Merge tag 'kvm-x86-pmu-6.6-fixes' of https://github.com/kvm-x86/linux into HEAD
[platform/kernel/linux-starfive.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156
157 #include "dev.h"
158 #include "net-sysfs.h"
159
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;       /* Taps */
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166                                            struct net_device *dev,
167                                            struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191
192 static DEFINE_MUTEX(ifalias_mutex);
193
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200 static DECLARE_RWSEM(devnet_rename_sem);
201
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204         while (++net->dev_base_seq == 0)
205                 ;
206 }
207
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221                                     unsigned long *flags)
222 {
223         if (IS_ENABLED(CONFIG_RPS))
224                 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226                 local_irq_save(*flags);
227 }
228
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231         if (IS_ENABLED(CONFIG_RPS))
232                 spin_lock_irq(&sd->input_pkt_queue.lock);
233         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234                 local_irq_disable();
235 }
236
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238                                           unsigned long *flags)
239 {
240         if (IS_ENABLED(CONFIG_RPS))
241                 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243                 local_irq_restore(*flags);
244 }
245
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248         if (IS_ENABLED(CONFIG_RPS))
249                 spin_unlock_irq(&sd->input_pkt_queue.lock);
250         else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251                 local_irq_enable();
252 }
253
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255                                                        const char *name)
256 {
257         struct netdev_name_node *name_node;
258
259         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260         if (!name_node)
261                 return NULL;
262         INIT_HLIST_NODE(&name_node->hlist);
263         name_node->dev = dev;
264         name_node->name = name;
265         return name_node;
266 }
267
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271         struct netdev_name_node *name_node;
272
273         name_node = netdev_name_node_alloc(dev, dev->name);
274         if (!name_node)
275                 return NULL;
276         INIT_LIST_HEAD(&name_node->list);
277         return name_node;
278 }
279
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282         kfree(name_node);
283 }
284
285 static void netdev_name_node_add(struct net *net,
286                                  struct netdev_name_node *name_node)
287 {
288         hlist_add_head_rcu(&name_node->hlist,
289                            dev_name_hash(net, name_node->name));
290 }
291
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294         hlist_del_rcu(&name_node->hlist);
295 }
296
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298                                                         const char *name)
299 {
300         struct hlist_head *head = dev_name_hash(net, name);
301         struct netdev_name_node *name_node;
302
303         hlist_for_each_entry(name_node, head, hlist)
304                 if (!strcmp(name_node->name, name))
305                         return name_node;
306         return NULL;
307 }
308
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310                                                             const char *name)
311 {
312         struct hlist_head *head = dev_name_hash(net, name);
313         struct netdev_name_node *name_node;
314
315         hlist_for_each_entry_rcu(name_node, head, hlist)
316                 if (!strcmp(name_node->name, name))
317                         return name_node;
318         return NULL;
319 }
320
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323         return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329         struct netdev_name_node *name_node;
330         struct net *net = dev_net(dev);
331
332         name_node = netdev_name_node_lookup(net, name);
333         if (name_node)
334                 return -EEXIST;
335         name_node = netdev_name_node_alloc(dev, name);
336         if (!name_node)
337                 return -ENOMEM;
338         netdev_name_node_add(net, name_node);
339         /* The node that holds dev->name acts as a head of per-device list. */
340         list_add_tail(&name_node->list, &dev->name_node->list);
341
342         return 0;
343 }
344
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347         list_del(&name_node->list);
348         netdev_name_node_del(name_node);
349         kfree(name_node->name);
350         netdev_name_node_free(name_node);
351 }
352
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355         struct netdev_name_node *name_node;
356         struct net *net = dev_net(dev);
357
358         name_node = netdev_name_node_lookup(net, name);
359         if (!name_node)
360                 return -ENOENT;
361         /* lookup might have found our primary name or a name belonging
362          * to another device.
