Merge tag 'spi-fix-v6.1-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
[platform/kernel/linux-starfive.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "dev.h"
155 #include "net-sysfs.h"
156
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;       /* Taps */
161
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164                                          struct netdev_notifier_info *info);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166                                            struct net_device *dev,
167                                            struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191
192 static DEFINE_MUTEX(ifalias_mutex);
193
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200 static DECLARE_RWSEM(devnet_rename_sem);
201
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204         while (++net->dev_base_seq == 0)
205                 ;
206 }
207
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221                                     unsigned long *flags)
222 {
223         if (IS_ENABLED(CONFIG_RPS))
224                 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226                 local_irq_save(*flags);
227 }
228
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231         if (IS_ENABLED(CONFIG_RPS))
232                 spin_lock_irq(&sd->input_pkt_queue.lock);
233         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234                 local_irq_disable();
235 }
236
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238                                           unsigned long *flags)
239 {
240         if (IS_ENABLED(CONFIG_RPS))
241                 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243                 local_irq_restore(*flags);
244 }
245
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248         if (IS_ENABLED(CONFIG_RPS))
249                 spin_unlock_irq(&sd->input_pkt_queue.lock);
250         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251                 local_irq_enable();
252 }
253
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255                                                        const char *name)
256 {
257         struct netdev_name_node *name_node;
258
259         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260         if (!name_node)
261                 return NULL;
262         INIT_HLIST_NODE(&name_node->hlist);
263         name_node->dev = dev;
264         name_node->name = name;
265         return name_node;
266 }
267
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271         struct netdev_name_node *name_node;
272
273         name_node = netdev_name_node_alloc(dev, dev->name);
274         if (!name_node)
275                 return NULL;
276         INIT_LIST_HEAD(&name_node->list);
277         return name_node;
278 }
279
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282         kfree(name_node);
283 }
284
285 static void netdev_name_node_add(struct net *net,
286                                  struct netdev_name_node *name_node)
287 {
288         hlist_add_head_rcu(&name_node->hlist,
289                            dev_name_hash(net, name_node->name));
290 }
291
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294         hlist_del_rcu(&name_node->hlist);
295 }
296
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298                                                         const char *name)
299 {
300         struct hlist_head *head = dev_name_hash(net, name);
301         struct netdev_name_node *name_node;
302
303         hlist_for_each_entry(name_node, head, hlist)
304                 if (!strcmp(name_node->name, name))
305                         return name_node;
306         return NULL;
307 }
308
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310                                                             const char *name)
311 {
312         struct hlist_head *head = dev_name_hash(net, name);
313         struct netdev_name_node *name_node;
314
315         hlist_for_each_entry_rcu(name_node, head, hlist)
316                 if (!strcmp(name_node->name, name))
317                         return name_node;
318         return NULL;
319 }
320
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323         return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329         struct netdev_name_node *name_node;
330         struct net *net = dev_net(dev);
331
332         name_node = netdev_name_node_lookup(net, name);
333         if (name_node)
334                 return -EEXIST;
335         name_node = netdev_name_node_alloc(dev, name);
336         if (!name_node)
337                 return -ENOMEM;
338         netdev_name_node_add(net, name_node);
339         /* The node that holds dev->name acts as a head of per-device list. */
340         list_add_tail(&name_node->list, &dev->name_node->list);
341
342         return 0;
343 }
344
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347         list_del(&name_node->list);
348         netdev_name_node_del(name_node);
349         kfree(name_node->name);
350         netdev_name_node_free(name_node);
351 }
352
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355         struct netdev_name_node *name_node;
356         struct net *net = dev_net(dev);
357
358         name_node = netdev_name_node_lookup(net, name);
359         if (!name_node)
360                 return -ENOENT;
361         /* lookup might have found our primary name or a name belonging
362          * to another device.
363          */
364         if (name_node == dev->name_node || name_node->dev != dev)
365                 return -EINVAL;
366
367         __netdev_name_node_alt_destroy(name_node);
368
369         return 0;
370 }
371
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374         struct netdev_name_node *name_node, *tmp;
375
376         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377                 __netdev_name_node_alt_destroy(name_node);
378 }
379
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383         struct net *net = dev_net(dev);
384
385         ASSERT_RTNL();
386
387         write_lock(&dev_base_lock);
388         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389         netdev_name_node_add(net, dev->name_node);
390         hlist_add_head_rcu(&dev->index_hlist,
391                            dev_index_hash(net, dev->ifindex));
392         write_unlock(&dev_base_lock);
393
394         dev_base_seq_inc(net);
395 }
396
397 /* Device list removal
398  * caller must respect a RCU grace period before freeing/reusing dev
399  */
400 static void unlist_netdevice(struct net_device *dev, bool lock)
401 {
402         ASSERT_RTNL();
403
404         /* Unlink dev from the device chain */
405         if (lock)
406                 write_lock(&dev_base_lock);
407         list_del_rcu(&dev->dev_list);
408         netdev_name_node_del(dev->name_node);
409         hlist_del_rcu(&dev->index_hlist);
410         if (lock)
411                 write_unlock(&dev_base_lock);
412
413         dev_base_seq_inc(dev_net(dev));
414 }
415
416 /*
417  *      Our notifier list
418  */
419
420 static RAW_NOTIFIER_HEAD(netdev_chain);
421
422 /*
423  *      Device drivers call our routines to queue packets here. We empty the
424  *      queue in the local softnet handler.
425  */
426
427 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
428 EXPORT_PER_CPU_SYMBOL(softnet_data);
429
430 #ifdef CONFIG_LOCKDEP
431 /*
432  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
433  * according to dev->type
434  */
435 static const unsigned short netdev_lock_type[] = {
436          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
437          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
438          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
439          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
440          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
441          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
442          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
443          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
444          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
445          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
446          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
447          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
448          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
449          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
450          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
451
452 static const char *const netdev_lock_name[] = {
453         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
454         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
455         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
456         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
457         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
458         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
459         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
460         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
461         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
462         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
463         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
464         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
465         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
466         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
467         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
468
469 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
470 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
471
472 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
473 {
474         int i;
475
476         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
477                 if (netdev_lock_type[i] == dev_type)
478                         return i;
479         /* the last key is used by default */
480         return ARRAY_SIZE(netdev_lock_type) - 1;
481 }
482
483 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
484                                                  unsigned short dev_type)
485 {
486         int i;
487
488         i = netdev_lock_pos(dev_type);
489         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
490                                    netdev_lock_name[i]);
491 }
492
493 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494 {
495         int i;
496
497         i = netdev_lock_pos(dev->type);
498         lockdep_set_class_and_name(&dev->addr_list_lock,
499                                    &netdev_addr_lock_key[i],
500                                    netdev_lock_name[i]);
501 }
502 #else
503 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
504                                                  unsigned short dev_type)
505 {
506 }
507
508 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509 {
510 }
511 #endif
512
513 /*******************************************************************************
514  *
515  *              Protocol management and registration routines
516  *
517  *******************************************************************************/
518
519
520 /*
521  *      Add a protocol ID to the list. Now that the input handler is
522  *      smarter we can dispense with all the messy stuff that used to be
523  *      here.
524  *
525  *      BEWARE!!! Protocol handlers, mangling input packets,
526  *      MUST BE last in hash buckets and checking protocol handlers
527  *      MUST start from promiscuous ptype_all chain in net_bh.
528  *      It is true now, do not change it.
529  *      Explanation follows: if protocol handler, mangling packet, will
530  *      be the first on list, it is not able to sense, that packet
531  *      is cloned and should be copied-on-write, so that it will
532  *      change it and subsequent readers will get broken packet.
533  *                                                      --ANK (980803)
534  */
535
536 static inline struct list_head *ptype_head(const struct packet_type *pt)
537 {
538         if (pt->type == htons(ETH_P_ALL))
539                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
540         else
541                 return pt->dev ? &pt->dev->ptype_specific :
542                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
543 }
544
545 /**
546  *      dev_add_pack - add packet handler
547  *      @pt: packet type declaration
548  *
549  *      Add a protocol handler to the networking stack. The passed &packet_type
550  *      is linked into kernel lists and may not be freed until it has been
551  *      removed from the kernel lists.
552  *
553  *      This call does not sleep therefore it can not
554  *      guarantee all CPU's that are in middle of receiving packets
555  *      will see the new packet type (until the next received packet).
556  */
557
558 void dev_add_pack(struct packet_type *pt)
559 {
560         struct list_head *head = ptype_head(pt);
561
562         spin_lock(&ptype_lock);
563         list_add_rcu(&pt->list, head);
564         spin_unlock(&ptype_lock);
565 }
566 EXPORT_SYMBOL(dev_add_pack);
567
568 /**
569  *      __dev_remove_pack        - remove packet handler
570  *      @pt: packet type declaration
571  *
572  *      Remove a protocol handler that was previously added to the kernel
573  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
574  *      from the kernel lists and can be freed or reused once this function
575  *      returns.
576  *
577  *      The packet type might still be in use by receivers
578  *      and must not be freed until after all the CPU's have gone
579  *      through a quiescent state.
580  */
581 void __dev_remove_pack(struct packet_type *pt)
582 {
583         struct list_head *head = ptype_head(pt);
584         struct packet_type *pt1;
585
586         spin_lock(&ptype_lock);
587
588         list_for_each_entry(pt1, head, list) {
589                 if (pt == pt1) {
590                         list_del_rcu(&pt->list);
591                         goto out;
592                 }
593         }
594
595         pr_warn("dev_remove_pack: %p not found\n", pt);
596 out:
597         spin_unlock(&ptype_lock);
598 }
599 EXPORT_SYMBOL(__dev_remove_pack);
600
601 /**
602  *      dev_remove_pack  - remove packet handler
603  *      @pt: packet type declaration
604  *
605  *      Remove a protocol handler that was previously added to the kernel
606  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
607  *      from the kernel lists and can be freed or reused once this function
608  *      returns.
609  *
610  *      This call sleeps to guarantee that no CPU is looking at the packet
611  *      type after return.
612  */
613 void dev_remove_pack(struct packet_type *pt)
614 {
615         __dev_remove_pack(pt);
616
617         synchronize_net();
618 }
619 EXPORT_SYMBOL(dev_remove_pack);
620
621
622 /*******************************************************************************
623  *
624  *                          Device Interface Subroutines
625  *
626  *******************************************************************************/
627
628 /**
629  *      dev_get_iflink  - get 'iflink' value of a interface
630  *      @dev: targeted interface
631  *
632  *      Indicates the ifindex the interface is linked to.
633  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
634  */
635
636 int dev_get_iflink(const struct net_device *dev)
637 {
638         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
639                 return dev->netdev_ops->ndo_get_iflink(dev);
640
641         return dev->ifindex;
642 }
643 EXPORT_SYMBOL(dev_get_iflink);
644
645 /**
646  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
647  *      @dev: targeted interface
648  *      @skb: The packet.
649  *
650  *      For better visibility of tunnel traffic OVS needs to retrieve
651  *      egress tunnel information for a packet. Following API allows
652  *      user to get this info.
653  */
654 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
655 {
656         struct ip_tunnel_info *info;
657
658         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
659                 return -EINVAL;
660
661         info = skb_tunnel_info_unclone(skb);
662         if (!info)
663                 return -ENOMEM;
664         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
665                 return -EINVAL;
666
667         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
668 }
669 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
670
671 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
672 {
673         int k = stack->num_paths++;
674
675         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
676                 return NULL;
677
678         return &stack->path[k];
679 }
680
681 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
682                           struct net_device_path_stack *stack)
683 {
684         const struct net_device *last_dev;
685         struct net_device_path_ctx ctx = {
686                 .dev    = dev,
687         };
688         struct net_device_path *path;
689         int ret = 0;
690
691         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
692         stack->num_paths = 0;
693         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
694                 last_dev = ctx.dev;
695                 path = dev_fwd_path(stack);
696                 if (!path)
697                         return -1;
698
699                 memset(path, 0, sizeof(struct net_device_path));
700                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
701                 if (ret < 0)
702                         return -1;
703
704                 if (WARN_ON_ONCE(last_dev == ctx.dev))
705                         return -1;
706         }
707
708         if (!ctx.dev)
709                 return ret;
710
711         path = dev_fwd_path(stack);
712         if (!path)
713                 return -1;
714         path->type = DEV_PATH_ETHERNET;
715         path->dev = ctx.dev;
716
717         return ret;
718 }
719 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
720
721 /**
722  *      __dev_get_by_name       - find a device by its name
723  *      @net: the applicable net namespace
724  *      @name: name to find
725  *
726  *      Find an interface by name. Must be called under RTNL semaphore
727  *      or @dev_base_lock. If the name is found a pointer to the device
728  *      is returned. If the name is not found then %NULL is returned. The
729  *      reference counters are not incremented so the caller must be
730  *      careful with locks.
731  */
732
733 struct net_device *__dev_get_by_name(struct net *net, const char *name)
734 {
735         struct netdev_name_node *node_name;
736
737         node_name = netdev_name_node_lookup(net, name);
738         return node_name ? node_name->dev : NULL;
739 }
740 EXPORT_SYMBOL(__dev_get_by_name);
741
742 /**
743  * dev_get_by_name_rcu  - find a device by its name
744  * @net: the applicable net namespace
745  * @name: name to find
746  *
747  * Find an interface by name.
748  * If the name is found a pointer to the device is returned.
749  * If the name is not found then %NULL is returned.
750  * The reference counters are not incremented so the caller must be
751  * careful with locks. The caller must hold RCU lock.
752  */
753
754 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
755 {
756         struct netdev_name_node *node_name;
757
758         node_name = netdev_name_node_lookup_rcu(net, name);
759         return node_name ? node_name->dev : NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762
763 /**
764  *      dev_get_by_name         - find a device by its name
765  *      @net: the applicable net namespace
766  *      @name: name to find
767  *
768  *      Find an interface by name. This can be called from any
769  *      context and does its own locking. The returned handle has
770  *      the usage count incremented and the caller must use dev_put() to
771  *      release it when it is no longer needed. %NULL is returned if no
772  *      matching device is found.
773  */
774
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777         struct net_device *dev;
778
779         rcu_read_lock();
780         dev = dev_get_by_name_rcu(net, name);
781         dev_hold(dev);
782         rcu_read_unlock();
783         return dev;
784 }
785 EXPORT_SYMBOL(dev_get_by_name);
786
787 /**
788  *      __dev_get_by_index - find a device by its ifindex
789  *      @net: the applicable net namespace
790  *      @ifindex: index of device
791  *
792  *      Search for an interface by index. Returns %NULL if the device
793  *      is not found or a pointer to the device. The device has not
794  *      had its reference counter increased so the caller must be careful
795  *      about locking. The caller must hold either the RTNL semaphore
796  *      or @dev_base_lock.
797  */
798
799 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800 {
801         struct net_device *dev;
802         struct hlist_head *head = dev_index_hash(net, ifindex);
803
804         hlist_for_each_entry(dev, head, index_hlist)
805                 if (dev->ifindex == ifindex)
806                         return dev;
807
808         return NULL;
809 }
810 EXPORT_SYMBOL(__dev_get_by_index);
811
812 /**
813  *      dev_get_by_index_rcu - find a device by its ifindex
814  *      @net: the applicable net namespace
815  *      @ifindex: index of device
816  *
817  *      Search for an interface by index. Returns %NULL if the device
818  *      is not found or a pointer to the device. The device has not
819  *      had its reference counter increased so the caller must be careful
820  *      about locking. The caller must hold RCU lock.
821  */
822
823 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824 {
825         struct net_device *dev;
826         struct hlist_head *head = dev_index_hash(net, ifindex);
827
828         hlist_for_each_entry_rcu(dev, head, index_hlist)
829                 if (dev->ifindex == ifindex)
830                         return dev;
831
832         return NULL;
833 }
834 EXPORT_SYMBOL(dev_get_by_index_rcu);
835
836
837 /**
838  *      dev_get_by_index - find a device by its ifindex
839  *      @net: the applicable net namespace
840  *      @ifindex: index of device
841  *
842  *      Search for an interface by index. Returns NULL if the device
843  *      is not found or a pointer to the device. The device returned has
844  *      had a reference added and the pointer is safe until the user calls
845  *      dev_put to indicate they have finished with it.
846  */
847
848 struct net_device *dev_get_by_index(struct net *net, int ifindex)
849 {
850         struct net_device *dev;
851
852         rcu_read_lock();
853         dev = dev_get_by_index_rcu(net, ifindex);
854         dev_hold(dev);
855         rcu_read_unlock();
856         return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859
860 /**
861  *      dev_get_by_napi_id - find a device by napi_id
862  *      @napi_id: ID of the NAPI struct
863  *
864  *      Search for an interface by NAPI ID. Returns %NULL if the device
865  *      is not found or a pointer to the device. The device has not had
866  *      its reference counter increased so the caller must be careful
867  *      about locking. The caller must hold RCU lock.
868  */
869
870 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
871 {
872         struct napi_struct *napi;
873
874         WARN_ON_ONCE(!rcu_read_lock_held());
875
876         if (napi_id < MIN_NAPI_ID)
877                 return NULL;
878
879         napi = napi_by_id(napi_id);
880
881         return napi ? napi->dev : NULL;
882 }
883 EXPORT_SYMBOL(dev_get_by_napi_id);
884
885 /**
886  *      netdev_get_name - get a netdevice name, knowing its ifindex.
887  *      @net: network namespace
888  *      @name: a pointer to the buffer where the name will be stored.
889  *      @ifindex: the ifindex of the interface to get the name from.
890  */
891 int netdev_get_name(struct net *net, char *name, int ifindex)
892 {
893         struct net_device *dev;
894         int ret;
895
896         down_read(&devnet_rename_sem);
897         rcu_read_lock();
898
899         dev = dev_get_by_index_rcu(net, ifindex);
900         if (!dev) {
901                 ret = -ENODEV;
902                 goto out;
903         }
904
905         strcpy(name, dev->name);
906
907         ret = 0;
908 out:
909         rcu_read_unlock();
910         up_read(&devnet_rename_sem);
911         return ret;
912 }
913
914 /**
915  *      dev_getbyhwaddr_rcu - find a device by its hardware address
916  *      @net: the applicable net namespace
917  *      @type: media type of device
918  *      @ha: hardware address
919  *
920  *      Search for an interface by MAC address. Returns NULL if the device
921  *      is not found or a pointer to the device.
922  *      The caller must hold RCU or RTNL.
923  *      The returned device has not had its ref count increased
924  *      and the caller must therefore be careful about locking
925  *
926  */
927
928 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
929                                        const char *ha)
930 {
931         struct net_device *dev;
932
933         for_each_netdev_rcu(net, dev)
934                 if (dev->type == type &&
935                     !memcmp(dev->dev_addr, ha, dev->addr_len))
936                         return dev;
937
938         return NULL;
939 }
940 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
941
942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943 {
944         struct net_device *dev, *ret = NULL;
945
946         rcu_read_lock();
947         for_each_netdev_rcu(net, dev)
948                 if (dev->type == type) {
949                         dev_hold(dev);
950                         ret = dev;
951                         break;
952                 }
953         rcu_read_unlock();
954         return ret;
955 }
956 EXPORT_SYMBOL(dev_getfirstbyhwtype);
957
958 /**
959  *      __dev_get_by_flags - find any device with given flags
960  *      @net: the applicable net namespace
961  *      @if_flags: IFF_* values
962  *      @mask: bitmask of bits in if_flags to check
963  *
964  *      Search for any interface with the given flags. Returns NULL if a device
965  *      is not found or a pointer to the device. Must be called inside
966  *      rtnl_lock(), and result refcount is unchanged.
967  */
968
969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970                                       unsigned short mask)
971 {
972         struct net_device *dev, *ret;
973
974         ASSERT_RTNL();
975
976         ret = NULL;
977         for_each_netdev(net, dev) {
978                 if (((dev->flags ^ if_flags) & mask) == 0) {
979                         ret = dev;
980                         break;
981                 }
982         }
983         return ret;
984 }
985 EXPORT_SYMBOL(__dev_get_by_flags);
986
987 /**
988  *      dev_valid_name - check if name is okay for network device
989  *      @name: name string
990  *
991  *      Network device names need to be valid file names to
992  *      allow sysfs to work.  We also disallow any kind of
993  *      whitespace.
994  */
995 bool dev_valid_name(const char *name)
996 {
997         if (*name == '\0')
998                 return false;
999         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1000                 return false;
1001         if (!strcmp(name, ".") || !strcmp(name, ".."))
1002                 return false;
1003
1004         while (*name) {
1005                 if (*name == '/' || *name == ':' || isspace(*name))
1006                         return false;
1007                 name++;
1008         }
1009         return true;
1010 }
1011 EXPORT_SYMBOL(dev_valid_name);
1012
1013 /**
1014  *      __dev_alloc_name - allocate a name for a device
1015  *      @net: network namespace to allocate the device name in
1016  *      @name: name format string
1017  *      @buf:  scratch buffer and result name string
1018  *
1019  *      Passed a format string - eg "lt%d" it will try and find a suitable
1020  *      id. It scans list of devices to build up a free map, then chooses
1021  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *      while allocating the name and adding the device in order to avoid
1023  *      duplicates.
1024  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *      Returns the number of the unit assigned or a negative errno code.
1026  */
1027
1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029 {
1030         int i = 0;
1031         const char *p;
1032         const int max_netdevices = 8*PAGE_SIZE;
1033         unsigned long *inuse;
1034         struct net_device *d;
1035
1036         if (!dev_valid_name(name))
1037                 return -EINVAL;
1038
1039         p = strchr(name, '%');
1040         if (p) {
1041                 /*
1042                  * Verify the string as this thing may have come from
1043                  * the user.  There must be either one "%d" and no other "%"
1044                  * characters.
1045                  */
1046                 if (p[1] != 'd' || strchr(p + 2, '%'))
1047                         return -EINVAL;
1048
1049                 /* Use one page as a bit array of possible slots */
1050                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1051                 if (!inuse)
1052                         return -ENOMEM;
1053
1054                 for_each_netdev(net, d) {
1055                         struct netdev_name_node *name_node;
1056                         list_for_each_entry(name_node, &d->name_node->list, list) {
1057                                 if (!sscanf(name_node->name, name, &i))
1058                                         continue;
1059                                 if (i < 0 || i >= max_netdevices)
1060                                         continue;
1061
1062                                 /*  avoid cases where sscanf is not exact inverse of printf */
1063                                 snprintf(buf, IFNAMSIZ, name, i);
1064                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1065                                         __set_bit(i, inuse);
1066                         }
1067                         if (!sscanf(d->name, name, &i))
1068                                 continue;
1069                         if (i < 0 || i >= max_netdevices)
1070                                 continue;
1071
1072                         /*  avoid cases where sscanf is not exact inverse of printf */
1073                         snprintf(buf, IFNAMSIZ, name, i);
1074                         if (!strncmp(buf, d->name, IFNAMSIZ))
1075                                 __set_bit(i, inuse);
1076                 }
1077
1078                 i = find_first_zero_bit(inuse, max_netdevices);
1079                 free_page((unsigned long) inuse);
1080         }
1081
1082         snprintf(buf, IFNAMSIZ, name, i);
1083         if (!netdev_name_in_use(net, buf))
1084                 return i;
1085
1086         /* It is possible to run out of possible slots
1087          * when the name is long and there isn't enough space left
1088          * for the digits, or if all bits are used.
1089          */
1090         return -ENFILE;
1091 }
1092
1093 static int dev_alloc_name_ns(struct net *net,
1094                              struct net_device *dev,
1095                              const char *name)
1096 {
1097         char buf[IFNAMSIZ];
1098         int ret;
1099
1100         BUG_ON(!net);
1101         ret = __dev_alloc_name(net, name, buf);
1102         if (ret >= 0)
1103                 strscpy(dev->name, buf, IFNAMSIZ);
1104         return ret;
1105 }
1106
1107 /**
1108  *      dev_alloc_name - allocate a name for a device
1109  *      @dev: device
1110  *      @name: name format string
1111  *
1112  *      Passed a format string - eg "lt%d" it will try and find a suitable
1113  *      id. It scans list of devices to build up a free map, then chooses
1114  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1115  *      while allocating the name and adding the device in order to avoid
1116  *      duplicates.
1117  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118  *      Returns the number of the unit assigned or a negative errno code.
1119  */
1120
1121 int dev_alloc_name(struct net_device *dev, const char *name)
1122 {
1123         return dev_alloc_name_ns(dev_net(dev), dev, name);
1124 }
1125 EXPORT_SYMBOL(dev_alloc_name);
1126
1127 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1128                               const char *name)
1129 {
1130         BUG_ON(!net);
1131
1132         if (!dev_valid_name(name))
1133                 return -EINVAL;
1134
1135         if (strchr(name, '%'))
1136                 return dev_alloc_name_ns(net, dev, name);
1137         else if (netdev_name_in_use(net, name))
1138                 return -EEXIST;
1139         else if (dev->name != name)
1140                 strscpy(dev->name, name, IFNAMSIZ);
1141
1142         return 0;
1143 }
1144
1145 /**
1146  *      dev_change_name - change name of a device
1147  *      @dev: device
1148  *      @newname: name (or format string) must be at least IFNAMSIZ
1149  *
1150  *      Change name of a device, can pass format strings "eth%d".
1151  *      for wildcarding.
1152  */
1153 int dev_change_name(struct net_device *dev, const char *newname)
1154 {
1155         unsigned char old_assign_type;
1156         char oldname[IFNAMSIZ];
1157         int err = 0;
1158         int ret;
1159         struct net *net;
1160
1161         ASSERT_RTNL();
1162         BUG_ON(!dev_net(dev));
1163
1164         net = dev_net(dev);
1165
1166         /* Some auto-enslaved devices e.g. failover slaves are
1167          * special, as userspace might rename the device after
1168          * the interface had been brought up and running since
1169          * the point kernel initiated auto-enslavement. Allow
1170          * live name change even when these slave devices are
1171          * up and running.
1172          *
1173          * Typically, users of these auto-enslaving devices
1174          * don't actually care about slave name change, as
1175          * they are supposed to operate on master interface
1176          * directly.
1177          */
1178         if (dev->flags & IFF_UP &&
1179             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1180                 return -EBUSY;
1181
1182         down_write(&devnet_rename_sem);
1183
1184         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1185                 up_write(&devnet_rename_sem);
1186                 return 0;
1187         }
1188
1189         memcpy(oldname, dev->name, IFNAMSIZ);
1190
1191         err = dev_get_valid_name(net, dev, newname);
1192         if (err < 0) {
1193                 up_write(&devnet_rename_sem);
1194                 return err;
1195         }
1196
1197         if (oldname[0] && !strchr(oldname, '%'))
1198                 netdev_info(dev, "renamed from %s\n", oldname);
1199
1200         old_assign_type = dev->name_assign_type;
1201         dev->name_assign_type = NET_NAME_RENAMED;
1202
1203 rollback:
1204         ret = device_rename(&dev->dev, dev->name);
1205         if (ret) {
1206                 memcpy(dev->name, oldname, IFNAMSIZ);
1207                 dev->name_assign_type = old_assign_type;
1208                 up_write(&devnet_rename_sem);
1209                 return ret;
1210         }
1211
1212         up_write(&devnet_rename_sem);
1213
1214         netdev_adjacent_rename_links(dev, oldname);
1215
1216         write_lock(&dev_base_lock);
1217         netdev_name_node_del(dev->name_node);
1218         write_unlock(&dev_base_lock);
1219
1220         synchronize_rcu();
1221
1222         write_lock(&dev_base_lock);
1223         netdev_name_node_add(net, dev->name_node);
1224         write_unlock(&dev_base_lock);
1225
1226         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1227         ret = notifier_to_errno(ret);
1228
1229         if (ret) {
1230                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1231                 if (err >= 0) {
1232                         err = ret;
1233                         down_write(&devnet_rename_sem);
1234                         memcpy(dev->name, oldname, IFNAMSIZ);
1235                         memcpy(oldname, newname, IFNAMSIZ);
1236                         dev->name_assign_type = old_assign_type;
1237                         old_assign_type = NET_NAME_RENAMED;
1238                         goto rollback;
1239                 } else {
1240                         netdev_err(dev, "name change rollback failed: %d\n",
1241                                    ret);
1242                 }
1243         }
1244
1245         return err;
1246 }
1247
1248 /**
1249  *      dev_set_alias - change ifalias of a device
1250  *      @dev: device
1251  *      @alias: name up to IFALIASZ
1252  *      @len: limit of bytes to copy from info
1253  *
1254  *      Set ifalias for a device,
1255  */
1256 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1257 {
1258         struct dev_ifalias *new_alias = NULL;
1259
1260         if (len >= IFALIASZ)
1261                 return -EINVAL;
1262
1263         if (len) {
1264                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1265                 if (!new_alias)
1266                         return -ENOMEM;
1267
1268                 memcpy(new_alias->ifalias, alias, len);
1269                 new_alias->ifalias[len] = 0;
1270         }
1271
1272         mutex_lock(&ifalias_mutex);
1273         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1274                                         mutex_is_locked(&ifalias_mutex));
1275         mutex_unlock(&ifalias_mutex);
1276
1277         if (new_alias)
1278                 kfree_rcu(new_alias, rcuhead);
1279
1280         return len;
1281 }
1282 EXPORT_SYMBOL(dev_set_alias);
1283
1284 /**
1285  *      dev_get_alias - get ifalias of a device
1286  *      @dev: device
1287  *      @name: buffer to store name of ifalias
1288  *      @len: size of buffer
1289  *
1290  *      get ifalias for a device.  Caller must make sure dev cannot go
1291  *      away,  e.g. rcu read lock or own a reference count to device.
1292  */
1293 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1294 {
1295         const struct dev_ifalias *alias;
1296         int ret = 0;
1297
1298         rcu_read_lock();
1299         alias = rcu_dereference(dev->ifalias);
1300         if (alias)
1301                 ret = snprintf(name, len, "%s", alias->ifalias);
1302         rcu_read_unlock();
1303
1304         return ret;
1305 }
1306
1307 /**
1308  *      netdev_features_change - device changes features
1309  *      @dev: device to cause notification
1310  *
1311  *      Called to indicate a device has changed features.
1312  */
1313 void netdev_features_change(struct net_device *dev)
1314 {
1315         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1316 }
1317 EXPORT_SYMBOL(netdev_features_change);
1318
1319 /**
1320  *      netdev_state_change - device changes state
1321  *      @dev: device to cause notification
1322  *
1323  *      Called to indicate a device has changed state. This function calls
1324  *      the notifier chains for netdev_chain and sends a NEWLINK message
1325  *      to the routing socket.
1326  */
1327 void netdev_state_change(struct net_device *dev)
1328 {
1329         if (dev->flags & IFF_UP) {
1330                 struct netdev_notifier_change_info change_info = {
1331                         .info.dev = dev,
1332                 };
1333
1334                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1335                                               &change_info.info);
1336                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1337         }
1338 }
1339 EXPORT_SYMBOL(netdev_state_change);
1340
1341 /**
1342  * __netdev_notify_peers - notify network peers about existence of @dev,
1343  * to be called when rtnl lock is already held.
1344  * @dev: network device
1345  *
1346  * Generate traffic such that interested network peers are aware of
1347  * @dev, such as by generating a gratuitous ARP. This may be used when
1348  * a device wants to inform the rest of the network about some sort of
1349  * reconfiguration such as a failover event or virtual machine
1350  * migration.
1351  */
1352 void __netdev_notify_peers(struct net_device *dev)
1353 {
1354         ASSERT_RTNL();
1355         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1356         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1357 }
1358 EXPORT_SYMBOL(__netdev_notify_peers);
1359
1360 /**
1361  * netdev_notify_peers - notify network peers about existence of @dev
1362  * @dev: network device
1363  *
1364  * Generate traffic such that interested network peers are aware of
1365  * @dev, such as by generating a gratuitous ARP. This may be used when
1366  * a device wants to inform the rest of the network about some sort of
1367  * reconfiguration such as a failover event or virtual machine
1368  * migration.
1369  */
1370 void netdev_notify_peers(struct net_device *dev)
1371 {
1372         rtnl_lock();
1373         __netdev_notify_peers(dev);
1374         rtnl_unlock();
1375 }
1376 EXPORT_SYMBOL(netdev_notify_peers);
1377
1378 static int napi_threaded_poll(void *data);
1379
1380 static int napi_kthread_create(struct napi_struct *n)
1381 {
1382         int err = 0;
1383
1384         /* Create and wake up the kthread once to put it in
1385          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1386          * warning and work with loadavg.
1387          */
1388         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1389                                 n->dev->name, n->napi_id);
1390         if (IS_ERR(n->thread)) {
1391                 err = PTR_ERR(n->thread);
1392                 pr_err("kthread_run failed with err %d\n", err);
1393                 n->thread = NULL;
1394         }
1395
1396         return err;
1397 }
1398
1399 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1400 {
1401         const struct net_device_ops *ops = dev->netdev_ops;
1402         int ret;
1403
1404         ASSERT_RTNL();
1405         dev_addr_check(dev);
1406
1407         if (!netif_device_present(dev)) {
1408                 /* may be detached because parent is runtime-suspended */
1409                 if (dev->dev.parent)
1410                         pm_runtime_resume(dev->dev.parent);
1411                 if (!netif_device_present(dev))
1412                         return -ENODEV;
1413         }
1414
1415         /* Block netpoll from trying to do any rx path servicing.
1416          * If we don't do this there is a chance ndo_poll_controller
1417          * or ndo_poll may be running while we open the device
1418          */
1419         netpoll_poll_disable(dev);
1420
1421         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1422         ret = notifier_to_errno(ret);
1423         if (ret)
1424                 return ret;
1425
1426         set_bit(__LINK_STATE_START, &dev->state);
1427
1428         if (ops->ndo_validate_addr)
1429                 ret = ops->ndo_validate_addr(dev);
1430
1431         if (!ret && ops->ndo_open)
1432                 ret = ops->ndo_open(dev);
1433
1434         netpoll_poll_enable(dev);
1435
1436         if (ret)
1437                 clear_bit(__LINK_STATE_START, &dev->state);
1438         else {
1439                 dev->flags |= IFF_UP;
1440                 dev_set_rx_mode(dev);
1441                 dev_activate(dev);
1442                 add_device_randomness(dev->dev_addr, dev->addr_len);
1443         }
1444
1445         return ret;
1446 }
1447
1448 /**
1449  *      dev_open        - prepare an interface for use.
1450  *      @dev: device to open
1451  *      @extack: netlink extended ack
1452  *
1453  *      Takes a device from down to up state. The device's private open
1454  *      function is invoked and then the multicast lists are loaded. Finally
1455  *      the device is moved into the up state and a %NETDEV_UP message is
1456  *      sent to the netdev notifier chain.
1457  *
1458  *      Calling this function on an active interface is a nop. On a failure
1459  *      a negative errno code is returned.
1460  */
1461 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1462 {
1463         int ret;
1464
1465         if (dev->flags & IFF_UP)
1466                 return 0;
1467
1468         ret = __dev_open(dev, extack);
1469         if (ret < 0)
1470                 return ret;
1471
1472         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1473         call_netdevice_notifiers(NETDEV_UP, dev);
1474
1475         return ret;
1476 }
1477 EXPORT_SYMBOL(dev_open);
1478
1479 static void __dev_close_many(struct list_head *head)
1480 {
1481         struct net_device *dev;
1482
1483         ASSERT_RTNL();
1484         might_sleep();
1485
1486         list_for_each_entry(dev, head, close_list) {
1487                 /* Temporarily disable netpoll until the interface is down */
1488                 netpoll_poll_disable(dev);
1489
1490                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1491
1492                 clear_bit(__LINK_STATE_START, &dev->state);
1493
1494                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1495                  * can be even on different cpu. So just clear netif_running().
1496                  *
1497                  * dev->stop() will invoke napi_disable() on all of it's
1498                  * napi_struct instances on this device.
1499                  */
1500                 smp_mb__after_atomic(); /* Commit netif_running(). */
1501         }
1502
1503         dev_deactivate_many(head);
1504
1505         list_for_each_entry(dev, head, close_list) {
1506                 const struct net_device_ops *ops = dev->netdev_ops;
1507
1508                 /*
1509                  *      Call the device specific close. This cannot fail.
1510                  *      Only if device is UP
1511                  *
1512                  *      We allow it to be called even after a DETACH hot-plug
1513                  *      event.
1514                  */
1515                 if (ops->ndo_stop)
1516                         ops->ndo_stop(dev);
1517
1518                 dev->flags &= ~IFF_UP;
1519                 netpoll_poll_enable(dev);
1520         }
1521 }
1522
1523 static void __dev_close(struct net_device *dev)
1524 {
1525         LIST_HEAD(single);
1526
1527         list_add(&dev->close_list, &single);
1528         __dev_close_many(&single);
1529         list_del(&single);
1530 }
1531
1532 void dev_close_many(struct list_head *head, bool unlink)
1533 {
1534         struct net_device *dev, *tmp;
1535
1536         /* Remove the devices that don't need to be closed */
1537         list_for_each_entry_safe(dev, tmp, head, close_list)
1538                 if (!(dev->flags & IFF_UP))
1539                         list_del_init(&dev->close_list);
1540
1541         __dev_close_many(head);
1542
1543         list_for_each_entry_safe(dev, tmp, head, close_list) {
1544                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1545                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1546                 if (unlink)
1547                         list_del_init(&dev->close_list);
1548         }
1549 }
1550 EXPORT_SYMBOL(dev_close_many);
1551
1552 /**
1553  *      dev_close - shutdown an interface.
1554  *      @dev: device to shutdown
1555  *
1556  *      This function moves an active device into down state. A
1557  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1558  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1559  *      chain.
1560  */
1561 void dev_close(struct net_device *dev)
1562 {
1563         if (dev->flags & IFF_UP) {
1564                 LIST_HEAD(single);
1565
1566                 list_add(&dev->close_list, &single);
1567                 dev_close_many(&single, true);
1568                 list_del(&single);
1569         }
1570 }
1571 EXPORT_SYMBOL(dev_close);
1572
1573
1574 /**
1575  *      dev_disable_lro - disable Large Receive Offload on a device
1576  *      @dev: device
1577  *
1578  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1579  *      called under RTNL.  This is needed if received packets may be
1580  *      forwarded to another interface.
1581  */
1582 void dev_disable_lro(struct net_device *dev)
1583 {
1584         struct net_device *lower_dev;
1585         struct list_head *iter;
1586
1587         dev->wanted_features &= ~NETIF_F_LRO;
1588         netdev_update_features(dev);
1589
1590         if (unlikely(dev->features & NETIF_F_LRO))
1591                 netdev_WARN(dev, "failed to disable LRO!\n");
1592
1593         netdev_for_each_lower_dev(dev, lower_dev, iter)
1594                 dev_disable_lro(lower_dev);
1595 }
1596 EXPORT_SYMBOL(dev_disable_lro);
1597
1598 /**
1599  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1600  *      @dev: device
1601  *
1602  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1603  *      called under RTNL.  This is needed if Generic XDP is installed on
1604  *      the device.
1605  */
1606 static void dev_disable_gro_hw(struct net_device *dev)
1607 {
1608         dev->wanted_features &= ~NETIF_F_GRO_HW;
1609         netdev_update_features(dev);
1610
1611         if (unlikely(dev->features & NETIF_F_GRO_HW))
1612                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1613 }
1614
1615 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1616 {
1617 #define N(val)                                          \
1618         case NETDEV_##val:                              \
1619                 return "NETDEV_" __stringify(val);
1620         switch (cmd) {
1621         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1622         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1623         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1624         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1625         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1626         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1627         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1628         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1629         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1630         N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1631         N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1632         }
1633 #undef N
1634         return "UNKNOWN_NETDEV_EVENT";
1635 }
1636 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1637
1638 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1639                                    struct net_device *dev)
1640 {
1641         struct netdev_notifier_info info = {
1642                 .dev = dev,
1643         };
1644
1645         return nb->notifier_call(nb, val, &info);
1646 }
1647
1648 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1649                                              struct net_device *dev)
1650 {
1651         int err;
1652
1653         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1654         err = notifier_to_errno(err);
1655         if (err)
1656                 return err;
1657
1658         if (!(dev->flags & IFF_UP))
1659                 return 0;
1660
1661         call_netdevice_notifier(nb, NETDEV_UP, dev);
1662         return 0;
1663 }
1664
1665 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1666                                                 struct net_device *dev)
1667 {
1668         if (dev->flags & IFF_UP) {
1669                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1670                                         dev);
1671                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1672         }
1673         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1674 }
1675
1676 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1677                                                  struct net *net)
1678 {
1679         struct net_device *dev;
1680         int err;
1681
1682         for_each_netdev(net, dev) {
1683                 err = call_netdevice_register_notifiers(nb, dev);
1684                 if (err)
1685                         goto rollback;
1686         }
1687         return 0;
1688
1689 rollback:
1690         for_each_netdev_continue_reverse(net, dev)
1691                 call_netdevice_unregister_notifiers(nb, dev);
1692         return err;
1693 }
1694
1695 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1696                                                     struct net *net)
1697 {
1698         struct net_device *dev;
1699
1700         for_each_netdev(net, dev)
1701                 call_netdevice_unregister_notifiers(nb, dev);
1702 }
1703
1704 static int dev_boot_phase = 1;
1705
1706 /**
1707  * register_netdevice_notifier - register a network notifier block
1708  * @nb: notifier
1709  *
1710  * Register a notifier to be called when network device events occur.
