525  *
10526  *      rtnl_lock();
10527  *      ...
10528  *      register_netdevice(x1);
10529  *      register_netdevice(x2);
10530  *      ...
10531  *      unregister_netdevice(y1);
10532  *      unregister_netdevice(y2);
10533  *      ...
10534  *      rtnl_unlock();
10535  *      free_netdev(y1);
10536  *      free_netdev(y2);
10537  *
10538  * We are invoked by rtnl_unlock().
10539  * This allows us to deal with problems:
10540  * 1) We can delete sysfs objects which invoke hotplug
10541  *    without deadlocking with linkwatch via keventd.
10542  * 2) Since we run with the RTNL semaphore not held, we can sleep
10543  *    safely in order to wait for the netdev refcnt to drop to zero.
10544  *
10545  * We must not return until all unregister events added during
10546  * the interval the lock was held have been completed.
10547  */
10548 void netdev_run_todo(void)
10549 {
10550         struct list_head list;
10551 #ifdef CONFIG_LOCKDEP
10552         struct list_head unlink_list;
10553
10554         list_replace_init(&net_unlink_list, &unlink_list);
10555
10556         while (!list_empty(&unlink_list)) {
10557                 struct net_device *dev = list_first_entry(&unlink_list,
10558                                                           struct net_device,
10559                                                           unlink_list);
10560                 list_del_init(&dev->unlink_list);
10561                 dev->nested_level = dev->lower_level - 1;
10562         }
10563 #endif
10564
10565         /* Snapshot list, allow later requests */
10566         list_replace_init(&net_todo_list, &list);
10567
10568         __rtnl_unlock();
10569
10570
10571         /* Wait for rcu callbacks to finish before next phase */
10572         if (!list_empty(&list))
10573                 rcu_barrier();
10574
10575         while (!list_empty(&list)) {
10576                 struct net_device *dev
10577                         = list_first_entry(&list, struct net_device, todo_list);
10578                 list_del(&dev->todo_list);
10579
10580                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10581                         pr_err("network todo '%s' but state %d\n",
10582                                dev->name, dev->reg_state);
10583                         dump_stack();
10584                         continue;
10585                 }
10586
10587                 dev->reg_state = NETREG_UNREGISTERED;
10588
10589                 netdev_wait_allrefs(dev);
10590
10591                 /* paranoia */
10592                 BUG_ON(netdev_refcnt_read(dev) != 1);
10593                 BUG_ON(!list_empty(&dev->ptype_all));
10594                 BUG_ON(!list_empty(&dev->ptype_specific));
10595                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10596                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10597 #if IS_ENABLED(CONFIG_DECNET)
10598                 WARN_ON(dev->dn_ptr);
10599 #endif
10600                 if (dev->priv_destructor)
10601                         dev->priv_destructor(dev);
10602                 if (dev->needs_free_netdev)
10603                         free_netdev(dev);
10604
10605                 /* Report a network device has been unregistered */
10606                 rtnl_lock();
10607                 dev_net(dev)->dev_unreg_count--;
10608                 __rtnl_unlock();
10609                 wake_up(&netdev_unregistering_wq);
10610
10611                 /* Free network device */
10612                 kobject_put(&dev->dev.kobj);
10613         }
10614 }
10615
10616 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10617  * all the same fields in the same order as net_device_stats, with only
10618  * the type differing, but rtnl_link_stats64 may have additional fields
10619  * at the end for newer counters.
10620  */
10621 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10622                              const struct net_device_stats *netdev_stats)
10623 {
10624 #if BITS_PER_LONG == 64
10625         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10626         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10627         /* zero out counters that only exist in rtnl_link_stats64 */
10628         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10629                sizeof(*stats64) - sizeof(*netdev_stats));
10630 #else
10631         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10632         const unsigned long *src = (const unsigned long *)netdev_stats;
10633         u64 *dst = (u64 *)stats64;
10634
10635         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10636         for (i = 0; i < n; i++)
10637                 dst[i] = src[i];
10638         /* zero out counters that only exist in rtnl_link_stats64 */
10639         memset((char *)stats64 + n * sizeof(u64), 0,
10640                sizeof(*stats64) - n * sizeof(u64));
10641 #endif
10642 }
10643 EXPORT_SYMBOL(netdev_stats_to_stats64);
10644
10645 /**
10646  *      dev_get_stats   - get network device statistics
10647  *      @dev: device to get statistics from
10648  *      @storage: place to store stats
10649  *
10650  *      Get network statistics from device. Return @storage.
10651  *      The device driver may provide its own method by setting
10652  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10653  *      otherwise the internal statistics structure is used.
