net: fix data-race in dev_isalive()
[platform/kernel/linux-rpi.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "net-sysfs.h"
155
156 #define MAX_GRO_SKBS 8
157
158 /* This should be increased if a protocol with a bigger head is added. */
159 #define GRO_MAX_HEAD (MAX_HEADER + 128)
160
161 static DEFINE_SPINLOCK(ptype_lock);
162 static DEFINE_SPINLOCK(offload_lock);
163 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164 struct list_head ptype_all __read_mostly;       /* Taps */
165 static struct list_head offload_base __read_mostly;
166
167 static int netif_rx_internal(struct sk_buff *skb);
168 static int call_netdevice_notifiers_info(unsigned long val,
169                                          struct netdev_notifier_info *info);
170 static int call_netdevice_notifiers_extack(unsigned long val,
171                                            struct net_device *dev,
172                                            struct netlink_ext_ack *extack);
173 static struct napi_struct *napi_by_id(unsigned int napi_id);
174
175 /*
176  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177  * semaphore.
178  *
179  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
180  *
181  * Writers must hold the rtnl semaphore while they loop through the
182  * dev_base_head list, and hold dev_base_lock for writing when they do the
183  * actual updates.  This allows pure readers to access the list even
184  * while a writer is preparing to update it.
185  *
186  * To put it another way, dev_base_lock is held for writing only to
187  * protect against pure readers; the rtnl semaphore provides the
188  * protection against other writers.
189  *
190  * See, for example usages, register_netdevice() and
191  * unregister_netdevice(), which must be called with the rtnl
192  * semaphore held.
193  */
194 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
196
197 static DEFINE_MUTEX(ifalias_mutex);
198
199 /* protects napi_hash addition/deletion and napi_gen_id */
200 static DEFINE_SPINLOCK(napi_hash_lock);
201
202 static unsigned int napi_gen_id = NR_CPUS;
203 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
204
205 static DECLARE_RWSEM(devnet_rename_sem);
206
207 static inline void dev_base_seq_inc(struct net *net)
208 {
209         while (++net->dev_base_seq == 0)
210                 ;
211 }
212
213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214 {
215         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
216
217         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218 }
219
220 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221 {
222         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223 }
224
225 static inline void rps_lock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_lock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 static inline void rps_unlock(struct softnet_data *sd)
233 {
234 #ifdef CONFIG_RPS
235         spin_unlock(&sd->input_pkt_queue.lock);
236 #endif
237 }
238
239 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240                                                        const char *name)
241 {
242         struct netdev_name_node *name_node;
243
244         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245         if (!name_node)
246                 return NULL;
247         INIT_HLIST_NODE(&name_node->hlist);
248         name_node->dev = dev;
249         name_node->name = name;
250         return name_node;
251 }
252
253 static struct netdev_name_node *
254 netdev_name_node_head_alloc(struct net_device *dev)
255 {
256         struct netdev_name_node *name_node;
257
258         name_node = netdev_name_node_alloc(dev, dev->name);
259         if (!name_node)
260                 return NULL;
261         INIT_LIST_HEAD(&name_node->list);
262         return name_node;
263 }
264
265 static void netdev_name_node_free(struct netdev_name_node *name_node)
266 {
267         kfree(name_node);
268 }
269
270 static void netdev_name_node_add(struct net *net,
271                                  struct netdev_name_node *name_node)
272 {
273         hlist_add_head_rcu(&name_node->hlist,
274                            dev_name_hash(net, name_node->name));
275 }
276
277 static void netdev_name_node_del(struct netdev_name_node *name_node)
278 {
279         hlist_del_rcu(&name_node->hlist);
280 }
281
282 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283                                                         const char *name)
284 {
285         struct hlist_head *head = dev_name_hash(net, name);
286         struct netdev_name_node *name_node;
287
288         hlist_for_each_entry(name_node, head, hlist)
289                 if (!strcmp(name_node->name, name))
290                         return name_node;
291         return NULL;
292 }
293
294 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295                                                             const char *name)
296 {
297         struct hlist_head *head = dev_name_hash(net, name);
298         struct netdev_name_node *name_node;
299
300         hlist_for_each_entry_rcu(name_node, head, hlist)
301                 if (!strcmp(name_node->name, name))
302                         return name_node;
303         return NULL;
304 }
305
306 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
307 {
308         struct netdev_name_node *name_node;
309         struct net *net = dev_net(dev);
310
311         name_node = netdev_name_node_lookup(net, name);
312         if (name_node)
313                 return -EEXIST;
314         name_node = netdev_name_node_alloc(dev, name);
315         if (!name_node)
316                 return -ENOMEM;
317         netdev_name_node_add(net, name_node);
318         /* The node that holds dev->name acts as a head of per-device list. */
319         list_add_tail(&name_node->list, &dev->name_node->list);
320
321         return 0;
322 }
323 EXPORT_SYMBOL(netdev_name_node_alt_create);
324
325 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
326 {
327         list_del(&name_node->list);
328         netdev_name_node_del(name_node);
329         kfree(name_node->name);
330         netdev_name_node_free(name_node);
331 }
332
333 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
334 {
335         struct netdev_name_node *name_node;
336         struct net *net = dev_net(dev);
337
338         name_node = netdev_name_node_lookup(net, name);
339         if (!name_node)
340                 return -ENOENT;
341         /* lookup might have found our primary name or a name belonging
342          * to another device.
343          */
344         if (name_node == dev->name_node || name_node->dev != dev)
345                 return -EINVAL;
346
347         __netdev_name_node_alt_destroy(name_node);
348
349         return 0;
350 }
351 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
352
353 static void netdev_name_node_alt_flush(struct net_device *dev)
354 {
355         struct netdev_name_node *name_node, *tmp;
356
357         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
358                 __netdev_name_node_alt_destroy(name_node);
359 }
360
361 /* Device list insertion */
362 static void list_netdevice(struct net_device *dev)
363 {
364         struct net *net = dev_net(dev);
365
366         ASSERT_RTNL();
367
368         write_lock(&dev_base_lock);
369         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
370         netdev_name_node_add(net, dev->name_node);
371         hlist_add_head_rcu(&dev->index_hlist,
372                            dev_index_hash(net, dev->ifindex));
373         write_unlock(&dev_base_lock);
374
375         dev_base_seq_inc(net);
376 }
377
378 /* Device list removal
379  * caller must respect a RCU grace period before freeing/reusing dev
380  */
381 static void unlist_netdevice(struct net_device *dev, bool lock)
382 {
383         ASSERT_RTNL();
384
385         /* Unlink dev from the device chain */
386         if (lock)
387                 write_lock(&dev_base_lock);
388         list_del_rcu(&dev->dev_list);
389         netdev_name_node_del(dev->name_node);
390         hlist_del_rcu(&dev->index_hlist);
391         if (lock)
392                 write_unlock(&dev_base_lock);
393
394         dev_base_seq_inc(dev_net(dev));
395 }
396
397 /*
398  *      Our notifier list
399  */
400
401 static RAW_NOTIFIER_HEAD(netdev_chain);
402
403 /*
404  *      Device drivers call our routines to queue packets here. We empty the
405  *      queue in the local softnet handler.
406  */
407
408 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
409 EXPORT_PER_CPU_SYMBOL(softnet_data);
410
411 #ifdef CONFIG_LOCKDEP
412 /*
413  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
414  * according to dev->type
415  */
416 static const unsigned short netdev_lock_type[] = {
417          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
418          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
419          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
420          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
421          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
422          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
423          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
424          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
425          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
426          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
427          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
428          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
429          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
430          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
431          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
432
433 static const char *const netdev_lock_name[] = {
434         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
435         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
436         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
437         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
438         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
439         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
440         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
441         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
442         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
443         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
444         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
445         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
446         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
447         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
448         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
449
450 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
451 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
452
453 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
454 {
455         int i;
456
457         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
458                 if (netdev_lock_type[i] == dev_type)
459                         return i;
460         /* the last key is used by default */
461         return ARRAY_SIZE(netdev_lock_type) - 1;
462 }
463
464 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
465                                                  unsigned short dev_type)
466 {
467         int i;
468
469         i = netdev_lock_pos(dev_type);
470         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
471                                    netdev_lock_name[i]);
472 }
473
474 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
475 {
476         int i;
477
478         i = netdev_lock_pos(dev->type);
479         lockdep_set_class_and_name(&dev->addr_list_lock,
480                                    &netdev_addr_lock_key[i],
481                                    netdev_lock_name[i]);
482 }
483 #else
484 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
485                                                  unsigned short dev_type)
486 {
487 }
488
489 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
490 {
491 }
492 #endif
493
494 /*******************************************************************************
495  *
496  *              Protocol management and registration routines
497  *
498  *******************************************************************************/
499
500
501 /*
502  *      Add a protocol ID to the list. Now that the input handler is
503  *      smarter we can dispense with all the messy stuff that used to be
504  *      here.
505  *
506  *      BEWARE!!! Protocol handlers, mangling input packets,
507  *      MUST BE last in hash buckets and checking protocol handlers
508  *      MUST start from promiscuous ptype_all chain in net_bh.
509  *      It is true now, do not change it.
510  *      Explanation follows: if protocol handler, mangling packet, will
511  *      be the first on list, it is not able to sense, that packet
512  *      is cloned and should be copied-on-write, so that it will
513  *      change it and subsequent readers will get broken packet.
514  *                                                      --ANK (980803)
515  */
516
517 static inline struct list_head *ptype_head(const struct packet_type *pt)
518 {
519         if (pt->type == htons(ETH_P_ALL))
520                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
521         else
522                 return pt->dev ? &pt->dev->ptype_specific :
523                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
524 }
525
526 /**
527  *      dev_add_pack - add packet handler
528  *      @pt: packet type declaration
529  *
530  *      Add a protocol handler to the networking stack. The passed &packet_type
531  *      is linked into kernel lists and may not be freed until it has been
532  *      removed from the kernel lists.
533  *
534  *      This call does not sleep therefore it can not
535  *      guarantee all CPU's that are in middle of receiving packets
536  *      will see the new packet type (until the next received packet).
537  */
538
539 void dev_add_pack(struct packet_type *pt)
540 {
541         struct list_head *head = ptype_head(pt);
542
543         spin_lock(&ptype_lock);
544         list_add_rcu(&pt->list, head);
545         spin_unlock(&ptype_lock);
546 }
547 EXPORT_SYMBOL(dev_add_pack);
548
549 /**
550  *      __dev_remove_pack        - remove packet handler
551  *      @pt: packet type declaration
552  *
553  *      Remove a protocol handler that was previously added to the kernel
554  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
555  *      from the kernel lists and can be freed or reused once this function
556  *      returns.
557  *
558  *      The packet type might still be in use by receivers
559  *      and must not be freed until after all the CPU's have gone
560  *      through a quiescent state.
561  */
562 void __dev_remove_pack(struct packet_type *pt)
563 {
564         struct list_head *head = ptype_head(pt);
565         struct packet_type *pt1;
566
567         spin_lock(&ptype_lock);
568
569         list_for_each_entry(pt1, head, list) {
570                 if (pt == pt1) {
571                         list_del_rcu(&pt->list);
572                         goto out;
573                 }
574         }
575
576         pr_warn("dev_remove_pack: %p not found\n", pt);
577 out:
578         spin_unlock(&ptype_lock);
579 }
580 EXPORT_SYMBOL(__dev_remove_pack);
581
582 /**
583  *      dev_remove_pack  - remove packet handler
584  *      @pt: packet type declaration
585  *
586  *      Remove a protocol handler that was previously added to the kernel
587  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
588  *      from the kernel lists and can be freed or reused once this function
589  *      returns.
590  *
591  *      This call sleeps to guarantee that no CPU is looking at the packet
592  *      type after return.
593  */
594 void dev_remove_pack(struct packet_type *pt)
595 {
596         __dev_remove_pack(pt);
597
598         synchronize_net();
599 }
600 EXPORT_SYMBOL(dev_remove_pack);
601
602
603 /**
604  *      dev_add_offload - register offload handlers
605  *      @po: protocol offload declaration
606  *
607  *      Add protocol offload handlers to the networking stack. The passed
608  *      &proto_offload is linked into kernel lists and may not be freed until
609  *      it has been removed from the kernel lists.
610  *
611  *      This call does not sleep therefore it can not
612  *      guarantee all CPU's that are in middle of receiving packets
613  *      will see the new offload handlers (until the next received packet).
614  */
615 void dev_add_offload(struct packet_offload *po)
616 {
617         struct packet_offload *elem;
618
619         spin_lock(&offload_lock);
620         list_for_each_entry(elem, &offload_base, list) {
621                 if (po->priority < elem->priority)
622                         break;
623         }
624         list_add_rcu(&po->list, elem->list.prev);
625         spin_unlock(&offload_lock);
626 }
627 EXPORT_SYMBOL(dev_add_offload);
628
629 /**
630  *      __dev_remove_offload     - remove offload handler
631  *      @po: packet offload declaration
632  *
633  *      Remove a protocol offload handler that was previously added to the
634  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
635  *      is removed from the kernel lists and can be freed or reused once this
636  *      function returns.
637  *
638  *      The packet type might still be in use by receivers
639  *      and must not be freed until after all the CPU's have gone
640  *      through a quiescent state.
641  */
642 static void __dev_remove_offload(struct packet_offload *po)
643 {
644         struct list_head *head = &offload_base;
645         struct packet_offload *po1;
646
647         spin_lock(&offload_lock);
648
649         list_for_each_entry(po1, head, list) {
650                 if (po == po1) {
651                         list_del_rcu(&po->list);
652                         goto out;
653                 }
654         }
655
656         pr_warn("dev_remove_offload: %p not found\n", po);
657 out:
658         spin_unlock(&offload_lock);
659 }
660
661 /**
662  *      dev_remove_offload       - remove packet offload handler
663  *      @po: packet offload declaration
664  *
665  *      Remove a packet offload handler that was previously added to the kernel
666  *      offload handlers by dev_add_offload(). The passed &offload_type is
667  *      removed from the kernel lists and can be freed or reused once this
668  *      function returns.
669  *
670  *      This call sleeps to guarantee that no CPU is looking at the packet
671  *      type after return.
672  */
673 void dev_remove_offload(struct packet_offload *po)
674 {
675         __dev_remove_offload(po);
676
677         synchronize_net();
678 }
679 EXPORT_SYMBOL(dev_remove_offload);
680
681 /*******************************************************************************
682  *
683  *                          Device Interface Subroutines
684  *
685  *******************************************************************************/
686
687 /**
688  *      dev_get_iflink  - get 'iflink' value of a interface
689  *      @dev: targeted interface
690  *
691  *      Indicates the ifindex the interface is linked to.
692  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
693  */
694
695 int dev_get_iflink(const struct net_device *dev)
696 {
697         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
698                 return dev->netdev_ops->ndo_get_iflink(dev);
699
700         return dev->ifindex;
701 }
702 EXPORT_SYMBOL(dev_get_iflink);
703
704 /**
705  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
706  *      @dev: targeted interface
707  *      @skb: The packet.
708  *
709  *      For better visibility of tunnel traffic OVS needs to retrieve
710  *      egress tunnel information for a packet. Following API allows
711  *      user to get this info.
712  */
713 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
714 {
715         struct ip_tunnel_info *info;
716
717         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
718                 return -EINVAL;
719
720         info = skb_tunnel_info_unclone(skb);
721         if (!info)
722                 return -ENOMEM;
723         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
724                 return -EINVAL;
725
726         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
727 }
728 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
729
730 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
731 {
732         int k = stack->num_paths++;
733
734         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
735                 return NULL;
736
737         return &stack->path[k];
738 }
739
740 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
741                           struct net_device_path_stack *stack)
742 {
743         const struct net_device *last_dev;
744         struct net_device_path_ctx ctx = {
745                 .dev    = dev,
746         };
747         struct net_device_path *path;
748         int ret = 0;
749
750         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
751         stack->num_paths = 0;
752         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
753                 last_dev = ctx.dev;
754                 path = dev_fwd_path(stack);
755                 if (!path)
756                         return -1;
757
758                 memset(path, 0, sizeof(struct net_device_path));
759                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
760                 if (ret < 0)
761                         return -1;
762
763                 if (WARN_ON_ONCE(last_dev == ctx.dev))
764                         return -1;
765         }
766         path = dev_fwd_path(stack);
767         if (!path)
768                 return -1;
769         path->type = DEV_PATH_ETHERNET;
770         path->dev = ctx.dev;
771
772         return ret;
773 }
774 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
775
776 /**
777  *      __dev_get_by_name       - find a device by its name
778  *      @net: the applicable net namespace
779  *      @name: name to find
780  *
781  *      Find an interface by name. Must be called under RTNL semaphore
782  *      or @dev_base_lock. If the name is found a pointer to the device
783  *      is returned. If the name is not found then %NULL is returned. The
784  *      reference counters are not incremented so the caller must be
785  *      careful with locks.
786  */
787
788 struct net_device *__dev_get_by_name(struct net *net, const char *name)
789 {
790         struct netdev_name_node *node_name;
791
792         node_name = netdev_name_node_lookup(net, name);
793         return node_name ? node_name->dev : NULL;
794 }
795 EXPORT_SYMBOL(__dev_get_by_name);
796
797 /**
798  * dev_get_by_name_rcu  - find a device by its name
799  * @net: the applicable net namespace
800  * @name: name to find
801  *
802  * Find an interface by name.
803  * If the name is found a pointer to the device is returned.
804  * If the name is not found then %NULL is returned.
805  * The reference counters are not incremented so the caller must be
806  * careful with locks. The caller must hold RCU lock.
807  */
808
809 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
810 {
811         struct netdev_name_node *node_name;
812
813         node_name = netdev_name_node_lookup_rcu(net, name);
814         return node_name ? node_name->dev : NULL;
815 }
816 EXPORT_SYMBOL(dev_get_by_name_rcu);
817
818 /**
819  *      dev_get_by_name         - find a device by its name
820  *      @net: the applicable net namespace
821  *      @name: name to find
822  *
823  *      Find an interface by name. This can be called from any
824  *      context and does its own locking. The returned handle has
825  *      the usage count incremented and the caller must use dev_put() to
826  *      release it when it is no longer needed. %NULL is returned if no
827  *      matching device is found.
828  */
829
830 struct net_device *dev_get_by_name(struct net *net, const char *name)
831 {
832         struct net_device *dev;
833
834         rcu_read_lock();
835         dev = dev_get_by_name_rcu(net, name);
836         dev_hold(dev);
837         rcu_read_unlock();
838         return dev;
839 }
840 EXPORT_SYMBOL(dev_get_by_name);
841
842 /**
843  *      __dev_get_by_index - find a device by its ifindex
844  *      @net: the applicable net namespace
845  *      @ifindex: index of device
846  *
847  *      Search for an interface by index. Returns %NULL if the device
848  *      is not found or a pointer to the device. The device has not
849  *      had its reference counter increased so the caller must be careful
850  *      about locking. The caller must hold either the RTNL semaphore
851  *      or @dev_base_lock.
852  */
853
854 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
855 {
856         struct net_device *dev;
857         struct hlist_head *head = dev_index_hash(net, ifindex);
858
859         hlist_for_each_entry(dev, head, index_hlist)
860                 if (dev->ifindex == ifindex)
861                         return dev;
862
863         return NULL;
864 }
865 EXPORT_SYMBOL(__dev_get_by_index);
866
867 /**
868  *      dev_get_by_index_rcu - find a device by its ifindex
869  *      @net: the applicable net namespace
870  *      @ifindex: index of device
871  *
872  *      Search for an interface by index. Returns %NULL if the device
873  *      is not found or a pointer to the device. The device has not
874  *      had its reference counter increased so the caller must be careful
875  *      about locking. The caller must hold RCU lock.
876  */
877
878 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
879 {
880         struct net_device *dev;
881         struct hlist_head *head = dev_index_hash(net, ifindex);
882
883         hlist_for_each_entry_rcu(dev, head, index_hlist)
884                 if (dev->ifindex == ifindex)
885                         return dev;
886
887         return NULL;
888 }
889 EXPORT_SYMBOL(dev_get_by_index_rcu);
890
891
892 /**
893  *      dev_get_by_index - find a device by its ifindex
894  *      @net: the applicable net namespace
895  *      @ifindex: index of device
896  *
897  *      Search for an interface by index. Returns NULL if the device
898  *      is not found or a pointer to the device. The device returned has
899  *      had a reference added and the pointer is safe until the user calls
900  *      dev_put to indicate they have finished with it.
901  */
902
903 struct net_device *dev_get_by_index(struct net *net, int ifindex)
904 {
905         struct net_device *dev;
906
907         rcu_read_lock();
908         dev = dev_get_by_index_rcu(net, ifindex);
909         dev_hold(dev);
910         rcu_read_unlock();
911         return dev;
912 }
913 EXPORT_SYMBOL(dev_get_by_index);
914
915 /**
916  *      dev_get_by_napi_id - find a device by napi_id
917  *      @napi_id: ID of the NAPI struct
918  *
919  *      Search for an interface by NAPI ID. Returns %NULL if the device
920  *      is not found or a pointer to the device. The device has not had
921  *      its reference counter increased so the caller must be careful
922  *      about locking. The caller must hold RCU lock.
923  */
924
925 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
926 {
927         struct napi_struct *napi;
928
929         WARN_ON_ONCE(!rcu_read_lock_held());
930
931         if (napi_id < MIN_NAPI_ID)
932                 return NULL;
933
934         napi = napi_by_id(napi_id);
935
936         return napi ? napi->dev : NULL;
937 }
938 EXPORT_SYMBOL(dev_get_by_napi_id);
939
940 /**
941  *      netdev_get_name - get a netdevice name, knowing its ifindex.
942  *      @net: network namespace
943  *      @name: a pointer to the buffer where the name will be stored.
944  *      @ifindex: the ifindex of the interface to get the name from.
945  */
946 int netdev_get_name(struct net *net, char *name, int ifindex)
947 {
948         struct net_device *dev;
949         int ret;
950
951         down_read(&devnet_rename_sem);
952         rcu_read_lock();
953
954         dev = dev_get_by_index_rcu(net, ifindex);
955         if (!dev) {
956                 ret = -ENODEV;
957                 goto out;
958         }
959
960         strcpy(name, dev->name);
961
962         ret = 0;
963 out:
964         rcu_read_unlock();
965         up_read(&devnet_rename_sem);
966         return ret;
967 }
968
969 /**
970  *      dev_getbyhwaddr_rcu - find a device by its hardware address
971  *      @net: the applicable net namespace
972  *      @type: media type of device
973  *      @ha: hardware address
974  *
975  *      Search for an interface by MAC address. Returns NULL if the device
976  *      is not found or a pointer to the device.
977  *      The caller must hold RCU or RTNL.
978  *      The returned device has not had its ref count increased
979  *      and the caller must therefore be careful about locking
980  *
981  */
982
983 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
984                                        const char *ha)
985 {
986         struct net_device *dev;
987
988         for_each_netdev_rcu(net, dev)
989                 if (dev->type == type &&
990                     !memcmp(dev->dev_addr, ha, dev->addr_len))
991                         return dev;
992
993         return NULL;
994 }
995 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
996
997 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
998 {
999         struct net_device *dev, *ret = NULL;
1000
1001         rcu_read_lock();
1002         for_each_netdev_rcu(net, dev)
1003                 if (dev->type == type) {
1004                         dev_hold(dev);
1005                         ret = dev;
1006                         break;
1007                 }
1008         rcu_read_unlock();
1009         return ret;
1010 }
1011 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1012
1013 /**
1014  *      __dev_get_by_flags - find any device with given flags
1015  *      @net: the applicable net namespace
1016  *      @if_flags: IFF_* values
1017  *      @mask: bitmask of bits in if_flags to check
1018  *
1019  *      Search for any interface with the given flags. Returns NULL if a device
1020  *      is not found or a pointer to the device. Must be called inside
1021  *      rtnl_lock(), and result refcount is unchanged.
1022  */
1023
1024 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1025                                       unsigned short mask)
1026 {
1027         struct net_device *dev, *ret;
1028
1029         ASSERT_RTNL();
1030
1031         ret = NULL;
1032         for_each_netdev(net, dev) {
1033                 if (((dev->flags ^ if_flags) & mask) == 0) {
1034                         ret = dev;
1035                         break;
1036                 }
1037         }
1038         return ret;
1039 }
1040 EXPORT_SYMBOL(__dev_get_by_flags);
1041
1042 /**
1043  *      dev_valid_name - check if name is okay for network device
1044  *      @name: name string
1045  *
1046  *      Network device names need to be valid file names to
1047  *      allow sysfs to work.  We also disallow any kind of
1048  *      whitespace.
1049  */
1050 bool dev_valid_name(const char *name)
1051 {
1052         if (*name == '\0')
1053                 return false;
1054         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1055                 return false;
1056         if (!strcmp(name, ".") || !strcmp(name, ".."))
1057                 return false;
1058
1059         while (*name) {
1060                 if (*name == '/' || *name == ':' || isspace(*name))
1061                         return false;
1062                 name++;
1063         }
1064         return true;
1065 }
1066 EXPORT_SYMBOL(dev_valid_name);
1067
1068 /**
1069  *      __dev_alloc_name - allocate a name for a device
1070  *      @net: network namespace to allocate the device name in
1071  *      @name: name format string
1072  *      @buf:  scratch buffer and result name string
1073  *
1074  *      Passed a format string - eg "lt%d" it will try and find a suitable
1075  *      id. It scans list of devices to build up a free map, then chooses
1076  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1077  *      while allocating the name and adding the device in order to avoid
1078  *      duplicates.
1079  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1080  *      Returns the number of the unit assigned or a negative errno code.
1081  */
1082
1083 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1084 {
1085         int i = 0;
1086         const char *p;
1087         const int max_netdevices = 8*PAGE_SIZE;
1088         unsigned long *inuse;
1089         struct net_device *d;
1090
1091         if (!dev_valid_name(name))
1092                 return -EINVAL;
1093
1094         p = strchr(name, '%');
1095         if (p) {
1096                 /*
1097                  * Verify the string as this thing may have come from
1098                  * the user.  There must be either one "%d" and no other "%"
1099                  * characters.
1100                  */
1101                 if (p[1] != 'd' || strchr(p + 2, '%'))
1102                         return -EINVAL;
1103
1104                 /* Use one page as a bit array of possible slots */
1105                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1106                 if (!inuse)
1107                         return -ENOMEM;
1108
1109                 for_each_netdev(net, d) {
1110                         struct netdev_name_node *name_node;
1111                         list_for_each_entry(name_node, &d->name_node->list, list) {
1112                                 if (!sscanf(name_node->name, name, &i))
1113                                         continue;
1114                                 if (i < 0 || i >= max_netdevices)
1115                                         continue;
1116
1117                                 /*  avoid cases where sscanf is not exact inverse of printf */
1118                                 snprintf(buf, IFNAMSIZ, name, i);
1119                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1120                                         set_bit(i, inuse);
1121                         }
1122                         if (!sscanf(d->name, name, &i))
1123                                 continue;
1124                         if (i < 0 || i >= max_netdevices)
1125                                 continue;
1126
1127                         /*  avoid cases where sscanf is not exact inverse of printf */
1128                         snprintf(buf, IFNAMSIZ, name, i);
1129                         if (!strncmp(buf, d->name, IFNAMSIZ))
1130                                 set_bit(i, inuse);
1131                 }
1132
1133                 i = find_first_zero_bit(inuse, max_netdevices);
1134                 free_page((unsigned long) inuse);
1135         }
1136
1137         snprintf(buf, IFNAMSIZ, name, i);
1138         if (!__dev_get_by_name(net, buf))
1139                 return i;
1140
1141         /* It is possible to run out of possible slots
1142          * when the name is long and there isn't enough space left
1143          * for the digits, or if all bits are used.
1144          */
1145         return -ENFILE;
1146 }
1147
1148 static int dev_alloc_name_ns(struct net *net,
1149                              struct net_device *dev,
1150                              const char *name)
1151 {
1152         char buf[IFNAMSIZ];
1153         int ret;
1154
1155         BUG_ON(!net);
1156         ret = __dev_alloc_name(net, name, buf);
1157         if (ret >= 0)
1158                 strlcpy(dev->name, buf, IFNAMSIZ);
1159         return ret;
1160 }
1161
1162 /**
1163  *      dev_alloc_name - allocate a name for a device
1164  *      @dev: device
1165  *      @name: name format string
1166  *
1167  *      Passed a format string - eg "lt%d" it will try and find a suitable
1168  *      id. It scans list of devices to build up a free map, then chooses
1169  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1170  *      while allocating the name and adding the device in order to avoid
1171  *      duplicates.
1172  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1173  *      Returns the number of the unit assigned or a negative errno code.
1174  */
1175
1176 int dev_alloc_name(struct net_device *dev, const char *name)
1177 {
1178         return dev_alloc_name_ns(dev_net(dev), dev, name);
1179 }
1180 EXPORT_SYMBOL(dev_alloc_name);
1181
1182 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1183                               const char *name)
1184 {
1185         BUG_ON(!net);
1186
1187         if (!dev_valid_name(name))
1188                 return -EINVAL;
1189
1190         if (strchr(name, '%'))
1191                 return dev_alloc_name_ns(net, dev, name);
1192         else if (__dev_get_by_name(net, name))
1193                 return -EEXIST;
1194         else if (dev->name != name)
1195                 strlcpy(dev->name, name, IFNAMSIZ);
1196
1197         return 0;
1198 }
1199
1200 /**
1201  *      dev_change_name - change name of a device
1202  *      @dev: device
1203  *      @newname: name (or format string) must be at least IFNAMSIZ
1204  *
1205  *      Change name of a device, can pass format strings "eth%d".
1206  *      for wildcarding.
1207  */
1208 int dev_change_name(struct net_device *dev, const char *newname)
1209 {
1210         unsigned char old_assign_type;
1211         char oldname[IFNAMSIZ];
1212         int err = 0;
1213         int ret;
1214         struct net *net;
1215
1216         ASSERT_RTNL();
1217         BUG_ON(!dev_net(dev));
1218
1219         net = dev_net(dev);
1220
1221         /* Some auto-enslaved devices e.g. failover slaves are
1222          * special, as userspace might rename the device after
1223          * the interface had been brought up and running since
1224          * the point kernel initiated auto-enslavement. Allow
1225          * live name change even when these slave devices are
1226          * up and running.
1227          *
1228          * Typically, users of these auto-enslaving devices
1229          * don't actually care about slave name change, as
1230          * they are supposed to operate on master interface
1231          * directly.
1232          */
1233         if (dev->flags & IFF_UP &&
1234             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1235                 return -EBUSY;
1236
1237         down_write(&devnet_rename_sem);
1238
1239         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1240                 up_write(&devnet_rename_sem);
1241                 return 0;
1242         }
1243
1244         memcpy(oldname, dev->name, IFNAMSIZ);
1245
1246         err = dev_get_valid_name(net, dev, newname);
1247         if (err < 0) {
1248                 up_write(&devnet_rename_sem);
1249                 return err;
1250         }
1251
1252         if (oldname[0] && !strchr(oldname, '%'))
1253                 netdev_info(dev, "renamed from %s\n", oldname);
1254
1255         old_assign_type = dev->name_assign_type;
1256         dev->name_assign_type = NET_NAME_RENAMED;
1257
1258 rollback:
1259         ret = device_rename(&dev->dev, dev->name);
1260         if (ret) {
1261                 memcpy(dev->name, oldname, IFNAMSIZ);
1262                 dev->name_assign_type = old_assign_type;
1263                 up_write(&devnet_rename_sem);
1264                 return ret;
1265         }
1266
1267         up_write(&devnet_rename_sem);
1268
1269         netdev_adjacent_rename_links(dev, oldname);
1270
1271         write_lock(&dev_base_lock);
1272         netdev_name_node_del(dev->name_node);
1273         write_unlock(&dev_base_lock);
1274
1275         synchronize_rcu();
1276
1277         write_lock(&dev_base_lock);
1278         netdev_name_node_add(net, dev->name_node);
1279         write_unlock(&dev_base_lock);
1280
1281         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1282         ret = notifier_to_errno(ret);
1283
1284         if (ret) {
1285                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1286                 if (err >= 0) {
1287                         err = ret;
1288                         down_write(&devnet_rename_sem);
1289                         memcpy(dev->name, oldname, IFNAMSIZ);
1290                         memcpy(oldname, newname, IFNAMSIZ);
1291                         dev->name_assign_type = old_assign_type;
1292                         old_assign_type = NET_NAME_RENAMED;
1293                         goto rollback;
1294                 } else {
1295                         pr_err("%s: name change rollback failed: %d\n",
1296                                dev->name, ret);
1297                 }
1298         }
1299
1300         return err;
1301 }
1302
1303 /**
1304  *      dev_set_alias - change ifalias of a device
1305  *      @dev: device
1306  *      @alias: name up to IFALIASZ
1307  *      @len: limit of bytes to copy from info
1308  *
1309  *      Set ifalias for a device,
1310  */
1311 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1312 {
1313         struct dev_ifalias *new_alias = NULL;
1314
1315         if (len >= IFALIASZ)
1316                 return -EINVAL;
1317
1318         if (len) {
1319                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1320                 if (!new_alias)
1321                         return -ENOMEM;
1322
1323                 memcpy(new_alias->ifalias, alias, len);
1324                 new_alias->ifalias[len] = 0;
1325         }
1326
1327         mutex_lock(&ifalias_mutex);
1328         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1329                                         mutex_is_locked(&ifalias_mutex));
1330         mutex_unlock(&ifalias_mutex);
1331
1332         if (new_alias)
1333                 kfree_rcu(new_alias, rcuhead);
1334
1335         return len;
1336 }
1337 EXPORT_SYMBOL(dev_set_alias);
1338
1339 /**
1340  *      dev_get_alias - get ifalias of a device
1341  *      @dev: device
1342  *      @name: buffer to store name of ifalias
1343  *      @len: size of buffer
1344  *
1345  *      get ifalias for a device.  Caller must make sure dev cannot go
1346  *      away,  e.g. rcu read lock or own a reference count to device.
1347  */
1348 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1349 {
1350         const struct dev_ifalias *alias;
1351         int ret = 0;
1352
1353         rcu_read_lock();
1354         alias = rcu_dereference(dev->ifalias);
1355         if (alias)
1356                 ret = snprintf(name, len, "%s", alias->ifalias);
1357         rcu_read_unlock();
1358
1359         return ret;
1360 }
1361
1362 /**
1363  *      netdev_features_change - device changes features
1364  *      @dev: device to cause notification
1365  *
1366  *      Called to indicate a device has changed features.
1367  */
1368 void netdev_features_change(struct net_device *dev)
1369 {
1370         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1371 }
1372 EXPORT_SYMBOL(netdev_features_change);
1373
1374 /**
1375  *      netdev_state_change - device changes state
1376  *      @dev: device to cause notification
1377  *
1378  *      Called to indicate a device has changed state. This function calls
1379  *      the notifier chains for netdev_chain and sends a NEWLINK message
1380  *      to the routing socket.
1381  */
1382 void netdev_state_change(struct net_device *dev)
1383 {
1384         if (dev->flags & IFF_UP) {
1385                 struct netdev_notifier_change_info change_info = {
1386                         .info.dev = dev,
1387                 };
1388
1389                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1390                                               &change_info.info);
1391                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1392         }
1393 }
1394 EXPORT_SYMBOL(netdev_state_change);
1395
1396 /**
1397  * __netdev_notify_peers - notify network peers about existence of @dev,
1398  * to be called when rtnl lock is already held.
1399  * @dev: network device
1400  *
1401  * Generate traffic such that interested network peers are aware of
1402  * @dev, such as by generating a gratuitous ARP. This may be used when
1403  * a device wants to inform the rest of the network about some sort of
1404  * reconfiguration such as a failover event or virtual machine
1405  * migration.
1406  */
1407 void __netdev_notify_peers(struct net_device *dev)
1408 {
1409         ASSERT_RTNL();
1410         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1411         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1412 }
1413 EXPORT_SYMBOL(__netdev_notify_peers);
1414
1415 /**
1416  * netdev_notify_peers - notify network peers about existence of @dev
1417  * @dev: network device
1418  *
1419  * Generate traffic such that interested network peers are aware of
1420  * @dev, such as by generating a gratuitous ARP. This may be used when
1421  * a device wants to inform the rest of the network about some sort of
1422  * reconfiguration such as a failover event or virtual machine
1423  * migration.
1424  */
1425 void netdev_notify_peers(struct net_device *dev)
1426 {
1427         rtnl_lock();
1428         __netdev_notify_peers(dev);
1429         rtnl_unlock();
1430 }
1431 EXPORT_SYMBOL(netdev_notify_peers);
1432
1433 static int napi_threaded_poll(void *data);
1434
1435 static int napi_kthread_create(struct napi_struct *n)
1436 {
1437         int err = 0;
1438
1439         /* Create and wake up the kthread once to put it in
1440          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1441          * warning and work with loadavg.
1442          */
1443         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1444                                 n->dev->name, n->napi_id);
1445         if (IS_ERR(n->thread)) {
1446                 err = PTR_ERR(n->thread);
1447                 pr_err("kthread_run failed with err %d\n", err);
1448                 n->thread = NULL;
1449         }
1450
1451         return err;
1452 }
1453
1454 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1455 {
1456         const struct net_device_ops *ops = dev->netdev_ops;
1457         int ret;
1458
1459         ASSERT_RTNL();
1460
1461         if (!netif_device_present(dev)) {
1462                 /* may be detached because parent is runtime-suspended */
1463                 if (dev->dev.parent)
1464                         pm_runtime_resume(dev->dev.parent);
1465                 if (!netif_device_present(dev))
1466                         return -ENODEV;
1467         }
1468
1469         /* Block netpoll from trying to do any rx path servicing.
1470          * If we don't do this there is a chance ndo_poll_controller
1471          * or ndo_poll may be running while we open the device
1472          */
1473         netpoll_poll_disable(dev);
1474
1475         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1476         ret = notifier_to_errno(ret);
1477         if (ret)
1478                 return ret;
1479
1480         set_bit(__LINK_STATE_START, &dev->state);
1481
1482         if (ops->ndo_validate_addr)
1483                 ret = ops->ndo_validate_addr(dev);
1484
1485         if (!ret && ops->ndo_open)
1486                 ret = ops->ndo_open(dev);
1487
1488         netpoll_poll_enable(dev);
1489
1490         if (ret)
1491                 clear_bit(__LINK_STATE_START, &dev->state);
1492         else {
1493                 dev->flags |= IFF_UP;
1494                 dev_set_rx_mode(dev);
1495                 dev_activate(dev);
1496                 add_device_randomness(dev->dev_addr, dev->addr_len);
1497         }
1498
1499         return ret;
1500 }
1501
1502 /**
1503  *      dev_open        - prepare an interface for use.
1504  *      @dev: device to open
1505  *      @extack: netlink extended ack
1506  *
1507  *      Takes a device from down to up state. The device's private open
1508  *      function is invoked and then the multicast lists are loaded. Finally
1509  *      the device is moved into the up state and a %NETDEV_UP message is
1510  *      sent to the netdev notifier chain.
1511  *
1512  *      Calling this function on an active interface is a nop. On a failure
1513  *      a negative errno code is returned.
1514  */
1515 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1516 {
1517         int ret;
1518
1519         if (dev->flags & IFF_UP)
1520                 return 0;
1521
1522         ret = __dev_open(dev, extack);
1523         if (ret < 0)
1524                 return ret;
1525
1526         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1527         call_netdevice_notifiers(NETDEV_UP, dev);
1528
1529         return ret;
1530 }
1531 EXPORT_SYMBOL(dev_open);
1532
1533 static void __dev_close_many(struct list_head *head)
1534 {
1535         struct net_device *dev;
1536
1537         ASSERT_RTNL();
1538         might_sleep();
1539
1540         list_for_each_entry(dev, head, close_list) {
1541                 /* Temporarily disable netpoll until the interface is down */
1542                 netpoll_poll_disable(dev);
1543
1544                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1545
1546                 clear_bit(__LINK_STATE_START, &dev->state);
1547
1548                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1549                  * can be even on different cpu. So just clear netif_running().
1550                  *
1551                  * dev->stop() will invoke napi_disable() on all of it's
1552                  * napi_struct instances on this device.
1553                  */
1554                 smp_mb__after_atomic(); /* Commit netif_running(). */
1555         }
1556
1557         dev_deactivate_many(head);
1558
1559         list_for_each_entry(dev, head, close_list) {
1560                 const struct net_device_ops *ops = dev->netdev_ops;
1561
1562                 /*
1563                  *      Call the device specific close. This cannot fail.
1564                  *      Only if device is UP
1565                  *
1566                  *      We allow it to be called even after a DETACH hot-plug
1567                  *      event.
1568                  */
1569                 if (ops->ndo_stop)
1570                         ops->ndo_stop(dev);
1571
1572                 dev->flags &= ~IFF_UP;
1573                 netpoll_poll_enable(dev);
1574         }
1575 }
1576
1577 static void __dev_close(struct net_device *dev)
1578 {
1579         LIST_HEAD(single);
1580
1581         list_add(&dev->close_list, &single);
1582         __dev_close_many(&single);
1583         list_del(&single);
1584 }
1585
1586 void dev_close_many(struct list_head *head, bool unlink)
1587 {
1588         struct net_device *dev, *tmp;
1589
1590         /* Remove the devices that don't need to be closed */
1591         list_for_each_entry_safe(dev, tmp, head, close_list)
1592                 if (!(dev->flags & IFF_UP))
1593                         list_del_init(&dev->close_list);
1594
1595         __dev_close_many(head);
1596
1597         list_for_each_entry_safe(dev, tmp, head, close_list) {
1598                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1599                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1600                 if (unlink)
1601                         list_del_init(&dev->close_list);
1602         }
1603 }
1604 EXPORT_SYMBOL(dev_close_many);
1605
1606 /**
1607  *      dev_close - shutdown an interface.
1608  *      @dev: device to shutdown
1609  *
1610  *      This function moves an active device into down state. A
1611  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1612  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1613  *      chain.