1711  * The notifier passed is linked into the kernel structures and must
1712  * not be reused until it has been unregistered. A negative errno code
1713  * is returned on a failure.
1714  *
1715  * When registered all registration and up events are replayed
1716  * to the new notifier to allow device to have a race free
1717  * view of the network device list.
1718  */
1719
1720 int register_netdevice_notifier(struct notifier_block *nb)
1721 {
1722         struct net *net;
1723         int err;
1724
1725         /* Close race with setup_net() and cleanup_net() */
1726         down_write(&pernet_ops_rwsem);
1727         rtnl_lock();
1728         err = raw_notifier_chain_register(&netdev_chain, nb);
1729         if (err)
1730                 goto unlock;
1731         if (dev_boot_phase)
1732                 goto unlock;
1733         for_each_net(net) {
1734                 err = call_netdevice_register_net_notifiers(nb, net);
1735                 if (err)
1736                         goto rollback;
1737         }
1738
1739 unlock:
1740         rtnl_unlock();
1741         up_write(&pernet_ops_rwsem);
1742         return err;
1743
1744 rollback:
1745         for_each_net_continue_reverse(net)
1746                 call_netdevice_unregister_net_notifiers(nb, net);
1747
1748         raw_notifier_chain_unregister(&netdev_chain, nb);
1749         goto unlock;
1750 }
1751 EXPORT_SYMBOL(register_netdevice_notifier);
1752
1753 /**
1754  * unregister_netdevice_notifier - unregister a network notifier block
1755  * @nb: notifier
1756  *
1757  * Unregister a notifier previously registered by
1758  * register_netdevice_notifier(). The notifier is unlinked into the
1759  * kernel structures and may then be reused. A negative errno code
1760  * is returned on a failure.
1761  *
1762  * After unregistering unregister and down device events are synthesized
1763  * for all devices on the device list to the removed notifier to remove
1764  * the need for special case cleanup code.
1765  */
1766
1767 int unregister_netdevice_notifier(struct notifier_block *nb)
1768 {
1769         struct net *net;
1770         int err;
1771
1772         /* Close race with setup_net() and cleanup_net() */
1773         down_write(&pernet_ops_rwsem);
1774         rtnl_lock();
1775         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1776         if (err)
1777                 goto unlock;
1778
1779         for_each_net(net)
1780                 call_netdevice_unregister_net_notifiers(nb, net);
1781
1782 unlock:
1783         rtnl_unlock();
1784         up_write(&pernet_ops_rwsem);
1785         return err;
1786 }
1787 EXPORT_SYMBOL(unregister_netdevice_notifier);
1788
1789 static int __register_netdevice_notifier_net(struct net *net,
1790                                              struct notifier_block *nb,
1791                                              bool ignore_call_fail)
1792 {
1793         int err;
1794
1795         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1796         if (err)
1797                 return err;
1798         if (dev_boot_phase)
1799                 return 0;
1800
1801         err = call_netdevice_register_net_notifiers(nb, net);
1802         if (err && !ignore_call_fail)
1803                 goto chain_unregister;
1804
1805         return 0;
1806
1807 chain_unregister:
1808         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1809         return err;
1810 }
1811
1812 static int __unregister_netdevice_notifier_net(struct net *net,
1813                                                struct notifier_block *nb)
1814 {
1815         int err;
1816
1817         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1818         if (err)
1819                 return err;
1820
1821         call_netdevice_unregister_net_notifiers(nb, net);
1822         return 0;
1823 }
1824
1825 /**
1826  * register_netdevice_notifier_net - register a per-netns network notifier block
1827  * @net: network namespace
1828  * @nb: notifier
1829  *
1830  * Register a notifier to be called when network device events occur.
1831  * The notifier passed is linked into the kernel structures and must
1832  * not be reused until it has been unregistered. A negative errno code
1833  * is returned on a failure.
1834  *
1835  * When registered all registration and up events are replayed
1836  * to the new notifier to allow device to have a race free
1837  * view of the network device list.
1838  */
1839
1840 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1841 {
1842         int err;
1843
1844         rtnl_lock();
1845         err = __register_netdevice_notifier_net(net, nb, false);
1846         rtnl_unlock();
1847         return err;
1848 }
1849 EXPORT_SYMBOL(register_netdevice_notifier_net);
1850
1851 /**
1852  * unregister_netdevice_notifier_net - unregister a per-netns
1853  *                                     network notifier block
1854  * @net: network namespace
1855  * @nb: notifier
1856  *
1857  * Unregister a notifier previously registered by
1858  * register_netdevice_notifier(). The notifier is unlinked into the
1859  * kernel structures and may then be reused. A negative errno code
1860  * is returned on a failure.
1861  *
1862  * After unregistering unregister and down device events are synthesized
1863  * for all devices on the device list to the removed notifier to remove
1864  * the need for special case cleanup code.
1865  */
1866
1867 int unregister_netdevice_notifier_net(struct net *net,
1868                                       struct notifier_block *nb)
1869 {
1870         int err;
1871
1872         rtnl_lock();
1873         err = __unregister_netdevice_notifier_net(net, nb);
1874         rtnl_unlock();
1875         return err;
1876 }
1877 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1878
1879 int register_netdevice_notifier_dev_net(struct net_device *dev,
1880                                         struct notifier_block *nb,
1881                                         struct netdev_net_notifier *nn)
1882 {
1883         int err;
1884
1885         rtnl_lock();
1886         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1887         if (!err) {
1888                 nn->nb = nb;
1889                 list_add(&nn->list, &dev->net_notifier_list);
1890         }
1891         rtnl_unlock();
1892         return err;
1893 }
1894 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1895
1896 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1897                                           struct notifier_block *nb,
1898                                           struct netdev_net_notifier *nn)
1899 {
1900         int err;
1901
1902         rtnl_lock();
1903         list_del(&nn->list);
1904         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1905         rtnl_unlock();
1906         return err;
1907 }
1908 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1909
1910 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1911                                              struct net *net)
1912 {
1913         struct netdev_net_notifier *nn;
1914
1915         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1916                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1917                 __register_netdevice_notifier_net(net, nn->nb, true);
1918         }
1919 }
1920
1921 /**
1922  *      call_netdevice_notifiers_info - call all network notifier blocks
1923  *      @val: value passed unmodified to notifier function
1924  *      @info: notifier information data
1925  *
1926  *      Call all network notifier blocks.  Parameters and return value
1927  *      are as for raw_notifier_call_chain().
1928  */
1929
1930 static int call_netdevice_notifiers_info(unsigned long val,
1931                                          struct netdev_notifier_info *info)
1932 {
1933         struct net *net = dev_net(info->dev);
1934         int ret;
1935
1936         ASSERT_RTNL();
1937
1938         /* Run per-netns notifier block chain first, then run the global one.
1939          * Hopefully, one day, the global one is going to be removed after
1940          * all notifier block registrators get converted to be per-netns.
1941          */
1942         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1943         if (ret & NOTIFY_STOP_MASK)
1944                 return ret;
1945         return raw_notifier_call_chain(&netdev_chain, val, info);
1946 }
1947
1948 /**
1949  *      call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1950  *                                             for and rollback on error
1951  *      @val_up: value passed unmodified to notifier function
1952  *      @val_down: value passed unmodified to the notifier function when
1953  *                 recovering from an error on @val_up
1954  *      @info: notifier information data
1955  *
1956  *      Call all per-netns network notifier blocks, but not notifier blocks on
1957  *      the global notifier chain. Parameters and return value are as for
1958  *      raw_notifier_call_chain_robust().
1959  */
1960
1961 static int
1962 call_netdevice_notifiers_info_robust(unsigned long val_up,
1963                                      unsigned long val_down,
1964                                      struct netdev_notifier_info *info)
1965 {
1966         struct net *net = dev_net(info->dev);
1967
1968         ASSERT_RTNL();
1969
1970         return raw_notifier_call_chain_robust(&net->netdev_chain,
1971                                               val_up, val_down, info);
1972 }
1973
1974 static int call_netdevice_notifiers_extack(unsigned long val,
1975                                            struct net_device *dev,
1976                                            struct netlink_ext_ack *extack)
1977 {
1978         struct netdev_notifier_info info = {
1979                 .dev = dev,
1980                 .extack = extack,
1981         };
1982
1983         return call_netdevice_notifiers_info(val, &info);
1984 }
1985
1986 /**
1987  *      call_netdevice_notifiers - call all network notifier blocks
1988  *      @val: value passed unmodified to notifier function
1989  *      @dev: net_device pointer passed unmodified to notifier function
1990  *
1991  *      Call all network notifier blocks.  Parameters and return value
1992  *      are as for raw_notifier_call_chain().
1993  */
1994
1995 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1996 {
1997         return call_netdevice_notifiers_extack(val, dev, NULL);
1998 }
1999 EXPORT_SYMBOL(call_netdevice_notifiers);
2000
2001 /**
2002  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2003  *      @val: value passed unmodified to notifier function
2004  *      @dev: net_device pointer passed unmodified to notifier function
2005  *      @arg: additional u32 argument passed to the notifier function
2006  *
2007  *      Call all network notifier blocks.  Parameters and return value
2008  *      are as for raw_notifier_call_chain().
2009  */
2010 static int call_netdevice_notifiers_mtu(unsigned long val,
2011                                         struct net_device *dev, u32 arg)
2012 {
2013         struct netdev_notifier_info_ext info = {
2014                 .info.dev = dev,
2015                 .ext.mtu = arg,
2016         };
2017
2018         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2019
2020         return call_netdevice_notifiers_info(val, &info.info);
2021 }
2022
2023 #ifdef CONFIG_NET_INGRESS
2024 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2025
2026 void net_inc_ingress_queue(void)
2027 {
2028         static_branch_inc(&ingress_needed_key);
2029 }
2030 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2031
2032 void net_dec_ingress_queue(void)
2033 {
2034         static_branch_dec(&ingress_needed_key);
2035 }
2036 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2037 #endif
2038
2039 #ifdef CONFIG_NET_EGRESS
2040 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2041
2042 void net_inc_egress_queue(void)
2043 {
2044         static_branch_inc(&egress_needed_key);
2045 }
2046 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2047
2048 void net_dec_egress_queue(void)
2049 {
2050         static_branch_dec(&egress_needed_key);
2051 }
2052 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2053 #endif
2054
2055 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2056 EXPORT_SYMBOL(netstamp_needed_key);
2057 #ifdef CONFIG_JUMP_LABEL
2058 static atomic_t netstamp_needed_deferred;
2059 static atomic_t netstamp_wanted;
2060 static void netstamp_clear(struct work_struct *work)
2061 {
2062         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2063         int wanted;
2064
2065         wanted = atomic_add_return(deferred, &netstamp_wanted);
2066         if (wanted > 0)
2067                 static_branch_enable(&netstamp_needed_key);
2068         else
2069                 static_branch_disable(&netstamp_needed_key);
2070 }
2071 static DECLARE_WORK(netstamp_work, netstamp_clear);
2072 #endif
2073
2074 void net_enable_timestamp(void)
2075 {
2076 #ifdef CONFIG_JUMP_LABEL
2077         int wanted;
2078
2079         while (1) {
2080                 wanted = atomic_read(&netstamp_wanted);
2081                 if (wanted <= 0)
2082                         break;
2083                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2084                         return;
2085         }
2086         atomic_inc(&netstamp_needed_deferred);
2087         schedule_work(&netstamp_work);
2088 #else
2089         static_branch_inc(&netstamp_needed_key);
2090 #endif
2091 }
2092 EXPORT_SYMBOL(net_enable_timestamp);
2093
2094 void net_disable_timestamp(void)
2095 {
2096 #ifdef CONFIG_JUMP_LABEL
2097         int wanted;
2098
2099         while (1) {
2100                 wanted = atomic_read(&netstamp_wanted);
2101                 if (wanted <= 1)
2102                         break;
2103                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2104                         return;
2105         }
2106         atomic_dec(&netstamp_needed_deferred);
2107         schedule_work(&netstamp_work);
2108 #else
2109         static_branch_dec(&netstamp_needed_key);
2110 #endif
2111 }
2112 EXPORT_SYMBOL(net_disable_timestamp);
2113
2114 static inline void net_timestamp_set(struct sk_buff *skb)
2115 {
2116         skb->tstamp = 0;
2117         skb->mono_delivery_time = 0;
2118         if (static_branch_unlikely(&netstamp_needed_key))
2119                 skb->tstamp = ktime_get_real();
2120 }
2121
2122 #define net_timestamp_check(COND, SKB)                          \
2123         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2124                 if ((COND) && !(SKB)->tstamp)                   \
2125                         (SKB)->tstamp = ktime_get_real();       \
2126         }                                                       \
2127
2128 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2129 {
2130         return __is_skb_forwardable(dev, skb, true);
2131 }
2132 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2133
2134 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2135                               bool check_mtu)
2136 {
2137         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2138
2139         if (likely(!ret)) {
2140                 skb->protocol = eth_type_trans(skb, dev);
2141                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2142         }
2143
2144         return ret;
2145 }
2146
2147 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2148 {
2149         return __dev_forward_skb2(dev, skb, true);
2150 }
2151 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2152
2153 /**
2154  * dev_forward_skb - loopback an skb to another netif
2155  *
2156  * @dev: destination network device
2157  * @skb: buffer to forward
2158  *
2159  * return values:
2160  *      NET_RX_SUCCESS  (no congestion)
2161  *      NET_RX_DROP     (packet was dropped, but freed)
2162  *
2163  * dev_forward_skb can be used for injecting an skb from the
2164  * start_xmit function of one device into the receive queue
2165  * of another device.
2166  *
2167  * The receiving device may be in another namespace, so
2168  * we have to clear all information in the skb that could
2169  * impact namespace isolation.
2170  */
2171 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2172 {
2173         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2174 }
2175 EXPORT_SYMBOL_GPL(dev_forward_skb);
2176
2177 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2178 {
2179         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2180 }
2181
2182 static inline int deliver_skb(struct sk_buff *skb,
2183                               struct packet_type *pt_prev,
2184                               struct net_device *orig_dev)
2185 {
2186         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2187                 return -ENOMEM;
2188         refcount_inc(&skb->users);
2189         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2190 }
2191
2192 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2193                                           struct packet_type **pt,
2194                                           struct net_device *orig_dev,
2195                                           __be16 type,
2196                                           struct list_head *ptype_list)
2197 {
2198         struct packet_type *ptype, *pt_prev = *pt;
2199
2200         list_for_each_entry_rcu(ptype, ptype_list, list) {
2201                 if (ptype->type != type)
2202                         continue;
2203                 if (pt_prev)
2204                         deliver_skb(skb, pt_prev, orig_dev);
2205                 pt_prev = ptype;
2206         }
2207         *pt = pt_prev;
2208 }
2209
2210 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2211 {
2212         if (!ptype->af_packet_priv || !skb->sk)
2213                 return false;
2214
2215         if (ptype->id_match)
2216                 return ptype->id_match(ptype, skb->sk);
2217         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2218                 return true;
2219
2220         return false;
2221 }
2222
2223 /**
2224  * dev_nit_active - return true if any network interface taps are in use
2225  *
2226  * @dev: network device to check for the presence of taps
2227  */
2228 bool dev_nit_active(struct net_device *dev)
2229 {
2230         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2231 }
2232 EXPORT_SYMBOL_GPL(dev_nit_active);
2233
2234 /*
2235  *      Support routine. Sends outgoing frames to any network
2236  *      taps currently in use.
2237  */
2238
2239 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2240 {
2241         struct packet_type *ptype;
2242         struct sk_buff *skb2 = NULL;
2243         struct packet_type *pt_prev = NULL;
2244         struct list_head *ptype_list = &ptype_all;
2245
2246         rcu_read_lock();
2247 again:
2248         list_for_each_entry_rcu(ptype, ptype_list, list) {
2249                 if (ptype->ignore_outgoing)
2250                         continue;
2251
2252                 /* Never send packets back to the socket
2253                  * they originated from - MvS (miquels@drinkel.ow.org)
2254                  */
2255                 if (skb_loop_sk(ptype, skb))
2256                         continue;
2257
2258                 if (pt_prev) {
2259                         deliver_skb(skb2, pt_prev, skb->dev);
2260                         pt_prev = ptype;
2261                         continue;
2262                 }
2263
2264                 /* need to clone skb, done only once */
2265                 skb2 = skb_clone(skb, GFP_ATOMIC);
2266                 if (!skb2)
2267                         goto out_unlock;
2268
2269                 net_timestamp_set(skb2);
2270
2271                 /* skb->nh should be correctly
2272                  * set by sender, so that the second statement is
2273                  * just protection against buggy protocols.
2274                  */
2275                 skb_reset_mac_header(skb2);
2276
2277                 if (skb_network_header(skb2) < skb2->data ||
2278                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2279                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2280                                              ntohs(skb2->protocol),
2281                                              dev->name);
2282                         skb_reset_network_header(skb2);
2283                 }
2284
2285                 skb2->transport_header = skb2->network_header;
2286                 skb2->pkt_type = PACKET_OUTGOING;
2287                 pt_prev = ptype;
2288         }
2289
2290         if (ptype_list == &ptype_all) {
2291                 ptype_list = &dev->ptype_all;
2292                 goto again;
2293         }
2294 out_unlock:
2295         if (pt_prev) {
2296                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2297                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2298                 else
2299                         kfree_skb(skb2);
2300         }
2301         rcu_read_unlock();
2302 }
2303 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2304
2305 /**
2306  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2307  * @dev: Network device
2308  * @txq: number of queues available
2309  *
2310  * If real_num_tx_queues is changed the tc mappings may no longer be
2311  * valid. To resolve this verify the tc mapping remains valid and if
2312  * not NULL the mapping. With no priorities mapping to this
2313  * offset/count pair it will no longer be used. In the worst case TC0
2314  * is invalid nothing can be done so disable priority mappings. If is
2315  * expected that drivers will fix this mapping if they can before
2316  * calling netif_set_real_num_tx_queues.
2317  */
2318 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2319 {
2320         int i;
2321         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2322
2323         /* If TC0 is invalidated disable TC mapping */
2324         if (tc->offset + tc->count > txq) {
2325                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2326                 dev->num_tc = 0;
2327                 return;
2328         }
2329
2330         /* Invalidated prio to tc mappings set to TC0 */
2331         for (i = 1; i < TC_BITMASK + 1; i++) {
2332                 int q = netdev_get_prio_tc_map(dev, i);
2333
2334                 tc = &dev->tc_to_txq[q];
2335                 if (tc->offset + tc->count > txq) {
2336                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2337                                     i, q);
2338                         netdev_set_prio_tc_map(dev, i, 0);
2339                 }
2340         }
2341 }
2342
2343 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2344 {
2345         if (dev->num_tc) {
2346                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2347                 int i;
2348
2349                 /* walk through the TCs and see if it falls into any of them */
2350                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2351                         if ((txq - tc->offset) < tc->count)
2352                                 return i;
2353                 }
2354
2355                 /* didn't find it, just return -1 to indicate no match */
2356                 return -1;
2357         }
2358
2359         return 0;
2360 }
2361 EXPORT_SYMBOL(netdev_txq_to_tc);
2362
2363 #ifdef CONFIG_XPS
2364 static struct static_key xps_needed __read_mostly;
2365 static struct static_key xps_rxqs_needed __read_mostly;
2366 static DEFINE_MUTEX(xps_map_mutex);
2367 #define xmap_dereference(P)             \
2368         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2369
2370 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2371                              struct xps_dev_maps *old_maps, int tci, u16 index)
2372 {
2373         struct xps_map *map = NULL;
2374         int pos;
2375
2376         if (dev_maps)
2377                 map = xmap_dereference(dev_maps->attr_map[tci]);
2378         if (!map)
2379                 return false;
2380
2381         for (pos = map->len; pos--;) {
2382                 if (map->queues[pos] != index)
2383                         continue;
2384
2385                 if (map->len > 1) {
2386                         map->queues[pos] = map->queues[--map->len];
2387                         break;
2388                 }
2389
2390                 if (old_maps)
2391                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2392                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2393                 kfree_rcu(map, rcu);
2394                 return false;
2395         }
2396
2397         return true;
2398 }
2399
2400 static bool remove_xps_queue_cpu(struct net_device *dev,
2401                                  struct xps_dev_maps *dev_maps,
2402                                  int cpu, u16 offset, u16 count)
2403 {
2404         int num_tc = dev_maps->num_tc;
2405         bool active = false;
2406         int tci;
2407
2408         for (tci = cpu * num_tc; num_tc--; tci++) {
2409                 int i, j;
2410
2411                 for (i = count, j = offset; i--; j++) {
2412                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2413                                 break;
2414                 }
2415
2416                 active |= i < 0;
2417         }
2418
2419         return active;
2420 }
2421
2422 static void reset_xps_maps(struct net_device *dev,
2423                            struct xps_dev_maps *dev_maps,
2424                            enum xps_map_type type)
2425 {
2426         static_key_slow_dec_cpuslocked(&xps_needed);
2427         if (type == XPS_RXQS)
2428                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2429
2430         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2431
2432         kfree_rcu(dev_maps, rcu);
2433 }
2434
2435 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2436                            u16 offset, u16 count)
2437 {
2438         struct xps_dev_maps *dev_maps;
2439         bool active = false;
2440         int i, j;
2441
2442         dev_maps = xmap_dereference(dev->xps_maps[type]);
2443         if (!dev_maps)
2444                 return;
2445
2446         for (j = 0; j < dev_maps->nr_ids; j++)
2447                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2448         if (!active)
2449                 reset_xps_maps(dev, dev_maps, type);
2450
2451         if (type == XPS_CPUS) {
2452                 for (i = offset + (count - 1); count--; i--)
2453                         netdev_queue_numa_node_write(
2454                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2455         }
2456 }
2457
2458 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2459                                    u16 count)
2460 {
2461         if (!static_key_false(&xps_needed))
2462                 return;
2463
2464         cpus_read_lock();
2465         mutex_lock(&xps_map_mutex);
2466
2467         if (static_key_false(&xps_rxqs_needed))
2468                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2469
2470         clean_xps_maps(dev, XPS_CPUS, offset, count);
2471
2472         mutex_unlock(&xps_map_mutex);
2473         cpus_read_unlock();
2474 }
2475
2476 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2477 {
2478         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2479 }
2480
2481 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2482                                       u16 index, bool is_rxqs_map)
2483 {
2484         struct xps_map *new_map;
2485         int alloc_len = XPS_MIN_MAP_ALLOC;
2486         int i, pos;
2487
2488         for (pos = 0; map && pos < map->len; pos++) {
2489                 if (map->queues[pos] != index)
2490                         continue;
2491                 return map;
2492         }
2493
2494         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2495         if (map) {
2496                 if (pos < map->alloc_len)
2497                         return map;
2498
2499                 alloc_len = map->alloc_len * 2;
2500         }
2501
2502         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2503          *  map
2504          */
2505         if (is_rxqs_map)
2506                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2507         else
2508                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2509                                        cpu_to_node(attr_index));
2510         if (!new_map)
2511                 return NULL;
2512
2513         for (i = 0; i < pos; i++)
2514                 new_map->queues[i] = map->queues[i];
2515         new_map->alloc_len = alloc_len;
2516         new_map->len = pos;
2517
2518         return new_map;
2519 }
2520
2521 /* Copy xps maps at a given index */
2522 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2523                               struct xps_dev_maps *new_dev_maps, int index,
2524                               int tc, bool skip_tc)
2525 {
2526         int i, tci = index * dev_maps->num_tc;
2527         struct xps_map *map;
2528
2529         /* copy maps belonging to foreign traffic classes */
2530         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2531                 if (i == tc && skip_tc)
2532                         continue;
2533
2534                 /* fill in the new device map from the old device map */
2535                 map = xmap_dereference(dev_maps->attr_map[tci]);
2536                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2537         }
2538 }
2539
2540 /* Must be called under cpus_read_lock */
2541 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2542                           u16 index, enum xps_map_type type)
2543 {
2544         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2545         const unsigned long *online_mask = NULL;
2546         bool active = false, copy = false;
2547         int i, j, tci, numa_node_id = -2;
2548         int maps_sz, num_tc = 1, tc = 0;
2549         struct xps_map *map, *new_map;
2550         unsigned int nr_ids;
2551
2552         if (dev->num_tc) {
2553                 /* Do not allow XPS on subordinate device directly */
2554                 num_tc = dev->num_tc;
2555                 if (num_tc < 0)
2556                         return -EINVAL;
2557
2558                 /* If queue belongs to subordinate dev use its map */
2559                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2560
2561                 tc = netdev_txq_to_tc(dev, index);
2562                 if (tc < 0)
2563                         return -EINVAL;
2564         }
2565
2566         mutex_lock(&xps_map_mutex);
2567
2568         dev_maps = xmap_dereference(dev->xps_maps[type]);
2569         if (type == XPS_RXQS) {
2570                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2571                 nr_ids = dev->num_rx_queues;
2572         } else {
2573                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2574                 if (num_possible_cpus() > 1)
2575                         online_mask = cpumask_bits(cpu_online_mask);
2576                 nr_ids = nr_cpu_ids;
2577         }
2578
2579         if (maps_sz < L1_CACHE_BYTES)
2580                 maps_sz = L1_CACHE_BYTES;
2581
2582         /* The old dev_maps could be larger or smaller than the one we're
2583          * setting up now, as dev->num_tc or nr_ids could have been updated in
2584          * between. We could try to be smart, but let's be safe instead and only
2585          * copy foreign traffic classes if the two map sizes match.
2586          */
2587         if (dev_maps &&
2588             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2589                 copy = true;
2590
2591         /* allocate memory for queue storage */
2592         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2593              j < nr_ids;) {
2594                 if (!new_dev_maps) {
2595                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2596                         if (!new_dev_maps) {
2597                                 mutex_unlock(&xps_map_mutex);
2598                                 return -ENOMEM;
2599                         }
2600
2601                         new_dev_maps->nr_ids = nr_ids;
2602                         new_dev_maps->num_tc = num_tc;
2603                 }
2604
2605                 tci = j * num_tc + tc;
2606                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2607
2608                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2609                 if (!map)
2610                         goto error;
2611
2612                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2613         }
2614
2615         if (!new_dev_maps)
2616                 goto out_no_new_maps;
2617
2618         if (!dev_maps) {
2619                 /* Increment static keys at most once per type */
2620                 static_key_slow_inc_cpuslocked(&xps_needed);
2621                 if (type == XPS_RXQS)
2622                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2623         }
2624
2625         for (j = 0; j < nr_ids; j++) {
2626                 bool skip_tc = false;
2627
2628                 tci = j * num_tc + tc;
2629                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2630                     netif_attr_test_online(j, online_mask, nr_ids)) {
2631                         /* add tx-queue to CPU/rx-queue maps */
2632                         int pos = 0;
2633
2634                         skip_tc = true;
2635
2636                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2637                         while ((pos < map->len) && (map->queues[pos] != index))
2638                                 pos++;
2639
2640                         if (pos == map->len)
2641                                 map->queues[map->len++] = index;
2642 #ifdef CONFIG_NUMA
2643                         if (type == XPS_CPUS) {
2644                                 if (numa_node_id == -2)
2645                                         numa_node_id = cpu_to_node(j);
2646                                 else if (numa_node_id != cpu_to_node(j))
2647                                         numa_node_id = -1;
2648                         }
2649 #endif
2650                 }
2651
2652                 if (copy)
2653                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2654                                           skip_tc);
2655         }
2656
2657         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2658
2659         /* Cleanup old maps */
2660         if (!dev_maps)
2661                 goto out_no_old_maps;
2662
2663         for (j = 0; j < dev_maps->nr_ids; j++) {
2664                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2665                         map = xmap_dereference(dev_maps->attr_map[tci]);
2666                         if (!map)
2667                                 continue;
2668
2669                         if (copy) {
2670                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2671                                 if (map == new_map)
2672                                         continue;
2673                         }
2674
2675                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2676                         kfree_rcu(map, rcu);
2677                 }
2678         }
2679
2680         old_dev_maps = dev_maps;
2681
2682 out_no_old_maps:
2683         dev_maps = new_dev_maps;
2684         active = true;
2685
2686 out_no_new_maps:
2687         if (type == XPS_CPUS)
2688                 /* update Tx queue numa node */
2689                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2690                                              (numa_node_id >= 0) ?
2691                                              numa_node_id : NUMA_NO_NODE);
2692
2693         if (!dev_maps)
2694                 goto out_no_maps;
2695
2696         /* removes tx-queue from unused CPUs/rx-queues */
2697         for (j = 0; j < dev_maps->nr_ids; j++) {
2698                 tci = j * dev_maps->num_tc;
2699
2700                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2701                         if (i == tc &&
2702                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2703                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2704                                 continue;
2705
2706                         active |= remove_xps_queue(dev_maps,
2707                                                    copy ? old_dev_maps : NULL,
2708                                                    tci, index);
2709                 }
2710         }
2711
2712         if (old_dev_maps)
2713                 kfree_rcu(old_dev_maps, rcu);
2714
2715         /* free map if not active */
2716         if (!active)
2717                 reset_xps_maps(dev, dev_maps, type);
2718
2719 out_no_maps:
2720         mutex_unlock(&xps_map_mutex);
2721
2722         return 0;
2723 error:
2724         /* remove any maps that we added */
2725         for (j = 0; j < nr_ids; j++) {
2726                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2727                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2728                         map = copy ?
2729                               xmap_dereference(dev_maps->attr_map[tci]) :
2730                               NULL;
2731                         if (new_map && new_map != map)
2732                                 kfree(new_map);
2733                 }
2734         }
2735
2736         mutex_unlock(&xps_map_mutex);
2737
2738         kfree(new_dev_maps);
2739         return -ENOMEM;
2740 }
2741 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2742
2743 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2744                         u16 index)
2745 {
2746         int ret;
2747
2748         cpus_read_lock();
2749         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2750         cpus_read_unlock();
2751
2752         return ret;
2753 }
2754 EXPORT_SYMBOL(netif_set_xps_queue);
2755
2756 #endif
2757 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2758 {
2759         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2760
2761         /* Unbind any subordinate channels */
2762         while (txq-- != &dev->_tx[0]) {
2763                 if (txq->sb_dev)
2764                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2765         }
2766 }
2767
2768 void netdev_reset_tc(struct net_device *dev)
2769 {
2770 #ifdef CONFIG_XPS
2771         netif_reset_xps_queues_gt(dev, 0);
2772 #endif
2773         netdev_unbind_all_sb_channels(dev);
2774
2775         /* Reset TC configuration of device */
2776         dev->num_tc = 0;
2777         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2778         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2779 }
2780 EXPORT_SYMBOL(netdev_reset_tc);
2781
2782 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2783 {
2784         if (tc >= dev->num_tc)
2785                 return -EINVAL;
2786
2787 #ifdef CONFIG_XPS
2788         netif_reset_xps_queues(dev, offset, count);
2789 #endif
2790         dev->tc_to_txq[tc].count = count;
2791         dev->tc_to_txq[tc].offset = offset;
2792         return 0;
2793 }
2794 EXPORT_SYMBOL(netdev_set_tc_queue);
2795
2796 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2797 {
2798         if (num_tc > TC_MAX_QUEUE)
2799                 return -EINVAL;
2800
2801 #ifdef CONFIG_XPS
2802         netif_reset_xps_queues_gt(dev, 0);
2803 #endif
2804         netdev_unbind_all_sb_channels(dev);
2805
2806         dev->num_tc = num_tc;
2807         return 0;
2808 }
2809 EXPORT_SYMBOL(netdev_set_num_tc);
2810
2811 void netdev_unbind_sb_channel(struct net_device *dev,
2812                               struct net_device *sb_dev)
2813 {
2814         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2815
2816 #ifdef CONFIG_XPS
2817         netif_reset_xps_queues_gt(sb_dev, 0);
2818 #endif
2819         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2820         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2821
2822         while (txq-- != &dev->_tx[0]) {
2823                 if (txq->sb_dev == sb_dev)
2824                         txq->sb_dev = NULL;
2825         }
2826 }
2827 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2828
2829 int netdev_bind_sb_channel_queue(struct net_device *dev,
2830                                  struct net_device *sb_dev,
2831                                  u8 tc, u16 count, u16 offset)
2832 {
2833         /* Make certain the sb_dev and dev are already configured */
2834         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2835                 return -EINVAL;
2836
2837         /* We cannot hand out queues we don't have */
2838         if ((offset + count) > dev->real_num_tx_queues)
2839                 return -EINVAL;
2840
2841         /* Record the mapping */
2842         sb_dev->tc_to_txq[tc].count = count;
2843         sb_dev->tc_to_txq[tc].offset = offset;
2844
2845         /* Provide a way for Tx queue to find the tc_to_txq map or
2846          * XPS map for itself.
2847          */
2848         while (count--)
2849                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2850
2851         return 0;
2852 }
2853 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2854
2855 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2856 {
2857         /* Do not use a multiqueue device to represent a subordinate channel */
2858         if (netif_is_multiqueue(dev))
2859                 return -ENODEV;
2860
2861         /* We allow channels 1 - 32767 to be used for subordinate channels.
2862          * Channel 0 is meant to be "native" mode and used only to represent
2863          * the main root device. We allow writing 0 to reset the device back
2864          * to normal mode after being used as a subordinate channel.
2865          */
2866         if (channel > S16_MAX)
2867                 return -EINVAL;
2868
2869         dev->num_tc = -channel;
2870
2871         return 0;
2872 }
2873 EXPORT_SYMBOL(netdev_set_sb_channel);
2874
2875 /*
2876  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2877  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2878  */
2879 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2880 {
2881         bool disabling;
2882         int rc;
2883
2884         disabling = txq < dev->real_num_tx_queues;
2885
2886         if (txq < 1 || txq > dev->num_tx_queues)
2887                 return -EINVAL;
2888
2889         if (dev->reg_state == NETREG_REGISTERED ||
2890             dev->reg_state == NETREG_UNREGISTERING) {
2891                 ASSERT_RTNL();
2892
2893                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2894                                                   txq);
2895                 if (rc)
2896                         return rc;
2897
2898                 if (dev->num_tc)
2899                         netif_setup_tc(dev, txq);
2900
2901                 dev_qdisc_change_real_num_tx(dev, txq);
2902
2903                 dev->real_num_tx_queues = txq;
2904
2905                 if (disabling) {
2906                         synchronize_net();
2907                         qdisc_reset_all_tx_gt(dev, txq);
2908 #ifdef CONFIG_XPS
2909                         netif_reset_xps_queues_gt(dev, txq);
2910 #endif
2911                 }
2912         } else {
2913                 dev->real_num_tx_queues = txq;
2914         }
2915
2916         return 0;
2917 }
2918 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2919
2920 #ifdef CONFIG_SYSFS
2921 /**
2922  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2923  *      @dev: Network device
2924  *      @rxq: Actual number of RX queues
2925  *
2926  *      This must be called either with the rtnl_lock held or before
2927  *      registration of the net device.  Returns 0 on success, or a
2928  *      negative error code.  If called before registration, it always
2929  *      succeeds.
2930  */
2931 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2932 {
2933         int rc;
2934
2935         if (rxq < 1 || rxq > dev->num_rx_queues)
2936                 return -EINVAL;
2937
2938         if (dev->reg_state == NETREG_REGISTERED) {
2939                 ASSERT_RTNL();
2940
2941                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2942                                                   rxq);
2943                 if (rc)
2944                         return rc;
2945         }
2946
2947         dev->real_num_rx_queues = rxq;
2948         return 0;
2949 }
2950 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2951 #endif
2952
2953 /**
2954  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2955  *      @dev: Network device
2956  *      @txq: Actual number of TX queues
2957  *      @rxq: Actual number of RX queues
2958  *
2959  *      Set the real number of both TX and RX queues.
2960  *      Does nothing if the number of queues is already correct.
2961  */
2962 int netif_set_real_num_queues(struct net_device *dev,
2963                               unsigned int txq, unsigned int rxq)
2964 {
2965         unsigned int old_rxq = dev->real_num_rx_queues;
2966         int err;
2967
2968         if (txq < 1 || txq > dev->num_tx_queues ||
2969             rxq < 1 || rxq > dev->num_rx_queues)
2970                 return -EINVAL;
2971
2972         /* Start from increases, so the error path only does decreases -
2973          * decreases can't fail.
2974          */
2975         if (rxq > dev->real_num_rx_queues) {
2976                 err = netif_set_real_num_rx_queues(dev, rxq);
2977                 if (err)
2978                         return err;
2979         }
2980         if (txq > dev->real_num_tx_queues) {
2981                 err = netif_set_real_num_tx_queues(dev, txq);
2982                 if (err)
2983                         goto undo_rx;
2984         }
2985         if (rxq < dev->real_num_rx_queues)
2986                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2987         if (txq < dev->real_num_tx_queues)
2988                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2989
2990         return 0;
2991 undo_rx:
2992         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2993         return err;
2994 }
2995 EXPORT_SYMBOL(netif_set_real_num_queues);
2996
2997 /**
2998  * netif_set_tso_max_size() - set the max size of TSO frames supported
2999  * @dev:        netdev to update
3000  * @size:       max skb->len of a TSO frame
3001  *
3002  * Set the limit on the size of TSO super-frames the device can handle.
3003  * Unless explicitly set the stack will assume the value of
3004  * %GSO_LEGACY_MAX_SIZE.
3005  */
3006 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3007 {
3008         dev->tso_max_size = min(GSO_MAX_SIZE, size);
3009         if (size < READ_ONCE(dev->gso_max_size))
3010                 netif_set_gso_max_size(dev, size);
3011 }
3012 EXPORT_SYMBOL(netif_set_tso_max_size);
3013
3014 /**
3015  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3016  * @dev:        netdev to update
3017  * @segs:       max number of TCP segments
3018  *
3019  * Set the limit on the number of TCP segments the device can generate from
3020  * a single TSO super-frame.
3021  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3022  */
3023 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3024 {
3025         dev->tso_max_segs = segs;
3026         if (segs < READ_ONCE(dev->gso_max_segs))
3027                 netif_set_gso_max_segs(dev, segs);
3028 }
3029 EXPORT_SYMBOL(netif_set_tso_max_segs);
3030
3031 /**
3032  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3033  * @to:         netdev to update
3034  * @from:       netdev from which to copy the limits
3035  */
3036 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3037 {
3038         netif_set_tso_max_size(to, from->tso_max_size);
3039         netif_set_tso_max_segs(to, from->tso_max_segs);
3040 }
3041 EXPORT_SYMBOL(netif_inherit_tso_max);
3042
3043 /**
3044  * netif_get_num_default_rss_queues - default number of RSS queues
3045  *
3046  * Default value is the number of physical cores if there are only 1 or 2, or
3047  * divided by 2 if there are more.
3048  */
3049 int netif_get_num_default_rss_queues(void)
3050 {
3051         cpumask_var_t cpus;
3052         int cpu, count = 0;
3053
3054         if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3055                 return 1;
3056
3057         cpumask_copy(cpus, cpu_online_mask);
3058         for_each_cpu(cpu, cpus) {
3059                 ++count;
3060                 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3061         }
3062         free_cpumask_var(cpus);
3063
3064         return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3065 }
3066 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3067
3068 static void __netif_reschedule(struct Qdisc *q)
3069 {
3070         struct softnet_data *sd;
3071         unsigned long flags;
3072
3073         local_irq_save(flags);
3074         sd = this_cpu_ptr(&softnet_data);
3075         q->next_sched = NULL;
3076         *sd->output_queue_tailp = q;
3077         sd->output_queue_tailp = &q->next_sched;
3078         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3079         local_irq_restore(flags);
3080 }
3081
3082 void __netif_schedule(struct Qdisc *q)
3083 {
3084         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3085                 __netif_reschedule(q);
3086 }
3087 EXPORT_SYMBOL(__netif_schedule);
3088
3089 struct dev_kfree_skb_cb {
3090         enum skb_free_reason reason;
3091 };
3092
3093 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3094 {
3095         return (struct dev_kfree_skb_cb *)skb->cb;
3096 }
3097
3098 void netif_schedule_queue(struct netdev_queue *txq)
3099 {
3100         rcu_read_lock();
3101         if (!netif_xmit_stopped(txq)) {
3102                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3103
3104                 __netif_schedule(q);
3105         }
3106         rcu_read_unlock();
3107 }
3108 EXPORT_SYMBOL(netif_schedule_queue);
3109
3110 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3111 {
3112         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3113                 struct Qdisc *q;
3114
3115                 rcu_read_lock();
3116                 q = rcu_dereference(dev_queue->qdisc);
3117                 __netif_schedule(q);
3118                 rcu_read_unlock();
3119         }
3120 }
3121 EXPORT_SYMBOL(netif_tx_wake_queue);
3122
3123 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3124 {
3125         unsigned long flags;
3126
3127         if (unlikely(!skb))
3128                 return;
3129
3130         if (likely(refcount_read(&skb->users) == 1)) {
3131                 smp_rmb();
3132                 refcount_set(&skb->users, 0);
3133         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3134                 return;
3135         }
3136         get_kfree_skb_cb(skb)->reason = reason;
3137         local_irq_save(flags);
3138         skb->next = __this_cpu_read(softnet_data.completion_queue);
3139         __this_cpu_write(softnet_data.completion_queue, skb);
3140         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3141         local_irq_restore(flags);
3142 }
3143 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3144
3145 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3146 {
3147         if (in_hardirq() || irqs_disabled())
3148                 __dev_kfree_skb_irq(skb, reason);
3149         else
3150                 dev_kfree_skb(skb);
3151 }
3152 EXPORT_SYMBOL(__dev_kfree_skb_any);
3153
3154
3155 /**
3156  * netif_device_detach - mark device as removed
3157  * @dev: network device
3158  *
3159  * Mark device as removed from system and therefore no longer available.