10654  */
10655 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10656                                         struct rtnl_link_stats64 *storage)
10657 {
10658         const struct net_device_ops *ops = dev->netdev_ops;
10659
10660         if (ops->ndo_get_stats64) {
10661                 memset(storage, 0, sizeof(*storage));
10662                 ops->ndo_get_stats64(dev, storage);
10663         } else if (ops->ndo_get_stats) {
10664                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10665         } else {
10666                 netdev_stats_to_stats64(storage, &dev->stats);
10667         }
10668         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10669         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10670         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10671         return storage;
10672 }
10673 EXPORT_SYMBOL(dev_get_stats);
10674
10675 /**
10676  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10677  *      @s: place to store stats
10678  *      @netstats: per-cpu network stats to read from
10679  *
10680  *      Read per-cpu network statistics and populate the related fields in @s.
10681  */
10682 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10683                            const struct pcpu_sw_netstats __percpu *netstats)
10684 {
10685         int cpu;
10686
10687         for_each_possible_cpu(cpu) {
10688                 const struct pcpu_sw_netstats *stats;
10689                 struct pcpu_sw_netstats tmp;
10690                 unsigned int start;
10691
10692                 stats = per_cpu_ptr(netstats, cpu);
10693                 do {
10694                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10695                         tmp.rx_packets = stats->rx_packets;
10696                         tmp.rx_bytes   = stats->rx_bytes;
10697                         tmp.tx_packets = stats->tx_packets;
10698                         tmp.tx_bytes   = stats->tx_bytes;
10699                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10700
10701                 s->rx_packets += tmp.rx_packets;
10702                 s->rx_bytes   += tmp.rx_bytes;
10703                 s->tx_packets += tmp.tx_packets;
10704                 s->tx_bytes   += tmp.tx_bytes;
10705         }
10706 }
10707 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10708
10709 /**
10710  *      dev_get_tstats64 - ndo_get_stats64 implementation
10711  *      @dev: device to get statistics from
10712  *      @s: place to store stats
10713  *
10714  *      Populate @s from dev->stats and dev->tstats. Can be used as
10715  *      ndo_get_stats64() callback.
10716  */
10717 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10718 {
10719         netdev_stats_to_stats64(s, &dev->stats);
10720         dev_fetch_sw_netstats(s, dev->tstats);
10721 }
10722 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10723
10724 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10725 {
10726         struct netdev_queue *queue = dev_ingress_queue(dev);
10727
10728 #ifdef CONFIG_NET_CLS_ACT
10729         if (queue)
10730                 return queue;
10731         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10732         if (!queue)
10733                 return NULL;
10734         netdev_init_one_queue(dev, queue, NULL);
10735         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10736         queue->qdisc_sleeping = &noop_qdisc;
10737         rcu_assign_pointer(dev->ingress_queue, queue);
10738 #endif
10739         return queue;
10740 }
10741
10742 static const struct ethtool_ops default_ethtool_ops;
10743
10744 void netdev_set_default_ethtool_ops(struct net_device *dev,
10745                                     const struct ethtool_ops *ops)
10746 {
10747         if (dev->ethtool_ops == &default_ethtool_ops)
10748                 dev->ethtool_ops = ops;
10749 }
10750 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10751
10752 void netdev_freemem(struct net_device *dev)
10753 {
10754         char *addr = (char *)dev - dev->padded;
10755
10756         kvfree(addr);
10757 }
10758
10759 /**
10760  * alloc_netdev_mqs - allocate network device
10761  * @sizeof_priv: size of private data to allocate space for
10762  * @name: device name format string
10763  * @name_assign_type: origin of device name
10764  * @setup: callback to initialize device
10765  * @txqs: the number of TX subqueues to allocate
10766  * @rxqs: the number of RX subqueues to allocate
10767  *
10768  * Allocates a struct net_device with private data area for driver use
10769  * and performs basic initialization.  Also allocates subqueue structs
10770  * for each queue on the device.