1614  */
1615 void dev_close(struct net_device *dev)
1616 {
1617         if (dev->flags & IFF_UP) {
1618                 LIST_HEAD(single);
1619
1620                 list_add(&dev->close_list, &single);
1621                 dev_close_many(&single, true);
1622                 list_del(&single);
1623         }
1624 }
1625 EXPORT_SYMBOL(dev_close);
1626
1627
1628 /**
1629  *      dev_disable_lro - disable Large Receive Offload on a device
1630  *      @dev: device
1631  *
1632  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1633  *      called under RTNL.  This is needed if received packets may be
1634  *      forwarded to another interface.
1635  */
1636 void dev_disable_lro(struct net_device *dev)
1637 {
1638         struct net_device *lower_dev;
1639         struct list_head *iter;
1640
1641         dev->wanted_features &= ~NETIF_F_LRO;
1642         netdev_update_features(dev);
1643
1644         if (unlikely(dev->features & NETIF_F_LRO))
1645                 netdev_WARN(dev, "failed to disable LRO!\n");
1646
1647         netdev_for_each_lower_dev(dev, lower_dev, iter)
1648                 dev_disable_lro(lower_dev);
1649 }
1650 EXPORT_SYMBOL(dev_disable_lro);
1651
1652 /**
1653  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1654  *      @dev: device
1655  *
1656  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1657  *      called under RTNL.  This is needed if Generic XDP is installed on
1658  *      the device.
1659  */
1660 static void dev_disable_gro_hw(struct net_device *dev)
1661 {
1662         dev->wanted_features &= ~NETIF_F_GRO_HW;
1663         netdev_update_features(dev);
1664
1665         if (unlikely(dev->features & NETIF_F_GRO_HW))
1666                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1667 }
1668
1669 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1670 {
1671 #define N(val)                                          \
1672         case NETDEV_##val:                              \
1673                 return "NETDEV_" __stringify(val);
1674         switch (cmd) {
1675         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1676         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1677         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1678         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1679         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1680         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1681         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1682         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1683         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1684         N(PRE_CHANGEADDR)
1685         }
1686 #undef N
1687         return "UNKNOWN_NETDEV_EVENT";
1688 }
1689 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1690
1691 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1692                                    struct net_device *dev)
1693 {
1694         struct netdev_notifier_info info = {
1695                 .dev = dev,
1696         };
1697
1698         return nb->notifier_call(nb, val, &info);
1699 }
1700
1701 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1702                                              struct net_device *dev)
1703 {
1704         int err;
1705
1706         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1707         err = notifier_to_errno(err);
1708         if (err)
1709                 return err;
1710
1711         if (!(dev->flags & IFF_UP))
1712                 return 0;
1713
1714         call_netdevice_notifier(nb, NETDEV_UP, dev);
1715         return 0;
1716 }
1717
1718 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1719                                                 struct net_device *dev)
1720 {
1721         if (dev->flags & IFF_UP) {
1722                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1723                                         dev);
1724                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1725         }
1726         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1727 }
1728
1729 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1730                                                  struct net *net)
1731 {
1732         struct net_device *dev;
1733         int err;
1734
1735         for_each_netdev(net, dev) {
1736                 err = call_netdevice_register_notifiers(nb, dev);
1737                 if (err)
1738                         goto rollback;
1739         }
1740         return 0;
1741
1742 rollback:
1743         for_each_netdev_continue_reverse(net, dev)
1744                 call_netdevice_unregister_notifiers(nb, dev);
1745         return err;
1746 }
1747
1748 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1749                                                     struct net *net)
1750 {
1751         struct net_device *dev;
1752
1753         for_each_netdev(net, dev)
1754                 call_netdevice_unregister_notifiers(nb, dev);
1755 }
1756
1757 static int dev_boot_phase = 1;
1758
1759 /**
1760  * register_netdevice_notifier - register a network notifier block
1761  * @nb: notifier
1762  *
1763  * Register a notifier to be called when network device events occur.
1764  * The notifier passed is linked into the kernel structures and must
1765  * not be reused until it has been unregistered. A negative errno code
1766  * is returned on a failure.
1767  *
1768  * When registered all registration and up events are replayed
1769  * to the new notifier to allow device to have a race free
1770  * view of the network device list.
1771  */
1772
1773 int register_netdevice_notifier(struct notifier_block *nb)
1774 {
1775         struct net *net;
1776         int err;
1777
1778         /* Close race with setup_net() and cleanup_net() */
1779         down_write(&pernet_ops_rwsem);
1780         rtnl_lock();
1781         err = raw_notifier_chain_register(&netdev_chain, nb);
1782         if (err)
1783                 goto unlock;
1784         if (dev_boot_phase)
1785                 goto unlock;
1786         for_each_net(net) {
1787                 err = call_netdevice_register_net_notifiers(nb, net);
1788                 if (err)
1789                         goto rollback;
1790         }
1791
1792 unlock:
1793         rtnl_unlock();
1794         up_write(&pernet_ops_rwsem);
1795         return err;
1796
1797 rollback:
1798         for_each_net_continue_reverse(net)
1799                 call_netdevice_unregister_net_notifiers(nb, net);
1800
1801         raw_notifier_chain_unregister(&netdev_chain, nb);
1802         goto unlock;
1803 }
1804 EXPORT_SYMBOL(register_netdevice_notifier);
1805
1806 /**
1807  * unregister_netdevice_notifier - unregister a network notifier block
1808  * @nb: notifier
1809  *
1810  * Unregister a notifier previously registered by
1811  * register_netdevice_notifier(). The notifier is unlinked into the
1812  * kernel structures and may then be reused. A negative errno code
1813  * is returned on a failure.
1814  *
1815  * After unregistering unregister and down device events are synthesized
1816  * for all devices on the device list to the removed notifier to remove
1817  * the need for special case cleanup code.
1818  */
1819
1820 int unregister_netdevice_notifier(struct notifier_block *nb)
1821 {
1822         struct net *net;
1823         int err;
1824
1825         /* Close race with setup_net() and cleanup_net() */
1826         down_write(&pernet_ops_rwsem);
1827         rtnl_lock();
1828         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1829         if (err)
1830                 goto unlock;
1831
1832         for_each_net(net)
1833                 call_netdevice_unregister_net_notifiers(nb, net);
1834
1835 unlock:
1836         rtnl_unlock();
1837         up_write(&pernet_ops_rwsem);
1838         return err;
1839 }
1840 EXPORT_SYMBOL(unregister_netdevice_notifier);
1841
1842 static int __register_netdevice_notifier_net(struct net *net,
1843                                              struct notifier_block *nb,
1844                                              bool ignore_call_fail)
1845 {
1846         int err;
1847
1848         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1849         if (err)
1850                 return err;
1851         if (dev_boot_phase)
1852                 return 0;
1853
1854         err = call_netdevice_register_net_notifiers(nb, net);
1855         if (err && !ignore_call_fail)
1856                 goto chain_unregister;
1857
1858         return 0;
1859
1860 chain_unregister:
1861         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1862         return err;
1863 }
1864
1865 static int __unregister_netdevice_notifier_net(struct net *net,
1866                                                struct notifier_block *nb)
1867 {
1868         int err;
1869
1870         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1871         if (err)
1872                 return err;
1873
1874         call_netdevice_unregister_net_notifiers(nb, net);
1875         return 0;
1876 }
1877
1878 /**
1879  * register_netdevice_notifier_net - register a per-netns network notifier block
1880  * @net: network namespace
1881  * @nb: notifier
1882  *
1883  * Register a notifier to be called when network device events occur.
1884  * The notifier passed is linked into the kernel structures and must
1885  * not be reused until it has been unregistered. A negative errno code
1886  * is returned on a failure.
1887  *
1888  * When registered all registration and up events are replayed
1889  * to the new notifier to allow device to have a race free
1890  * view of the network device list.
1891  */
1892
1893 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1894 {
1895         int err;
1896
1897         rtnl_lock();
1898         err = __register_netdevice_notifier_net(net, nb, false);
1899         rtnl_unlock();
1900         return err;
1901 }
1902 EXPORT_SYMBOL(register_netdevice_notifier_net);
1903
1904 /**
1905  * unregister_netdevice_notifier_net - unregister a per-netns
1906  *                                     network notifier block
1907  * @net: network namespace
1908  * @nb: notifier
1909  *
1910  * Unregister a notifier previously registered by
1911  * register_netdevice_notifier(). The notifier is unlinked into the
1912  * kernel structures and may then be reused. A negative errno code
1913  * is returned on a failure.
1914  *
1915  * After unregistering unregister and down device events are synthesized
1916  * for all devices on the device list to the removed notifier to remove
1917  * the need for special case cleanup code.
1918  */
1919
1920 int unregister_netdevice_notifier_net(struct net *net,
1921                                       struct notifier_block *nb)
1922 {
1923         int err;
1924
1925         rtnl_lock();
1926         err = __unregister_netdevice_notifier_net(net, nb);
1927         rtnl_unlock();
1928         return err;
1929 }
1930 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1931
1932 int register_netdevice_notifier_dev_net(struct net_device *dev,
1933                                         struct notifier_block *nb,
1934                                         struct netdev_net_notifier *nn)
1935 {
1936         int err;
1937
1938         rtnl_lock();
1939         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1940         if (!err) {
1941                 nn->nb = nb;
1942                 list_add(&nn->list, &dev->net_notifier_list);
1943         }
1944         rtnl_unlock();
1945         return err;
1946 }
1947 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1948
1949 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1950                                           struct notifier_block *nb,
1951                                           struct netdev_net_notifier *nn)
1952 {
1953         int err;
1954
1955         rtnl_lock();
1956         list_del(&nn->list);
1957         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1958         rtnl_unlock();
1959         return err;
1960 }
1961 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1962
1963 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1964                                              struct net *net)
1965 {
1966         struct netdev_net_notifier *nn;
1967
1968         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1969                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1970                 __register_netdevice_notifier_net(net, nn->nb, true);
1971         }
1972 }
1973
1974 /**
1975  *      call_netdevice_notifiers_info - call all network notifier blocks
1976  *      @val: value passed unmodified to notifier function
1977  *      @info: notifier information data
1978  *
1979  *      Call all network notifier blocks.  Parameters and return value
1980  *      are as for raw_notifier_call_chain().
1981  */
1982
1983 static int call_netdevice_notifiers_info(unsigned long val,
1984                                          struct netdev_notifier_info *info)
1985 {
1986         struct net *net = dev_net(info->dev);
1987         int ret;
1988
1989         ASSERT_RTNL();
1990
1991         /* Run per-netns notifier block chain first, then run the global one.
1992          * Hopefully, one day, the global one is going to be removed after
1993          * all notifier block registrators get converted to be per-netns.
1994          */
1995         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1996         if (ret & NOTIFY_STOP_MASK)
1997                 return ret;
1998         return raw_notifier_call_chain(&netdev_chain, val, info);
1999 }
2000
2001 static int call_netdevice_notifiers_extack(unsigned long val,
2002                                            struct net_device *dev,
2003                                            struct netlink_ext_ack *extack)
2004 {
2005         struct netdev_notifier_info info = {
2006                 .dev = dev,
2007                 .extack = extack,
2008         };
2009
2010         return call_netdevice_notifiers_info(val, &info);
2011 }
2012
2013 /**
2014  *      call_netdevice_notifiers - call all network notifier blocks
2015  *      @val: value passed unmodified to notifier function
2016  *      @dev: net_device pointer passed unmodified to notifier function
2017  *
2018  *      Call all network notifier blocks.  Parameters and return value
2019  *      are as for raw_notifier_call_chain().
2020  */
2021
2022 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2023 {
2024         return call_netdevice_notifiers_extack(val, dev, NULL);
2025 }
2026 EXPORT_SYMBOL(call_netdevice_notifiers);
2027
2028 /**
2029  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2030  *      @val: value passed unmodified to notifier function
2031  *      @dev: net_device pointer passed unmodified to notifier function
2032  *      @arg: additional u32 argument passed to the notifier function
2033  *
2034  *      Call all network notifier blocks.  Parameters and return value
2035  *      are as for raw_notifier_call_chain().
2036  */
2037 static int call_netdevice_notifiers_mtu(unsigned long val,
2038                                         struct net_device *dev, u32 arg)
2039 {
2040         struct netdev_notifier_info_ext info = {
2041                 .info.dev = dev,
2042                 .ext.mtu = arg,
2043         };
2044
2045         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2046
2047         return call_netdevice_notifiers_info(val, &info.info);
2048 }
2049
2050 #ifdef CONFIG_NET_INGRESS
2051 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2052
2053 void net_inc_ingress_queue(void)
2054 {
2055         static_branch_inc(&ingress_needed_key);
2056 }
2057 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2058
2059 void net_dec_ingress_queue(void)
2060 {
2061         static_branch_dec(&ingress_needed_key);
2062 }
2063 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2064 #endif
2065
2066 #ifdef CONFIG_NET_EGRESS
2067 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2068
2069 void net_inc_egress_queue(void)
2070 {
2071         static_branch_inc(&egress_needed_key);
2072 }
2073 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2074
2075 void net_dec_egress_queue(void)
2076 {
2077         static_branch_dec(&egress_needed_key);
2078 }
2079 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2080 #endif
2081
2082 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2083 #ifdef CONFIG_JUMP_LABEL
2084 static atomic_t netstamp_needed_deferred;
2085 static atomic_t netstamp_wanted;
2086 static void netstamp_clear(struct work_struct *work)
2087 {
2088         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2089         int wanted;
2090
2091         wanted = atomic_add_return(deferred, &netstamp_wanted);
2092         if (wanted > 0)
2093                 static_branch_enable(&netstamp_needed_key);
2094         else
2095                 static_branch_disable(&netstamp_needed_key);
2096 }
2097 static DECLARE_WORK(netstamp_work, netstamp_clear);
2098 #endif
2099
2100 void net_enable_timestamp(void)
2101 {
2102 #ifdef CONFIG_JUMP_LABEL
2103         int wanted;
2104
2105         while (1) {
2106                 wanted = atomic_read(&netstamp_wanted);
2107                 if (wanted <= 0)
2108                         break;
2109                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2110                         return;
2111         }
2112         atomic_inc(&netstamp_needed_deferred);
2113         schedule_work(&netstamp_work);
2114 #else
2115         static_branch_inc(&netstamp_needed_key);
2116 #endif
2117 }
2118 EXPORT_SYMBOL(net_enable_timestamp);
2119
2120 void net_disable_timestamp(void)
2121 {
2122 #ifdef CONFIG_JUMP_LABEL
2123         int wanted;
2124
2125         while (1) {
2126                 wanted = atomic_read(&netstamp_wanted);
2127                 if (wanted <= 1)
2128                         break;
2129                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2130                         return;
2131         }
2132         atomic_dec(&netstamp_needed_deferred);
2133         schedule_work(&netstamp_work);
2134 #else
2135         static_branch_dec(&netstamp_needed_key);
2136 #endif
2137 }
2138 EXPORT_SYMBOL(net_disable_timestamp);
2139
2140 static inline void net_timestamp_set(struct sk_buff *skb)
2141 {
2142         skb->tstamp = 0;
2143         if (static_branch_unlikely(&netstamp_needed_key))
2144                 __net_timestamp(skb);
2145 }
2146
2147 #define net_timestamp_check(COND, SKB)                          \
2148         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2149                 if ((COND) && !(SKB)->tstamp)                   \
2150                         __net_timestamp(SKB);                   \
2151         }                                                       \
2152
2153 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2154 {
2155         return __is_skb_forwardable(dev, skb, true);
2156 }
2157 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2158
2159 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2160                               bool check_mtu)
2161 {
2162         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2163
2164         if (likely(!ret)) {
2165                 skb->protocol = eth_type_trans(skb, dev);
2166                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2167         }
2168
2169         return ret;
2170 }
2171
2172 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2173 {
2174         return __dev_forward_skb2(dev, skb, true);
2175 }
2176 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2177
2178 /**
2179  * dev_forward_skb - loopback an skb to another netif
2180  *
2181  * @dev: destination network device
2182  * @skb: buffer to forward
2183  *
2184  * return values:
2185  *      NET_RX_SUCCESS  (no congestion)
2186  *      NET_RX_DROP     (packet was dropped, but freed)
2187  *
2188  * dev_forward_skb can be used for injecting an skb from the
2189  * start_xmit function of one device into the receive queue
2190  * of another device.
2191  *
2192  * The receiving device may be in another namespace, so
2193  * we have to clear all information in the skb that could
2194  * impact namespace isolation.
2195  */
2196 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2197 {
2198         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2199 }
2200 EXPORT_SYMBOL_GPL(dev_forward_skb);
2201
2202 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2203 {
2204         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2205 }
2206
2207 static inline int deliver_skb(struct sk_buff *skb,
2208                               struct packet_type *pt_prev,
2209                               struct net_device *orig_dev)
2210 {
2211         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2212                 return -ENOMEM;
2213         refcount_inc(&skb->users);
2214         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2215 }
2216
2217 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2218                                           struct packet_type **pt,
2219                                           struct net_device *orig_dev,
2220                                           __be16 type,
2221                                           struct list_head *ptype_list)
2222 {
2223         struct packet_type *ptype, *pt_prev = *pt;
2224
2225         list_for_each_entry_rcu(ptype, ptype_list, list) {
2226                 if (ptype->type != type)
2227                         continue;
2228                 if (pt_prev)
2229                         deliver_skb(skb, pt_prev, orig_dev);
2230                 pt_prev = ptype;
2231         }
2232         *pt = pt_prev;
2233 }
2234
2235 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2236 {
2237         if (!ptype->af_packet_priv || !skb->sk)
2238                 return false;
2239
2240         if (ptype->id_match)
2241                 return ptype->id_match(ptype, skb->sk);
2242         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2243                 return true;
2244
2245         return false;
2246 }
2247
2248 /**
2249  * dev_nit_active - return true if any network interface taps are in use
2250  *
2251  * @dev: network device to check for the presence of taps
2252  */
2253 bool dev_nit_active(struct net_device *dev)
2254 {
2255         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2256 }
2257 EXPORT_SYMBOL_GPL(dev_nit_active);
2258
2259 /*
2260  *      Support routine. Sends outgoing frames to any network
2261  *      taps currently in use.
2262  */
2263
2264 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2265 {
2266         struct packet_type *ptype;
2267         struct sk_buff *skb2 = NULL;
2268         struct packet_type *pt_prev = NULL;
2269         struct list_head *ptype_list = &ptype_all;
2270
2271         rcu_read_lock();
2272 again:
2273         list_for_each_entry_rcu(ptype, ptype_list, list) {
2274                 if (ptype->ignore_outgoing)
2275                         continue;
2276
2277                 /* Never send packets back to the socket
2278                  * they originated from - MvS (miquels@drinkel.ow.org)
2279                  */
2280                 if (skb_loop_sk(ptype, skb))
2281                         continue;
2282
2283                 if (pt_prev) {
2284                         deliver_skb(skb2, pt_prev, skb->dev);
2285                         pt_prev = ptype;
2286                         continue;
2287                 }
2288
2289                 /* need to clone skb, done only once */
2290                 skb2 = skb_clone(skb, GFP_ATOMIC);
2291                 if (!skb2)
2292                         goto out_unlock;
2293
2294                 net_timestamp_set(skb2);
2295
2296                 /* skb->nh should be correctly
2297                  * set by sender, so that the second statement is
2298                  * just protection against buggy protocols.
2299                  */
2300                 skb_reset_mac_header(skb2);
2301
2302                 if (skb_network_header(skb2) < skb2->data ||
2303                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2304                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2305                                              ntohs(skb2->protocol),
2306                                              dev->name);
2307                         skb_reset_network_header(skb2);
2308                 }
2309
2310                 skb2->transport_header = skb2->network_header;
2311                 skb2->pkt_type = PACKET_OUTGOING;
2312                 pt_prev = ptype;
2313         }
2314
2315         if (ptype_list == &ptype_all) {
2316                 ptype_list = &dev->ptype_all;
2317                 goto again;
2318         }
2319 out_unlock:
2320         if (pt_prev) {
2321                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2322                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2323                 else
2324                         kfree_skb(skb2);
2325         }
2326         rcu_read_unlock();
2327 }
2328 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2329
2330 /**
2331  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2332  * @dev: Network device
2333  * @txq: number of queues available
2334  *
2335  * If real_num_tx_queues is changed the tc mappings may no longer be
2336  * valid. To resolve this verify the tc mapping remains valid and if
2337  * not NULL the mapping. With no priorities mapping to this
2338  * offset/count pair it will no longer be used. In the worst case TC0
2339  * is invalid nothing can be done so disable priority mappings. If is
2340  * expected that drivers will fix this mapping if they can before
2341  * calling netif_set_real_num_tx_queues.
2342  */
2343 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2344 {
2345         int i;
2346         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2347
2348         /* If TC0 is invalidated disable TC mapping */
2349         if (tc->offset + tc->count > txq) {
2350                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2351                 dev->num_tc = 0;
2352                 return;
2353         }
2354
2355         /* Invalidated prio to tc mappings set to TC0 */
2356         for (i = 1; i < TC_BITMASK + 1; i++) {
2357                 int q = netdev_get_prio_tc_map(dev, i);
2358
2359                 tc = &dev->tc_to_txq[q];
2360                 if (tc->offset + tc->count > txq) {
2361                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2362                                 i, q);
2363                         netdev_set_prio_tc_map(dev, i, 0);
2364                 }
2365         }
2366 }
2367
2368 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2369 {
2370         if (dev->num_tc) {
2371                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2372                 int i;
2373
2374                 /* walk through the TCs and see if it falls into any of them */
2375                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2376                         if ((txq - tc->offset) < tc->count)
2377                                 return i;
2378                 }
2379
2380                 /* didn't find it, just return -1 to indicate no match */
2381                 return -1;
2382         }
2383
2384         return 0;
2385 }
2386 EXPORT_SYMBOL(netdev_txq_to_tc);
2387
2388 #ifdef CONFIG_XPS
2389 static struct static_key xps_needed __read_mostly;
2390 static struct static_key xps_rxqs_needed __read_mostly;
2391 static DEFINE_MUTEX(xps_map_mutex);
2392 #define xmap_dereference(P)             \
2393         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2394
2395 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2396                              struct xps_dev_maps *old_maps, int tci, u16 index)
2397 {
2398         struct xps_map *map = NULL;
2399         int pos;
2400
2401         if (dev_maps)
2402                 map = xmap_dereference(dev_maps->attr_map[tci]);
2403         if (!map)
2404                 return false;
2405
2406         for (pos = map->len; pos--;) {
2407                 if (map->queues[pos] != index)
2408                         continue;
2409
2410                 if (map->len > 1) {
2411                         map->queues[pos] = map->queues[--map->len];
2412                         break;
2413                 }
2414
2415                 if (old_maps)
2416                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2417                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2418                 kfree_rcu(map, rcu);
2419                 return false;
2420         }
2421
2422         return true;
2423 }
2424
2425 static bool remove_xps_queue_cpu(struct net_device *dev,
2426                                  struct xps_dev_maps *dev_maps,
2427                                  int cpu, u16 offset, u16 count)
2428 {
2429         int num_tc = dev_maps->num_tc;
2430         bool active = false;
2431         int tci;
2432
2433         for (tci = cpu * num_tc; num_tc--; tci++) {
2434                 int i, j;
2435
2436                 for (i = count, j = offset; i--; j++) {
2437                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2438                                 break;
2439                 }
2440
2441                 active |= i < 0;
2442         }
2443
2444         return active;
2445 }
2446
2447 static void reset_xps_maps(struct net_device *dev,
2448                            struct xps_dev_maps *dev_maps,
2449                            enum xps_map_type type)
2450 {
2451         static_key_slow_dec_cpuslocked(&xps_needed);
2452         if (type == XPS_RXQS)
2453                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2454
2455         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2456
2457         kfree_rcu(dev_maps, rcu);
2458 }
2459
2460 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2461                            u16 offset, u16 count)
2462 {
2463         struct xps_dev_maps *dev_maps;
2464         bool active = false;
2465         int i, j;
2466
2467         dev_maps = xmap_dereference(dev->xps_maps[type]);
2468         if (!dev_maps)
2469                 return;
2470
2471         for (j = 0; j < dev_maps->nr_ids; j++)
2472                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2473         if (!active)
2474                 reset_xps_maps(dev, dev_maps, type);
2475
2476         if (type == XPS_CPUS) {
2477                 for (i = offset + (count - 1); count--; i--)
2478                         netdev_queue_numa_node_write(
2479                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2480         }
2481 }
2482
2483 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2484                                    u16 count)
2485 {
2486         if (!static_key_false(&xps_needed))
2487                 return;
2488
2489         cpus_read_lock();
2490         mutex_lock(&xps_map_mutex);
2491
2492         if (static_key_false(&xps_rxqs_needed))
2493                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2494
2495         clean_xps_maps(dev, XPS_CPUS, offset, count);
2496
2497         mutex_unlock(&xps_map_mutex);
2498         cpus_read_unlock();
2499 }
2500
2501 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2502 {
2503         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2504 }
2505
2506 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2507                                       u16 index, bool is_rxqs_map)
2508 {
2509         struct xps_map *new_map;
2510         int alloc_len = XPS_MIN_MAP_ALLOC;
2511         int i, pos;
2512
2513         for (pos = 0; map && pos < map->len; pos++) {
2514                 if (map->queues[pos] != index)
2515                         continue;
2516                 return map;
2517         }
2518
2519         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2520         if (map) {
2521                 if (pos < map->alloc_len)
2522                         return map;
2523
2524                 alloc_len = map->alloc_len * 2;
2525         }
2526
2527         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2528          *  map
2529          */
2530         if (is_rxqs_map)
2531                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2532         else
2533                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2534                                        cpu_to_node(attr_index));
2535         if (!new_map)
2536                 return NULL;
2537
2538         for (i = 0; i < pos; i++)
2539                 new_map->queues[i] = map->queues[i];
2540         new_map->alloc_len = alloc_len;
2541         new_map->len = pos;
2542
2543         return new_map;
2544 }
2545
2546 /* Copy xps maps at a given index */
2547 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2548                               struct xps_dev_maps *new_dev_maps, int index,
2549                               int tc, bool skip_tc)
2550 {
2551         int i, tci = index * dev_maps->num_tc;
2552         struct xps_map *map;
2553
2554         /* copy maps belonging to foreign traffic classes */
2555         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2556                 if (i == tc && skip_tc)
2557                         continue;
2558
2559                 /* fill in the new device map from the old device map */
2560                 map = xmap_dereference(dev_maps->attr_map[tci]);
2561                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2562         }
2563 }
2564
2565 /* Must be called under cpus_read_lock */
2566 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2567                           u16 index, enum xps_map_type type)
2568 {
2569         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2570         const unsigned long *online_mask = NULL;
2571         bool active = false, copy = false;
2572         int i, j, tci, numa_node_id = -2;
2573         int maps_sz, num_tc = 1, tc = 0;
2574         struct xps_map *map, *new_map;
2575         unsigned int nr_ids;
2576
2577         if (dev->num_tc) {
2578                 /* Do not allow XPS on subordinate device directly */
2579                 num_tc = dev->num_tc;
2580                 if (num_tc < 0)
2581                         return -EINVAL;
2582
2583                 /* If queue belongs to subordinate dev use its map */
2584                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2585
2586                 tc = netdev_txq_to_tc(dev, index);
2587                 if (tc < 0)
2588                         return -EINVAL;
2589         }
2590
2591         mutex_lock(&xps_map_mutex);
2592
2593         dev_maps = xmap_dereference(dev->xps_maps[type]);
2594         if (type == XPS_RXQS) {
2595                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2596                 nr_ids = dev->num_rx_queues;
2597         } else {
2598                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2599                 if (num_possible_cpus() > 1)
2600                         online_mask = cpumask_bits(cpu_online_mask);
2601                 nr_ids = nr_cpu_ids;
2602         }
2603
2604         if (maps_sz < L1_CACHE_BYTES)
2605                 maps_sz = L1_CACHE_BYTES;
2606
2607         /* The old dev_maps could be larger or smaller than the one we're
2608          * setting up now, as dev->num_tc or nr_ids could have been updated in
2609          * between. We could try to be smart, but let's be safe instead and only
2610          * copy foreign traffic classes if the two map sizes match.
2611          */
2612         if (dev_maps &&
2613             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2614                 copy = true;
2615
2616         /* allocate memory for queue storage */
2617         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2618              j < nr_ids;) {
2619                 if (!new_dev_maps) {
2620                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2621                         if (!new_dev_maps) {
2622                                 mutex_unlock(&xps_map_mutex);
2623                                 return -ENOMEM;
2624                         }
2625
2626                         new_dev_maps->nr_ids = nr_ids;
2627                         new_dev_maps->num_tc = num_tc;
2628                 }
2629
2630                 tci = j * num_tc + tc;
2631                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2632
2633                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2634                 if (!map)
2635                         goto error;
2636
2637                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2638         }
2639
2640         if (!new_dev_maps)
2641                 goto out_no_new_maps;
2642
2643         if (!dev_maps) {
2644                 /* Increment static keys at most once per type */
2645                 static_key_slow_inc_cpuslocked(&xps_needed);
2646                 if (type == XPS_RXQS)
2647                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2648         }
2649
2650         for (j = 0; j < nr_ids; j++) {
2651                 bool skip_tc = false;
2652
2653                 tci = j * num_tc + tc;
2654                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2655                     netif_attr_test_online(j, online_mask, nr_ids)) {
2656                         /* add tx-queue to CPU/rx-queue maps */
2657                         int pos = 0;
2658
2659                         skip_tc = true;
2660
2661                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2662                         while ((pos < map->len) && (map->queues[pos] != index))
2663                                 pos++;
2664
2665                         if (pos == map->len)
2666                                 map->queues[map->len++] = index;
2667 #ifdef CONFIG_NUMA
2668                         if (type == XPS_CPUS) {
2669                                 if (numa_node_id == -2)
2670                                         numa_node_id = cpu_to_node(j);
2671                                 else if (numa_node_id != cpu_to_node(j))
2672                                         numa_node_id = -1;
2673                         }
2674 #endif
2675                 }
2676
2677                 if (copy)
2678                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2679                                           skip_tc);
2680         }
2681
2682         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2683
2684         /* Cleanup old maps */
2685         if (!dev_maps)
2686                 goto out_no_old_maps;
2687
2688         for (j = 0; j < dev_maps->nr_ids; j++) {
2689                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2690                         map = xmap_dereference(dev_maps->attr_map[tci]);
2691                         if (!map)
2692                                 continue;
2693
2694                         if (copy) {
2695                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2696                                 if (map == new_map)
2697                                         continue;
2698                         }
2699
2700                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2701                         kfree_rcu(map, rcu);
2702                 }
2703         }
2704
2705         old_dev_maps = dev_maps;
2706
2707 out_no_old_maps:
2708         dev_maps = new_dev_maps;
2709         active = true;
2710
2711 out_no_new_maps:
2712         if (type == XPS_CPUS)
2713                 /* update Tx queue numa node */
2714                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2715                                              (numa_node_id >= 0) ?
2716                                              numa_node_id : NUMA_NO_NODE);
2717
2718         if (!dev_maps)
2719                 goto out_no_maps;
2720
2721         /* removes tx-queue from unused CPUs/rx-queues */
2722         for (j = 0; j < dev_maps->nr_ids; j++) {
2723                 tci = j * dev_maps->num_tc;
2724
2725                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2726                         if (i == tc &&
2727                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2728                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2729                                 continue;
2730
2731                         active |= remove_xps_queue(dev_maps,
2732                                                    copy ? old_dev_maps : NULL,
2733                                                    tci, index);
2734                 }
2735         }
2736
2737         if (old_dev_maps)
2738                 kfree_rcu(old_dev_maps, rcu);
2739
2740         /* free map if not active */
2741         if (!active)
2742                 reset_xps_maps(dev, dev_maps, type);
2743
2744 out_no_maps:
2745         mutex_unlock(&xps_map_mutex);
2746
2747         return 0;
2748 error:
2749         /* remove any maps that we added */
2750         for (j = 0; j < nr_ids; j++) {
2751                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2752                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2753                         map = copy ?
2754                               xmap_dereference(dev_maps->attr_map[tci]) :
2755                               NULL;
2756                         if (new_map && new_map != map)
2757                                 kfree(new_map);
2758                 }
2759         }
2760
2761         mutex_unlock(&xps_map_mutex);
2762
2763         kfree(new_dev_maps);
2764         return -ENOMEM;
2765 }
2766 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2767
2768 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2769                         u16 index)
2770 {
2771         int ret;
2772
2773         cpus_read_lock();
2774         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2775         cpus_read_unlock();
2776
2777         return ret;
2778 }
2779 EXPORT_SYMBOL(netif_set_xps_queue);
2780
2781 #endif
2782 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2783 {
2784         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2785
2786         /* Unbind any subordinate channels */
2787         while (txq-- != &dev->_tx[0]) {
2788                 if (txq->sb_dev)
2789                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2790         }
2791 }
2792
2793 void netdev_reset_tc(struct net_device *dev)
2794 {
2795 #ifdef CONFIG_XPS
2796         netif_reset_xps_queues_gt(dev, 0);
2797 #endif
2798         netdev_unbind_all_sb_channels(dev);
2799
2800         /* Reset TC configuration of device */
2801         dev->num_tc = 0;
2802         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2803         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2804 }
2805 EXPORT_SYMBOL(netdev_reset_tc);
2806
2807 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2808 {
2809         if (tc >= dev->num_tc)
2810                 return -EINVAL;
2811
2812 #ifdef CONFIG_XPS
2813         netif_reset_xps_queues(dev, offset, count);
2814 #endif
2815         dev->tc_to_txq[tc].count = count;
2816         dev->tc_to_txq[tc].offset = offset;
2817         return 0;
2818 }
2819 EXPORT_SYMBOL(netdev_set_tc_queue);
2820
2821 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2822 {
2823         if (num_tc > TC_MAX_QUEUE)
2824                 return -EINVAL;
2825
2826 #ifdef CONFIG_XPS
2827         netif_reset_xps_queues_gt(dev, 0);
2828 #endif
2829         netdev_unbind_all_sb_channels(dev);
2830
2831         dev->num_tc = num_tc;
2832         return 0;
2833 }
2834 EXPORT_SYMBOL(netdev_set_num_tc);
2835
2836 void netdev_unbind_sb_channel(struct net_device *dev,
2837                               struct net_device *sb_dev)
2838 {
2839         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2840
2841 #ifdef CONFIG_XPS
2842         netif_reset_xps_queues_gt(sb_dev, 0);
2843 #endif
2844         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2845         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2846
2847         while (txq-- != &dev->_tx[0]) {
2848                 if (txq->sb_dev == sb_dev)
2849                         txq->sb_dev = NULL;
2850         }
2851 }
2852 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2853
2854 int netdev_bind_sb_channel_queue(struct net_device *dev,
2855                                  struct net_device *sb_dev,
2856                                  u8 tc, u16 count, u16 offset)
2857 {
2858         /* Make certain the sb_dev and dev are already configured */
2859         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2860                 return -EINVAL;
2861
2862         /* We cannot hand out queues we don't have */
2863         if ((offset + count) > dev->real_num_tx_queues)
2864                 return -EINVAL;
2865
2866         /* Record the mapping */
2867         sb_dev->tc_to_txq[tc].count = count;
2868         sb_dev->tc_to_txq[tc].offset = offset;
2869
2870         /* Provide a way for Tx queue to find the tc_to_txq map or
2871          * XPS map for itself.
2872          */
2873         while (count--)
2874                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2875
2876         return 0;
2877 }
2878 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2879
2880 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2881 {
2882         /* Do not use a multiqueue device to represent a subordinate channel */
2883         if (netif_is_multiqueue(dev))
2884                 return -ENODEV;
2885
2886         /* We allow channels 1 - 32767 to be used for subordinate channels.
2887          * Channel 0 is meant to be "native" mode and used only to represent
2888          * the main root device. We allow writing 0 to reset the device back
2889          * to normal mode after being used as a subordinate channel.
2890          */
2891         if (channel > S16_MAX)
2892                 return -EINVAL;
2893
2894         dev->num_tc = -channel;
2895
2896         return 0;
2897 }
2898 EXPORT_SYMBOL(netdev_set_sb_channel);
2899
2900 /*
2901  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2902  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2903  */
2904 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2905 {
2906         bool disabling;
2907         int rc;
2908
2909         disabling = txq < dev->real_num_tx_queues;
2910
2911         if (txq < 1 || txq > dev->num_tx_queues)
2912                 return -EINVAL;
2913
2914         if (dev->reg_state == NETREG_REGISTERED ||
2915             dev->reg_state == NETREG_UNREGISTERING) {
2916                 ASSERT_RTNL();
2917
2918                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2919                                                   txq);
2920                 if (rc)
2921                         return rc;
2922
2923                 if (dev->num_tc)
2924                         netif_setup_tc(dev, txq);
2925
2926                 dev_qdisc_change_real_num_tx(dev, txq);
2927
2928                 dev->real_num_tx_queues = txq;
2929
2930                 if (disabling) {
2931                         synchronize_net();
2932                         qdisc_reset_all_tx_gt(dev, txq);
2933 #ifdef CONFIG_XPS
2934                         netif_reset_xps_queues_gt(dev, txq);
2935 #endif
2936                 }
2937         } else {
2938                 dev->real_num_tx_queues = txq;
2939         }
2940
2941         return 0;
2942 }
2943 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2944
2945 #ifdef CONFIG_SYSFS
2946 /**
2947  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2948  *      @dev: Network device
2949  *      @rxq: Actual number of RX queues
2950  *
2951  *      This must be called either with the rtnl_lock held or before
2952  *      registration of the net device.  Returns 0 on success, or a
2953  *      negative error code.  If called before registration, it always
2954  *      succeeds.
2955  */
2956 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2957 {
2958         int rc;
2959
2960         if (rxq < 1 || rxq > dev->num_rx_queues)
2961                 return -EINVAL;
2962
2963         if (dev->reg_state == NETREG_REGISTERED) {
2964                 ASSERT_RTNL();
2965
2966                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2967                                                   rxq);
2968                 if (rc)
2969                         return rc;
2970         }
2971
2972         dev->real_num_rx_queues = rxq;
2973         return 0;
2974 }
2975 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2976 #endif
2977
2978 /**
2979  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2980  *      @dev: Network device
2981  *      @txq: Actual number of TX queues
2982  *      @rxq: Actual number of RX queues
2983  *
2984  *      Set the real number of both TX and RX queues.
2985  *      Does nothing if the number of queues is already correct.
2986  */
2987 int netif_set_real_num_queues(struct net_device *dev,
2988                               unsigned int txq, unsigned int rxq)
2989 {
2990         unsigned int old_rxq = dev->real_num_rx_queues;
2991         int err;
2992
2993         if (txq < 1 || txq > dev->num_tx_queues ||
2994             rxq < 1 || rxq > dev->num_rx_queues)
2995                 return -EINVAL;
2996
2997         /* Start from increases, so the error path only does decreases -
2998          * decreases can't fail.
2999          */
3000         if (rxq > dev->real_num_rx_queues) {
3001                 err = netif_set_real_num_rx_queues(dev, rxq);
3002                 if (err)
3003                         return err;
3004         }
3005         if (txq > dev->real_num_tx_queues) {
3006                 err = netif_set_real_num_tx_queues(dev, txq);
3007                 if (err)
3008                         goto undo_rx;
3009         }
3010         if (rxq < dev->real_num_rx_queues)
3011                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3012         if (txq < dev->real_num_tx_queues)
3013                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3014
3015         return 0;
3016 undo_rx:
3017         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3018         return err;
3019 }
3020 EXPORT_SYMBOL(netif_set_real_num_queues);
3021
3022 /**
3023  * netif_get_num_default_rss_queues - default number of RSS queues
3024  *
3025  * This routine should set an upper limit on the number of RSS queues
3026  * used by default by multiqueue devices.
3027  */
3028 int netif_get_num_default_rss_queues(void)
3029 {
3030         return is_kdump_kernel() ?
3031                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3032 }
3033 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3034
3035 static void __netif_reschedule(struct Qdisc *q)
3036 {
3037         struct softnet_data *sd;
3038         unsigned long flags;
3039
3040         local_irq_save(flags);
3041         sd = this_cpu_ptr(&softnet_data);
3042         q->next_sched = NULL;
3043         *sd->output_queue_tailp = q;
3044         sd->output_queue_tailp = &q->next_sched;
3045         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3046         local_irq_restore(flags);
3047 }
3048
3049 void __netif_schedule(struct Qdisc *q)
3050 {
3051         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3052                 __netif_reschedule(q);
3053 }
3054 EXPORT_SYMBOL(__netif_schedule);
3055
3056 struct dev_kfree_skb_cb {
3057         enum skb_free_reason reason;
3058 };
3059
3060 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3061 {
3062         return (struct dev_kfree_skb_cb *)skb->cb;
3063 }
3064
3065 void netif_schedule_queue(struct netdev_queue *txq)
3066 {
3067         rcu_read_lock();
3068         if (!netif_xmit_stopped(txq)) {
3069                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3070
3071                 __netif_schedule(q);
3072         }
3073         rcu_read_unlock();
3074 }
3075 EXPORT_SYMBOL(netif_schedule_queue);
3076
3077 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3078 {
3079         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3080                 struct Qdisc *q;
3081
3082                 rcu_read_lock();
3083                 q = rcu_dereference(dev_queue->qdisc);
3084                 __netif_schedule(q);
3085                 rcu_read_unlock();
3086         }
3087 }
3088 EXPORT_SYMBOL(netif_tx_wake_queue);
3089
3090 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3091 {
3092         unsigned long flags;
3093
3094         if (unlikely(!skb))
3095                 return;
3096
3097         if (likely(refcount_read(&skb->users) == 1)) {
3098                 smp_rmb();
3099                 refcount_set(&skb->users, 0);
3100         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3101                 return;
3102         }
3103         get_kfree_skb_cb(skb)->reason = reason;
3104         local_irq_save(flags);
3105         skb->next = __this_cpu_read(softnet_data.completion_queue);
3106         __this_cpu_write(softnet_data.completion_queue, skb);
3107         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3108         local_irq_restore(flags);
3109 }
3110 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3111
3112 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3113 {
3114         if (in_hardirq() || irqs_disabled())
3115                 __dev_kfree_skb_irq(skb, reason);
3116         else
3117                 dev_kfree_skb(skb);
3118 }
3119 EXPORT_SYMBOL(__dev_kfree_skb_any);
3120
3121
3122 /**
3123  * netif_device_detach - mark device as removed
3124  * @dev: network device
3125  *
3126  * Mark device as removed from system and therefore no longer available.