3160  */
3161 void netif_device_detach(struct net_device *dev)
3162 {
3163         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3164             netif_running(dev)) {
3165                 netif_tx_stop_all_queues(dev);
3166         }
3167 }
3168 EXPORT_SYMBOL(netif_device_detach);
3169
3170 /**
3171  * netif_device_attach - mark device as attached
3172  * @dev: network device
3173  *
3174  * Mark device as attached from system and restart if needed.
3175  */
3176 void netif_device_attach(struct net_device *dev)
3177 {
3178         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3179             netif_running(dev)) {
3180                 netif_tx_wake_all_queues(dev);
3181                 __netdev_watchdog_up(dev);
3182         }
3183 }
3184 EXPORT_SYMBOL(netif_device_attach);
3185
3186 /*
3187  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3188  * to be used as a distribution range.
3189  */
3190 static u16 skb_tx_hash(const struct net_device *dev,
3191                        const struct net_device *sb_dev,
3192                        struct sk_buff *skb)
3193 {
3194         u32 hash;
3195         u16 qoffset = 0;
3196         u16 qcount = dev->real_num_tx_queues;
3197
3198         if (dev->num_tc) {
3199                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3200
3201                 qoffset = sb_dev->tc_to_txq[tc].offset;
3202                 qcount = sb_dev->tc_to_txq[tc].count;
3203                 if (unlikely(!qcount)) {
3204                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3205                                              sb_dev->name, qoffset, tc);
3206                         qoffset = 0;
3207                         qcount = dev->real_num_tx_queues;
3208                 }
3209         }
3210
3211         if (skb_rx_queue_recorded(skb)) {
3212                 hash = skb_get_rx_queue(skb);
3213                 if (hash >= qoffset)
3214                         hash -= qoffset;
3215                 while (unlikely(hash >= qcount))
3216                         hash -= qcount;
3217                 return hash + qoffset;
3218         }
3219
3220         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3221 }
3222
3223 static void skb_warn_bad_offload(const struct sk_buff *skb)
3224 {
3225         static const netdev_features_t null_features;
3226         struct net_device *dev = skb->dev;
3227         const char *name = "";
3228
3229         if (!net_ratelimit())
3230                 return;
3231
3232         if (dev) {
3233                 if (dev->dev.parent)
3234                         name = dev_driver_string(dev->dev.parent);
3235                 else
3236                         name = netdev_name(dev);
3237         }
3238         skb_dump(KERN_WARNING, skb, false);
3239         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3240              name, dev ? &dev->features : &null_features,
3241              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3242 }
3243
3244 /*
3245  * Invalidate hardware checksum when packet is to be mangled, and
3246  * complete checksum manually on outgoing path.
3247  */
3248 int skb_checksum_help(struct sk_buff *skb)
3249 {
3250         __wsum csum;
3251         int ret = 0, offset;
3252
3253         if (skb->ip_summed == CHECKSUM_COMPLETE)
3254                 goto out_set_summed;
3255
3256         if (unlikely(skb_is_gso(skb))) {
3257                 skb_warn_bad_offload(skb);
3258                 return -EINVAL;
3259         }
3260
3261         /* Before computing a checksum, we should make sure no frag could
3262          * be modified by an external entity : checksum could be wrong.
3263          */
3264         if (skb_has_shared_frag(skb)) {
3265                 ret = __skb_linearize(skb);
3266                 if (ret)
3267                         goto out;
3268         }
3269
3270         offset = skb_checksum_start_offset(skb);
3271         ret = -EINVAL;
3272         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3273                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3274                 goto out;
3275         }
3276         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3277
3278         offset += skb->csum_offset;
3279         if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3280                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3281                 goto out;
3282         }
3283         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3284         if (ret)
3285                 goto out;
3286
3287         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3288 out_set_summed:
3289         skb->ip_summed = CHECKSUM_NONE;
3290 out:
3291         return ret;
3292 }
3293 EXPORT_SYMBOL(skb_checksum_help);
3294
3295 int skb_crc32c_csum_help(struct sk_buff *skb)
3296 {
3297         __le32 crc32c_csum;
3298         int ret = 0, offset, start;
3299
3300         if (skb->ip_summed != CHECKSUM_PARTIAL)
3301                 goto out;
3302
3303         if (unlikely(skb_is_gso(skb)))
3304                 goto out;
3305
3306         /* Before computing a checksum, we should make sure no frag could
3307          * be modified by an external entity : checksum could be wrong.
3308          */
3309         if (unlikely(skb_has_shared_frag(skb))) {
3310                 ret = __skb_linearize(skb);
3311                 if (ret)
3312                         goto out;
3313         }
3314         start = skb_checksum_start_offset(skb);
3315         offset = start + offsetof(struct sctphdr, checksum);
3316         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3317                 ret = -EINVAL;
3318                 goto out;
3319         }
3320
3321         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3322         if (ret)
3323                 goto out;
3324
3325         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3326                                                   skb->len - start, ~(__u32)0,
3327                                                   crc32c_csum_stub));
3328         *(__le32 *)(skb->data + offset) = crc32c_csum;
3329         skb->ip_summed = CHECKSUM_NONE;
3330         skb->csum_not_inet = 0;
3331 out:
3332         return ret;
3333 }
3334
3335 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3336 {
3337         __be16 type = skb->protocol;
3338
3339         /* Tunnel gso handlers can set protocol to ethernet. */
3340         if (type == htons(ETH_P_TEB)) {
3341                 struct ethhdr *eth;
3342
3343                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3344                         return 0;
3345
3346                 eth = (struct ethhdr *)skb->data;
3347                 type = eth->h_proto;
3348         }
3349
3350         return __vlan_get_protocol(skb, type, depth);
3351 }
3352
3353 /* openvswitch calls this on rx path, so we need a different check.
3354  */
3355 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3356 {
3357         if (tx_path)
3358                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3359                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3360
3361         return skb->ip_summed == CHECKSUM_NONE;
3362 }
3363
3364 /**
3365  *      __skb_gso_segment - Perform segmentation on skb.
3366  *      @skb: buffer to segment
3367  *      @features: features for the output path (see dev->features)
3368  *      @tx_path: whether it is called in TX path
3369  *
3370  *      This function segments the given skb and returns a list of segments.
3371  *
3372  *      It may return NULL if the skb requires no segmentation.  This is
3373  *      only possible when GSO is used for verifying header integrity.
3374  *
3375  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3376  */
3377 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3378                                   netdev_features_t features, bool tx_path)
3379 {
3380         struct sk_buff *segs;
3381
3382         if (unlikely(skb_needs_check(skb, tx_path))) {
3383                 int err;
3384
3385                 /* We're going to init ->check field in TCP or UDP header */
3386                 err = skb_cow_head(skb, 0);
3387                 if (err < 0)
3388                         return ERR_PTR(err);
3389         }
3390
3391         /* Only report GSO partial support if it will enable us to
3392          * support segmentation on this frame without needing additional
3393          * work.
3394          */
3395         if (features & NETIF_F_GSO_PARTIAL) {
3396                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3397                 struct net_device *dev = skb->dev;
3398
3399                 partial_features |= dev->features & dev->gso_partial_features;
3400                 if (!skb_gso_ok(skb, features | partial_features))
3401                         features &= ~NETIF_F_GSO_PARTIAL;
3402         }
3403
3404         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3405                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3406
3407         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3408         SKB_GSO_CB(skb)->encap_level = 0;
3409
3410         skb_reset_mac_header(skb);
3411         skb_reset_mac_len(skb);
3412
3413         segs = skb_mac_gso_segment(skb, features);
3414
3415         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3416                 skb_warn_bad_offload(skb);
3417
3418         return segs;
3419 }
3420 EXPORT_SYMBOL(__skb_gso_segment);
3421
3422 /* Take action when hardware reception checksum errors are detected. */
3423 #ifdef CONFIG_BUG
3424 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3425 {
3426         netdev_err(dev, "hw csum failure\n");
3427         skb_dump(KERN_ERR, skb, true);
3428         dump_stack();
3429 }
3430
3431 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3432 {
3433         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3434 }
3435 EXPORT_SYMBOL(netdev_rx_csum_fault);
3436 #endif
3437
3438 /* XXX: check that highmem exists at all on the given machine. */
3439 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3440 {
3441 #ifdef CONFIG_HIGHMEM
3442         int i;
3443
3444         if (!(dev->features & NETIF_F_HIGHDMA)) {
3445                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3446                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3447
3448                         if (PageHighMem(skb_frag_page(frag)))
3449                                 return 1;
3450                 }
3451         }
3452 #endif
3453         return 0;
3454 }
3455
3456 /* If MPLS offload request, verify we are testing hardware MPLS features
3457  * instead of standard features for the netdev.
3458  */
3459 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3460 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3461                                            netdev_features_t features,
3462                                            __be16 type)
3463 {
3464         if (eth_p_mpls(type))
3465                 features &= skb->dev->mpls_features;
3466
3467         return features;
3468 }
3469 #else
3470 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3471                                            netdev_features_t features,
3472                                            __be16 type)
3473 {
3474         return features;
3475 }
3476 #endif
3477
3478 static netdev_features_t harmonize_features(struct sk_buff *skb,
3479         netdev_features_t features)
3480 {
3481         __be16 type;
3482
3483         type = skb_network_protocol(skb, NULL);
3484         features = net_mpls_features(skb, features, type);
3485
3486         if (skb->ip_summed != CHECKSUM_NONE &&
3487             !can_checksum_protocol(features, type)) {
3488                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3489         }
3490         if (illegal_highdma(skb->dev, skb))
3491                 features &= ~NETIF_F_SG;
3492
3493         return features;
3494 }
3495
3496 netdev_features_t passthru_features_check(struct sk_buff *skb,
3497                                           struct net_device *dev,
3498                                           netdev_features_t features)
3499 {
3500         return features;
3501 }
3502 EXPORT_SYMBOL(passthru_features_check);
3503
3504 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3505                                              struct net_device *dev,
3506                                              netdev_features_t features)
3507 {
3508         return vlan_features_check(skb, features);
3509 }
3510
3511 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3512                                             struct net_device *dev,
3513                                             netdev_features_t features)
3514 {
3515         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3516
3517         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3518                 return features & ~NETIF_F_GSO_MASK;
3519
3520         if (!skb_shinfo(skb)->gso_type) {
3521                 skb_warn_bad_offload(skb);
3522                 return features & ~NETIF_F_GSO_MASK;
3523         }
3524
3525         /* Support for GSO partial features requires software
3526          * intervention before we can actually process the packets
3527          * so we need to strip support for any partial features now
3528          * and we can pull them back in after we have partially
3529          * segmented the frame.
3530          */
3531         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3532                 features &= ~dev->gso_partial_features;
3533
3534         /* Make sure to clear the IPv4 ID mangling feature if the
3535          * IPv4 header has the potential to be fragmented.
3536          */
3537         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3538                 struct iphdr *iph = skb->encapsulation ?
3539                                     inner_ip_hdr(skb) : ip_hdr(skb);
3540
3541                 if (!(iph->frag_off & htons(IP_DF)))
3542                         features &= ~NETIF_F_TSO_MANGLEID;
3543         }
3544
3545         return features;
3546 }
3547
3548 netdev_features_t netif_skb_features(struct sk_buff *skb)
3549 {
3550         struct net_device *dev = skb->dev;
3551         netdev_features_t features = dev->features;
3552
3553         if (skb_is_gso(skb))
3554                 features = gso_features_check(skb, dev, features);
3555
3556         /* If encapsulation offload request, verify we are testing
3557          * hardware encapsulation features instead of standard
3558          * features for the netdev
3559          */
3560         if (skb->encapsulation)
3561                 features &= dev->hw_enc_features;
3562
3563         if (skb_vlan_tagged(skb))
3564                 features = netdev_intersect_features(features,
3565                                                      dev->vlan_features |
3566                                                      NETIF_F_HW_VLAN_CTAG_TX |
3567                                                      NETIF_F_HW_VLAN_STAG_TX);
3568
3569         if (dev->netdev_ops->ndo_features_check)
3570                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3571                                                                 features);
3572         else
3573                 features &= dflt_features_check(skb, dev, features);
3574
3575         return harmonize_features(skb, features);
3576 }
3577 EXPORT_SYMBOL(netif_skb_features);
3578
3579 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3580                     struct netdev_queue *txq, bool more)
3581 {
3582         unsigned int len;
3583         int rc;
3584
3585         if (dev_nit_active(dev))
3586                 dev_queue_xmit_nit(skb, dev);
3587
3588         len = skb->len;
3589         trace_net_dev_start_xmit(skb, dev);
3590         rc = netdev_start_xmit(skb, dev, txq, more);
3591         trace_net_dev_xmit(skb, rc, dev, len);
3592
3593         return rc;
3594 }
3595
3596 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3597                                     struct netdev_queue *txq, int *ret)
3598 {
3599         struct sk_buff *skb = first;
3600         int rc = NETDEV_TX_OK;
3601
3602         while (skb) {
3603                 struct sk_buff *next = skb->next;
3604
3605                 skb_mark_not_on_list(skb);
3606                 rc = xmit_one(skb, dev, txq, next != NULL);
3607                 if (unlikely(!dev_xmit_complete(rc))) {
3608                         skb->next = next;
3609                         goto out;
3610                 }
3611
3612                 skb = next;
3613                 if (netif_tx_queue_stopped(txq) && skb) {
3614                         rc = NETDEV_TX_BUSY;
3615                         break;
3616                 }
3617         }
3618
3619 out:
3620         *ret = rc;
3621         return skb;
3622 }
3623
3624 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3625                                           netdev_features_t features)
3626 {
3627         if (skb_vlan_tag_present(skb) &&
3628             !vlan_hw_offload_capable(features, skb->vlan_proto))
3629                 skb = __vlan_hwaccel_push_inside(skb);
3630         return skb;
3631 }
3632
3633 int skb_csum_hwoffload_help(struct sk_buff *skb,
3634                             const netdev_features_t features)
3635 {
3636         if (unlikely(skb_csum_is_sctp(skb)))
3637                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3638                         skb_crc32c_csum_help(skb);
3639
3640         if (features & NETIF_F_HW_CSUM)
3641                 return 0;
3642
3643         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3644                 switch (skb->csum_offset) {
3645                 case offsetof(struct tcphdr, check):
3646                 case offsetof(struct udphdr, check):
3647                         return 0;
3648                 }
3649         }
3650
3651         return skb_checksum_help(skb);
3652 }
3653 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3654
3655 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3656 {
3657         netdev_features_t features;
3658
3659         features = netif_skb_features(skb);
3660         skb = validate_xmit_vlan(skb, features);
3661         if (unlikely(!skb))
3662                 goto out_null;
3663
3664         skb = sk_validate_xmit_skb(skb, dev);
3665         if (unlikely(!skb))
3666                 goto out_null;
3667
3668         if (netif_needs_gso(skb, features)) {
3669                 struct sk_buff *segs;
3670
3671                 segs = skb_gso_segment(skb, features);
3672                 if (IS_ERR(segs)) {
3673                         goto out_kfree_skb;
3674                 } else if (segs) {
3675                         consume_skb(skb);
3676                         skb = segs;
3677                 }
3678         } else {
3679                 if (skb_needs_linearize(skb, features) &&
3680                     __skb_linearize(skb))
3681                         goto out_kfree_skb;
3682
3683                 /* If packet is not checksummed and device does not
3684                  * support checksumming for this protocol, complete
3685                  * checksumming here.
3686                  */
3687                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3688                         if (skb->encapsulation)
3689                                 skb_set_inner_transport_header(skb,
3690                                                                skb_checksum_start_offset(skb));
3691                         else
3692                                 skb_set_transport_header(skb,
3693                                                          skb_checksum_start_offset(skb));
3694                         if (skb_csum_hwoffload_help(skb, features))
3695                                 goto out_kfree_skb;
3696                 }
3697         }
3698
3699         skb = validate_xmit_xfrm(skb, features, again);
3700
3701         return skb;
3702
3703 out_kfree_skb:
3704         kfree_skb(skb);
3705 out_null:
3706         dev_core_stats_tx_dropped_inc(dev);
3707         return NULL;
3708 }
3709
3710 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3711 {
3712         struct sk_buff *next, *head = NULL, *tail;
3713
3714         for (; skb != NULL; skb = next) {
3715                 next = skb->next;
3716                 skb_mark_not_on_list(skb);
3717
3718                 /* in case skb wont be segmented, point to itself */
3719                 skb->prev = skb;
3720
3721                 skb = validate_xmit_skb(skb, dev, again);
3722                 if (!skb)
3723                         continue;
3724
3725                 if (!head)
3726                         head = skb;
3727                 else
3728                         tail->next = skb;
3729                 /* If skb was segmented, skb->prev points to
3730                  * the last segment. If not, it still contains skb.
3731                  */
3732                 tail = skb->prev;
3733         }
3734         return head;
3735 }
3736 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3737
3738 static void qdisc_pkt_len_init(struct sk_buff *skb)
3739 {
3740         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3741
3742         qdisc_skb_cb(skb)->pkt_len = skb->len;
3743
3744         /* To get more precise estimation of bytes sent on wire,
3745          * we add to pkt_len the headers size of all segments
3746          */
3747         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3748                 unsigned int hdr_len;
3749                 u16 gso_segs = shinfo->gso_segs;
3750
3751                 /* mac layer + network layer */
3752                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3753
3754                 /* + transport layer */
3755                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3756                         const struct tcphdr *th;
3757                         struct tcphdr _tcphdr;
3758
3759                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3760                                                 sizeof(_tcphdr), &_tcphdr);
3761                         if (likely(th))
3762                                 hdr_len += __tcp_hdrlen(th);
3763                 } else {
3764                         struct udphdr _udphdr;
3765
3766                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3767                                                sizeof(_udphdr), &_udphdr))
3768                                 hdr_len += sizeof(struct udphdr);
3769                 }
3770
3771                 if (shinfo->gso_type & SKB_GSO_DODGY)
3772                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3773                                                 shinfo->gso_size);
3774
3775                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3776         }
3777 }
3778
3779 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3780                              struct sk_buff **to_free,
3781                              struct netdev_queue *txq)
3782 {
3783         int rc;
3784
3785         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3786         if (rc == NET_XMIT_SUCCESS)
3787                 trace_qdisc_enqueue(q, txq, skb);
3788         return rc;
3789 }
3790
3791 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3792                                  struct net_device *dev,
3793                                  struct netdev_queue *txq)
3794 {
3795         spinlock_t *root_lock = qdisc_lock(q);
3796         struct sk_buff *to_free = NULL;
3797         bool contended;
3798         int rc;
3799
3800         qdisc_calculate_pkt_len(skb, q);
3801
3802         if (q->flags & TCQ_F_NOLOCK) {
3803                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3804                     qdisc_run_begin(q)) {
3805                         /* Retest nolock_qdisc_is_empty() within the protection
3806                          * of q->seqlock to protect from racing with requeuing.
3807                          */
3808                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3809                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3810                                 __qdisc_run(q);
3811                                 qdisc_run_end(q);
3812
3813                                 goto no_lock_out;
3814                         }
3815
3816                         qdisc_bstats_cpu_update(q, skb);
3817                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3818                             !nolock_qdisc_is_empty(q))
3819                                 __qdisc_run(q);
3820
3821                         qdisc_run_end(q);
3822                         return NET_XMIT_SUCCESS;
3823                 }
3824
3825                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3826                 qdisc_run(q);
3827
3828 no_lock_out:
3829                 if (unlikely(to_free))
3830                         kfree_skb_list_reason(to_free,
3831                                               SKB_DROP_REASON_QDISC_DROP);
3832                 return rc;
3833         }
3834
3835         /*
3836          * Heuristic to force contended enqueues to serialize on a
3837          * separate lock before trying to get qdisc main lock.
3838          * This permits qdisc->running owner to get the lock more
3839          * often and dequeue packets faster.
3840          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3841          * and then other tasks will only enqueue packets. The packets will be
3842          * sent after the qdisc owner is scheduled again. To prevent this
3843          * scenario the task always serialize on the lock.
3844          */
3845         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3846         if (unlikely(contended))
3847                 spin_lock(&q->busylock);
3848
3849         spin_lock(root_lock);
3850         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3851                 __qdisc_drop(skb, &to_free);
3852                 rc = NET_XMIT_DROP;
3853         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3854                    qdisc_run_begin(q)) {
3855                 /*
3856                  * This is a work-conserving queue; there are no old skbs
3857                  * waiting to be sent out; and the qdisc is not running -
3858                  * xmit the skb directly.
3859                  */
3860
3861                 qdisc_bstats_update(q, skb);
3862
3863                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3864                         if (unlikely(contended)) {
3865                                 spin_unlock(&q->busylock);
3866                                 contended = false;
3867                         }
3868                         __qdisc_run(q);
3869                 }
3870
3871                 qdisc_run_end(q);
3872                 rc = NET_XMIT_SUCCESS;
3873         } else {
3874                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3875                 if (qdisc_run_begin(q)) {
3876                         if (unlikely(contended)) {
3877                                 spin_unlock(&q->busylock);
3878                                 contended = false;
3879                         }
3880                         __qdisc_run(q);
3881                         qdisc_run_end(q);
3882                 }
3883         }
3884         spin_unlock(root_lock);
3885         if (unlikely(to_free))
3886                 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3887         if (unlikely(contended))
3888                 spin_unlock(&q->busylock);
3889         return rc;
3890 }
3891
3892 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3893 static void skb_update_prio(struct sk_buff *skb)
3894 {
3895         const struct netprio_map *map;
3896         const struct sock *sk;
3897         unsigned int prioidx;
3898
3899         if (skb->priority)
3900                 return;
3901         map = rcu_dereference_bh(skb->dev->priomap);
3902         if (!map)
3903                 return;
3904         sk = skb_to_full_sk(skb);
3905         if (!sk)
3906                 return;
3907
3908         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3909
3910         if (prioidx < map->priomap_len)
3911                 skb->priority = map->priomap[prioidx];
3912 }
3913 #else
3914 #define skb_update_prio(skb)
3915 #endif
3916
3917 /**
3918  *      dev_loopback_xmit - loop back @skb
3919  *      @net: network namespace this loopback is happening in
3920  *      @sk:  sk needed to be a netfilter okfn
3921  *      @skb: buffer to transmit
3922  */
3923 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3924 {
3925         skb_reset_mac_header(skb);
3926         __skb_pull(skb, skb_network_offset(skb));
3927         skb->pkt_type = PACKET_LOOPBACK;
3928         if (skb->ip_summed == CHECKSUM_NONE)
3929                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3930         DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3931         skb_dst_force(skb);
3932         netif_rx(skb);
3933         return 0;
3934 }
3935 EXPORT_SYMBOL(dev_loopback_xmit);
3936
3937 #ifdef CONFIG_NET_EGRESS
3938 static struct sk_buff *
3939 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3940 {
3941 #ifdef CONFIG_NET_CLS_ACT
3942         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3943         struct tcf_result cl_res;
3944
3945         if (!miniq)
3946                 return skb;
3947
3948         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3949         tc_skb_cb(skb)->mru = 0;
3950         tc_skb_cb(skb)->post_ct = false;
3951         mini_qdisc_bstats_cpu_update(miniq, skb);
3952
3953         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3954         case TC_ACT_OK:
3955         case TC_ACT_RECLASSIFY:
3956                 skb->tc_index = TC_H_MIN(cl_res.classid);
3957                 break;
3958         case TC_ACT_SHOT:
3959                 mini_qdisc_qstats_cpu_drop(miniq);
3960                 *ret = NET_XMIT_DROP;
3961                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3962                 return NULL;
3963         case TC_ACT_STOLEN:
3964         case TC_ACT_QUEUED:
3965         case TC_ACT_TRAP:
3966                 *ret = NET_XMIT_SUCCESS;
3967                 consume_skb(skb);
3968                 return NULL;
3969         case TC_ACT_REDIRECT:
3970                 /* No need to push/pop skb's mac_header here on egress! */
3971                 skb_do_redirect(skb);
3972                 *ret = NET_XMIT_SUCCESS;
3973                 return NULL;
3974         default:
3975                 break;
3976         }
3977 #endif /* CONFIG_NET_CLS_ACT */
3978
3979         return skb;
3980 }
3981
3982 static struct netdev_queue *
3983 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3984 {
3985         int qm = skb_get_queue_mapping(skb);
3986
3987         return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3988 }
3989
3990 static bool netdev_xmit_txqueue_skipped(void)
3991 {
3992         return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3993 }
3994
3995 void netdev_xmit_skip_txqueue(bool skip)
3996 {
3997         __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3998 }
3999 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4000 #endif /* CONFIG_NET_EGRESS */
4001
4002 #ifdef CONFIG_XPS
4003 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4004                                struct xps_dev_maps *dev_maps, unsigned int tci)
4005 {
4006         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4007         struct xps_map *map;
4008         int queue_index = -1;
4009
4010         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4011                 return queue_index;
4012
4013         tci *= dev_maps->num_tc;
4014         tci += tc;
4015
4016         map = rcu_dereference(dev_maps->attr_map[tci]);
4017         if (map) {
4018                 if (map->len == 1)
4019                         queue_index = map->queues[0];
4020                 else
4021                         queue_index = map->queues[reciprocal_scale(
4022                                                 skb_get_hash(skb), map->len)];
4023                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4024                         queue_index = -1;
4025         }
4026         return queue_index;
4027 }
4028 #endif
4029
4030 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4031                          struct sk_buff *skb)
4032 {
4033 #ifdef CONFIG_XPS
4034         struct xps_dev_maps *dev_maps;
4035         struct sock *sk = skb->sk;
4036         int queue_index = -1;
4037
4038         if (!static_key_false(&xps_needed))
4039                 return -1;
4040
4041         rcu_read_lock();
4042         if (!static_key_false(&xps_rxqs_needed))
4043                 goto get_cpus_map;
4044
4045         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4046         if (dev_maps) {
4047                 int tci = sk_rx_queue_get(sk);
4048
4049                 if (tci >= 0)
4050                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4051                                                           tci);
4052         }
4053
4054 get_cpus_map:
4055         if (queue_index < 0) {
4056                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4057                 if (dev_maps) {
4058                         unsigned int tci = skb->sender_cpu - 1;
4059
4060                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4061                                                           tci);
4062                 }
4063         }
4064         rcu_read_unlock();
4065
4066         return queue_index;
4067 #else
4068         return -1;
4069 #endif
4070 }
4071
4072 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4073                      struct net_device *sb_dev)
4074 {
4075         return 0;
4076 }
4077 EXPORT_SYMBOL(dev_pick_tx_zero);
4078
4079 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4080                        struct net_device *sb_dev)
4081 {
4082         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4083 }
4084 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4085
4086 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4087                      struct net_device *sb_dev)
4088 {
4089         struct sock *sk = skb->sk;
4090         int queue_index = sk_tx_queue_get(sk);
4091
4092         sb_dev = sb_dev ? : dev;
4093
4094         if (queue_index < 0 || skb->ooo_okay ||
4095             queue_index >= dev->real_num_tx_queues) {
4096                 int new_index = get_xps_queue(dev, sb_dev, skb);
4097
4098                 if (new_index < 0)
4099                         new_index = skb_tx_hash(dev, sb_dev, skb);
4100
4101                 if (queue_index != new_index && sk &&
4102                     sk_fullsock(sk) &&
4103                     rcu_access_pointer(sk->sk_dst_cache))
4104                         sk_tx_queue_set(sk, new_index);
4105
4106                 queue_index = new_index;
4107         }
4108
4109         return queue_index;
4110 }
4111 EXPORT_SYMBOL(netdev_pick_tx);
4112
4113 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4114                                          struct sk_buff *skb,
4115                                          struct net_device *sb_dev)
4116 {
4117         int queue_index = 0;
4118
4119 #ifdef CONFIG_XPS
4120         u32 sender_cpu = skb->sender_cpu - 1;
4121
4122         if (sender_cpu >= (u32)NR_CPUS)
4123                 skb->sender_cpu = raw_smp_processor_id() + 1;
4124 #endif
4125
4126         if (dev->real_num_tx_queues != 1) {
4127                 const struct net_device_ops *ops = dev->netdev_ops;
4128
4129                 if (ops->ndo_select_queue)
4130                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4131                 else
4132                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4133
4134                 queue_index = netdev_cap_txqueue(dev, queue_index);
4135         }
4136
4137         skb_set_queue_mapping(skb, queue_index);
4138         return netdev_get_tx_queue(dev, queue_index);
4139 }
4140
4141 /**
4142  * __dev_queue_xmit() - transmit a buffer
4143  * @skb:        buffer to transmit
4144  * @sb_dev:     suboordinate device used for L2 forwarding offload
4145  *
4146  * Queue a buffer for transmission to a network device. The caller must
4147  * have set the device and priority and built the buffer before calling
4148  * this function. The function can be called from an interrupt.
4149  *
4150  * When calling this method, interrupts MUST be enabled. This is because
4151  * the BH enable code must have IRQs enabled so that it will not deadlock.
4152  *
4153  * Regardless of the return value, the skb is consumed, so it is currently
4154  * difficult to retry a send to this method. (You can bump the ref count
4155  * before sending to hold a reference for retry if you are careful.)
4156  *
4157  * Return:
4158  * * 0                          - buffer successfully transmitted
4159  * * positive qdisc return code - NET_XMIT_DROP etc.
4160  * * negative errno             - other errors
4161  */
4162 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4163 {
4164         struct net_device *dev = skb->dev;
4165         struct netdev_queue *txq = NULL;
4166         struct Qdisc *q;
4167         int rc = -ENOMEM;
4168         bool again = false;
4169
4170         skb_reset_mac_header(skb);
4171         skb_assert_len(skb);
4172
4173         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4174                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4175
4176         /* Disable soft irqs for various locks below. Also
4177          * stops preemption for RCU.
4178          */
4179         rcu_read_lock_bh();
4180
4181         skb_update_prio(skb);
4182
4183         qdisc_pkt_len_init(skb);
4184 #ifdef CONFIG_NET_CLS_ACT
4185         skb->tc_at_ingress = 0;
4186 #endif
4187 #ifdef CONFIG_NET_EGRESS
4188         if (static_branch_unlikely(&egress_needed_key)) {
4189                 if (nf_hook_egress_active()) {
4190                         skb = nf_hook_egress(skb, &rc, dev);
4191                         if (!skb)
4192                                 goto out;
4193                 }
4194
4195                 netdev_xmit_skip_txqueue(false);
4196
4197                 nf_skip_egress(skb, true);
4198                 skb = sch_handle_egress(skb, &rc, dev);
4199                 if (!skb)
4200                         goto out;
4201                 nf_skip_egress(skb, false);
4202
4203                 if (netdev_xmit_txqueue_skipped())
4204                         txq = netdev_tx_queue_mapping(dev, skb);
4205         }
4206 #endif
4207         /* If device/qdisc don't need skb->dst, release it right now while
4208          * its hot in this cpu cache.
4209          */
4210         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4211                 skb_dst_drop(skb);
4212         else
4213                 skb_dst_force(skb);
4214
4215         if (!txq)
4216                 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4217
4218         q = rcu_dereference_bh(txq->qdisc);
4219
4220         trace_net_dev_queue(skb);
4221         if (q->enqueue) {
4222                 rc = __dev_xmit_skb(skb, q, dev, txq);
4223                 goto out;
4224         }
4225
4226         /* The device has no queue. Common case for software devices:
4227          * loopback, all the sorts of tunnels...
4228
4229          * Really, it is unlikely that netif_tx_lock protection is necessary
4230          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4231          * counters.)
4232          * However, it is possible, that they rely on protection
4233          * made by us here.
4234
4235          * Check this and shot the lock. It is not prone from deadlocks.
4236          *Either shot noqueue qdisc, it is even simpler 8)
4237          */
4238         if (dev->flags & IFF_UP) {
4239                 int cpu = smp_processor_id(); /* ok because BHs are off */
4240
4241                 /* Other cpus might concurrently change txq->xmit_lock_owner
4242                  * to -1 or to their cpu id, but not to our id.
4243                  */
4244                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4245                         if (dev_xmit_recursion())
4246                                 goto recursion_alert;
4247
4248                         skb = validate_xmit_skb(skb, dev, &again);
4249                         if (!skb)
4250                                 goto out;
4251
4252                         HARD_TX_LOCK(dev, txq, cpu);
4253
4254                         if (!netif_xmit_stopped(txq)) {
4255                                 dev_xmit_recursion_inc();
4256                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4257                                 dev_xmit_recursion_dec();
4258                                 if (dev_xmit_complete(rc)) {
4259                                         HARD_TX_UNLOCK(dev, txq);
4260                                         goto out;
4261                                 }
4262                         }
4263                         HARD_TX_UNLOCK(dev, txq);
4264                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4265                                              dev->name);
4266                 } else {
4267                         /* Recursion is detected! It is possible,
4268                          * unfortunately
4269                          */
4270 recursion_alert:
4271                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4272                                              dev->name);
4273                 }
4274         }
4275
4276         rc = -ENETDOWN;
4277         rcu_read_unlock_bh();
4278
4279         dev_core_stats_tx_dropped_inc(dev);
4280         kfree_skb_list(skb);
4281         return rc;
4282 out:
4283         rcu_read_unlock_bh();
4284         return rc;
4285 }
4286 EXPORT_SYMBOL(__dev_queue_xmit);
4287
4288 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4289 {
4290         struct net_device *dev = skb->dev;
4291         struct sk_buff *orig_skb = skb;
4292         struct netdev_queue *txq;
4293         int ret = NETDEV_TX_BUSY;
4294         bool again = false;
4295
4296         if (unlikely(!netif_running(dev) ||
4297                      !netif_carrier_ok(dev)))
4298                 goto drop;
4299
4300         skb = validate_xmit_skb_list(skb, dev, &again);
4301         if (skb != orig_skb)
4302                 goto drop;
4303
4304         skb_set_queue_mapping(skb, queue_id);
4305         txq = skb_get_tx_queue(dev, skb);
4306
4307         local_bh_disable();
4308
4309         dev_xmit_recursion_inc();
4310         HARD_TX_LOCK(dev, txq, smp_processor_id());
4311         if (!netif_xmit_frozen_or_drv_stopped(txq))
4312                 ret = netdev_start_xmit(skb, dev, txq, false);
4313         HARD_TX_UNLOCK(dev, txq);
4314         dev_xmit_recursion_dec();
4315
4316         local_bh_enable();
4317         return ret;
4318 drop:
4319         dev_core_stats_tx_dropped_inc(dev);
4320         kfree_skb_list(skb);
4321         return NET_XMIT_DROP;
4322 }
4323 EXPORT_SYMBOL(__dev_direct_xmit);
4324
4325 /*************************************************************************
4326  *                      Receiver routines
4327  *************************************************************************/
4328
4329 int netdev_max_backlog __read_mostly = 1000;
4330 EXPORT_SYMBOL(netdev_max_backlog);
4331
4332 int netdev_tstamp_prequeue __read_mostly = 1;
4333 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4334 int netdev_budget __read_mostly = 300;
4335 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4336 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4337 int weight_p __read_mostly = 64;           /* old backlog weight */
4338 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4339 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4340 int dev_rx_weight __read_mostly = 64;
4341 int dev_tx_weight __read_mostly = 64;
4342
4343 /* Called with irq disabled */
4344 static inline void ____napi_schedule(struct softnet_data *sd,
4345                                      struct napi_struct *napi)
4346 {
4347         struct task_struct *thread;
4348
4349         lockdep_assert_irqs_disabled();
4350
4351         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4352                 /* Paired with smp_mb__before_atomic() in
4353                  * napi_enable()/dev_set_threaded().
4354                  * Use READ_ONCE() to guarantee a complete
4355                  * read on napi->thread. Only call
4356                  * wake_up_process() when it's not NULL.
4357                  */
4358                 thread = READ_ONCE(napi->thread);
4359                 if (thread) {
4360                         /* Avoid doing set_bit() if the thread is in
4361                          * INTERRUPTIBLE state, cause napi_thread_wait()
4362                          * makes sure to proceed with napi polling
4363                          * if the thread is explicitly woken from here.
4364                          */
4365                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4366                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4367                         wake_up_process(thread);
4368                         return;
4369                 }
4370         }
4371
4372         list_add_tail(&napi->poll_list, &sd->poll_list);
4373         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4374 }
4375
4376 #ifdef CONFIG_RPS
4377
4378 /* One global table that all flow-based protocols share. */
4379 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4380 EXPORT_SYMBOL(rps_sock_flow_table);
4381 u32 rps_cpu_mask __read_mostly;
4382 EXPORT_SYMBOL(rps_cpu_mask);
4383
4384 struct static_key_false rps_needed __read_mostly;
4385 EXPORT_SYMBOL(rps_needed);
4386 struct static_key_false rfs_needed __read_mostly;
4387 EXPORT_SYMBOL(rfs_needed);
4388
4389 static struct rps_dev_flow *
4390 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4391             struct rps_dev_flow *rflow, u16 next_cpu)
4392 {
4393         if (next_cpu < nr_cpu_ids) {
4394 #ifdef CONFIG_RFS_ACCEL
4395                 struct netdev_rx_queue *rxqueue;
4396                 struct rps_dev_flow_table *flow_table;
4397                 struct rps_dev_flow *old_rflow;
4398                 u32 flow_id;
4399                 u16 rxq_index;
4400                 int rc;
4401
4402                 /* Should we steer this flow to a different hardware queue? */
4403                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4404                     !(dev->features & NETIF_F_NTUPLE))
4405                         goto out;
4406                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4407                 if (rxq_index == skb_get_rx_queue(skb))
4408                         goto out;
4409
4410                 rxqueue = dev->_rx + rxq_index;
4411                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4412                 if (!flow_table)
4413                         goto out;
4414                 flow_id = skb_get_hash(skb) & flow_table->mask;
4415                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4416                                                         rxq_index, flow_id);
4417                 if (rc < 0)
4418                         goto out;
4419                 old_rflow = rflow;
4420                 rflow = &flow_table->flows[flow_id];
4421                 rflow->filter = rc;
4422                 if (old_rflow->filter == rflow->filter)
4423                         old_rflow->filter = RPS_NO_FILTER;
4424         out:
4425 #endif
4426                 rflow->last_qtail =
4427                         per_cpu(softnet_data, next_cpu).input_queue_head;
4428         }
4429
4430         rflow->cpu = next_cpu;
4431         return rflow;
4432 }
4433
4434 /*
4435  * get_rps_cpu is called from netif_receive_skb and returns the target
4436  * CPU from the RPS map of the receiving queue for a given skb.
4437  * rcu_read_lock must be held on entry.