10771  */
10772 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10773                 unsigned char name_assign_type,
10774                 void (*setup)(struct net_device *),
10775                 unsigned int txqs, unsigned int rxqs)
10776 {
10777         struct net_device *dev;
10778         unsigned int alloc_size;
10779         struct net_device *p;
10780
10781         BUG_ON(strlen(name) >= sizeof(dev->name));
10782
10783         if (txqs < 1) {
10784                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10785                 return NULL;
10786         }
10787
10788         if (rxqs < 1) {
10789                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10790                 return NULL;
10791         }
10792
10793         alloc_size = sizeof(struct net_device);
10794         if (sizeof_priv) {
10795                 /* ensure 32-byte alignment of private area */
10796                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10797                 alloc_size += sizeof_priv;
10798         }
10799         /* ensure 32-byte alignment of whole construct */
10800         alloc_size += NETDEV_ALIGN - 1;
10801
10802         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10803         if (!p)
10804                 return NULL;
10805
10806         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10807         dev->padded = (char *)dev - (char *)p;
10808
10809 #ifdef CONFIG_PCPU_DEV_REFCNT
10810         dev->pcpu_refcnt = alloc_percpu(int);
10811         if (!dev->pcpu_refcnt)
10812                 goto free_dev;
10813         dev_hold(dev);
10814 #else
10815         refcount_set(&dev->dev_refcnt, 1);
10816 #endif
10817
10818         if (dev_addr_init(dev))
10819                 goto free_pcpu;
10820
10821         dev_mc_init(dev);
10822         dev_uc_init(dev);
10823
10824         dev_net_set(dev, &init_net);
10825
10826         dev->gso_max_size = GSO_MAX_SIZE;
10827         dev->gso_max_segs = GSO_MAX_SEGS;
10828         dev->upper_level = 1;
10829         dev->lower_level = 1;
10830 #ifdef CONFIG_LOCKDEP
10831         dev->nested_level = 0;
10832         INIT_LIST_HEAD(&dev->unlink_list);
10833 #endif
10834
10835         INIT_LIST_HEAD(&dev->napi_list);
10836         INIT_LIST_HEAD(&dev->unreg_list);
10837         INIT_LIST_HEAD(&dev->close_list);
10838         INIT_LIST_HEAD(&dev->link_watch_list);
10839         INIT_LIST_HEAD(&dev->adj_list.upper);
10840         INIT_LIST_HEAD(&dev->adj_list.lower);
10841         INIT_LIST_HEAD(&dev->ptype_all);
10842         INIT_LIST_HEAD(&dev->ptype_specific);
10843         INIT_LIST_HEAD(&dev->net_notifier_list);
10844 #ifdef CONFIG_NET_SCHED
10845         hash_init(dev->qdisc_hash);
10846 #endif
10847         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10848         setup(dev);
10849
10850         if (!dev->tx_queue_len) {
10851                 dev->priv_flags |= IFF_NO_QUEUE;
10852                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10853         }
10854
10855         dev->num_tx_queues = txqs;
10856         dev->real_num_tx_queues = txqs;
10857         if (netif_alloc_netdev_queues(dev))
10858                 goto free_all;
10859
10860         dev->num_rx_queues = rxqs;
10861         dev->real_num_rx_queues = rxqs;
10862         if (netif_alloc_rx_queues(dev))
10863                 goto free_all;
10864
10865         strcpy(dev->name, name);
10866         dev->name_assign_type = name_assign_type;
10867         dev->group = INIT_NETDEV_GROUP;
10868         if (!dev->ethtool_ops)
10869                 dev->ethtool_ops = &default_ethtool_ops;
10870
10871         nf_hook_ingress_init(dev);
10872
10873         return dev;
10874
10875 free_all:
10876         free_netdev(dev);
10877         return NULL;
10878
10879 free_pcpu:
10880 #ifdef CONFIG_PCPU_DEV_REFCNT
10881         free_percpu(dev->pcpu_refcnt);
10882 free_dev:
10883 #endif
10884         netdev_freemem(dev);
10885         return NULL;
10886 }
10887 EXPORT_SYMBOL(alloc_netdev_mqs);
10888
10889 /**
10890  * free_netdev - free network device
10891  * @dev: device
10892  *
10893  * This function does the last stage of destroying an allocated device
10894  * interface. The reference to the device object is released. If this
10895  * is the last reference then it will be freed.Must be called in process
10896  * context.
10897  */
10898 void free_netdev(struct net_device *dev)
10899 {
10900         struct napi_struct *p, *n;
10901
10902         might_sleep();
10903
10904         /* When called immediately after register_netdevice() failed the unwind
10905          * handling may still be dismantling the device. Handle that case by
10906          * deferring the free.
10907          */
10908         if (dev->reg_state == NETREG_UNREGISTERING) {
10909                 ASSERT_RTNL();
10910                 dev->needs_free_netdev = true;
10911                 return;
10912         }
10913
10914         netif_free_tx_queues(dev);
10915         netif_free_rx_queues(dev);
10916
10917         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10918
10919         /* Flush device addresses */
10920         dev_addr_flush(dev);
10921
10922         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10923                 netif_napi_del(p);
10924
10925 #ifdef CONFIG_PCPU_DEV_REFCNT
10926         free_percpu(dev->pcpu_refcnt);
10927         dev->pcpu_refcnt = NULL;
10928 #endif
10929         free_percpu(dev->xdp_bulkq);
10930         dev->xdp_bulkq = NULL;
10931
10932         /*  Compatibility with error handling in drivers */
10933         if (dev->reg_state == NETREG_UNINITIALIZED) {
10934                 netdev_freemem(dev);
10935                 return;
10936         }
10937
10938         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10939         dev->reg_state = NETREG_RELEASED;
10940
10941         /* will free via device release */
10942         put_device(&dev->dev);
10943 }
10944 EXPORT_SYMBOL(free_netdev);
10945
10946 /**
10947  *      synchronize_net -  Synchronize with packet receive processing
10948  *
10949  *      Wait for packets currently being received to be done.