3127  */
3128 void netif_device_detach(struct net_device *dev)
3129 {
3130         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3131             netif_running(dev)) {
3132                 netif_tx_stop_all_queues(dev);
3133         }
3134 }
3135 EXPORT_SYMBOL(netif_device_detach);
3136
3137 /**
3138  * netif_device_attach - mark device as attached
3139  * @dev: network device
3140  *
3141  * Mark device as attached from system and restart if needed.
3142  */
3143 void netif_device_attach(struct net_device *dev)
3144 {
3145         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3146             netif_running(dev)) {
3147                 netif_tx_wake_all_queues(dev);
3148                 __netdev_watchdog_up(dev);
3149         }
3150 }
3151 EXPORT_SYMBOL(netif_device_attach);
3152
3153 /*
3154  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3155  * to be used as a distribution range.
3156  */
3157 static u16 skb_tx_hash(const struct net_device *dev,
3158                        const struct net_device *sb_dev,
3159                        struct sk_buff *skb)
3160 {
3161         u32 hash;
3162         u16 qoffset = 0;
3163         u16 qcount = dev->real_num_tx_queues;
3164
3165         if (dev->num_tc) {
3166                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3167
3168                 qoffset = sb_dev->tc_to_txq[tc].offset;
3169                 qcount = sb_dev->tc_to_txq[tc].count;
3170                 if (unlikely(!qcount)) {
3171                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3172                                              sb_dev->name, qoffset, tc);
3173                         qoffset = 0;
3174                         qcount = dev->real_num_tx_queues;
3175                 }
3176         }
3177
3178         if (skb_rx_queue_recorded(skb)) {
3179                 hash = skb_get_rx_queue(skb);
3180                 if (hash >= qoffset)
3181                         hash -= qoffset;
3182                 while (unlikely(hash >= qcount))
3183                         hash -= qcount;
3184                 return hash + qoffset;
3185         }
3186
3187         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3188 }
3189
3190 static void skb_warn_bad_offload(const struct sk_buff *skb)
3191 {
3192         static const netdev_features_t null_features;
3193         struct net_device *dev = skb->dev;
3194         const char *name = "";
3195
3196         if (!net_ratelimit())
3197                 return;
3198
3199         if (dev) {
3200                 if (dev->dev.parent)
3201                         name = dev_driver_string(dev->dev.parent);
3202                 else
3203                         name = netdev_name(dev);
3204         }
3205         skb_dump(KERN_WARNING, skb, false);
3206         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3207              name, dev ? &dev->features : &null_features,
3208              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3209 }
3210
3211 /*
3212  * Invalidate hardware checksum when packet is to be mangled, and
3213  * complete checksum manually on outgoing path.
3214  */
3215 int skb_checksum_help(struct sk_buff *skb)
3216 {
3217         __wsum csum;
3218         int ret = 0, offset;
3219
3220         if (skb->ip_summed == CHECKSUM_COMPLETE)
3221                 goto out_set_summed;
3222
3223         if (unlikely(skb_is_gso(skb))) {
3224                 skb_warn_bad_offload(skb);
3225                 return -EINVAL;
3226         }
3227
3228         /* Before computing a checksum, we should make sure no frag could
3229          * be modified by an external entity : checksum could be wrong.
3230          */
3231         if (skb_has_shared_frag(skb)) {
3232                 ret = __skb_linearize(skb);
3233                 if (ret)
3234                         goto out;
3235         }
3236
3237         offset = skb_checksum_start_offset(skb);
3238         ret = -EINVAL;
3239         if (WARN_ON_ONCE(offset >= skb_headlen(skb)))
3240                 goto out;
3241
3242         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3243
3244         offset += skb->csum_offset;
3245         if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb)))
3246                 goto out;
3247
3248         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3249         if (ret)
3250                 goto out;
3251
3252         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3253 out_set_summed:
3254         skb->ip_summed = CHECKSUM_NONE;
3255 out:
3256         return ret;
3257 }
3258 EXPORT_SYMBOL(skb_checksum_help);
3259
3260 int skb_crc32c_csum_help(struct sk_buff *skb)
3261 {
3262         __le32 crc32c_csum;
3263         int ret = 0, offset, start;
3264
3265         if (skb->ip_summed != CHECKSUM_PARTIAL)
3266                 goto out;
3267
3268         if (unlikely(skb_is_gso(skb)))
3269                 goto out;
3270
3271         /* Before computing a checksum, we should make sure no frag could
3272          * be modified by an external entity : checksum could be wrong.
3273          */
3274         if (unlikely(skb_has_shared_frag(skb))) {
3275                 ret = __skb_linearize(skb);
3276                 if (ret)
3277                         goto out;
3278         }
3279         start = skb_checksum_start_offset(skb);
3280         offset = start + offsetof(struct sctphdr, checksum);
3281         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3282                 ret = -EINVAL;
3283                 goto out;
3284         }
3285
3286         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3287         if (ret)
3288                 goto out;
3289
3290         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3291                                                   skb->len - start, ~(__u32)0,
3292                                                   crc32c_csum_stub));
3293         *(__le32 *)(skb->data + offset) = crc32c_csum;
3294         skb->ip_summed = CHECKSUM_NONE;
3295         skb->csum_not_inet = 0;
3296 out:
3297         return ret;
3298 }
3299
3300 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3301 {
3302         __be16 type = skb->protocol;
3303
3304         /* Tunnel gso handlers can set protocol to ethernet. */
3305         if (type == htons(ETH_P_TEB)) {
3306                 struct ethhdr *eth;
3307
3308                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3309                         return 0;
3310
3311                 eth = (struct ethhdr *)skb->data;
3312                 type = eth->h_proto;
3313         }
3314
3315         return __vlan_get_protocol(skb, type, depth);
3316 }
3317
3318 /**
3319  *      skb_mac_gso_segment - mac layer segmentation handler.
3320  *      @skb: buffer to segment
3321  *      @features: features for the output path (see dev->features)
3322  */
3323 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3324                                     netdev_features_t features)
3325 {
3326         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3327         struct packet_offload *ptype;
3328         int vlan_depth = skb->mac_len;
3329         __be16 type = skb_network_protocol(skb, &vlan_depth);
3330
3331         if (unlikely(!type))
3332                 return ERR_PTR(-EINVAL);
3333
3334         __skb_pull(skb, vlan_depth);
3335
3336         rcu_read_lock();
3337         list_for_each_entry_rcu(ptype, &offload_base, list) {
3338                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3339                         segs = ptype->callbacks.gso_segment(skb, features);
3340                         break;
3341                 }
3342         }
3343         rcu_read_unlock();
3344
3345         __skb_push(skb, skb->data - skb_mac_header(skb));
3346
3347         return segs;
3348 }
3349 EXPORT_SYMBOL(skb_mac_gso_segment);
3350
3351
3352 /* openvswitch calls this on rx path, so we need a different check.
3353  */
3354 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3355 {
3356         if (tx_path)
3357                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3358                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3359
3360         return skb->ip_summed == CHECKSUM_NONE;
3361 }
3362
3363 /**
3364  *      __skb_gso_segment - Perform segmentation on skb.
3365  *      @skb: buffer to segment
3366  *      @features: features for the output path (see dev->features)
3367  *      @tx_path: whether it is called in TX path
3368  *
3369  *      This function segments the given skb and returns a list of segments.
3370  *
3371  *      It may return NULL if the skb requires no segmentation.  This is
3372  *      only possible when GSO is used for verifying header integrity.
3373  *
3374  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3375  */
3376 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3377                                   netdev_features_t features, bool tx_path)
3378 {
3379         struct sk_buff *segs;
3380
3381         if (unlikely(skb_needs_check(skb, tx_path))) {
3382                 int err;
3383
3384                 /* We're going to init ->check field in TCP or UDP header */
3385                 err = skb_cow_head(skb, 0);
3386                 if (err < 0)
3387                         return ERR_PTR(err);
3388         }
3389
3390         /* Only report GSO partial support if it will enable us to
3391          * support segmentation on this frame without needing additional
3392          * work.
3393          */
3394         if (features & NETIF_F_GSO_PARTIAL) {
3395                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3396                 struct net_device *dev = skb->dev;
3397
3398                 partial_features |= dev->features & dev->gso_partial_features;
3399                 if (!skb_gso_ok(skb, features | partial_features))
3400                         features &= ~NETIF_F_GSO_PARTIAL;
3401         }
3402
3403         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3404                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3405
3406         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3407         SKB_GSO_CB(skb)->encap_level = 0;
3408
3409         skb_reset_mac_header(skb);
3410         skb_reset_mac_len(skb);
3411
3412         segs = skb_mac_gso_segment(skb, features);
3413
3414         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3415                 skb_warn_bad_offload(skb);
3416
3417         return segs;
3418 }
3419 EXPORT_SYMBOL(__skb_gso_segment);
3420
3421 /* Take action when hardware reception checksum errors are detected. */
3422 #ifdef CONFIG_BUG
3423 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3424 {
3425         pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3426         skb_dump(KERN_ERR, skb, true);
3427         dump_stack();
3428 }
3429
3430 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3431 {
3432         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3433 }
3434 EXPORT_SYMBOL(netdev_rx_csum_fault);
3435 #endif
3436
3437 /* XXX: check that highmem exists at all on the given machine. */
3438 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3439 {
3440 #ifdef CONFIG_HIGHMEM
3441         int i;
3442
3443         if (!(dev->features & NETIF_F_HIGHDMA)) {
3444                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3445                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3446
3447                         if (PageHighMem(skb_frag_page(frag)))
3448                                 return 1;
3449                 }
3450         }
3451 #endif
3452         return 0;
3453 }
3454
3455 /* If MPLS offload request, verify we are testing hardware MPLS features
3456  * instead of standard features for the netdev.
3457  */
3458 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3459 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3460                                            netdev_features_t features,
3461                                            __be16 type)
3462 {
3463         if (eth_p_mpls(type))
3464                 features &= skb->dev->mpls_features;
3465
3466         return features;
3467 }
3468 #else
3469 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3470                                            netdev_features_t features,
3471                                            __be16 type)
3472 {
3473         return features;
3474 }
3475 #endif
3476
3477 static netdev_features_t harmonize_features(struct sk_buff *skb,
3478         netdev_features_t features)
3479 {
3480         __be16 type;
3481
3482         type = skb_network_protocol(skb, NULL);
3483         features = net_mpls_features(skb, features, type);
3484
3485         if (skb->ip_summed != CHECKSUM_NONE &&
3486             !can_checksum_protocol(features, type)) {
3487                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3488         }
3489         if (illegal_highdma(skb->dev, skb))
3490                 features &= ~NETIF_F_SG;
3491
3492         return features;
3493 }
3494
3495 netdev_features_t passthru_features_check(struct sk_buff *skb,
3496                                           struct net_device *dev,
3497                                           netdev_features_t features)
3498 {
3499         return features;
3500 }
3501 EXPORT_SYMBOL(passthru_features_check);
3502
3503 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3504                                              struct net_device *dev,
3505                                              netdev_features_t features)
3506 {
3507         return vlan_features_check(skb, features);
3508 }
3509
3510 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3511                                             struct net_device *dev,
3512                                             netdev_features_t features)
3513 {
3514         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3515
3516         if (gso_segs > dev->gso_max_segs)
3517                 return features & ~NETIF_F_GSO_MASK;
3518
3519         if (!skb_shinfo(skb)->gso_type) {
3520                 skb_warn_bad_offload(skb);
3521                 return features & ~NETIF_F_GSO_MASK;
3522         }
3523
3524         /* Support for GSO partial features requires software
3525          * intervention before we can actually process the packets
3526          * so we need to strip support for any partial features now
3527          * and we can pull them back in after we have partially
3528          * segmented the frame.
3529          */
3530         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3531                 features &= ~dev->gso_partial_features;
3532
3533         /* Make sure to clear the IPv4 ID mangling feature if the
3534          * IPv4 header has the potential to be fragmented.
3535          */
3536         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3537                 struct iphdr *iph = skb->encapsulation ?
3538                                     inner_ip_hdr(skb) : ip_hdr(skb);
3539
3540                 if (!(iph->frag_off & htons(IP_DF)))
3541                         features &= ~NETIF_F_TSO_MANGLEID;
3542         }
3543
3544         return features;
3545 }
3546
3547 netdev_features_t netif_skb_features(struct sk_buff *skb)
3548 {
3549         struct net_device *dev = skb->dev;
3550         netdev_features_t features = dev->features;
3551
3552         if (skb_is_gso(skb))
3553                 features = gso_features_check(skb, dev, features);
3554
3555         /* If encapsulation offload request, verify we are testing
3556          * hardware encapsulation features instead of standard
3557          * features for the netdev
3558          */
3559         if (skb->encapsulation)
3560                 features &= dev->hw_enc_features;
3561
3562         if (skb_vlan_tagged(skb))
3563                 features = netdev_intersect_features(features,
3564                                                      dev->vlan_features |
3565                                                      NETIF_F_HW_VLAN_CTAG_TX |
3566                                                      NETIF_F_HW_VLAN_STAG_TX);
3567
3568         if (dev->netdev_ops->ndo_features_check)
3569                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3570                                                                 features);
3571         else
3572                 features &= dflt_features_check(skb, dev, features);
3573
3574         return harmonize_features(skb, features);
3575 }
3576 EXPORT_SYMBOL(netif_skb_features);
3577
3578 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3579                     struct netdev_queue *txq, bool more)
3580 {
3581         unsigned int len;
3582         int rc;
3583
3584         if (dev_nit_active(dev))
3585                 dev_queue_xmit_nit(skb, dev);
3586
3587         len = skb->len;
3588         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3589         trace_net_dev_start_xmit(skb, dev);
3590         rc = netdev_start_xmit(skb, dev, txq, more);
3591         trace_net_dev_xmit(skb, rc, dev, len);
3592
3593         return rc;
3594 }
3595
3596 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3597                                     struct netdev_queue *txq, int *ret)
3598 {
3599         struct sk_buff *skb = first;
3600         int rc = NETDEV_TX_OK;
3601
3602         while (skb) {
3603                 struct sk_buff *next = skb->next;
3604
3605                 skb_mark_not_on_list(skb);
3606                 rc = xmit_one(skb, dev, txq, next != NULL);
3607                 if (unlikely(!dev_xmit_complete(rc))) {
3608                         skb->next = next;
3609                         goto out;
3610                 }
3611
3612                 skb = next;
3613                 if (netif_tx_queue_stopped(txq) && skb) {
3614                         rc = NETDEV_TX_BUSY;
3615                         break;
3616                 }
3617         }
3618
3619 out:
3620         *ret = rc;
3621         return skb;
3622 }
3623
3624 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3625                                           netdev_features_t features)
3626 {
3627         if (skb_vlan_tag_present(skb) &&
3628             !vlan_hw_offload_capable(features, skb->vlan_proto))
3629                 skb = __vlan_hwaccel_push_inside(skb);
3630         return skb;
3631 }
3632
3633 int skb_csum_hwoffload_help(struct sk_buff *skb,
3634                             const netdev_features_t features)
3635 {
3636         if (unlikely(skb_csum_is_sctp(skb)))
3637                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3638                         skb_crc32c_csum_help(skb);
3639
3640         if (features & NETIF_F_HW_CSUM)
3641                 return 0;
3642
3643         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3644                 switch (skb->csum_offset) {
3645                 case offsetof(struct tcphdr, check):
3646                 case offsetof(struct udphdr, check):
3647                         return 0;
3648                 }
3649         }
3650
3651         return skb_checksum_help(skb);
3652 }
3653 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3654
3655 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3656 {
3657         netdev_features_t features;
3658
3659         features = netif_skb_features(skb);
3660         skb = validate_xmit_vlan(skb, features);
3661         if (unlikely(!skb))
3662                 goto out_null;
3663
3664         skb = sk_validate_xmit_skb(skb, dev);
3665         if (unlikely(!skb))
3666                 goto out_null;
3667
3668         if (netif_needs_gso(skb, features)) {
3669                 struct sk_buff *segs;
3670
3671                 segs = skb_gso_segment(skb, features);
3672                 if (IS_ERR(segs)) {
3673                         goto out_kfree_skb;
3674                 } else if (segs) {
3675                         consume_skb(skb);
3676                         skb = segs;
3677                 }
3678         } else {
3679                 if (skb_needs_linearize(skb, features) &&
3680                     __skb_linearize(skb))
3681                         goto out_kfree_skb;
3682
3683                 /* If packet is not checksummed and device does not
3684                  * support checksumming for this protocol, complete
3685                  * checksumming here.
3686                  */
3687                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3688                         if (skb->encapsulation)
3689                                 skb_set_inner_transport_header(skb,
3690                                                                skb_checksum_start_offset(skb));
3691                         else
3692                                 skb_set_transport_header(skb,
3693                                                          skb_checksum_start_offset(skb));
3694                         if (skb_csum_hwoffload_help(skb, features))
3695                                 goto out_kfree_skb;
3696                 }
3697         }
3698
3699         skb = validate_xmit_xfrm(skb, features, again);
3700
3701         return skb;
3702
3703 out_kfree_skb:
3704         kfree_skb(skb);
3705 out_null:
3706         atomic_long_inc(&dev->tx_dropped);
3707         return NULL;
3708 }
3709
3710 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3711 {
3712         struct sk_buff *next, *head = NULL, *tail;
3713
3714         for (; skb != NULL; skb = next) {
3715                 next = skb->next;
3716                 skb_mark_not_on_list(skb);
3717
3718                 /* in case skb wont be segmented, point to itself */
3719                 skb->prev = skb;
3720
3721                 skb = validate_xmit_skb(skb, dev, again);
3722                 if (!skb)
3723                         continue;
3724
3725                 if (!head)
3726                         head = skb;
3727                 else
3728                         tail->next = skb;
3729                 /* If skb was segmented, skb->prev points to
3730                  * the last segment. If not, it still contains skb.
3731                  */
3732                 tail = skb->prev;
3733         }
3734         return head;
3735 }
3736 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3737
3738 static void qdisc_pkt_len_init(struct sk_buff *skb)
3739 {
3740         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3741
3742         qdisc_skb_cb(skb)->pkt_len = skb->len;
3743
3744         /* To get more precise estimation of bytes sent on wire,
3745          * we add to pkt_len the headers size of all segments
3746          */
3747         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3748                 unsigned int hdr_len;
3749                 u16 gso_segs = shinfo->gso_segs;
3750
3751                 /* mac layer + network layer */
3752                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3753
3754                 /* + transport layer */
3755                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3756                         const struct tcphdr *th;
3757                         struct tcphdr _tcphdr;
3758
3759                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3760                                                 sizeof(_tcphdr), &_tcphdr);
3761                         if (likely(th))
3762                                 hdr_len += __tcp_hdrlen(th);
3763                 } else {
3764                         struct udphdr _udphdr;
3765
3766                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3767                                                sizeof(_udphdr), &_udphdr))
3768                                 hdr_len += sizeof(struct udphdr);
3769                 }
3770
3771                 if (shinfo->gso_type & SKB_GSO_DODGY)
3772                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3773                                                 shinfo->gso_size);
3774
3775                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3776         }
3777 }
3778
3779 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3780                              struct sk_buff **to_free,
3781                              struct netdev_queue *txq)
3782 {
3783         int rc;
3784
3785         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3786         if (rc == NET_XMIT_SUCCESS)
3787                 trace_qdisc_enqueue(q, txq, skb);
3788         return rc;
3789 }
3790
3791 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3792                                  struct net_device *dev,
3793                                  struct netdev_queue *txq)
3794 {
3795         spinlock_t *root_lock = qdisc_lock(q);
3796         struct sk_buff *to_free = NULL;
3797         bool contended;
3798         int rc;
3799
3800         qdisc_calculate_pkt_len(skb, q);
3801
3802         if (q->flags & TCQ_F_NOLOCK) {
3803                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3804                     qdisc_run_begin(q)) {
3805                         /* Retest nolock_qdisc_is_empty() within the protection
3806                          * of q->seqlock to protect from racing with requeuing.
3807                          */
3808                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3809                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3810                                 __qdisc_run(q);
3811                                 qdisc_run_end(q);
3812
3813                                 goto no_lock_out;
3814                         }
3815
3816                         qdisc_bstats_cpu_update(q, skb);
3817                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3818                             !nolock_qdisc_is_empty(q))
3819                                 __qdisc_run(q);
3820
3821                         qdisc_run_end(q);
3822                         return NET_XMIT_SUCCESS;
3823                 }
3824
3825                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3826                 qdisc_run(q);
3827
3828 no_lock_out:
3829                 if (unlikely(to_free))
3830                         kfree_skb_list(to_free);
3831                 return rc;
3832         }
3833
3834         /*
3835          * Heuristic to force contended enqueues to serialize on a
3836          * separate lock before trying to get qdisc main lock.
3837          * This permits qdisc->running owner to get the lock more
3838          * often and dequeue packets faster.
3839          */
3840         contended = qdisc_is_running(q);
3841         if (unlikely(contended))
3842                 spin_lock(&q->busylock);
3843
3844         spin_lock(root_lock);
3845         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3846                 __qdisc_drop(skb, &to_free);
3847                 rc = NET_XMIT_DROP;
3848         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3849                    qdisc_run_begin(q)) {
3850                 /*
3851                  * This is a work-conserving queue; there are no old skbs
3852                  * waiting to be sent out; and the qdisc is not running -
3853                  * xmit the skb directly.
3854                  */
3855
3856                 qdisc_bstats_update(q, skb);
3857
3858                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3859                         if (unlikely(contended)) {
3860                                 spin_unlock(&q->busylock);
3861                                 contended = false;
3862                         }
3863                         __qdisc_run(q);
3864                 }
3865
3866                 qdisc_run_end(q);
3867                 rc = NET_XMIT_SUCCESS;
3868         } else {
3869                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3870                 if (qdisc_run_begin(q)) {
3871                         if (unlikely(contended)) {
3872                                 spin_unlock(&q->busylock);
3873                                 contended = false;
3874                         }
3875                         __qdisc_run(q);
3876                         qdisc_run_end(q);
3877                 }
3878         }
3879         spin_unlock(root_lock);
3880         if (unlikely(to_free))
3881                 kfree_skb_list(to_free);
3882         if (unlikely(contended))
3883                 spin_unlock(&q->busylock);
3884         return rc;
3885 }
3886
3887 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3888 static void skb_update_prio(struct sk_buff *skb)
3889 {
3890         const struct netprio_map *map;
3891         const struct sock *sk;
3892         unsigned int prioidx;
3893
3894         if (skb->priority)
3895                 return;
3896         map = rcu_dereference_bh(skb->dev->priomap);
3897         if (!map)
3898                 return;
3899         sk = skb_to_full_sk(skb);
3900         if (!sk)
3901                 return;
3902
3903         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3904
3905         if (prioidx < map->priomap_len)
3906                 skb->priority = map->priomap[prioidx];
3907 }
3908 #else
3909 #define skb_update_prio(skb)
3910 #endif
3911
3912 /**
3913  *      dev_loopback_xmit - loop back @skb
3914  *      @net: network namespace this loopback is happening in
3915  *      @sk:  sk needed to be a netfilter okfn
3916  *      @skb: buffer to transmit
3917  */
3918 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3919 {
3920         skb_reset_mac_header(skb);
3921         __skb_pull(skb, skb_network_offset(skb));
3922         skb->pkt_type = PACKET_LOOPBACK;
3923         if (skb->ip_summed == CHECKSUM_NONE)
3924                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3925         WARN_ON(!skb_dst(skb));
3926         skb_dst_force(skb);
3927         netif_rx_ni(skb);
3928         return 0;
3929 }
3930 EXPORT_SYMBOL(dev_loopback_xmit);
3931
3932 #ifdef CONFIG_NET_EGRESS
3933 static struct sk_buff *
3934 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3935 {
3936         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3937         struct tcf_result cl_res;
3938
3939         if (!miniq)
3940                 return skb;
3941
3942         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3943         tc_skb_cb(skb)->mru = 0;
3944         tc_skb_cb(skb)->post_ct = false;
3945         mini_qdisc_bstats_cpu_update(miniq, skb);
3946
3947         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3948         case TC_ACT_OK:
3949         case TC_ACT_RECLASSIFY:
3950                 skb->tc_index = TC_H_MIN(cl_res.classid);
3951                 break;
3952         case TC_ACT_SHOT:
3953                 mini_qdisc_qstats_cpu_drop(miniq);
3954                 *ret = NET_XMIT_DROP;
3955                 kfree_skb(skb);
3956                 return NULL;
3957         case TC_ACT_STOLEN:
3958         case TC_ACT_QUEUED:
3959         case TC_ACT_TRAP:
3960                 *ret = NET_XMIT_SUCCESS;
3961                 consume_skb(skb);
3962                 return NULL;
3963         case TC_ACT_REDIRECT:
3964                 /* No need to push/pop skb's mac_header here on egress! */
3965                 skb_do_redirect(skb);
3966                 *ret = NET_XMIT_SUCCESS;
3967                 return NULL;
3968         default:
3969                 break;
3970         }
3971
3972         return skb;
3973 }
3974 #endif /* CONFIG_NET_EGRESS */
3975
3976 #ifdef CONFIG_XPS
3977 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3978                                struct xps_dev_maps *dev_maps, unsigned int tci)
3979 {
3980         int tc = netdev_get_prio_tc_map(dev, skb->priority);
3981         struct xps_map *map;
3982         int queue_index = -1;
3983
3984         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3985                 return queue_index;
3986
3987         tci *= dev_maps->num_tc;
3988         tci += tc;
3989
3990         map = rcu_dereference(dev_maps->attr_map[tci]);
3991         if (map) {
3992                 if (map->len == 1)
3993                         queue_index = map->queues[0];
3994                 else
3995                         queue_index = map->queues[reciprocal_scale(
3996                                                 skb_get_hash(skb), map->len)];
3997                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3998                         queue_index = -1;
3999         }
4000         return queue_index;
4001 }
4002 #endif
4003
4004 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4005                          struct sk_buff *skb)
4006 {
4007 #ifdef CONFIG_XPS
4008         struct xps_dev_maps *dev_maps;
4009         struct sock *sk = skb->sk;
4010         int queue_index = -1;
4011
4012         if (!static_key_false(&xps_needed))
4013                 return -1;
4014
4015         rcu_read_lock();
4016         if (!static_key_false(&xps_rxqs_needed))
4017                 goto get_cpus_map;
4018
4019         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4020         if (dev_maps) {
4021                 int tci = sk_rx_queue_get(sk);
4022
4023                 if (tci >= 0)
4024                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4025                                                           tci);
4026         }
4027
4028 get_cpus_map:
4029         if (queue_index < 0) {
4030                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4031                 if (dev_maps) {
4032                         unsigned int tci = skb->sender_cpu - 1;
4033
4034                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4035                                                           tci);
4036                 }
4037         }
4038         rcu_read_unlock();
4039
4040         return queue_index;
4041 #else
4042         return -1;
4043 #endif
4044 }
4045
4046 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4047                      struct net_device *sb_dev)
4048 {
4049         return 0;
4050 }
4051 EXPORT_SYMBOL(dev_pick_tx_zero);
4052
4053 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4054                        struct net_device *sb_dev)
4055 {
4056         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4057 }
4058 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4059
4060 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4061                      struct net_device *sb_dev)
4062 {
4063         struct sock *sk = skb->sk;
4064         int queue_index = sk_tx_queue_get(sk);
4065
4066         sb_dev = sb_dev ? : dev;
4067
4068         if (queue_index < 0 || skb->ooo_okay ||
4069             queue_index >= dev->real_num_tx_queues) {
4070                 int new_index = get_xps_queue(dev, sb_dev, skb);
4071
4072                 if (new_index < 0)
4073                         new_index = skb_tx_hash(dev, sb_dev, skb);
4074
4075                 if (queue_index != new_index && sk &&
4076                     sk_fullsock(sk) &&
4077                     rcu_access_pointer(sk->sk_dst_cache))
4078                         sk_tx_queue_set(sk, new_index);
4079
4080                 queue_index = new_index;
4081         }
4082
4083         return queue_index;
4084 }
4085 EXPORT_SYMBOL(netdev_pick_tx);
4086
4087 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4088                                          struct sk_buff *skb,
4089                                          struct net_device *sb_dev)
4090 {
4091         int queue_index = 0;
4092
4093 #ifdef CONFIG_XPS
4094         u32 sender_cpu = skb->sender_cpu - 1;
4095
4096         if (sender_cpu >= (u32)NR_CPUS)
4097                 skb->sender_cpu = raw_smp_processor_id() + 1;
4098 #endif
4099
4100         if (dev->real_num_tx_queues != 1) {
4101                 const struct net_device_ops *ops = dev->netdev_ops;
4102
4103                 if (ops->ndo_select_queue)
4104                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4105                 else
4106                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4107
4108                 queue_index = netdev_cap_txqueue(dev, queue_index);
4109         }
4110
4111         skb_set_queue_mapping(skb, queue_index);
4112         return netdev_get_tx_queue(dev, queue_index);
4113 }
4114
4115 /**
4116  *      __dev_queue_xmit - transmit a buffer
4117  *      @skb: buffer to transmit
4118  *      @sb_dev: suboordinate device used for L2 forwarding offload
4119  *
4120  *      Queue a buffer for transmission to a network device. The caller must
4121  *      have set the device and priority and built the buffer before calling
4122  *      this function. The function can be called from an interrupt.
4123  *
4124  *      A negative errno code is returned on a failure. A success does not
4125  *      guarantee the frame will be transmitted as it may be dropped due
4126  *      to congestion or traffic shaping.
4127  *
4128  * -----------------------------------------------------------------------------------
4129  *      I notice this method can also return errors from the queue disciplines,
4130  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4131  *      be positive.
4132  *
4133  *      Regardless of the return value, the skb is consumed, so it is currently
4134  *      difficult to retry a send to this method.  (You can bump the ref count
4135  *      before sending to hold a reference for retry if you are careful.)
4136  *
4137  *      When calling this method, interrupts MUST be enabled.  This is because
4138  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4139  *          --BLG
4140  */
4141 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4142 {
4143         struct net_device *dev = skb->dev;
4144         struct netdev_queue *txq;
4145         struct Qdisc *q;
4146         int rc = -ENOMEM;
4147         bool again = false;
4148
4149         skb_reset_mac_header(skb);
4150
4151         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4152                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4153
4154         /* Disable soft irqs for various locks below. Also
4155          * stops preemption for RCU.
4156          */
4157         rcu_read_lock_bh();
4158
4159         skb_update_prio(skb);
4160
4161         qdisc_pkt_len_init(skb);
4162 #ifdef CONFIG_NET_CLS_ACT
4163         skb->tc_at_ingress = 0;
4164 # ifdef CONFIG_NET_EGRESS
4165         if (static_branch_unlikely(&egress_needed_key)) {
4166                 skb = sch_handle_egress(skb, &rc, dev);
4167                 if (!skb)
4168                         goto out;
4169         }
4170 # endif
4171 #endif
4172         /* If device/qdisc don't need skb->dst, release it right now while
4173          * its hot in this cpu cache.
4174          */
4175         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4176                 skb_dst_drop(skb);
4177         else
4178                 skb_dst_force(skb);
4179
4180         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4181         q = rcu_dereference_bh(txq->qdisc);
4182
4183         trace_net_dev_queue(skb);
4184         if (q->enqueue) {
4185                 rc = __dev_xmit_skb(skb, q, dev, txq);
4186                 goto out;
4187         }
4188
4189         /* The device has no queue. Common case for software devices:
4190          * loopback, all the sorts of tunnels...
4191
4192          * Really, it is unlikely that netif_tx_lock protection is necessary
4193          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4194          * counters.)
4195          * However, it is possible, that they rely on protection
4196          * made by us here.
4197
4198          * Check this and shot the lock. It is not prone from deadlocks.
4199          *Either shot noqueue qdisc, it is even simpler 8)
4200          */
4201         if (dev->flags & IFF_UP) {
4202                 int cpu = smp_processor_id(); /* ok because BHs are off */
4203
4204                 /* Other cpus might concurrently change txq->xmit_lock_owner
4205                  * to -1 or to their cpu id, but not to our id.
4206                  */
4207                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4208                         if (dev_xmit_recursion())
4209                                 goto recursion_alert;
4210
4211                         skb = validate_xmit_skb(skb, dev, &again);
4212                         if (!skb)
4213                                 goto out;
4214
4215                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4216                         HARD_TX_LOCK(dev, txq, cpu);
4217
4218                         if (!netif_xmit_stopped(txq)) {
4219                                 dev_xmit_recursion_inc();
4220                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4221                                 dev_xmit_recursion_dec();
4222                                 if (dev_xmit_complete(rc)) {
4223                                         HARD_TX_UNLOCK(dev, txq);
4224                                         goto out;
4225                                 }
4226                         }
4227                         HARD_TX_UNLOCK(dev, txq);
4228                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4229                                              dev->name);
4230                 } else {
4231                         /* Recursion is detected! It is possible,
4232                          * unfortunately
4233                          */
4234 recursion_alert:
4235                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4236                                              dev->name);
4237                 }
4238         }
4239
4240         rc = -ENETDOWN;
4241         rcu_read_unlock_bh();
4242
4243         atomic_long_inc(&dev->tx_dropped);
4244         kfree_skb_list(skb);
4245         return rc;
4246 out:
4247         rcu_read_unlock_bh();
4248         return rc;
4249 }
4250
4251 int dev_queue_xmit(struct sk_buff *skb)
4252 {
4253         return __dev_queue_xmit(skb, NULL);
4254 }
4255 EXPORT_SYMBOL(dev_queue_xmit);
4256
4257 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4258 {
4259         return __dev_queue_xmit(skb, sb_dev);
4260 }
4261 EXPORT_SYMBOL(dev_queue_xmit_accel);
4262
4263 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4264 {
4265         struct net_device *dev = skb->dev;
4266         struct sk_buff *orig_skb = skb;
4267         struct netdev_queue *txq;
4268         int ret = NETDEV_TX_BUSY;
4269         bool again = false;
4270
4271         if (unlikely(!netif_running(dev) ||
4272                      !netif_carrier_ok(dev)))
4273                 goto drop;
4274
4275         skb = validate_xmit_skb_list(skb, dev, &again);
4276         if (skb != orig_skb)
4277                 goto drop;
4278
4279         skb_set_queue_mapping(skb, queue_id);
4280         txq = skb_get_tx_queue(dev, skb);
4281         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4282
4283         local_bh_disable();
4284
4285         dev_xmit_recursion_inc();
4286         HARD_TX_LOCK(dev, txq, smp_processor_id());
4287         if (!netif_xmit_frozen_or_drv_stopped(txq))
4288                 ret = netdev_start_xmit(skb, dev, txq, false);
4289         HARD_TX_UNLOCK(dev, txq);
4290         dev_xmit_recursion_dec();
4291
4292         local_bh_enable();
4293         return ret;
4294 drop:
4295         atomic_long_inc(&dev->tx_dropped);
4296         kfree_skb_list(skb);
4297         return NET_XMIT_DROP;
4298 }
4299 EXPORT_SYMBOL(__dev_direct_xmit);
4300
4301 /*************************************************************************
4302  *                      Receiver routines
4303  *************************************************************************/
4304
4305 int netdev_max_backlog __read_mostly = 1000;
4306 EXPORT_SYMBOL(netdev_max_backlog);
4307
4308 int netdev_tstamp_prequeue __read_mostly = 1;
4309 int netdev_budget __read_mostly = 300;
4310 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4311 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4312 int weight_p __read_mostly = 64;           /* old backlog weight */
4313 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4314 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4315 int dev_rx_weight __read_mostly = 64;
4316 int dev_tx_weight __read_mostly = 64;
4317 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4318 int gro_normal_batch __read_mostly = 8;
4319
4320 /* Called with irq disabled */
4321 static inline void ____napi_schedule(struct softnet_data *sd,
4322                                      struct napi_struct *napi)
4323 {
4324         struct task_struct *thread;
4325
4326         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4327                 /* Paired with smp_mb__before_atomic() in
4328                  * napi_enable()/dev_set_threaded().
4329                  * Use READ_ONCE() to guarantee a complete
4330                  * read on napi->thread. Only call
4331                  * wake_up_process() when it's not NULL.
4332                  */
4333                 thread = READ_ONCE(napi->thread);
4334                 if (thread) {
4335                         /* Avoid doing set_bit() if the thread is in
4336                          * INTERRUPTIBLE state, cause napi_thread_wait()
4337                          * makes sure to proceed with napi polling
4338                          * if the thread is explicitly woken from here.
4339                          */
4340                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4341                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4342                         wake_up_process(thread);
4343                         return;
4344                 }
4345         }
4346
4347         list_add_tail(&napi->poll_list, &sd->poll_list);
4348         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4349 }
4350
4351 #ifdef CONFIG_RPS
4352
4353 /* One global table that all flow-based protocols share. */
4354 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4355 EXPORT_SYMBOL(rps_sock_flow_table);
4356 u32 rps_cpu_mask __read_mostly;
4357 EXPORT_SYMBOL(rps_cpu_mask);
4358
4359 struct static_key_false rps_needed __read_mostly;
4360 EXPORT_SYMBOL(rps_needed);
4361 struct static_key_false rfs_needed __read_mostly;
4362 EXPORT_SYMBOL(rfs_needed);
4363
4364 static struct rps_dev_flow *
4365 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4366             struct rps_dev_flow *rflow, u16 next_cpu)
4367 {
4368         if (next_cpu < nr_cpu_ids) {
4369 #ifdef CONFIG_RFS_ACCEL
4370                 struct netdev_rx_queue *rxqueue;
4371                 struct rps_dev_flow_table *flow_table;
4372                 struct rps_dev_flow *old_rflow;
4373                 u32 flow_id;
4374                 u16 rxq_index;
4375                 int rc;
4376
4377                 /* Should we steer this flow to a different hardware queue? */
4378                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4379                     !(dev->features & NETIF_F_NTUPLE))
4380                         goto out;
4381                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4382                 if (rxq_index == skb_get_rx_queue(skb))
4383                         goto out;
4384
4385                 rxqueue = dev->_rx + rxq_index;
4386                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4387                 if (!flow_table)
4388                         goto out;
4389                 flow_id = skb_get_hash(skb) & flow_table->mask;
4390                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4391                                                         rxq_index, flow_id);
4392                 if (rc < 0)
4393                         goto out;
4394                 old_rflow = rflow;
4395                 rflow = &flow_table->flows[flow_id];
4396                 rflow->filter = rc;
4397                 if (old_rflow->filter == rflow->filter)
4398                         old_rflow->filter = RPS_NO_FILTER;
4399         out:
4400 #endif
4401                 rflow->last_qtail =
4402                         per_cpu(softnet_data, next_cpu).input_queue_head;
4403         }
4404
4405         rflow->cpu = next_cpu;
4406         return rflow;
4407 }
4408
4409 /*
4410  * get_rps_cpu is called from netif_receive_skb and returns the target
4411  * CPU from the RPS map of the receiving queue for a given skb.
4412  * rcu_read_lock must be held on entry.
4413  */
4414 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4415                        struct rps_dev_flow **rflowp)
4416 {
4417         const struct rps_sock_flow_table *sock_flow_table;
4418         struct netdev_rx_queue *rxqueue = dev->_rx;
4419         struct rps_dev_flow_table *flow_table;
4420         struct rps_map *map;
4421         int cpu = -1;
4422         u32 tcpu;
4423         u32 hash;
4424
4425         if (skb_rx_queue_recorded(skb)) {
4426                 u16 index = skb_get_rx_queue(skb);
4427
4428                 if (unlikely(index >= dev->real_num_rx_queues)) {
4429                         WARN_ONCE(dev->real_num_rx_queues > 1,
4430                                   "%s received packet on queue %u, but number "
4431                                   "of RX queues is %u\n",
4432                                   dev->name, index, dev->real_num_rx_queues);
4433                         goto done;
4434                 }
4435                 rxqueue += index;
4436         }
4437
4438         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4439
4440         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4441         map = rcu_dereference(rxqueue->rps_map);
4442         if (!flow_table && !map)
4443                 goto done;
4444
4445         skb_reset_network_header(skb);
4446         hash = skb_get_hash(skb);
4447         if (!hash)
4448                 goto done;
4449
4450         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4451         if (flow_table && sock_flow_table) {
4452                 struct rps_dev_flow *rflow;
4453                 u32 next_cpu;
4454                 u32 ident;
4455
4456                 /* First check into global flow table if there is a match */
4457                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4458                 if ((ident ^ hash) & ~rps_cpu_mask)
4459                         goto try_rps;
4460
4461                 next_cpu = ident & rps_cpu_mask;
4462
4463                 /* OK, now we know there is a match,
4464                  * we can look at the local (per receive queue) flow table
4465                  */
4466                 rflow = &flow_table->flows[hash & flow_table->mask];
4467                 tcpu = rflow->cpu;
4468
4469                 /*
4470                  * If the desired CPU (where last recvmsg was done) is
4471                  * different from current CPU (one in the rx-queue flow
4472                  * table entry), switch if one of the following holds:
4473                  *   - Current CPU is unset (>= nr_cpu_ids).
4474                  *   - Current CPU is offline.
4475                  *   - The current CPU's queue tail has advanced beyond the
4476                  *     last packet that was enqueued using this table entry.
4477                  *     This guarantees that all previous packets for the flow
4478                  *     have been dequeued, thus preserving in order delivery.