4438  */
4439 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4440                        struct rps_dev_flow **rflowp)
4441 {
4442         const struct rps_sock_flow_table *sock_flow_table;
4443         struct netdev_rx_queue *rxqueue = dev->_rx;
4444         struct rps_dev_flow_table *flow_table;
4445         struct rps_map *map;
4446         int cpu = -1;
4447         u32 tcpu;
4448         u32 hash;
4449
4450         if (skb_rx_queue_recorded(skb)) {
4451                 u16 index = skb_get_rx_queue(skb);
4452
4453                 if (unlikely(index >= dev->real_num_rx_queues)) {
4454                         WARN_ONCE(dev->real_num_rx_queues > 1,
4455                                   "%s received packet on queue %u, but number "
4456                                   "of RX queues is %u\n",
4457                                   dev->name, index, dev->real_num_rx_queues);
4458                         goto done;
4459                 }
4460                 rxqueue += index;
4461         }
4462
4463         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4464
4465         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4466         map = rcu_dereference(rxqueue->rps_map);
4467         if (!flow_table && !map)
4468                 goto done;
4469
4470         skb_reset_network_header(skb);
4471         hash = skb_get_hash(skb);
4472         if (!hash)
4473                 goto done;
4474
4475         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4476         if (flow_table && sock_flow_table) {
4477                 struct rps_dev_flow *rflow;
4478                 u32 next_cpu;
4479                 u32 ident;
4480
4481                 /* First check into global flow table if there is a match */
4482                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4483                 if ((ident ^ hash) & ~rps_cpu_mask)
4484                         goto try_rps;
4485
4486                 next_cpu = ident & rps_cpu_mask;
4487
4488                 /* OK, now we know there is a match,
4489                  * we can look at the local (per receive queue) flow table
4490                  */
4491                 rflow = &flow_table->flows[hash & flow_table->mask];
4492                 tcpu = rflow->cpu;
4493
4494                 /*
4495                  * If the desired CPU (where last recvmsg was done) is
4496                  * different from current CPU (one in the rx-queue flow
4497                  * table entry), switch if one of the following holds:
4498                  *   - Current CPU is unset (>= nr_cpu_ids).
4499                  *   - Current CPU is offline.
4500                  *   - The current CPU's queue tail has advanced beyond the
4501                  *     last packet that was enqueued using this table entry.
4502                  *     This guarantees that all previous packets for the flow
4503                  *     have been dequeued, thus preserving in order delivery.
4504                  */
4505                 if (unlikely(tcpu != next_cpu) &&
4506                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4507                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4508                       rflow->last_qtail)) >= 0)) {
4509                         tcpu = next_cpu;
4510                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4511                 }
4512
4513                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4514                         *rflowp = rflow;
4515                         cpu = tcpu;
4516                         goto done;
4517                 }
4518         }
4519
4520 try_rps:
4521
4522         if (map) {
4523                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4524                 if (cpu_online(tcpu)) {
4525                         cpu = tcpu;
4526                         goto done;
4527                 }
4528         }
4529
4530 done:
4531         return cpu;
4532 }
4533
4534 #ifdef CONFIG_RFS_ACCEL
4535
4536 /**
4537  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4538  * @dev: Device on which the filter was set
4539  * @rxq_index: RX queue index
4540  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4541  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4542  *
4543  * Drivers that implement ndo_rx_flow_steer() should periodically call
4544  * this function for each installed filter and remove the filters for
4545  * which it returns %true.
4546  */
4547 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4548                          u32 flow_id, u16 filter_id)
4549 {
4550         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4551         struct rps_dev_flow_table *flow_table;
4552         struct rps_dev_flow *rflow;
4553         bool expire = true;
4554         unsigned int cpu;
4555
4556         rcu_read_lock();
4557         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4558         if (flow_table && flow_id <= flow_table->mask) {
4559                 rflow = &flow_table->flows[flow_id];
4560                 cpu = READ_ONCE(rflow->cpu);
4561                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4562                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4563                            rflow->last_qtail) <
4564                      (int)(10 * flow_table->mask)))
4565                         expire = false;
4566         }
4567         rcu_read_unlock();
4568         return expire;
4569 }
4570 EXPORT_SYMBOL(rps_may_expire_flow);
4571
4572 #endif /* CONFIG_RFS_ACCEL */
4573
4574 /* Called from hardirq (IPI) context */
4575 static void rps_trigger_softirq(void *data)
4576 {
4577         struct softnet_data *sd = data;
4578
4579         ____napi_schedule(sd, &sd->backlog);
4580         sd->received_rps++;
4581 }
4582
4583 #endif /* CONFIG_RPS */
4584
4585 /* Called from hardirq (IPI) context */
4586 static void trigger_rx_softirq(void *data)
4587 {
4588         struct softnet_data *sd = data;
4589
4590         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4591         smp_store_release(&sd->defer_ipi_scheduled, 0);
4592 }
4593
4594 /*
4595  * Check if this softnet_data structure is another cpu one
4596  * If yes, queue it to our IPI list and return 1
4597  * If no, return 0
4598  */
4599 static int napi_schedule_rps(struct softnet_data *sd)
4600 {
4601         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4602
4603 #ifdef CONFIG_RPS
4604         if (sd != mysd) {
4605                 sd->rps_ipi_next = mysd->rps_ipi_list;
4606                 mysd->rps_ipi_list = sd;
4607
4608                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4609                 return 1;
4610         }
4611 #endif /* CONFIG_RPS */
4612         __napi_schedule_irqoff(&mysd->backlog);
4613         return 0;
4614 }
4615
4616 #ifdef CONFIG_NET_FLOW_LIMIT
4617 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4618 #endif
4619
4620 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4621 {
4622 #ifdef CONFIG_NET_FLOW_LIMIT
4623         struct sd_flow_limit *fl;
4624         struct softnet_data *sd;
4625         unsigned int old_flow, new_flow;
4626
4627         if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4628                 return false;
4629
4630         sd = this_cpu_ptr(&softnet_data);
4631
4632         rcu_read_lock();
4633         fl = rcu_dereference(sd->flow_limit);
4634         if (fl) {
4635                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4636                 old_flow = fl->history[fl->history_head];
4637                 fl->history[fl->history_head] = new_flow;
4638
4639                 fl->history_head++;
4640                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4641
4642                 if (likely(fl->buckets[old_flow]))
4643                         fl->buckets[old_flow]--;
4644
4645                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4646                         fl->count++;
4647                         rcu_read_unlock();
4648                         return true;
4649                 }
4650         }
4651         rcu_read_unlock();
4652 #endif
4653         return false;
4654 }
4655
4656 /*
4657  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4658  * queue (may be a remote CPU queue).
4659  */
4660 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4661                               unsigned int *qtail)
4662 {
4663         enum skb_drop_reason reason;
4664         struct softnet_data *sd;
4665         unsigned long flags;
4666         unsigned int qlen;
4667
4668         reason = SKB_DROP_REASON_NOT_SPECIFIED;
4669         sd = &per_cpu(softnet_data, cpu);
4670
4671         rps_lock_irqsave(sd, &flags);
4672         if (!netif_running(skb->dev))
4673                 goto drop;
4674         qlen = skb_queue_len(&sd->input_pkt_queue);
4675         if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4676                 if (qlen) {
4677 enqueue:
4678                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4679                         input_queue_tail_incr_save(sd, qtail);
4680                         rps_unlock_irq_restore(sd, &flags);
4681                         return NET_RX_SUCCESS;
4682                 }
4683
4684                 /* Schedule NAPI for backlog device
4685                  * We can use non atomic operation since we own the queue lock
4686                  */
4687                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4688                         napi_schedule_rps(sd);
4689                 goto enqueue;
4690         }
4691         reason = SKB_DROP_REASON_CPU_BACKLOG;
4692
4693 drop:
4694         sd->dropped++;
4695         rps_unlock_irq_restore(sd, &flags);
4696
4697         dev_core_stats_rx_dropped_inc(skb->dev);
4698         kfree_skb_reason(skb, reason);
4699         return NET_RX_DROP;
4700 }
4701
4702 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4703 {
4704         struct net_device *dev = skb->dev;
4705         struct netdev_rx_queue *rxqueue;
4706
4707         rxqueue = dev->_rx;
4708
4709         if (skb_rx_queue_recorded(skb)) {
4710                 u16 index = skb_get_rx_queue(skb);
4711
4712                 if (unlikely(index >= dev->real_num_rx_queues)) {
4713                         WARN_ONCE(dev->real_num_rx_queues > 1,
4714                                   "%s received packet on queue %u, but number "
4715                                   "of RX queues is %u\n",
4716                                   dev->name, index, dev->real_num_rx_queues);
4717
4718                         return rxqueue; /* Return first rxqueue */
4719                 }
4720                 rxqueue += index;
4721         }
4722         return rxqueue;
4723 }
4724
4725 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4726                              struct bpf_prog *xdp_prog)
4727 {
4728         void *orig_data, *orig_data_end, *hard_start;
4729         struct netdev_rx_queue *rxqueue;
4730         bool orig_bcast, orig_host;
4731         u32 mac_len, frame_sz;
4732         __be16 orig_eth_type;
4733         struct ethhdr *eth;
4734         u32 metalen, act;
4735         int off;
4736
4737         /* The XDP program wants to see the packet starting at the MAC
4738          * header.
4739          */
4740         mac_len = skb->data - skb_mac_header(skb);
4741         hard_start = skb->data - skb_headroom(skb);
4742
4743         /* SKB "head" area always have tailroom for skb_shared_info */
4744         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4745         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4746
4747         rxqueue = netif_get_rxqueue(skb);
4748         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4749         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4750                          skb_headlen(skb) + mac_len, true);
4751
4752         orig_data_end = xdp->data_end;
4753         orig_data = xdp->data;
4754         eth = (struct ethhdr *)xdp->data;
4755         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4756         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4757         orig_eth_type = eth->h_proto;
4758
4759         act = bpf_prog_run_xdp(xdp_prog, xdp);
4760
4761         /* check if bpf_xdp_adjust_head was used */
4762         off = xdp->data - orig_data;
4763         if (off) {
4764                 if (off > 0)
4765                         __skb_pull(skb, off);
4766                 else if (off < 0)
4767                         __skb_push(skb, -off);
4768
4769                 skb->mac_header += off;
4770                 skb_reset_network_header(skb);
4771         }
4772
4773         /* check if bpf_xdp_adjust_tail was used */
4774         off = xdp->data_end - orig_data_end;
4775         if (off != 0) {
4776                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4777                 skb->len += off; /* positive on grow, negative on shrink */
4778         }
4779
4780         /* check if XDP changed eth hdr such SKB needs update */
4781         eth = (struct ethhdr *)xdp->data;
4782         if ((orig_eth_type != eth->h_proto) ||
4783             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4784                                                   skb->dev->dev_addr)) ||
4785             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4786                 __skb_push(skb, ETH_HLEN);
4787                 skb->pkt_type = PACKET_HOST;
4788                 skb->protocol = eth_type_trans(skb, skb->dev);
4789         }
4790
4791         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4792          * before calling us again on redirect path. We do not call do_redirect
4793          * as we leave that up to the caller.
4794          *
4795          * Caller is responsible for managing lifetime of skb (i.e. calling
4796          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4797          */
4798         switch (act) {
4799         case XDP_REDIRECT:
4800         case XDP_TX:
4801                 __skb_push(skb, mac_len);
4802                 break;
4803         case XDP_PASS:
4804                 metalen = xdp->data - xdp->data_meta;
4805                 if (metalen)
4806                         skb_metadata_set(skb, metalen);
4807                 break;
4808         }
4809
4810         return act;
4811 }
4812
4813 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4814                                      struct xdp_buff *xdp,
4815                                      struct bpf_prog *xdp_prog)
4816 {
4817         u32 act = XDP_DROP;
4818
4819         /* Reinjected packets coming from act_mirred or similar should
4820          * not get XDP generic processing.
4821          */
4822         if (skb_is_redirected(skb))
4823                 return XDP_PASS;
4824
4825         /* XDP packets must be linear and must have sufficient headroom
4826          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4827          * native XDP provides, thus we need to do it here as well.
4828          */
4829         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4830             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4831                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4832                 int troom = skb->tail + skb->data_len - skb->end;
4833
4834                 /* In case we have to go down the path and also linearize,
4835                  * then lets do the pskb_expand_head() work just once here.
4836                  */
4837                 if (pskb_expand_head(skb,
4838                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4839                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4840                         goto do_drop;
4841                 if (skb_linearize(skb))
4842                         goto do_drop;
4843         }
4844
4845         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4846         switch (act) {
4847         case XDP_REDIRECT:
4848         case XDP_TX:
4849         case XDP_PASS:
4850                 break;
4851         default:
4852                 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4853                 fallthrough;
4854         case XDP_ABORTED:
4855                 trace_xdp_exception(skb->dev, xdp_prog, act);
4856                 fallthrough;
4857         case XDP_DROP:
4858         do_drop:
4859                 kfree_skb(skb);
4860                 break;
4861         }
4862
4863         return act;
4864 }
4865
4866 /* When doing generic XDP we have to bypass the qdisc layer and the
4867  * network taps in order to match in-driver-XDP behavior. This also means
4868  * that XDP packets are able to starve other packets going through a qdisc,
4869  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4870  * queues, so they do not have this starvation issue.
4871  */
4872 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4873 {
4874         struct net_device *dev = skb->dev;
4875         struct netdev_queue *txq;
4876         bool free_skb = true;
4877         int cpu, rc;
4878
4879         txq = netdev_core_pick_tx(dev, skb, NULL);
4880         cpu = smp_processor_id();
4881         HARD_TX_LOCK(dev, txq, cpu);
4882         if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4883                 rc = netdev_start_xmit(skb, dev, txq, 0);
4884                 if (dev_xmit_complete(rc))
4885                         free_skb = false;
4886         }
4887         HARD_TX_UNLOCK(dev, txq);
4888         if (free_skb) {
4889                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4890                 dev_core_stats_tx_dropped_inc(dev);
4891                 kfree_skb(skb);
4892         }
4893 }
4894
4895 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4896
4897 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4898 {
4899         if (xdp_prog) {
4900                 struct xdp_buff xdp;
4901                 u32 act;
4902                 int err;
4903
4904                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4905                 if (act != XDP_PASS) {
4906                         switch (act) {
4907                         case XDP_REDIRECT:
4908                                 err = xdp_do_generic_redirect(skb->dev, skb,
4909                                                               &xdp, xdp_prog);
4910                                 if (err)
4911                                         goto out_redir;
4912                                 break;
4913                         case XDP_TX:
4914                                 generic_xdp_tx(skb, xdp_prog);
4915                                 break;
4916                         }
4917                         return XDP_DROP;
4918                 }
4919         }
4920         return XDP_PASS;
4921 out_redir:
4922         kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4923         return XDP_DROP;
4924 }
4925 EXPORT_SYMBOL_GPL(do_xdp_generic);
4926
4927 static int netif_rx_internal(struct sk_buff *skb)
4928 {
4929         int ret;
4930
4931         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4932
4933         trace_netif_rx(skb);
4934
4935 #ifdef CONFIG_RPS
4936         if (static_branch_unlikely(&rps_needed)) {
4937                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4938                 int cpu;
4939
4940                 rcu_read_lock();
4941
4942                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4943                 if (cpu < 0)
4944                         cpu = smp_processor_id();
4945
4946                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4947
4948                 rcu_read_unlock();
4949         } else
4950 #endif
4951         {
4952                 unsigned int qtail;
4953
4954                 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4955         }
4956         return ret;
4957 }
4958
4959 /**
4960  *      __netif_rx      -       Slightly optimized version of netif_rx
4961  *      @skb: buffer to post
4962  *
4963  *      This behaves as netif_rx except that it does not disable bottom halves.
4964  *      As a result this function may only be invoked from the interrupt context
4965  *      (either hard or soft interrupt).
4966  */
4967 int __netif_rx(struct sk_buff *skb)
4968 {
4969         int ret;
4970
4971         lockdep_assert_once(hardirq_count() | softirq_count());
4972
4973         trace_netif_rx_entry(skb);
4974         ret = netif_rx_internal(skb);
4975         trace_netif_rx_exit(ret);
4976         return ret;
4977 }
4978 EXPORT_SYMBOL(__netif_rx);
4979
4980 /**
4981  *      netif_rx        -       post buffer to the network code
4982  *      @skb: buffer to post
4983  *
4984  *      This function receives a packet from a device driver and queues it for
4985  *      the upper (protocol) levels to process via the backlog NAPI device. It
4986  *      always succeeds. The buffer may be dropped during processing for
4987  *      congestion control or by the protocol layers.
4988  *      The network buffer is passed via the backlog NAPI device. Modern NIC
4989  *      driver should use NAPI and GRO.
4990  *      This function can used from interrupt and from process context. The
4991  *      caller from process context must not disable interrupts before invoking
4992  *      this function.
4993  *
4994  *      return values:
4995  *      NET_RX_SUCCESS  (no congestion)
4996  *      NET_RX_DROP     (packet was dropped)
4997  *
4998  */
4999 int netif_rx(struct sk_buff *skb)
5000 {
5001         bool need_bh_off = !(hardirq_count() | softirq_count());
5002         int ret;
5003
5004         if (need_bh_off)
5005                 local_bh_disable();
5006         trace_netif_rx_entry(skb);
5007         ret = netif_rx_internal(skb);
5008         trace_netif_rx_exit(ret);
5009         if (need_bh_off)
5010                 local_bh_enable();
5011         return ret;
5012 }
5013 EXPORT_SYMBOL(netif_rx);
5014
5015 static __latent_entropy void net_tx_action(struct softirq_action *h)
5016 {
5017         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5018
5019         if (sd->completion_queue) {
5020                 struct sk_buff *clist;
5021
5022                 local_irq_disable();
5023                 clist = sd->completion_queue;
5024                 sd->completion_queue = NULL;
5025                 local_irq_enable();
5026
5027                 while (clist) {
5028                         struct sk_buff *skb = clist;
5029
5030                         clist = clist->next;
5031
5032                         WARN_ON(refcount_read(&skb->users));
5033                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5034                                 trace_consume_skb(skb);
5035                         else
5036                                 trace_kfree_skb(skb, net_tx_action,
5037                                                 SKB_DROP_REASON_NOT_SPECIFIED);
5038
5039                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5040                                 __kfree_skb(skb);
5041                         else
5042                                 __kfree_skb_defer(skb);
5043                 }
5044         }
5045
5046         if (sd->output_queue) {
5047                 struct Qdisc *head;
5048
5049                 local_irq_disable();
5050                 head = sd->output_queue;
5051                 sd->output_queue = NULL;
5052                 sd->output_queue_tailp = &sd->output_queue;
5053                 local_irq_enable();
5054
5055                 rcu_read_lock();
5056
5057                 while (head) {
5058                         struct Qdisc *q = head;
5059                         spinlock_t *root_lock = NULL;
5060
5061                         head = head->next_sched;
5062
5063                         /* We need to make sure head->next_sched is read
5064                          * before clearing __QDISC_STATE_SCHED
5065                          */
5066                         smp_mb__before_atomic();
5067
5068                         if (!(q->flags & TCQ_F_NOLOCK)) {
5069                                 root_lock = qdisc_lock(q);
5070                                 spin_lock(root_lock);
5071                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5072                                                      &q->state))) {
5073                                 /* There is a synchronize_net() between
5074                                  * STATE_DEACTIVATED flag being set and
5075                                  * qdisc_reset()/some_qdisc_is_busy() in
5076                                  * dev_deactivate(), so we can safely bail out
5077                                  * early here to avoid data race between
5078                                  * qdisc_deactivate() and some_qdisc_is_busy()
5079                                  * for lockless qdisc.
5080                                  */
5081                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5082                                 continue;
5083                         }
5084
5085                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5086                         qdisc_run(q);
5087                         if (root_lock)
5088                                 spin_unlock(root_lock);
5089                 }
5090
5091                 rcu_read_unlock();
5092         }
5093
5094         xfrm_dev_backlog(sd);
5095 }
5096
5097 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5098 /* This hook is defined here for ATM LANE */
5099 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5100                              unsigned char *addr) __read_mostly;
5101 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5102 #endif
5103
5104 static inline struct sk_buff *
5105 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5106                    struct net_device *orig_dev, bool *another)
5107 {
5108 #ifdef CONFIG_NET_CLS_ACT
5109         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5110         struct tcf_result cl_res;
5111
5112         /* If there's at least one ingress present somewhere (so
5113          * we get here via enabled static key), remaining devices
5114          * that are not configured with an ingress qdisc will bail
5115          * out here.
5116          */
5117         if (!miniq)
5118                 return skb;
5119
5120         if (*pt_prev) {
5121                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5122                 *pt_prev = NULL;
5123         }
5124
5125         qdisc_skb_cb(skb)->pkt_len = skb->len;
5126         tc_skb_cb(skb)->mru = 0;
5127         tc_skb_cb(skb)->post_ct = false;
5128         skb->tc_at_ingress = 1;
5129         mini_qdisc_bstats_cpu_update(miniq, skb);
5130
5131         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5132         case TC_ACT_OK:
5133         case TC_ACT_RECLASSIFY:
5134                 skb->tc_index = TC_H_MIN(cl_res.classid);
5135                 break;
5136         case TC_ACT_SHOT:
5137                 mini_qdisc_qstats_cpu_drop(miniq);
5138                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5139                 *ret = NET_RX_DROP;
5140                 return NULL;
5141         case TC_ACT_STOLEN:
5142         case TC_ACT_QUEUED:
5143         case TC_ACT_TRAP:
5144                 consume_skb(skb);
5145                 *ret = NET_RX_SUCCESS;
5146                 return NULL;
5147         case TC_ACT_REDIRECT:
5148                 /* skb_mac_header check was done by cls/act_bpf, so
5149                  * we can safely push the L2 header back before
5150                  * redirecting to another netdev
5151                  */
5152                 __skb_push(skb, skb->mac_len);
5153                 if (skb_do_redirect(skb) == -EAGAIN) {
5154                         __skb_pull(skb, skb->mac_len);
5155                         *another = true;
5156                         break;
5157                 }
5158                 *ret = NET_RX_SUCCESS;
5159                 return NULL;
5160         case TC_ACT_CONSUMED:
5161                 *ret = NET_RX_SUCCESS;
5162                 return NULL;
5163         default:
5164                 break;
5165         }
5166 #endif /* CONFIG_NET_CLS_ACT */
5167         return skb;
5168 }
5169
5170 /**
5171  *      netdev_is_rx_handler_busy - check if receive handler is registered
5172  *      @dev: device to check
5173  *
5174  *      Check if a receive handler is already registered for a given device.
5175  *      Return true if there one.
5176  *
5177  *      The caller must hold the rtnl_mutex.
5178  */
5179 bool netdev_is_rx_handler_busy(struct net_device *dev)
5180 {
5181         ASSERT_RTNL();
5182         return dev && rtnl_dereference(dev->rx_handler);
5183 }
5184 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5185
5186 /**
5187  *      netdev_rx_handler_register - register receive handler
5188  *      @dev: device to register a handler for
5189  *      @rx_handler: receive handler to register
5190  *      @rx_handler_data: data pointer that is used by rx handler
5191  *
5192  *      Register a receive handler for a device. This handler will then be
5193  *      called from __netif_receive_skb. A negative errno code is returned
5194  *      on a failure.
5195  *
5196  *      The caller must hold the rtnl_mutex.
5197  *
5198  *      For a general description of rx_handler, see enum rx_handler_result.
5199  */
5200 int netdev_rx_handler_register(struct net_device *dev,
5201                                rx_handler_func_t *rx_handler,
5202                                void *rx_handler_data)
5203 {
5204         if (netdev_is_rx_handler_busy(dev))
5205                 return -EBUSY;
5206
5207         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5208                 return -EINVAL;
5209
5210         /* Note: rx_handler_data must be set before rx_handler */
5211         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5212         rcu_assign_pointer(dev->rx_handler, rx_handler);
5213
5214         return 0;
5215 }
5216 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5217
5218 /**
5219  *      netdev_rx_handler_unregister - unregister receive handler
5220  *      @dev: device to unregister a handler from
5221  *
5222  *      Unregister a receive handler from a device.
5223  *
5224  *      The caller must hold the rtnl_mutex.
5225  */
5226 void netdev_rx_handler_unregister(struct net_device *dev)
5227 {
5228
5229         ASSERT_RTNL();
5230         RCU_INIT_POINTER(dev->rx_handler, NULL);
5231         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5232          * section has a guarantee to see a non NULL rx_handler_data
5233          * as well.
5234          */
5235         synchronize_net();
5236         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5237 }
5238 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5239
5240 /*
5241  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5242  * the special handling of PFMEMALLOC skbs.
5243  */
5244 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5245 {
5246         switch (skb->protocol) {
5247         case htons(ETH_P_ARP):
5248         case htons(ETH_P_IP):
5249         case htons(ETH_P_IPV6):
5250         case htons(ETH_P_8021Q):
5251         case htons(ETH_P_8021AD):
5252                 return true;
5253         default:
5254                 return false;
5255         }
5256 }
5257
5258 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5259                              int *ret, struct net_device *orig_dev)
5260 {
5261         if (nf_hook_ingress_active(skb)) {
5262                 int ingress_retval;
5263
5264                 if (*pt_prev) {
5265                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5266                         *pt_prev = NULL;
5267                 }
5268
5269                 rcu_read_lock();
5270                 ingress_retval = nf_hook_ingress(skb);
5271                 rcu_read_unlock();
5272                 return ingress_retval;
5273         }
5274         return 0;
5275 }
5276
5277 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5278                                     struct packet_type **ppt_prev)
5279 {
5280         struct packet_type *ptype, *pt_prev;
5281         rx_handler_func_t *rx_handler;
5282         struct sk_buff *skb = *pskb;
5283         struct net_device *orig_dev;
5284         bool deliver_exact = false;
5285         int ret = NET_RX_DROP;
5286         __be16 type;
5287
5288         net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5289
5290         trace_netif_receive_skb(skb);
5291
5292         orig_dev = skb->dev;
5293
5294         skb_reset_network_header(skb);
5295         if (!skb_transport_header_was_set(skb))
5296                 skb_reset_transport_header(skb);
5297         skb_reset_mac_len(skb);
5298
5299         pt_prev = NULL;
5300
5301 another_round:
5302         skb->skb_iif = skb->dev->ifindex;
5303
5304         __this_cpu_inc(softnet_data.processed);
5305
5306         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5307                 int ret2;
5308
5309                 migrate_disable();
5310                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5311                 migrate_enable();
5312
5313                 if (ret2 != XDP_PASS) {
5314                         ret = NET_RX_DROP;
5315                         goto out;
5316                 }
5317         }
5318
5319         if (eth_type_vlan(skb->protocol)) {
5320                 skb = skb_vlan_untag(skb);
5321                 if (unlikely(!skb))
5322                         goto out;
5323         }
5324
5325         if (skb_skip_tc_classify(skb))
5326                 goto skip_classify;
5327
5328         if (pfmemalloc)
5329                 goto skip_taps;
5330
5331         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5332                 if (pt_prev)
5333                         ret = deliver_skb(skb, pt_prev, orig_dev);
5334                 pt_prev = ptype;
5335         }
5336
5337         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5338                 if (pt_prev)
5339                         ret = deliver_skb(skb, pt_prev, orig_dev);
5340                 pt_prev = ptype;
5341         }
5342
5343 skip_taps:
5344 #ifdef CONFIG_NET_INGRESS
5345         if (static_branch_unlikely(&ingress_needed_key)) {
5346                 bool another = false;
5347
5348                 nf_skip_egress(skb, true);
5349                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5350                                          &another);
5351                 if (another)
5352                         goto another_round;
5353                 if (!skb)
5354                         goto out;
5355
5356                 nf_skip_egress(skb, false);
5357                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5358                         goto out;
5359         }
5360 #endif
5361         skb_reset_redirect(skb);
5362 skip_classify:
5363         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5364                 goto drop;
5365
5366         if (skb_vlan_tag_present(skb)) {
5367                 if (pt_prev) {
5368                         ret = deliver_skb(skb, pt_prev, orig_dev);
5369                         pt_prev = NULL;
5370                 }
5371                 if (vlan_do_receive(&skb))
5372                         goto another_round;
5373                 else if (unlikely(!skb))
5374                         goto out;
5375         }
5376
5377         rx_handler = rcu_dereference(skb->dev->rx_handler);
5378         if (rx_handler) {
5379                 if (pt_prev) {
5380                         ret = deliver_skb(skb, pt_prev, orig_dev);
5381                         pt_prev = NULL;
5382                 }
5383                 switch (rx_handler(&skb)) {
5384                 case RX_HANDLER_CONSUMED:
5385                         ret = NET_RX_SUCCESS;
5386                         goto out;
5387                 case RX_HANDLER_ANOTHER:
5388                         goto another_round;
5389                 case RX_HANDLER_EXACT:
5390                         deliver_exact = true;
5391                         break;
5392                 case RX_HANDLER_PASS:
5393                         break;
5394                 default:
5395                         BUG();
5396                 }
5397         }
5398
5399         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5400 check_vlan_id:
5401                 if (skb_vlan_tag_get_id(skb)) {
5402                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5403                          * find vlan device.
5404                          */
5405                         skb->pkt_type = PACKET_OTHERHOST;
5406                 } else if (eth_type_vlan(skb->protocol)) {
5407                         /* Outer header is 802.1P with vlan 0, inner header is
5408                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5409                          * not find vlan dev for vlan id 0.
5410                          */
5411                         __vlan_hwaccel_clear_tag(skb);
5412                         skb = skb_vlan_untag(skb);
5413                         if (unlikely(!skb))
5414                                 goto out;
5415                         if (vlan_do_receive(&skb))
5416                                 /* After stripping off 802.1P header with vlan 0
5417                                  * vlan dev is found for inner header.
5418                                  */
5419                                 goto another_round;
5420                         else if (unlikely(!skb))
5421                                 goto out;
5422                         else
5423                                 /* We have stripped outer 802.1P vlan 0 header.
5424                                  * But could not find vlan dev.
5425                                  * check again for vlan id to set OTHERHOST.
5426                                  */
5427                                 goto check_vlan_id;
5428                 }
5429                 /* Note: we might in the future use prio bits
5430                  * and set skb->priority like in vlan_do_receive()
5431                  * For the time being, just ignore Priority Code Point
5432                  */
5433                 __vlan_hwaccel_clear_tag(skb);
5434         }
5435
5436         type = skb->protocol;
5437
5438         /* deliver only exact match when indicated */
5439         if (likely(!deliver_exact)) {
5440                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5441                                        &ptype_base[ntohs(type) &
5442                                                    PTYPE_HASH_MASK]);
5443         }
5444
5445         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5446                                &orig_dev->ptype_specific);
5447
5448         if (unlikely(skb->dev != orig_dev)) {
5449                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5450                                        &skb->dev->ptype_specific);
5451         }
5452
5453         if (pt_prev) {
5454                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5455                         goto drop;
5456                 *ppt_prev = pt_prev;
5457         } else {
5458 drop:
5459                 if (!deliver_exact)
5460                         dev_core_stats_rx_dropped_inc(skb->dev);
5461                 else
5462                         dev_core_stats_rx_nohandler_inc(skb->dev);
5463                 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5464                 /* Jamal, now you will not able to escape explaining
5465                  * me how you were going to use this. :-)
5466                  */
5467                 ret = NET_RX_DROP;
5468         }
5469
5470 out:
5471         /* The invariant here is that if *ppt_prev is not NULL
5472          * then skb should also be non-NULL.
5473          *
5474          * Apparently *ppt_prev assignment above holds this invariant due to
5475          * skb dereferencing near it.
5476          */
5477         *pskb = skb;
5478         return ret;
5479 }
5480
5481 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5482 {
5483         struct net_device *orig_dev = skb->dev;
5484         struct packet_type *pt_prev = NULL;
5485         int ret;
5486
5487         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5488         if (pt_prev)
5489                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5490                                          skb->dev, pt_prev, orig_dev);
5491         return ret;
5492 }
5493
5494 /**
5495  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5496  *      @skb: buffer to process
5497  *
5498  *      More direct receive version of netif_receive_skb().  It should
5499  *      only be used by callers that have a need to skip RPS and Generic XDP.
5500  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5501  *
5502  *      This function may only be called from softirq context and interrupts
5503  *      should be enabled.
5504  *
5505  *      Return values (usually ignored):
5506  *      NET_RX_SUCCESS: no congestion
5507  *      NET_RX_DROP: packet was dropped
5508  */
5509 int netif_receive_skb_core(struct sk_buff *skb)
5510 {
5511         int ret;
5512
5513         rcu_read_lock();
5514         ret = __netif_receive_skb_one_core(skb, false);
5515         rcu_read_unlock();
5516
5517         return ret;
5518 }
5519 EXPORT_SYMBOL(netif_receive_skb_core);
5520
5521 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5522                                                   struct packet_type *pt_prev,
5523                                                   struct net_device *orig_dev)
5524 {
5525         struct sk_buff *skb, *next;
5526
5527         if (!pt_prev)
5528                 return;
5529         if (list_empty(head))
5530                 return;
5531         if (pt_prev->list_func != NULL)
5532                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5533                                    ip_list_rcv, head, pt_prev, orig_dev);
5534         else
5535                 list_for_each_entry_safe(skb, next, head, list) {
5536                         skb_list_del_init(skb);
5537                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5538                 }
5539 }
5540
5541 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5542 {
5543         /* Fast-path assumptions:
5544          * - There is no RX handler.
5545          * - Only one packet_type matches.
5546          * If either of these fails, we will end up doing some per-packet
5547          * processing in-line, then handling the 'last ptype' for the whole
5548          * sublist.  This can't cause out-of-order delivery to any single ptype,
5549          * because the 'last ptype' must be constant across the sublist, and all
5550          * other ptypes are handled per-packet.
5551          */
5552         /* Current (common) ptype of sublist */
5553         struct packet_type *pt_curr = NULL;
5554         /* Current (common) orig_dev of sublist */
5555         struct net_device *od_curr = NULL;
5556         struct list_head sublist;
5557         struct sk_buff *skb, *next;
5558
5559         INIT_LIST_HEAD(&sublist);
5560         list_for_each_entry_safe(skb, next, head, list) {
5561                 struct net_device *orig_dev = skb->dev;
5562                 struct packet_type *pt_prev = NULL;
5563
5564                 skb_list_del_init(skb);
5565                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5566                 if (!pt_prev)
5567                         continue;
5568                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5569                         /* dispatch old sublist */
5570                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5571                         /* start new sublist */
5572                         INIT_LIST_HEAD(&sublist);
5573                         pt_curr = pt_prev;
5574                         od_curr = orig_dev;
5575                 }
5576                 list_add_tail(&skb->list, &sublist);
5577         }
5578
5579         /* dispatch final sublist */
5580         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5581 }
5582
5583 static int __netif_receive_skb(struct sk_buff *skb)
5584 {
5585         int ret;
5586
5587         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5588                 unsigned int noreclaim_flag;
5589
5590                 /*
5591                  * PFMEMALLOC skbs are special, they should
5592                  * - be delivered to SOCK_MEMALLOC sockets only
5593                  * - stay away from userspace
5594                  * - have bounded memory usage
5595                  *
5596                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5597                  * context down to all allocation sites.
5598                  */
5599                 noreclaim_flag = memalloc_noreclaim_save();
5600                 ret = __netif_receive_skb_one_core(skb, true);
5601                 memalloc_noreclaim_restore(noreclaim_flag);
5602         } else
5603                 ret = __netif_receive_skb_one_core(skb, false);
5604
5605         return ret;
5606 }
5607
5608 static void __netif_receive_skb_list(struct list_head *head)
5609 {
5610         unsigned long noreclaim_flag = 0;
5611         struct sk_buff *skb, *next;
5612         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5613
5614         list_for_each_entry_safe(skb, next, head, list) {
5615                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5616                         struct list_head sublist;
5617
5618                         /* Handle the previous sublist */
5619                         list_cut_before(&sublist, head, &skb->list);
5620                         if (!list_empty(&sublist))
5621                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5622                         pfmemalloc = !pfmemalloc;
5623                         /* See comments in __netif_receive_skb */
5624                         if (pfmemalloc)
5625                                 noreclaim_flag = memalloc_noreclaim_save();
5626                         else
5627                                 memalloc_noreclaim_restore(noreclaim_flag);
5628                 }
5629         }
5630         /* Handle the remaining sublist */
5631         if (!list_empty(head))
5632                 __netif_receive_skb_list_core(head, pfmemalloc);
5633         /* Restore pflags */
5634         if (pfmemalloc)
5635                 memalloc_noreclaim_restore(noreclaim_flag);
5636 }
5637
5638 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5639 {
5640         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5641         struct bpf_prog *new = xdp->prog;
5642         int ret = 0;
5643
5644         switch (xdp->command) {
5645         case XDP_SETUP_PROG:
5646                 rcu_assign_pointer(dev->xdp_prog, new);
5647                 if (old)
5648                         bpf_prog_put(old);
5649
5650                 if (old && !new) {
5651                         static_branch_dec(&generic_xdp_needed_key);
5652                 } else if (new && !old) {
5653                         static_branch_inc(&generic_xdp_needed_key);
5654                         dev_disable_lro(dev);
5655                         dev_disable_gro_hw(dev);
5656                 }
5657                 break;
5658
5659         default:
5660                 ret = -EINVAL;
5661                 break;
5662         }
5663
5664         return ret;
5665 }
5666
5667 static int netif_receive_skb_internal(struct sk_buff *skb)
5668 {
5669         int ret;
5670
5671         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5672
5673         if (skb_defer_rx_timestamp(skb))
5674                 return NET_RX_SUCCESS;
5675
5676         rcu_read_lock();
5677 #ifdef CONFIG_RPS
5678         if (static_branch_unlikely(&rps_needed)) {
5679                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5680                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5681
5682                 if (cpu >= 0) {
5683                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5684                         rcu_read_unlock();
5685                         return ret;
5686                 }
5687         }
5688 #endif
5689         ret = __netif_receive_skb(skb);
5690         rcu_read_unlock();
5691         return ret;
5692 }
5693
5694 void netif_receive_skb_list_internal(struct list_head *head)
5695 {
5696         struct sk_buff *skb, *next;
5697         struct list_head sublist;
5698
5699         INIT_LIST_HEAD(&sublist);
5700         list_for_each_entry_safe(skb, next, head, list) {
5701                 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5702                 skb_list_del_init(skb);
5703                 if (!skb_defer_rx_timestamp(skb))
5704                         list_add_tail(&skb->list, &sublist);
5705         }
5706         list_splice_init(&sublist, head);
5707
5708         rcu_read_lock();
5709 #ifdef CONFIG_RPS
5710         if (static_branch_unlikely(&rps_needed)) {
5711                 list_for_each_entry_safe(skb, next, head, list) {
5712                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5713                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5714
5715                         if (cpu >= 0) {
5716                                 /* Will be handled, remove from list */
5717                                 skb_list_del_init(skb);
5718                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5719                         }
5720                 }
5721         }
5722 #endif
5723         __netif_receive_skb_list(head);
5724         rcu_read_unlock();
5725 }
5726
5727 /**
5728  *      netif_receive_skb - process receive buffer from network
5729  *      @skb: buffer to process
5730  *
5731  *      netif_receive_skb() is the main receive data processing function.
5732  *      It always succeeds. The buffer may be dropped during processing
5733  *      for congestion control or by the protocol layers.
5734  *
5735  *      This function may only be called from softirq context and interrupts
5736  *      should be enabled.
5737  *
5738  *      Return values (usually ignored):
5739  *      NET_RX_SUCCESS: no congestion
5740  *      NET_RX_DROP: packet was dropped
5741  */
5742 int netif_receive_skb(struct sk_buff *skb)
5743 {
5744         int ret;
5745
5746         trace_netif_receive_skb_entry(skb);
5747
5748         ret = netif_receive_skb_internal(skb);
5749         trace_netif_receive_skb_exit(ret);
5750
5751         return ret;
5752 }
5753 EXPORT_SYMBOL(netif_receive_skb);
5754
5755 /**
5756  *      netif_receive_skb_list - process many receive buffers from network
5757  *      @head: list of skbs to process.
5758  *
5759  *      Since return value of netif_receive_skb() is normally ignored, and
5760  *      wouldn't be meaningful for a list, this function returns void.
5761  *
5762  *      This function may only be called from softirq context and interrupts
5763  *      should be enabled.
5764  */
5765 void netif_receive_skb_list(struct list_head *head)
5766 {
5767         struct sk_buff *skb;
5768
5769         if (list_empty(head))
5770                 return;
5771         if (trace_netif_receive_skb_list_entry_enabled()) {
5772                 list_for_each_entry(skb, head, list)
5773                         trace_netif_receive_skb_list_entry(skb);
5774         }
5775         netif_receive_skb_list_internal(head);
5776         trace_netif_receive_skb_list_exit(0);
5777 }
5778 EXPORT_SYMBOL(netif_receive_skb_list);
5779
5780 static DEFINE_PER_CPU(struct work_struct, flush_works);
5781
5782 /* Network device is going away, flush any packets still pending */
5783 static void flush_backlog(struct work_struct *work)
5784 {
5785         struct sk_buff *skb, *tmp;
5786         struct softnet_data *sd;
5787
5788         local_bh_disable();
5789         sd = this_cpu_ptr(&softnet_data);
5790
5791         rps_lock_irq_disable(sd);
5792         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5793                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5794                         __skb_unlink(skb, &sd->input_pkt_queue);
5795                         dev_kfree_skb_irq(skb);
5796                         input_queue_head_incr(sd);
5797                 }
5798         }
5799         rps_unlock_irq_enable(sd);
5800
5801         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5802                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5803                         __skb_unlink(skb, &sd->process_queue);
5804                         kfree_skb(skb);
5805                         input_queue_head_incr(sd);
5806                 }
5807         }
5808         local_bh_enable();
5809 }
5810
5811 static bool flush_required(int cpu)
5812 {
5813 #if IS_ENABLED(CONFIG_RPS)
5814         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5815         bool do_flush;
5816
5817         rps_lock_irq_disable(sd);
5818
5819         /* as insertion into process_queue happens with the rps lock held,
5820          * process_queue access may race only with dequeue
5821          */
5822         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5823                    !skb_queue_empty_lockless(&sd->process_queue);
5824         rps_unlock_irq_enable(sd);
5825
5826         return do_flush;
5827 #endif
5828         /* without RPS we can't safely check input_pkt_queue: during a
5829          * concurrent remote skb_queue_splice() we can detect as empty both
5830          * input_pkt_queue and process_queue even if the latter could end-up
5831          * containing a lot of packets.