10950  *      Does not block later packets from starting.
10951  */
10952 void synchronize_net(void)
10953 {
10954         might_sleep();
10955         if (rtnl_is_locked())
10956                 synchronize_rcu_expedited();
10957         else
10958                 synchronize_rcu();
10959 }
10960 EXPORT_SYMBOL(synchronize_net);
10961
10962 /**
10963  *      unregister_netdevice_queue - remove device from the kernel
10964  *      @dev: device
10965  *      @head: list
10966  *
10967  *      This function shuts down a device interface and removes it
10968  *      from the kernel tables.
10969  *      If head not NULL, device is queued to be unregistered later.
10970  *
10971  *      Callers must hold the rtnl semaphore.  You may want
10972  *      unregister_netdev() instead of this.
10973  */
10974
10975 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10976 {
10977         ASSERT_RTNL();
10978
10979         if (head) {
10980                 list_move_tail(&dev->unreg_list, head);
10981         } else {
10982                 LIST_HEAD(single);
10983
10984                 list_add(&dev->unreg_list, &single);
10985                 unregister_netdevice_many(&single);
10986         }
10987 }
10988 EXPORT_SYMBOL(unregister_netdevice_queue);
10989
10990 /**
10991  *      unregister_netdevice_many - unregister many devices
10992  *      @head: list of devices
10993  *
10994  *  Note: As most callers use a stack allocated list_head,
10995  *  we force a list_del() to make sure stack wont be corrupted later.
10996  */
10997 void unregister_netdevice_many(struct list_head *head)
10998 {
10999         struct net_device *dev, *tmp;
11000         LIST_HEAD(close_head);
11001
11002         BUG_ON(dev_boot_phase);
11003         ASSERT_RTNL();
11004
11005         if (list_empty(head))
11006                 return;
11007
11008         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11009                 /* Some devices call without registering
11010                  * for initialization unwind. Remove those
11011                  * devices and proceed with the remaining.
11012                  */
11013                 if (dev->reg_state == NETREG_UNINITIALIZED) {
11014                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11015                                  dev->name, dev);
11016
11017                         WARN_ON(1);
11018                         list_del(&dev->unreg_list);
11019                         continue;
11020                 }
11021                 dev->dismantle = true;
11022                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11023         }
11024
11025         /* If device is running, close it first. */
11026         list_for_each_entry(dev, head, unreg_list)
11027                 list_add_tail(&dev->close_list, &close_head);
11028         dev_close_many(&close_head, true);
11029
11030         list_for_each_entry(dev, head, unreg_list) {
11031                 /* And unlink it from device chain. */
11032                 unlist_netdevice(dev);
11033
11034                 dev->reg_state = NETREG_UNREGISTERING;
11035         }
11036         flush_all_backlogs();
11037
11038         synchronize_net();
11039
11040         list_for_each_entry(dev, head, unreg_list) {
11041                 struct sk_buff *skb = NULL;
11042
11043                 /* Shutdown queueing discipline. */
11044                 dev_shutdown(dev);
11045
11046                 dev_xdp_uninstall(dev);
11047
11048                 /* Notify protocols, that we are about to destroy
11049                  * this device. They should clean all the things.
11050                  */
11051                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11052
11053                 if (!dev->rtnl_link_ops ||
11054                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11055                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11056                                                      GFP_KERNEL, NULL, 0);
11057
11058                 /*
11059                  *      Flush the unicast and multicast chains
11060                  */
11061                 dev_uc_flush(dev);
11062                 dev_mc_flush(dev);
11063
11064                 netdev_name_node_alt_flush(dev);
11065                 netdev_name_node_free(dev->name_node);
11066
11067                 if (dev->netdev_ops->ndo_uninit)
11068                         dev->netdev_ops->ndo_uninit(dev);
11069
11070                 if (skb)
11071                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11072
11073                 /* Notifier chain MUST detach us all upper devices. */
11074                 WARN_ON(netdev_has_any_upper_dev(dev));
11075                 WARN_ON(netdev_has_any_lower_dev(dev));
11076
11077                 /* Remove entries from kobject tree */
11078                 netdev_unregister_kobject(dev);
11079 #ifdef CONFIG_XPS
11080                 /* Remove XPS queueing entries */
11081                 netif_reset_xps_queues_gt(dev, 0);
11082 #endif
11083         }
11084
11085         synchronize_net();
11086
11087         list_for_each_entry(dev, head, unreg_list) {
11088                 dev_put(dev);
11089                 net_set_todo(dev);
11090         }
11091
11092         list_del(head);
11093 }
11094 EXPORT_SYMBOL(unregister_netdevice_many);
11095
11096 /**
11097  *      unregister_netdev - remove device from the kernel
11098  *      @dev: device
11099  *
11100  *      This function shuts down a device interface and removes it
11101  *      from the kernel tables.