4479                  */
4480                 if (unlikely(tcpu != next_cpu) &&
4481                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4482                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4483                       rflow->last_qtail)) >= 0)) {
4484                         tcpu = next_cpu;
4485                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4486                 }
4487
4488                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4489                         *rflowp = rflow;
4490                         cpu = tcpu;
4491                         goto done;
4492                 }
4493         }
4494
4495 try_rps:
4496
4497         if (map) {
4498                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4499                 if (cpu_online(tcpu)) {
4500                         cpu = tcpu;
4501                         goto done;
4502                 }
4503         }
4504
4505 done:
4506         return cpu;
4507 }
4508
4509 #ifdef CONFIG_RFS_ACCEL
4510
4511 /**
4512  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4513  * @dev: Device on which the filter was set
4514  * @rxq_index: RX queue index
4515  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4516  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4517  *
4518  * Drivers that implement ndo_rx_flow_steer() should periodically call
4519  * this function for each installed filter and remove the filters for
4520  * which it returns %true.
4521  */
4522 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4523                          u32 flow_id, u16 filter_id)
4524 {
4525         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4526         struct rps_dev_flow_table *flow_table;
4527         struct rps_dev_flow *rflow;
4528         bool expire = true;
4529         unsigned int cpu;
4530
4531         rcu_read_lock();
4532         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4533         if (flow_table && flow_id <= flow_table->mask) {
4534                 rflow = &flow_table->flows[flow_id];
4535                 cpu = READ_ONCE(rflow->cpu);
4536                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4537                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4538                            rflow->last_qtail) <
4539                      (int)(10 * flow_table->mask)))
4540                         expire = false;
4541         }
4542         rcu_read_unlock();
4543         return expire;
4544 }
4545 EXPORT_SYMBOL(rps_may_expire_flow);
4546
4547 #endif /* CONFIG_RFS_ACCEL */
4548
4549 /* Called from hardirq (IPI) context */
4550 static void rps_trigger_softirq(void *data)
4551 {
4552         struct softnet_data *sd = data;
4553
4554         ____napi_schedule(sd, &sd->backlog);
4555         sd->received_rps++;
4556 }
4557
4558 #endif /* CONFIG_RPS */
4559
4560 /*
4561  * Check if this softnet_data structure is another cpu one
4562  * If yes, queue it to our IPI list and return 1
4563  * If no, return 0
4564  */
4565 static int rps_ipi_queued(struct softnet_data *sd)
4566 {
4567 #ifdef CONFIG_RPS
4568         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4569
4570         if (sd != mysd) {
4571                 sd->rps_ipi_next = mysd->rps_ipi_list;
4572                 mysd->rps_ipi_list = sd;
4573
4574                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4575                 return 1;
4576         }
4577 #endif /* CONFIG_RPS */
4578         return 0;
4579 }
4580
4581 #ifdef CONFIG_NET_FLOW_LIMIT
4582 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4583 #endif
4584
4585 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4586 {
4587 #ifdef CONFIG_NET_FLOW_LIMIT
4588         struct sd_flow_limit *fl;
4589         struct softnet_data *sd;
4590         unsigned int old_flow, new_flow;
4591
4592         if (qlen < (netdev_max_backlog >> 1))
4593                 return false;
4594
4595         sd = this_cpu_ptr(&softnet_data);
4596
4597         rcu_read_lock();
4598         fl = rcu_dereference(sd->flow_limit);
4599         if (fl) {
4600                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4601                 old_flow = fl->history[fl->history_head];
4602                 fl->history[fl->history_head] = new_flow;
4603
4604                 fl->history_head++;
4605                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4606
4607                 if (likely(fl->buckets[old_flow]))
4608                         fl->buckets[old_flow]--;
4609
4610                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4611                         fl->count++;
4612                         rcu_read_unlock();
4613                         return true;
4614                 }
4615         }
4616         rcu_read_unlock();
4617 #endif
4618         return false;
4619 }
4620
4621 /*
4622  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4623  * queue (may be a remote CPU queue).
4624  */
4625 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4626                               unsigned int *qtail)
4627 {
4628         struct softnet_data *sd;
4629         unsigned long flags;
4630         unsigned int qlen;
4631
4632         sd = &per_cpu(softnet_data, cpu);
4633
4634         local_irq_save(flags);
4635
4636         rps_lock(sd);
4637         if (!netif_running(skb->dev))
4638                 goto drop;
4639         qlen = skb_queue_len(&sd->input_pkt_queue);
4640         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4641                 if (qlen) {
4642 enqueue:
4643                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4644                         input_queue_tail_incr_save(sd, qtail);
4645                         rps_unlock(sd);
4646                         local_irq_restore(flags);
4647                         return NET_RX_SUCCESS;
4648                 }
4649
4650                 /* Schedule NAPI for backlog device
4651                  * We can use non atomic operation since we own the queue lock
4652                  */
4653                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4654                         if (!rps_ipi_queued(sd))
4655                                 ____napi_schedule(sd, &sd->backlog);
4656                 }
4657                 goto enqueue;
4658         }
4659
4660 drop:
4661         sd->dropped++;
4662         rps_unlock(sd);
4663
4664         local_irq_restore(flags);
4665
4666         atomic_long_inc(&skb->dev->rx_dropped);
4667         kfree_skb(skb);
4668         return NET_RX_DROP;
4669 }
4670
4671 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4672 {
4673         struct net_device *dev = skb->dev;
4674         struct netdev_rx_queue *rxqueue;
4675
4676         rxqueue = dev->_rx;
4677
4678         if (skb_rx_queue_recorded(skb)) {
4679                 u16 index = skb_get_rx_queue(skb);
4680
4681                 if (unlikely(index >= dev->real_num_rx_queues)) {
4682                         WARN_ONCE(dev->real_num_rx_queues > 1,
4683                                   "%s received packet on queue %u, but number "
4684                                   "of RX queues is %u\n",
4685                                   dev->name, index, dev->real_num_rx_queues);
4686
4687                         return rxqueue; /* Return first rxqueue */
4688                 }
4689                 rxqueue += index;
4690         }
4691         return rxqueue;
4692 }
4693
4694 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4695                              struct bpf_prog *xdp_prog)
4696 {
4697         void *orig_data, *orig_data_end, *hard_start;
4698         struct netdev_rx_queue *rxqueue;
4699         bool orig_bcast, orig_host;
4700         u32 mac_len, frame_sz;
4701         __be16 orig_eth_type;
4702         struct ethhdr *eth;
4703         u32 metalen, act;
4704         int off;
4705
4706         /* The XDP program wants to see the packet starting at the MAC
4707          * header.
4708          */
4709         mac_len = skb->data - skb_mac_header(skb);
4710         hard_start = skb->data - skb_headroom(skb);
4711
4712         /* SKB "head" area always have tailroom for skb_shared_info */
4713         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4714         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4715
4716         rxqueue = netif_get_rxqueue(skb);
4717         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4718         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4719                          skb_headlen(skb) + mac_len, true);
4720
4721         orig_data_end = xdp->data_end;
4722         orig_data = xdp->data;
4723         eth = (struct ethhdr *)xdp->data;
4724         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4725         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4726         orig_eth_type = eth->h_proto;
4727
4728         act = bpf_prog_run_xdp(xdp_prog, xdp);
4729
4730         /* check if bpf_xdp_adjust_head was used */
4731         off = xdp->data - orig_data;
4732         if (off) {
4733                 if (off > 0)
4734                         __skb_pull(skb, off);
4735                 else if (off < 0)
4736                         __skb_push(skb, -off);
4737
4738                 skb->mac_header += off;
4739                 skb_reset_network_header(skb);
4740         }
4741
4742         /* check if bpf_xdp_adjust_tail was used */
4743         off = xdp->data_end - orig_data_end;
4744         if (off != 0) {
4745                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4746                 skb->len += off; /* positive on grow, negative on shrink */
4747         }
4748
4749         /* check if XDP changed eth hdr such SKB needs update */
4750         eth = (struct ethhdr *)xdp->data;
4751         if ((orig_eth_type != eth->h_proto) ||
4752             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4753                                                   skb->dev->dev_addr)) ||
4754             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4755                 __skb_push(skb, ETH_HLEN);
4756                 skb->pkt_type = PACKET_HOST;
4757                 skb->protocol = eth_type_trans(skb, skb->dev);
4758         }
4759
4760         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4761          * before calling us again on redirect path. We do not call do_redirect
4762          * as we leave that up to the caller.
4763          *
4764          * Caller is responsible for managing lifetime of skb (i.e. calling
4765          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4766          */
4767         switch (act) {
4768         case XDP_REDIRECT:
4769         case XDP_TX:
4770                 __skb_push(skb, mac_len);
4771                 break;
4772         case XDP_PASS:
4773                 metalen = xdp->data - xdp->data_meta;
4774                 if (metalen)
4775                         skb_metadata_set(skb, metalen);
4776                 break;
4777         }
4778
4779         return act;
4780 }
4781
4782 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4783                                      struct xdp_buff *xdp,
4784                                      struct bpf_prog *xdp_prog)
4785 {
4786         u32 act = XDP_DROP;
4787
4788         /* Reinjected packets coming from act_mirred or similar should
4789          * not get XDP generic processing.
4790          */
4791         if (skb_is_redirected(skb))
4792                 return XDP_PASS;
4793
4794         /* XDP packets must be linear and must have sufficient headroom
4795          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4796          * native XDP provides, thus we need to do it here as well.
4797          */
4798         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4799             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4800                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4801                 int troom = skb->tail + skb->data_len - skb->end;
4802
4803                 /* In case we have to go down the path and also linearize,
4804                  * then lets do the pskb_expand_head() work just once here.
4805                  */
4806                 if (pskb_expand_head(skb,
4807                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4808                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4809                         goto do_drop;
4810                 if (skb_linearize(skb))
4811                         goto do_drop;
4812         }
4813
4814         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4815         switch (act) {
4816         case XDP_REDIRECT:
4817         case XDP_TX:
4818         case XDP_PASS:
4819                 break;
4820         default:
4821                 bpf_warn_invalid_xdp_action(act);
4822                 fallthrough;
4823         case XDP_ABORTED:
4824                 trace_xdp_exception(skb->dev, xdp_prog, act);
4825                 fallthrough;
4826         case XDP_DROP:
4827         do_drop:
4828                 kfree_skb(skb);
4829                 break;
4830         }
4831
4832         return act;
4833 }
4834
4835 /* When doing generic XDP we have to bypass the qdisc layer and the
4836  * network taps in order to match in-driver-XDP behavior.
4837  */
4838 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4839 {
4840         struct net_device *dev = skb->dev;
4841         struct netdev_queue *txq;
4842         bool free_skb = true;
4843         int cpu, rc;
4844
4845         txq = netdev_core_pick_tx(dev, skb, NULL);
4846         cpu = smp_processor_id();
4847         HARD_TX_LOCK(dev, txq, cpu);
4848         if (!netif_xmit_stopped(txq)) {
4849                 rc = netdev_start_xmit(skb, dev, txq, 0);
4850                 if (dev_xmit_complete(rc))
4851                         free_skb = false;
4852         }
4853         HARD_TX_UNLOCK(dev, txq);
4854         if (free_skb) {
4855                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4856                 kfree_skb(skb);
4857         }
4858 }
4859
4860 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4861
4862 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4863 {
4864         if (xdp_prog) {
4865                 struct xdp_buff xdp;
4866                 u32 act;
4867                 int err;
4868
4869                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4870                 if (act != XDP_PASS) {
4871                         switch (act) {
4872                         case XDP_REDIRECT:
4873                                 err = xdp_do_generic_redirect(skb->dev, skb,
4874                                                               &xdp, xdp_prog);
4875                                 if (err)
4876                                         goto out_redir;
4877                                 break;
4878                         case XDP_TX:
4879                                 generic_xdp_tx(skb, xdp_prog);
4880                                 break;
4881                         }
4882                         return XDP_DROP;
4883                 }
4884         }
4885         return XDP_PASS;
4886 out_redir:
4887         kfree_skb(skb);
4888         return XDP_DROP;
4889 }
4890 EXPORT_SYMBOL_GPL(do_xdp_generic);
4891
4892 static int netif_rx_internal(struct sk_buff *skb)
4893 {
4894         int ret;
4895
4896         net_timestamp_check(netdev_tstamp_prequeue, skb);
4897
4898         trace_netif_rx(skb);
4899
4900 #ifdef CONFIG_RPS
4901         if (static_branch_unlikely(&rps_needed)) {
4902                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4903                 int cpu;
4904
4905                 preempt_disable();
4906                 rcu_read_lock();
4907
4908                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4909                 if (cpu < 0)
4910                         cpu = smp_processor_id();
4911
4912                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4913
4914                 rcu_read_unlock();
4915                 preempt_enable();
4916         } else
4917 #endif
4918         {
4919                 unsigned int qtail;
4920
4921                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4922                 put_cpu();
4923         }
4924         return ret;
4925 }
4926
4927 /**
4928  *      netif_rx        -       post buffer to the network code
4929  *      @skb: buffer to post
4930  *
4931  *      This function receives a packet from a device driver and queues it for
4932  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4933  *      may be dropped during processing for congestion control or by the
4934  *      protocol layers.
4935  *
4936  *      return values:
4937  *      NET_RX_SUCCESS  (no congestion)
4938  *      NET_RX_DROP     (packet was dropped)
4939  *
4940  */
4941
4942 int netif_rx(struct sk_buff *skb)
4943 {
4944         int ret;
4945
4946         trace_netif_rx_entry(skb);
4947
4948         ret = netif_rx_internal(skb);
4949         trace_netif_rx_exit(ret);
4950
4951         return ret;
4952 }
4953 EXPORT_SYMBOL(netif_rx);
4954
4955 int netif_rx_ni(struct sk_buff *skb)
4956 {
4957         int err;
4958
4959         trace_netif_rx_ni_entry(skb);
4960
4961         preempt_disable();
4962         err = netif_rx_internal(skb);
4963         if (local_softirq_pending())
4964                 do_softirq();
4965         preempt_enable();
4966         trace_netif_rx_ni_exit(err);
4967
4968         return err;
4969 }
4970 EXPORT_SYMBOL(netif_rx_ni);
4971
4972 int netif_rx_any_context(struct sk_buff *skb)
4973 {
4974         /*
4975          * If invoked from contexts which do not invoke bottom half
4976          * processing either at return from interrupt or when softrqs are
4977          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4978          * directly.
4979          */
4980         if (in_interrupt())
4981                 return netif_rx(skb);
4982         else
4983                 return netif_rx_ni(skb);
4984 }
4985 EXPORT_SYMBOL(netif_rx_any_context);
4986
4987 static __latent_entropy void net_tx_action(struct softirq_action *h)
4988 {
4989         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4990
4991         if (sd->completion_queue) {
4992                 struct sk_buff *clist;
4993
4994                 local_irq_disable();
4995                 clist = sd->completion_queue;
4996                 sd->completion_queue = NULL;
4997                 local_irq_enable();
4998
4999                 while (clist) {
5000                         struct sk_buff *skb = clist;
5001
5002                         clist = clist->next;
5003
5004                         WARN_ON(refcount_read(&skb->users));
5005                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5006                                 trace_consume_skb(skb);
5007                         else
5008                                 trace_kfree_skb(skb, net_tx_action);
5009
5010                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5011                                 __kfree_skb(skb);
5012                         else
5013                                 __kfree_skb_defer(skb);
5014                 }
5015         }
5016
5017         if (sd->output_queue) {
5018                 struct Qdisc *head;
5019
5020                 local_irq_disable();
5021                 head = sd->output_queue;
5022                 sd->output_queue = NULL;
5023                 sd->output_queue_tailp = &sd->output_queue;
5024                 local_irq_enable();
5025
5026                 rcu_read_lock();
5027
5028                 while (head) {
5029                         struct Qdisc *q = head;
5030                         spinlock_t *root_lock = NULL;
5031
5032                         head = head->next_sched;
5033
5034                         /* We need to make sure head->next_sched is read
5035                          * before clearing __QDISC_STATE_SCHED
5036                          */
5037                         smp_mb__before_atomic();
5038
5039                         if (!(q->flags & TCQ_F_NOLOCK)) {
5040                                 root_lock = qdisc_lock(q);
5041                                 spin_lock(root_lock);
5042                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5043                                                      &q->state))) {
5044                                 /* There is a synchronize_net() between
5045                                  * STATE_DEACTIVATED flag being set and
5046                                  * qdisc_reset()/some_qdisc_is_busy() in
5047                                  * dev_deactivate(), so we can safely bail out
5048                                  * early here to avoid data race between
5049                                  * qdisc_deactivate() and some_qdisc_is_busy()
5050                                  * for lockless qdisc.
5051                                  */
5052                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5053                                 continue;
5054                         }
5055
5056                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5057                         qdisc_run(q);
5058                         if (root_lock)
5059                                 spin_unlock(root_lock);
5060                 }
5061
5062                 rcu_read_unlock();
5063         }
5064
5065         xfrm_dev_backlog(sd);
5066 }
5067
5068 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5069 /* This hook is defined here for ATM LANE */
5070 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5071                              unsigned char *addr) __read_mostly;
5072 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5073 #endif
5074
5075 static inline struct sk_buff *
5076 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5077                    struct net_device *orig_dev, bool *another)
5078 {
5079 #ifdef CONFIG_NET_CLS_ACT
5080         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5081         struct tcf_result cl_res;
5082
5083         /* If there's at least one ingress present somewhere (so
5084          * we get here via enabled static key), remaining devices
5085          * that are not configured with an ingress qdisc will bail
5086          * out here.
5087          */
5088         if (!miniq)
5089                 return skb;
5090
5091         if (*pt_prev) {
5092                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5093                 *pt_prev = NULL;
5094         }
5095
5096         qdisc_skb_cb(skb)->pkt_len = skb->len;
5097         tc_skb_cb(skb)->mru = 0;
5098         tc_skb_cb(skb)->post_ct = false;
5099         skb->tc_at_ingress = 1;
5100         mini_qdisc_bstats_cpu_update(miniq, skb);
5101
5102         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5103         case TC_ACT_OK:
5104         case TC_ACT_RECLASSIFY:
5105                 skb->tc_index = TC_H_MIN(cl_res.classid);
5106                 break;
5107         case TC_ACT_SHOT:
5108                 mini_qdisc_qstats_cpu_drop(miniq);
5109                 kfree_skb(skb);
5110                 return NULL;
5111         case TC_ACT_STOLEN:
5112         case TC_ACT_QUEUED:
5113         case TC_ACT_TRAP:
5114                 consume_skb(skb);
5115                 return NULL;
5116         case TC_ACT_REDIRECT:
5117                 /* skb_mac_header check was done by cls/act_bpf, so
5118                  * we can safely push the L2 header back before
5119                  * redirecting to another netdev
5120                  */
5121                 __skb_push(skb, skb->mac_len);
5122                 if (skb_do_redirect(skb) == -EAGAIN) {
5123                         __skb_pull(skb, skb->mac_len);
5124                         *another = true;
5125                         break;
5126                 }
5127                 return NULL;
5128         case TC_ACT_CONSUMED:
5129                 return NULL;
5130         default:
5131                 break;
5132         }
5133 #endif /* CONFIG_NET_CLS_ACT */
5134         return skb;
5135 }
5136
5137 /**
5138  *      netdev_is_rx_handler_busy - check if receive handler is registered
5139  *      @dev: device to check
5140  *
5141  *      Check if a receive handler is already registered for a given device.
5142  *      Return true if there one.
5143  *
5144  *      The caller must hold the rtnl_mutex.
5145  */
5146 bool netdev_is_rx_handler_busy(struct net_device *dev)
5147 {
5148         ASSERT_RTNL();
5149         return dev && rtnl_dereference(dev->rx_handler);
5150 }
5151 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5152
5153 /**
5154  *      netdev_rx_handler_register - register receive handler
5155  *      @dev: device to register a handler for
5156  *      @rx_handler: receive handler to register
5157  *      @rx_handler_data: data pointer that is used by rx handler
5158  *
5159  *      Register a receive handler for a device. This handler will then be
5160  *      called from __netif_receive_skb. A negative errno code is returned
5161  *      on a failure.
5162  *
5163  *      The caller must hold the rtnl_mutex.
5164  *
5165  *      For a general description of rx_handler, see enum rx_handler_result.
5166  */
5167 int netdev_rx_handler_register(struct net_device *dev,
5168                                rx_handler_func_t *rx_handler,
5169                                void *rx_handler_data)
5170 {
5171         if (netdev_is_rx_handler_busy(dev))
5172                 return -EBUSY;
5173
5174         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5175                 return -EINVAL;
5176
5177         /* Note: rx_handler_data must be set before rx_handler */
5178         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5179         rcu_assign_pointer(dev->rx_handler, rx_handler);
5180
5181         return 0;
5182 }
5183 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5184
5185 /**
5186  *      netdev_rx_handler_unregister - unregister receive handler
5187  *      @dev: device to unregister a handler from
5188  *
5189  *      Unregister a receive handler from a device.
5190  *
5191  *      The caller must hold the rtnl_mutex.
5192  */
5193 void netdev_rx_handler_unregister(struct net_device *dev)
5194 {
5195
5196         ASSERT_RTNL();
5197         RCU_INIT_POINTER(dev->rx_handler, NULL);
5198         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5199          * section has a guarantee to see a non NULL rx_handler_data
5200          * as well.
5201          */
5202         synchronize_net();
5203         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5204 }
5205 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5206
5207 /*
5208  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5209  * the special handling of PFMEMALLOC skbs.
5210  */
5211 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5212 {
5213         switch (skb->protocol) {
5214         case htons(ETH_P_ARP):
5215         case htons(ETH_P_IP):
5216         case htons(ETH_P_IPV6):
5217         case htons(ETH_P_8021Q):
5218         case htons(ETH_P_8021AD):
5219                 return true;
5220         default:
5221                 return false;
5222         }
5223 }
5224
5225 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5226                              int *ret, struct net_device *orig_dev)
5227 {
5228         if (nf_hook_ingress_active(skb)) {
5229                 int ingress_retval;
5230
5231                 if (*pt_prev) {
5232                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5233                         *pt_prev = NULL;
5234                 }
5235
5236                 rcu_read_lock();
5237                 ingress_retval = nf_hook_ingress(skb);
5238                 rcu_read_unlock();
5239                 return ingress_retval;
5240         }
5241         return 0;
5242 }
5243
5244 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5245                                     struct packet_type **ppt_prev)
5246 {
5247         struct packet_type *ptype, *pt_prev;
5248         rx_handler_func_t *rx_handler;
5249         struct sk_buff *skb = *pskb;
5250         struct net_device *orig_dev;
5251         bool deliver_exact = false;
5252         int ret = NET_RX_DROP;
5253         __be16 type;
5254
5255         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5256
5257         trace_netif_receive_skb(skb);
5258
5259         orig_dev = skb->dev;
5260
5261         skb_reset_network_header(skb);
5262         if (!skb_transport_header_was_set(skb))
5263                 skb_reset_transport_header(skb);
5264         skb_reset_mac_len(skb);
5265
5266         pt_prev = NULL;
5267
5268 another_round:
5269         skb->skb_iif = skb->dev->ifindex;
5270
5271         __this_cpu_inc(softnet_data.processed);
5272
5273         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5274                 int ret2;
5275
5276                 migrate_disable();
5277                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5278                 migrate_enable();
5279
5280                 if (ret2 != XDP_PASS) {
5281                         ret = NET_RX_DROP;
5282                         goto out;
5283                 }
5284         }
5285
5286         if (eth_type_vlan(skb->protocol)) {
5287                 skb = skb_vlan_untag(skb);
5288                 if (unlikely(!skb))
5289                         goto out;
5290         }
5291
5292         if (skb_skip_tc_classify(skb))
5293                 goto skip_classify;
5294
5295         if (pfmemalloc)
5296                 goto skip_taps;
5297
5298         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5299                 if (pt_prev)
5300                         ret = deliver_skb(skb, pt_prev, orig_dev);
5301                 pt_prev = ptype;
5302         }
5303
5304         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5305                 if (pt_prev)
5306                         ret = deliver_skb(skb, pt_prev, orig_dev);
5307                 pt_prev = ptype;
5308         }
5309
5310 skip_taps:
5311 #ifdef CONFIG_NET_INGRESS
5312         if (static_branch_unlikely(&ingress_needed_key)) {
5313                 bool another = false;
5314
5315                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5316                                          &another);
5317                 if (another)
5318                         goto another_round;
5319                 if (!skb)
5320                         goto out;
5321
5322                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5323                         goto out;
5324         }
5325 #endif
5326         skb_reset_redirect(skb);
5327 skip_classify:
5328         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5329                 goto drop;
5330
5331         if (skb_vlan_tag_present(skb)) {
5332                 if (pt_prev) {
5333                         ret = deliver_skb(skb, pt_prev, orig_dev);
5334                         pt_prev = NULL;
5335                 }
5336                 if (vlan_do_receive(&skb))
5337                         goto another_round;
5338                 else if (unlikely(!skb))
5339                         goto out;
5340         }
5341
5342         rx_handler = rcu_dereference(skb->dev->rx_handler);
5343         if (rx_handler) {
5344                 if (pt_prev) {
5345                         ret = deliver_skb(skb, pt_prev, orig_dev);
5346                         pt_prev = NULL;
5347                 }
5348                 switch (rx_handler(&skb)) {
5349                 case RX_HANDLER_CONSUMED:
5350                         ret = NET_RX_SUCCESS;
5351                         goto out;
5352                 case RX_HANDLER_ANOTHER:
5353                         goto another_round;
5354                 case RX_HANDLER_EXACT:
5355                         deliver_exact = true;
5356                         break;
5357                 case RX_HANDLER_PASS:
5358                         break;
5359                 default:
5360                         BUG();
5361                 }
5362         }
5363
5364         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5365 check_vlan_id:
5366                 if (skb_vlan_tag_get_id(skb)) {
5367                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5368                          * find vlan device.
5369                          */
5370                         skb->pkt_type = PACKET_OTHERHOST;
5371                 } else if (eth_type_vlan(skb->protocol)) {
5372                         /* Outer header is 802.1P with vlan 0, inner header is
5373                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5374                          * not find vlan dev for vlan id 0.
5375                          */
5376                         __vlan_hwaccel_clear_tag(skb);
5377                         skb = skb_vlan_untag(skb);
5378                         if (unlikely(!skb))
5379                                 goto out;
5380                         if (vlan_do_receive(&skb))
5381                                 /* After stripping off 802.1P header with vlan 0
5382                                  * vlan dev is found for inner header.
5383                                  */
5384                                 goto another_round;
5385                         else if (unlikely(!skb))
5386                                 goto out;
5387                         else
5388                                 /* We have stripped outer 802.1P vlan 0 header.
5389                                  * But could not find vlan dev.
5390                                  * check again for vlan id to set OTHERHOST.
5391                                  */
5392                                 goto check_vlan_id;
5393                 }
5394                 /* Note: we might in the future use prio bits
5395                  * and set skb->priority like in vlan_do_receive()
5396                  * For the time being, just ignore Priority Code Point
5397                  */
5398                 __vlan_hwaccel_clear_tag(skb);
5399         }
5400
5401         type = skb->protocol;
5402
5403         /* deliver only exact match when indicated */
5404         if (likely(!deliver_exact)) {
5405                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5406                                        &ptype_base[ntohs(type) &
5407                                                    PTYPE_HASH_MASK]);
5408         }
5409
5410         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5411                                &orig_dev->ptype_specific);
5412
5413         if (unlikely(skb->dev != orig_dev)) {
5414                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5415                                        &skb->dev->ptype_specific);
5416         }
5417
5418         if (pt_prev) {
5419                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5420                         goto drop;
5421                 *ppt_prev = pt_prev;
5422         } else {
5423 drop:
5424                 if (!deliver_exact)
5425                         atomic_long_inc(&skb->dev->rx_dropped);
5426                 else
5427                         atomic_long_inc(&skb->dev->rx_nohandler);
5428                 kfree_skb(skb);
5429                 /* Jamal, now you will not able to escape explaining
5430                  * me how you were going to use this. :-)
5431                  */
5432                 ret = NET_RX_DROP;
5433         }
5434
5435 out:
5436         /* The invariant here is that if *ppt_prev is not NULL
5437          * then skb should also be non-NULL.
5438          *
5439          * Apparently *ppt_prev assignment above holds this invariant due to
5440          * skb dereferencing near it.
5441          */
5442         *pskb = skb;
5443         return ret;
5444 }
5445
5446 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5447 {
5448         struct net_device *orig_dev = skb->dev;
5449         struct packet_type *pt_prev = NULL;
5450         int ret;
5451
5452         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5453         if (pt_prev)
5454                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5455                                          skb->dev, pt_prev, orig_dev);
5456         return ret;
5457 }
5458
5459 /**
5460  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5461  *      @skb: buffer to process
5462  *
5463  *      More direct receive version of netif_receive_skb().  It should
5464  *      only be used by callers that have a need to skip RPS and Generic XDP.
5465  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5466  *
5467  *      This function may only be called from softirq context and interrupts
5468  *      should be enabled.
5469  *
5470  *      Return values (usually ignored):
5471  *      NET_RX_SUCCESS: no congestion
5472  *      NET_RX_DROP: packet was dropped
5473  */
5474 int netif_receive_skb_core(struct sk_buff *skb)
5475 {
5476         int ret;
5477
5478         rcu_read_lock();
5479         ret = __netif_receive_skb_one_core(skb, false);
5480         rcu_read_unlock();
5481
5482         return ret;
5483 }
5484 EXPORT_SYMBOL(netif_receive_skb_core);
5485
5486 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5487                                                   struct packet_type *pt_prev,
5488                                                   struct net_device *orig_dev)
5489 {
5490         struct sk_buff *skb, *next;
5491
5492         if (!pt_prev)
5493                 return;
5494         if (list_empty(head))
5495                 return;
5496         if (pt_prev->list_func != NULL)
5497                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5498                                    ip_list_rcv, head, pt_prev, orig_dev);
5499         else
5500                 list_for_each_entry_safe(skb, next, head, list) {
5501                         skb_list_del_init(skb);
5502                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5503                 }
5504 }
5505
5506 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5507 {
5508         /* Fast-path assumptions:
5509          * - There is no RX handler.
5510          * - Only one packet_type matches.
5511          * If either of these fails, we will end up doing some per-packet
5512          * processing in-line, then handling the 'last ptype' for the whole
5513          * sublist.  This can't cause out-of-order delivery to any single ptype,
5514          * because the 'last ptype' must be constant across the sublist, and all
5515          * other ptypes are handled per-packet.
5516          */
5517         /* Current (common) ptype of sublist */
5518         struct packet_type *pt_curr = NULL;
5519         /* Current (common) orig_dev of sublist */
5520         struct net_device *od_curr = NULL;
5521         struct list_head sublist;
5522         struct sk_buff *skb, *next;
5523
5524         INIT_LIST_HEAD(&sublist);
5525         list_for_each_entry_safe(skb, next, head, list) {
5526                 struct net_device *orig_dev = skb->dev;
5527                 struct packet_type *pt_prev = NULL;
5528
5529                 skb_list_del_init(skb);
5530                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5531                 if (!pt_prev)
5532                         continue;
5533                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5534                         /* dispatch old sublist */
5535                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5536                         /* start new sublist */
5537                         INIT_LIST_HEAD(&sublist);
5538                         pt_curr = pt_prev;
5539                         od_curr = orig_dev;
5540                 }
5541                 list_add_tail(&skb->list, &sublist);
5542         }
5543
5544         /* dispatch final sublist */
5545         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5546 }
5547
5548 static int __netif_receive_skb(struct sk_buff *skb)
5549 {
5550         int ret;
5551
5552         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5553                 unsigned int noreclaim_flag;
5554
5555                 /*
5556                  * PFMEMALLOC skbs are special, they should
5557                  * - be delivered to SOCK_MEMALLOC sockets only
5558                  * - stay away from userspace
5559                  * - have bounded memory usage
5560                  *
5561                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5562                  * context down to all allocation sites.
5563                  */
5564                 noreclaim_flag = memalloc_noreclaim_save();
5565                 ret = __netif_receive_skb_one_core(skb, true);
5566                 memalloc_noreclaim_restore(noreclaim_flag);
5567         } else
5568                 ret = __netif_receive_skb_one_core(skb, false);
5569
5570         return ret;
5571 }
5572
5573 static void __netif_receive_skb_list(struct list_head *head)
5574 {
5575         unsigned long noreclaim_flag = 0;
5576         struct sk_buff *skb, *next;
5577         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5578
5579         list_for_each_entry_safe(skb, next, head, list) {
5580                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5581                         struct list_head sublist;
5582
5583                         /* Handle the previous sublist */
5584                         list_cut_before(&sublist, head, &skb->list);
5585                         if (!list_empty(&sublist))
5586                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5587                         pfmemalloc = !pfmemalloc;
5588                         /* See comments in __netif_receive_skb */
5589                         if (pfmemalloc)
5590                                 noreclaim_flag = memalloc_noreclaim_save();
5591                         else
5592                                 memalloc_noreclaim_restore(noreclaim_flag);
5593                 }
5594         }
5595         /* Handle the remaining sublist */
5596         if (!list_empty(head))
5597                 __netif_receive_skb_list_core(head, pfmemalloc);
5598         /* Restore pflags */
5599         if (pfmemalloc)
5600                 memalloc_noreclaim_restore(noreclaim_flag);
5601 }
5602
5603 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5604 {
5605         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5606         struct bpf_prog *new = xdp->prog;
5607         int ret = 0;
5608
5609         switch (xdp->command) {
5610         case XDP_SETUP_PROG:
5611                 rcu_assign_pointer(dev->xdp_prog, new);
5612                 if (old)
5613                         bpf_prog_put(old);
5614
5615                 if (old && !new) {
5616                         static_branch_dec(&generic_xdp_needed_key);
5617                 } else if (new && !old) {
5618                         static_branch_inc(&generic_xdp_needed_key);
5619                         dev_disable_lro(dev);
5620                         dev_disable_gro_hw(dev);
5621                 }
5622                 break;
5623
5624         default:
5625                 ret = -EINVAL;
5626                 break;
5627         }
5628
5629         return ret;
5630 }
5631
5632 static int netif_receive_skb_internal(struct sk_buff *skb)
5633 {
5634         int ret;
5635
5636         net_timestamp_check(netdev_tstamp_prequeue, skb);
5637
5638         if (skb_defer_rx_timestamp(skb))
5639                 return NET_RX_SUCCESS;
5640
5641         rcu_read_lock();
5642 #ifdef CONFIG_RPS
5643         if (static_branch_unlikely(&rps_needed)) {
5644                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5645                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5646
5647                 if (cpu >= 0) {
5648                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5649                         rcu_read_unlock();
5650                         return ret;
5651                 }
5652         }
5653 #endif
5654         ret = __netif_receive_skb(skb);
5655         rcu_read_unlock();
5656         return ret;
5657 }
5658
5659 static void netif_receive_skb_list_internal(struct list_head *head)
5660 {
5661         struct sk_buff *skb, *next;
5662         struct list_head sublist;
5663
5664         INIT_LIST_HEAD(&sublist);
5665         list_for_each_entry_safe(skb, next, head, list) {
5666                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5667                 skb_list_del_init(skb);
5668                 if (!skb_defer_rx_timestamp(skb))
5669                         list_add_tail(&skb->list, &sublist);
5670         }
5671         list_splice_init(&sublist, head);
5672
5673         rcu_read_lock();
5674 #ifdef CONFIG_RPS
5675         if (static_branch_unlikely(&rps_needed)) {
5676                 list_for_each_entry_safe(skb, next, head, list) {
5677                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5678                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5679
5680                         if (cpu >= 0) {
5681                                 /* Will be handled, remove from list */
5682                                 skb_list_del_init(skb);
5683                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5684                         }
5685                 }
5686         }
5687 #endif
5688         __netif_receive_skb_list(head);
5689         rcu_read_unlock();
5690 }
5691
5692 /**
5693  *      netif_receive_skb - process receive buffer from network
5694  *      @skb: buffer to process
5695  *
5696  *      netif_receive_skb() is the main receive data processing function.
5697  *      It always succeeds. The buffer may be dropped during processing
5698  *      for congestion control or by the protocol layers.
5699  *
5700  *      This function may only be called from softirq context and interrupts
5701  *      should be enabled.
5702  *
5703  *      Return values (usually ignored):
5704  *      NET_RX_SUCCESS: no congestion
5705  *      NET_RX_DROP: packet was dropped
5706  */
5707 int netif_receive_skb(struct sk_buff *skb)
5708 {
5709         int ret;
5710
5711         trace_netif_receive_skb_entry(skb);
5712
5713         ret = netif_receive_skb_internal(skb);
5714         trace_netif_receive_skb_exit(ret);
5715
5716         return ret;
5717 }
5718 EXPORT_SYMBOL(netif_receive_skb);
5719
5720 /**
5721  *      netif_receive_skb_list - process many receive buffers from network
5722  *      @head: list of skbs to process.
5723  *
5724  *      Since return value of netif_receive_skb() is normally ignored, and
5725  *      wouldn't be meaningful for a list, this function returns void.
5726  *
5727  *      This function may only be called from softirq context and interrupts
5728  *      should be enabled.
5729  */
5730 void netif_receive_skb_list(struct list_head *head)
5731 {
5732         struct sk_buff *skb;
5733
5734         if (list_empty(head))
5735                 return;
5736         if (trace_netif_receive_skb_list_entry_enabled()) {
5737                 list_for_each_entry(skb, head, list)
5738                         trace_netif_receive_skb_list_entry(skb);
5739         }
5740         netif_receive_skb_list_internal(head);
5741         trace_netif_receive_skb_list_exit(0);
5742 }
5743 EXPORT_SYMBOL(netif_receive_skb_list);
5744
5745 static DEFINE_PER_CPU(struct work_struct, flush_works);
5746
5747 /* Network device is going away, flush any packets still pending */
5748 static void flush_backlog(struct work_struct *work)
5749 {
5750         struct sk_buff *skb, *tmp;
5751         struct softnet_data *sd;
5752
5753         local_bh_disable();
5754         sd = this_cpu_ptr(&softnet_data);
5755
5756         local_irq_disable();
5757         rps_lock(sd);
5758         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5759                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5760                         __skb_unlink(skb, &sd->input_pkt_queue);
5761                         dev_kfree_skb_irq(skb);
5762                         input_queue_head_incr(sd);
5763                 }
5764         }
5765         rps_unlock(sd);
5766         local_irq_enable();
5767
5768         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5769                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5770                         __skb_unlink(skb, &sd->process_queue);
5771                         kfree_skb(skb);
5772                         input_queue_head_incr(sd);
5773                 }
5774         }
5775         local_bh_enable();
5776 }
5777
5778 static bool flush_required(int cpu)
5779 {
5780 #if IS_ENABLED(CONFIG_RPS)
5781         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5782         bool do_flush;
5783
5784         local_irq_disable();
5785         rps_lock(sd);
5786
5787         /* as insertion into process_queue happens with the rps lock held,
5788          * process_queue access may race only with dequeue
5789          */
5790         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5791                    !skb_queue_empty_lockless(&sd->process_queue);
5792         rps_unlock(sd);
5793         local_irq_enable();
5794
5795         return do_flush;
5796 #endif
5797         /* without RPS we can't safely check input_pkt_queue: during a
5798          * concurrent remote skb_queue_splice() we can detect as empty both
5799          * input_pkt_queue and process_queue even if the latter could end-up
5800          * containing a lot of packets.
5801          */
5802         return true;
5803 }
5804
5805 static void flush_all_backlogs(void)
5806 {
5807         static cpumask_t flush_cpus;
5808         unsigned int cpu;
5809
5810         /* since we are under rtnl lock protection we can use static data
5811          * for the cpumask and avoid allocating on stack the possibly
5812          * large mask
5813          */
5814         ASSERT_RTNL();
5815
5816         cpus_read_lock();
5817
5818         cpumask_clear(&flush_cpus);
5819         for_each_online_cpu(cpu) {
5820                 if (flush_required(cpu)) {
5821                         queue_work_on(cpu, system_highpri_wq,
5822                                       per_cpu_ptr(&flush_works, cpu));
5823                         cpumask_set_cpu(cpu, &flush_cpus);
5824                 }
5825         }
5826
5827         /* we can have in flight packet[s] on the cpus we are not flushing,
5828          * synchronize_net() in unregister_netdevice_many() will take care of
5829          * them
5830          */
5831         for_each_cpu(cpu, &flush_cpus)
5832                 flush_work(per_cpu_ptr(&flush_works, cpu));
5833
5834         cpus_read_unlock();
5835 }
5836
5837 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5838 static void gro_normal_list(struct napi_struct *napi)
5839 {
5840         if (!napi->rx_count)
5841                 return;
5842         netif_receive_skb_list_internal(&napi->rx_list);
5843         INIT_LIST_HEAD(&napi->rx_list);
5844         napi->rx_count = 0;
5845 }
5846
5847 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5848  * pass the whole batch up to the stack.
5849  */
5850 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5851 {
5852         list_add_tail(&skb->list, &napi->rx_list);
5853         napi->rx_count += segs;
5854         if (napi->rx_count >= gro_normal_batch)
5855                 gro_normal_list(napi);
5856 }
5857
5858 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5859 {
5860         struct packet_offload *ptype;
5861         __be16 type = skb->protocol;
5862         struct list_head *head = &offload_base;
5863         int err = -ENOENT;
5864
5865         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5866
5867         if (NAPI_GRO_CB(skb)->count == 1) {
5868                 skb_shinfo(skb)->gso_size = 0;
5869                 goto out;
5870         }
5871
5872         rcu_read_lock();
5873         list_for_each_entry_rcu(ptype, head, list) {
5874                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5875                         continue;
5876
5877                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5878                                          ipv6_gro_complete, inet_gro_complete,
5879                                          skb, 0);
5880                 break;
5881         }
5882         rcu_read_unlock();
5883
5884         if (err) {
5885                 WARN_ON(&ptype->list == head);
5886                 kfree_skb(skb);
5887                 return NET_RX_SUCCESS;
5888         }
5889
5890 out:
5891         gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5892         return NET_RX_SUCCESS;
5893 }
5894
5895 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5896                                    bool flush_old)
5897 {
5898         struct list_head *head = &napi->gro_hash[index].list;
5899         struct sk_buff *skb, *p;
5900
5901         list_for_each_entry_safe_reverse(skb, p, head, list) {
5902                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5903                         return;
5904                 skb_list_del_init(skb);
5905                 napi_gro_complete(napi, skb);
5906                 napi->gro_hash[index].count--;
5907         }
5908
5909         if (!napi->gro_hash[index].count)
5910                 __clear_bit(index, &napi->gro_bitmask);
5911 }
5912
5913 /* napi->gro_hash[].list contains packets ordered by age.