5832          */
5833         return true;
5834 }
5835
5836 static void flush_all_backlogs(void)
5837 {
5838         static cpumask_t flush_cpus;
5839         unsigned int cpu;
5840
5841         /* since we are under rtnl lock protection we can use static data
5842          * for the cpumask and avoid allocating on stack the possibly
5843          * large mask
5844          */
5845         ASSERT_RTNL();
5846
5847         cpus_read_lock();
5848
5849         cpumask_clear(&flush_cpus);
5850         for_each_online_cpu(cpu) {
5851                 if (flush_required(cpu)) {
5852                         queue_work_on(cpu, system_highpri_wq,
5853                                       per_cpu_ptr(&flush_works, cpu));
5854                         cpumask_set_cpu(cpu, &flush_cpus);
5855                 }
5856         }
5857
5858         /* we can have in flight packet[s] on the cpus we are not flushing,
5859          * synchronize_net() in unregister_netdevice_many() will take care of
5860          * them
5861          */
5862         for_each_cpu(cpu, &flush_cpus)
5863                 flush_work(per_cpu_ptr(&flush_works, cpu));
5864
5865         cpus_read_unlock();
5866 }
5867
5868 static void net_rps_send_ipi(struct softnet_data *remsd)
5869 {
5870 #ifdef CONFIG_RPS
5871         while (remsd) {
5872                 struct softnet_data *next = remsd->rps_ipi_next;
5873
5874                 if (cpu_online(remsd->cpu))
5875                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5876                 remsd = next;
5877         }
5878 #endif
5879 }
5880
5881 /*
5882  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5883  * Note: called with local irq disabled, but exits with local irq enabled.
5884  */
5885 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5886 {
5887 #ifdef CONFIG_RPS
5888         struct softnet_data *remsd = sd->rps_ipi_list;
5889
5890         if (remsd) {
5891                 sd->rps_ipi_list = NULL;
5892
5893                 local_irq_enable();
5894
5895                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5896                 net_rps_send_ipi(remsd);
5897         } else
5898 #endif
5899                 local_irq_enable();
5900 }
5901
5902 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5903 {
5904 #ifdef CONFIG_RPS
5905         return sd->rps_ipi_list != NULL;
5906 #else
5907         return false;
5908 #endif
5909 }
5910
5911 static int process_backlog(struct napi_struct *napi, int quota)
5912 {
5913         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5914         bool again = true;
5915         int work = 0;
5916
5917         /* Check if we have pending ipi, its better to send them now,
5918          * not waiting net_rx_action() end.
5919          */
5920         if (sd_has_rps_ipi_waiting(sd)) {
5921                 local_irq_disable();
5922                 net_rps_action_and_irq_enable(sd);
5923         }
5924
5925         napi->weight = READ_ONCE(dev_rx_weight);
5926         while (again) {
5927                 struct sk_buff *skb;
5928
5929                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5930                         rcu_read_lock();
5931                         __netif_receive_skb(skb);
5932                         rcu_read_unlock();
5933                         input_queue_head_incr(sd);
5934                         if (++work >= quota)
5935                                 return work;
5936
5937                 }
5938
5939                 rps_lock_irq_disable(sd);
5940                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5941                         /*
5942                          * Inline a custom version of __napi_complete().
5943                          * only current cpu owns and manipulates this napi,
5944                          * and NAPI_STATE_SCHED is the only possible flag set
5945                          * on backlog.
5946                          * We can use a plain write instead of clear_bit(),
5947                          * and we dont need an smp_mb() memory barrier.
5948                          */
5949                         napi->state = 0;
5950                         again = false;
5951                 } else {
5952                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5953                                                    &sd->process_queue);
5954                 }
5955                 rps_unlock_irq_enable(sd);
5956         }
5957
5958         return work;
5959 }
5960
5961 /**
5962  * __napi_schedule - schedule for receive
5963  * @n: entry to schedule
5964  *
5965  * The entry's receive function will be scheduled to run.
5966  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5967  */
5968 void __napi_schedule(struct napi_struct *n)
5969 {
5970         unsigned long flags;
5971
5972         local_irq_save(flags);
5973         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5974         local_irq_restore(flags);
5975 }
5976 EXPORT_SYMBOL(__napi_schedule);
5977
5978 /**
5979  *      napi_schedule_prep - check if napi can be scheduled
5980  *      @n: napi context
5981  *
5982  * Test if NAPI routine is already running, and if not mark
5983  * it as running.  This is used as a condition variable to
5984  * insure only one NAPI poll instance runs.  We also make
5985  * sure there is no pending NAPI disable.
5986  */
5987 bool napi_schedule_prep(struct napi_struct *n)
5988 {
5989         unsigned long val, new;
5990
5991         do {
5992                 val = READ_ONCE(n->state);
5993                 if (unlikely(val & NAPIF_STATE_DISABLE))
5994                         return false;
5995                 new = val | NAPIF_STATE_SCHED;
5996
5997                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5998                  * This was suggested by Alexander Duyck, as compiler
5999                  * emits better code than :
6000                  * if (val & NAPIF_STATE_SCHED)
6001                  *     new |= NAPIF_STATE_MISSED;
6002                  */
6003                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6004                                                    NAPIF_STATE_MISSED;
6005         } while (cmpxchg(&n->state, val, new) != val);
6006
6007         return !(val & NAPIF_STATE_SCHED);
6008 }
6009 EXPORT_SYMBOL(napi_schedule_prep);
6010
6011 /**
6012  * __napi_schedule_irqoff - schedule for receive
6013  * @n: entry to schedule
6014  *
6015  * Variant of __napi_schedule() assuming hard irqs are masked.
6016  *
6017  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6018  * because the interrupt disabled assumption might not be true
6019  * due to force-threaded interrupts and spinlock substitution.
6020  */
6021 void __napi_schedule_irqoff(struct napi_struct *n)
6022 {
6023         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6024                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6025         else
6026                 __napi_schedule(n);
6027 }
6028 EXPORT_SYMBOL(__napi_schedule_irqoff);
6029
6030 bool napi_complete_done(struct napi_struct *n, int work_done)
6031 {
6032         unsigned long flags, val, new, timeout = 0;
6033         bool ret = true;
6034
6035         /*
6036          * 1) Don't let napi dequeue from the cpu poll list
6037          *    just in case its running on a different cpu.
6038          * 2) If we are busy polling, do nothing here, we have
6039          *    the guarantee we will be called later.
6040          */
6041         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6042                                  NAPIF_STATE_IN_BUSY_POLL)))
6043                 return false;
6044
6045         if (work_done) {
6046                 if (n->gro_bitmask)
6047                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6048                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6049         }
6050         if (n->defer_hard_irqs_count > 0) {
6051                 n->defer_hard_irqs_count--;
6052                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6053                 if (timeout)
6054                         ret = false;
6055         }
6056         if (n->gro_bitmask) {
6057                 /* When the NAPI instance uses a timeout and keeps postponing
6058                  * it, we need to bound somehow the time packets are kept in
6059                  * the GRO layer
6060                  */
6061                 napi_gro_flush(n, !!timeout);
6062         }
6063
6064         gro_normal_list(n);
6065
6066         if (unlikely(!list_empty(&n->poll_list))) {
6067                 /* If n->poll_list is not empty, we need to mask irqs */
6068                 local_irq_save(flags);
6069                 list_del_init(&n->poll_list);
6070                 local_irq_restore(flags);
6071         }
6072
6073         do {
6074                 val = READ_ONCE(n->state);
6075
6076                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6077
6078                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6079                               NAPIF_STATE_SCHED_THREADED |
6080                               NAPIF_STATE_PREFER_BUSY_POLL);
6081
6082                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6083                  * because we will call napi->poll() one more time.
6084                  * This C code was suggested by Alexander Duyck to help gcc.
6085                  */
6086                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6087                                                     NAPIF_STATE_SCHED;
6088         } while (cmpxchg(&n->state, val, new) != val);
6089
6090         if (unlikely(val & NAPIF_STATE_MISSED)) {
6091                 __napi_schedule(n);
6092                 return false;
6093         }
6094
6095         if (timeout)
6096                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6097                               HRTIMER_MODE_REL_PINNED);
6098         return ret;
6099 }
6100 EXPORT_SYMBOL(napi_complete_done);
6101
6102 /* must be called under rcu_read_lock(), as we dont take a reference */
6103 static struct napi_struct *napi_by_id(unsigned int napi_id)
6104 {
6105         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6106         struct napi_struct *napi;
6107
6108         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6109                 if (napi->napi_id == napi_id)
6110                         return napi;
6111
6112         return NULL;
6113 }
6114
6115 #if defined(CONFIG_NET_RX_BUSY_POLL)
6116
6117 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6118 {
6119         if (!skip_schedule) {
6120                 gro_normal_list(napi);
6121                 __napi_schedule(napi);
6122                 return;
6123         }
6124
6125         if (napi->gro_bitmask) {
6126                 /* flush too old packets
6127                  * If HZ < 1000, flush all packets.
6128                  */
6129                 napi_gro_flush(napi, HZ >= 1000);
6130         }
6131
6132         gro_normal_list(napi);
6133         clear_bit(NAPI_STATE_SCHED, &napi->state);
6134 }
6135
6136 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6137                            u16 budget)
6138 {
6139         bool skip_schedule = false;
6140         unsigned long timeout;
6141         int rc;
6142
6143         /* Busy polling means there is a high chance device driver hard irq
6144          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6145          * set in napi_schedule_prep().
6146          * Since we are about to call napi->poll() once more, we can safely
6147          * clear NAPI_STATE_MISSED.
6148          *
6149          * Note: x86 could use a single "lock and ..." instruction
6150          * to perform these two clear_bit()
6151          */
6152         clear_bit(NAPI_STATE_MISSED, &napi->state);
6153         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6154
6155         local_bh_disable();
6156
6157         if (prefer_busy_poll) {
6158                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6159                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6160                 if (napi->defer_hard_irqs_count && timeout) {
6161                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6162                         skip_schedule = true;
6163                 }
6164         }
6165
6166         /* All we really want here is to re-enable device interrupts.
6167          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6168          */
6169         rc = napi->poll(napi, budget);
6170         /* We can't gro_normal_list() here, because napi->poll() might have
6171          * rearmed the napi (napi_complete_done()) in which case it could
6172          * already be running on another CPU.
6173          */
6174         trace_napi_poll(napi, rc, budget);
6175         netpoll_poll_unlock(have_poll_lock);
6176         if (rc == budget)
6177                 __busy_poll_stop(napi, skip_schedule);
6178         local_bh_enable();
6179 }
6180
6181 void napi_busy_loop(unsigned int napi_id,
6182                     bool (*loop_end)(void *, unsigned long),
6183                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6184 {
6185         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6186         int (*napi_poll)(struct napi_struct *napi, int budget);
6187         void *have_poll_lock = NULL;
6188         struct napi_struct *napi;
6189
6190 restart:
6191         napi_poll = NULL;
6192
6193         rcu_read_lock();
6194
6195         napi = napi_by_id(napi_id);
6196         if (!napi)
6197                 goto out;
6198
6199         preempt_disable();
6200         for (;;) {
6201                 int work = 0;
6202
6203                 local_bh_disable();
6204                 if (!napi_poll) {
6205                         unsigned long val = READ_ONCE(napi->state);
6206
6207                         /* If multiple threads are competing for this napi,
6208                          * we avoid dirtying napi->state as much as we can.
6209                          */
6210                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6211                                    NAPIF_STATE_IN_BUSY_POLL)) {
6212                                 if (prefer_busy_poll)
6213                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6214                                 goto count;
6215                         }
6216                         if (cmpxchg(&napi->state, val,
6217                                     val | NAPIF_STATE_IN_BUSY_POLL |
6218                                           NAPIF_STATE_SCHED) != val) {
6219                                 if (prefer_busy_poll)
6220                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6221                                 goto count;
6222                         }
6223                         have_poll_lock = netpoll_poll_lock(napi);
6224                         napi_poll = napi->poll;
6225                 }
6226                 work = napi_poll(napi, budget);
6227                 trace_napi_poll(napi, work, budget);
6228                 gro_normal_list(napi);
6229 count:
6230                 if (work > 0)
6231                         __NET_ADD_STATS(dev_net(napi->dev),
6232                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6233                 local_bh_enable();
6234
6235                 if (!loop_end || loop_end(loop_end_arg, start_time))
6236                         break;
6237
6238                 if (unlikely(need_resched())) {
6239                         if (napi_poll)
6240                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6241                         preempt_enable();
6242                         rcu_read_unlock();
6243                         cond_resched();
6244                         if (loop_end(loop_end_arg, start_time))
6245                                 return;
6246                         goto restart;
6247                 }
6248                 cpu_relax();
6249         }
6250         if (napi_poll)
6251                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6252         preempt_enable();
6253 out:
6254         rcu_read_unlock();
6255 }
6256 EXPORT_SYMBOL(napi_busy_loop);
6257
6258 #endif /* CONFIG_NET_RX_BUSY_POLL */
6259
6260 static void napi_hash_add(struct napi_struct *napi)
6261 {
6262         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6263                 return;
6264
6265         spin_lock(&napi_hash_lock);
6266
6267         /* 0..NR_CPUS range is reserved for sender_cpu use */
6268         do {
6269                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6270                         napi_gen_id = MIN_NAPI_ID;
6271         } while (napi_by_id(napi_gen_id));
6272         napi->napi_id = napi_gen_id;
6273
6274         hlist_add_head_rcu(&napi->napi_hash_node,
6275                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6276
6277         spin_unlock(&napi_hash_lock);
6278 }
6279
6280 /* Warning : caller is responsible to make sure rcu grace period
6281  * is respected before freeing memory containing @napi
6282  */
6283 static void napi_hash_del(struct napi_struct *napi)
6284 {
6285         spin_lock(&napi_hash_lock);
6286
6287         hlist_del_init_rcu(&napi->napi_hash_node);
6288
6289         spin_unlock(&napi_hash_lock);
6290 }
6291
6292 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6293 {
6294         struct napi_struct *napi;
6295
6296         napi = container_of(timer, struct napi_struct, timer);
6297
6298         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6299          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6300          */
6301         if (!napi_disable_pending(napi) &&
6302             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6303                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6304                 __napi_schedule_irqoff(napi);
6305         }
6306
6307         return HRTIMER_NORESTART;
6308 }
6309
6310 static void init_gro_hash(struct napi_struct *napi)
6311 {
6312         int i;
6313
6314         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6315                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6316                 napi->gro_hash[i].count = 0;
6317         }
6318         napi->gro_bitmask = 0;
6319 }
6320
6321 int dev_set_threaded(struct net_device *dev, bool threaded)
6322 {
6323         struct napi_struct *napi;
6324         int err = 0;
6325
6326         if (dev->threaded == threaded)
6327                 return 0;
6328
6329         if (threaded) {
6330                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6331                         if (!napi->thread) {
6332                                 err = napi_kthread_create(napi);
6333                                 if (err) {
6334                                         threaded = false;
6335                                         break;
6336                                 }
6337                         }
6338                 }
6339         }
6340
6341         dev->threaded = threaded;
6342
6343         /* Make sure kthread is created before THREADED bit
6344          * is set.
6345          */
6346         smp_mb__before_atomic();
6347
6348         /* Setting/unsetting threaded mode on a napi might not immediately
6349          * take effect, if the current napi instance is actively being
6350          * polled. In this case, the switch between threaded mode and
6351          * softirq mode will happen in the next round of napi_schedule().
6352          * This should not cause hiccups/stalls to the live traffic.
6353          */
6354         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6355                 if (threaded)
6356                         set_bit(NAPI_STATE_THREADED, &napi->state);
6357                 else
6358                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6359         }
6360
6361         return err;
6362 }
6363 EXPORT_SYMBOL(dev_set_threaded);
6364
6365 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6366                            int (*poll)(struct napi_struct *, int), int weight)
6367 {
6368         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6369                 return;
6370
6371         INIT_LIST_HEAD(&napi->poll_list);
6372         INIT_HLIST_NODE(&napi->napi_hash_node);
6373         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6374         napi->timer.function = napi_watchdog;
6375         init_gro_hash(napi);
6376         napi->skb = NULL;
6377         INIT_LIST_HEAD(&napi->rx_list);
6378         napi->rx_count = 0;
6379         napi->poll = poll;
6380         if (weight > NAPI_POLL_WEIGHT)
6381                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6382                                 weight);
6383         napi->weight = weight;
6384         napi->dev = dev;
6385 #ifdef CONFIG_NETPOLL
6386         napi->poll_owner = -1;
6387 #endif
6388         set_bit(NAPI_STATE_SCHED, &napi->state);
6389         set_bit(NAPI_STATE_NPSVC, &napi->state);
6390         list_add_rcu(&napi->dev_list, &dev->napi_list);
6391         napi_hash_add(napi);
6392         napi_get_frags_check(napi);
6393         /* Create kthread for this napi if dev->threaded is set.
6394          * Clear dev->threaded if kthread creation failed so that
6395          * threaded mode will not be enabled in napi_enable().
6396          */
6397         if (dev->threaded && napi_kthread_create(napi))
6398                 dev->threaded = 0;
6399 }
6400 EXPORT_SYMBOL(netif_napi_add_weight);
6401
6402 void napi_disable(struct napi_struct *n)
6403 {
6404         unsigned long val, new;
6405
6406         might_sleep();
6407         set_bit(NAPI_STATE_DISABLE, &n->state);
6408
6409         for ( ; ; ) {
6410                 val = READ_ONCE(n->state);
6411                 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6412                         usleep_range(20, 200);
6413                         continue;
6414                 }
6415
6416                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6417                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6418
6419                 if (cmpxchg(&n->state, val, new) == val)
6420                         break;
6421         }
6422
6423         hrtimer_cancel(&n->timer);
6424
6425         clear_bit(NAPI_STATE_DISABLE, &n->state);
6426 }
6427 EXPORT_SYMBOL(napi_disable);
6428
6429 /**
6430  *      napi_enable - enable NAPI scheduling
6431  *      @n: NAPI context
6432  *
6433  * Resume NAPI from being scheduled on this context.
6434  * Must be paired with napi_disable.
6435  */
6436 void napi_enable(struct napi_struct *n)
6437 {
6438         unsigned long val, new;
6439
6440         do {
6441                 val = READ_ONCE(n->state);
6442                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6443
6444                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6445                 if (n->dev->threaded && n->thread)
6446                         new |= NAPIF_STATE_THREADED;
6447         } while (cmpxchg(&n->state, val, new) != val);
6448 }
6449 EXPORT_SYMBOL(napi_enable);
6450
6451 static void flush_gro_hash(struct napi_struct *napi)
6452 {
6453         int i;
6454
6455         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6456                 struct sk_buff *skb, *n;
6457
6458                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6459                         kfree_skb(skb);
6460                 napi->gro_hash[i].count = 0;
6461         }
6462 }
6463
6464 /* Must be called in process context */
6465 void __netif_napi_del(struct napi_struct *napi)
6466 {
6467         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6468                 return;
6469
6470         napi_hash_del(napi);
6471         list_del_rcu(&napi->dev_list);
6472         napi_free_frags(napi);
6473
6474         flush_gro_hash(napi);
6475         napi->gro_bitmask = 0;
6476
6477         if (napi->thread) {
6478                 kthread_stop(napi->thread);
6479                 napi->thread = NULL;
6480         }
6481 }
6482 EXPORT_SYMBOL(__netif_napi_del);
6483
6484 static int __napi_poll(struct napi_struct *n, bool *repoll)
6485 {
6486         int work, weight;
6487
6488         weight = n->weight;
6489
6490         /* This NAPI_STATE_SCHED test is for avoiding a race
6491          * with netpoll's poll_napi().  Only the entity which
6492          * obtains the lock and sees NAPI_STATE_SCHED set will
6493          * actually make the ->poll() call.  Therefore we avoid
6494          * accidentally calling ->poll() when NAPI is not scheduled.
6495          */
6496         work = 0;
6497         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6498                 work = n->poll(n, weight);
6499                 trace_napi_poll(n, work, weight);
6500         }
6501
6502         if (unlikely(work > weight))
6503                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6504                                 n->poll, work, weight);
6505
6506         if (likely(work < weight))
6507                 return work;
6508
6509         /* Drivers must not modify the NAPI state if they
6510          * consume the entire weight.  In such cases this code
6511          * still "owns" the NAPI instance and therefore can
6512          * move the instance around on the list at-will.
6513          */
6514         if (unlikely(napi_disable_pending(n))) {
6515                 napi_complete(n);
6516                 return work;
6517         }
6518
6519         /* The NAPI context has more processing work, but busy-polling
6520          * is preferred. Exit early.
6521          */
6522         if (napi_prefer_busy_poll(n)) {
6523                 if (napi_complete_done(n, work)) {
6524                         /* If timeout is not set, we need to make sure
6525                          * that the NAPI is re-scheduled.
6526                          */
6527                         napi_schedule(n);
6528                 }
6529                 return work;
6530         }
6531
6532         if (n->gro_bitmask) {
6533                 /* flush too old packets
6534                  * If HZ < 1000, flush all packets.
6535                  */
6536                 napi_gro_flush(n, HZ >= 1000);
6537         }
6538
6539         gro_normal_list(n);
6540
6541         /* Some drivers may have called napi_schedule
6542          * prior to exhausting their budget.
6543          */
6544         if (unlikely(!list_empty(&n->poll_list))) {
6545                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6546                              n->dev ? n->dev->name : "backlog");
6547                 return work;
6548         }
6549
6550         *repoll = true;
6551
6552         return work;
6553 }
6554
6555 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6556 {
6557         bool do_repoll = false;
6558         void *have;
6559         int work;
6560
6561         list_del_init(&n->poll_list);
6562
6563         have = netpoll_poll_lock(n);
6564
6565         work = __napi_poll(n, &do_repoll);
6566
6567         if (do_repoll)
6568                 list_add_tail(&n->poll_list, repoll);
6569
6570         netpoll_poll_unlock(have);
6571
6572         return work;
6573 }
6574
6575 static int napi_thread_wait(struct napi_struct *napi)
6576 {
6577         bool woken = false;
6578
6579         set_current_state(TASK_INTERRUPTIBLE);
6580
6581         while (!kthread_should_stop()) {
6582                 /* Testing SCHED_THREADED bit here to make sure the current
6583                  * kthread owns this napi and could poll on this napi.
6584                  * Testing SCHED bit is not enough because SCHED bit might be
6585                  * set by some other busy poll thread or by napi_disable().
6586                  */
6587                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6588                         WARN_ON(!list_empty(&napi->poll_list));
6589                         __set_current_state(TASK_RUNNING);
6590                         return 0;
6591                 }
6592
6593                 schedule();
6594                 /* woken being true indicates this thread owns this napi. */
6595                 woken = true;
6596                 set_current_state(TASK_INTERRUPTIBLE);
6597         }
6598         __set_current_state(TASK_RUNNING);
6599
6600         return -1;
6601 }
6602
6603 static int napi_threaded_poll(void *data)
6604 {
6605         struct napi_struct *napi = data;
6606         void *have;
6607
6608         while (!napi_thread_wait(napi)) {
6609                 for (;;) {
6610                         bool repoll = false;
6611
6612                         local_bh_disable();
6613
6614                         have = netpoll_poll_lock(napi);
6615                         __napi_poll(napi, &repoll);
6616                         netpoll_poll_unlock(have);
6617
6618                         local_bh_enable();
6619
6620                         if (!repoll)
6621                                 break;
6622
6623                         cond_resched();
6624                 }
6625         }
6626         return 0;
6627 }
6628
6629 static void skb_defer_free_flush(struct softnet_data *sd)
6630 {
6631         struct sk_buff *skb, *next;
6632         unsigned long flags;
6633
6634         /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6635         if (!READ_ONCE(sd->defer_list))
6636                 return;
6637
6638         spin_lock_irqsave(&sd->defer_lock, flags);
6639         skb = sd->defer_list;
6640         sd->defer_list = NULL;
6641         sd->defer_count = 0;
6642         spin_unlock_irqrestore(&sd->defer_lock, flags);
6643
6644         while (skb != NULL) {
6645                 next = skb->next;
6646                 napi_consume_skb(skb, 1);
6647                 skb = next;
6648         }
6649 }
6650
6651 static __latent_entropy void net_rx_action(struct softirq_action *h)
6652 {
6653         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6654         unsigned long time_limit = jiffies +
6655                 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6656         int budget = READ_ONCE(netdev_budget);
6657         LIST_HEAD(list);
6658         LIST_HEAD(repoll);
6659
6660         local_irq_disable();
6661         list_splice_init(&sd->poll_list, &list);
6662         local_irq_enable();
6663
6664         for (;;) {
6665                 struct napi_struct *n;
6666
6667                 skb_defer_free_flush(sd);
6668
6669                 if (list_empty(&list)) {
6670                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6671                                 goto end;
6672                         break;
6673                 }
6674
6675                 n = list_first_entry(&list, struct napi_struct, poll_list);
6676                 budget -= napi_poll(n, &repoll);
6677
6678                 /* If softirq window is exhausted then punt.
6679                  * Allow this to run for 2 jiffies since which will allow
6680                  * an average latency of 1.5/HZ.
6681                  */
6682                 if (unlikely(budget <= 0 ||
6683                              time_after_eq(jiffies, time_limit))) {
6684                         sd->time_squeeze++;
6685                         break;
6686                 }
6687         }
6688
6689         local_irq_disable();
6690
6691         list_splice_tail_init(&sd->poll_list, &list);
6692         list_splice_tail(&repoll, &list);
6693         list_splice(&list, &sd->poll_list);
6694         if (!list_empty(&sd->poll_list))
6695                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6696
6697         net_rps_action_and_irq_enable(sd);
6698 end:;
6699 }
6700
6701 struct netdev_adjacent {
6702         struct net_device *dev;
6703         netdevice_tracker dev_tracker;
6704
6705         /* upper master flag, there can only be one master device per list */
6706         bool master;
6707
6708         /* lookup ignore flag */
6709         bool ignore;
6710
6711         /* counter for the number of times this device was added to us */
6712         u16 ref_nr;
6713
6714         /* private field for the users */
6715         void *private;
6716
6717         struct list_head list;
6718         struct rcu_head rcu;
6719 };
6720
6721 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6722                                                  struct list_head *adj_list)
6723 {
6724         struct netdev_adjacent *adj;
6725
6726         list_for_each_entry(adj, adj_list, list) {
6727                 if (adj->dev == adj_dev)
6728                         return adj;
6729         }
6730         return NULL;
6731 }
6732
6733 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6734                                     struct netdev_nested_priv *priv)
6735 {
6736         struct net_device *dev = (struct net_device *)priv->data;
6737
6738         return upper_dev == dev;
6739 }
6740
6741 /**
6742  * netdev_has_upper_dev - Check if device is linked to an upper device
6743  * @dev: device
6744  * @upper_dev: upper device to check
6745  *
6746  * Find out if a device is linked to specified upper device and return true
6747  * in case it is. Note that this checks only immediate upper device,
6748  * not through a complete stack of devices. The caller must hold the RTNL lock.
6749  */
6750 bool netdev_has_upper_dev(struct net_device *dev,
6751                           struct net_device *upper_dev)
6752 {
6753         struct netdev_nested_priv priv = {
6754                 .data = (void *)upper_dev,
6755         };
6756
6757         ASSERT_RTNL();
6758
6759         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6760                                              &priv);
6761 }
6762 EXPORT_SYMBOL(netdev_has_upper_dev);
6763
6764 /**
6765  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6766  * @dev: device
6767  * @upper_dev: upper device to check
6768  *
6769  * Find out if a device is linked to specified upper device and return true
6770  * in case it is. Note that this checks the entire upper device chain.
6771  * The caller must hold rcu lock.
6772  */
6773
6774 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6775                                   struct net_device *upper_dev)
6776 {
6777         struct netdev_nested_priv priv = {
6778                 .data = (void *)upper_dev,
6779         };
6780
6781         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6782                                                &priv);
6783 }
6784 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6785
6786 /**
6787  * netdev_has_any_upper_dev - Check if device is linked to some device
6788  * @dev: device
6789  *
6790  * Find out if a device is linked to an upper device and return true in case
6791  * it is. The caller must hold the RTNL lock.
6792  */
6793 bool netdev_has_any_upper_dev(struct net_device *dev)
6794 {
6795         ASSERT_RTNL();
6796
6797         return !list_empty(&dev->adj_list.upper);
6798 }
6799 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6800
6801 /**
6802  * netdev_master_upper_dev_get - Get master upper device
6803  * @dev: device
6804  *
6805  * Find a master upper device and return pointer to it or NULL in case
6806  * it's not there. The caller must hold the RTNL lock.
6807  */
6808 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6809 {
6810         struct netdev_adjacent *upper;
6811
6812         ASSERT_RTNL();
6813
6814         if (list_empty(&dev->adj_list.upper))
6815                 return NULL;
6816
6817         upper = list_first_entry(&dev->adj_list.upper,
6818                                  struct netdev_adjacent, list);
6819         if (likely(upper->master))
6820                 return upper->dev;
6821         return NULL;
6822 }
6823 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6824
6825 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6826 {
6827         struct netdev_adjacent *upper;
6828
6829         ASSERT_RTNL();
6830
6831         if (list_empty(&dev->adj_list.upper))
6832                 return NULL;
6833
6834         upper = list_first_entry(&dev->adj_list.upper,
6835                                  struct netdev_adjacent, list);
6836         if (likely(upper->master) && !upper->ignore)
6837                 return upper->dev;
6838         return NULL;
6839 }
6840
6841 /**
6842  * netdev_has_any_lower_dev - Check if device is linked to some device
6843  * @dev: device
6844  *
6845  * Find out if a device is linked to a lower device and return true in case
6846  * it is. The caller must hold the RTNL lock.
6847  */
6848 static bool netdev_has_any_lower_dev(struct net_device *dev)
6849 {
6850         ASSERT_RTNL();
6851
6852         return !list_empty(&dev->adj_list.lower);
6853 }
6854
6855 void *netdev_adjacent_get_private(struct list_head *adj_list)
6856 {
6857         struct netdev_adjacent *adj;
6858
6859         adj = list_entry(adj_list, struct netdev_adjacent, list);
6860
6861         return adj->private;
6862 }
6863 EXPORT_SYMBOL(netdev_adjacent_get_private);
6864
6865 /**
6866  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6867  * @dev: device
6868  * @iter: list_head ** of the current position
6869  *
6870  * Gets the next device from the dev's upper list, starting from iter
6871  * position. The caller must hold RCU read lock.
6872  */
6873 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6874                                                  struct list_head **iter)
6875 {
6876         struct netdev_adjacent *upper;
6877
6878         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6879
6880         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6881
6882         if (&upper->list == &dev->adj_list.upper)
6883                 return NULL;
6884
6885         *iter = &upper->list;
6886
6887         return upper->dev;
6888 }
6889 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6890
6891 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6892                                                   struct list_head **iter,
6893                                                   bool *ignore)
6894 {
6895         struct netdev_adjacent *upper;
6896
6897         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6898
6899         if (&upper->list == &dev->adj_list.upper)
6900                 return NULL;
6901
6902         *iter = &upper->list;
6903         *ignore = upper->ignore;
6904
6905         return upper->dev;
6906 }
6907
6908 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6909                                                     struct list_head **iter)
6910 {
6911         struct netdev_adjacent *upper;
6912
6913         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6914
6915         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6916
6917         if (&upper->list == &dev->adj_list.upper)
6918                 return NULL;
6919
6920         *iter = &upper->list;
6921
6922         return upper->dev;
6923 }
6924
6925 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6926                                        int (*fn)(struct net_device *dev,
6927                                          struct netdev_nested_priv *priv),
6928                                        struct netdev_nested_priv *priv)
6929 {
6930         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6931         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6932         int ret, cur = 0;
6933         bool ignore;
6934
6935         now = dev;
6936         iter = &dev->adj_list.upper;
6937
6938         while (1) {
6939                 if (now != dev) {
6940                         ret = fn(now, priv);
6941                         if (ret)
6942                                 return ret;
6943                 }
6944
6945                 next = NULL;
6946                 while (1) {
6947                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
6948                         if (!udev)
6949                                 break;
6950                         if (ignore)
6951                                 continue;
6952
6953                         next = udev;
6954                         niter = &udev->adj_list.upper;
6955                         dev_stack[cur] = now;
6956                         iter_stack[cur++] = iter;
6957                         break;
6958                 }
6959
6960                 if (!next) {
6961                         if (!cur)
6962                                 return 0;
6963                         next = dev_stack[--cur];
6964                         niter = iter_stack[cur];
6965                 }
6966
6967                 now = next;
6968                 iter = niter;
6969         }
6970
6971         return 0;
6972 }
6973
6974 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6975                                   int (*fn)(struct net_device *dev,
6976                                             struct netdev_nested_priv *priv),
6977                                   struct netdev_nested_priv *priv)
6978 {
6979         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6980         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6981         int ret, cur = 0;
6982
6983         now = dev;
6984         iter = &dev->adj_list.upper;
6985
6986         while (1) {
6987                 if (now != dev) {
6988                         ret = fn(now, priv);
6989                         if (ret)
6990                                 return ret;
6991                 }
6992
6993                 next = NULL;
6994                 while (1) {
6995                         udev = netdev_next_upper_dev_rcu(now, &iter);
6996                         if (!udev)
6997                                 break;
6998
6999                         next = udev;
7000                         niter = &udev->adj_list.upper;
7001                         dev_stack[cur] = now;
7002                         iter_stack[cur++] = iter;
7003                         break;
7004                 }
7005
7006                 if (!next) {
7007                         if (!cur)
7008                                 return 0;
7009                         next = dev_stack[--cur];
7010                         niter = iter_stack[cur];
7011                 }
7012
7013                 now = next;
7014                 iter = niter;
7015         }
7016
7017         return 0;
7018 }
7019 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7020
7021 static bool __netdev_has_upper_dev(struct net_device *dev,
7022                                    struct net_device *upper_dev)
7023 {
7024         struct netdev_nested_priv priv = {
7025                 .flags = 0,
7026                 .data = (void *)upper_dev,
7027         };
7028
7029         ASSERT_RTNL();
7030
7031         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7032                                            &priv);
7033 }
7034
7035 /**
7036  * netdev_lower_get_next_private - Get the next ->private from the
7037  *                                 lower neighbour list
7038  * @dev: device
7039  * @iter: list_head ** of the current position
7040  *
7041  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7042  * list, starting from iter position. The caller must hold either hold the
7043  * RTNL lock or its own locking that guarantees that the neighbour lower
7044  * list will remain unchanged.
7045  */
7046 void *netdev_lower_get_next_private(struct net_device *dev,
7047                                     struct list_head **iter)
7048 {
7049         struct netdev_adjacent *lower;
7050
7051         lower = list_entry(*iter, struct netdev_adjacent, list);
7052
7053         if (&lower->list == &dev->adj_list.lower)
7054                 return NULL;
7055
7056         *iter = lower->list.next;
7057
7058         return lower->private;
7059 }
7060 EXPORT_SYMBOL(netdev_lower_get_next_private);
7061
7062 /**
7063  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7064  *                                     lower neighbour list, RCU
7065  *                                     variant
7066  * @dev: device
7067  * @iter: list_head ** of the current position
7068  *
7069  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7070  * list, starting from iter position. The caller must hold RCU read lock.
7071  */
7072 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7073                                         struct list_head **iter)
7074 {
7075         struct netdev_adjacent *lower;
7076
7077         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7078
7079         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7080
7081         if (&lower->list == &dev->adj_list.lower)
7082                 return NULL;
7083
7084         *iter = &lower->list;
7085
7086         return lower->private;
7087 }
7088 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7089
7090 /**
7091  * netdev_lower_get_next - Get the next device from the lower neighbour
7092  *                         list
7093  * @dev: device
7094  * @iter: list_head ** of the current position
7095  *
7096  * Gets the next netdev_adjacent from the dev's lower neighbour
7097  * list, starting from iter position. The caller must hold RTNL lock or
7098  * its own locking that guarantees that the neighbour lower
7099  * list will remain unchanged.
7100  */
7101 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7102 {
7103         struct netdev_adjacent *lower;
7104
7105         lower = list_entry(*iter, struct netdev_adjacent, list);
7106
7107         if (&lower->list == &dev->adj_list.lower)
7108                 return NULL;
7109
7110         *iter = lower->list.next;
7111
7112         return lower->dev;
7113 }
7114 EXPORT_SYMBOL(netdev_lower_get_next);
7115
7116 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7117                                                 struct list_head **iter)
7118 {
7119         struct netdev_adjacent *lower;
7120
7121         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7122
7123         if (&lower->list == &dev->adj_list.lower)
7124                 return NULL;
7125
7126         *iter = &lower->list;
7127
7128         return lower->dev;
7129 }
7130
7131 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7132                                                   struct list_head **iter,
7133                                                   bool *ignore)
7134 {
7135         struct netdev_adjacent *lower;
7136
7137         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7138
7139         if (&lower->list == &dev->adj_list.lower)
7140                 return NULL;
7141
7142         *iter = &lower->list;
7143         *ignore = lower->ignore;
7144
7145         return lower->dev;
7146 }
7147
7148 int netdev_walk_all_lower_dev(struct net_device *dev,
7149                               int (*fn)(struct net_device *dev,
7150                                         struct netdev_nested_priv *priv),
7151                               struct netdev_nested_priv *priv)
7152 {
7153         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7154         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7155         int ret, cur = 0;
7156
7157         now = dev;
7158         iter = &dev->adj_list.lower;
7159
7160         while (1) {
7161                 if (now != dev) {
7162                         ret = fn(now, priv);
7163                         if (ret)
7164                                 return ret;
7165                 }
7166
7167                 next = NULL;
7168                 while (1) {
7169                         ldev = netdev_next_lower_dev(now, &iter);
7170                         if (!ldev)
7171                                 break;
7172
7173                         next = ldev;
7174                         niter = &ldev->adj_list.lower;
7175                         dev_stack[cur] = now;
7176                         iter_stack[cur++] = iter;
7177                         break;
7178                 }
7179
7180                 if (!next) {
7181                         if (!cur)
7182                                 return 0;
7183                         next = dev_stack[--cur];
7184                         niter = iter_stack[cur];
7185                 }
7186
7187                 now = next;
7188                 iter = niter;
7189         }
7190
7191         return 0;
7192 }
7193 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7194
7195 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7196                                        int (*fn)(struct net_device *dev,
7197                                          struct netdev_nested_priv *priv),
7198                                        struct netdev_nested_priv *priv)
7199 {
7200         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7201         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7202         int ret, cur = 0;
7203         bool ignore;
7204
7205         now = dev;
7206         iter = &dev->adj_list.lower;
7207
7208         while (1) {
7209                 if (now != dev) {
7210                         ret = fn(now, priv);
7211                         if (ret)
7212                                 return ret;
7213                 }
7214
7215                 next = NULL;
7216                 while (1) {
7217                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7218                         if (!ldev)
7219                                 break;
7220                         if (ignore)
7221                                 continue;
7222
7223                         next = ldev;
7224                         niter = &ldev->adj_list.lower;
7225                         dev_stack[cur] = now;
7226                         iter_stack[cur++] = iter;
7227                         break;
7228                 }
7229
7230                 if (!next) {
7231                         if (!cur)
7232                                 return 0;
7233                         next = dev_stack[--cur];
7234                         niter = iter_stack[cur];
7235                 }
7236
7237                 now = next;
7238                 iter = niter;
7239         }
7240
7241         return 0;
7242 }
7243
7244 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7245                                              struct list_head **iter)
7246 {
7247         struct netdev_adjacent *lower;
7248
7249         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7250         if (&lower->list == &dev->adj_list.lower)
7251                 return NULL;
7252
7253         *iter = &lower->list;
7254
7255         return lower->dev;
7256 }
7257 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7258
7259 static u8 __netdev_upper_depth(struct net_device *dev)
7260 {
7261         struct net_device *udev;
7262         struct list_head *iter;
7263         u8 max_depth = 0;
7264         bool ignore;
7265
7266         for (iter = &dev->adj_list.upper,
7267              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7268              udev;
7269              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7270                 if (ignore)
7271                         continue;
7272                 if (max_depth < udev->upper_level)
7273                         max_depth = udev->upper_level;
7274         }
7275
7276         return max_depth;
7277 }
7278
7279 static u8 __netdev_lower_depth(struct net_device *dev)
7280 {
7281         struct net_device *ldev;
7282         struct list_head *iter;
7283         u8 max_depth = 0;
7284         bool ignore;
7285
7286         for (iter = &dev->adj_list.lower,
7287              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7288              ldev;
7289              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7290                 if (ignore)
7291                         continue;
7292                 if (max_depth < ldev->lower_level)
7293                         max_depth = ldev->lower_level;
7294         }
7295
7296         return max_depth;
7297 }
7298
7299 static int __netdev_update_upper_level(struct net_device *dev,
7300                                        struct netdev_nested_priv *__unused)
7301 {
7302         dev->upper_level = __netdev_upper_depth(dev) + 1;
7303         return 0;
7304 }
7305
7306 #ifdef CONFIG_LOCKDEP
7307 static LIST_HEAD(net_unlink_list);
7308
7309 static void net_unlink_todo(struct net_device *dev)
7310 {
7311         if (list_empty(&dev->unlink_list))
7312                 list_add_tail(&dev->unlink_list, &net_unlink_list);
7313 }
7314 #endif
7315
7316 static int __netdev_update_lower_level(struct net_device *dev,
7317                                        struct netdev_nested_priv *priv)
7318 {
7319         dev->lower_level = __netdev_lower_depth(dev) + 1;
7320
7321 #ifdef CONFIG_LOCKDEP
7322         if (!priv)
7323                 return 0;
7324
7325         if (priv->flags & NESTED_SYNC_IMM)
7326                 dev->nested_level = dev->lower_level - 1;
7327         if (priv->flags & NESTED_SYNC_TODO)
7328                 net_unlink_todo(dev);
7329 #endif
7330         return 0;
7331 }
7332
7333 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7334                                   int (*fn)(struct net_device *dev,
7335                                             struct netdev_nested_priv *priv),
7336                                   struct netdev_nested_priv *priv)
7337 {
7338         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7339         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7340         int ret, cur = 0;
7341
7342         now = dev;
7343         iter = &dev->adj_list.lower;
7344
7345         while (1) {
7346                 if (now != dev) {
7347                         ret = fn(now, priv);
7348                         if (ret)
7349                                 return ret;
7350                 }
7351
7352                 next = NULL;
7353                 while (1) {
7354                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7355                         if (!ldev)
7356                                 break;
7357
7358                         next = ldev;
7359                         niter = &ldev->adj_list.lower;
7360                         dev_stack[cur] = now;
7361                         iter_stack[cur++] = iter;
7362                         break;
7363                 }
7364
7365                 if (!next) {
7366                         if (!cur)
7367                                 return 0;
7368                         next = dev_stack[--cur];
7369                         niter = iter_stack[cur];
7370                 }
7371
7372                 now = next;
7373                 iter = niter;
7374         }
7375
7376         return 0;
7377 }
7378 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7379
7380 /**
7381  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7382  *                                     lower neighbour list, RCU
7383  *                                     variant
7384  * @dev: device
7385  *
7386  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7387  * list. The caller must hold RCU read lock.