11102  *
11103  *      This is just a wrapper for unregister_netdevice that takes
11104  *      the rtnl semaphore.  In general you want to use this and not
11105  *      unregister_netdevice.
11106  */
11107 void unregister_netdev(struct net_device *dev)
11108 {
11109         rtnl_lock();
11110         unregister_netdevice(dev);
11111         rtnl_unlock();
11112 }
11113 EXPORT_SYMBOL(unregister_netdev);
11114
11115 /**
11116  *      __dev_change_net_namespace - move device to different nethost namespace
11117  *      @dev: device
11118  *      @net: network namespace
11119  *      @pat: If not NULL name pattern to try if the current device name
11120  *            is already taken in the destination network namespace.
11121  *      @new_ifindex: If not zero, specifies device index in the target
11122  *                    namespace.
11123  *
11124  *      This function shuts down a device interface and moves it
11125  *      to a new network namespace. On success 0 is returned, on
11126  *      a failure a netagive errno code is returned.
11127  *
11128  *      Callers must hold the rtnl semaphore.
11129  */
11130
11131 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11132                                const char *pat, int new_ifindex)
11133 {
11134         struct net *net_old = dev_net(dev);
11135         int err, new_nsid;
11136
11137         ASSERT_RTNL();
11138
11139         /* Don't allow namespace local devices to be moved. */
11140         err = -EINVAL;
11141         if (dev->features & NETIF_F_NETNS_LOCAL)
11142                 goto out;
11143
11144         /* Ensure the device has been registrered */
11145         if (dev->reg_state != NETREG_REGISTERED)
11146                 goto out;
11147
11148         /* Get out if there is nothing todo */
11149         err = 0;
11150         if (net_eq(net_old, net))
11151                 goto out;
11152
11153         /* Pick the destination device name, and ensure
11154          * we can use it in the destination network namespace.
11155          */
11156         err = -EEXIST;
11157         if (__dev_get_by_name(net, dev->name)) {
11158                 /* We get here if we can't use the current device name */
11159                 if (!pat)
11160                         goto out;
11161                 err = dev_get_valid_name(net, dev, pat);
11162                 if (err < 0)
11163                         goto out;
11164         }
11165
11166         /* Check that new_ifindex isn't used yet. */
11167         err = -EBUSY;
11168         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11169                 goto out;
11170
11171         /*
11172          * And now a mini version of register_netdevice unregister_netdevice.
11173          */
11174
11175         /* If device is running close it first. */
11176         dev_close(dev);
11177
11178         /* And unlink it from device chain */
11179         unlist_netdevice(dev);
11180
11181         synchronize_net();
11182
11183         /* Shutdown queueing discipline. */
11184         dev_shutdown(dev);
11185
11186         /* Notify protocols, that we are about to destroy
11187          * this device. They should clean all the things.
11188          *
11189          * Note that dev->reg_state stays at NETREG_REGISTERED.
11190          * This is wanted because this way 8021q and macvlan know
11191          * the device is just moving and can keep their slaves up.
11192          */
11193         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11194         rcu_barrier();
11195
11196         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11197         /* If there is an ifindex conflict assign a new one */
11198         if (!new_ifindex) {
11199                 if (__dev_get_by_index(net, dev->ifindex))
11200                         new_ifindex = dev_new_index(net);
11201                 else
11202                         new_ifindex = dev->ifindex;
11203         }
11204
11205         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11206                             new_ifindex);
11207
11208         /*
11209          *      Flush the unicast and multicast chains
11210          */
11211         dev_uc_flush(dev);
11212         dev_mc_flush(dev);
11213
11214         /* Send a netdev-removed uevent to the old namespace */
11215         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11216         netdev_adjacent_del_links(dev);
11217
11218         /* Move per-net netdevice notifiers that are following the netdevice */
11219         move_netdevice_notifiers_dev_net(dev, net);
11220
11221         /* Actually switch the network namespace */
11222         dev_net_set(dev, net);
11223         dev->ifindex = new_ifindex;
11224
11225         /* Send a netdev-add uevent to the new namespace */
11226         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11227         netdev_adjacent_add_links(dev);
11228
11229         /* Fixup kobjects */
11230         err = device_rename(&dev->dev, dev->name);
11231         WARN_ON(err);
11232
11233         /* Adapt owner in case owning user namespace of target network
11234          * namespace is different from the original one.