5914  * youngest packets at the head of it.
5915  * Complete skbs in reverse order to reduce latencies.
5916  */
5917 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5918 {
5919         unsigned long bitmask = napi->gro_bitmask;
5920         unsigned int i, base = ~0U;
5921
5922         while ((i = ffs(bitmask)) != 0) {
5923                 bitmask >>= i;
5924                 base += i;
5925                 __napi_gro_flush_chain(napi, base, flush_old);
5926         }
5927 }
5928 EXPORT_SYMBOL(napi_gro_flush);
5929
5930 static void gro_list_prepare(const struct list_head *head,
5931                              const struct sk_buff *skb)
5932 {
5933         unsigned int maclen = skb->dev->hard_header_len;
5934         u32 hash = skb_get_hash_raw(skb);
5935         struct sk_buff *p;
5936
5937         list_for_each_entry(p, head, list) {
5938                 unsigned long diffs;
5939
5940                 NAPI_GRO_CB(p)->flush = 0;
5941
5942                 if (hash != skb_get_hash_raw(p)) {
5943                         NAPI_GRO_CB(p)->same_flow = 0;
5944                         continue;
5945                 }
5946
5947                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5948                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5949                 if (skb_vlan_tag_present(p))
5950                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5951                 diffs |= skb_metadata_differs(p, skb);
5952                 if (maclen == ETH_HLEN)
5953                         diffs |= compare_ether_header(skb_mac_header(p),
5954                                                       skb_mac_header(skb));
5955                 else if (!diffs)
5956                         diffs = memcmp(skb_mac_header(p),
5957                                        skb_mac_header(skb),
5958                                        maclen);
5959
5960                 /* in most common scenarions 'slow_gro' is 0
5961                  * otherwise we are already on some slower paths
5962                  * either skip all the infrequent tests altogether or
5963                  * avoid trying too hard to skip each of them individually
5964                  */
5965                 if (!diffs && unlikely(skb->slow_gro | p->slow_gro)) {
5966 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5967                         struct tc_skb_ext *skb_ext;
5968                         struct tc_skb_ext *p_ext;
5969 #endif
5970
5971                         diffs |= p->sk != skb->sk;
5972                         diffs |= skb_metadata_dst_cmp(p, skb);
5973                         diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5974
5975 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5976                         skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5977                         p_ext = skb_ext_find(p, TC_SKB_EXT);
5978
5979                         diffs |= (!!p_ext) ^ (!!skb_ext);
5980                         if (!diffs && unlikely(skb_ext))
5981                                 diffs |= p_ext->chain ^ skb_ext->chain;
5982 #endif
5983                 }
5984
5985                 NAPI_GRO_CB(p)->same_flow = !diffs;
5986         }
5987 }
5988
5989 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5990 {
5991         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5992         const skb_frag_t *frag0 = &pinfo->frags[0];
5993
5994         NAPI_GRO_CB(skb)->data_offset = 0;
5995         NAPI_GRO_CB(skb)->frag0 = NULL;
5996         NAPI_GRO_CB(skb)->frag0_len = 0;
5997
5998         if (!skb_headlen(skb) && pinfo->nr_frags &&
5999             !PageHighMem(skb_frag_page(frag0)) &&
6000             (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6001                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6002                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6003                                                     skb_frag_size(frag0),
6004                                                     skb->end - skb->tail);
6005         }
6006 }
6007
6008 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6009 {
6010         struct skb_shared_info *pinfo = skb_shinfo(skb);
6011
6012         BUG_ON(skb->end - skb->tail < grow);
6013
6014         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6015
6016         skb->data_len -= grow;
6017         skb->tail += grow;
6018
6019         skb_frag_off_add(&pinfo->frags[0], grow);
6020         skb_frag_size_sub(&pinfo->frags[0], grow);
6021
6022         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6023                 skb_frag_unref(skb, 0);
6024                 memmove(pinfo->frags, pinfo->frags + 1,
6025                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6026         }
6027 }
6028
6029 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6030 {
6031         struct sk_buff *oldest;
6032
6033         oldest = list_last_entry(head, struct sk_buff, list);
6034
6035         /* We are called with head length >= MAX_GRO_SKBS, so this is
6036          * impossible.
6037          */
6038         if (WARN_ON_ONCE(!oldest))
6039                 return;
6040
6041         /* Do not adjust napi->gro_hash[].count, caller is adding a new
6042          * SKB to the chain.
6043          */
6044         skb_list_del_init(oldest);
6045         napi_gro_complete(napi, oldest);
6046 }
6047
6048 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6049 {
6050         u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6051         struct gro_list *gro_list = &napi->gro_hash[bucket];
6052         struct list_head *head = &offload_base;
6053         struct packet_offload *ptype;
6054         __be16 type = skb->protocol;
6055         struct sk_buff *pp = NULL;
6056         enum gro_result ret;
6057         int same_flow;
6058         int grow;
6059
6060         if (netif_elide_gro(skb->dev))
6061                 goto normal;
6062
6063         gro_list_prepare(&gro_list->list, skb);
6064
6065         rcu_read_lock();
6066         list_for_each_entry_rcu(ptype, head, list) {
6067                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6068                         continue;
6069
6070                 skb_set_network_header(skb, skb_gro_offset(skb));
6071                 skb_reset_mac_len(skb);
6072                 NAPI_GRO_CB(skb)->same_flow = 0;
6073                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6074                 NAPI_GRO_CB(skb)->free = 0;
6075                 NAPI_GRO_CB(skb)->encap_mark = 0;
6076                 NAPI_GRO_CB(skb)->recursion_counter = 0;
6077                 NAPI_GRO_CB(skb)->is_fou = 0;
6078                 NAPI_GRO_CB(skb)->is_atomic = 1;
6079                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6080
6081                 /* Setup for GRO checksum validation */
6082                 switch (skb->ip_summed) {
6083                 case CHECKSUM_COMPLETE:
6084                         NAPI_GRO_CB(skb)->csum = skb->csum;
6085                         NAPI_GRO_CB(skb)->csum_valid = 1;
6086                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6087                         break;
6088                 case CHECKSUM_UNNECESSARY:
6089                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6090                         NAPI_GRO_CB(skb)->csum_valid = 0;
6091                         break;
6092                 default:
6093                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6094                         NAPI_GRO_CB(skb)->csum_valid = 0;
6095                 }
6096
6097                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6098                                         ipv6_gro_receive, inet_gro_receive,
6099                                         &gro_list->list, skb);
6100                 break;
6101         }
6102         rcu_read_unlock();
6103
6104         if (&ptype->list == head)
6105                 goto normal;
6106
6107         if (PTR_ERR(pp) == -EINPROGRESS) {
6108                 ret = GRO_CONSUMED;
6109                 goto ok;
6110         }
6111
6112         same_flow = NAPI_GRO_CB(skb)->same_flow;
6113         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6114
6115         if (pp) {
6116                 skb_list_del_init(pp);
6117                 napi_gro_complete(napi, pp);
6118                 gro_list->count--;
6119         }
6120
6121         if (same_flow)
6122                 goto ok;
6123
6124         if (NAPI_GRO_CB(skb)->flush)
6125                 goto normal;
6126
6127         if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6128                 gro_flush_oldest(napi, &gro_list->list);
6129         else
6130                 gro_list->count++;
6131
6132         NAPI_GRO_CB(skb)->count = 1;
6133         NAPI_GRO_CB(skb)->age = jiffies;
6134         NAPI_GRO_CB(skb)->last = skb;
6135         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6136         list_add(&skb->list, &gro_list->list);
6137         ret = GRO_HELD;
6138
6139 pull:
6140         grow = skb_gro_offset(skb) - skb_headlen(skb);
6141         if (grow > 0)
6142                 gro_pull_from_frag0(skb, grow);
6143 ok:
6144         if (gro_list->count) {
6145                 if (!test_bit(bucket, &napi->gro_bitmask))
6146                         __set_bit(bucket, &napi->gro_bitmask);
6147         } else if (test_bit(bucket, &napi->gro_bitmask)) {
6148                 __clear_bit(bucket, &napi->gro_bitmask);
6149         }
6150
6151         return ret;
6152
6153 normal:
6154         ret = GRO_NORMAL;
6155         goto pull;
6156 }
6157
6158 struct packet_offload *gro_find_receive_by_type(__be16 type)
6159 {
6160         struct list_head *offload_head = &offload_base;
6161         struct packet_offload *ptype;
6162
6163         list_for_each_entry_rcu(ptype, offload_head, list) {
6164                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6165                         continue;
6166                 return ptype;
6167         }
6168         return NULL;
6169 }
6170 EXPORT_SYMBOL(gro_find_receive_by_type);
6171
6172 struct packet_offload *gro_find_complete_by_type(__be16 type)
6173 {
6174         struct list_head *offload_head = &offload_base;
6175         struct packet_offload *ptype;
6176
6177         list_for_each_entry_rcu(ptype, offload_head, list) {
6178                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6179                         continue;
6180                 return ptype;
6181         }
6182         return NULL;
6183 }
6184 EXPORT_SYMBOL(gro_find_complete_by_type);
6185
6186 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6187                                     struct sk_buff *skb,
6188                                     gro_result_t ret)
6189 {
6190         switch (ret) {
6191         case GRO_NORMAL:
6192                 gro_normal_one(napi, skb, 1);
6193                 break;
6194
6195         case GRO_MERGED_FREE:
6196                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6197                         napi_skb_free_stolen_head(skb);
6198                 else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6199                         __kfree_skb(skb);
6200                 else
6201                         __kfree_skb_defer(skb);
6202                 break;
6203
6204         case GRO_HELD:
6205         case GRO_MERGED:
6206         case GRO_CONSUMED:
6207                 break;
6208         }
6209
6210         return ret;
6211 }
6212
6213 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6214 {
6215         gro_result_t ret;
6216
6217         skb_mark_napi_id(skb, napi);
6218         trace_napi_gro_receive_entry(skb);
6219
6220         skb_gro_reset_offset(skb, 0);
6221
6222         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6223         trace_napi_gro_receive_exit(ret);
6224
6225         return ret;
6226 }
6227 EXPORT_SYMBOL(napi_gro_receive);
6228
6229 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6230 {
6231         if (unlikely(skb->pfmemalloc)) {
6232                 consume_skb(skb);
6233                 return;
6234         }
6235         __skb_pull(skb, skb_headlen(skb));
6236         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6237         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6238         __vlan_hwaccel_clear_tag(skb);
6239         skb->dev = napi->dev;
6240         skb->skb_iif = 0;
6241
6242         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6243         skb->pkt_type = PACKET_HOST;
6244
6245         skb->encapsulation = 0;
6246         skb_shinfo(skb)->gso_type = 0;
6247         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6248         if (unlikely(skb->slow_gro)) {
6249                 skb_orphan(skb);
6250                 skb_ext_reset(skb);
6251                 nf_reset_ct(skb);
6252                 skb->slow_gro = 0;
6253         }
6254
6255         napi->skb = skb;
6256 }
6257
6258 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6259 {
6260         struct sk_buff *skb = napi->skb;
6261
6262         if (!skb) {
6263                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6264                 if (skb) {
6265                         napi->skb = skb;
6266                         skb_mark_napi_id(skb, napi);
6267                 }
6268         }
6269         return skb;
6270 }
6271 EXPORT_SYMBOL(napi_get_frags);
6272
6273 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6274                                       struct sk_buff *skb,
6275                                       gro_result_t ret)
6276 {
6277         switch (ret) {
6278         case GRO_NORMAL:
6279         case GRO_HELD:
6280                 __skb_push(skb, ETH_HLEN);
6281                 skb->protocol = eth_type_trans(skb, skb->dev);
6282                 if (ret == GRO_NORMAL)
6283                         gro_normal_one(napi, skb, 1);
6284                 break;
6285
6286         case GRO_MERGED_FREE:
6287                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6288                         napi_skb_free_stolen_head(skb);
6289                 else
6290                         napi_reuse_skb(napi, skb);
6291                 break;
6292
6293         case GRO_MERGED:
6294         case GRO_CONSUMED:
6295                 break;
6296         }
6297
6298         return ret;
6299 }
6300
6301 /* Upper GRO stack assumes network header starts at gro_offset=0
6302  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6303  * We copy ethernet header into skb->data to have a common layout.
6304  */
6305 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6306 {
6307         struct sk_buff *skb = napi->skb;
6308         const struct ethhdr *eth;
6309         unsigned int hlen = sizeof(*eth);
6310
6311         napi->skb = NULL;
6312
6313         skb_reset_mac_header(skb);
6314         skb_gro_reset_offset(skb, hlen);
6315
6316         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6317                 eth = skb_gro_header_slow(skb, hlen, 0);
6318                 if (unlikely(!eth)) {
6319                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6320                                              __func__, napi->dev->name);
6321                         napi_reuse_skb(napi, skb);
6322                         return NULL;
6323                 }
6324         } else {
6325                 eth = (const struct ethhdr *)skb->data;
6326                 gro_pull_from_frag0(skb, hlen);
6327                 NAPI_GRO_CB(skb)->frag0 += hlen;
6328                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6329         }
6330         __skb_pull(skb, hlen);
6331
6332         /*
6333          * This works because the only protocols we care about don't require
6334          * special handling.
6335          * We'll fix it up properly in napi_frags_finish()
6336          */
6337         skb->protocol = eth->h_proto;
6338
6339         return skb;
6340 }
6341
6342 gro_result_t napi_gro_frags(struct napi_struct *napi)
6343 {
6344         gro_result_t ret;
6345         struct sk_buff *skb = napi_frags_skb(napi);
6346
6347         trace_napi_gro_frags_entry(skb);
6348
6349         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6350         trace_napi_gro_frags_exit(ret);
6351
6352         return ret;
6353 }
6354 EXPORT_SYMBOL(napi_gro_frags);
6355
6356 /* Compute the checksum from gro_offset and return the folded value
6357  * after adding in any pseudo checksum.
6358  */
6359 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6360 {
6361         __wsum wsum;
6362         __sum16 sum;
6363
6364         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6365
6366         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6367         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6368         /* See comments in __skb_checksum_complete(). */
6369         if (likely(!sum)) {
6370                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6371                     !skb->csum_complete_sw)
6372                         netdev_rx_csum_fault(skb->dev, skb);
6373         }
6374
6375         NAPI_GRO_CB(skb)->csum = wsum;
6376         NAPI_GRO_CB(skb)->csum_valid = 1;
6377
6378         return sum;
6379 }
6380 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6381
6382 static void net_rps_send_ipi(struct softnet_data *remsd)
6383 {
6384 #ifdef CONFIG_RPS
6385         while (remsd) {
6386                 struct softnet_data *next = remsd->rps_ipi_next;
6387
6388                 if (cpu_online(remsd->cpu))
6389                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6390                 remsd = next;
6391         }
6392 #endif
6393 }
6394
6395 /*
6396  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6397  * Note: called with local irq disabled, but exits with local irq enabled.
6398  */
6399 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6400 {
6401 #ifdef CONFIG_RPS
6402         struct softnet_data *remsd = sd->rps_ipi_list;
6403
6404         if (remsd) {
6405                 sd->rps_ipi_list = NULL;
6406
6407                 local_irq_enable();
6408
6409                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6410                 net_rps_send_ipi(remsd);
6411         } else
6412 #endif
6413                 local_irq_enable();
6414 }
6415
6416 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6417 {
6418 #ifdef CONFIG_RPS
6419         return sd->rps_ipi_list != NULL;
6420 #else
6421         return false;
6422 #endif
6423 }
6424
6425 static int process_backlog(struct napi_struct *napi, int quota)
6426 {
6427         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6428         bool again = true;
6429         int work = 0;
6430
6431         /* Check if we have pending ipi, its better to send them now,
6432          * not waiting net_rx_action() end.
6433          */
6434         if (sd_has_rps_ipi_waiting(sd)) {
6435                 local_irq_disable();
6436                 net_rps_action_and_irq_enable(sd);
6437         }
6438
6439         napi->weight = dev_rx_weight;
6440         while (again) {
6441                 struct sk_buff *skb;
6442
6443                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6444                         rcu_read_lock();
6445                         __netif_receive_skb(skb);
6446                         rcu_read_unlock();
6447                         input_queue_head_incr(sd);
6448                         if (++work >= quota)
6449                                 return work;
6450
6451                 }
6452
6453                 local_irq_disable();
6454                 rps_lock(sd);
6455                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6456                         /*
6457                          * Inline a custom version of __napi_complete().
6458                          * only current cpu owns and manipulates this napi,
6459                          * and NAPI_STATE_SCHED is the only possible flag set
6460                          * on backlog.
6461                          * We can use a plain write instead of clear_bit(),
6462                          * and we dont need an smp_mb() memory barrier.
6463                          */
6464                         napi->state = 0;
6465                         again = false;
6466                 } else {
6467                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6468                                                    &sd->process_queue);
6469                 }
6470                 rps_unlock(sd);
6471                 local_irq_enable();
6472         }
6473
6474         return work;
6475 }
6476
6477 /**
6478  * __napi_schedule - schedule for receive
6479  * @n: entry to schedule
6480  *
6481  * The entry's receive function will be scheduled to run.
6482  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6483  */
6484 void __napi_schedule(struct napi_struct *n)
6485 {
6486         unsigned long flags;
6487
6488         local_irq_save(flags);
6489         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6490         local_irq_restore(flags);
6491 }
6492 EXPORT_SYMBOL(__napi_schedule);
6493
6494 /**
6495  *      napi_schedule_prep - check if napi can be scheduled
6496  *      @n: napi context
6497  *
6498  * Test if NAPI routine is already running, and if not mark
6499  * it as running.  This is used as a condition variable to
6500  * insure only one NAPI poll instance runs.  We also make
6501  * sure there is no pending NAPI disable.
6502  */
6503 bool napi_schedule_prep(struct napi_struct *n)
6504 {
6505         unsigned long val, new;
6506
6507         do {
6508                 val = READ_ONCE(n->state);
6509                 if (unlikely(val & NAPIF_STATE_DISABLE))
6510                         return false;
6511                 new = val | NAPIF_STATE_SCHED;
6512
6513                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6514                  * This was suggested by Alexander Duyck, as compiler
6515                  * emits better code than :
6516                  * if (val & NAPIF_STATE_SCHED)
6517                  *     new |= NAPIF_STATE_MISSED;
6518                  */
6519                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6520                                                    NAPIF_STATE_MISSED;
6521         } while (cmpxchg(&n->state, val, new) != val);
6522
6523         return !(val & NAPIF_STATE_SCHED);
6524 }
6525 EXPORT_SYMBOL(napi_schedule_prep);
6526
6527 /**
6528  * __napi_schedule_irqoff - schedule for receive
6529  * @n: entry to schedule
6530  *
6531  * Variant of __napi_schedule() assuming hard irqs are masked.
6532  *
6533  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6534  * because the interrupt disabled assumption might not be true
6535  * due to force-threaded interrupts and spinlock substitution.
6536  */
6537 void __napi_schedule_irqoff(struct napi_struct *n)
6538 {
6539         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6540                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6541         else
6542                 __napi_schedule(n);
6543 }
6544 EXPORT_SYMBOL(__napi_schedule_irqoff);
6545
6546 bool napi_complete_done(struct napi_struct *n, int work_done)
6547 {
6548         unsigned long flags, val, new, timeout = 0;
6549         bool ret = true;
6550
6551         /*
6552          * 1) Don't let napi dequeue from the cpu poll list
6553          *    just in case its running on a different cpu.
6554          * 2) If we are busy polling, do nothing here, we have
6555          *    the guarantee we will be called later.
6556          */
6557         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6558                                  NAPIF_STATE_IN_BUSY_POLL)))
6559                 return false;
6560
6561         if (work_done) {
6562                 if (n->gro_bitmask)
6563                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6564                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6565         }
6566         if (n->defer_hard_irqs_count > 0) {
6567                 n->defer_hard_irqs_count--;
6568                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6569                 if (timeout)
6570                         ret = false;
6571         }
6572         if (n->gro_bitmask) {
6573                 /* When the NAPI instance uses a timeout and keeps postponing
6574                  * it, we need to bound somehow the time packets are kept in
6575                  * the GRO layer
6576                  */
6577                 napi_gro_flush(n, !!timeout);
6578         }
6579
6580         gro_normal_list(n);
6581
6582         if (unlikely(!list_empty(&n->poll_list))) {
6583                 /* If n->poll_list is not empty, we need to mask irqs */
6584                 local_irq_save(flags);
6585                 list_del_init(&n->poll_list);
6586                 local_irq_restore(flags);
6587         }
6588
6589         do {
6590                 val = READ_ONCE(n->state);
6591
6592                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6593
6594                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6595                               NAPIF_STATE_SCHED_THREADED |
6596                               NAPIF_STATE_PREFER_BUSY_POLL);
6597
6598                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6599                  * because we will call napi->poll() one more time.
6600                  * This C code was suggested by Alexander Duyck to help gcc.
6601                  */
6602                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6603                                                     NAPIF_STATE_SCHED;
6604         } while (cmpxchg(&n->state, val, new) != val);
6605
6606         if (unlikely(val & NAPIF_STATE_MISSED)) {
6607                 __napi_schedule(n);
6608                 return false;
6609         }
6610
6611         if (timeout)
6612                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6613                               HRTIMER_MODE_REL_PINNED);
6614         return ret;
6615 }
6616 EXPORT_SYMBOL(napi_complete_done);
6617
6618 /* must be called under rcu_read_lock(), as we dont take a reference */
6619 static struct napi_struct *napi_by_id(unsigned int napi_id)
6620 {
6621         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6622         struct napi_struct *napi;
6623
6624         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6625                 if (napi->napi_id == napi_id)
6626                         return napi;
6627
6628         return NULL;
6629 }
6630
6631 #if defined(CONFIG_NET_RX_BUSY_POLL)
6632
6633 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6634 {
6635         if (!skip_schedule) {
6636                 gro_normal_list(napi);
6637                 __napi_schedule(napi);
6638                 return;
6639         }
6640
6641         if (napi->gro_bitmask) {
6642                 /* flush too old packets
6643                  * If HZ < 1000, flush all packets.
6644                  */
6645                 napi_gro_flush(napi, HZ >= 1000);
6646         }
6647
6648         gro_normal_list(napi);
6649         clear_bit(NAPI_STATE_SCHED, &napi->state);
6650 }
6651
6652 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6653                            u16 budget)
6654 {
6655         bool skip_schedule = false;
6656         unsigned long timeout;
6657         int rc;
6658
6659         /* Busy polling means there is a high chance device driver hard irq
6660          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6661          * set in napi_schedule_prep().
6662          * Since we are about to call napi->poll() once more, we can safely
6663          * clear NAPI_STATE_MISSED.
6664          *
6665          * Note: x86 could use a single "lock and ..." instruction
6666          * to perform these two clear_bit()
6667          */
6668         clear_bit(NAPI_STATE_MISSED, &napi->state);
6669         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6670
6671         local_bh_disable();
6672
6673         if (prefer_busy_poll) {
6674                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6675                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6676                 if (napi->defer_hard_irqs_count && timeout) {
6677                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6678                         skip_schedule = true;
6679                 }
6680         }
6681
6682         /* All we really want here is to re-enable device interrupts.
6683          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6684          */
6685         rc = napi->poll(napi, budget);
6686         /* We can't gro_normal_list() here, because napi->poll() might have
6687          * rearmed the napi (napi_complete_done()) in which case it could
6688          * already be running on another CPU.
6689          */
6690         trace_napi_poll(napi, rc, budget);
6691         netpoll_poll_unlock(have_poll_lock);
6692         if (rc == budget)
6693                 __busy_poll_stop(napi, skip_schedule);
6694         local_bh_enable();
6695 }
6696
6697 void napi_busy_loop(unsigned int napi_id,
6698                     bool (*loop_end)(void *, unsigned long),
6699                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6700 {
6701         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6702         int (*napi_poll)(struct napi_struct *napi, int budget);
6703         void *have_poll_lock = NULL;
6704         struct napi_struct *napi;
6705
6706 restart:
6707         napi_poll = NULL;
6708
6709         rcu_read_lock();
6710
6711         napi = napi_by_id(napi_id);
6712         if (!napi)
6713                 goto out;
6714
6715         preempt_disable();
6716         for (;;) {
6717                 int work = 0;
6718
6719                 local_bh_disable();
6720                 if (!napi_poll) {
6721                         unsigned long val = READ_ONCE(napi->state);
6722
6723                         /* If multiple threads are competing for this napi,
6724                          * we avoid dirtying napi->state as much as we can.
6725                          */
6726                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6727                                    NAPIF_STATE_IN_BUSY_POLL)) {
6728                                 if (prefer_busy_poll)
6729                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6730                                 goto count;
6731                         }
6732                         if (cmpxchg(&napi->state, val,
6733                                     val | NAPIF_STATE_IN_BUSY_POLL |
6734                                           NAPIF_STATE_SCHED) != val) {
6735                                 if (prefer_busy_poll)
6736                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6737                                 goto count;
6738                         }
6739                         have_poll_lock = netpoll_poll_lock(napi);
6740                         napi_poll = napi->poll;
6741                 }
6742                 work = napi_poll(napi, budget);
6743                 trace_napi_poll(napi, work, budget);
6744                 gro_normal_list(napi);
6745 count:
6746                 if (work > 0)
6747                         __NET_ADD_STATS(dev_net(napi->dev),
6748                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6749                 local_bh_enable();
6750
6751                 if (!loop_end || loop_end(loop_end_arg, start_time))
6752                         break;
6753
6754                 if (unlikely(need_resched())) {
6755                         if (napi_poll)
6756                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6757                         preempt_enable();
6758                         rcu_read_unlock();
6759                         cond_resched();
6760                         if (loop_end(loop_end_arg, start_time))
6761                                 return;
6762                         goto restart;
6763                 }
6764                 cpu_relax();
6765         }
6766         if (napi_poll)
6767                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6768         preempt_enable();
6769 out:
6770         rcu_read_unlock();
6771 }
6772 EXPORT_SYMBOL(napi_busy_loop);
6773
6774 #endif /* CONFIG_NET_RX_BUSY_POLL */
6775
6776 static void napi_hash_add(struct napi_struct *napi)
6777 {
6778         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6779                 return;
6780
6781         spin_lock(&napi_hash_lock);
6782
6783         /* 0..NR_CPUS range is reserved for sender_cpu use */
6784         do {
6785                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6786                         napi_gen_id = MIN_NAPI_ID;
6787         } while (napi_by_id(napi_gen_id));
6788         napi->napi_id = napi_gen_id;
6789
6790         hlist_add_head_rcu(&napi->napi_hash_node,
6791                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6792
6793         spin_unlock(&napi_hash_lock);
6794 }
6795
6796 /* Warning : caller is responsible to make sure rcu grace period
6797  * is respected before freeing memory containing @napi
6798  */
6799 static void napi_hash_del(struct napi_struct *napi)
6800 {
6801         spin_lock(&napi_hash_lock);
6802
6803         hlist_del_init_rcu(&napi->napi_hash_node);
6804
6805         spin_unlock(&napi_hash_lock);
6806 }
6807
6808 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6809 {
6810         struct napi_struct *napi;
6811
6812         napi = container_of(timer, struct napi_struct, timer);
6813
6814         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6815          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6816          */
6817         if (!napi_disable_pending(napi) &&
6818             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6819                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6820                 __napi_schedule_irqoff(napi);
6821         }
6822
6823         return HRTIMER_NORESTART;
6824 }
6825
6826 static void init_gro_hash(struct napi_struct *napi)
6827 {
6828         int i;
6829
6830         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6831                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6832                 napi->gro_hash[i].count = 0;
6833         }
6834         napi->gro_bitmask = 0;
6835 }
6836
6837 int dev_set_threaded(struct net_device *dev, bool threaded)
6838 {
6839         struct napi_struct *napi;
6840         int err = 0;
6841
6842         if (dev->threaded == threaded)
6843                 return 0;
6844
6845         if (threaded) {
6846                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6847                         if (!napi->thread) {
6848                                 err = napi_kthread_create(napi);
6849                                 if (err) {
6850                                         threaded = false;
6851                                         break;
6852                                 }
6853                         }
6854                 }
6855         }
6856
6857         dev->threaded = threaded;
6858
6859         /* Make sure kthread is created before THREADED bit
6860          * is set.
6861          */
6862         smp_mb__before_atomic();
6863
6864         /* Setting/unsetting threaded mode on a napi might not immediately
6865          * take effect, if the current napi instance is actively being
6866          * polled. In this case, the switch between threaded mode and
6867          * softirq mode will happen in the next round of napi_schedule().
6868          * This should not cause hiccups/stalls to the live traffic.
6869          */
6870         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6871                 if (threaded)
6872                         set_bit(NAPI_STATE_THREADED, &napi->state);
6873                 else
6874                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6875         }
6876
6877         return err;
6878 }
6879 EXPORT_SYMBOL(dev_set_threaded);
6880
6881 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6882                     int (*poll)(struct napi_struct *, int), int weight)
6883 {
6884         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6885                 return;
6886
6887         INIT_LIST_HEAD(&napi->poll_list);
6888         INIT_HLIST_NODE(&napi->napi_hash_node);
6889         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6890         napi->timer.function = napi_watchdog;
6891         init_gro_hash(napi);
6892         napi->skb = NULL;
6893         INIT_LIST_HEAD(&napi->rx_list);
6894         napi->rx_count = 0;
6895         napi->poll = poll;
6896         if (weight > NAPI_POLL_WEIGHT)
6897                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6898                                 weight);
6899         napi->weight = weight;
6900         napi->dev = dev;
6901 #ifdef CONFIG_NETPOLL
6902         napi->poll_owner = -1;
6903 #endif
6904         set_bit(NAPI_STATE_SCHED, &napi->state);
6905         set_bit(NAPI_STATE_NPSVC, &napi->state);
6906         list_add_rcu(&napi->dev_list, &dev->napi_list);
6907         napi_hash_add(napi);
6908         /* Create kthread for this napi if dev->threaded is set.
6909          * Clear dev->threaded if kthread creation failed so that
6910          * threaded mode will not be enabled in napi_enable().
6911          */
6912         if (dev->threaded && napi_kthread_create(napi))
6913                 dev->threaded = 0;
6914 }
6915 EXPORT_SYMBOL(netif_napi_add);
6916
6917 void napi_disable(struct napi_struct *n)
6918 {
6919         might_sleep();
6920         set_bit(NAPI_STATE_DISABLE, &n->state);
6921
6922         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6923                 msleep(1);
6924         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6925                 msleep(1);
6926
6927         hrtimer_cancel(&n->timer);
6928
6929         clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6930         clear_bit(NAPI_STATE_DISABLE, &n->state);
6931         clear_bit(NAPI_STATE_THREADED, &n->state);
6932 }
6933 EXPORT_SYMBOL(napi_disable);
6934
6935 /**
6936  *      napi_enable - enable NAPI scheduling
6937  *      @n: NAPI context
6938  *
6939  * Resume NAPI from being scheduled on this context.
6940  * Must be paired with napi_disable.
6941  */
6942 void napi_enable(struct napi_struct *n)
6943 {
6944         unsigned long val, new;
6945
6946         do {
6947                 val = READ_ONCE(n->state);
6948                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6949
6950                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6951                 if (n->dev->threaded && n->thread)
6952                         new |= NAPIF_STATE_THREADED;
6953         } while (cmpxchg(&n->state, val, new) != val);
6954 }
6955 EXPORT_SYMBOL(napi_enable);
6956
6957 static void flush_gro_hash(struct napi_struct *napi)
6958 {
6959         int i;
6960
6961         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6962                 struct sk_buff *skb, *n;
6963
6964                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6965                         kfree_skb(skb);
6966                 napi->gro_hash[i].count = 0;
6967         }
6968 }
6969
6970 /* Must be called in process context */
6971 void __netif_napi_del(struct napi_struct *napi)
6972 {
6973         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6974                 return;
6975
6976         napi_hash_del(napi);
6977         list_del_rcu(&napi->dev_list);
6978         napi_free_frags(napi);
6979
6980         flush_gro_hash(napi);
6981         napi->gro_bitmask = 0;
6982
6983         if (napi->thread) {
6984                 kthread_stop(napi->thread);
6985                 napi->thread = NULL;
6986         }
6987 }
6988 EXPORT_SYMBOL(__netif_napi_del);
6989
6990 static int __napi_poll(struct napi_struct *n, bool *repoll)
6991 {
6992         int work, weight;
6993
6994         weight = n->weight;
6995
6996         /* This NAPI_STATE_SCHED test is for avoiding a race
6997          * with netpoll's poll_napi().  Only the entity which
6998          * obtains the lock and sees NAPI_STATE_SCHED set will
6999          * actually make the ->poll() call.  Therefore we avoid
7000          * accidentally calling ->poll() when NAPI is not scheduled.
7001          */
7002         work = 0;
7003         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
7004                 work = n->poll(n, weight);
7005                 trace_napi_poll(n, work, weight);
7006         }
7007
7008         if (unlikely(work > weight))
7009                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7010                             n->poll, work, weight);
7011
7012         if (likely(work < weight))
7013                 return work;
7014
7015         /* Drivers must not modify the NAPI state if they
7016          * consume the entire weight.  In such cases this code
7017          * still "owns" the NAPI instance and therefore can
7018          * move the instance around on the list at-will.
7019          */
7020         if (unlikely(napi_disable_pending(n))) {
7021                 napi_complete(n);
7022                 return work;
7023         }
7024
7025         /* The NAPI context has more processing work, but busy-polling
7026          * is preferred. Exit early.
7027          */
7028         if (napi_prefer_busy_poll(n)) {
7029                 if (napi_complete_done(n, work)) {
7030                         /* If timeout is not set, we need to make sure
7031                          * that the NAPI is re-scheduled.
7032                          */
7033                         napi_schedule(n);
7034                 }
7035                 return work;
7036         }
7037
7038         if (n->gro_bitmask) {
7039                 /* flush too old packets
7040                  * If HZ < 1000, flush all packets.
7041                  */
7042                 napi_gro_flush(n, HZ >= 1000);
7043         }
7044
7045         gro_normal_list(n);
7046
7047         /* Some drivers may have called napi_schedule
7048          * prior to exhausting their budget.
7049          */
7050         if (unlikely(!list_empty(&n->poll_list))) {
7051                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7052                              n->dev ? n->dev->name : "backlog");
7053                 return work;
7054         }
7055
7056         *repoll = true;
7057
7058         return work;
7059 }
7060
7061 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7062 {
7063         bool do_repoll = false;
7064         void *have;
7065         int work;
7066
7067         list_del_init(&n->poll_list);
7068
7069         have = netpoll_poll_lock(n);
7070
7071         work = __napi_poll(n, &do_repoll);
7072
7073         if (do_repoll)
7074                 list_add_tail(&n->poll_list, repoll);
7075
7076         netpoll_poll_unlock(have);
7077
7078         return work;
7079 }
7080
7081 static int napi_thread_wait(struct napi_struct *napi)
7082 {
7083         bool woken = false;
7084
7085         set_current_state(TASK_INTERRUPTIBLE);
7086
7087         while (!kthread_should_stop()) {
7088                 /* Testing SCHED_THREADED bit here to make sure the current
7089                  * kthread owns this napi and could poll on this napi.
7090                  * Testing SCHED bit is not enough because SCHED bit might be
7091                  * set by some other busy poll thread or by napi_disable().
7092                  */
7093                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7094                         WARN_ON(!list_empty(&napi->poll_list));
7095                         __set_current_state(TASK_RUNNING);
7096                         return 0;
7097                 }
7098
7099                 schedule();
7100                 /* woken being true indicates this thread owns this napi. */
7101                 woken = true;
7102                 set_current_state(TASK_INTERRUPTIBLE);
7103         }
7104         __set_current_state(TASK_RUNNING);
7105
7106         return -1;
7107 }
7108
7109 static int napi_threaded_poll(void *data)
7110 {
7111         struct napi_struct *napi = data;
7112         void *have;
7113
7114         while (!napi_thread_wait(napi)) {
7115                 for (;;) {
7116                         bool repoll = false;
7117
7118                         local_bh_disable();
7119
7120                         have = netpoll_poll_lock(napi);
7121                         __napi_poll(napi, &repoll);
7122                         netpoll_poll_unlock(have);
7123
7124                         local_bh_enable();
7125
7126                         if (!repoll)
7127                                 break;
7128
7129                         cond_resched();
7130                 }
7131         }
7132         return 0;
7133 }
7134
7135 static __latent_entropy void net_rx_action(struct softirq_action *h)
7136 {
7137         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7138         unsigned long time_limit = jiffies +
7139                 usecs_to_jiffies(netdev_budget_usecs);
7140         int budget = netdev_budget;
7141         LIST_HEAD(list);
7142         LIST_HEAD(repoll);
7143
7144         local_irq_disable();
7145         list_splice_init(&sd->poll_list, &list);
7146         local_irq_enable();
7147
7148         for (;;) {
7149                 struct napi_struct *n;
7150
7151                 if (list_empty(&list)) {
7152                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7153                                 return;
7154                         break;
7155                 }
7156
7157                 n = list_first_entry(&list, struct napi_struct, poll_list);
7158                 budget -= napi_poll(n, &repoll);
7159
7160                 /* If softirq window is exhausted then punt.
7161                  * Allow this to run for 2 jiffies since which will allow
7162                  * an average latency of 1.5/HZ.
7163                  */
7164                 if (unlikely(budget <= 0 ||
7165                              time_after_eq(jiffies, time_limit))) {
7166                         sd->time_squeeze++;
7167                         break;
7168                 }
7169         }
7170
7171         local_irq_disable();
7172
7173         list_splice_tail_init(&sd->poll_list, &list);
7174         list_splice_tail(&repoll, &list);
7175         list_splice(&list, &sd->poll_list);
7176         if (!list_empty(&sd->poll_list))
7177                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7178
7179         net_rps_action_and_irq_enable(sd);
7180 }
7181
7182 struct netdev_adjacent {
7183         struct net_device *dev;
7184
7185         /* upper master flag, there can only be one master device per list */
7186         bool master;
7187
7188         /* lookup ignore flag */
7189         bool ignore;
7190
7191         /* counter for the number of times this device was added to us */
7192         u16 ref_nr;
7193
7194         /* private field for the users */
7195         void *private;
7196
7197         struct list_head list;
7198         struct rcu_head rcu;
7199 };
7200
7201 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7202                                                  struct list_head *adj_list)
7203 {
7204         struct netdev_adjacent *adj;
7205
7206         list_for_each_entry(adj, adj_list, list) {
7207                 if (adj->dev == adj_dev)
7208                         return adj;
7209         }
7210         return NULL;
7211 }
7212
7213 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7214                                     struct netdev_nested_priv *priv)
7215 {
7216         struct net_device *dev = (struct net_device *)priv->data;
7217
7218         return upper_dev == dev;
7219 }
7220
7221 /**
7222  * netdev_has_upper_dev - Check if device is linked to an upper device
7223  * @dev: device
7224  * @upper_dev: upper device to check
7225  *
7226  * Find out if a device is linked to specified upper device and return true
7227  * in case it is. Note that this checks only immediate upper device,
7228  * not through a complete stack of devices. The caller must hold the RTNL lock.
7229  */
7230 bool netdev_has_upper_dev(struct net_device *dev,
7231                           struct net_device *upper_dev)
7232 {
7233         struct netdev_nested_priv priv = {
7234                 .data = (void *)upper_dev,
7235         };
7236
7237         ASSERT_RTNL();
7238
7239         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7240                                              &priv);
7241 }
7242 EXPORT_SYMBOL(netdev_has_upper_dev);
7243
7244 /**
7245  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7246  * @dev: device
7247  * @upper_dev: upper device to check
7248  *
7249  * Find out if a device is linked to specified upper device and return true
7250  * in case it is. Note that this checks the entire upper device chain.
7251  * The caller must hold rcu lock.
7252  */
7253
7254 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7255                                   struct net_device *upper_dev)
7256 {
7257         struct netdev_nested_priv priv = {
7258                 .data = (void *)upper_dev,
7259         };
7260
7261         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7262                                                &priv);
7263 }
7264 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7265
7266 /**
7267  * netdev_has_any_upper_dev - Check if device is linked to some device
7268  * @dev: device
7269  *
7270  * Find out if a device is linked to an upper device and return true in case
7271  * it is. The caller must hold the RTNL lock.
7272  */
7273 bool netdev_has_any_upper_dev(struct net_device *dev)
7274 {
7275         ASSERT_RTNL();
7276
7277         return !list_empty(&dev->adj_list.upper);
7278 }
7279 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7280
7281 /**
7282  * netdev_master_upper_dev_get - Get master upper device
7283  * @dev: device
7284  *
7285  * Find a master upper device and return pointer to it or NULL in case
7286  * it's not there. The caller must hold the RTNL lock.
7287  */
7288 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7289 {
7290         struct netdev_adjacent *upper;
7291
7292         ASSERT_RTNL();
7293
7294         if (list_empty(&dev->adj_list.upper))
7295                 return NULL;
7296
7297         upper = list_first_entry(&dev->adj_list.upper,
7298                                  struct netdev_adjacent, list);
7299         if (likely(upper->master))
7300                 return upper->dev;
7301         return NULL;
7302 }
7303 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7304
7305 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7306 {
7307         struct netdev_adjacent *upper;
7308
7309         ASSERT_RTNL();
7310
7311         if (list_empty(&dev->adj_list.upper))
7312                 return NULL;
7313
7314         upper = list_first_entry(&dev->adj_list.upper,
7315                                  struct netdev_adjacent, list);
7316         if (likely(upper->master) && !upper->ignore)
7317                 return upper->dev;
7318         return NULL;
7319 }
7320
7321 /**
7322  * netdev_has_any_lower_dev - Check if device is linked to some device
7323  * @dev: device
7324  *
7325  * Find out if a device is linked to a lower device and return true in case
7326  * it is. The caller must hold the RTNL lock.