7388  */
7389 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7390 {
7391         struct netdev_adjacent *lower;
7392
7393         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7394                         struct netdev_adjacent, list);
7395         if (lower)
7396                 return lower->private;
7397         return NULL;
7398 }
7399 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7400
7401 /**
7402  * netdev_master_upper_dev_get_rcu - Get master upper device
7403  * @dev: device
7404  *
7405  * Find a master upper device and return pointer to it or NULL in case
7406  * it's not there. The caller must hold the RCU read lock.
7407  */
7408 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7409 {
7410         struct netdev_adjacent *upper;
7411
7412         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7413                                        struct netdev_adjacent, list);
7414         if (upper && likely(upper->master))
7415                 return upper->dev;
7416         return NULL;
7417 }
7418 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7419
7420 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7421                               struct net_device *adj_dev,
7422                               struct list_head *dev_list)
7423 {
7424         char linkname[IFNAMSIZ+7];
7425
7426         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7427                 "upper_%s" : "lower_%s", adj_dev->name);
7428         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7429                                  linkname);
7430 }
7431 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7432                                char *name,
7433                                struct list_head *dev_list)
7434 {
7435         char linkname[IFNAMSIZ+7];
7436
7437         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7438                 "upper_%s" : "lower_%s", name);
7439         sysfs_remove_link(&(dev->dev.kobj), linkname);
7440 }
7441
7442 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7443                                                  struct net_device *adj_dev,
7444                                                  struct list_head *dev_list)
7445 {
7446         return (dev_list == &dev->adj_list.upper ||
7447                 dev_list == &dev->adj_list.lower) &&
7448                 net_eq(dev_net(dev), dev_net(adj_dev));
7449 }
7450
7451 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7452                                         struct net_device *adj_dev,
7453                                         struct list_head *dev_list,
7454                                         void *private, bool master)
7455 {
7456         struct netdev_adjacent *adj;
7457         int ret;
7458
7459         adj = __netdev_find_adj(adj_dev, dev_list);
7460
7461         if (adj) {
7462                 adj->ref_nr += 1;
7463                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7464                          dev->name, adj_dev->name, adj->ref_nr);
7465
7466                 return 0;
7467         }
7468
7469         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7470         if (!adj)
7471                 return -ENOMEM;
7472
7473         adj->dev = adj_dev;
7474         adj->master = master;
7475         adj->ref_nr = 1;
7476         adj->private = private;
7477         adj->ignore = false;
7478         netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7479
7480         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7481                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7482
7483         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7484                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7485                 if (ret)
7486                         goto free_adj;
7487         }
7488
7489         /* Ensure that master link is always the first item in list. */
7490         if (master) {
7491                 ret = sysfs_create_link(&(dev->dev.kobj),
7492                                         &(adj_dev->dev.kobj), "master");
7493                 if (ret)
7494                         goto remove_symlinks;
7495
7496                 list_add_rcu(&adj->list, dev_list);
7497         } else {
7498                 list_add_tail_rcu(&adj->list, dev_list);
7499         }
7500
7501         return 0;
7502
7503 remove_symlinks:
7504         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7505                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7506 free_adj:
7507         netdev_put(adj_dev, &adj->dev_tracker);
7508         kfree(adj);
7509
7510         return ret;
7511 }
7512
7513 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7514                                          struct net_device *adj_dev,
7515                                          u16 ref_nr,
7516                                          struct list_head *dev_list)
7517 {
7518         struct netdev_adjacent *adj;
7519
7520         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7521                  dev->name, adj_dev->name, ref_nr);
7522
7523         adj = __netdev_find_adj(adj_dev, dev_list);
7524
7525         if (!adj) {
7526                 pr_err("Adjacency does not exist for device %s from %s\n",
7527                        dev->name, adj_dev->name);
7528                 WARN_ON(1);
7529                 return;
7530         }
7531
7532         if (adj->ref_nr > ref_nr) {
7533                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7534                          dev->name, adj_dev->name, ref_nr,
7535                          adj->ref_nr - ref_nr);
7536                 adj->ref_nr -= ref_nr;
7537                 return;
7538         }
7539
7540         if (adj->master)
7541                 sysfs_remove_link(&(dev->dev.kobj), "master");
7542
7543         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7544                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7545
7546         list_del_rcu(&adj->list);
7547         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7548                  adj_dev->name, dev->name, adj_dev->name);
7549         netdev_put(adj_dev, &adj->dev_tracker);
7550         kfree_rcu(adj, rcu);
7551 }
7552
7553 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7554                                             struct net_device *upper_dev,
7555                                             struct list_head *up_list,
7556                                             struct list_head *down_list,
7557                                             void *private, bool master)
7558 {
7559         int ret;
7560
7561         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7562                                            private, master);
7563         if (ret)
7564                 return ret;
7565
7566         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7567                                            private, false);
7568         if (ret) {
7569                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7570                 return ret;
7571         }
7572
7573         return 0;
7574 }
7575
7576 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7577                                                struct net_device *upper_dev,
7578                                                u16 ref_nr,
7579                                                struct list_head *up_list,
7580                                                struct list_head *down_list)
7581 {
7582         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7583         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7584 }
7585
7586 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7587                                                 struct net_device *upper_dev,
7588                                                 void *private, bool master)
7589 {
7590         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7591                                                 &dev->adj_list.upper,
7592                                                 &upper_dev->adj_list.lower,
7593                                                 private, master);
7594 }
7595
7596 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7597                                                    struct net_device *upper_dev)
7598 {
7599         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7600                                            &dev->adj_list.upper,
7601                                            &upper_dev->adj_list.lower);
7602 }
7603
7604 static int __netdev_upper_dev_link(struct net_device *dev,
7605                                    struct net_device *upper_dev, bool master,
7606                                    void *upper_priv, void *upper_info,
7607                                    struct netdev_nested_priv *priv,
7608                                    struct netlink_ext_ack *extack)
7609 {
7610         struct netdev_notifier_changeupper_info changeupper_info = {
7611                 .info = {
7612                         .dev = dev,
7613                         .extack = extack,
7614                 },
7615                 .upper_dev = upper_dev,
7616                 .master = master,
7617                 .linking = true,
7618                 .upper_info = upper_info,
7619         };
7620         struct net_device *master_dev;
7621         int ret = 0;
7622
7623         ASSERT_RTNL();
7624
7625         if (dev == upper_dev)
7626                 return -EBUSY;
7627
7628         /* To prevent loops, check if dev is not upper device to upper_dev. */
7629         if (__netdev_has_upper_dev(upper_dev, dev))
7630                 return -EBUSY;
7631
7632         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7633                 return -EMLINK;
7634
7635         if (!master) {
7636                 if (__netdev_has_upper_dev(dev, upper_dev))
7637                         return -EEXIST;
7638         } else {
7639                 master_dev = __netdev_master_upper_dev_get(dev);
7640                 if (master_dev)
7641                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7642         }
7643
7644         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7645                                             &changeupper_info.info);
7646         ret = notifier_to_errno(ret);
7647         if (ret)
7648                 return ret;
7649
7650         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7651                                                    master);
7652         if (ret)
7653                 return ret;
7654
7655         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7656                                             &changeupper_info.info);
7657         ret = notifier_to_errno(ret);
7658         if (ret)
7659                 goto rollback;
7660
7661         __netdev_update_upper_level(dev, NULL);
7662         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7663
7664         __netdev_update_lower_level(upper_dev, priv);
7665         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7666                                     priv);
7667
7668         return 0;
7669
7670 rollback:
7671         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7672
7673         return ret;
7674 }
7675
7676 /**
7677  * netdev_upper_dev_link - Add a link to the upper device
7678  * @dev: device
7679  * @upper_dev: new upper device
7680  * @extack: netlink extended ack
7681  *
7682  * Adds a link to device which is upper to this one. The caller must hold
7683  * the RTNL lock. On a failure a negative errno code is returned.
7684  * On success the reference counts are adjusted and the function
7685  * returns zero.
7686  */
7687 int netdev_upper_dev_link(struct net_device *dev,
7688                           struct net_device *upper_dev,
7689                           struct netlink_ext_ack *extack)
7690 {
7691         struct netdev_nested_priv priv = {
7692                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7693                 .data = NULL,
7694         };
7695
7696         return __netdev_upper_dev_link(dev, upper_dev, false,
7697                                        NULL, NULL, &priv, extack);
7698 }
7699 EXPORT_SYMBOL(netdev_upper_dev_link);
7700
7701 /**
7702  * netdev_master_upper_dev_link - Add a master link to the upper device
7703  * @dev: device
7704  * @upper_dev: new upper device
7705  * @upper_priv: upper device private
7706  * @upper_info: upper info to be passed down via notifier
7707  * @extack: netlink extended ack
7708  *
7709  * Adds a link to device which is upper to this one. In this case, only
7710  * one master upper device can be linked, although other non-master devices
7711  * might be linked as well. The caller must hold the RTNL lock.
7712  * On a failure a negative errno code is returned. On success the reference
7713  * counts are adjusted and the function returns zero.
7714  */
7715 int netdev_master_upper_dev_link(struct net_device *dev,
7716                                  struct net_device *upper_dev,
7717                                  void *upper_priv, void *upper_info,
7718                                  struct netlink_ext_ack *extack)
7719 {
7720         struct netdev_nested_priv priv = {
7721                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7722                 .data = NULL,
7723         };
7724
7725         return __netdev_upper_dev_link(dev, upper_dev, true,
7726                                        upper_priv, upper_info, &priv, extack);
7727 }
7728 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7729
7730 static void __netdev_upper_dev_unlink(struct net_device *dev,
7731                                       struct net_device *upper_dev,
7732                                       struct netdev_nested_priv *priv)
7733 {
7734         struct netdev_notifier_changeupper_info changeupper_info = {
7735                 .info = {
7736                         .dev = dev,
7737                 },
7738                 .upper_dev = upper_dev,
7739                 .linking = false,
7740         };
7741
7742         ASSERT_RTNL();
7743
7744         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7745
7746         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7747                                       &changeupper_info.info);
7748
7749         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7750
7751         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7752                                       &changeupper_info.info);
7753
7754         __netdev_update_upper_level(dev, NULL);
7755         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7756
7757         __netdev_update_lower_level(upper_dev, priv);
7758         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7759                                     priv);
7760 }
7761
7762 /**
7763  * netdev_upper_dev_unlink - Removes a link to upper device
7764  * @dev: device
7765  * @upper_dev: new upper device
7766  *
7767  * Removes a link to device which is upper to this one. The caller must hold
7768  * the RTNL lock.
7769  */
7770 void netdev_upper_dev_unlink(struct net_device *dev,
7771                              struct net_device *upper_dev)
7772 {
7773         struct netdev_nested_priv priv = {
7774                 .flags = NESTED_SYNC_TODO,
7775                 .data = NULL,
7776         };
7777
7778         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7779 }
7780 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7781
7782 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7783                                       struct net_device *lower_dev,
7784                                       bool val)
7785 {
7786         struct netdev_adjacent *adj;
7787
7788         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7789         if (adj)
7790                 adj->ignore = val;
7791
7792         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7793         if (adj)
7794                 adj->ignore = val;
7795 }
7796
7797 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7798                                         struct net_device *lower_dev)
7799 {
7800         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7801 }
7802
7803 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7804                                        struct net_device *lower_dev)
7805 {
7806         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7807 }
7808
7809 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7810                                    struct net_device *new_dev,
7811                                    struct net_device *dev,
7812                                    struct netlink_ext_ack *extack)
7813 {
7814         struct netdev_nested_priv priv = {
7815                 .flags = 0,
7816                 .data = NULL,
7817         };
7818         int err;
7819
7820         if (!new_dev)
7821                 return 0;
7822
7823         if (old_dev && new_dev != old_dev)
7824                 netdev_adjacent_dev_disable(dev, old_dev);
7825         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7826                                       extack);
7827         if (err) {
7828                 if (old_dev && new_dev != old_dev)
7829                         netdev_adjacent_dev_enable(dev, old_dev);
7830                 return err;
7831         }
7832
7833         return 0;
7834 }
7835 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7836
7837 void netdev_adjacent_change_commit(struct net_device *old_dev,
7838                                    struct net_device *new_dev,
7839                                    struct net_device *dev)
7840 {
7841         struct netdev_nested_priv priv = {
7842                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7843                 .data = NULL,
7844         };
7845
7846         if (!new_dev || !old_dev)
7847                 return;
7848
7849         if (new_dev == old_dev)
7850                 return;
7851
7852         netdev_adjacent_dev_enable(dev, old_dev);
7853         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7854 }
7855 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7856
7857 void netdev_adjacent_change_abort(struct net_device *old_dev,
7858                                   struct net_device *new_dev,
7859                                   struct net_device *dev)
7860 {
7861         struct netdev_nested_priv priv = {
7862                 .flags = 0,
7863                 .data = NULL,
7864         };
7865
7866         if (!new_dev)
7867                 return;
7868
7869         if (old_dev && new_dev != old_dev)
7870                 netdev_adjacent_dev_enable(dev, old_dev);
7871
7872         __netdev_upper_dev_unlink(new_dev, dev, &priv);
7873 }
7874 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7875
7876 /**
7877  * netdev_bonding_info_change - Dispatch event about slave change
7878  * @dev: device
7879  * @bonding_info: info to dispatch
7880  *
7881  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7882  * The caller must hold the RTNL lock.
7883  */
7884 void netdev_bonding_info_change(struct net_device *dev,
7885                                 struct netdev_bonding_info *bonding_info)
7886 {
7887         struct netdev_notifier_bonding_info info = {
7888                 .info.dev = dev,
7889         };
7890
7891         memcpy(&info.bonding_info, bonding_info,
7892                sizeof(struct netdev_bonding_info));
7893         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7894                                       &info.info);
7895 }
7896 EXPORT_SYMBOL(netdev_bonding_info_change);
7897
7898 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7899                                            struct netlink_ext_ack *extack)
7900 {
7901         struct netdev_notifier_offload_xstats_info info = {
7902                 .info.dev = dev,
7903                 .info.extack = extack,
7904                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7905         };
7906         int err;
7907         int rc;
7908
7909         dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7910                                          GFP_KERNEL);
7911         if (!dev->offload_xstats_l3)
7912                 return -ENOMEM;
7913
7914         rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7915                                                   NETDEV_OFFLOAD_XSTATS_DISABLE,
7916                                                   &info.info);
7917         err = notifier_to_errno(rc);
7918         if (err)
7919                 goto free_stats;
7920
7921         return 0;
7922
7923 free_stats:
7924         kfree(dev->offload_xstats_l3);
7925         dev->offload_xstats_l3 = NULL;
7926         return err;
7927 }
7928
7929 int netdev_offload_xstats_enable(struct net_device *dev,
7930                                  enum netdev_offload_xstats_type type,
7931                                  struct netlink_ext_ack *extack)
7932 {
7933         ASSERT_RTNL();
7934
7935         if (netdev_offload_xstats_enabled(dev, type))
7936                 return -EALREADY;
7937
7938         switch (type) {
7939         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7940                 return netdev_offload_xstats_enable_l3(dev, extack);
7941         }
7942
7943         WARN_ON(1);
7944         return -EINVAL;
7945 }
7946 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7947
7948 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7949 {
7950         struct netdev_notifier_offload_xstats_info info = {
7951                 .info.dev = dev,
7952                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7953         };
7954
7955         call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7956                                       &info.info);
7957         kfree(dev->offload_xstats_l3);
7958         dev->offload_xstats_l3 = NULL;
7959 }
7960
7961 int netdev_offload_xstats_disable(struct net_device *dev,
7962                                   enum netdev_offload_xstats_type type)
7963 {
7964         ASSERT_RTNL();
7965
7966         if (!netdev_offload_xstats_enabled(dev, type))
7967                 return -EALREADY;
7968
7969         switch (type) {
7970         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7971                 netdev_offload_xstats_disable_l3(dev);
7972                 return 0;
7973         }
7974
7975         WARN_ON(1);
7976         return -EINVAL;
7977 }
7978 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7979
7980 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7981 {
7982         netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7983 }
7984
7985 static struct rtnl_hw_stats64 *
7986 netdev_offload_xstats_get_ptr(const struct net_device *dev,
7987                               enum netdev_offload_xstats_type type)
7988 {
7989         switch (type) {
7990         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7991                 return dev->offload_xstats_l3;
7992         }
7993
7994         WARN_ON(1);
7995         return NULL;
7996 }
7997
7998 bool netdev_offload_xstats_enabled(const struct net_device *dev,
7999                                    enum netdev_offload_xstats_type type)
8000 {
8001         ASSERT_RTNL();
8002
8003         return netdev_offload_xstats_get_ptr(dev, type);
8004 }
8005 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8006
8007 struct netdev_notifier_offload_xstats_ru {
8008         bool used;
8009 };
8010
8011 struct netdev_notifier_offload_xstats_rd {
8012         struct rtnl_hw_stats64 stats;
8013         bool used;
8014 };
8015
8016 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8017                                   const struct rtnl_hw_stats64 *src)
8018 {
8019         dest->rx_packets          += src->rx_packets;
8020         dest->tx_packets          += src->tx_packets;
8021         dest->rx_bytes            += src->rx_bytes;
8022         dest->tx_bytes            += src->tx_bytes;
8023         dest->rx_errors           += src->rx_errors;
8024         dest->tx_errors           += src->tx_errors;
8025         dest->rx_dropped          += src->rx_dropped;
8026         dest->tx_dropped          += src->tx_dropped;
8027         dest->multicast           += src->multicast;
8028 }
8029
8030 static int netdev_offload_xstats_get_used(struct net_device *dev,
8031                                           enum netdev_offload_xstats_type type,
8032                                           bool *p_used,
8033                                           struct netlink_ext_ack *extack)
8034 {
8035         struct netdev_notifier_offload_xstats_ru report_used = {};
8036         struct netdev_notifier_offload_xstats_info info = {
8037                 .info.dev = dev,
8038                 .info.extack = extack,
8039                 .type = type,
8040                 .report_used = &report_used,
8041         };
8042         int rc;
8043
8044         WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8045         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8046                                            &info.info);
8047         *p_used = report_used.used;
8048         return notifier_to_errno(rc);
8049 }
8050
8051 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8052                                            enum netdev_offload_xstats_type type,
8053                                            struct rtnl_hw_stats64 *p_stats,
8054                                            bool *p_used,
8055                                            struct netlink_ext_ack *extack)
8056 {
8057         struct netdev_notifier_offload_xstats_rd report_delta = {};
8058         struct netdev_notifier_offload_xstats_info info = {
8059                 .info.dev = dev,
8060                 .info.extack = extack,
8061                 .type = type,
8062                 .report_delta = &report_delta,
8063         };
8064         struct rtnl_hw_stats64 *stats;
8065         int rc;
8066
8067         stats = netdev_offload_xstats_get_ptr(dev, type);
8068         if (WARN_ON(!stats))
8069                 return -EINVAL;
8070
8071         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8072                                            &info.info);
8073
8074         /* Cache whatever we got, even if there was an error, otherwise the
8075          * successful stats retrievals would get lost.
8076          */
8077         netdev_hw_stats64_add(stats, &report_delta.stats);
8078
8079         if (p_stats)
8080                 *p_stats = *stats;
8081         *p_used = report_delta.used;
8082
8083         return notifier_to_errno(rc);
8084 }
8085
8086 int netdev_offload_xstats_get(struct net_device *dev,
8087                               enum netdev_offload_xstats_type type,
8088                               struct rtnl_hw_stats64 *p_stats, bool *p_used,
8089                               struct netlink_ext_ack *extack)
8090 {
8091         ASSERT_RTNL();
8092
8093         if (p_stats)
8094                 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8095                                                        p_used, extack);
8096         else
8097                 return netdev_offload_xstats_get_used(dev, type, p_used,
8098                                                       extack);
8099 }
8100 EXPORT_SYMBOL(netdev_offload_xstats_get);
8101
8102 void
8103 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8104                                    const struct rtnl_hw_stats64 *stats)
8105 {
8106         report_delta->used = true;
8107         netdev_hw_stats64_add(&report_delta->stats, stats);
8108 }
8109 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8110
8111 void
8112 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8113 {
8114         report_used->used = true;
8115 }
8116 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8117
8118 void netdev_offload_xstats_push_delta(struct net_device *dev,
8119                                       enum netdev_offload_xstats_type type,
8120                                       const struct rtnl_hw_stats64 *p_stats)
8121 {
8122         struct rtnl_hw_stats64 *stats;
8123
8124         ASSERT_RTNL();
8125
8126         stats = netdev_offload_xstats_get_ptr(dev, type);
8127         if (WARN_ON(!stats))
8128                 return;
8129
8130         netdev_hw_stats64_add(stats, p_stats);
8131 }
8132 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8133
8134 /**
8135  * netdev_get_xmit_slave - Get the xmit slave of master device
8136  * @dev: device
8137  * @skb: The packet
8138  * @all_slaves: assume all the slaves are active
8139  *
8140  * The reference counters are not incremented so the caller must be
8141  * careful with locks. The caller must hold RCU lock.
8142  * %NULL is returned if no slave is found.
8143  */
8144
8145 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8146                                          struct sk_buff *skb,
8147                                          bool all_slaves)
8148 {
8149         const struct net_device_ops *ops = dev->netdev_ops;
8150
8151         if (!ops->ndo_get_xmit_slave)
8152                 return NULL;
8153         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8154 }
8155 EXPORT_SYMBOL(netdev_get_xmit_slave);
8156
8157 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8158                                                   struct sock *sk)
8159 {
8160         const struct net_device_ops *ops = dev->netdev_ops;
8161
8162         if (!ops->ndo_sk_get_lower_dev)
8163                 return NULL;
8164         return ops->ndo_sk_get_lower_dev(dev, sk);
8165 }
8166
8167 /**
8168  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8169  * @dev: device
8170  * @sk: the socket
8171  *
8172  * %NULL is returned if no lower device is found.
8173  */
8174
8175 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8176                                             struct sock *sk)
8177 {
8178         struct net_device *lower;
8179
8180         lower = netdev_sk_get_lower_dev(dev, sk);
8181         while (lower) {
8182                 dev = lower;
8183                 lower = netdev_sk_get_lower_dev(dev, sk);
8184         }
8185
8186         return dev;
8187 }
8188 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8189
8190 static void netdev_adjacent_add_links(struct net_device *dev)
8191 {
8192         struct netdev_adjacent *iter;
8193
8194         struct net *net = dev_net(dev);
8195
8196         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8197                 if (!net_eq(net, dev_net(iter->dev)))
8198                         continue;
8199                 netdev_adjacent_sysfs_add(iter->dev, dev,
8200                                           &iter->dev->adj_list.lower);
8201                 netdev_adjacent_sysfs_add(dev, iter->dev,
8202                                           &dev->adj_list.upper);
8203         }
8204
8205         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8206                 if (!net_eq(net, dev_net(iter->dev)))
8207                         continue;
8208                 netdev_adjacent_sysfs_add(iter->dev, dev,
8209                                           &iter->dev->adj_list.upper);
8210                 netdev_adjacent_sysfs_add(dev, iter->dev,
8211                                           &dev->adj_list.lower);
8212         }
8213 }
8214
8215 static void netdev_adjacent_del_links(struct net_device *dev)
8216 {
8217         struct netdev_adjacent *iter;
8218
8219         struct net *net = dev_net(dev);
8220
8221         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8222                 if (!net_eq(net, dev_net(iter->dev)))
8223                         continue;
8224                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8225                                           &iter->dev->adj_list.lower);
8226                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8227                                           &dev->adj_list.upper);
8228         }
8229
8230         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8231                 if (!net_eq(net, dev_net(iter->dev)))
8232                         continue;
8233                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8234                                           &iter->dev->adj_list.upper);
8235                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8236                                           &dev->adj_list.lower);
8237         }
8238 }
8239
8240 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8241 {
8242         struct netdev_adjacent *iter;
8243
8244         struct net *net = dev_net(dev);
8245
8246         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8247                 if (!net_eq(net, dev_net(iter->dev)))
8248                         continue;
8249                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8250                                           &iter->dev->adj_list.lower);
8251                 netdev_adjacent_sysfs_add(iter->dev, dev,
8252                                           &iter->dev->adj_list.lower);
8253         }
8254
8255         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8256                 if (!net_eq(net, dev_net(iter->dev)))
8257                         continue;
8258                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8259                                           &iter->dev->adj_list.upper);
8260                 netdev_adjacent_sysfs_add(iter->dev, dev,
8261                                           &iter->dev->adj_list.upper);
8262         }
8263 }
8264
8265 void *netdev_lower_dev_get_private(struct net_device *dev,
8266                                    struct net_device *lower_dev)
8267 {
8268         struct netdev_adjacent *lower;
8269
8270         if (!lower_dev)
8271                 return NULL;
8272         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8273         if (!lower)
8274                 return NULL;
8275
8276         return lower->private;
8277 }
8278 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8279
8280
8281 /**
8282  * netdev_lower_state_changed - Dispatch event about lower device state change
8283  * @lower_dev: device
8284  * @lower_state_info: state to dispatch
8285  *
8286  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8287  * The caller must hold the RTNL lock.
8288  */
8289 void netdev_lower_state_changed(struct net_device *lower_dev,
8290                                 void *lower_state_info)
8291 {
8292         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8293                 .info.dev = lower_dev,
8294         };
8295
8296         ASSERT_RTNL();
8297         changelowerstate_info.lower_state_info = lower_state_info;
8298         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8299                                       &changelowerstate_info.info);
8300 }
8301 EXPORT_SYMBOL(netdev_lower_state_changed);
8302
8303 static void dev_change_rx_flags(struct net_device *dev, int flags)
8304 {
8305         const struct net_device_ops *ops = dev->netdev_ops;
8306
8307         if (ops->ndo_change_rx_flags)
8308                 ops->ndo_change_rx_flags(dev, flags);
8309 }
8310
8311 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8312 {
8313         unsigned int old_flags = dev->flags;
8314         kuid_t uid;
8315         kgid_t gid;
8316
8317         ASSERT_RTNL();
8318
8319         dev->flags |= IFF_PROMISC;
8320         dev->promiscuity += inc;
8321         if (dev->promiscuity == 0) {
8322                 /*
8323                  * Avoid overflow.
8324                  * If inc causes overflow, untouch promisc and return error.
8325                  */
8326                 if (inc < 0)
8327                         dev->flags &= ~IFF_PROMISC;
8328                 else {
8329                         dev->promiscuity -= inc;
8330                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8331                         return -EOVERFLOW;
8332                 }
8333         }
8334         if (dev->flags != old_flags) {
8335                 pr_info("device %s %s promiscuous mode\n",
8336                         dev->name,
8337                         dev->flags & IFF_PROMISC ? "entered" : "left");
8338                 if (audit_enabled) {
8339                         current_uid_gid(&uid, &gid);
8340                         audit_log(audit_context(), GFP_ATOMIC,
8341                                   AUDIT_ANOM_PROMISCUOUS,
8342                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8343                                   dev->name, (dev->flags & IFF_PROMISC),
8344                                   (old_flags & IFF_PROMISC),
8345                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8346                                   from_kuid(&init_user_ns, uid),
8347                                   from_kgid(&init_user_ns, gid),
8348                                   audit_get_sessionid(current));
8349                 }
8350
8351                 dev_change_rx_flags(dev, IFF_PROMISC);
8352         }
8353         if (notify)
8354                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8355         return 0;
8356 }
8357
8358 /**
8359  *      dev_set_promiscuity     - update promiscuity count on a device
8360  *      @dev: device
8361  *      @inc: modifier
8362  *
8363  *      Add or remove promiscuity from a device. While the count in the device
8364  *      remains above zero the interface remains promiscuous. Once it hits zero
8365  *      the device reverts back to normal filtering operation. A negative inc
8366  *      value is used to drop promiscuity on the device.
8367  *      Return 0 if successful or a negative errno code on error.
8368  */
8369 int dev_set_promiscuity(struct net_device *dev, int inc)
8370 {
8371         unsigned int old_flags = dev->flags;
8372         int err;
8373
8374         err = __dev_set_promiscuity(dev, inc, true);
8375         if (err < 0)
8376                 return err;
8377         if (dev->flags != old_flags)
8378                 dev_set_rx_mode(dev);
8379         return err;
8380 }
8381 EXPORT_SYMBOL(dev_set_promiscuity);
8382
8383 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8384 {
8385         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8386
8387         ASSERT_RTNL();
8388
8389         dev->flags |= IFF_ALLMULTI;
8390         dev->allmulti += inc;
8391         if (dev->allmulti == 0) {
8392                 /*
8393                  * Avoid overflow.
8394                  * If inc causes overflow, untouch allmulti and return error.
8395                  */
8396                 if (inc < 0)
8397                         dev->flags &= ~IFF_ALLMULTI;
8398                 else {
8399                         dev->allmulti -= inc;
8400                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8401                         return -EOVERFLOW;
8402                 }
8403         }
8404         if (dev->flags ^ old_flags) {
8405                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8406                 dev_set_rx_mode(dev);
8407                 if (notify)
8408                         __dev_notify_flags(dev, old_flags,
8409                                            dev->gflags ^ old_gflags);
8410         }
8411         return 0;
8412 }
8413
8414 /**
8415  *      dev_set_allmulti        - update allmulti count on a device
8416  *      @dev: device
8417  *      @inc: modifier
8418  *
8419  *      Add or remove reception of all multicast frames to a device. While the
8420  *      count in the device remains above zero the interface remains listening
8421  *      to all interfaces. Once it hits zero the device reverts back to normal
8422  *      filtering operation. A negative @inc value is used to drop the counter
8423  *      when releasing a resource needing all multicasts.
8424  *      Return 0 if successful or a negative errno code on error.
8425  */
8426
8427 int dev_set_allmulti(struct net_device *dev, int inc)
8428 {
8429         return __dev_set_allmulti(dev, inc, true);
8430 }
8431 EXPORT_SYMBOL(dev_set_allmulti);
8432
8433 /*
8434  *      Upload unicast and multicast address lists to device and
8435  *      configure RX filtering. When the device doesn't support unicast
8436  *      filtering it is put in promiscuous mode while unicast addresses
8437  *      are present.
8438  */
8439 void __dev_set_rx_mode(struct net_device *dev)
8440 {
8441         const struct net_device_ops *ops = dev->netdev_ops;
8442
8443         /* dev_open will call this function so the list will stay sane. */
8444         if (!(dev->flags&IFF_UP))
8445                 return;
8446
8447         if (!netif_device_present(dev))
8448                 return;
8449
8450         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8451                 /* Unicast addresses changes may only happen under the rtnl,
8452                  * therefore calling __dev_set_promiscuity here is safe.
8453                  */
8454                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8455                         __dev_set_promiscuity(dev, 1, false);
8456                         dev->uc_promisc = true;
8457                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8458                         __dev_set_promiscuity(dev, -1, false);
8459                         dev->uc_promisc = false;
8460                 }
8461         }
8462
8463         if (ops->ndo_set_rx_mode)
8464                 ops->ndo_set_rx_mode(dev);
8465 }
8466
8467 void dev_set_rx_mode(struct net_device *dev)
8468 {
8469         netif_addr_lock_bh(dev);
8470         __dev_set_rx_mode(dev);
8471         netif_addr_unlock_bh(dev);
8472 }
8473
8474 /**
8475  *      dev_get_flags - get flags reported to userspace
8476  *      @dev: device
8477  *
8478  *      Get the combination of flag bits exported through APIs to userspace.
8479  */
8480 unsigned int dev_get_flags(const struct net_device *dev)
8481 {
8482         unsigned int flags;
8483
8484         flags = (dev->flags & ~(IFF_PROMISC |
8485                                 IFF_ALLMULTI |
8486                                 IFF_RUNNING |
8487                                 IFF_LOWER_UP |
8488                                 IFF_DORMANT)) |
8489                 (dev->gflags & (IFF_PROMISC |
8490                                 IFF_ALLMULTI));
8491
8492         if (netif_running(dev)) {
8493                 if (netif_oper_up(dev))
8494                         flags |= IFF_RUNNING;
8495                 if (netif_carrier_ok(dev))
8496                         flags |= IFF_LOWER_UP;
8497                 if (netif_dormant(dev))
8498                         flags |= IFF_DORMANT;
8499         }
8500
8501         return flags;
8502 }
8503 EXPORT_SYMBOL(dev_get_flags);
8504
8505 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8506                        struct netlink_ext_ack *extack)
8507 {
8508         unsigned int old_flags = dev->flags;
8509         int ret;
8510
8511         ASSERT_RTNL();
8512
8513         /*
8514          *      Set the flags on our device.
8515          */
8516
8517         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8518                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8519                                IFF_AUTOMEDIA)) |
8520                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8521                                     IFF_ALLMULTI));
8522
8523         /*
8524          *      Load in the correct multicast list now the flags have changed.
8525          */
8526
8527         if ((old_flags ^ flags) & IFF_MULTICAST)
8528                 dev_change_rx_flags(dev, IFF_MULTICAST);
8529
8530         dev_set_rx_mode(dev);
8531
8532         /*
8533          *      Have we downed the interface. We handle IFF_UP ourselves
8534          *      according to user attempts to set it, rather than blindly
8535          *      setting it.
8536          */
8537
8538         ret = 0;
8539         if ((old_flags ^ flags) & IFF_UP) {
8540                 if (old_flags & IFF_UP)
8541                         __dev_close(dev);
8542                 else
8543                         ret = __dev_open(dev, extack);
8544         }
8545
8546         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8547                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8548                 unsigned int old_flags = dev->flags;
8549
8550                 dev->gflags ^= IFF_PROMISC;
8551
8552                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8553                         if (dev->flags != old_flags)
8554                                 dev_set_rx_mode(dev);
8555         }
8556
8557         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8558          * is important. Some (broken) drivers set IFF_PROMISC, when
8559          * IFF_ALLMULTI is requested not asking us and not reporting.
8560          */
8561         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8562                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8563
8564                 dev->gflags ^= IFF_ALLMULTI;
8565                 __dev_set_allmulti(dev, inc, false);
8566         }
8567
8568         return ret;
8569 }
8570
8571 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8572                         unsigned int gchanges)
8573 {
8574         unsigned int changes = dev->flags ^ old_flags;
8575
8576         if (gchanges)
8577                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8578
8579         if (changes & IFF_UP) {
8580                 if (dev->flags & IFF_UP)
8581                         call_netdevice_notifiers(NETDEV_UP, dev);
8582                 else
8583                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8584         }
8585
8586         if (dev->flags & IFF_UP &&
8587             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8588                 struct netdev_notifier_change_info change_info = {
8589                         .info = {
8590                                 .dev = dev,
8591                         },
8592                         .flags_changed = changes,
8593                 };
8594
8595                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8596         }
8597 }
8598
8599 /**
8600  *      dev_change_flags - change device settings
8601  *      @dev: device
8602  *      @flags: device state flags
8603  *      @extack: netlink extended ack
8604  *
8605  *      Change settings on device based state flags. The flags are
8606  *      in the userspace exported format.
8607  */
8608 int dev_change_flags(struct net_device *dev, unsigned int flags,
8609                      struct netlink_ext_ack *extack)
8610 {
8611         int ret;
8612         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8613
8614         ret = __dev_change_flags(dev, flags, extack);
8615         if (ret < 0)
8616                 return ret;
8617
8618         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8619         __dev_notify_flags(dev, old_flags, changes);
8620         return ret;
8621 }
8622 EXPORT_SYMBOL(dev_change_flags);
8623
8624 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8625 {
8626         const struct net_device_ops *ops = dev->netdev_ops;
8627
8628         if (ops->ndo_change_mtu)
8629                 return ops->ndo_change_mtu(dev, new_mtu);
8630
8631         /* Pairs with all the lockless reads of dev->mtu in the stack */
8632         WRITE_ONCE(dev->mtu, new_mtu);
8633         return 0;
8634 }
8635 EXPORT_SYMBOL(__dev_set_mtu);
8636
8637 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8638                      struct netlink_ext_ack *extack)
8639 {
8640         /* MTU must be positive, and in range */
8641         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8642                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8643                 return -EINVAL;
8644         }
8645
8646         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8647                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8648                 return -EINVAL;
8649         }
8650         return 0;
8651 }
8652
8653 /**
8654  *      dev_set_mtu_ext - Change maximum transfer unit
8655  *      @dev: device
8656  *      @new_mtu: new transfer unit
8657  *      @extack: netlink extended ack
8658  *
8659  *      Change the maximum transfer size of the network device.
8660  */
8661 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8662                     struct netlink_ext_ack *extack)
8663 {
8664         int err, orig_mtu;
8665
8666         if (new_mtu == dev->mtu)
8667                 return 0;
8668
8669         err = dev_validate_mtu(dev, new_mtu, extack);
8670         if (err)
8671                 return err;
8672
8673         if (!netif_device_present(dev))
8674                 return -ENODEV;
8675
8676         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8677         err = notifier_to_errno(err);
8678         if (err)
8679                 return err;
8680
8681         orig_mtu = dev->mtu;
8682         err = __dev_set_mtu(dev, new_mtu);
8683
8684         if (!err) {
8685                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8686                                                    orig_mtu);
8687                 err = notifier_to_errno(err);
8688                 if (err) {
8689                         /* setting mtu back and notifying everyone again,
8690                          * so that they have a chance to revert changes.