11235          */
11236         err = netdev_change_owner(dev, net_old, net);
11237         WARN_ON(err);
11238
11239         /* Add the device back in the hashes */
11240         list_netdevice(dev);
11241
11242         /* Notify protocols, that a new device appeared. */
11243         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11244
11245         /*
11246          *      Prevent userspace races by waiting until the network
11247          *      device is fully setup before sending notifications.
11248          */
11249         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11250
11251         synchronize_net();
11252         err = 0;
11253 out:
11254         return err;
11255 }
11256 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11257
11258 static int dev_cpu_dead(unsigned int oldcpu)
11259 {
11260         struct sk_buff **list_skb;
11261         struct sk_buff *skb;
11262         unsigned int cpu;
11263         struct softnet_data *sd, *oldsd, *remsd = NULL;
11264
11265         local_irq_disable();
11266         cpu = smp_processor_id();
11267         sd = &per_cpu(softnet_data, cpu);
11268         oldsd = &per_cpu(softnet_data, oldcpu);
11269
11270         /* Find end of our completion_queue. */
11271         list_skb = &sd->completion_queue;
11272         while (*list_skb)
11273                 list_skb = &(*list_skb)->next;
11274         /* Append completion queue from offline CPU. */
11275         *list_skb = oldsd->completion_queue;
11276         oldsd->completion_queue = NULL;
11277
11278         /* Append output queue from offline CPU. */
11279         if (oldsd->output_queue) {
11280                 *sd->output_queue_tailp = oldsd->output_queue;
11281                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11282                 oldsd->output_queue = NULL;
11283                 oldsd->output_queue_tailp = &oldsd->output_queue;
11284         }
11285         /* Append NAPI poll list from offline CPU, with one exception :
11286          * process_backlog() must be called by cpu owning percpu backlog.
11287          * We properly handle process_queue & input_pkt_queue later.
11288          */
11289         while (!list_empty(&oldsd->poll_list)) {
11290                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11291                                                             struct napi_struct,
11292                                                             poll_list);
11293
11294                 list_del_init(&napi->poll_list);
11295                 if (napi->poll == process_backlog)
11296                         napi->state = 0;
11297                 else
11298                         ____napi_schedule(sd, napi);
11299         }
11300
11301         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11302         local_irq_enable();
11303
11304 #ifdef CONFIG_RPS
11305         remsd = oldsd->rps_ipi_list;
11306         oldsd->rps_ipi_list = NULL;
11307 #endif
11308         /* send out pending IPI's on offline CPU */
11309         net_rps_send_ipi(remsd);
11310
11311         /* Process offline CPU's input_pkt_queue */
11312         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11313                 netif_rx_ni(skb);
11314                 input_queue_head_incr(oldsd);
11315         }
11316         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11317                 netif_rx_ni(skb);
11318                 input_queue_head_incr(oldsd);
11319         }
11320
11321         return 0;
11322 }
11323
11324 /**
11325  *      netdev_increment_features - increment feature set by one
11326  *      @all: current feature set
11327  *      @one: new feature set
11328  *      @mask: mask feature set
11329  *
11330  *      Computes a new feature set after adding a device with feature set
11331  *      @one to the master device with current feature set @all.  Will not
11332  *      enable anything that is off in @mask. Returns the new feature set.
11333  */
11334 netdev_features_t netdev_increment_features(netdev_features_t all,
11335         netdev_features_t one, netdev_features_t mask)
11336 {
11337         if (mask & NETIF_F_HW_CSUM)
11338                 mask |= NETIF_F_CSUM_MASK;
11339         mask |= NETIF_F_VLAN_CHALLENGED;
11340
11341         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11342         all &= one | ~NETIF_F_ALL_FOR_ALL;
11343
11344         /* If one device supports hw checksumming, set for all. */
11345         if (all & NETIF_F_HW_CSUM)
11346                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11347
11348         return all;
11349 }
11350 EXPORT_SYMBOL(netdev_increment_features);
11351
11352 static struct hlist_head * __net_init netdev_create_hash(void)
11353 {
11354         int i;
11355         struct hlist_head *hash;
11356
11357         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11358         if (hash != NULL)
11359                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11360                         INIT_HLIST_HEAD(&hash[i]);
11361
11362         return hash;
11363 }
11364
11365 /* Initialize per network namespace state */
11366 static int __net_init netdev_init(struct net *net)
11367 {
11368         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11369                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11370
11371         if (net != &init_net)
11372                 INIT_LIST_HEAD(&net->dev_base_head);
11373
11374         net->dev_name_head = netdev_create_hash();
11375         if (net->dev_name_head == NULL)
11376                 goto err_name;
11377
11378         net->dev_index_head = netdev_create_hash();
11379         if (net->dev_index_head == NULL)
11380                 goto err_idx;
11381
11382         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11383
11384         return 0;
11385
11386 err_idx:
11387         kfree(net->dev_name_head);
11388 err_name:
11389         return -ENOMEM;
11390 }
11391
11392 /**
11393  *      netdev_drivername - network driver for the device
11394  *      @dev: network device
11395  *
11396  *      Determine network driver for device.