7327  */
7328 static bool netdev_has_any_lower_dev(struct net_device *dev)
7329 {
7330         ASSERT_RTNL();
7331
7332         return !list_empty(&dev->adj_list.lower);
7333 }
7334
7335 void *netdev_adjacent_get_private(struct list_head *adj_list)
7336 {
7337         struct netdev_adjacent *adj;
7338
7339         adj = list_entry(adj_list, struct netdev_adjacent, list);
7340
7341         return adj->private;
7342 }
7343 EXPORT_SYMBOL(netdev_adjacent_get_private);
7344
7345 /**
7346  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7347  * @dev: device
7348  * @iter: list_head ** of the current position
7349  *
7350  * Gets the next device from the dev's upper list, starting from iter
7351  * position. The caller must hold RCU read lock.
7352  */
7353 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7354                                                  struct list_head **iter)
7355 {
7356         struct netdev_adjacent *upper;
7357
7358         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7359
7360         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7361
7362         if (&upper->list == &dev->adj_list.upper)
7363                 return NULL;
7364
7365         *iter = &upper->list;
7366
7367         return upper->dev;
7368 }
7369 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7370
7371 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7372                                                   struct list_head **iter,
7373                                                   bool *ignore)
7374 {
7375         struct netdev_adjacent *upper;
7376
7377         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7378
7379         if (&upper->list == &dev->adj_list.upper)
7380                 return NULL;
7381
7382         *iter = &upper->list;
7383         *ignore = upper->ignore;
7384
7385         return upper->dev;
7386 }
7387
7388 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7389                                                     struct list_head **iter)
7390 {
7391         struct netdev_adjacent *upper;
7392
7393         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7394
7395         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7396
7397         if (&upper->list == &dev->adj_list.upper)
7398                 return NULL;
7399
7400         *iter = &upper->list;
7401
7402         return upper->dev;
7403 }
7404
7405 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7406                                        int (*fn)(struct net_device *dev,
7407                                          struct netdev_nested_priv *priv),
7408                                        struct netdev_nested_priv *priv)
7409 {
7410         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7411         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7412         int ret, cur = 0;
7413         bool ignore;
7414
7415         now = dev;
7416         iter = &dev->adj_list.upper;
7417
7418         while (1) {
7419                 if (now != dev) {
7420                         ret = fn(now, priv);
7421                         if (ret)
7422                                 return ret;
7423                 }
7424
7425                 next = NULL;
7426                 while (1) {
7427                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7428                         if (!udev)
7429                                 break;
7430                         if (ignore)
7431                                 continue;
7432
7433                         next = udev;
7434                         niter = &udev->adj_list.upper;
7435                         dev_stack[cur] = now;
7436                         iter_stack[cur++] = iter;
7437                         break;
7438                 }
7439
7440                 if (!next) {
7441                         if (!cur)
7442                                 return 0;
7443                         next = dev_stack[--cur];
7444                         niter = iter_stack[cur];
7445                 }
7446
7447                 now = next;
7448                 iter = niter;
7449         }
7450
7451         return 0;
7452 }
7453
7454 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7455                                   int (*fn)(struct net_device *dev,
7456                                             struct netdev_nested_priv *priv),
7457                                   struct netdev_nested_priv *priv)
7458 {
7459         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7460         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7461         int ret, cur = 0;
7462
7463         now = dev;
7464         iter = &dev->adj_list.upper;
7465
7466         while (1) {
7467                 if (now != dev) {
7468                         ret = fn(now, priv);
7469                         if (ret)
7470                                 return ret;
7471                 }
7472
7473                 next = NULL;
7474                 while (1) {
7475                         udev = netdev_next_upper_dev_rcu(now, &iter);
7476                         if (!udev)
7477                                 break;
7478
7479                         next = udev;
7480                         niter = &udev->adj_list.upper;
7481                         dev_stack[cur] = now;
7482                         iter_stack[cur++] = iter;
7483                         break;
7484                 }
7485
7486                 if (!next) {
7487                         if (!cur)
7488                                 return 0;
7489                         next = dev_stack[--cur];
7490                         niter = iter_stack[cur];
7491                 }
7492
7493                 now = next;
7494                 iter = niter;
7495         }
7496
7497         return 0;
7498 }
7499 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7500
7501 static bool __netdev_has_upper_dev(struct net_device *dev,
7502                                    struct net_device *upper_dev)
7503 {
7504         struct netdev_nested_priv priv = {
7505                 .flags = 0,
7506                 .data = (void *)upper_dev,
7507         };
7508
7509         ASSERT_RTNL();
7510
7511         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7512                                            &priv);
7513 }
7514
7515 /**
7516  * netdev_lower_get_next_private - Get the next ->private from the
7517  *                                 lower neighbour list
7518  * @dev: device
7519  * @iter: list_head ** of the current position
7520  *
7521  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7522  * list, starting from iter position. The caller must hold either hold the
7523  * RTNL lock or its own locking that guarantees that the neighbour lower
7524  * list will remain unchanged.
7525  */
7526 void *netdev_lower_get_next_private(struct net_device *dev,
7527                                     struct list_head **iter)
7528 {
7529         struct netdev_adjacent *lower;
7530
7531         lower = list_entry(*iter, struct netdev_adjacent, list);
7532
7533         if (&lower->list == &dev->adj_list.lower)
7534                 return NULL;
7535
7536         *iter = lower->list.next;
7537
7538         return lower->private;
7539 }
7540 EXPORT_SYMBOL(netdev_lower_get_next_private);
7541
7542 /**
7543  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7544  *                                     lower neighbour list, RCU
7545  *                                     variant
7546  * @dev: device
7547  * @iter: list_head ** of the current position
7548  *
7549  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7550  * list, starting from iter position. The caller must hold RCU read lock.
7551  */
7552 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7553                                         struct list_head **iter)
7554 {
7555         struct netdev_adjacent *lower;
7556
7557         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7558
7559         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7560
7561         if (&lower->list == &dev->adj_list.lower)
7562                 return NULL;
7563
7564         *iter = &lower->list;
7565
7566         return lower->private;
7567 }
7568 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7569
7570 /**
7571  * netdev_lower_get_next - Get the next device from the lower neighbour
7572  *                         list
7573  * @dev: device
7574  * @iter: list_head ** of the current position
7575  *
7576  * Gets the next netdev_adjacent from the dev's lower neighbour
7577  * list, starting from iter position. The caller must hold RTNL lock or
7578  * its own locking that guarantees that the neighbour lower
7579  * list will remain unchanged.
7580  */
7581 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7582 {
7583         struct netdev_adjacent *lower;
7584
7585         lower = list_entry(*iter, struct netdev_adjacent, list);
7586
7587         if (&lower->list == &dev->adj_list.lower)
7588                 return NULL;
7589
7590         *iter = lower->list.next;
7591
7592         return lower->dev;
7593 }
7594 EXPORT_SYMBOL(netdev_lower_get_next);
7595
7596 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7597                                                 struct list_head **iter)
7598 {
7599         struct netdev_adjacent *lower;
7600
7601         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7602
7603         if (&lower->list == &dev->adj_list.lower)
7604                 return NULL;
7605
7606         *iter = &lower->list;
7607
7608         return lower->dev;
7609 }
7610
7611 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7612                                                   struct list_head **iter,
7613                                                   bool *ignore)
7614 {
7615         struct netdev_adjacent *lower;
7616
7617         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7618
7619         if (&lower->list == &dev->adj_list.lower)
7620                 return NULL;
7621
7622         *iter = &lower->list;
7623         *ignore = lower->ignore;
7624
7625         return lower->dev;
7626 }
7627
7628 int netdev_walk_all_lower_dev(struct net_device *dev,
7629                               int (*fn)(struct net_device *dev,
7630                                         struct netdev_nested_priv *priv),
7631                               struct netdev_nested_priv *priv)
7632 {
7633         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7634         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7635         int ret, cur = 0;
7636
7637         now = dev;
7638         iter = &dev->adj_list.lower;
7639
7640         while (1) {
7641                 if (now != dev) {
7642                         ret = fn(now, priv);
7643                         if (ret)
7644                                 return ret;
7645                 }
7646
7647                 next = NULL;
7648                 while (1) {
7649                         ldev = netdev_next_lower_dev(now, &iter);
7650                         if (!ldev)
7651                                 break;
7652
7653                         next = ldev;
7654                         niter = &ldev->adj_list.lower;
7655                         dev_stack[cur] = now;
7656                         iter_stack[cur++] = iter;
7657                         break;
7658                 }
7659
7660                 if (!next) {
7661                         if (!cur)
7662                                 return 0;
7663                         next = dev_stack[--cur];
7664                         niter = iter_stack[cur];
7665                 }
7666
7667                 now = next;
7668                 iter = niter;
7669         }
7670
7671         return 0;
7672 }
7673 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7674
7675 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7676                                        int (*fn)(struct net_device *dev,
7677                                          struct netdev_nested_priv *priv),
7678                                        struct netdev_nested_priv *priv)
7679 {
7680         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7681         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7682         int ret, cur = 0;
7683         bool ignore;
7684
7685         now = dev;
7686         iter = &dev->adj_list.lower;
7687
7688         while (1) {
7689                 if (now != dev) {
7690                         ret = fn(now, priv);
7691                         if (ret)
7692                                 return ret;
7693                 }
7694
7695                 next = NULL;
7696                 while (1) {
7697                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7698                         if (!ldev)
7699                                 break;
7700                         if (ignore)
7701                                 continue;
7702
7703                         next = ldev;
7704                         niter = &ldev->adj_list.lower;
7705                         dev_stack[cur] = now;
7706                         iter_stack[cur++] = iter;
7707                         break;
7708                 }
7709
7710                 if (!next) {
7711                         if (!cur)
7712                                 return 0;
7713                         next = dev_stack[--cur];
7714                         niter = iter_stack[cur];
7715                 }
7716
7717                 now = next;
7718                 iter = niter;
7719         }
7720
7721         return 0;
7722 }
7723
7724 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7725                                              struct list_head **iter)
7726 {
7727         struct netdev_adjacent *lower;
7728
7729         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7730         if (&lower->list == &dev->adj_list.lower)
7731                 return NULL;
7732
7733         *iter = &lower->list;
7734
7735         return lower->dev;
7736 }
7737 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7738
7739 static u8 __netdev_upper_depth(struct net_device *dev)
7740 {
7741         struct net_device *udev;
7742         struct list_head *iter;
7743         u8 max_depth = 0;
7744         bool ignore;
7745
7746         for (iter = &dev->adj_list.upper,
7747              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7748              udev;
7749              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7750                 if (ignore)
7751                         continue;
7752                 if (max_depth < udev->upper_level)
7753                         max_depth = udev->upper_level;
7754         }
7755
7756         return max_depth;
7757 }
7758
7759 static u8 __netdev_lower_depth(struct net_device *dev)
7760 {
7761         struct net_device *ldev;
7762         struct list_head *iter;
7763         u8 max_depth = 0;
7764         bool ignore;
7765
7766         for (iter = &dev->adj_list.lower,
7767              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7768              ldev;
7769              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7770                 if (ignore)
7771                         continue;
7772                 if (max_depth < ldev->lower_level)
7773                         max_depth = ldev->lower_level;
7774         }
7775
7776         return max_depth;
7777 }
7778
7779 static int __netdev_update_upper_level(struct net_device *dev,
7780                                        struct netdev_nested_priv *__unused)
7781 {
7782         dev->upper_level = __netdev_upper_depth(dev) + 1;
7783         return 0;
7784 }
7785
7786 static int __netdev_update_lower_level(struct net_device *dev,
7787                                        struct netdev_nested_priv *priv)
7788 {
7789         dev->lower_level = __netdev_lower_depth(dev) + 1;
7790
7791 #ifdef CONFIG_LOCKDEP
7792         if (!priv)
7793                 return 0;
7794
7795         if (priv->flags & NESTED_SYNC_IMM)
7796                 dev->nested_level = dev->lower_level - 1;
7797         if (priv->flags & NESTED_SYNC_TODO)
7798                 net_unlink_todo(dev);
7799 #endif
7800         return 0;
7801 }
7802
7803 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7804                                   int (*fn)(struct net_device *dev,
7805                                             struct netdev_nested_priv *priv),
7806                                   struct netdev_nested_priv *priv)
7807 {
7808         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7809         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7810         int ret, cur = 0;
7811
7812         now = dev;
7813         iter = &dev->adj_list.lower;
7814
7815         while (1) {
7816                 if (now != dev) {
7817                         ret = fn(now, priv);
7818                         if (ret)
7819                                 return ret;
7820                 }
7821
7822                 next = NULL;
7823                 while (1) {
7824                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7825                         if (!ldev)
7826                                 break;
7827
7828                         next = ldev;
7829                         niter = &ldev->adj_list.lower;
7830                         dev_stack[cur] = now;
7831                         iter_stack[cur++] = iter;
7832                         break;
7833                 }
7834
7835                 if (!next) {
7836                         if (!cur)
7837                                 return 0;
7838                         next = dev_stack[--cur];
7839                         niter = iter_stack[cur];
7840                 }
7841
7842                 now = next;
7843                 iter = niter;
7844         }
7845
7846         return 0;
7847 }
7848 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7849
7850 /**
7851  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7852  *                                     lower neighbour list, RCU
7853  *                                     variant
7854  * @dev: device
7855  *
7856  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7857  * list. The caller must hold RCU read lock.
7858  */
7859 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7860 {
7861         struct netdev_adjacent *lower;
7862
7863         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7864                         struct netdev_adjacent, list);
7865         if (lower)
7866                 return lower->private;
7867         return NULL;
7868 }
7869 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7870
7871 /**
7872  * netdev_master_upper_dev_get_rcu - Get master upper device
7873  * @dev: device
7874  *
7875  * Find a master upper device and return pointer to it or NULL in case
7876  * it's not there. The caller must hold the RCU read lock.
7877  */
7878 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7879 {
7880         struct netdev_adjacent *upper;
7881
7882         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7883                                        struct netdev_adjacent, list);
7884         if (upper && likely(upper->master))
7885                 return upper->dev;
7886         return NULL;
7887 }
7888 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7889
7890 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7891                               struct net_device *adj_dev,
7892                               struct list_head *dev_list)
7893 {
7894         char linkname[IFNAMSIZ+7];
7895
7896         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7897                 "upper_%s" : "lower_%s", adj_dev->name);
7898         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7899                                  linkname);
7900 }
7901 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7902                                char *name,
7903                                struct list_head *dev_list)
7904 {
7905         char linkname[IFNAMSIZ+7];
7906
7907         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7908                 "upper_%s" : "lower_%s", name);
7909         sysfs_remove_link(&(dev->dev.kobj), linkname);
7910 }
7911
7912 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7913                                                  struct net_device *adj_dev,
7914                                                  struct list_head *dev_list)
7915 {
7916         return (dev_list == &dev->adj_list.upper ||
7917                 dev_list == &dev->adj_list.lower) &&
7918                 net_eq(dev_net(dev), dev_net(adj_dev));
7919 }
7920
7921 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7922                                         struct net_device *adj_dev,
7923                                         struct list_head *dev_list,
7924                                         void *private, bool master)
7925 {
7926         struct netdev_adjacent *adj;
7927         int ret;
7928
7929         adj = __netdev_find_adj(adj_dev, dev_list);
7930
7931         if (adj) {
7932                 adj->ref_nr += 1;
7933                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7934                          dev->name, adj_dev->name, adj->ref_nr);
7935
7936                 return 0;
7937         }
7938
7939         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7940         if (!adj)
7941                 return -ENOMEM;
7942
7943         adj->dev = adj_dev;
7944         adj->master = master;
7945         adj->ref_nr = 1;
7946         adj->private = private;
7947         adj->ignore = false;
7948         dev_hold(adj_dev);
7949
7950         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7951                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7952
7953         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7954                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7955                 if (ret)
7956                         goto free_adj;
7957         }
7958
7959         /* Ensure that master link is always the first item in list. */
7960         if (master) {
7961                 ret = sysfs_create_link(&(dev->dev.kobj),
7962                                         &(adj_dev->dev.kobj), "master");
7963                 if (ret)
7964                         goto remove_symlinks;
7965
7966                 list_add_rcu(&adj->list, dev_list);
7967         } else {
7968                 list_add_tail_rcu(&adj->list, dev_list);
7969         }
7970
7971         return 0;
7972
7973 remove_symlinks:
7974         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7975                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7976 free_adj:
7977         kfree(adj);
7978         dev_put(adj_dev);
7979
7980         return ret;
7981 }
7982
7983 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7984                                          struct net_device *adj_dev,
7985                                          u16 ref_nr,
7986                                          struct list_head *dev_list)
7987 {
7988         struct netdev_adjacent *adj;
7989
7990         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7991                  dev->name, adj_dev->name, ref_nr);
7992
7993         adj = __netdev_find_adj(adj_dev, dev_list);
7994
7995         if (!adj) {
7996                 pr_err("Adjacency does not exist for device %s from %s\n",
7997                        dev->name, adj_dev->name);
7998                 WARN_ON(1);
7999                 return;
8000         }
8001
8002         if (adj->ref_nr > ref_nr) {
8003                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8004                          dev->name, adj_dev->name, ref_nr,
8005                          adj->ref_nr - ref_nr);
8006                 adj->ref_nr -= ref_nr;
8007                 return;
8008         }
8009
8010         if (adj->master)
8011                 sysfs_remove_link(&(dev->dev.kobj), "master");
8012
8013         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8014                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8015
8016         list_del_rcu(&adj->list);
8017         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8018                  adj_dev->name, dev->name, adj_dev->name);
8019         dev_put(adj_dev);
8020         kfree_rcu(adj, rcu);
8021 }
8022
8023 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8024                                             struct net_device *upper_dev,
8025                                             struct list_head *up_list,
8026                                             struct list_head *down_list,
8027                                             void *private, bool master)
8028 {
8029         int ret;
8030
8031         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8032                                            private, master);
8033         if (ret)
8034                 return ret;
8035
8036         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8037                                            private, false);
8038         if (ret) {
8039                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8040                 return ret;
8041         }
8042
8043         return 0;
8044 }
8045
8046 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8047                                                struct net_device *upper_dev,
8048                                                u16 ref_nr,
8049                                                struct list_head *up_list,
8050                                                struct list_head *down_list)
8051 {
8052         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8053         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8054 }
8055
8056 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8057                                                 struct net_device *upper_dev,
8058                                                 void *private, bool master)
8059 {
8060         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8061                                                 &dev->adj_list.upper,
8062                                                 &upper_dev->adj_list.lower,
8063                                                 private, master);
8064 }
8065
8066 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8067                                                    struct net_device *upper_dev)
8068 {
8069         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8070                                            &dev->adj_list.upper,
8071                                            &upper_dev->adj_list.lower);
8072 }
8073
8074 static int __netdev_upper_dev_link(struct net_device *dev,
8075                                    struct net_device *upper_dev, bool master,
8076                                    void *upper_priv, void *upper_info,
8077                                    struct netdev_nested_priv *priv,
8078                                    struct netlink_ext_ack *extack)
8079 {
8080         struct netdev_notifier_changeupper_info changeupper_info = {
8081                 .info = {
8082                         .dev = dev,
8083                         .extack = extack,
8084                 },
8085                 .upper_dev = upper_dev,
8086                 .master = master,
8087                 .linking = true,
8088                 .upper_info = upper_info,
8089         };
8090         struct net_device *master_dev;
8091         int ret = 0;
8092
8093         ASSERT_RTNL();
8094
8095         if (dev == upper_dev)
8096                 return -EBUSY;
8097
8098         /* To prevent loops, check if dev is not upper device to upper_dev. */
8099         if (__netdev_has_upper_dev(upper_dev, dev))
8100                 return -EBUSY;
8101
8102         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8103                 return -EMLINK;
8104
8105         if (!master) {
8106                 if (__netdev_has_upper_dev(dev, upper_dev))
8107                         return -EEXIST;
8108         } else {
8109                 master_dev = __netdev_master_upper_dev_get(dev);
8110                 if (master_dev)
8111                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
8112         }
8113
8114         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8115                                             &changeupper_info.info);
8116         ret = notifier_to_errno(ret);
8117         if (ret)
8118                 return ret;
8119
8120         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8121                                                    master);
8122         if (ret)
8123                 return ret;
8124
8125         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8126                                             &changeupper_info.info);
8127         ret = notifier_to_errno(ret);
8128         if (ret)
8129                 goto rollback;
8130
8131         __netdev_update_upper_level(dev, NULL);
8132         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8133
8134         __netdev_update_lower_level(upper_dev, priv);
8135         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8136                                     priv);
8137
8138         return 0;
8139
8140 rollback:
8141         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8142
8143         return ret;
8144 }
8145
8146 /**
8147  * netdev_upper_dev_link - Add a link to the upper device
8148  * @dev: device
8149  * @upper_dev: new upper device
8150  * @extack: netlink extended ack
8151  *
8152  * Adds a link to device which is upper to this one. The caller must hold
8153  * the RTNL lock. On a failure a negative errno code is returned.
8154  * On success the reference counts are adjusted and the function
8155  * returns zero.
8156  */
8157 int netdev_upper_dev_link(struct net_device *dev,
8158                           struct net_device *upper_dev,
8159                           struct netlink_ext_ack *extack)
8160 {
8161         struct netdev_nested_priv priv = {
8162                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8163                 .data = NULL,
8164         };
8165
8166         return __netdev_upper_dev_link(dev, upper_dev, false,
8167                                        NULL, NULL, &priv, extack);
8168 }
8169 EXPORT_SYMBOL(netdev_upper_dev_link);
8170
8171 /**
8172  * netdev_master_upper_dev_link - Add a master link to the upper device
8173  * @dev: device
8174  * @upper_dev: new upper device
8175  * @upper_priv: upper device private
8176  * @upper_info: upper info to be passed down via notifier
8177  * @extack: netlink extended ack
8178  *
8179  * Adds a link to device which is upper to this one. In this case, only
8180  * one master upper device can be linked, although other non-master devices
8181  * might be linked as well. The caller must hold the RTNL lock.
8182  * On a failure a negative errno code is returned. On success the reference
8183  * counts are adjusted and the function returns zero.
8184  */
8185 int netdev_master_upper_dev_link(struct net_device *dev,
8186                                  struct net_device *upper_dev,
8187                                  void *upper_priv, void *upper_info,
8188                                  struct netlink_ext_ack *extack)
8189 {
8190         struct netdev_nested_priv priv = {
8191                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8192                 .data = NULL,
8193         };
8194
8195         return __netdev_upper_dev_link(dev, upper_dev, true,
8196                                        upper_priv, upper_info, &priv, extack);
8197 }
8198 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8199
8200 static void __netdev_upper_dev_unlink(struct net_device *dev,
8201                                       struct net_device *upper_dev,
8202                                       struct netdev_nested_priv *priv)
8203 {
8204         struct netdev_notifier_changeupper_info changeupper_info = {
8205                 .info = {
8206                         .dev = dev,
8207                 },
8208                 .upper_dev = upper_dev,
8209                 .linking = false,
8210         };
8211
8212         ASSERT_RTNL();
8213
8214         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8215
8216         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8217                                       &changeupper_info.info);
8218
8219         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8220
8221         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8222                                       &changeupper_info.info);
8223
8224         __netdev_update_upper_level(dev, NULL);
8225         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8226
8227         __netdev_update_lower_level(upper_dev, priv);
8228         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8229                                     priv);
8230 }
8231
8232 /**
8233  * netdev_upper_dev_unlink - Removes a link to upper device
8234  * @dev: device
8235  * @upper_dev: new upper device
8236  *
8237  * Removes a link to device which is upper to this one. The caller must hold
8238  * the RTNL lock.
8239  */
8240 void netdev_upper_dev_unlink(struct net_device *dev,
8241                              struct net_device *upper_dev)
8242 {
8243         struct netdev_nested_priv priv = {
8244                 .flags = NESTED_SYNC_TODO,
8245                 .data = NULL,
8246         };
8247
8248         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8249 }
8250 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8251
8252 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8253                                       struct net_device *lower_dev,
8254                                       bool val)
8255 {
8256         struct netdev_adjacent *adj;
8257
8258         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8259         if (adj)
8260                 adj->ignore = val;
8261
8262         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8263         if (adj)
8264                 adj->ignore = val;
8265 }
8266
8267 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8268                                         struct net_device *lower_dev)
8269 {
8270         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8271 }
8272
8273 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8274                                        struct net_device *lower_dev)
8275 {
8276         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8277 }
8278
8279 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8280                                    struct net_device *new_dev,
8281                                    struct net_device *dev,
8282                                    struct netlink_ext_ack *extack)
8283 {
8284         struct netdev_nested_priv priv = {
8285                 .flags = 0,
8286                 .data = NULL,
8287         };
8288         int err;
8289
8290         if (!new_dev)
8291                 return 0;
8292
8293         if (old_dev && new_dev != old_dev)
8294                 netdev_adjacent_dev_disable(dev, old_dev);
8295         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8296                                       extack);
8297         if (err) {
8298                 if (old_dev && new_dev != old_dev)
8299                         netdev_adjacent_dev_enable(dev, old_dev);
8300                 return err;
8301         }
8302
8303         return 0;
8304 }
8305 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8306
8307 void netdev_adjacent_change_commit(struct net_device *old_dev,
8308                                    struct net_device *new_dev,
8309                                    struct net_device *dev)
8310 {
8311         struct netdev_nested_priv priv = {
8312                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8313                 .data = NULL,
8314         };
8315
8316         if (!new_dev || !old_dev)
8317                 return;
8318
8319         if (new_dev == old_dev)
8320                 return;
8321
8322         netdev_adjacent_dev_enable(dev, old_dev);
8323         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8324 }
8325 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8326
8327 void netdev_adjacent_change_abort(struct net_device *old_dev,
8328                                   struct net_device *new_dev,
8329                                   struct net_device *dev)
8330 {
8331         struct netdev_nested_priv priv = {
8332                 .flags = 0,
8333                 .data = NULL,
8334         };
8335
8336         if (!new_dev)
8337                 return;
8338
8339         if (old_dev && new_dev != old_dev)
8340                 netdev_adjacent_dev_enable(dev, old_dev);
8341
8342         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8343 }
8344 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8345
8346 /**
8347  * netdev_bonding_info_change - Dispatch event about slave change
8348  * @dev: device
8349  * @bonding_info: info to dispatch
8350  *
8351  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8352  * The caller must hold the RTNL lock.
8353  */
8354 void netdev_bonding_info_change(struct net_device *dev,
8355                                 struct netdev_bonding_info *bonding_info)
8356 {
8357         struct netdev_notifier_bonding_info info = {
8358                 .info.dev = dev,
8359         };
8360
8361         memcpy(&info.bonding_info, bonding_info,
8362                sizeof(struct netdev_bonding_info));
8363         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8364                                       &info.info);
8365 }
8366 EXPORT_SYMBOL(netdev_bonding_info_change);
8367
8368 /**
8369  * netdev_get_xmit_slave - Get the xmit slave of master device
8370  * @dev: device
8371  * @skb: The packet
8372  * @all_slaves: assume all the slaves are active
8373  *
8374  * The reference counters are not incremented so the caller must be
8375  * careful with locks. The caller must hold RCU lock.
8376  * %NULL is returned if no slave is found.
8377  */
8378
8379 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8380                                          struct sk_buff *skb,
8381                                          bool all_slaves)
8382 {
8383         const struct net_device_ops *ops = dev->netdev_ops;
8384
8385         if (!ops->ndo_get_xmit_slave)
8386                 return NULL;
8387         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8388 }
8389 EXPORT_SYMBOL(netdev_get_xmit_slave);
8390
8391 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8392                                                   struct sock *sk)
8393 {
8394         const struct net_device_ops *ops = dev->netdev_ops;
8395
8396         if (!ops->ndo_sk_get_lower_dev)
8397                 return NULL;
8398         return ops->ndo_sk_get_lower_dev(dev, sk);
8399 }
8400
8401 /**
8402  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8403  * @dev: device
8404  * @sk: the socket
8405  *
8406  * %NULL is returned if no lower device is found.
8407  */
8408
8409 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8410                                             struct sock *sk)
8411 {
8412         struct net_device *lower;
8413
8414         lower = netdev_sk_get_lower_dev(dev, sk);
8415         while (lower) {
8416                 dev = lower;
8417                 lower = netdev_sk_get_lower_dev(dev, sk);
8418         }
8419
8420         return dev;
8421 }
8422 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8423
8424 static void netdev_adjacent_add_links(struct net_device *dev)
8425 {
8426         struct netdev_adjacent *iter;
8427
8428         struct net *net = dev_net(dev);
8429
8430         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8431                 if (!net_eq(net, dev_net(iter->dev)))
8432                         continue;
8433                 netdev_adjacent_sysfs_add(iter->dev, dev,
8434                                           &iter->dev->adj_list.lower);
8435                 netdev_adjacent_sysfs_add(dev, iter->dev,
8436                                           &dev->adj_list.upper);
8437         }
8438
8439         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8440                 if (!net_eq(net, dev_net(iter->dev)))
8441                         continue;
8442                 netdev_adjacent_sysfs_add(iter->dev, dev,
8443                                           &iter->dev->adj_list.upper);
8444                 netdev_adjacent_sysfs_add(dev, iter->dev,
8445                                           &dev->adj_list.lower);
8446         }
8447 }
8448
8449 static void netdev_adjacent_del_links(struct net_device *dev)
8450 {
8451         struct netdev_adjacent *iter;
8452
8453         struct net *net = dev_net(dev);
8454
8455         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8456                 if (!net_eq(net, dev_net(iter->dev)))
8457                         continue;
8458                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8459                                           &iter->dev->adj_list.lower);
8460                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8461                                           &dev->adj_list.upper);
8462         }
8463
8464         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8465                 if (!net_eq(net, dev_net(iter->dev)))
8466                         continue;
8467                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8468                                           &iter->dev->adj_list.upper);
8469                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8470                                           &dev->adj_list.lower);
8471         }
8472 }
8473
8474 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8475 {
8476         struct netdev_adjacent *iter;
8477
8478         struct net *net = dev_net(dev);
8479
8480         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8481                 if (!net_eq(net, dev_net(iter->dev)))
8482                         continue;
8483                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8484                                           &iter->dev->adj_list.lower);
8485                 netdev_adjacent_sysfs_add(iter->dev, dev,
8486                                           &iter->dev->adj_list.lower);
8487         }
8488
8489         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8490                 if (!net_eq(net, dev_net(iter->dev)))
8491                         continue;
8492                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8493                                           &iter->dev->adj_list.upper);
8494                 netdev_adjacent_sysfs_add(iter->dev, dev,
8495                                           &iter->dev->adj_list.upper);
8496         }
8497 }
8498
8499 void *netdev_lower_dev_get_private(struct net_device *dev,
8500                                    struct net_device *lower_dev)
8501 {
8502         struct netdev_adjacent *lower;
8503
8504         if (!lower_dev)
8505                 return NULL;
8506         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8507         if (!lower)
8508                 return NULL;
8509
8510         return lower->private;
8511 }
8512 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8513
8514
8515 /**
8516  * netdev_lower_state_changed - Dispatch event about lower device state change
8517  * @lower_dev: device
8518  * @lower_state_info: state to dispatch
8519  *
8520  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8521  * The caller must hold the RTNL lock.
8522  */
8523 void netdev_lower_state_changed(struct net_device *lower_dev,
8524                                 void *lower_state_info)
8525 {
8526         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8527                 .info.dev = lower_dev,
8528         };
8529
8530         ASSERT_RTNL();
8531         changelowerstate_info.lower_state_info = lower_state_info;
8532         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8533                                       &changelowerstate_info.info);
8534 }
8535 EXPORT_SYMBOL(netdev_lower_state_changed);
8536
8537 static void dev_change_rx_flags(struct net_device *dev, int flags)
8538 {
8539         const struct net_device_ops *ops = dev->netdev_ops;
8540
8541         if (ops->ndo_change_rx_flags)
8542                 ops->ndo_change_rx_flags(dev, flags);
8543 }
8544
8545 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8546 {
8547         unsigned int old_flags = dev->flags;
8548         kuid_t uid;
8549         kgid_t gid;
8550
8551         ASSERT_RTNL();
8552
8553         dev->flags |= IFF_PROMISC;
8554         dev->promiscuity += inc;
8555         if (dev->promiscuity == 0) {
8556                 /*
8557                  * Avoid overflow.
8558                  * If inc causes overflow, untouch promisc and return error.
8559                  */
8560                 if (inc < 0)
8561                         dev->flags &= ~IFF_PROMISC;
8562                 else {
8563                         dev->promiscuity -= inc;
8564                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8565                                 dev->name);
8566                         return -EOVERFLOW;
8567                 }
8568         }
8569         if (dev->flags != old_flags) {
8570                 pr_info("device %s %s promiscuous mode\n",
8571                         dev->name,
8572                         dev->flags & IFF_PROMISC ? "entered" : "left");
8573                 if (audit_enabled) {
8574                         current_uid_gid(&uid, &gid);
8575                         audit_log(audit_context(), GFP_ATOMIC,
8576                                   AUDIT_ANOM_PROMISCUOUS,
8577                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8578                                   dev->name, (dev->flags & IFF_PROMISC),
8579                                   (old_flags & IFF_PROMISC),
8580                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8581                                   from_kuid(&init_user_ns, uid),
8582                                   from_kgid(&init_user_ns, gid),
8583                                   audit_get_sessionid(current));
8584                 }
8585
8586                 dev_change_rx_flags(dev, IFF_PROMISC);
8587         }
8588         if (notify)
8589                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8590         return 0;
8591 }
8592
8593 /**
8594  *      dev_set_promiscuity     - update promiscuity count on a device
8595  *      @dev: device
8596  *      @inc: modifier
8597  *
8598  *      Add or remove promiscuity from a device. While the count in the device
8599  *      remains above zero the interface remains promiscuous. Once it hits zero
8600  *      the device reverts back to normal filtering operation. A negative inc
8601  *      value is used to drop promiscuity on the device.
8602  *      Return 0 if successful or a negative errno code on error.
8603  */
8604 int dev_set_promiscuity(struct net_device *dev, int inc)
8605 {
8606         unsigned int old_flags = dev->flags;
8607         int err;
8608
8609         err = __dev_set_promiscuity(dev, inc, true);
8610         if (err < 0)
8611                 return err;
8612         if (dev->flags != old_flags)
8613                 dev_set_rx_mode(dev);
8614         return err;
8615 }
8616 EXPORT_SYMBOL(dev_set_promiscuity);
8617
8618 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8619 {
8620         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8621
8622         ASSERT_RTNL();
8623
8624         dev->flags |= IFF_ALLMULTI;
8625         dev->allmulti += inc;
8626         if (dev->allmulti == 0) {
8627                 /*
8628                  * Avoid overflow.
8629                  * If inc causes overflow, untouch allmulti and return error.
8630                  */
8631                 if (inc < 0)
8632                         dev->flags &= ~IFF_ALLMULTI;
8633                 else {
8634                         dev->allmulti -= inc;
8635                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8636                                 dev->name);
8637                         return -EOVERFLOW;
8638                 }
8639         }
8640         if (dev->flags ^ old_flags) {
8641                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8642                 dev_set_rx_mode(dev);
8643                 if (notify)
8644                         __dev_notify_flags(dev, old_flags,
8645                                            dev->gflags ^ old_gflags);
8646         }
8647         return 0;
8648 }
8649
8650 /**
8651  *      dev_set_allmulti        - update allmulti count on a device
8652  *      @dev: device
8653  *      @inc: modifier
8654  *
8655  *      Add or remove reception of all multicast frames to a device. While the
8656  *      count in the device remains above zero the interface remains listening
8657  *      to all interfaces. Once it hits zero the device reverts back to normal
8658  *      filtering operation. A negative @inc value is used to drop the counter
8659  *      when releasing a resource needing all multicasts.
8660  *      Return 0 if successful or a negative errno code on error.
8661  */
8662
8663 int dev_set_allmulti(struct net_device *dev, int inc)
8664 {
8665         return __dev_set_allmulti(dev, inc, true);
8666 }
8667 EXPORT_SYMBOL(dev_set_allmulti);
8668
8669 /*
8670  *      Upload unicast and multicast address lists to device and
8671  *      configure RX filtering. When the device doesn't support unicast
8672  *      filtering it is put in promiscuous mode while unicast addresses
8673  *      are present.
8674  */
8675 void __dev_set_rx_mode(struct net_device *dev)
8676 {
8677         const struct net_device_ops *ops = dev->netdev_ops;
8678
8679         /* dev_open will call this function so the list will stay sane. */
8680         if (!(dev->flags&IFF_UP))
8681                 return;
8682
8683         if (!netif_device_present(dev))
8684                 return;
8685
8686         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8687                 /* Unicast addresses changes may only happen under the rtnl,
8688                  * therefore calling __dev_set_promiscuity here is safe.
8689                  */
8690                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8691                         __dev_set_promiscuity(dev, 1, false);
8692                         dev->uc_promisc = true;
8693                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8694                         __dev_set_promiscuity(dev, -1, false);
8695                         dev->uc_promisc = false;
8696                 }
8697         }
8698
8699         if (ops->ndo_set_rx_mode)
8700                 ops->ndo_set_rx_mode(dev);
8701 }
8702
8703 void dev_set_rx_mode(struct net_device *dev)
8704 {
8705         netif_addr_lock_bh(dev);
8706         __dev_set_rx_mode(dev);
8707         netif_addr_unlock_bh(dev);
8708 }
8709
8710 /**
8711  *      dev_get_flags - get flags reported to userspace
8712  *      @dev: device
8713  *
8714  *      Get the combination of flag bits exported through APIs to userspace.
8715  */
8716 unsigned int dev_get_flags(const struct net_device *dev)
8717 {
8718         unsigned int flags;
8719
8720         flags = (dev->flags & ~(IFF_PROMISC |
8721                                 IFF_ALLMULTI |
8722                                 IFF_RUNNING |
8723                                 IFF_LOWER_UP |
8724                                 IFF_DORMANT)) |
8725                 (dev->gflags & (IFF_PROMISC |
8726                                 IFF_ALLMULTI));
8727
8728         if (netif_running(dev)) {
8729                 if (netif_oper_up(dev))
8730                         flags |= IFF_RUNNING;
8731                 if (netif_carrier_ok(dev))
8732                         flags |= IFF_LOWER_UP;
8733                 if (netif_dormant(dev))
8734                         flags |= IFF_DORMANT;
8735         }
8736
8737         return flags;
8738 }
8739 EXPORT_SYMBOL(dev_get_flags);
8740
8741 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8742                        struct netlink_ext_ack *extack)
8743 {
8744         unsigned int old_flags = dev->flags;
8745         int ret;
8746
8747         ASSERT_RTNL();
8748
8749         /*
8750          *      Set the flags on our device.
8751          */
8752
8753         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8754                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8755                                IFF_AUTOMEDIA)) |
8756                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8757                                     IFF_ALLMULTI));
8758
8759         /*
8760          *      Load in the correct multicast list now the flags have changed.
8761          */
8762
8763         if ((old_flags ^ flags) & IFF_MULTICAST)
8764                 dev_change_rx_flags(dev, IFF_MULTICAST);
8765
8766         dev_set_rx_mode(dev);
8767
8768         /*
8769          *      Have we downed the interface. We handle IFF_UP ourselves
8770          *      according to user attempts to set it, rather than blindly
8771          *      setting it.
8772          */
8773
8774         ret = 0;
8775         if ((old_flags ^ flags) & IFF_UP) {
8776                 if (old_flags & IFF_UP)
8777                         __dev_close(dev);
8778                 else
8779                         ret = __dev_open(dev, extack);
8780         }
8781
8782         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8783                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8784                 unsigned int old_flags = dev->flags;
8785
8786                 dev->gflags ^= IFF_PROMISC;
8787
8788                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8789                         if (dev->flags != old_flags)
8790                                 dev_set_rx_mode(dev);
8791         }
8792
8793         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8794          * is important. Some (broken) drivers set IFF_PROMISC, when
8795          * IFF_ALLMULTI is requested not asking us and not reporting.
8796          */
8797         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8798                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8799
8800                 dev->gflags ^= IFF_ALLMULTI;
8801                 __dev_set_allmulti(dev, inc, false);
8802         }
8803
8804         return ret;
8805 }
8806
8807 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8808                         unsigned int gchanges)
8809 {
8810         unsigned int changes = dev->flags ^ old_flags;
8811
8812         if (gchanges)
8813                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8814
8815         if (changes & IFF_UP) {
8816                 if (dev->flags & IFF_UP)
8817                         call_netdevice_notifiers(NETDEV_UP, dev);
8818                 else
8819                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8820         }
8821
8822         if (dev->flags & IFF_UP &&
8823             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8824                 struct netdev_notifier_change_info change_info = {
8825                         .info = {
8826                                 .dev = dev,
8827                         },
8828                         .flags_changed = changes,
8829                 };
8830
8831                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8832         }
8833 }
8834
8835 /**
8836  *      dev_change_flags - change device settings
8837  *      @dev: device
8838  *      @flags: device state flags
8839  *      @extack: netlink extended ack
8840  *
8841  *      Change settings on device based state flags. The flags are
8842  *      in the userspace exported format.
8843  */
8844 int dev_change_flags(struct net_device *dev, unsigned int flags,
8845                      struct netlink_ext_ack *extack)
8846 {
8847         int ret;
8848         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8849
8850         ret = __dev_change_flags(dev, flags, extack);
8851         if (ret < 0)
8852                 return ret;
8853
8854         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8855         __dev_notify_flags(dev, old_flags, changes);
8856         return ret;
8857 }
8858 EXPORT_SYMBOL(dev_change_flags);
8859
8860 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8861 {
8862         const struct net_device_ops *ops = dev->netdev_ops;
8863
8864         if (ops->ndo_change_mtu)
8865                 return ops->ndo_change_mtu(dev, new_mtu);
8866
8867         /* Pairs with all the lockless reads of dev->mtu in the stack */
8868         WRITE_ONCE(dev->mtu, new_mtu);
8869         return 0;
8870 }
8871 EXPORT_SYMBOL(__dev_set_mtu);
8872
8873 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8874                      struct netlink_ext_ack *extack)
8875 {
8876         /* MTU must be positive, and in range */
8877         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8878                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8879                 return -EINVAL;
8880         }
8881
8882         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8883                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8884                 return -EINVAL;
8885         }
8886         return 0;
8887 }
8888
8889 /**
8890  *      dev_set_mtu_ext - Change maximum transfer unit
8891  *      @dev: device
8892  *      @new_mtu: new transfer unit
8893  *      @extack: netlink extended ack
8894  *
8895  *      Change the maximum transfer size of the network device.