8691                          */
8692                         __dev_set_mtu(dev, orig_mtu);
8693                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8694                                                      new_mtu);
8695                 }
8696         }
8697         return err;
8698 }
8699
8700 int dev_set_mtu(struct net_device *dev, int new_mtu)
8701 {
8702         struct netlink_ext_ack extack;
8703         int err;
8704
8705         memset(&extack, 0, sizeof(extack));
8706         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8707         if (err && extack._msg)
8708                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8709         return err;
8710 }
8711 EXPORT_SYMBOL(dev_set_mtu);
8712
8713 /**
8714  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8715  *      @dev: device
8716  *      @new_len: new tx queue length
8717  */
8718 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8719 {
8720         unsigned int orig_len = dev->tx_queue_len;
8721         int res;
8722
8723         if (new_len != (unsigned int)new_len)
8724                 return -ERANGE;
8725
8726         if (new_len != orig_len) {
8727                 dev->tx_queue_len = new_len;
8728                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8729                 res = notifier_to_errno(res);
8730                 if (res)
8731                         goto err_rollback;
8732                 res = dev_qdisc_change_tx_queue_len(dev);
8733                 if (res)
8734                         goto err_rollback;
8735         }
8736
8737         return 0;
8738
8739 err_rollback:
8740         netdev_err(dev, "refused to change device tx_queue_len\n");
8741         dev->tx_queue_len = orig_len;
8742         return res;
8743 }
8744
8745 /**
8746  *      dev_set_group - Change group this device belongs to
8747  *      @dev: device
8748  *      @new_group: group this device should belong to
8749  */
8750 void dev_set_group(struct net_device *dev, int new_group)
8751 {
8752         dev->group = new_group;
8753 }
8754
8755 /**
8756  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8757  *      @dev: device
8758  *      @addr: new address
8759  *      @extack: netlink extended ack
8760  */
8761 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8762                               struct netlink_ext_ack *extack)
8763 {
8764         struct netdev_notifier_pre_changeaddr_info info = {
8765                 .info.dev = dev,
8766                 .info.extack = extack,
8767                 .dev_addr = addr,
8768         };
8769         int rc;
8770
8771         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8772         return notifier_to_errno(rc);
8773 }
8774 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8775
8776 /**
8777  *      dev_set_mac_address - Change Media Access Control Address
8778  *      @dev: device
8779  *      @sa: new address
8780  *      @extack: netlink extended ack
8781  *
8782  *      Change the hardware (MAC) address of the device
8783  */
8784 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8785                         struct netlink_ext_ack *extack)
8786 {
8787         const struct net_device_ops *ops = dev->netdev_ops;
8788         int err;
8789
8790         if (!ops->ndo_set_mac_address)
8791                 return -EOPNOTSUPP;
8792         if (sa->sa_family != dev->type)
8793                 return -EINVAL;
8794         if (!netif_device_present(dev))
8795                 return -ENODEV;
8796         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8797         if (err)
8798                 return err;
8799         err = ops->ndo_set_mac_address(dev, sa);
8800         if (err)
8801                 return err;
8802         dev->addr_assign_type = NET_ADDR_SET;
8803         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8804         add_device_randomness(dev->dev_addr, dev->addr_len);
8805         return 0;
8806 }
8807 EXPORT_SYMBOL(dev_set_mac_address);
8808
8809 static DECLARE_RWSEM(dev_addr_sem);
8810
8811 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8812                              struct netlink_ext_ack *extack)
8813 {
8814         int ret;
8815
8816         down_write(&dev_addr_sem);
8817         ret = dev_set_mac_address(dev, sa, extack);
8818         up_write(&dev_addr_sem);
8819         return ret;
8820 }
8821 EXPORT_SYMBOL(dev_set_mac_address_user);
8822
8823 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8824 {
8825         size_t size = sizeof(sa->sa_data);
8826         struct net_device *dev;
8827         int ret = 0;
8828
8829         down_read(&dev_addr_sem);
8830         rcu_read_lock();
8831
8832         dev = dev_get_by_name_rcu(net, dev_name);
8833         if (!dev) {
8834                 ret = -ENODEV;
8835                 goto unlock;
8836         }
8837         if (!dev->addr_len)
8838                 memset(sa->sa_data, 0, size);
8839         else
8840                 memcpy(sa->sa_data, dev->dev_addr,
8841                        min_t(size_t, size, dev->addr_len));
8842         sa->sa_family = dev->type;
8843
8844 unlock:
8845         rcu_read_unlock();
8846         up_read(&dev_addr_sem);
8847         return ret;
8848 }
8849 EXPORT_SYMBOL(dev_get_mac_address);
8850
8851 /**
8852  *      dev_change_carrier - Change device carrier
8853  *      @dev: device
8854  *      @new_carrier: new value
8855  *
8856  *      Change device carrier
8857  */
8858 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8859 {
8860         const struct net_device_ops *ops = dev->netdev_ops;
8861
8862         if (!ops->ndo_change_carrier)
8863                 return -EOPNOTSUPP;
8864         if (!netif_device_present(dev))
8865                 return -ENODEV;
8866         return ops->ndo_change_carrier(dev, new_carrier);
8867 }
8868
8869 /**
8870  *      dev_get_phys_port_id - Get device physical port ID
8871  *      @dev: device
8872  *      @ppid: port ID
8873  *
8874  *      Get device physical port ID
8875  */
8876 int dev_get_phys_port_id(struct net_device *dev,
8877                          struct netdev_phys_item_id *ppid)
8878 {
8879         const struct net_device_ops *ops = dev->netdev_ops;
8880
8881         if (!ops->ndo_get_phys_port_id)
8882                 return -EOPNOTSUPP;
8883         return ops->ndo_get_phys_port_id(dev, ppid);
8884 }
8885
8886 /**
8887  *      dev_get_phys_port_name - Get device physical port name
8888  *      @dev: device
8889  *      @name: port name
8890  *      @len: limit of bytes to copy to name
8891  *
8892  *      Get device physical port name
8893  */
8894 int dev_get_phys_port_name(struct net_device *dev,
8895                            char *name, size_t len)
8896 {
8897         const struct net_device_ops *ops = dev->netdev_ops;
8898         int err;
8899
8900         if (ops->ndo_get_phys_port_name) {
8901                 err = ops->ndo_get_phys_port_name(dev, name, len);
8902                 if (err != -EOPNOTSUPP)
8903                         return err;
8904         }
8905         return devlink_compat_phys_port_name_get(dev, name, len);
8906 }
8907
8908 /**
8909  *      dev_get_port_parent_id - Get the device's port parent identifier
8910  *      @dev: network device
8911  *      @ppid: pointer to a storage for the port's parent identifier
8912  *      @recurse: allow/disallow recursion to lower devices
8913  *
8914  *      Get the devices's port parent identifier
8915  */
8916 int dev_get_port_parent_id(struct net_device *dev,
8917                            struct netdev_phys_item_id *ppid,
8918                            bool recurse)
8919 {
8920         const struct net_device_ops *ops = dev->netdev_ops;
8921         struct netdev_phys_item_id first = { };
8922         struct net_device *lower_dev;
8923         struct list_head *iter;
8924         int err;
8925
8926         if (ops->ndo_get_port_parent_id) {
8927                 err = ops->ndo_get_port_parent_id(dev, ppid);
8928                 if (err != -EOPNOTSUPP)
8929                         return err;
8930         }
8931
8932         err = devlink_compat_switch_id_get(dev, ppid);
8933         if (!recurse || err != -EOPNOTSUPP)
8934                 return err;
8935
8936         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8937                 err = dev_get_port_parent_id(lower_dev, ppid, true);
8938                 if (err)
8939                         break;
8940                 if (!first.id_len)
8941                         first = *ppid;
8942                 else if (memcmp(&first, ppid, sizeof(*ppid)))
8943                         return -EOPNOTSUPP;
8944         }
8945
8946         return err;
8947 }
8948 EXPORT_SYMBOL(dev_get_port_parent_id);
8949
8950 /**
8951  *      netdev_port_same_parent_id - Indicate if two network devices have
8952  *      the same port parent identifier
8953  *      @a: first network device
8954  *      @b: second network device
8955  */
8956 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8957 {
8958         struct netdev_phys_item_id a_id = { };
8959         struct netdev_phys_item_id b_id = { };
8960
8961         if (dev_get_port_parent_id(a, &a_id, true) ||
8962             dev_get_port_parent_id(b, &b_id, true))
8963                 return false;
8964
8965         return netdev_phys_item_id_same(&a_id, &b_id);
8966 }
8967 EXPORT_SYMBOL(netdev_port_same_parent_id);
8968
8969 /**
8970  *      dev_change_proto_down - set carrier according to proto_down.
8971  *
8972  *      @dev: device
8973  *      @proto_down: new value
8974  */
8975 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8976 {
8977         if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8978                 return -EOPNOTSUPP;
8979         if (!netif_device_present(dev))
8980                 return -ENODEV;
8981         if (proto_down)
8982                 netif_carrier_off(dev);
8983         else
8984                 netif_carrier_on(dev);
8985         dev->proto_down = proto_down;
8986         return 0;
8987 }
8988
8989 /**
8990  *      dev_change_proto_down_reason - proto down reason
8991  *
8992  *      @dev: device
8993  *      @mask: proto down mask
8994  *      @value: proto down value
8995  */
8996 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8997                                   u32 value)
8998 {
8999         int b;
9000
9001         if (!mask) {
9002                 dev->proto_down_reason = value;
9003         } else {
9004                 for_each_set_bit(b, &mask, 32) {
9005                         if (value & (1 << b))
9006                                 dev->proto_down_reason |= BIT(b);
9007                         else
9008                                 dev->proto_down_reason &= ~BIT(b);
9009                 }
9010         }
9011 }
9012
9013 struct bpf_xdp_link {
9014         struct bpf_link link;
9015         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9016         int flags;
9017 };
9018
9019 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9020 {
9021         if (flags & XDP_FLAGS_HW_MODE)
9022                 return XDP_MODE_HW;
9023         if (flags & XDP_FLAGS_DRV_MODE)
9024                 return XDP_MODE_DRV;
9025         if (flags & XDP_FLAGS_SKB_MODE)
9026                 return XDP_MODE_SKB;
9027         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9028 }
9029
9030 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9031 {
9032         switch (mode) {
9033         case XDP_MODE_SKB:
9034                 return generic_xdp_install;
9035         case XDP_MODE_DRV:
9036         case XDP_MODE_HW:
9037                 return dev->netdev_ops->ndo_bpf;
9038         default:
9039                 return NULL;
9040         }
9041 }
9042
9043 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9044                                          enum bpf_xdp_mode mode)
9045 {
9046         return dev->xdp_state[mode].link;
9047 }
9048
9049 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9050                                      enum bpf_xdp_mode mode)
9051 {
9052         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9053
9054         if (link)
9055                 return link->link.prog;
9056         return dev->xdp_state[mode].prog;
9057 }
9058
9059 u8 dev_xdp_prog_count(struct net_device *dev)
9060 {
9061         u8 count = 0;
9062         int i;
9063
9064         for (i = 0; i < __MAX_XDP_MODE; i++)
9065                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9066                         count++;
9067         return count;
9068 }
9069 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9070
9071 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9072 {
9073         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9074
9075         return prog ? prog->aux->id : 0;
9076 }
9077
9078 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9079                              struct bpf_xdp_link *link)
9080 {
9081         dev->xdp_state[mode].link = link;
9082         dev->xdp_state[mode].prog = NULL;
9083 }
9084
9085 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9086                              struct bpf_prog *prog)
9087 {
9088         dev->xdp_state[mode].link = NULL;
9089         dev->xdp_state[mode].prog = prog;
9090 }
9091
9092 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9093                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9094                            u32 flags, struct bpf_prog *prog)
9095 {
9096         struct netdev_bpf xdp;
9097         int err;
9098
9099         memset(&xdp, 0, sizeof(xdp));
9100         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9101         xdp.extack = extack;
9102         xdp.flags = flags;
9103         xdp.prog = prog;
9104
9105         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9106          * "moved" into driver), so they don't increment it on their own, but
9107          * they do decrement refcnt when program is detached or replaced.
9108          * Given net_device also owns link/prog, we need to bump refcnt here
9109          * to prevent drivers from underflowing it.
9110          */
9111         if (prog)
9112                 bpf_prog_inc(prog);
9113         err = bpf_op(dev, &xdp);
9114         if (err) {
9115                 if (prog)
9116                         bpf_prog_put(prog);
9117                 return err;
9118         }
9119
9120         if (mode != XDP_MODE_HW)
9121                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9122
9123         return 0;
9124 }
9125
9126 static void dev_xdp_uninstall(struct net_device *dev)
9127 {
9128         struct bpf_xdp_link *link;
9129         struct bpf_prog *prog;
9130         enum bpf_xdp_mode mode;
9131         bpf_op_t bpf_op;
9132
9133         ASSERT_RTNL();
9134
9135         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9136                 prog = dev_xdp_prog(dev, mode);
9137                 if (!prog)
9138                         continue;
9139
9140                 bpf_op = dev_xdp_bpf_op(dev, mode);
9141                 if (!bpf_op)
9142                         continue;
9143
9144                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9145
9146                 /* auto-detach link from net device */
9147                 link = dev_xdp_link(dev, mode);
9148                 if (link)
9149                         link->dev = NULL;
9150                 else
9151                         bpf_prog_put(prog);
9152
9153                 dev_xdp_set_link(dev, mode, NULL);
9154         }
9155 }
9156
9157 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9158                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9159                           struct bpf_prog *old_prog, u32 flags)
9160 {
9161         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9162         struct bpf_prog *cur_prog;
9163         struct net_device *upper;
9164         struct list_head *iter;
9165         enum bpf_xdp_mode mode;
9166         bpf_op_t bpf_op;
9167         int err;
9168
9169         ASSERT_RTNL();
9170
9171         /* either link or prog attachment, never both */
9172         if (link && (new_prog || old_prog))
9173                 return -EINVAL;
9174         /* link supports only XDP mode flags */
9175         if (link && (flags & ~XDP_FLAGS_MODES)) {
9176                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9177                 return -EINVAL;
9178         }
9179         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9180         if (num_modes > 1) {
9181                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9182                 return -EINVAL;
9183         }
9184         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9185         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9186                 NL_SET_ERR_MSG(extack,
9187                                "More than one program loaded, unset mode is ambiguous");
9188                 return -EINVAL;
9189         }
9190         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9191         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9192                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9193                 return -EINVAL;
9194         }
9195
9196         mode = dev_xdp_mode(dev, flags);
9197         /* can't replace attached link */
9198         if (dev_xdp_link(dev, mode)) {
9199                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9200                 return -EBUSY;
9201         }
9202
9203         /* don't allow if an upper device already has a program */
9204         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9205                 if (dev_xdp_prog_count(upper) > 0) {
9206                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9207                         return -EEXIST;
9208                 }
9209         }
9210
9211         cur_prog = dev_xdp_prog(dev, mode);
9212         /* can't replace attached prog with link */
9213         if (link && cur_prog) {
9214                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9215                 return -EBUSY;
9216         }
9217         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9218                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9219                 return -EEXIST;
9220         }
9221
9222         /* put effective new program into new_prog */
9223         if (link)
9224                 new_prog = link->link.prog;
9225
9226         if (new_prog) {
9227                 bool offload = mode == XDP_MODE_HW;
9228                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9229                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9230
9231                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9232                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9233                         return -EBUSY;
9234                 }
9235                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9236                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9237                         return -EEXIST;
9238                 }
9239                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9240                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9241                         return -EINVAL;
9242                 }
9243                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9244                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9245                         return -EINVAL;
9246                 }
9247                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9248                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9249                         return -EINVAL;
9250                 }
9251         }
9252
9253         /* don't call drivers if the effective program didn't change */
9254         if (new_prog != cur_prog) {
9255                 bpf_op = dev_xdp_bpf_op(dev, mode);
9256                 if (!bpf_op) {
9257                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9258                         return -EOPNOTSUPP;
9259                 }
9260
9261                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9262                 if (err)
9263                         return err;
9264         }
9265
9266         if (link)
9267                 dev_xdp_set_link(dev, mode, link);
9268         else
9269                 dev_xdp_set_prog(dev, mode, new_prog);
9270         if (cur_prog)
9271                 bpf_prog_put(cur_prog);
9272
9273         return 0;
9274 }
9275
9276 static int dev_xdp_attach_link(struct net_device *dev,
9277                                struct netlink_ext_ack *extack,
9278                                struct bpf_xdp_link *link)
9279 {
9280         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9281 }
9282
9283 static int dev_xdp_detach_link(struct net_device *dev,
9284                                struct netlink_ext_ack *extack,
9285                                struct bpf_xdp_link *link)
9286 {
9287         enum bpf_xdp_mode mode;
9288         bpf_op_t bpf_op;
9289
9290         ASSERT_RTNL();
9291
9292         mode = dev_xdp_mode(dev, link->flags);
9293         if (dev_xdp_link(dev, mode) != link)
9294                 return -EINVAL;
9295
9296         bpf_op = dev_xdp_bpf_op(dev, mode);
9297         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9298         dev_xdp_set_link(dev, mode, NULL);
9299         return 0;
9300 }
9301
9302 static void bpf_xdp_link_release(struct bpf_link *link)
9303 {
9304         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9305
9306         rtnl_lock();
9307
9308         /* if racing with net_device's tear down, xdp_link->dev might be
9309          * already NULL, in which case link was already auto-detached
9310          */
9311         if (xdp_link->dev) {
9312                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9313                 xdp_link->dev = NULL;
9314         }
9315
9316         rtnl_unlock();
9317 }
9318
9319 static int bpf_xdp_link_detach(struct bpf_link *link)
9320 {
9321         bpf_xdp_link_release(link);
9322         return 0;
9323 }
9324
9325 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9326 {
9327         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9328
9329         kfree(xdp_link);
9330 }
9331
9332 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9333                                      struct seq_file *seq)
9334 {
9335         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9336         u32 ifindex = 0;
9337
9338         rtnl_lock();
9339         if (xdp_link->dev)
9340                 ifindex = xdp_link->dev->ifindex;
9341         rtnl_unlock();
9342
9343         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9344 }
9345
9346 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9347                                        struct bpf_link_info *info)
9348 {
9349         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9350         u32 ifindex = 0;
9351
9352         rtnl_lock();
9353         if (xdp_link->dev)
9354                 ifindex = xdp_link->dev->ifindex;
9355         rtnl_unlock();
9356
9357         info->xdp.ifindex = ifindex;
9358         return 0;
9359 }
9360
9361 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9362                                struct bpf_prog *old_prog)
9363 {
9364         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9365         enum bpf_xdp_mode mode;
9366         bpf_op_t bpf_op;
9367         int err = 0;
9368
9369         rtnl_lock();
9370
9371         /* link might have been auto-released already, so fail */
9372         if (!xdp_link->dev) {
9373                 err = -ENOLINK;
9374                 goto out_unlock;
9375         }
9376
9377         if (old_prog && link->prog != old_prog) {
9378                 err = -EPERM;
9379                 goto out_unlock;
9380         }
9381         old_prog = link->prog;
9382         if (old_prog->type != new_prog->type ||
9383             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9384                 err = -EINVAL;
9385                 goto out_unlock;
9386         }
9387
9388         if (old_prog == new_prog) {
9389                 /* no-op, don't disturb drivers */
9390                 bpf_prog_put(new_prog);
9391                 goto out_unlock;
9392         }
9393
9394         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9395         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9396         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9397                               xdp_link->flags, new_prog);
9398         if (err)
9399                 goto out_unlock;
9400
9401         old_prog = xchg(&link->prog, new_prog);
9402         bpf_prog_put(old_prog);
9403
9404 out_unlock:
9405         rtnl_unlock();
9406         return err;
9407 }
9408
9409 static const struct bpf_link_ops bpf_xdp_link_lops = {
9410         .release = bpf_xdp_link_release,
9411         .dealloc = bpf_xdp_link_dealloc,
9412         .detach = bpf_xdp_link_detach,
9413         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9414         .fill_link_info = bpf_xdp_link_fill_link_info,
9415         .update_prog = bpf_xdp_link_update,
9416 };
9417
9418 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9419 {
9420         struct net *net = current->nsproxy->net_ns;
9421         struct bpf_link_primer link_primer;
9422         struct bpf_xdp_link *link;
9423         struct net_device *dev;
9424         int err, fd;
9425
9426         rtnl_lock();
9427         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9428         if (!dev) {
9429                 rtnl_unlock();
9430                 return -EINVAL;
9431         }
9432
9433         link = kzalloc(sizeof(*link), GFP_USER);
9434         if (!link) {
9435                 err = -ENOMEM;
9436                 goto unlock;
9437         }
9438
9439         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9440         link->dev = dev;
9441         link->flags = attr->link_create.flags;
9442
9443         err = bpf_link_prime(&link->link, &link_primer);
9444         if (err) {
9445                 kfree(link);
9446                 goto unlock;
9447         }
9448
9449         err = dev_xdp_attach_link(dev, NULL, link);
9450         rtnl_unlock();
9451
9452         if (err) {
9453                 link->dev = NULL;
9454                 bpf_link_cleanup(&link_primer);
9455                 goto out_put_dev;
9456         }
9457
9458         fd = bpf_link_settle(&link_primer);
9459         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9460         dev_put(dev);
9461         return fd;
9462
9463 unlock:
9464         rtnl_unlock();
9465
9466 out_put_dev:
9467         dev_put(dev);
9468         return err;
9469 }
9470
9471 /**
9472  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9473  *      @dev: device
9474  *      @extack: netlink extended ack
9475  *      @fd: new program fd or negative value to clear
9476  *      @expected_fd: old program fd that userspace expects to replace or clear
9477  *      @flags: xdp-related flags
9478  *
9479  *      Set or clear a bpf program for a device
9480  */
9481 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9482                       int fd, int expected_fd, u32 flags)
9483 {
9484         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9485         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9486         int err;
9487
9488         ASSERT_RTNL();
9489
9490         if (fd >= 0) {
9491                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9492                                                  mode != XDP_MODE_SKB);
9493                 if (IS_ERR(new_prog))
9494                         return PTR_ERR(new_prog);
9495         }
9496
9497         if (expected_fd >= 0) {
9498                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9499                                                  mode != XDP_MODE_SKB);
9500                 if (IS_ERR(old_prog)) {
9501                         err = PTR_ERR(old_prog);
9502                         old_prog = NULL;
9503                         goto err_out;
9504                 }
9505         }
9506
9507         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9508
9509 err_out:
9510         if (err && new_prog)
9511                 bpf_prog_put(new_prog);
9512         if (old_prog)
9513                 bpf_prog_put(old_prog);
9514         return err;
9515 }
9516
9517 /**
9518  *      dev_new_index   -       allocate an ifindex
9519  *      @net: the applicable net namespace
9520  *
9521  *      Returns a suitable unique value for a new device interface
9522  *      number.  The caller must hold the rtnl semaphore or the
9523  *      dev_base_lock to be sure it remains unique.
9524  */
9525 static int dev_new_index(struct net *net)
9526 {
9527         int ifindex = net->ifindex;
9528
9529         for (;;) {
9530                 if (++ifindex <= 0)
9531                         ifindex = 1;
9532                 if (!__dev_get_by_index(net, ifindex))
9533                         return net->ifindex = ifindex;
9534         }
9535 }
9536
9537 /* Delayed registration/unregisteration */
9538 LIST_HEAD(net_todo_list);
9539 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9540
9541 static void net_set_todo(struct net_device *dev)
9542 {
9543         list_add_tail(&dev->todo_list, &net_todo_list);
9544         atomic_inc(&dev_net(dev)->dev_unreg_count);
9545 }
9546
9547 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9548         struct net_device *upper, netdev_features_t features)
9549 {
9550         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9551         netdev_features_t feature;
9552         int feature_bit;
9553
9554         for_each_netdev_feature(upper_disables, feature_bit) {
9555                 feature = __NETIF_F_BIT(feature_bit);
9556                 if (!(upper->wanted_features & feature)
9557                     && (features & feature)) {
9558                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9559                                    &feature, upper->name);
9560                         features &= ~feature;
9561                 }
9562         }
9563
9564         return features;
9565 }
9566
9567 static void netdev_sync_lower_features(struct net_device *upper,
9568         struct net_device *lower, netdev_features_t features)
9569 {
9570         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9571         netdev_features_t feature;
9572         int feature_bit;
9573
9574         for_each_netdev_feature(upper_disables, feature_bit) {
9575                 feature = __NETIF_F_BIT(feature_bit);
9576                 if (!(features & feature) && (lower->features & feature)) {
9577                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9578                                    &feature, lower->name);
9579                         lower->wanted_features &= ~feature;
9580                         __netdev_update_features(lower);
9581
9582                         if (unlikely(lower->features & feature))
9583                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9584                                             &feature, lower->name);
9585                         else
9586                                 netdev_features_change(lower);
9587                 }
9588         }
9589 }
9590
9591 static netdev_features_t netdev_fix_features(struct net_device *dev,
9592         netdev_features_t features)
9593 {
9594         /* Fix illegal checksum combinations */
9595         if ((features & NETIF_F_HW_CSUM) &&
9596             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9597                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9598                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9599         }
9600
9601         /* TSO requires that SG is present as well. */
9602         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9603                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9604                 features &= ~NETIF_F_ALL_TSO;
9605         }
9606
9607         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9608                                         !(features & NETIF_F_IP_CSUM)) {
9609                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9610                 features &= ~NETIF_F_TSO;
9611                 features &= ~NETIF_F_TSO_ECN;
9612         }
9613
9614         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9615                                          !(features & NETIF_F_IPV6_CSUM)) {
9616                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9617                 features &= ~NETIF_F_TSO6;
9618         }
9619
9620         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9621         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9622                 features &= ~NETIF_F_TSO_MANGLEID;
9623
9624         /* TSO ECN requires that TSO is present as well. */
9625         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9626                 features &= ~NETIF_F_TSO_ECN;
9627
9628         /* Software GSO depends on SG. */
9629         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9630                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9631                 features &= ~NETIF_F_GSO;
9632         }
9633
9634         /* GSO partial features require GSO partial be set */
9635         if ((features & dev->gso_partial_features) &&
9636             !(features & NETIF_F_GSO_PARTIAL)) {
9637                 netdev_dbg(dev,
9638                            "Dropping partially supported GSO features since no GSO partial.\n");
9639                 features &= ~dev->gso_partial_features;
9640         }
9641
9642         if (!(features & NETIF_F_RXCSUM)) {
9643                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9644                  * successfully merged by hardware must also have the
9645                  * checksum verified by hardware.  If the user does not
9646                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9647                  */
9648                 if (features & NETIF_F_GRO_HW) {
9649                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9650                         features &= ~NETIF_F_GRO_HW;
9651                 }
9652         }
9653
9654         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9655         if (features & NETIF_F_RXFCS) {
9656                 if (features & NETIF_F_LRO) {
9657                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9658                         features &= ~NETIF_F_LRO;
9659                 }
9660
9661                 if (features & NETIF_F_GRO_HW) {
9662                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9663                         features &= ~NETIF_F_GRO_HW;
9664                 }
9665         }
9666
9667         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9668                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9669                 features &= ~NETIF_F_LRO;
9670         }
9671
9672         if (features & NETIF_F_HW_TLS_TX) {
9673                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9674                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9675                 bool hw_csum = features & NETIF_F_HW_CSUM;
9676
9677                 if (!ip_csum && !hw_csum) {
9678                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9679                         features &= ~NETIF_F_HW_TLS_TX;
9680                 }
9681         }
9682
9683         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9684                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9685                 features &= ~NETIF_F_HW_TLS_RX;
9686         }
9687
9688         return features;
9689 }
9690
9691 int __netdev_update_features(struct net_device *dev)
9692 {
9693         struct net_device *upper, *lower;
9694         netdev_features_t features;
9695         struct list_head *iter;
9696         int err = -1;
9697
9698         ASSERT_RTNL();
9699
9700         features = netdev_get_wanted_features(dev);
9701
9702         if (dev->netdev_ops->ndo_fix_features)
9703                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9704
9705         /* driver might be less strict about feature dependencies */
9706         features = netdev_fix_features(dev, features);
9707
9708         /* some features can't be enabled if they're off on an upper device */
9709         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9710                 features = netdev_sync_upper_features(dev, upper, features);
9711
9712         if (dev->features == features)
9713                 goto sync_lower;
9714
9715         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9716                 &dev->features, &features);
9717
9718         if (dev->netdev_ops->ndo_set_features)
9719                 err = dev->netdev_ops->ndo_set_features(dev, features);
9720         else
9721                 err = 0;
9722
9723         if (unlikely(err < 0)) {
9724                 netdev_err(dev,
9725                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9726                         err, &features, &dev->features);
9727                 /* return non-0 since some features might have changed and
9728                  * it's better to fire a spurious notification than miss it
9729                  */
9730                 return -1;
9731         }
9732
9733 sync_lower:
9734         /* some features must be disabled on lower devices when disabled
9735          * on an upper device (think: bonding master or bridge)
9736          */
9737         netdev_for_each_lower_dev(dev, lower, iter)
9738                 netdev_sync_lower_features(dev, lower, features);
9739
9740         if (!err) {
9741                 netdev_features_t diff = features ^ dev->features;
9742
9743                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9744                         /* udp_tunnel_{get,drop}_rx_info both need
9745                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9746                          * device, or they won't do anything.
9747                          * Thus we need to update dev->features
9748                          * *before* calling udp_tunnel_get_rx_info,
9749                          * but *after* calling udp_tunnel_drop_rx_info.
9750                          */
9751                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9752                                 dev->features = features;
9753                                 udp_tunnel_get_rx_info(dev);
9754                         } else {
9755                                 udp_tunnel_drop_rx_info(dev);
9756                         }
9757                 }
9758
9759                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9760                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9761                                 dev->features = features;
9762                                 err |= vlan_get_rx_ctag_filter_info(dev);
9763                         } else {
9764                                 vlan_drop_rx_ctag_filter_info(dev);
9765                         }
9766                 }
9767
9768                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9769                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9770                                 dev->features = features;
9771                                 err |= vlan_get_rx_stag_filter_info(dev);
9772                         } else {
9773                                 vlan_drop_rx_stag_filter_info(dev);
9774                         }
9775                 }
9776
9777                 dev->features = features;
9778         }
9779
9780         return err < 0 ? 0 : 1;
9781 }
9782
9783 /**
9784  *      netdev_update_features - recalculate device features
9785  *      @dev: the device to check
9786  *
9787  *      Recalculate dev->features set and send notifications if it
9788  *      has changed. Should be called after driver or hardware dependent
9789  *      conditions might have changed that influence the features.
9790  */
9791 void netdev_update_features(struct net_device *dev)
9792 {
9793         if (__netdev_update_features(dev))
9794                 netdev_features_change(dev);
9795 }
9796 EXPORT_SYMBOL(netdev_update_features);
9797
9798 /**
9799  *      netdev_change_features - recalculate device features
9800  *      @dev: the device to check
9801  *
9802  *      Recalculate dev->features set and send notifications even
9803  *      if they have not changed. Should be called instead of
9804  *      netdev_update_features() if also dev->vlan_features might
9805  *      have changed to allow the changes to be propagated to stacked
9806  *      VLAN devices.
9807  */
9808 void netdev_change_features(struct net_device *dev)
9809 {
9810         __netdev_update_features(dev);
9811         netdev_features_change(dev);
9812 }
9813 EXPORT_SYMBOL(netdev_change_features);
9814
9815 /**
9816  *      netif_stacked_transfer_operstate -      transfer operstate
9817  *      @rootdev: the root or lower level device to transfer state from
9818  *      @dev: the device to transfer operstate to
9819  *
9820  *      Transfer operational state from root to device. This is normally
9821  *      called when a stacking relationship exists between the root
9822  *      device and the device(a leaf device).
9823  */
9824 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9825                                         struct net_device *dev)
9826 {
9827         if (rootdev->operstate == IF_OPER_DORMANT)
9828                 netif_dormant_on(dev);
9829         else
9830                 netif_dormant_off(dev);
9831
9832         if (rootdev->operstate == IF_OPER_TESTING)
9833                 netif_testing_on(dev);
9834         else
9835                 netif_testing_off(dev);
9836
9837         if (netif_carrier_ok(rootdev))
9838                 netif_carrier_on(dev);
9839         else
9840                 netif_carrier_off(dev);
9841 }
9842 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9843
9844 static int netif_alloc_rx_queues(struct net_device *dev)
9845 {
9846         unsigned int i, count = dev->num_rx_queues;
9847         struct netdev_rx_queue *rx;
9848         size_t sz = count * sizeof(*rx);
9849         int err = 0;
9850
9851         BUG_ON(count < 1);
9852
9853         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9854         if (!rx)
9855                 return -ENOMEM;
9856
9857         dev->_rx = rx;
9858
9859         for (i = 0; i < count; i++) {
9860                 rx[i].dev = dev;
9861
9862                 /* XDP RX-queue setup */
9863                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9864                 if (err < 0)
9865                         goto err_rxq_info;
9866         }
9867         return 0;
9868
9869 err_rxq_info:
9870         /* Rollback successful reg's and free other resources */
9871         while (i--)
9872                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9873         kvfree(dev->_rx);
9874         dev->_rx = NULL;
9875         return err;
9876 }
9877
9878 static void netif_free_rx_queues(struct net_device *dev)
9879 {
9880         unsigned int i, count = dev->num_rx_queues;
9881
9882         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9883         if (!dev->_rx)
9884                 return;
9885
9886         for (i = 0; i < count; i++)
9887                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9888
9889         kvfree(dev->_rx);
9890 }
9891
9892 static void netdev_init_one_queue(struct net_device *dev,
9893                                   struct netdev_queue *queue, void *_unused)
9894 {
9895         /* Initialize queue lock */
9896         spin_lock_init(&queue->_xmit_lock);
9897         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9898         queue->xmit_lock_owner = -1;
9899         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9900         queue->dev = dev;
9901 #ifdef CONFIG_BQL
9902         dql_init(&queue->dql, HZ);
9903 #endif
9904 }
9905
9906 static void netif_free_tx_queues(struct net_device *dev)
9907 {
9908         kvfree(dev->_tx);
9909 }
9910
9911 static int netif_alloc_netdev_queues(struct net_device *dev)
9912 {
9913         unsigned int count = dev->num_tx_queues;
9914         struct netdev_queue *tx;
9915         size_t sz = count * sizeof(*tx);
9916
9917         if (count < 1 || count > 0xffff)
9918                 return -EINVAL;
9919
9920         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9921         if (!tx)
9922                 return -ENOMEM;
9923
9924         dev->_tx = tx;
9925
9926         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9927         spin_lock_init(&dev->tx_global_lock);
9928
9929         return 0;
9930 }
9931
9932 void netif_tx_stop_all_queues(struct net_device *dev)
9933 {
9934         unsigned int i;
9935
9936         for (i = 0; i < dev->num_tx_queues; i++) {
9937                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9938
9939                 netif_tx_stop_queue(txq);
9940         }
9941 }
9942 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9943
9944 /**
9945  * register_netdevice() - register a network device
9946  * @dev: device to register
9947  *
9948  * Take a prepared network device structure and make it externally accessible.
9949  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9950  * Callers must hold the rtnl lock - you may want register_netdev()
9951  * instead of this.
9952  */
9953 int register_netdevice(struct net_device *dev)
9954 {
9955         int ret;
9956         struct net *net = dev_net(dev);
9957
9958         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9959                      NETDEV_FEATURE_COUNT);
9960         BUG_ON(dev_boot_phase);
9961         ASSERT_RTNL();
9962
9963         might_sleep();
9964
9965         /* When net_device's are persistent, this will be fatal. */
9966         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9967         BUG_ON(!net);
9968
9969         ret = ethtool_check_ops(dev->ethtool_ops);
9970         if (ret)
9971                 return ret;
9972
9973         spin_lock_init(&dev->addr_list_lock);
9974         netdev_set_addr_lockdep_class(dev);
9975
9976         ret = dev_get_valid_name(net, dev, dev->name);
9977         if (ret < 0)
9978                 goto out;
9979
9980         ret = -ENOMEM;
9981         dev->name_node = netdev_name_node_head_alloc(dev);
9982         if (!dev->name_node)
9983                 goto out;
9984
9985         /* Init, if this function is available */
9986         if (dev->netdev_ops->ndo_init) {
9987                 ret = dev->netdev_ops->ndo_init(dev);
9988                 if (ret) {
9989                         if (ret > 0)
9990                                 ret = -EIO;
9991                         goto err_free_name;
9992                 }
9993         }
9994
9995         if (((dev->hw_features | dev->features) &
9996              NETIF_F_HW_VLAN_CTAG_FILTER) &&
9997             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9998              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9999                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10000                 ret = -EINVAL;
10001                 goto err_uninit;
10002         }
10003
10004         ret = -EBUSY;
10005         if (!dev->ifindex)
10006                 dev->ifindex = dev_new_index(net);
10007         else if (__dev_get_by_index(net, dev->ifindex))
10008                 goto err_uninit;
10009
10010         /* Transfer changeable features to wanted_features and enable
10011          * software offloads (GSO and GRO).
10012          */
10013         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10014         dev->features |= NETIF_F_SOFT_FEATURES;
10015
10016         if (dev->udp_tunnel_nic_info) {
10017                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10018                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10019         }
10020
10021         dev->wanted_features = dev->features & dev->hw_features;
10022
10023         if (!(dev->flags & IFF_LOOPBACK))
10024                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10025
10026         /* If IPv4 TCP segmentation offload is supported we should also
10027          * allow the device to enable segmenting the frame with the option
10028          * of ignoring a static IP ID value.  This doesn't enable the
10029          * feature itself but allows the user to enable it later.
10030          */
10031         if (dev->hw_features & NETIF_F_TSO)
10032                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10033         if (dev->vlan_features & NETIF_F_TSO)
10034                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10035         if (dev->mpls_features & NETIF_F_TSO)
10036                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10037         if (dev->hw_enc_features & NETIF_F_TSO)
10038                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10039
10040         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10041          */
10042         dev->vlan_features |= NETIF_F_HIGHDMA;
10043
10044         /* Make NETIF_F_SG inheritable to tunnel devices.
10045          */
10046         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10047
10048         /* Make NETIF_F_SG inheritable to MPLS.
10049          */
10050         dev->mpls_features |= NETIF_F_SG;
10051
10052         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10053         ret = notifier_to_errno(ret);
10054         if (ret)
10055                 goto err_uninit;
10056
10057         ret = netdev_register_kobject(dev);
10058         write_lock(&dev_base_lock);
10059         dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10060         write_unlock(&dev_base_lock);
10061         if (ret)
10062                 goto err_uninit;
10063
10064         __netdev_update_features(dev);
10065
10066         /*
10067          *      Default initial state at registry is that the
10068          *      device is present.
10069          */
10070
10071         set_bit(__LINK_STATE_PRESENT, &dev->state);
10072
10073         linkwatch_init_dev(dev);
10074
10075         dev_init_scheduler(dev);
10076
10077         netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10078         list_netdevice(dev);
10079
10080         add_device_randomness(dev->dev_addr, dev->addr_len);
10081
10082         /* If the device has permanent device address, driver should
10083          * set dev_addr and also addr_assign_type should be set to
10084          * NET_ADDR_PERM (default value).
10085          */
10086         if (dev->addr_assign_type == NET_ADDR_PERM)
10087                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10088
10089         /* Notify protocols, that a new device appeared. */
10090         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10091         ret = notifier_to_errno(ret);
10092         if (ret) {
10093                 /* Expect explicit free_netdev() on failure */
10094                 dev->needs_free_netdev = false;
10095                 unregister_netdevice_queue(dev, NULL);
10096                 goto out;
10097         }
10098         /*
10099          *      Prevent userspace races by waiting until the network
10100          *      device is fully setup before sending notifications.
10101          */
10102         if (!dev->rtnl_link_ops ||
10103             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10104                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10105
10106 out:
10107         return ret;
10108
10109 err_uninit:
10110         if (dev->netdev_ops->ndo_uninit)
10111                 dev->netdev_ops->ndo_uninit(dev);
10112         if (dev->priv_destructor)
10113                 dev->priv_destructor(dev);
10114 err_free_name:
10115         netdev_name_node_free(dev->name_node);
10116         goto out;
10117 }
10118 EXPORT_SYMBOL(register_netdevice);
10119
10120 /**
10121  *      init_dummy_netdev       - init a dummy network device for NAPI
10122  *      @dev: device to init
10123  *
10124  *      This takes a network device structure and initialize the minimum
10125  *      amount of fields so it can be used to schedule NAPI polls without
10126  *      registering a full blown interface. This is to be used by drivers
10127  *      that need to tie several hardware interfaces to a single NAPI
10128  *      poll scheduler due to HW limitations.