11397  */
11398 const char *netdev_drivername(const struct net_device *dev)
11399 {
11400         const struct device_driver *driver;
11401         const struct device *parent;
11402         const char *empty = "";
11403
11404         parent = dev->dev.parent;
11405         if (!parent)
11406                 return empty;
11407
11408         driver = parent->driver;
11409         if (driver && driver->name)
11410                 return driver->name;
11411         return empty;
11412 }
11413
11414 static void __netdev_printk(const char *level, const struct net_device *dev,
11415                             struct va_format *vaf)
11416 {
11417         if (dev && dev->dev.parent) {
11418                 dev_printk_emit(level[1] - '0',
11419                                 dev->dev.parent,
11420                                 "%s %s %s%s: %pV",
11421                                 dev_driver_string(dev->dev.parent),
11422                                 dev_name(dev->dev.parent),
11423                                 netdev_name(dev), netdev_reg_state(dev),
11424                                 vaf);
11425         } else if (dev) {
11426                 printk("%s%s%s: %pV",
11427                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11428         } else {
11429                 printk("%s(NULL net_device): %pV", level, vaf);
11430         }
11431 }
11432
11433 void netdev_printk(const char *level, const struct net_device *dev,
11434                    const char *format, ...)
11435 {
11436         struct va_format vaf;
11437         va_list args;
11438
11439         va_start(args, format);
11440
11441         vaf.fmt = format;
11442         vaf.va = &args;
11443
11444         __netdev_printk(level, dev, &vaf);
11445
11446         va_end(args);
11447 }
11448 EXPORT_SYMBOL(netdev_printk);
11449
11450 #define define_netdev_printk_level(func, level)                 \
11451 void func(const struct net_device *dev, const char *fmt, ...)   \
11452 {                                                               \
11453         struct va_format vaf;                                   \
11454         va_list args;                                           \
11455                                                                 \
11456         va_start(args, fmt);                                    \
11457                                                                 \
11458         vaf.fmt = fmt;                                          \
11459         vaf.va = &args;                                         \
11460                                                                 \
11461         __netdev_printk(level, dev, &vaf);                      \
11462                                                                 \
11463         va_end(args);                                           \
11464 }                                                               \
11465 EXPORT_SYMBOL(func);
11466
11467 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11468 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11469 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11470 define_netdev_printk_level(netdev_err, KERN_ERR);
11471 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11472 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11473 define_netdev_printk_level(netdev_info, KERN_INFO);
11474
11475 static void __net_exit netdev_exit(struct net *net)
11476 {
11477         kfree(net->dev_name_head);
11478         kfree(net->dev_index_head);
11479         if (net != &init_net)
11480                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11481 }
11482
11483 static struct pernet_operations __net_initdata netdev_net_ops = {
11484         .init = netdev_init,
11485         .exit = netdev_exit,
11486 };
11487
11488 static void __net_exit default_device_exit(struct net *net)
11489 {
11490         struct net_device *dev, *aux;
11491         /*
11492          * Push all migratable network devices back to the
11493          * initial network namespace
11494          */
11495         rtnl_lock();
11496         for_each_netdev_safe(net, dev, aux) {
11497                 int err;
11498                 char fb_name[IFNAMSIZ];
11499
11500                 /* Ignore unmoveable devices (i.e. loopback) */
11501                 if (dev->features & NETIF_F_NETNS_LOCAL)
11502                         continue;
11503
11504                 /* Leave virtual devices for the generic cleanup */
11505                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11506                         continue;
11507
11508                 /* Push remaining network devices to init_net */
11509                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11510                 if (__dev_get_by_name(&init_net, fb_name))
11511                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11512                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11513                 if (err) {
11514                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11515                                  __func__, dev->name, err);
11516                         BUG();
11517                 }
11518         }
11519         rtnl_unlock();
11520 }
11521
11522 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11523 {
11524         /* Return with the rtnl_lock held when there are no network
11525          * devices unregistering in any network namespace in net_list.