8896  */
8897 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8898                     struct netlink_ext_ack *extack)
8899 {
8900         int err, orig_mtu;
8901
8902         if (new_mtu == dev->mtu)
8903                 return 0;
8904
8905         err = dev_validate_mtu(dev, new_mtu, extack);
8906         if (err)
8907                 return err;
8908
8909         if (!netif_device_present(dev))
8910                 return -ENODEV;
8911
8912         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8913         err = notifier_to_errno(err);
8914         if (err)
8915                 return err;
8916
8917         orig_mtu = dev->mtu;
8918         err = __dev_set_mtu(dev, new_mtu);
8919
8920         if (!err) {
8921                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8922                                                    orig_mtu);
8923                 err = notifier_to_errno(err);
8924                 if (err) {
8925                         /* setting mtu back and notifying everyone again,
8926                          * so that they have a chance to revert changes.
8927                          */
8928                         __dev_set_mtu(dev, orig_mtu);
8929                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8930                                                      new_mtu);
8931                 }
8932         }
8933         return err;
8934 }
8935
8936 int dev_set_mtu(struct net_device *dev, int new_mtu)
8937 {
8938         struct netlink_ext_ack extack;
8939         int err;
8940
8941         memset(&extack, 0, sizeof(extack));
8942         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8943         if (err && extack._msg)
8944                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8945         return err;
8946 }
8947 EXPORT_SYMBOL(dev_set_mtu);
8948
8949 /**
8950  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8951  *      @dev: device
8952  *      @new_len: new tx queue length
8953  */
8954 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8955 {
8956         unsigned int orig_len = dev->tx_queue_len;
8957         int res;
8958
8959         if (new_len != (unsigned int)new_len)
8960                 return -ERANGE;
8961
8962         if (new_len != orig_len) {
8963                 dev->tx_queue_len = new_len;
8964                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8965                 res = notifier_to_errno(res);
8966                 if (res)
8967                         goto err_rollback;
8968                 res = dev_qdisc_change_tx_queue_len(dev);
8969                 if (res)
8970                         goto err_rollback;
8971         }
8972
8973         return 0;
8974
8975 err_rollback:
8976         netdev_err(dev, "refused to change device tx_queue_len\n");
8977         dev->tx_queue_len = orig_len;
8978         return res;
8979 }
8980
8981 /**
8982  *      dev_set_group - Change group this device belongs to
8983  *      @dev: device
8984  *      @new_group: group this device should belong to
8985  */
8986 void dev_set_group(struct net_device *dev, int new_group)
8987 {
8988         dev->group = new_group;
8989 }
8990 EXPORT_SYMBOL(dev_set_group);
8991
8992 /**
8993  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8994  *      @dev: device
8995  *      @addr: new address
8996  *      @extack: netlink extended ack
8997  */
8998 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8999                               struct netlink_ext_ack *extack)
9000 {
9001         struct netdev_notifier_pre_changeaddr_info info = {
9002                 .info.dev = dev,
9003                 .info.extack = extack,
9004                 .dev_addr = addr,
9005         };
9006         int rc;
9007
9008         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9009         return notifier_to_errno(rc);
9010 }
9011 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9012
9013 /**
9014  *      dev_set_mac_address - Change Media Access Control Address
9015  *      @dev: device
9016  *      @sa: new address
9017  *      @extack: netlink extended ack
9018  *
9019  *      Change the hardware (MAC) address of the device
9020  */
9021 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9022                         struct netlink_ext_ack *extack)
9023 {
9024         const struct net_device_ops *ops = dev->netdev_ops;
9025         int err;
9026
9027         if (!ops->ndo_set_mac_address)
9028                 return -EOPNOTSUPP;
9029         if (sa->sa_family != dev->type)
9030                 return -EINVAL;
9031         if (!netif_device_present(dev))
9032                 return -ENODEV;
9033         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9034         if (err)
9035                 return err;
9036         err = ops->ndo_set_mac_address(dev, sa);
9037         if (err)
9038                 return err;
9039         dev->addr_assign_type = NET_ADDR_SET;
9040         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9041         add_device_randomness(dev->dev_addr, dev->addr_len);
9042         return 0;
9043 }
9044 EXPORT_SYMBOL(dev_set_mac_address);
9045
9046 static DECLARE_RWSEM(dev_addr_sem);
9047
9048 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9049                              struct netlink_ext_ack *extack)
9050 {
9051         int ret;
9052
9053         down_write(&dev_addr_sem);
9054         ret = dev_set_mac_address(dev, sa, extack);
9055         up_write(&dev_addr_sem);
9056         return ret;
9057 }
9058 EXPORT_SYMBOL(dev_set_mac_address_user);
9059
9060 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9061 {
9062         size_t size = sizeof(sa->sa_data);
9063         struct net_device *dev;
9064         int ret = 0;
9065
9066         down_read(&dev_addr_sem);
9067         rcu_read_lock();
9068
9069         dev = dev_get_by_name_rcu(net, dev_name);
9070         if (!dev) {
9071                 ret = -ENODEV;
9072                 goto unlock;
9073         }
9074         if (!dev->addr_len)
9075                 memset(sa->sa_data, 0, size);
9076         else
9077                 memcpy(sa->sa_data, dev->dev_addr,
9078                        min_t(size_t, size, dev->addr_len));
9079         sa->sa_family = dev->type;
9080
9081 unlock:
9082         rcu_read_unlock();
9083         up_read(&dev_addr_sem);
9084         return ret;
9085 }
9086 EXPORT_SYMBOL(dev_get_mac_address);
9087
9088 /**
9089  *      dev_change_carrier - Change device carrier
9090  *      @dev: device
9091  *      @new_carrier: new value
9092  *
9093  *      Change device carrier
9094  */
9095 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9096 {
9097         const struct net_device_ops *ops = dev->netdev_ops;
9098
9099         if (!ops->ndo_change_carrier)
9100                 return -EOPNOTSUPP;
9101         if (!netif_device_present(dev))
9102                 return -ENODEV;
9103         return ops->ndo_change_carrier(dev, new_carrier);
9104 }
9105 EXPORT_SYMBOL(dev_change_carrier);
9106
9107 /**
9108  *      dev_get_phys_port_id - Get device physical port ID
9109  *      @dev: device
9110  *      @ppid: port ID
9111  *
9112  *      Get device physical port ID
9113  */
9114 int dev_get_phys_port_id(struct net_device *dev,
9115                          struct netdev_phys_item_id *ppid)
9116 {
9117         const struct net_device_ops *ops = dev->netdev_ops;
9118
9119         if (!ops->ndo_get_phys_port_id)
9120                 return -EOPNOTSUPP;
9121         return ops->ndo_get_phys_port_id(dev, ppid);
9122 }
9123 EXPORT_SYMBOL(dev_get_phys_port_id);
9124
9125 /**
9126  *      dev_get_phys_port_name - Get device physical port name
9127  *      @dev: device
9128  *      @name: port name
9129  *      @len: limit of bytes to copy to name
9130  *
9131  *      Get device physical port name
9132  */
9133 int dev_get_phys_port_name(struct net_device *dev,
9134                            char *name, size_t len)
9135 {
9136         const struct net_device_ops *ops = dev->netdev_ops;
9137         int err;
9138
9139         if (ops->ndo_get_phys_port_name) {
9140                 err = ops->ndo_get_phys_port_name(dev, name, len);
9141                 if (err != -EOPNOTSUPP)
9142                         return err;
9143         }
9144         return devlink_compat_phys_port_name_get(dev, name, len);
9145 }
9146 EXPORT_SYMBOL(dev_get_phys_port_name);
9147
9148 /**
9149  *      dev_get_port_parent_id - Get the device's port parent identifier
9150  *      @dev: network device
9151  *      @ppid: pointer to a storage for the port's parent identifier
9152  *      @recurse: allow/disallow recursion to lower devices
9153  *
9154  *      Get the devices's port parent identifier
9155  */
9156 int dev_get_port_parent_id(struct net_device *dev,
9157                            struct netdev_phys_item_id *ppid,
9158                            bool recurse)
9159 {
9160         const struct net_device_ops *ops = dev->netdev_ops;
9161         struct netdev_phys_item_id first = { };
9162         struct net_device *lower_dev;
9163         struct list_head *iter;
9164         int err;
9165
9166         if (ops->ndo_get_port_parent_id) {
9167                 err = ops->ndo_get_port_parent_id(dev, ppid);
9168                 if (err != -EOPNOTSUPP)
9169                         return err;
9170         }
9171
9172         err = devlink_compat_switch_id_get(dev, ppid);
9173         if (!err || err != -EOPNOTSUPP)
9174                 return err;
9175
9176         if (!recurse)
9177                 return -EOPNOTSUPP;
9178
9179         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9180                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9181                 if (err)
9182                         break;
9183                 if (!first.id_len)
9184                         first = *ppid;
9185                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9186                         return -EOPNOTSUPP;
9187         }
9188
9189         return err;
9190 }
9191 EXPORT_SYMBOL(dev_get_port_parent_id);
9192
9193 /**
9194  *      netdev_port_same_parent_id - Indicate if two network devices have
9195  *      the same port parent identifier
9196  *      @a: first network device
9197  *      @b: second network device
9198  */
9199 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9200 {
9201         struct netdev_phys_item_id a_id = { };
9202         struct netdev_phys_item_id b_id = { };
9203
9204         if (dev_get_port_parent_id(a, &a_id, true) ||
9205             dev_get_port_parent_id(b, &b_id, true))
9206                 return false;
9207
9208         return netdev_phys_item_id_same(&a_id, &b_id);
9209 }
9210 EXPORT_SYMBOL(netdev_port_same_parent_id);
9211
9212 /**
9213  *      dev_change_proto_down - update protocol port state information
9214  *      @dev: device
9215  *      @proto_down: new value
9216  *
9217  *      This info can be used by switch drivers to set the phys state of the
9218  *      port.
9219  */
9220 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9221 {
9222         const struct net_device_ops *ops = dev->netdev_ops;
9223
9224         if (!ops->ndo_change_proto_down)
9225                 return -EOPNOTSUPP;
9226         if (!netif_device_present(dev))
9227                 return -ENODEV;
9228         return ops->ndo_change_proto_down(dev, proto_down);
9229 }
9230 EXPORT_SYMBOL(dev_change_proto_down);
9231
9232 /**
9233  *      dev_change_proto_down_generic - generic implementation for
9234  *      ndo_change_proto_down that sets carrier according to
9235  *      proto_down.
9236  *
9237  *      @dev: device
9238  *      @proto_down: new value
9239  */
9240 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9241 {
9242         if (proto_down)
9243                 netif_carrier_off(dev);
9244         else
9245                 netif_carrier_on(dev);
9246         dev->proto_down = proto_down;
9247         return 0;
9248 }
9249 EXPORT_SYMBOL(dev_change_proto_down_generic);
9250
9251 /**
9252  *      dev_change_proto_down_reason - proto down reason
9253  *
9254  *      @dev: device
9255  *      @mask: proto down mask
9256  *      @value: proto down value
9257  */
9258 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9259                                   u32 value)
9260 {
9261         int b;
9262
9263         if (!mask) {
9264                 dev->proto_down_reason = value;
9265         } else {
9266                 for_each_set_bit(b, &mask, 32) {
9267                         if (value & (1 << b))
9268                                 dev->proto_down_reason |= BIT(b);
9269                         else
9270                                 dev->proto_down_reason &= ~BIT(b);
9271                 }
9272         }
9273 }
9274 EXPORT_SYMBOL(dev_change_proto_down_reason);
9275
9276 struct bpf_xdp_link {
9277         struct bpf_link link;
9278         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9279         int flags;
9280 };
9281
9282 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9283 {
9284         if (flags & XDP_FLAGS_HW_MODE)
9285                 return XDP_MODE_HW;
9286         if (flags & XDP_FLAGS_DRV_MODE)
9287                 return XDP_MODE_DRV;
9288         if (flags & XDP_FLAGS_SKB_MODE)
9289                 return XDP_MODE_SKB;
9290         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9291 }
9292
9293 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9294 {
9295         switch (mode) {
9296         case XDP_MODE_SKB:
9297                 return generic_xdp_install;
9298         case XDP_MODE_DRV:
9299         case XDP_MODE_HW:
9300                 return dev->netdev_ops->ndo_bpf;
9301         default:
9302                 return NULL;
9303         }
9304 }
9305
9306 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9307                                          enum bpf_xdp_mode mode)
9308 {
9309         return dev->xdp_state[mode].link;
9310 }
9311
9312 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9313                                      enum bpf_xdp_mode mode)
9314 {
9315         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9316
9317         if (link)
9318                 return link->link.prog;
9319         return dev->xdp_state[mode].prog;
9320 }
9321
9322 u8 dev_xdp_prog_count(struct net_device *dev)
9323 {
9324         u8 count = 0;
9325         int i;
9326
9327         for (i = 0; i < __MAX_XDP_MODE; i++)
9328                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9329                         count++;
9330         return count;
9331 }
9332 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9333
9334 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9335 {
9336         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9337
9338         return prog ? prog->aux->id : 0;
9339 }
9340
9341 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9342                              struct bpf_xdp_link *link)
9343 {
9344         dev->xdp_state[mode].link = link;
9345         dev->xdp_state[mode].prog = NULL;
9346 }
9347
9348 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9349                              struct bpf_prog *prog)
9350 {
9351         dev->xdp_state[mode].link = NULL;
9352         dev->xdp_state[mode].prog = prog;
9353 }
9354
9355 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9356                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9357                            u32 flags, struct bpf_prog *prog)
9358 {
9359         struct netdev_bpf xdp;
9360         int err;
9361
9362         memset(&xdp, 0, sizeof(xdp));
9363         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9364         xdp.extack = extack;
9365         xdp.flags = flags;
9366         xdp.prog = prog;
9367
9368         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9369          * "moved" into driver), so they don't increment it on their own, but
9370          * they do decrement refcnt when program is detached or replaced.
9371          * Given net_device also owns link/prog, we need to bump refcnt here
9372          * to prevent drivers from underflowing it.
9373          */
9374         if (prog)
9375                 bpf_prog_inc(prog);
9376         err = bpf_op(dev, &xdp);
9377         if (err) {
9378                 if (prog)
9379                         bpf_prog_put(prog);
9380                 return err;
9381         }
9382
9383         if (mode != XDP_MODE_HW)
9384                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9385
9386         return 0;
9387 }
9388
9389 static void dev_xdp_uninstall(struct net_device *dev)
9390 {
9391         struct bpf_xdp_link *link;
9392         struct bpf_prog *prog;
9393         enum bpf_xdp_mode mode;
9394         bpf_op_t bpf_op;
9395
9396         ASSERT_RTNL();
9397
9398         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9399                 prog = dev_xdp_prog(dev, mode);
9400                 if (!prog)
9401                         continue;
9402
9403                 bpf_op = dev_xdp_bpf_op(dev, mode);
9404                 if (!bpf_op)
9405                         continue;
9406
9407                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9408
9409                 /* auto-detach link from net device */
9410                 link = dev_xdp_link(dev, mode);
9411                 if (link)
9412                         link->dev = NULL;
9413                 else
9414                         bpf_prog_put(prog);
9415
9416                 dev_xdp_set_link(dev, mode, NULL);
9417         }
9418 }
9419
9420 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9421                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9422                           struct bpf_prog *old_prog, u32 flags)
9423 {
9424         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9425         struct bpf_prog *cur_prog;
9426         struct net_device *upper;
9427         struct list_head *iter;
9428         enum bpf_xdp_mode mode;
9429         bpf_op_t bpf_op;
9430         int err;
9431
9432         ASSERT_RTNL();
9433
9434         /* either link or prog attachment, never both */
9435         if (link && (new_prog || old_prog))
9436                 return -EINVAL;
9437         /* link supports only XDP mode flags */
9438         if (link && (flags & ~XDP_FLAGS_MODES)) {
9439                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9440                 return -EINVAL;
9441         }
9442         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9443         if (num_modes > 1) {
9444                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9445                 return -EINVAL;
9446         }
9447         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9448         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9449                 NL_SET_ERR_MSG(extack,
9450                                "More than one program loaded, unset mode is ambiguous");
9451                 return -EINVAL;
9452         }
9453         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9454         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9455                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9456                 return -EINVAL;
9457         }
9458
9459         mode = dev_xdp_mode(dev, flags);
9460         /* can't replace attached link */
9461         if (dev_xdp_link(dev, mode)) {
9462                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9463                 return -EBUSY;
9464         }
9465
9466         /* don't allow if an upper device already has a program */
9467         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9468                 if (dev_xdp_prog_count(upper) > 0) {
9469                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9470                         return -EEXIST;
9471                 }
9472         }
9473
9474         cur_prog = dev_xdp_prog(dev, mode);
9475         /* can't replace attached prog with link */
9476         if (link && cur_prog) {
9477                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9478                 return -EBUSY;
9479         }
9480         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9481                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9482                 return -EEXIST;
9483         }
9484
9485         /* put effective new program into new_prog */
9486         if (link)
9487                 new_prog = link->link.prog;
9488
9489         if (new_prog) {
9490                 bool offload = mode == XDP_MODE_HW;
9491                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9492                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9493
9494                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9495                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9496                         return -EBUSY;
9497                 }
9498                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9499                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9500                         return -EEXIST;
9501                 }
9502                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9503                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9504                         return -EINVAL;
9505                 }
9506                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9507                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9508                         return -EINVAL;
9509                 }
9510                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9511                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9512                         return -EINVAL;
9513                 }
9514         }
9515
9516         /* don't call drivers if the effective program didn't change */
9517         if (new_prog != cur_prog) {
9518                 bpf_op = dev_xdp_bpf_op(dev, mode);
9519                 if (!bpf_op) {
9520                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9521                         return -EOPNOTSUPP;
9522                 }
9523
9524                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9525                 if (err)
9526                         return err;
9527         }
9528
9529         if (link)
9530                 dev_xdp_set_link(dev, mode, link);
9531         else
9532                 dev_xdp_set_prog(dev, mode, new_prog);
9533         if (cur_prog)
9534                 bpf_prog_put(cur_prog);
9535
9536         return 0;
9537 }
9538
9539 static int dev_xdp_attach_link(struct net_device *dev,
9540                                struct netlink_ext_ack *extack,
9541                                struct bpf_xdp_link *link)
9542 {
9543         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9544 }
9545
9546 static int dev_xdp_detach_link(struct net_device *dev,
9547                                struct netlink_ext_ack *extack,
9548                                struct bpf_xdp_link *link)
9549 {
9550         enum bpf_xdp_mode mode;
9551         bpf_op_t bpf_op;
9552
9553         ASSERT_RTNL();
9554
9555         mode = dev_xdp_mode(dev, link->flags);
9556         if (dev_xdp_link(dev, mode) != link)
9557                 return -EINVAL;
9558
9559         bpf_op = dev_xdp_bpf_op(dev, mode);
9560         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9561         dev_xdp_set_link(dev, mode, NULL);
9562         return 0;
9563 }
9564
9565 static void bpf_xdp_link_release(struct bpf_link *link)
9566 {
9567         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9568
9569         rtnl_lock();
9570
9571         /* if racing with net_device's tear down, xdp_link->dev might be
9572          * already NULL, in which case link was already auto-detached
9573          */
9574         if (xdp_link->dev) {
9575                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9576                 xdp_link->dev = NULL;
9577         }
9578
9579         rtnl_unlock();
9580 }
9581
9582 static int bpf_xdp_link_detach(struct bpf_link *link)
9583 {
9584         bpf_xdp_link_release(link);
9585         return 0;
9586 }
9587
9588 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9589 {
9590         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9591
9592         kfree(xdp_link);
9593 }
9594
9595 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9596                                      struct seq_file *seq)
9597 {
9598         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9599         u32 ifindex = 0;
9600
9601         rtnl_lock();
9602         if (xdp_link->dev)
9603                 ifindex = xdp_link->dev->ifindex;
9604         rtnl_unlock();
9605
9606         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9607 }
9608
9609 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9610                                        struct bpf_link_info *info)
9611 {
9612         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9613         u32 ifindex = 0;
9614
9615         rtnl_lock();
9616         if (xdp_link->dev)
9617                 ifindex = xdp_link->dev->ifindex;
9618         rtnl_unlock();
9619
9620         info->xdp.ifindex = ifindex;
9621         return 0;
9622 }
9623
9624 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9625                                struct bpf_prog *old_prog)
9626 {
9627         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9628         enum bpf_xdp_mode mode;
9629         bpf_op_t bpf_op;
9630         int err = 0;
9631
9632         rtnl_lock();
9633
9634         /* link might have been auto-released already, so fail */
9635         if (!xdp_link->dev) {
9636                 err = -ENOLINK;
9637                 goto out_unlock;
9638         }
9639
9640         if (old_prog && link->prog != old_prog) {
9641                 err = -EPERM;
9642                 goto out_unlock;
9643         }
9644         old_prog = link->prog;
9645         if (old_prog->type != new_prog->type ||
9646             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9647                 err = -EINVAL;
9648                 goto out_unlock;
9649         }
9650
9651         if (old_prog == new_prog) {
9652                 /* no-op, don't disturb drivers */
9653                 bpf_prog_put(new_prog);
9654                 goto out_unlock;
9655         }
9656
9657         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9658         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9659         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9660                               xdp_link->flags, new_prog);
9661         if (err)
9662                 goto out_unlock;
9663
9664         old_prog = xchg(&link->prog, new_prog);
9665         bpf_prog_put(old_prog);
9666
9667 out_unlock:
9668         rtnl_unlock();
9669         return err;
9670 }
9671
9672 static const struct bpf_link_ops bpf_xdp_link_lops = {
9673         .release = bpf_xdp_link_release,
9674         .dealloc = bpf_xdp_link_dealloc,
9675         .detach = bpf_xdp_link_detach,
9676         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9677         .fill_link_info = bpf_xdp_link_fill_link_info,
9678         .update_prog = bpf_xdp_link_update,
9679 };
9680
9681 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9682 {
9683         struct net *net = current->nsproxy->net_ns;
9684         struct bpf_link_primer link_primer;
9685         struct bpf_xdp_link *link;
9686         struct net_device *dev;
9687         int err, fd;
9688
9689         rtnl_lock();
9690         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9691         if (!dev) {
9692                 rtnl_unlock();
9693                 return -EINVAL;
9694         }
9695
9696         link = kzalloc(sizeof(*link), GFP_USER);
9697         if (!link) {
9698                 err = -ENOMEM;
9699                 goto unlock;
9700         }
9701
9702         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9703         link->dev = dev;
9704         link->flags = attr->link_create.flags;
9705
9706         err = bpf_link_prime(&link->link, &link_primer);
9707         if (err) {
9708                 kfree(link);
9709                 goto unlock;
9710         }
9711
9712         err = dev_xdp_attach_link(dev, NULL, link);
9713         rtnl_unlock();
9714
9715         if (err) {
9716                 link->dev = NULL;
9717                 bpf_link_cleanup(&link_primer);
9718                 goto out_put_dev;
9719         }
9720
9721         fd = bpf_link_settle(&link_primer);
9722         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9723         dev_put(dev);
9724         return fd;
9725
9726 unlock:
9727         rtnl_unlock();
9728
9729 out_put_dev:
9730         dev_put(dev);
9731         return err;
9732 }
9733
9734 /**
9735  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9736  *      @dev: device
9737  *      @extack: netlink extended ack
9738  *      @fd: new program fd or negative value to clear
9739  *      @expected_fd: old program fd that userspace expects to replace or clear
9740  *      @flags: xdp-related flags
9741  *
9742  *      Set or clear a bpf program for a device
9743  */
9744 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9745                       int fd, int expected_fd, u32 flags)
9746 {
9747         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9748         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9749         int err;
9750
9751         ASSERT_RTNL();
9752
9753         if (fd >= 0) {
9754                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9755                                                  mode != XDP_MODE_SKB);
9756                 if (IS_ERR(new_prog))
9757                         return PTR_ERR(new_prog);
9758         }
9759
9760         if (expected_fd >= 0) {
9761                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9762                                                  mode != XDP_MODE_SKB);
9763                 if (IS_ERR(old_prog)) {
9764                         err = PTR_ERR(old_prog);
9765                         old_prog = NULL;
9766                         goto err_out;
9767                 }
9768         }
9769
9770         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9771
9772 err_out:
9773         if (err && new_prog)
9774                 bpf_prog_put(new_prog);
9775         if (old_prog)
9776                 bpf_prog_put(old_prog);
9777         return err;
9778 }
9779
9780 /**
9781  *      dev_new_index   -       allocate an ifindex
9782  *      @net: the applicable net namespace
9783  *
9784  *      Returns a suitable unique value for a new device interface
9785  *      number.  The caller must hold the rtnl semaphore or the
9786  *      dev_base_lock to be sure it remains unique.
9787  */
9788 static int dev_new_index(struct net *net)
9789 {
9790         int ifindex = net->ifindex;
9791
9792         for (;;) {
9793                 if (++ifindex <= 0)
9794                         ifindex = 1;
9795                 if (!__dev_get_by_index(net, ifindex))
9796                         return net->ifindex = ifindex;
9797         }
9798 }
9799
9800 /* Delayed registration/unregisteration */
9801 static LIST_HEAD(net_todo_list);
9802 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9803
9804 static void net_set_todo(struct net_device *dev)
9805 {
9806         list_add_tail(&dev->todo_list, &net_todo_list);
9807         dev_net(dev)->dev_unreg_count++;
9808 }
9809
9810 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9811         struct net_device *upper, netdev_features_t features)
9812 {
9813         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9814         netdev_features_t feature;
9815         int feature_bit;
9816
9817         for_each_netdev_feature(upper_disables, feature_bit) {
9818                 feature = __NETIF_F_BIT(feature_bit);
9819                 if (!(upper->wanted_features & feature)
9820                     && (features & feature)) {
9821                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9822                                    &feature, upper->name);
9823                         features &= ~feature;
9824                 }
9825         }
9826
9827         return features;
9828 }
9829
9830 static void netdev_sync_lower_features(struct net_device *upper,
9831         struct net_device *lower, netdev_features_t features)
9832 {
9833         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9834         netdev_features_t feature;
9835         int feature_bit;
9836
9837         for_each_netdev_feature(upper_disables, feature_bit) {
9838                 feature = __NETIF_F_BIT(feature_bit);
9839                 if (!(features & feature) && (lower->features & feature)) {
9840                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9841                                    &feature, lower->name);
9842                         lower->wanted_features &= ~feature;
9843                         __netdev_update_features(lower);
9844
9845                         if (unlikely(lower->features & feature))
9846                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9847                                             &feature, lower->name);
9848                         else
9849                                 netdev_features_change(lower);
9850                 }
9851         }
9852 }
9853
9854 static netdev_features_t netdev_fix_features(struct net_device *dev,
9855         netdev_features_t features)
9856 {
9857         /* Fix illegal checksum combinations */
9858         if ((features & NETIF_F_HW_CSUM) &&
9859             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9860                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9861                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9862         }
9863
9864         /* TSO requires that SG is present as well. */
9865         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9866                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9867                 features &= ~NETIF_F_ALL_TSO;
9868         }
9869
9870         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9871                                         !(features & NETIF_F_IP_CSUM)) {
9872                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9873                 features &= ~NETIF_F_TSO;
9874                 features &= ~NETIF_F_TSO_ECN;
9875         }
9876
9877         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9878                                          !(features & NETIF_F_IPV6_CSUM)) {
9879                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9880                 features &= ~NETIF_F_TSO6;
9881         }
9882
9883         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9884         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9885                 features &= ~NETIF_F_TSO_MANGLEID;
9886
9887         /* TSO ECN requires that TSO is present as well. */
9888         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9889                 features &= ~NETIF_F_TSO_ECN;
9890
9891         /* Software GSO depends on SG. */
9892         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9893                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9894                 features &= ~NETIF_F_GSO;
9895         }
9896
9897         /* GSO partial features require GSO partial be set */
9898         if ((features & dev->gso_partial_features) &&
9899             !(features & NETIF_F_GSO_PARTIAL)) {
9900                 netdev_dbg(dev,
9901                            "Dropping partially supported GSO features since no GSO partial.\n");
9902                 features &= ~dev->gso_partial_features;
9903         }
9904
9905         if (!(features & NETIF_F_RXCSUM)) {
9906                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9907                  * successfully merged by hardware must also have the
9908                  * checksum verified by hardware.  If the user does not
9909                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9910                  */
9911                 if (features & NETIF_F_GRO_HW) {
9912                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9913                         features &= ~NETIF_F_GRO_HW;
9914                 }
9915         }
9916
9917         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9918         if (features & NETIF_F_RXFCS) {
9919                 if (features & NETIF_F_LRO) {
9920                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9921                         features &= ~NETIF_F_LRO;
9922                 }
9923
9924                 if (features & NETIF_F_GRO_HW) {
9925                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9926                         features &= ~NETIF_F_GRO_HW;
9927                 }
9928         }
9929
9930         if (features & NETIF_F_HW_TLS_TX) {
9931                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9932                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9933                 bool hw_csum = features & NETIF_F_HW_CSUM;
9934
9935                 if (!ip_csum && !hw_csum) {
9936                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9937                         features &= ~NETIF_F_HW_TLS_TX;
9938                 }
9939         }
9940
9941         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9942                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9943                 features &= ~NETIF_F_HW_TLS_RX;
9944         }
9945
9946         return features;
9947 }
9948
9949 int __netdev_update_features(struct net_device *dev)
9950 {
9951         struct net_device *upper, *lower;
9952         netdev_features_t features;
9953         struct list_head *iter;
9954         int err = -1;
9955
9956         ASSERT_RTNL();
9957
9958         features = netdev_get_wanted_features(dev);
9959
9960         if (dev->netdev_ops->ndo_fix_features)
9961                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9962
9963         /* driver might be less strict about feature dependencies */
9964         features = netdev_fix_features(dev, features);
9965
9966         /* some features can't be enabled if they're off on an upper device */
9967         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9968                 features = netdev_sync_upper_features(dev, upper, features);
9969
9970         if (dev->features == features)
9971                 goto sync_lower;
9972
9973         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9974                 &dev->features, &features);
9975
9976         if (dev->netdev_ops->ndo_set_features)
9977                 err = dev->netdev_ops->ndo_set_features(dev, features);
9978         else
9979                 err = 0;
9980
9981         if (unlikely(err < 0)) {
9982                 netdev_err(dev,
9983                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9984                         err, &features, &dev->features);
9985                 /* return non-0 since some features might have changed and
9986                  * it's better to fire a spurious notification than miss it
9987                  */
9988                 return -1;
9989         }
9990
9991 sync_lower:
9992         /* some features must be disabled on lower devices when disabled
9993          * on an upper device (think: bonding master or bridge)
9994          */
9995         netdev_for_each_lower_dev(dev, lower, iter)
9996                 netdev_sync_lower_features(dev, lower, features);
9997
9998         if (!err) {
9999                 netdev_features_t diff = features ^ dev->features;
10000
10001                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10002                         /* udp_tunnel_{get,drop}_rx_info both need
10003                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10004                          * device, or they won't do anything.
10005                          * Thus we need to update dev->features
10006                          * *before* calling udp_tunnel_get_rx_info,
10007                          * but *after* calling udp_tunnel_drop_rx_info.
10008                          */
10009                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10010                                 dev->features = features;
10011                                 udp_tunnel_get_rx_info(dev);
10012                         } else {
10013                                 udp_tunnel_drop_rx_info(dev);
10014                         }
10015                 }
10016
10017                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10018                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10019                                 dev->features = features;
10020                                 err |= vlan_get_rx_ctag_filter_info(dev);
10021                         } else {
10022                                 vlan_drop_rx_ctag_filter_info(dev);
10023                         }
10024                 }
10025
10026                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10027                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10028                                 dev->features = features;
10029                                 err |= vlan_get_rx_stag_filter_info(dev);
10030                         } else {
10031                                 vlan_drop_rx_stag_filter_info(dev);
10032                         }
10033                 }
10034
10035                 dev->features = features;
10036         }
10037
10038         return err < 0 ? 0 : 1;
10039 }
10040
10041 /**
10042  *      netdev_update_features - recalculate device features
10043  *      @dev: the device to check
10044  *
10045  *      Recalculate dev->features set and send notifications if it
10046  *      has changed. Should be called after driver or hardware dependent
10047  *      conditions might have changed that influence the features.
10048  */
10049 void netdev_update_features(struct net_device *dev)
10050 {
10051         if (__netdev_update_features(dev))
10052                 netdev_features_change(dev);
10053 }
10054 EXPORT_SYMBOL(netdev_update_features);
10055
10056 /**
10057  *      netdev_change_features - recalculate device features
10058  *      @dev: the device to check
10059  *
10060  *      Recalculate dev->features set and send notifications even
10061  *      if they have not changed. Should be called instead of
10062  *      netdev_update_features() if also dev->vlan_features might
10063  *      have changed to allow the changes to be propagated to stacked
10064  *      VLAN devices.
10065  */
10066 void netdev_change_features(struct net_device *dev)
10067 {
10068         __netdev_update_features(dev);
10069         netdev_features_change(dev);
10070 }
10071 EXPORT_SYMBOL(netdev_change_features);
10072
10073 /**
10074  *      netif_stacked_transfer_operstate -      transfer operstate
10075  *      @rootdev: the root or lower level device to transfer state from
10076  *      @dev: the device to transfer operstate to
10077  *
10078  *      Transfer operational state from root to device. This is normally
10079  *      called when a stacking relationship exists between the root
10080  *      device and the device(a leaf device).
10081  */
10082 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10083                                         struct net_device *dev)
10084 {
10085         if (rootdev->operstate == IF_OPER_DORMANT)
10086                 netif_dormant_on(dev);
10087         else
10088                 netif_dormant_off(dev);
10089
10090         if (rootdev->operstate == IF_OPER_TESTING)
10091                 netif_testing_on(dev);
10092         else
10093                 netif_testing_off(dev);
10094
10095         if (netif_carrier_ok(rootdev))
10096                 netif_carrier_on(dev);
10097         else
10098                 netif_carrier_off(dev);
10099 }
10100 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10101
10102 static int netif_alloc_rx_queues(struct net_device *dev)
10103 {
10104         unsigned int i, count = dev->num_rx_queues;
10105         struct netdev_rx_queue *rx;
10106         size_t sz = count * sizeof(*rx);
10107         int err = 0;
10108
10109         BUG_ON(count < 1);
10110
10111         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10112         if (!rx)
10113                 return -ENOMEM;
10114
10115         dev->_rx = rx;
10116
10117         for (i = 0; i < count; i++) {
10118                 rx[i].dev = dev;
10119
10120                 /* XDP RX-queue setup */
10121                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10122                 if (err < 0)
10123                         goto err_rxq_info;
10124         }
10125         return 0;
10126
10127 err_rxq_info:
10128         /* Rollback successful reg's and free other resources */
10129         while (i--)
10130                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10131         kvfree(dev->_rx);
10132         dev->_rx = NULL;
10133         return err;
10134 }
10135
10136 static void netif_free_rx_queues(struct net_device *dev)
10137 {
10138         unsigned int i, count = dev->num_rx_queues;
10139
10140         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10141         if (!dev->_rx)
10142                 return;
10143
10144         for (i = 0; i < count; i++)
10145                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10146
10147         kvfree(dev->_rx);
10148 }
10149
10150 static void netdev_init_one_queue(struct net_device *dev,
10151                                   struct netdev_queue *queue, void *_unused)
10152 {
10153         /* Initialize queue lock */
10154         spin_lock_init(&queue->_xmit_lock);
10155         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10156         queue->xmit_lock_owner = -1;
10157         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10158         queue->dev = dev;
10159 #ifdef CONFIG_BQL
10160         dql_init(&queue->dql, HZ);
10161 #endif
10162 }
10163
10164 static void netif_free_tx_queues(struct net_device *dev)
10165 {
10166         kvfree(dev->_tx);
10167 }
10168
10169 static int netif_alloc_netdev_queues(struct net_device *dev)
10170 {
10171         unsigned int count = dev->num_tx_queues;
10172         struct netdev_queue *tx;
10173         size_t sz = count * sizeof(*tx);
10174
10175         if (count < 1 || count > 0xffff)
10176                 return -EINVAL;
10177
10178         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10179         if (!tx)
10180                 return -ENOMEM;
10181
10182         dev->_tx = tx;
10183
10184         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10185         spin_lock_init(&dev->tx_global_lock);
10186
10187         return 0;
10188 }
10189
10190 void netif_tx_stop_all_queues(struct net_device *dev)
10191 {
10192         unsigned int i;
10193
10194         for (i = 0; i < dev->num_tx_queues; i++) {
10195                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10196
10197                 netif_tx_stop_queue(txq);
10198         }
10199 }
10200 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10201
10202 /**
10203  *      register_netdevice      - register a network device
10204  *      @dev: device to register
10205  *
10206  *      Take a completed network device structure and add it to the kernel
10207  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10208  *      chain. 0 is returned on success. A negative errno code is returned
10209  *      on a failure to set up the device, or if the name is a duplicate.
10210  *
10211  *      Callers must hold the rtnl semaphore. You may want
10212  *      register_netdev() instead of this.
10213  *
10214  *      BUGS:
10215  *      The locking appears insufficient to guarantee two parallel registers
10216  *      will not get the same name.
10217  */
10218
10219 int register_netdevice(struct net_device *dev)
10220 {
10221         int ret;
10222         struct net *net = dev_net(dev);
10223
10224         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10225                      NETDEV_FEATURE_COUNT);
10226         BUG_ON(dev_boot_phase);
10227         ASSERT_RTNL();
10228
10229         might_sleep();
10230
10231         /* When net_device's are persistent, this will be fatal. */
10232         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10233         BUG_ON(!net);
10234
10235         ret = ethtool_check_ops(dev->ethtool_ops);
10236         if (ret)
10237                 return ret;
10238
10239         spin_lock_init(&dev->addr_list_lock);
10240         netdev_set_addr_lockdep_class(dev);
10241
10242         ret = dev_get_valid_name(net, dev, dev->name);
10243         if (ret < 0)
10244                 goto out;
10245
10246         ret = -ENOMEM;
10247         dev->name_node = netdev_name_node_head_alloc(dev);
10248         if (!dev->name_node)
10249                 goto out;
10250
10251         /* Init, if this function is available */
10252         if (dev->netdev_ops->ndo_init) {
10253                 ret = dev->netdev_ops->ndo_init(dev);
10254                 if (ret) {
10255                         if (ret > 0)
10256                                 ret = -EIO;
10257                         goto err_free_name;
10258                 }
10259         }
10260
10261         if (((dev->hw_features | dev->features) &
10262              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10263             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10264              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10265                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10266                 ret = -EINVAL;
10267                 goto err_uninit;
10268         }
10269
10270         ret = -EBUSY;
10271         if (!dev->ifindex)
10272                 dev->ifindex = dev_new_index(net);
10273         else if (__dev_get_by_index(net, dev->ifindex))
10274                 goto err_uninit;
10275
10276         /* Transfer changeable features to wanted_features and enable
10277          * software offloads (GSO and GRO).
10278          */
10279         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10280         dev->features |= NETIF_F_SOFT_FEATURES;
10281
10282         if (dev->udp_tunnel_nic_info) {
10283                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10284                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10285         }
10286
10287         dev->wanted_features = dev->features & dev->hw_features;
10288
10289         if (!(dev->flags & IFF_LOOPBACK))
10290                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10291
10292         /* If IPv4 TCP segmentation offload is supported we should also
10293          * allow the device to enable segmenting the frame with the option
10294          * of ignoring a static IP ID value.  This doesn't enable the
10295          * feature itself but allows the user to enable it later.
10296          */
10297         if (dev->hw_features & NETIF_F_TSO)
10298                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10299         if (dev->vlan_features & NETIF_F_TSO)
10300                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10301         if (dev->mpls_features & NETIF_F_TSO)
10302                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10303         if (dev->hw_enc_features & NETIF_F_TSO)
10304                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10305
10306         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10307          */
10308         dev->vlan_features |= NETIF_F_HIGHDMA;
10309
10310         /* Make NETIF_F_SG inheritable to tunnel devices.
10311          */
10312         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10313
10314         /* Make NETIF_F_SG inheritable to MPLS.
10315          */
10316         dev->mpls_features |= NETIF_F_SG;
10317
10318         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10319         ret = notifier_to_errno(ret);
10320         if (ret)
10321                 goto err_uninit;
10322
10323         ret = netdev_register_kobject(dev);
10324         write_lock(&dev_base_lock);
10325         dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10326         write_unlock(&dev_base_lock);
10327         if (ret)
10328                 goto err_uninit;
10329
10330         __netdev_update_features(dev);
10331
10332         /*
10333          *      Default initial state at registry is that the
10334          *      device is present.
10335          */
10336
10337         set_bit(__LINK_STATE_PRESENT, &dev->state);
10338
10339         linkwatch_init_dev(dev);
10340
10341         dev_init_scheduler(dev);
10342         dev_hold(dev);
10343         list_netdevice(dev);
10344         add_device_randomness(dev->dev_addr, dev->addr_len);
10345
10346         /* If the device has permanent device address, driver should
10347          * set dev_addr and also addr_assign_type should be set to
10348          * NET_ADDR_PERM (default value).
10349          */
10350         if (dev->addr_assign_type == NET_ADDR_PERM)
10351                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10352
10353         /* Notify protocols, that a new device appeared. */
10354         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10355         ret = notifier_to_errno(ret);
10356         if (ret) {
10357                 /* Expect explicit free_netdev() on failure */
10358                 dev->needs_free_netdev = false;
10359                 unregister_netdevice_queue(dev, NULL);
10360                 goto out;
10361         }
10362         /*
10363          *      Prevent userspace races by waiting until the network
10364          *      device is fully setup before sending notifications.