10129  */
10130 int init_dummy_netdev(struct net_device *dev)
10131 {
10132         /* Clear everything. Note we don't initialize spinlocks
10133          * are they aren't supposed to be taken by any of the
10134          * NAPI code and this dummy netdev is supposed to be
10135          * only ever used for NAPI polls
10136          */
10137         memset(dev, 0, sizeof(struct net_device));
10138
10139         /* make sure we BUG if trying to hit standard
10140          * register/unregister code path
10141          */
10142         dev->reg_state = NETREG_DUMMY;
10143
10144         /* NAPI wants this */
10145         INIT_LIST_HEAD(&dev->napi_list);
10146
10147         /* a dummy interface is started by default */
10148         set_bit(__LINK_STATE_PRESENT, &dev->state);
10149         set_bit(__LINK_STATE_START, &dev->state);
10150
10151         /* napi_busy_loop stats accounting wants this */
10152         dev_net_set(dev, &init_net);
10153
10154         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10155          * because users of this 'device' dont need to change
10156          * its refcount.
10157          */
10158
10159         return 0;
10160 }
10161 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10162
10163
10164 /**
10165  *      register_netdev - register a network device
10166  *      @dev: device to register
10167  *
10168  *      Take a completed network device structure and add it to the kernel
10169  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10170  *      chain. 0 is returned on success. A negative errno code is returned
10171  *      on a failure to set up the device, or if the name is a duplicate.
10172  *
10173  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10174  *      and expands the device name if you passed a format string to
10175  *      alloc_netdev.
10176  */
10177 int register_netdev(struct net_device *dev)
10178 {
10179         int err;
10180
10181         if (rtnl_lock_killable())
10182                 return -EINTR;
10183         err = register_netdevice(dev);
10184         rtnl_unlock();
10185         return err;
10186 }
10187 EXPORT_SYMBOL(register_netdev);
10188
10189 int netdev_refcnt_read(const struct net_device *dev)
10190 {
10191 #ifdef CONFIG_PCPU_DEV_REFCNT
10192         int i, refcnt = 0;
10193
10194         for_each_possible_cpu(i)
10195                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10196         return refcnt;
10197 #else
10198         return refcount_read(&dev->dev_refcnt);
10199 #endif
10200 }
10201 EXPORT_SYMBOL(netdev_refcnt_read);
10202
10203 int netdev_unregister_timeout_secs __read_mostly = 10;
10204
10205 #define WAIT_REFS_MIN_MSECS 1
10206 #define WAIT_REFS_MAX_MSECS 250
10207 /**
10208  * netdev_wait_allrefs_any - wait until all references are gone.
10209  * @list: list of net_devices to wait on
10210  *
10211  * This is called when unregistering network devices.
10212  *
10213  * Any protocol or device that holds a reference should register
10214  * for netdevice notification, and cleanup and put back the
10215  * reference if they receive an UNREGISTER event.
10216  * We can get stuck here if buggy protocols don't correctly
10217  * call dev_put.
10218  */
10219 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10220 {
10221         unsigned long rebroadcast_time, warning_time;
10222         struct net_device *dev;
10223         int wait = 0;
10224
10225         rebroadcast_time = warning_time = jiffies;
10226
10227         list_for_each_entry(dev, list, todo_list)
10228                 if (netdev_refcnt_read(dev) == 1)
10229                         return dev;
10230
10231         while (true) {
10232                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10233                         rtnl_lock();
10234
10235                         /* Rebroadcast unregister notification */
10236                         list_for_each_entry(dev, list, todo_list)
10237                                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10238
10239                         __rtnl_unlock();
10240                         rcu_barrier();
10241                         rtnl_lock();
10242
10243                         list_for_each_entry(dev, list, todo_list)
10244                                 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10245                                              &dev->state)) {
10246                                         /* We must not have linkwatch events
10247                                          * pending on unregister. If this
10248                                          * happens, we simply run the queue
10249                                          * unscheduled, resulting in a noop
10250                                          * for this device.
10251                                          */
10252                                         linkwatch_run_queue();
10253                                         break;
10254                                 }
10255
10256                         __rtnl_unlock();
10257
10258                         rebroadcast_time = jiffies;
10259                 }
10260
10261                 if (!wait) {
10262                         rcu_barrier();
10263                         wait = WAIT_REFS_MIN_MSECS;
10264                 } else {
10265                         msleep(wait);
10266                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10267                 }
10268
10269                 list_for_each_entry(dev, list, todo_list)
10270                         if (netdev_refcnt_read(dev) == 1)
10271                                 return dev;
10272
10273                 if (time_after(jiffies, warning_time +
10274                                READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10275                         list_for_each_entry(dev, list, todo_list) {
10276                                 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10277                                          dev->name, netdev_refcnt_read(dev));
10278                                 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10279                         }
10280
10281                         warning_time = jiffies;
10282                 }
10283         }
10284 }
10285
10286 /* The sequence is:
10287  *
10288  *      rtnl_lock();
10289  *      ...
10290  *      register_netdevice(x1);
10291  *      register_netdevice(x2);
10292  *      ...
10293  *      unregister_netdevice(y1);
10294  *      unregister_netdevice(y2);
10295  *      ...
10296  *      rtnl_unlock();
10297  *      free_netdev(y1);
10298  *      free_netdev(y2);
10299  *
10300  * We are invoked by rtnl_unlock().
10301  * This allows us to deal with problems:
10302  * 1) We can delete sysfs objects which invoke hotplug
10303  *    without deadlocking with linkwatch via keventd.
10304  * 2) Since we run with the RTNL semaphore not held, we can sleep
10305  *    safely in order to wait for the netdev refcnt to drop to zero.
10306  *
10307  * We must not return until all unregister events added during
10308  * the interval the lock was held have been completed.
10309  */
10310 void netdev_run_todo(void)
10311 {
10312         struct net_device *dev, *tmp;
10313         struct list_head list;
10314 #ifdef CONFIG_LOCKDEP
10315         struct list_head unlink_list;
10316
10317         list_replace_init(&net_unlink_list, &unlink_list);
10318
10319         while (!list_empty(&unlink_list)) {
10320                 struct net_device *dev = list_first_entry(&unlink_list,
10321                                                           struct net_device,
10322                                                           unlink_list);
10323                 list_del_init(&dev->unlink_list);
10324                 dev->nested_level = dev->lower_level - 1;
10325         }
10326 #endif
10327
10328         /* Snapshot list, allow later requests */
10329         list_replace_init(&net_todo_list, &list);
10330
10331         __rtnl_unlock();
10332
10333         /* Wait for rcu callbacks to finish before next phase */
10334         if (!list_empty(&list))
10335                 rcu_barrier();
10336
10337         list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10338                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10339                         netdev_WARN(dev, "run_todo but not unregistering\n");
10340                         list_del(&dev->todo_list);
10341                         continue;
10342                 }
10343
10344                 write_lock(&dev_base_lock);
10345                 dev->reg_state = NETREG_UNREGISTERED;
10346                 write_unlock(&dev_base_lock);
10347                 linkwatch_forget_dev(dev);
10348         }
10349
10350         while (!list_empty(&list)) {
10351                 dev = netdev_wait_allrefs_any(&list);
10352                 list_del(&dev->todo_list);
10353
10354                 /* paranoia */
10355                 BUG_ON(netdev_refcnt_read(dev) != 1);
10356                 BUG_ON(!list_empty(&dev->ptype_all));
10357                 BUG_ON(!list_empty(&dev->ptype_specific));
10358                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10359                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10360
10361                 if (dev->priv_destructor)
10362                         dev->priv_destructor(dev);
10363                 if (dev->needs_free_netdev)
10364                         free_netdev(dev);
10365
10366                 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10367                         wake_up(&netdev_unregistering_wq);
10368
10369                 /* Free network device */
10370                 kobject_put(&dev->dev.kobj);
10371         }
10372 }
10373
10374 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10375  * all the same fields in the same order as net_device_stats, with only
10376  * the type differing, but rtnl_link_stats64 may have additional fields
10377  * at the end for newer counters.
10378  */
10379 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10380                              const struct net_device_stats *netdev_stats)
10381 {
10382 #if BITS_PER_LONG == 64
10383         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10384         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10385         /* zero out counters that only exist in rtnl_link_stats64 */
10386         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10387                sizeof(*stats64) - sizeof(*netdev_stats));
10388 #else
10389         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10390         const unsigned long *src = (const unsigned long *)netdev_stats;
10391         u64 *dst = (u64 *)stats64;
10392
10393         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10394         for (i = 0; i < n; i++)
10395                 dst[i] = src[i];
10396         /* zero out counters that only exist in rtnl_link_stats64 */
10397         memset((char *)stats64 + n * sizeof(u64), 0,
10398                sizeof(*stats64) - n * sizeof(u64));
10399 #endif
10400 }
10401 EXPORT_SYMBOL(netdev_stats_to_stats64);
10402
10403 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10404 {
10405         struct net_device_core_stats __percpu *p;
10406
10407         p = alloc_percpu_gfp(struct net_device_core_stats,
10408                              GFP_ATOMIC | __GFP_NOWARN);
10409
10410         if (p && cmpxchg(&dev->core_stats, NULL, p))
10411                 free_percpu(p);
10412
10413         /* This READ_ONCE() pairs with the cmpxchg() above */
10414         return READ_ONCE(dev->core_stats);
10415 }
10416 EXPORT_SYMBOL(netdev_core_stats_alloc);
10417
10418 /**
10419  *      dev_get_stats   - get network device statistics
10420  *      @dev: device to get statistics from
10421  *      @storage: place to store stats
10422  *
10423  *      Get network statistics from device. Return @storage.
10424  *      The device driver may provide its own method by setting
10425  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10426  *      otherwise the internal statistics structure is used.
10427  */
10428 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10429                                         struct rtnl_link_stats64 *storage)
10430 {
10431         const struct net_device_ops *ops = dev->netdev_ops;
10432         const struct net_device_core_stats __percpu *p;
10433
10434         if (ops->ndo_get_stats64) {
10435                 memset(storage, 0, sizeof(*storage));
10436                 ops->ndo_get_stats64(dev, storage);
10437         } else if (ops->ndo_get_stats) {
10438                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10439         } else {
10440                 netdev_stats_to_stats64(storage, &dev->stats);
10441         }
10442
10443         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10444         p = READ_ONCE(dev->core_stats);
10445         if (p) {
10446                 const struct net_device_core_stats *core_stats;
10447                 int i;
10448
10449                 for_each_possible_cpu(i) {
10450                         core_stats = per_cpu_ptr(p, i);
10451                         storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10452                         storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10453                         storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10454                         storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10455                 }
10456         }
10457         return storage;
10458 }
10459 EXPORT_SYMBOL(dev_get_stats);
10460
10461 /**
10462  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10463  *      @s: place to store stats
10464  *      @netstats: per-cpu network stats to read from
10465  *
10466  *      Read per-cpu network statistics and populate the related fields in @s.
10467  */
10468 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10469                            const struct pcpu_sw_netstats __percpu *netstats)
10470 {
10471         int cpu;
10472
10473         for_each_possible_cpu(cpu) {
10474                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10475                 const struct pcpu_sw_netstats *stats;
10476                 unsigned int start;
10477
10478                 stats = per_cpu_ptr(netstats, cpu);
10479                 do {
10480                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10481                         rx_packets = u64_stats_read(&stats->rx_packets);
10482                         rx_bytes   = u64_stats_read(&stats->rx_bytes);
10483                         tx_packets = u64_stats_read(&stats->tx_packets);
10484                         tx_bytes   = u64_stats_read(&stats->tx_bytes);
10485                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10486
10487                 s->rx_packets += rx_packets;
10488                 s->rx_bytes   += rx_bytes;
10489                 s->tx_packets += tx_packets;
10490                 s->tx_bytes   += tx_bytes;
10491         }
10492 }
10493 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10494
10495 /**
10496  *      dev_get_tstats64 - ndo_get_stats64 implementation
10497  *      @dev: device to get statistics from
10498  *      @s: place to store stats
10499  *
10500  *      Populate @s from dev->stats and dev->tstats. Can be used as
10501  *      ndo_get_stats64() callback.
10502  */
10503 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10504 {
10505         netdev_stats_to_stats64(s, &dev->stats);
10506         dev_fetch_sw_netstats(s, dev->tstats);
10507 }
10508 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10509
10510 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10511 {
10512         struct netdev_queue *queue = dev_ingress_queue(dev);
10513
10514 #ifdef CONFIG_NET_CLS_ACT
10515         if (queue)
10516                 return queue;
10517         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10518         if (!queue)
10519                 return NULL;
10520         netdev_init_one_queue(dev, queue, NULL);
10521         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10522         queue->qdisc_sleeping = &noop_qdisc;
10523         rcu_assign_pointer(dev->ingress_queue, queue);
10524 #endif
10525         return queue;
10526 }
10527
10528 static const struct ethtool_ops default_ethtool_ops;
10529
10530 void netdev_set_default_ethtool_ops(struct net_device *dev,
10531                                     const struct ethtool_ops *ops)
10532 {
10533         if (dev->ethtool_ops == &default_ethtool_ops)
10534                 dev->ethtool_ops = ops;
10535 }
10536 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10537
10538 void netdev_freemem(struct net_device *dev)
10539 {
10540         char *addr = (char *)dev - dev->padded;
10541
10542         kvfree(addr);
10543 }
10544
10545 /**
10546  * alloc_netdev_mqs - allocate network device
10547  * @sizeof_priv: size of private data to allocate space for
10548  * @name: device name format string
10549  * @name_assign_type: origin of device name
10550  * @setup: callback to initialize device
10551  * @txqs: the number of TX subqueues to allocate
10552  * @rxqs: the number of RX subqueues to allocate
10553  *
10554  * Allocates a struct net_device with private data area for driver use
10555  * and performs basic initialization.  Also allocates subqueue structs
10556  * for each queue on the device.
10557  */
10558 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10559                 unsigned char name_assign_type,
10560                 void (*setup)(struct net_device *),
10561                 unsigned int txqs, unsigned int rxqs)
10562 {
10563         struct net_device *dev;
10564         unsigned int alloc_size;
10565         struct net_device *p;
10566
10567         BUG_ON(strlen(name) >= sizeof(dev->name));
10568
10569         if (txqs < 1) {
10570                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10571                 return NULL;
10572         }
10573
10574         if (rxqs < 1) {
10575                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10576                 return NULL;
10577         }
10578
10579         alloc_size = sizeof(struct net_device);
10580         if (sizeof_priv) {
10581                 /* ensure 32-byte alignment of private area */
10582                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10583                 alloc_size += sizeof_priv;
10584         }
10585         /* ensure 32-byte alignment of whole construct */
10586         alloc_size += NETDEV_ALIGN - 1;
10587
10588         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10589         if (!p)
10590                 return NULL;
10591
10592         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10593         dev->padded = (char *)dev - (char *)p;
10594
10595         ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10596 #ifdef CONFIG_PCPU_DEV_REFCNT
10597         dev->pcpu_refcnt = alloc_percpu(int);
10598         if (!dev->pcpu_refcnt)
10599                 goto free_dev;
10600         __dev_hold(dev);
10601 #else
10602         refcount_set(&dev->dev_refcnt, 1);
10603 #endif
10604
10605         if (dev_addr_init(dev))
10606                 goto free_pcpu;
10607
10608         dev_mc_init(dev);
10609         dev_uc_init(dev);
10610
10611         dev_net_set(dev, &init_net);
10612
10613         dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10614         dev->gso_max_segs = GSO_MAX_SEGS;
10615         dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10616         dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10617         dev->tso_max_segs = TSO_MAX_SEGS;
10618         dev->upper_level = 1;
10619         dev->lower_level = 1;
10620 #ifdef CONFIG_LOCKDEP
10621         dev->nested_level = 0;
10622         INIT_LIST_HEAD(&dev->unlink_list);
10623 #endif
10624
10625         INIT_LIST_HEAD(&dev->napi_list);
10626         INIT_LIST_HEAD(&dev->unreg_list);
10627         INIT_LIST_HEAD(&dev->close_list);
10628         INIT_LIST_HEAD(&dev->link_watch_list);
10629         INIT_LIST_HEAD(&dev->adj_list.upper);
10630         INIT_LIST_HEAD(&dev->adj_list.lower);
10631         INIT_LIST_HEAD(&dev->ptype_all);
10632         INIT_LIST_HEAD(&dev->ptype_specific);
10633         INIT_LIST_HEAD(&dev->net_notifier_list);
10634 #ifdef CONFIG_NET_SCHED
10635         hash_init(dev->qdisc_hash);
10636 #endif
10637         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10638         setup(dev);
10639
10640         if (!dev->tx_queue_len) {
10641                 dev->priv_flags |= IFF_NO_QUEUE;
10642                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10643         }
10644
10645         dev->num_tx_queues = txqs;
10646         dev->real_num_tx_queues = txqs;
10647         if (netif_alloc_netdev_queues(dev))
10648                 goto free_all;
10649
10650         dev->num_rx_queues = rxqs;
10651         dev->real_num_rx_queues = rxqs;
10652         if (netif_alloc_rx_queues(dev))
10653                 goto free_all;
10654
10655         strcpy(dev->name, name);
10656         dev->name_assign_type = name_assign_type;
10657         dev->group = INIT_NETDEV_GROUP;
10658         if (!dev->ethtool_ops)
10659                 dev->ethtool_ops = &default_ethtool_ops;
10660
10661         nf_hook_netdev_init(dev);
10662
10663         return dev;
10664
10665 free_all:
10666         free_netdev(dev);
10667         return NULL;
10668
10669 free_pcpu:
10670 #ifdef CONFIG_PCPU_DEV_REFCNT
10671         free_percpu(dev->pcpu_refcnt);
10672 free_dev:
10673 #endif
10674         netdev_freemem(dev);
10675         return NULL;
10676 }
10677 EXPORT_SYMBOL(alloc_netdev_mqs);
10678
10679 /**
10680  * free_netdev - free network device
10681  * @dev: device
10682  *
10683  * This function does the last stage of destroying an allocated device
10684  * interface. The reference to the device object is released. If this
10685  * is the last reference then it will be freed.Must be called in process
10686  * context.
10687  */
10688 void free_netdev(struct net_device *dev)
10689 {
10690         struct napi_struct *p, *n;
10691
10692         might_sleep();
10693
10694         /* When called immediately after register_netdevice() failed the unwind
10695          * handling may still be dismantling the device. Handle that case by
10696          * deferring the free.
10697          */
10698         if (dev->reg_state == NETREG_UNREGISTERING) {
10699                 ASSERT_RTNL();
10700                 dev->needs_free_netdev = true;
10701                 return;
10702         }
10703
10704         netif_free_tx_queues(dev);
10705         netif_free_rx_queues(dev);
10706
10707         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10708
10709         /* Flush device addresses */
10710         dev_addr_flush(dev);
10711
10712         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10713                 netif_napi_del(p);
10714
10715         ref_tracker_dir_exit(&dev->refcnt_tracker);
10716 #ifdef CONFIG_PCPU_DEV_REFCNT
10717         free_percpu(dev->pcpu_refcnt);
10718         dev->pcpu_refcnt = NULL;
10719 #endif
10720         free_percpu(dev->core_stats);
10721         dev->core_stats = NULL;
10722         free_percpu(dev->xdp_bulkq);
10723         dev->xdp_bulkq = NULL;
10724
10725         /*  Compatibility with error handling in drivers */
10726         if (dev->reg_state == NETREG_UNINITIALIZED) {
10727                 netdev_freemem(dev);
10728                 return;
10729         }
10730
10731         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10732         dev->reg_state = NETREG_RELEASED;
10733
10734         /* will free via device release */
10735         put_device(&dev->dev);
10736 }
10737 EXPORT_SYMBOL(free_netdev);
10738
10739 /**
10740  *      synchronize_net -  Synchronize with packet receive processing
10741  *
10742  *      Wait for packets currently being received to be done.
10743  *      Does not block later packets from starting.
10744  */
10745 void synchronize_net(void)
10746 {
10747         might_sleep();
10748         if (rtnl_is_locked())
10749                 synchronize_rcu_expedited();
10750         else
10751                 synchronize_rcu();
10752 }
10753 EXPORT_SYMBOL(synchronize_net);
10754
10755 /**
10756  *      unregister_netdevice_queue - remove device from the kernel
10757  *      @dev: device
10758  *      @head: list
10759  *
10760  *      This function shuts down a device interface and removes it
10761  *      from the kernel tables.
10762  *      If head not NULL, device is queued to be unregistered later.
10763  *
10764  *      Callers must hold the rtnl semaphore.  You may want
10765  *      unregister_netdev() instead of this.
10766  */
10767
10768 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10769 {
10770         ASSERT_RTNL();
10771
10772         if (head) {
10773                 list_move_tail(&dev->unreg_list, head);
10774         } else {
10775                 LIST_HEAD(single);
10776
10777                 list_add(&dev->unreg_list, &single);
10778                 unregister_netdevice_many(&single);
10779         }
10780 }
10781 EXPORT_SYMBOL(unregister_netdevice_queue);
10782
10783 /**
10784  *      unregister_netdevice_many - unregister many devices
10785  *      @head: list of devices
10786  *
10787  *  Note: As most callers use a stack allocated list_head,
10788  *  we force a list_del() to make sure stack wont be corrupted later.
10789  */
10790 void unregister_netdevice_many(struct list_head *head)
10791 {
10792         struct net_device *dev, *tmp;
10793         LIST_HEAD(close_head);
10794
10795         BUG_ON(dev_boot_phase);
10796         ASSERT_RTNL();
10797
10798         if (list_empty(head))
10799                 return;
10800
10801         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10802                 /* Some devices call without registering
10803                  * for initialization unwind. Remove those
10804                  * devices and proceed with the remaining.
10805                  */
10806                 if (dev->reg_state == NETREG_UNINITIALIZED) {
10807                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10808                                  dev->name, dev);
10809
10810                         WARN_ON(1);
10811                         list_del(&dev->unreg_list);
10812                         continue;
10813                 }
10814                 dev->dismantle = true;
10815                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10816         }
10817
10818         /* If device is running, close it first. */
10819         list_for_each_entry(dev, head, unreg_list)
10820                 list_add_tail(&dev->close_list, &close_head);
10821         dev_close_many(&close_head, true);
10822
10823         list_for_each_entry(dev, head, unreg_list) {
10824                 /* And unlink it from device chain. */
10825                 write_lock(&dev_base_lock);
10826                 unlist_netdevice(dev, false);
10827                 dev->reg_state = NETREG_UNREGISTERING;
10828                 write_unlock(&dev_base_lock);
10829         }
10830         flush_all_backlogs();
10831
10832         synchronize_net();
10833
10834         list_for_each_entry(dev, head, unreg_list) {
10835                 struct sk_buff *skb = NULL;
10836
10837                 /* Shutdown queueing discipline. */
10838                 dev_shutdown(dev);
10839
10840                 dev_xdp_uninstall(dev);
10841
10842                 netdev_offload_xstats_disable_all(dev);
10843
10844                 /* Notify protocols, that we are about to destroy
10845                  * this device. They should clean all the things.
10846                  */
10847                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10848
10849                 if (!dev->rtnl_link_ops ||
10850                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10851                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10852                                                      GFP_KERNEL, NULL, 0);
10853
10854                 /*
10855                  *      Flush the unicast and multicast chains
10856                  */
10857                 dev_uc_flush(dev);
10858                 dev_mc_flush(dev);
10859
10860                 netdev_name_node_alt_flush(dev);
10861                 netdev_name_node_free(dev->name_node);
10862
10863                 if (dev->netdev_ops->ndo_uninit)
10864                         dev->netdev_ops->ndo_uninit(dev);
10865
10866                 if (skb)
10867                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10868
10869                 /* Notifier chain MUST detach us all upper devices. */
10870                 WARN_ON(netdev_has_any_upper_dev(dev));
10871                 WARN_ON(netdev_has_any_lower_dev(dev));
10872
10873                 /* Remove entries from kobject tree */
10874                 netdev_unregister_kobject(dev);
10875 #ifdef CONFIG_XPS
10876                 /* Remove XPS queueing entries */
10877                 netif_reset_xps_queues_gt(dev, 0);
10878 #endif
10879         }
10880
10881         synchronize_net();
10882
10883         list_for_each_entry(dev, head, unreg_list) {
10884                 netdev_put(dev, &dev->dev_registered_tracker);
10885                 net_set_todo(dev);
10886         }
10887
10888         list_del(head);
10889 }
10890 EXPORT_SYMBOL(unregister_netdevice_many);
10891
10892 /**
10893  *      unregister_netdev - remove device from the kernel
10894  *      @dev: device
10895  *
10896  *      This function shuts down a device interface and removes it
10897  *      from the kernel tables.
10898  *
10899  *      This is just a wrapper for unregister_netdevice that takes
10900  *      the rtnl semaphore.  In general you want to use this and not
10901  *      unregister_netdevice.
10902  */
10903 void unregister_netdev(struct net_device *dev)
10904 {
10905         rtnl_lock();
10906         unregister_netdevice(dev);
10907         rtnl_unlock();
10908 }
10909 EXPORT_SYMBOL(unregister_netdev);
10910
10911 /**
10912  *      __dev_change_net_namespace - move device to different nethost namespace
10913  *      @dev: device
10914  *      @net: network namespace
10915  *      @pat: If not NULL name pattern to try if the current device name
10916  *            is already taken in the destination network namespace.
10917  *      @new_ifindex: If not zero, specifies device index in the target
10918  *                    namespace.
10919  *
10920  *      This function shuts down a device interface and moves it
10921  *      to a new network namespace. On success 0 is returned, on
10922  *      a failure a netagive errno code is returned.
10923  *
10924  *      Callers must hold the rtnl semaphore.
10925  */
10926
10927 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10928                                const char *pat, int new_ifindex)
10929 {
10930         struct net *net_old = dev_net(dev);
10931         int err, new_nsid;
10932
10933         ASSERT_RTNL();
10934
10935         /* Don't allow namespace local devices to be moved. */
10936         err = -EINVAL;
10937         if (dev->features & NETIF_F_NETNS_LOCAL)
10938                 goto out;
10939
10940         /* Ensure the device has been registrered */
10941         if (dev->reg_state != NETREG_REGISTERED)
10942                 goto out;
10943
10944         /* Get out if there is nothing todo */
10945         err = 0;
10946         if (net_eq(net_old, net))
10947                 goto out;
10948
10949         /* Pick the destination device name, and ensure
10950          * we can use it in the destination network namespace.
10951          */
10952         err = -EEXIST;
10953         if (netdev_name_in_use(net, dev->name)) {
10954                 /* We get here if we can't use the current device name */
10955                 if (!pat)
10956                         goto out;
10957                 err = dev_get_valid_name(net, dev, pat);
10958                 if (err < 0)
10959                         goto out;
10960         }
10961
10962         /* Check that new_ifindex isn't used yet. */
10963         err = -EBUSY;
10964         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10965                 goto out;
10966
10967         /*
10968          * And now a mini version of register_netdevice unregister_netdevice.
10969          */
10970
10971         /* If device is running close it first. */
10972         dev_close(dev);
10973
10974         /* And unlink it from device chain */
10975         unlist_netdevice(dev, true);
10976
10977         synchronize_net();
10978
10979         /* Shutdown queueing discipline. */
10980         dev_shutdown(dev);
10981
10982         /* Notify protocols, that we are about to destroy
10983          * this device. They should clean all the things.
10984          *
10985          * Note that dev->reg_state stays at NETREG_REGISTERED.
10986          * This is wanted because this way 8021q and macvlan know
10987          * the device is just moving and can keep their slaves up.
10988          */
10989         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10990         rcu_barrier();
10991
10992         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10993         /* If there is an ifindex conflict assign a new one */
10994         if (!new_ifindex) {
10995                 if (__dev_get_by_index(net, dev->ifindex))
10996                         new_ifindex = dev_new_index(net);
10997                 else
10998                         new_ifindex = dev->ifindex;
10999         }
11000
11001         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11002                             new_ifindex);
11003
11004         /*
11005          *      Flush the unicast and multicast chains
11006          */
11007         dev_uc_flush(dev);
11008         dev_mc_flush(dev);
11009
11010         /* Send a netdev-removed uevent to the old namespace */
11011         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11012         netdev_adjacent_del_links(dev);
11013
11014         /* Move per-net netdevice notifiers that are following the netdevice */
11015         move_netdevice_notifiers_dev_net(dev, net);
11016
11017         /* Actually switch the network namespace */
11018         dev_net_set(dev, net);
11019         dev->ifindex = new_ifindex;
11020
11021         /* Send a netdev-add uevent to the new namespace */
11022         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11023         netdev_adjacent_add_links(dev);
11024
11025         /* Fixup kobjects */
11026         err = device_rename(&dev->dev, dev->name);
11027         WARN_ON(err);
11028
11029         /* Adapt owner in case owning user namespace of target network
11030          * namespace is different from the original one.
11031          */
11032         err = netdev_change_owner(dev, net_old, net);
11033         WARN_ON(err);
11034
11035         /* Add the device back in the hashes */
11036         list_netdevice(dev);
11037
11038         /* Notify protocols, that a new device appeared. */
11039         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11040
11041         /*
11042          *      Prevent userspace races by waiting until the network
11043          *      device is fully setup before sending notifications.
11044          */
11045         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11046
11047         synchronize_net();
11048         err = 0;
11049 out:
11050         return err;
11051 }
11052 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11053
11054 static int dev_cpu_dead(unsigned int oldcpu)
11055 {
11056         struct sk_buff **list_skb;
11057         struct sk_buff *skb;
11058         unsigned int cpu;
11059         struct softnet_data *sd, *oldsd, *remsd = NULL;
11060
11061         local_irq_disable();
11062         cpu = smp_processor_id();
11063         sd = &per_cpu(softnet_data, cpu);
11064         oldsd = &per_cpu(softnet_data, oldcpu);
11065
11066         /* Find end of our completion_queue. */
11067         list_skb = &sd->completion_queue;
11068         while (*list_skb)
11069                 list_skb = &(*list_skb)->next;
11070         /* Append completion queue from offline CPU. */
11071         *list_skb = oldsd->completion_queue;
11072         oldsd->completion_queue = NULL;
11073
11074         /* Append output queue from offline CPU. */
11075         if (oldsd->output_queue) {
11076                 *sd->output_queue_tailp = oldsd->output_queue;
11077                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11078                 oldsd->output_queue = NULL;
11079                 oldsd->output_queue_tailp = &oldsd->output_queue;
11080         }
11081         /* Append NAPI poll list from offline CPU, with one exception :
11082          * process_backlog() must be called by cpu owning percpu backlog.
11083          * We properly handle process_queue & input_pkt_queue later.
11084          */
11085         while (!list_empty(&oldsd->poll_list)) {
11086                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11087                                                             struct napi_struct,
11088                                                             poll_list);
11089
11090                 list_del_init(&napi->poll_list);
11091                 if (napi->poll == process_backlog)
11092                         napi->state = 0;
11093                 else
11094                         ____napi_schedule(sd, napi);
11095         }
11096
11097         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11098         local_irq_enable();
11099
11100 #ifdef CONFIG_RPS
11101         remsd = oldsd->rps_ipi_list;
11102         oldsd->rps_ipi_list = NULL;
11103 #endif
11104         /* send out pending IPI's on offline CPU */
11105         net_rps_send_ipi(remsd);
11106
11107         /* Process offline CPU's input_pkt_queue */
11108         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11109                 netif_rx(skb);
11110                 input_queue_head_incr(oldsd);
11111         }
11112         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11113                 netif_rx(skb);
11114                 input_queue_head_incr(oldsd);
11115         }
11116
11117         return 0;
11118 }
11119
11120 /**
11121  *      netdev_increment_features - increment feature set by one
11122  *      @all: current feature set
11123  *      @one: new feature set
11124  *      @mask: mask feature set
11125  *
11126  *      Computes a new feature set after adding a device with feature set
11127  *      @one to the master device with current feature set @all.  Will not
11128  *      enable anything that is off in @mask. Returns the new feature set.
11129  */
11130 netdev_features_t netdev_increment_features(netdev_features_t all,
11131         netdev_features_t one, netdev_features_t mask)
11132 {
11133         if (mask & NETIF_F_HW_CSUM)
11134                 mask |= NETIF_F_CSUM_MASK;
11135         mask |= NETIF_F_VLAN_CHALLENGED;
11136
11137         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11138         all &= one | ~NETIF_F_ALL_FOR_ALL;
11139
11140         /* If one device supports hw checksumming, set for all. */
11141         if (all & NETIF_F_HW_CSUM)
11142                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11143
11144         return all;
11145 }
11146 EXPORT_SYMBOL(netdev_increment_features);
11147
11148 static struct hlist_head * __net_init netdev_create_hash(void)
11149 {
11150         int i;
11151         struct hlist_head *hash;
11152
11153         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11154         if (hash != NULL)
11155                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11156                         INIT_HLIST_HEAD(&hash[i]);
11157
11158         return hash;
11159 }
11160
11161 /* Initialize per network namespace state */
11162 static int __net_init netdev_init(struct net *net)
11163 {
11164         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11165                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11166
11167         INIT_LIST_HEAD(&net->dev_base_head);
11168
11169         net->dev_name_head = netdev_create_hash();
11170         if (net->dev_name_head == NULL)
11171                 goto err_name;
11172
11173         net->dev_index_head = netdev_create_hash();
11174         if (net->dev_index_head == NULL)
11175                 goto err_idx;
11176
11177         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11178
11179         return 0;
11180
11181 err_idx:
11182         kfree(net->dev_name_head);
11183 err_name:
11184         return -ENOMEM;
11185 }
11186
11187 /**
11188  *      netdev_drivername - network driver for the device
11189  *      @dev: network device
11190  *
11191  *      Determine network driver for device.
11192  */
11193 const char *netdev_drivername(const struct net_device *dev)
11194 {
11195         const struct device_driver *driver;
11196         const struct device *parent;
11197         const char *empty = "";
11198
11199         parent = dev->dev.parent;
11200         if (!parent)
11201                 return empty;
11202
11203         driver = parent->driver;
11204         if (driver && driver->name)
11205                 return driver->name;
11206         return empty;
11207 }
11208
11209 static void __netdev_printk(const char *level, const struct net_device *dev,
11210                             struct va_format *vaf)
11211 {
11212         if (dev && dev->dev.parent) {
11213                 dev_printk_emit(level[1] - '0',
11214                                 dev->dev.parent,
11215                                 "%s %s %s%s: %pV",
11216                                 dev_driver_string(dev->dev.parent),
11217                                 dev_name(dev->dev.parent),
11218                                 netdev_name(dev), netdev_reg_state(dev),
11219                                 vaf);
11220         } else if (dev) {
11221                 printk("%s%s%s: %pV",
11222                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11223         } else {
11224                 printk("%s(NULL net_device): %pV", level, vaf);
11225         }
11226 }
11227
11228 void netdev_printk(const char *level, const struct net_device *dev,
11229                    const char *format, ...)
11230 {
11231         struct va_format vaf;
11232         va_list args;
11233
11234         va_start(args, format);
11235
11236         vaf.fmt = format;
11237         vaf.va = &args;
11238
11239         __netdev_printk(level, dev, &vaf);
11240
11241         va_end(args);
11242 }
11243 EXPORT_SYMBOL(netdev_printk);
11244
11245 #define define_netdev_printk_level(func, level)                 \
11246 void func(const struct net_device *dev, const char *fmt, ...)   \
11247 {                                                               \
11248         struct va_format vaf;                                   \
11249         va_list args;                                           \
11250                                                                 \
11251         va_start(args, fmt);                                    \
11252                                                                 \
11253         vaf.fmt = fmt;                                          \
11254         vaf.va = &args;                                         \
11255                                                                 \
11256         __netdev_printk(level, dev, &vaf);                      \
11257                                                                 \
11258         va_end(args);                                           \
11259 }                                                               \
11260 EXPORT_SYMBOL(func);
11261
11262 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11263 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11264 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11265 define_netdev_printk_level(netdev_err, KERN_ERR);
11266 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11267 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11268 define_netdev_printk_level(netdev_info, KERN_INFO);
11269
11270 static void __net_exit netdev_exit(struct net *net)
11271 {
11272         kfree(net->dev_name_head);
11273         kfree(net->dev_index_head);
11274         if (net != &init_net)
11275                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11276 }
11277
11278 static struct pernet_operations __net_initdata netdev_net_ops = {
11279         .init = netdev_init,
11280         .exit = netdev_exit,
11281 };
11282
11283 static void __net_exit default_device_exit_net(struct net *net)
11284 {
11285         struct net_device *dev, *aux;
11286         /*
11287          * Push all migratable network devices back to the
11288          * initial network namespace
11289          */
11290         ASSERT_RTNL();
11291         for_each_netdev_safe(net, dev, aux) {
11292                 int err;
11293                 char fb_name[IFNAMSIZ];
11294
11295                 /* Ignore unmoveable devices (i.e. loopback) */
11296                 if (dev->features & NETIF_F_NETNS_LOCAL)
11297                         continue;
11298
11299                 /* Leave virtual devices for the generic cleanup */
11300                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11301                         continue;
11302
11303                 /* Push remaining network devices to init_net */
11304                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11305                 if (netdev_name_in_use(&init_net, fb_name))
11306                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11307                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11308                 if (err) {
11309                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11310                                  __func__, dev->name, err);
11311                         BUG();
11312                 }
11313         }
11314 }
11315
11316 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11317 {
11318         /* At exit all network devices most be removed from a network
11319          * namespace.  Do this in the reverse order of registration.
11320          * Do this across as many network namespaces as possible to
11321          * improve batching efficiency.
11322          */
11323         struct net_device *dev;
11324         struct net *net;
11325         LIST_HEAD(dev_kill_list);
11326
11327         rtnl_lock();
11328         list_for_each_entry(net, net_list, exit_list) {
11329                 default_device_exit_net(net);
11330                 cond_resched();
11331         }
11332
11333         list_for_each_entry(net, net_list, exit_list) {
11334                 for_each_netdev_reverse(net, dev) {
11335                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11336                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11337                         else
11338                                 unregister_netdevice_queue(dev, &dev_kill_list);
11339                 }
11340         }
11341         unregister_netdevice_many(&dev_kill_list);
11342         rtnl_unlock();
11343 }
11344
11345 static struct pernet_operations __net_initdata default_device_ops = {
11346         .exit_batch = default_device_exit_batch,
11347 };
11348
11349 /*
11350  *      Initialize the DEV module. At boot time this walks the device list and
11351  *      unhooks any devices that fail to initialise (normally hardware not
11352  *      present) and leaves us with a valid list of present and active devices.
11353  *
11354  */
11355
11356 /*
11357  *       This is called single threaded during boot, so no need
11358  *       to take the rtnl semaphore.
11359  */
11360 static int __init net_dev_init(void)
11361 {
11362         int i, rc = -ENOMEM;
11363
11364         BUG_ON(!dev_boot_phase);
11365
11366         if (dev_proc_init())
11367                 goto out;
11368
11369         if (netdev_kobject_init())
11370                 goto out;
11371
11372         INIT_LIST_HEAD(&ptype_all);
11373         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11374                 INIT_LIST_HEAD(&ptype_base[i]);
11375
11376         if (register_pernet_subsys(&netdev_net_ops))
11377                 goto out;
11378
11379         /*
11380          *      Initialise the packet receive queues.
11381          */
11382
11383         for_each_possible_cpu(i) {
11384                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11385                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11386
11387                 INIT_WORK(flush, flush_backlog);
11388
11389                 skb_queue_head_init(&sd->input_pkt_queue);
11390                 skb_queue_head_init(&sd->process_queue);
11391 #ifdef CONFIG_XFRM_OFFLOAD
11392                 skb_queue_head_init(&sd->xfrm_backlog);
11393 #endif
11394                 INIT_LIST_HEAD(&sd->poll_list);
11395                 sd->output_queue_tailp = &sd->output_queue;
11396 #ifdef CONFIG_RPS
11397                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11398                 sd->cpu = i;
11399 #endif
11400                 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11401                 spin_lock_init(&sd->defer_lock);
11402
11403                 init_gro_hash(&sd->backlog);
11404                 sd->backlog.poll = process_backlog;
11405                 sd->backlog.weight = weight_p;
11406         }
11407
11408         dev_boot_phase = 0;
11409
11410         /* The loopback device is special if any other network devices
11411          * is present in a network namespace the loopback device must
11412          * be present. Since we now dynamically allocate and free the
11413          * loopback device ensure this invariant is maintained by
11414          * keeping the loopback device as the first device on the
11415          * list of network devices.  Ensuring the loopback devices
11416          * is the first device that appears and the last network device
11417          * that disappears.
11418          */
11419         if (register_pernet_device(&loopback_net_ops))
11420                 goto out;
11421
11422         if (register_pernet_device(&default_device_ops))
11423                 goto out;
11424
11425         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11426         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11427
11428         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11429                                        NULL, dev_cpu_dead);
11430         WARN_ON(rc < 0);
11431         rc = 0;
11432 out:
11433         return rc;
11434 }
11435
11436 subsys_initcall(net_dev_init);