11526          */
11527         struct net *net;
11528         bool unregistering;
11529         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11530
11531         add_wait_queue(&netdev_unregistering_wq, &wait);
11532         for (;;) {
11533                 unregistering = false;
11534                 rtnl_lock();
11535                 list_for_each_entry(net, net_list, exit_list) {
11536                         if (net->dev_unreg_count > 0) {
11537                                 unregistering = true;
11538                                 break;
11539                         }
11540                 }
11541                 if (!unregistering)
11542                         break;
11543                 __rtnl_unlock();
11544
11545                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11546         }
11547         remove_wait_queue(&netdev_unregistering_wq, &wait);
11548 }
11549
11550 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11551 {
11552         /* At exit all network devices most be removed from a network
11553          * namespace.  Do this in the reverse order of registration.
11554          * Do this across as many network namespaces as possible to
11555          * improve batching efficiency.
11556          */
11557         struct net_device *dev;
11558         struct net *net;
11559         LIST_HEAD(dev_kill_list);
11560
11561         /* To prevent network device cleanup code from dereferencing
11562          * loopback devices or network devices that have been freed
11563          * wait here for all pending unregistrations to complete,
11564          * before unregistring the loopback device and allowing the
11565          * network namespace be freed.
11566          *
11567          * The netdev todo list containing all network devices
11568          * unregistrations that happen in default_device_exit_batch
11569          * will run in the rtnl_unlock() at the end of
11570          * default_device_exit_batch.
11571          */
11572         rtnl_lock_unregistering(net_list);
11573         list_for_each_entry(net, net_list, exit_list) {
11574                 for_each_netdev_reverse(net, dev) {
11575                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11576                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11577                         else
11578                                 unregister_netdevice_queue(dev, &dev_kill_list);
11579                 }
11580         }
11581         unregister_netdevice_many(&dev_kill_list);
11582         rtnl_unlock();
11583 }
11584
11585 static struct pernet_operations __net_initdata default_device_ops = {
11586         .exit = default_device_exit,
11587         .exit_batch = default_device_exit_batch,
11588 };
11589
11590 /*
11591  *      Initialize the DEV module. At boot time this walks the device list and
11592  *      unhooks any devices that fail to initialise (normally hardware not
11593  *      present) and leaves us with a valid list of present and active devices.
11594  *
11595  */
11596
11597 /*
11598  *       This is called single threaded during boot, so no need
11599  *       to take the rtnl semaphore.
11600  */
11601 static int __init net_dev_init(void)
11602 {
11603         int i, rc = -ENOMEM;
11604
11605         BUG_ON(!dev_boot_phase);
11606
11607         if (dev_proc_init())
11608                 goto out;
11609
11610         if (netdev_kobject_init())
11611                 goto out;
11612
11613         INIT_LIST_HEAD(&ptype_all);
11614         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11615                 INIT_LIST_HEAD(&ptype_base[i]);
11616
11617         INIT_LIST_HEAD(&offload_base);
11618
11619         if (register_pernet_subsys(&netdev_net_ops))
11620                 goto out;
11621
11622         /*
11623          *      Initialise the packet receive queues.
11624          */
11625
11626         for_each_possible_cpu(i) {
11627                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11628                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11629
11630                 INIT_WORK(flush, flush_backlog);
11631
11632                 skb_queue_head_init(&sd->input_pkt_queue);
11633                 skb_queue_head_init(&sd->process_queue);
11634 #ifdef CONFIG_XFRM_OFFLOAD
11635                 skb_queue_head_init(&sd->xfrm_backlog);
11636 #endif
11637                 INIT_LIST_HEAD(&sd->poll_list);
11638                 sd->output_queue_tailp = &sd->output_queue;
11639 #ifdef CONFIG_RPS
11640                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11641                 sd->cpu = i;
11642 #endif
11643
11644                 init_gro_hash(&sd->backlog);
11645                 sd->backlog.poll = process_backlog;
11646                 sd->backlog.weight = weight_p;
11647         }
11648
11649         dev_boot_phase = 0;
11650
11651         /* The loopback device is special if any other network devices
11652          * is present in a network namespace the loopback device must
11653          * be present. Since we now dynamically allocate and free the
11654          * loopback device ensure this invariant is maintained by
11655          * keeping the loopback device as the first device on the
11656          * list of network devices.  Ensuring the loopback devices
11657          * is the first device that appears and the last network device
11658          * that disappears.
11659          */
11660         if (register_pernet_device(&loopback_net_ops))
11661                 goto out;
11662
11663         if (register_pernet_device(&default_device_ops))
11664                 goto out;
11665
11666         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11667         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11668
11669         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11670                                        NULL, dev_cpu_dead);
11671         WARN_ON(rc < 0);
11672         rc = 0;
11673 out:
11674         return rc;
11675 }
11676
11677 subsys_initcall(net_dev_init);