10365          */
10366         if (!dev->rtnl_link_ops ||
10367             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10368                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10369
10370 out:
10371         return ret;
10372
10373 err_uninit:
10374         if (dev->netdev_ops->ndo_uninit)
10375                 dev->netdev_ops->ndo_uninit(dev);
10376         if (dev->priv_destructor)
10377                 dev->priv_destructor(dev);
10378 err_free_name:
10379         netdev_name_node_free(dev->name_node);
10380         goto out;
10381 }
10382 EXPORT_SYMBOL(register_netdevice);
10383
10384 /**
10385  *      init_dummy_netdev       - init a dummy network device for NAPI
10386  *      @dev: device to init
10387  *
10388  *      This takes a network device structure and initialize the minimum
10389  *      amount of fields so it can be used to schedule NAPI polls without
10390  *      registering a full blown interface. This is to be used by drivers
10391  *      that need to tie several hardware interfaces to a single NAPI
10392  *      poll scheduler due to HW limitations.
10393  */
10394 int init_dummy_netdev(struct net_device *dev)
10395 {
10396         /* Clear everything. Note we don't initialize spinlocks
10397          * are they aren't supposed to be taken by any of the
10398          * NAPI code and this dummy netdev is supposed to be
10399          * only ever used for NAPI polls
10400          */
10401         memset(dev, 0, sizeof(struct net_device));
10402
10403         /* make sure we BUG if trying to hit standard
10404          * register/unregister code path
10405          */
10406         dev->reg_state = NETREG_DUMMY;
10407
10408         /* NAPI wants this */
10409         INIT_LIST_HEAD(&dev->napi_list);
10410
10411         /* a dummy interface is started by default */
10412         set_bit(__LINK_STATE_PRESENT, &dev->state);
10413         set_bit(__LINK_STATE_START, &dev->state);
10414
10415         /* napi_busy_loop stats accounting wants this */
10416         dev_net_set(dev, &init_net);
10417
10418         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10419          * because users of this 'device' dont need to change
10420          * its refcount.
10421          */
10422
10423         return 0;
10424 }
10425 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10426
10427
10428 /**
10429  *      register_netdev - register a network device
10430  *      @dev: device to register
10431  *
10432  *      Take a completed network device structure and add it to the kernel
10433  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10434  *      chain. 0 is returned on success. A negative errno code is returned
10435  *      on a failure to set up the device, or if the name is a duplicate.
10436  *
10437  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10438  *      and expands the device name if you passed a format string to
10439  *      alloc_netdev.
10440  */
10441 int register_netdev(struct net_device *dev)
10442 {
10443         int err;
10444
10445         if (rtnl_lock_killable())
10446                 return -EINTR;
10447         err = register_netdevice(dev);
10448         rtnl_unlock();
10449         return err;
10450 }
10451 EXPORT_SYMBOL(register_netdev);
10452
10453 int netdev_refcnt_read(const struct net_device *dev)
10454 {
10455 #ifdef CONFIG_PCPU_DEV_REFCNT
10456         int i, refcnt = 0;
10457
10458         for_each_possible_cpu(i)
10459                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10460         return refcnt;
10461 #else
10462         return refcount_read(&dev->dev_refcnt);
10463 #endif
10464 }
10465 EXPORT_SYMBOL(netdev_refcnt_read);
10466
10467 int netdev_unregister_timeout_secs __read_mostly = 10;
10468
10469 #define WAIT_REFS_MIN_MSECS 1
10470 #define WAIT_REFS_MAX_MSECS 250
10471 /**
10472  * netdev_wait_allrefs - wait until all references are gone.
10473  * @dev: target net_device
10474  *
10475  * This is called when unregistering network devices.
10476  *
10477  * Any protocol or device that holds a reference should register
10478  * for netdevice notification, and cleanup and put back the
10479  * reference if they receive an UNREGISTER event.
10480  * We can get stuck here if buggy protocols don't correctly
10481  * call dev_put.
10482  */
10483 static void netdev_wait_allrefs(struct net_device *dev)
10484 {
10485         unsigned long rebroadcast_time, warning_time;
10486         int wait = 0, refcnt;
10487
10488         rebroadcast_time = warning_time = jiffies;
10489         refcnt = netdev_refcnt_read(dev);
10490
10491         while (refcnt != 1) {
10492                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10493                         rtnl_lock();
10494
10495                         /* Rebroadcast unregister notification */
10496                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10497
10498                         __rtnl_unlock();
10499                         rcu_barrier();
10500                         rtnl_lock();
10501
10502                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10503                                      &dev->state)) {
10504                                 /* We must not have linkwatch events
10505                                  * pending on unregister. If this
10506                                  * happens, we simply run the queue
10507                                  * unscheduled, resulting in a noop
10508                                  * for this device.
10509                                  */
10510                                 linkwatch_run_queue();
10511                         }
10512
10513                         __rtnl_unlock();
10514
10515                         rebroadcast_time = jiffies;
10516                 }
10517
10518                 if (!wait) {
10519                         rcu_barrier();
10520                         wait = WAIT_REFS_MIN_MSECS;
10521                 } else {
10522                         msleep(wait);
10523                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10524                 }
10525
10526                 refcnt = netdev_refcnt_read(dev);
10527
10528                 if (refcnt != 1 &&
10529                     time_after(jiffies, warning_time +
10530                                netdev_unregister_timeout_secs * HZ)) {
10531                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10532                                  dev->name, refcnt);
10533                         warning_time = jiffies;
10534                 }
10535         }
10536 }
10537
10538 /* The sequence is:
10539  *
10540  *      rtnl_lock();
10541  *      ...
10542  *      register_netdevice(x1);
10543  *      register_netdevice(x2);
10544  *      ...
10545  *      unregister_netdevice(y1);
10546  *      unregister_netdevice(y2);
10547  *      ...
10548  *      rtnl_unlock();
10549  *      free_netdev(y1);
10550  *      free_netdev(y2);
10551  *
10552  * We are invoked by rtnl_unlock().
10553  * This allows us to deal with problems:
10554  * 1) We can delete sysfs objects which invoke hotplug
10555  *    without deadlocking with linkwatch via keventd.
10556  * 2) Since we run with the RTNL semaphore not held, we can sleep
10557  *    safely in order to wait for the netdev refcnt to drop to zero.
10558  *
10559  * We must not return until all unregister events added during
10560  * the interval the lock was held have been completed.
10561  */
10562 void netdev_run_todo(void)
10563 {
10564         struct list_head list;
10565 #ifdef CONFIG_LOCKDEP
10566         struct list_head unlink_list;
10567
10568         list_replace_init(&net_unlink_list, &unlink_list);
10569
10570         while (!list_empty(&unlink_list)) {
10571                 struct net_device *dev = list_first_entry(&unlink_list,
10572                                                           struct net_device,
10573                                                           unlink_list);
10574                 list_del_init(&dev->unlink_list);
10575                 dev->nested_level = dev->lower_level - 1;
10576         }
10577 #endif
10578
10579         /* Snapshot list, allow later requests */
10580         list_replace_init(&net_todo_list, &list);
10581
10582         __rtnl_unlock();
10583
10584
10585         /* Wait for rcu callbacks to finish before next phase */
10586         if (!list_empty(&list))
10587                 rcu_barrier();
10588
10589         while (!list_empty(&list)) {
10590                 struct net_device *dev
10591                         = list_first_entry(&list, struct net_device, todo_list);
10592                 list_del(&dev->todo_list);
10593
10594                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10595                         pr_err("network todo '%s' but state %d\n",
10596                                dev->name, dev->reg_state);
10597                         dump_stack();
10598                         continue;
10599                 }
10600
10601                 write_lock(&dev_base_lock);
10602                 dev->reg_state = NETREG_UNREGISTERED;
10603                 write_unlock(&dev_base_lock);
10604                 linkwatch_forget_dev(dev);
10605
10606                 netdev_wait_allrefs(dev);
10607
10608                 /* paranoia */
10609                 BUG_ON(netdev_refcnt_read(dev) != 1);
10610                 BUG_ON(!list_empty(&dev->ptype_all));
10611                 BUG_ON(!list_empty(&dev->ptype_specific));
10612                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10613                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10614 #if IS_ENABLED(CONFIG_DECNET)
10615                 WARN_ON(dev->dn_ptr);
10616 #endif
10617                 if (dev->priv_destructor)
10618                         dev->priv_destructor(dev);
10619                 if (dev->needs_free_netdev)
10620                         free_netdev(dev);
10621
10622                 /* Report a network device has been unregistered */
10623                 rtnl_lock();
10624                 dev_net(dev)->dev_unreg_count--;
10625                 __rtnl_unlock();
10626                 wake_up(&netdev_unregistering_wq);
10627
10628                 /* Free network device */
10629                 kobject_put(&dev->dev.kobj);
10630         }
10631 }
10632
10633 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10634  * all the same fields in the same order as net_device_stats, with only
10635  * the type differing, but rtnl_link_stats64 may have additional fields
10636  * at the end for newer counters.
10637  */
10638 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10639                              const struct net_device_stats *netdev_stats)
10640 {
10641 #if BITS_PER_LONG == 64
10642         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10643         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10644         /* zero out counters that only exist in rtnl_link_stats64 */
10645         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10646                sizeof(*stats64) - sizeof(*netdev_stats));
10647 #else
10648         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10649         const unsigned long *src = (const unsigned long *)netdev_stats;
10650         u64 *dst = (u64 *)stats64;
10651
10652         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10653         for (i = 0; i < n; i++)
10654                 dst[i] = src[i];
10655         /* zero out counters that only exist in rtnl_link_stats64 */
10656         memset((char *)stats64 + n * sizeof(u64), 0,
10657                sizeof(*stats64) - n * sizeof(u64));
10658 #endif
10659 }
10660 EXPORT_SYMBOL(netdev_stats_to_stats64);
10661
10662 /**
10663  *      dev_get_stats   - get network device statistics
10664  *      @dev: device to get statistics from
10665  *      @storage: place to store stats
10666  *
10667  *      Get network statistics from device. Return @storage.
10668  *      The device driver may provide its own method by setting
10669  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10670  *      otherwise the internal statistics structure is used.
10671  */
10672 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10673                                         struct rtnl_link_stats64 *storage)
10674 {
10675         const struct net_device_ops *ops = dev->netdev_ops;
10676
10677         if (ops->ndo_get_stats64) {
10678                 memset(storage, 0, sizeof(*storage));
10679                 ops->ndo_get_stats64(dev, storage);
10680         } else if (ops->ndo_get_stats) {
10681                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10682         } else {
10683                 netdev_stats_to_stats64(storage, &dev->stats);
10684         }
10685         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10686         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10687         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10688         return storage;
10689 }
10690 EXPORT_SYMBOL(dev_get_stats);
10691
10692 /**
10693  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10694  *      @s: place to store stats
10695  *      @netstats: per-cpu network stats to read from
10696  *
10697  *      Read per-cpu network statistics and populate the related fields in @s.
10698  */
10699 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10700                            const struct pcpu_sw_netstats __percpu *netstats)
10701 {
10702         int cpu;
10703
10704         for_each_possible_cpu(cpu) {
10705                 const struct pcpu_sw_netstats *stats;
10706                 struct pcpu_sw_netstats tmp;
10707                 unsigned int start;
10708
10709                 stats = per_cpu_ptr(netstats, cpu);
10710                 do {
10711                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10712                         tmp.rx_packets = stats->rx_packets;
10713                         tmp.rx_bytes   = stats->rx_bytes;
10714                         tmp.tx_packets = stats->tx_packets;
10715                         tmp.tx_bytes   = stats->tx_bytes;
10716                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10717
10718                 s->rx_packets += tmp.rx_packets;
10719                 s->rx_bytes   += tmp.rx_bytes;
10720                 s->tx_packets += tmp.tx_packets;
10721                 s->tx_bytes   += tmp.tx_bytes;
10722         }
10723 }
10724 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10725
10726 /**
10727  *      dev_get_tstats64 - ndo_get_stats64 implementation
10728  *      @dev: device to get statistics from
10729  *      @s: place to store stats
10730  *
10731  *      Populate @s from dev->stats and dev->tstats. Can be used as
10732  *      ndo_get_stats64() callback.
10733  */
10734 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10735 {
10736         netdev_stats_to_stats64(s, &dev->stats);
10737         dev_fetch_sw_netstats(s, dev->tstats);
10738 }
10739 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10740
10741 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10742 {
10743         struct netdev_queue *queue = dev_ingress_queue(dev);
10744
10745 #ifdef CONFIG_NET_CLS_ACT
10746         if (queue)
10747                 return queue;
10748         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10749         if (!queue)
10750                 return NULL;
10751         netdev_init_one_queue(dev, queue, NULL);
10752         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10753         queue->qdisc_sleeping = &noop_qdisc;
10754         rcu_assign_pointer(dev->ingress_queue, queue);
10755 #endif
10756         return queue;
10757 }
10758
10759 static const struct ethtool_ops default_ethtool_ops;
10760
10761 void netdev_set_default_ethtool_ops(struct net_device *dev,
10762                                     const struct ethtool_ops *ops)
10763 {
10764         if (dev->ethtool_ops == &default_ethtool_ops)
10765                 dev->ethtool_ops = ops;
10766 }
10767 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10768
10769 void netdev_freemem(struct net_device *dev)
10770 {
10771         char *addr = (char *)dev - dev->padded;
10772
10773         kvfree(addr);
10774 }
10775
10776 /**
10777  * alloc_netdev_mqs - allocate network device
10778  * @sizeof_priv: size of private data to allocate space for
10779  * @name: device name format string
10780  * @name_assign_type: origin of device name
10781  * @setup: callback to initialize device
10782  * @txqs: the number of TX subqueues to allocate
10783  * @rxqs: the number of RX subqueues to allocate
10784  *
10785  * Allocates a struct net_device with private data area for driver use
10786  * and performs basic initialization.  Also allocates subqueue structs
10787  * for each queue on the device.
10788  */
10789 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10790                 unsigned char name_assign_type,
10791                 void (*setup)(struct net_device *),
10792                 unsigned int txqs, unsigned int rxqs)
10793 {
10794         struct net_device *dev;
10795         unsigned int alloc_size;
10796         struct net_device *p;
10797
10798         BUG_ON(strlen(name) >= sizeof(dev->name));
10799
10800         if (txqs < 1) {
10801                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10802                 return NULL;
10803         }
10804
10805         if (rxqs < 1) {
10806                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10807                 return NULL;
10808         }
10809
10810         alloc_size = sizeof(struct net_device);
10811         if (sizeof_priv) {
10812                 /* ensure 32-byte alignment of private area */
10813                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10814                 alloc_size += sizeof_priv;
10815         }
10816         /* ensure 32-byte alignment of whole construct */
10817         alloc_size += NETDEV_ALIGN - 1;
10818
10819         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10820         if (!p)
10821                 return NULL;
10822
10823         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10824         dev->padded = (char *)dev - (char *)p;
10825
10826 #ifdef CONFIG_PCPU_DEV_REFCNT
10827         dev->pcpu_refcnt = alloc_percpu(int);
10828         if (!dev->pcpu_refcnt)
10829                 goto free_dev;
10830         dev_hold(dev);
10831 #else
10832         refcount_set(&dev->dev_refcnt, 1);
10833 #endif
10834
10835         if (dev_addr_init(dev))
10836                 goto free_pcpu;
10837
10838         dev_mc_init(dev);
10839         dev_uc_init(dev);
10840
10841         dev_net_set(dev, &init_net);
10842
10843         dev->gso_max_size = GSO_MAX_SIZE;
10844         dev->gso_max_segs = GSO_MAX_SEGS;
10845         dev->upper_level = 1;
10846         dev->lower_level = 1;
10847 #ifdef CONFIG_LOCKDEP
10848         dev->nested_level = 0;
10849         INIT_LIST_HEAD(&dev->unlink_list);
10850 #endif
10851
10852         INIT_LIST_HEAD(&dev->napi_list);
10853         INIT_LIST_HEAD(&dev->unreg_list);
10854         INIT_LIST_HEAD(&dev->close_list);
10855         INIT_LIST_HEAD(&dev->link_watch_list);
10856         INIT_LIST_HEAD(&dev->adj_list.upper);
10857         INIT_LIST_HEAD(&dev->adj_list.lower);
10858         INIT_LIST_HEAD(&dev->ptype_all);
10859         INIT_LIST_HEAD(&dev->ptype_specific);
10860         INIT_LIST_HEAD(&dev->net_notifier_list);
10861 #ifdef CONFIG_NET_SCHED
10862         hash_init(dev->qdisc_hash);
10863 #endif
10864         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10865         setup(dev);
10866
10867         if (!dev->tx_queue_len) {
10868                 dev->priv_flags |= IFF_NO_QUEUE;
10869                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10870         }
10871
10872         dev->num_tx_queues = txqs;
10873         dev->real_num_tx_queues = txqs;
10874         if (netif_alloc_netdev_queues(dev))
10875                 goto free_all;
10876
10877         dev->num_rx_queues = rxqs;
10878         dev->real_num_rx_queues = rxqs;
10879         if (netif_alloc_rx_queues(dev))
10880                 goto free_all;
10881
10882         strcpy(dev->name, name);
10883         dev->name_assign_type = name_assign_type;
10884         dev->group = INIT_NETDEV_GROUP;
10885         if (!dev->ethtool_ops)
10886                 dev->ethtool_ops = &default_ethtool_ops;
10887
10888         nf_hook_ingress_init(dev);
10889
10890         return dev;
10891
10892 free_all:
10893         free_netdev(dev);
10894         return NULL;
10895
10896 free_pcpu:
10897 #ifdef CONFIG_PCPU_DEV_REFCNT
10898         free_percpu(dev->pcpu_refcnt);
10899 free_dev:
10900 #endif
10901         netdev_freemem(dev);
10902         return NULL;
10903 }
10904 EXPORT_SYMBOL(alloc_netdev_mqs);
10905
10906 /**
10907  * free_netdev - free network device
10908  * @dev: device
10909  *
10910  * This function does the last stage of destroying an allocated device
10911  * interface. The reference to the device object is released. If this
10912  * is the last reference then it will be freed.Must be called in process
10913  * context.
10914  */
10915 void free_netdev(struct net_device *dev)
10916 {
10917         struct napi_struct *p, *n;
10918
10919         might_sleep();
10920
10921         /* When called immediately after register_netdevice() failed the unwind
10922          * handling may still be dismantling the device. Handle that case by
10923          * deferring the free.
10924          */
10925         if (dev->reg_state == NETREG_UNREGISTERING) {
10926                 ASSERT_RTNL();
10927                 dev->needs_free_netdev = true;
10928                 return;
10929         }
10930
10931         netif_free_tx_queues(dev);
10932         netif_free_rx_queues(dev);
10933
10934         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10935
10936         /* Flush device addresses */
10937         dev_addr_flush(dev);
10938
10939         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10940                 netif_napi_del(p);
10941
10942 #ifdef CONFIG_PCPU_DEV_REFCNT
10943         free_percpu(dev->pcpu_refcnt);
10944         dev->pcpu_refcnt = NULL;
10945 #endif
10946         free_percpu(dev->xdp_bulkq);
10947         dev->xdp_bulkq = NULL;
10948
10949         /*  Compatibility with error handling in drivers */
10950         if (dev->reg_state == NETREG_UNINITIALIZED) {
10951                 netdev_freemem(dev);
10952                 return;
10953         }
10954
10955         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10956         dev->reg_state = NETREG_RELEASED;
10957
10958         /* will free via device release */
10959         put_device(&dev->dev);
10960 }
10961 EXPORT_SYMBOL(free_netdev);
10962
10963 /**
10964  *      synchronize_net -  Synchronize with packet receive processing
10965  *
10966  *      Wait for packets currently being received to be done.
10967  *      Does not block later packets from starting.
10968  */
10969 void synchronize_net(void)
10970 {
10971         might_sleep();
10972         if (rtnl_is_locked())
10973                 synchronize_rcu_expedited();
10974         else
10975                 synchronize_rcu();
10976 }
10977 EXPORT_SYMBOL(synchronize_net);
10978
10979 /**
10980  *      unregister_netdevice_queue - remove device from the kernel
10981  *      @dev: device
10982  *      @head: list
10983  *
10984  *      This function shuts down a device interface and removes it
10985  *      from the kernel tables.
10986  *      If head not NULL, device is queued to be unregistered later.
10987  *
10988  *      Callers must hold the rtnl semaphore.  You may want
10989  *      unregister_netdev() instead of this.
10990  */
10991
10992 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10993 {
10994         ASSERT_RTNL();
10995
10996         if (head) {
10997                 list_move_tail(&dev->unreg_list, head);
10998         } else {
10999                 LIST_HEAD(single);
11000
11001                 list_add(&dev->unreg_list, &single);
11002                 unregister_netdevice_many(&single);
11003         }
11004 }
11005 EXPORT_SYMBOL(unregister_netdevice_queue);
11006
11007 /**
11008  *      unregister_netdevice_many - unregister many devices
11009  *      @head: list of devices
11010  *
11011  *  Note: As most callers use a stack allocated list_head,
11012  *  we force a list_del() to make sure stack wont be corrupted later.
11013  */
11014 void unregister_netdevice_many(struct list_head *head)
11015 {
11016         struct net_device *dev, *tmp;
11017         LIST_HEAD(close_head);
11018
11019         BUG_ON(dev_boot_phase);
11020         ASSERT_RTNL();
11021
11022         if (list_empty(head))
11023                 return;
11024
11025         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11026                 /* Some devices call without registering
11027                  * for initialization unwind. Remove those
11028                  * devices and proceed with the remaining.
11029                  */
11030                 if (dev->reg_state == NETREG_UNINITIALIZED) {
11031                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11032                                  dev->name, dev);
11033
11034                         WARN_ON(1);
11035                         list_del(&dev->unreg_list);
11036                         continue;
11037                 }
11038                 dev->dismantle = true;
11039                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11040         }
11041
11042         /* If device is running, close it first. */
11043         list_for_each_entry(dev, head, unreg_list)
11044                 list_add_tail(&dev->close_list, &close_head);
11045         dev_close_many(&close_head, true);
11046
11047         list_for_each_entry(dev, head, unreg_list) {
11048                 /* And unlink it from device chain. */
11049                 write_lock(&dev_base_lock);
11050                 unlist_netdevice(dev, false);
11051                 dev->reg_state = NETREG_UNREGISTERING;
11052                 write_unlock(&dev_base_lock);
11053         }
11054         flush_all_backlogs();
11055
11056         synchronize_net();
11057
11058         list_for_each_entry(dev, head, unreg_list) {
11059                 struct sk_buff *skb = NULL;
11060
11061                 /* Shutdown queueing discipline. */
11062                 dev_shutdown(dev);
11063
11064                 dev_xdp_uninstall(dev);
11065
11066                 /* Notify protocols, that we are about to destroy
11067                  * this device. They should clean all the things.
11068                  */
11069                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11070
11071                 if (!dev->rtnl_link_ops ||
11072                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11073                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11074                                                      GFP_KERNEL, NULL, 0);
11075
11076                 /*
11077                  *      Flush the unicast and multicast chains
11078                  */
11079                 dev_uc_flush(dev);
11080                 dev_mc_flush(dev);
11081
11082                 netdev_name_node_alt_flush(dev);
11083                 netdev_name_node_free(dev->name_node);
11084
11085                 if (dev->netdev_ops->ndo_uninit)
11086                         dev->netdev_ops->ndo_uninit(dev);
11087
11088                 if (skb)
11089                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11090
11091                 /* Notifier chain MUST detach us all upper devices. */
11092                 WARN_ON(netdev_has_any_upper_dev(dev));
11093                 WARN_ON(netdev_has_any_lower_dev(dev));
11094
11095                 /* Remove entries from kobject tree */
11096                 netdev_unregister_kobject(dev);
11097 #ifdef CONFIG_XPS
11098                 /* Remove XPS queueing entries */
11099                 netif_reset_xps_queues_gt(dev, 0);
11100 #endif
11101         }
11102
11103         synchronize_net();
11104
11105         list_for_each_entry(dev, head, unreg_list) {
11106                 dev_put(dev);
11107                 net_set_todo(dev);
11108         }
11109
11110         list_del(head);
11111 }
11112 EXPORT_SYMBOL(unregister_netdevice_many);
11113
11114 /**
11115  *      unregister_netdev - remove device from the kernel
11116  *      @dev: device
11117  *
11118  *      This function shuts down a device interface and removes it
11119  *      from the kernel tables.
11120  *
11121  *      This is just a wrapper for unregister_netdevice that takes
11122  *      the rtnl semaphore.  In general you want to use this and not
11123  *      unregister_netdevice.
11124  */
11125 void unregister_netdev(struct net_device *dev)
11126 {
11127         rtnl_lock();
11128         unregister_netdevice(dev);
11129         rtnl_unlock();
11130 }
11131 EXPORT_SYMBOL(unregister_netdev);
11132
11133 /**
11134  *      __dev_change_net_namespace - move device to different nethost namespace
11135  *      @dev: device
11136  *      @net: network namespace
11137  *      @pat: If not NULL name pattern to try if the current device name
11138  *            is already taken in the destination network namespace.
11139  *      @new_ifindex: If not zero, specifies device index in the target
11140  *                    namespace.
11141  *
11142  *      This function shuts down a device interface and moves it
11143  *      to a new network namespace. On success 0 is returned, on
11144  *      a failure a netagive errno code is returned.
11145  *
11146  *      Callers must hold the rtnl semaphore.
11147  */
11148
11149 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11150                                const char *pat, int new_ifindex)
11151 {
11152         struct net *net_old = dev_net(dev);
11153         int err, new_nsid;
11154
11155         ASSERT_RTNL();
11156
11157         /* Don't allow namespace local devices to be moved. */
11158         err = -EINVAL;
11159         if (dev->features & NETIF_F_NETNS_LOCAL)
11160                 goto out;
11161
11162         /* Ensure the device has been registrered */
11163         if (dev->reg_state != NETREG_REGISTERED)
11164                 goto out;
11165
11166         /* Get out if there is nothing todo */
11167         err = 0;
11168         if (net_eq(net_old, net))
11169                 goto out;
11170
11171         /* Pick the destination device name, and ensure
11172          * we can use it in the destination network namespace.
11173          */
11174         err = -EEXIST;
11175         if (__dev_get_by_name(net, dev->name)) {
11176                 /* We get here if we can't use the current device name */
11177                 if (!pat)
11178                         goto out;
11179                 err = dev_get_valid_name(net, dev, pat);
11180                 if (err < 0)
11181                         goto out;
11182         }
11183
11184         /* Check that new_ifindex isn't used yet. */
11185         err = -EBUSY;
11186         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11187                 goto out;
11188
11189         /*
11190          * And now a mini version of register_netdevice unregister_netdevice.
11191          */
11192
11193         /* If device is running close it first. */
11194         dev_close(dev);
11195
11196         /* And unlink it from device chain */
11197         unlist_netdevice(dev, true);
11198
11199         synchronize_net();
11200
11201         /* Shutdown queueing discipline. */
11202         dev_shutdown(dev);
11203
11204         /* Notify protocols, that we are about to destroy
11205          * this device. They should clean all the things.
11206          *
11207          * Note that dev->reg_state stays at NETREG_REGISTERED.
11208          * This is wanted because this way 8021q and macvlan know
11209          * the device is just moving and can keep their slaves up.
11210          */
11211         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11212         rcu_barrier();
11213
11214         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11215         /* If there is an ifindex conflict assign a new one */
11216         if (!new_ifindex) {
11217                 if (__dev_get_by_index(net, dev->ifindex))
11218                         new_ifindex = dev_new_index(net);
11219                 else
11220                         new_ifindex = dev->ifindex;
11221         }
11222
11223         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11224                             new_ifindex);
11225
11226         /*
11227          *      Flush the unicast and multicast chains
11228          */
11229         dev_uc_flush(dev);
11230         dev_mc_flush(dev);
11231
11232         /* Send a netdev-removed uevent to the old namespace */
11233         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11234         netdev_adjacent_del_links(dev);
11235
11236         /* Move per-net netdevice notifiers that are following the netdevice */
11237         move_netdevice_notifiers_dev_net(dev, net);
11238
11239         /* Actually switch the network namespace */
11240         dev_net_set(dev, net);
11241         dev->ifindex = new_ifindex;
11242
11243         /* Send a netdev-add uevent to the new namespace */
11244         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11245         netdev_adjacent_add_links(dev);
11246
11247         /* Fixup kobjects */
11248         err = device_rename(&dev->dev, dev->name);
11249         WARN_ON(err);
11250
11251         /* Adapt owner in case owning user namespace of target network
11252          * namespace is different from the original one.
11253          */
11254         err = netdev_change_owner(dev, net_old, net);
11255         WARN_ON(err);
11256
11257         /* Add the device back in the hashes */
11258         list_netdevice(dev);
11259
11260         /* Notify protocols, that a new device appeared. */
11261         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11262
11263         /*
11264          *      Prevent userspace races by waiting until the network
11265          *      device is fully setup before sending notifications.
11266          */
11267         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11268
11269         synchronize_net();
11270         err = 0;
11271 out:
11272         return err;
11273 }
11274 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11275
11276 static int dev_cpu_dead(unsigned int oldcpu)
11277 {
11278         struct sk_buff **list_skb;
11279         struct sk_buff *skb;
11280         unsigned int cpu;
11281         struct softnet_data *sd, *oldsd, *remsd = NULL;
11282
11283         local_irq_disable();
11284         cpu = smp_processor_id();
11285         sd = &per_cpu(softnet_data, cpu);
11286         oldsd = &per_cpu(softnet_data, oldcpu);
11287
11288         /* Find end of our completion_queue. */
11289         list_skb = &sd->completion_queue;
11290         while (*list_skb)
11291                 list_skb = &(*list_skb)->next;
11292         /* Append completion queue from offline CPU. */
11293         *list_skb = oldsd->completion_queue;
11294         oldsd->completion_queue = NULL;
11295
11296         /* Append output queue from offline CPU. */
11297         if (oldsd->output_queue) {
11298                 *sd->output_queue_tailp = oldsd->output_queue;
11299                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11300                 oldsd->output_queue = NULL;
11301                 oldsd->output_queue_tailp = &oldsd->output_queue;
11302         }
11303         /* Append NAPI poll list from offline CPU, with one exception :
11304          * process_backlog() must be called by cpu owning percpu backlog.
11305          * We properly handle process_queue & input_pkt_queue later.
11306          */
11307         while (!list_empty(&oldsd->poll_list)) {
11308                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11309                                                             struct napi_struct,
11310                                                             poll_list);
11311
11312                 list_del_init(&napi->poll_list);
11313                 if (napi->poll == process_backlog)
11314                         napi->state = 0;
11315                 else
11316                         ____napi_schedule(sd, napi);
11317         }
11318
11319         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11320         local_irq_enable();
11321
11322 #ifdef CONFIG_RPS
11323         remsd = oldsd->rps_ipi_list;
11324         oldsd->rps_ipi_list = NULL;
11325 #endif
11326         /* send out pending IPI's on offline CPU */
11327         net_rps_send_ipi(remsd);
11328
11329         /* Process offline CPU's input_pkt_queue */
11330         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11331                 netif_rx_ni(skb);
11332                 input_queue_head_incr(oldsd);
11333         }
11334         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11335                 netif_rx_ni(skb);
11336                 input_queue_head_incr(oldsd);
11337         }
11338
11339         return 0;
11340 }
11341
11342 /**
11343  *      netdev_increment_features - increment feature set by one
11344  *      @all: current feature set
11345  *      @one: new feature set
11346  *      @mask: mask feature set
11347  *
11348  *      Computes a new feature set after adding a device with feature set
11349  *      @one to the master device with current feature set @all.  Will not
11350  *      enable anything that is off in @mask. Returns the new feature set.
11351  */
11352 netdev_features_t netdev_increment_features(netdev_features_t all,
11353         netdev_features_t one, netdev_features_t mask)
11354 {
11355         if (mask & NETIF_F_HW_CSUM)
11356                 mask |= NETIF_F_CSUM_MASK;
11357         mask |= NETIF_F_VLAN_CHALLENGED;
11358
11359         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11360         all &= one | ~NETIF_F_ALL_FOR_ALL;
11361
11362         /* If one device supports hw checksumming, set for all. */
11363         if (all & NETIF_F_HW_CSUM)
11364                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11365
11366         return all;
11367 }
11368 EXPORT_SYMBOL(netdev_increment_features);
11369
11370 static struct hlist_head * __net_init netdev_create_hash(void)
11371 {
11372         int i;
11373         struct hlist_head *hash;
11374
11375         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11376         if (hash != NULL)
11377                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11378                         INIT_HLIST_HEAD(&hash[i]);
11379
11380         return hash;
11381 }
11382
11383 /* Initialize per network namespace state */
11384 static int __net_init netdev_init(struct net *net)
11385 {
11386         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11387                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11388
11389         INIT_LIST_HEAD(&net->dev_base_head);
11390
11391         net->dev_name_head = netdev_create_hash();
11392         if (net->dev_name_head == NULL)
11393                 goto err_name;
11394
11395         net->dev_index_head = netdev_create_hash();
11396         if (net->dev_index_head == NULL)
11397                 goto err_idx;
11398
11399         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11400
11401         return 0;
11402
11403 err_idx:
11404         kfree(net->dev_name_head);
11405 err_name:
11406         return -ENOMEM;
11407 }
11408
11409 /**
11410  *      netdev_drivername - network driver for the device
11411  *      @dev: network device
11412  *
11413  *      Determine network driver for device.
11414  */
11415 const char *netdev_drivername(const struct net_device *dev)
11416 {
11417         const struct device_driver *driver;
11418         const struct device *parent;
11419         const char *empty = "";
11420
11421         parent = dev->dev.parent;
11422         if (!parent)
11423                 return empty;
11424
11425         driver = parent->driver;
11426         if (driver && driver->name)
11427                 return driver->name;
11428         return empty;
11429 }
11430
11431 static void __netdev_printk(const char *level, const struct net_device *dev,
11432                             struct va_format *vaf)
11433 {
11434         if (dev && dev->dev.parent) {
11435                 dev_printk_emit(level[1] - '0',
11436                                 dev->dev.parent,
11437                                 "%s %s %s%s: %pV",
11438                                 dev_driver_string(dev->dev.parent),
11439                                 dev_name(dev->dev.parent),
11440                                 netdev_name(dev), netdev_reg_state(dev),
11441                                 vaf);
11442         } else if (dev) {
11443                 printk("%s%s%s: %pV",
11444                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11445         } else {
11446                 printk("%s(NULL net_device): %pV", level, vaf);
11447         }
11448 }
11449
11450 void netdev_printk(const char *level, const struct net_device *dev,
11451                    const char *format, ...)
11452 {
11453         struct va_format vaf;
11454         va_list args;
11455
11456         va_start(args, format);
11457
11458         vaf.fmt = format;
11459         vaf.va = &args;
11460
11461         __netdev_printk(level, dev, &vaf);
11462
11463         va_end(args);
11464 }
11465 EXPORT_SYMBOL(netdev_printk);
11466
11467 #define define_netdev_printk_level(func, level)                 \
11468 void func(const struct net_device *dev, const char *fmt, ...)   \
11469 {                                                               \
11470         struct va_format vaf;                                   \
11471         va_list args;                                           \
11472                                                                 \
11473         va_start(args, fmt);                                    \
11474                                                                 \
11475         vaf.fmt = fmt;                                          \
11476         vaf.va = &args;                                         \
11477                                                                 \
11478         __netdev_printk(level, dev, &vaf);                      \
11479                                                                 \
11480         va_end(args);                                           \
11481 }                                                               \
11482 EXPORT_SYMBOL(func);
11483
11484 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11485 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11486 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11487 define_netdev_printk_level(netdev_err, KERN_ERR);
11488 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11489 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11490 define_netdev_printk_level(netdev_info, KERN_INFO);
11491
11492 static void __net_exit netdev_exit(struct net *net)
11493 {
11494         kfree(net->dev_name_head);
11495         kfree(net->dev_index_head);
11496         if (net != &init_net)
11497                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11498 }
11499
11500 static struct pernet_operations __net_initdata netdev_net_ops = {
11501         .init = netdev_init,
11502         .exit = netdev_exit,
11503 };
11504
11505 static void __net_exit default_device_exit(struct net *net)
11506 {
11507         struct net_device *dev, *aux;
11508         /*
11509          * Push all migratable network devices back to the
11510          * initial network namespace
11511          */
11512         rtnl_lock();
11513         for_each_netdev_safe(net, dev, aux) {
11514                 int err;
11515                 char fb_name[IFNAMSIZ];
11516
11517                 /* Ignore unmoveable devices (i.e. loopback) */
11518                 if (dev->features & NETIF_F_NETNS_LOCAL)
11519                         continue;
11520
11521                 /* Leave virtual devices for the generic cleanup */
11522                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11523                         continue;
11524
11525                 /* Push remaining network devices to init_net */
11526                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11527                 if (__dev_get_by_name(&init_net, fb_name))
11528                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11529                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11530                 if (err) {
11531                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11532                                  __func__, dev->name, err);
11533                         BUG();
11534                 }
11535         }
11536         rtnl_unlock();
11537 }
11538
11539 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11540 {
11541         /* Return with the rtnl_lock held when there are no network
11542          * devices unregistering in any network namespace in net_list.
11543          */
11544         struct net *net;
11545         bool unregistering;
11546         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11547
11548         add_wait_queue(&netdev_unregistering_wq, &wait);
11549         for (;;) {
11550                 unregistering = false;
11551                 rtnl_lock();
11552                 list_for_each_entry(net, net_list, exit_list) {
11553                         if (net->dev_unreg_count > 0) {
11554                                 unregistering = true;
11555                                 break;
11556                         }
11557                 }
11558                 if (!unregistering)
11559                         break;
11560                 __rtnl_unlock();
11561
11562                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11563         }
11564         remove_wait_queue(&netdev_unregistering_wq, &wait);
11565 }
11566
11567 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11568 {
11569         /* At exit all network devices most be removed from a network
11570          * namespace.  Do this in the reverse order of registration.
11571          * Do this across as many network namespaces as possible to
11572          * improve batching efficiency.
11573          */
11574         struct net_device *dev;
11575         struct net *net;
11576         LIST_HEAD(dev_kill_list);
11577
11578         /* To prevent network device cleanup code from dereferencing
11579          * loopback devices or network devices that have been freed
11580          * wait here for all pending unregistrations to complete,
11581          * before unregistring the loopback device and allowing the
11582          * network namespace be freed.
11583          *
11584          * The netdev todo list containing all network devices
11585          * unregistrations that happen in default_device_exit_batch
11586          * will run in the rtnl_unlock() at the end of
11587          * default_device_exit_batch.
11588          */
11589         rtnl_lock_unregistering(net_list);
11590         list_for_each_entry(net, net_list, exit_list) {
11591                 for_each_netdev_reverse(net, dev) {
11592                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11593                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11594                         else
11595                                 unregister_netdevice_queue(dev, &dev_kill_list);
11596                 }
11597         }
11598         unregister_netdevice_many(&dev_kill_list);
11599         rtnl_unlock();
11600 }
11601
11602 static struct pernet_operations __net_initdata default_device_ops = {
11603         .exit = default_device_exit,
11604         .exit_batch = default_device_exit_batch,
11605 };
11606
11607 /*
11608  *      Initialize the DEV module. At boot time this walks the device list and
11609  *      unhooks any devices that fail to initialise (normally hardware not
11610  *      present) and leaves us with a valid list of present and active devices.
11611  *
11612  */
11613
11614 /*
11615  *       This is called single threaded during boot, so no need
11616  *       to take the rtnl semaphore.
11617  */
11618 static int __init net_dev_init(void)
11619 {
11620         int i, rc = -ENOMEM;
11621
11622         BUG_ON(!dev_boot_phase);
11623
11624         if (dev_proc_init())
11625                 goto out;
11626
11627         if (netdev_kobject_init())
11628                 goto out;
11629
11630         INIT_LIST_HEAD(&ptype_all);
11631         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11632                 INIT_LIST_HEAD(&ptype_base[i]);
11633
11634         INIT_LIST_HEAD(&offload_base);
11635
11636         if (register_pernet_subsys(&netdev_net_ops))
11637                 goto out;
11638
11639         /*
11640          *      Initialise the packet receive queues.
11641          */
11642
11643         for_each_possible_cpu(i) {
11644                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11645                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11646
11647                 INIT_WORK(flush, flush_backlog);
11648
11649                 skb_queue_head_init(&sd->input_pkt_queue);
11650                 skb_queue_head_init(&sd->process_queue);
11651 #ifdef CONFIG_XFRM_OFFLOAD
11652                 skb_queue_head_init(&sd->xfrm_backlog);
11653 #endif
11654                 INIT_LIST_HEAD(&sd->poll_list);
11655                 sd->output_queue_tailp = &sd->output_queue;
11656 #ifdef CONFIG_RPS
11657                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11658                 sd->cpu = i;
11659 #endif
11660
11661                 init_gro_hash(&sd->backlog);
11662                 sd->backlog.poll = process_backlog;
11663                 sd->backlog.weight = weight_p;
11664         }
11665
11666         dev_boot_phase = 0;
11667
11668         /* The loopback device is special if any other network devices
11669          * is present in a network namespace the loopback device must
11670          * be present. Since we now dynamically allocate and free the
11671          * loopback device ensure this invariant is maintained by
11672          * keeping the loopback device as the first device on the
11673          * list of network devices.  Ensuring the loopback devices
11674          * is the first device that appears and the last network device
11675          * that disappears.
11676          */
11677         if (register_pernet_device(&loopback_net_ops))
11678                 goto out;
11679
11680         if (register_pernet_device(&default_device_ops))
11681                 goto out;
11682
11683         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11684         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11685
11686         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11687                                        NULL, dev_cpu_dead);
11688         WARN_ON(rc < 0);
11689         rc = 0;
11690 out:
11691         return rc;
11692 }
11693
11694 subsys_initcall(net_dev_init);