363          */
364         if (name_node == dev->name_node || name_node->dev != dev)
365                 return -EINVAL;
366
367         __netdev_name_node_alt_destroy(name_node);
368
369         return 0;
370 }
371
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374         struct netdev_name_node *name_node, *tmp;
375
376         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377                 __netdev_name_node_alt_destroy(name_node);
378 }
379
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383         struct net *net = dev_net(dev);
384
385         ASSERT_RTNL();
386
387         write_lock(&dev_base_lock);
388         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389         netdev_name_node_add(net, dev->name_node);
390         hlist_add_head_rcu(&dev->index_hlist,
391                            dev_index_hash(net, dev->ifindex));
392         write_unlock(&dev_base_lock);
393         /* We reserved the ifindex, this can't fail */
394         WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
395
396         dev_base_seq_inc(net);
397 }
398
399 /* Device list removal
400  * caller must respect a RCU grace period before freeing/reusing dev
401  */
402 static void unlist_netdevice(struct net_device *dev, bool lock)
403 {
404         struct net *net = dev_net(dev);
405
406         ASSERT_RTNL();
407
408         xa_erase(&net->dev_by_index, dev->ifindex);
409
410         /* Unlink dev from the device chain */
411         if (lock)
412                 write_lock(&dev_base_lock);
413         list_del_rcu(&dev->dev_list);
414         netdev_name_node_del(dev->name_node);
415         hlist_del_rcu(&dev->index_hlist);
416         if (lock)
417                 write_unlock(&dev_base_lock);
418
419         dev_base_seq_inc(dev_net(dev));
420 }
421
422 /*
423  *      Our notifier list
424  */
425
426 static RAW_NOTIFIER_HEAD(netdev_chain);
427
428 /*
429  *      Device drivers call our routines to queue packets here. We empty the
430  *      queue in the local softnet handler.
431  */
432
433 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
434 EXPORT_PER_CPU_SYMBOL(softnet_data);
435
436 #ifdef CONFIG_LOCKDEP
437 /*
438  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
439  * according to dev->type
440  */
441 static const unsigned short netdev_lock_type[] = {
442          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
443          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
444          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
445          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
446          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
447          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
448          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
449          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
450          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
451          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
452          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
453          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
454          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
455          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
456          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
457
458 static const char *const netdev_lock_name[] = {
459         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
460         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
461         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
462         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
463         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
464         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
465         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
466         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
467         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
468         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
469         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
470         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
471         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
472         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
473         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
474
475 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
476 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
477
478 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
479 {
480         int i;
481
482         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
483                 if (netdev_lock_type[i] == dev_type)
484                         return i;
485         /* the last key is used by default */
486         return ARRAY_SIZE(netdev_lock_type) - 1;
487 }
488
489 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
490                                                  unsigned short dev_type)
491 {
492         int i;
493
494         i = netdev_lock_pos(dev_type);
495         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
496                                    netdev_lock_name[i]);
497 }
498
499 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
500 {
501         int i;
502
503         i = netdev_lock_pos(dev->type);
504         lockdep_set_class_and_name(&dev->addr_list_lock,
505                                    &netdev_addr_lock_key[i],
506                                    netdev_lock_name[i]);
507 }
508 #else
509 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
510                                                  unsigned short dev_type)
511 {
512 }
513
514 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
515 {
516 }
517 #endif
518
519 /*******************************************************************************
520  *
521  *              Protocol management and registration routines
522  *
523  *******************************************************************************/
524
525
526 /*
527  *      Add a protocol ID to the list. Now that the input handler is
528  *      smarter we can dispense with all the messy stuff that used to be
529  *      here.
530  *
531  *      BEWARE!!! Protocol handlers, mangling input packets,
532  *      MUST BE last in hash buckets and checking protocol handlers
533  *      MUST start from promiscuous ptype_all chain in net_bh.
534  *      It is true now, do not change it.
535  *      Explanation follows: if protocol handler, mangling packet, will
536  *      be the first on list, it is not able to sense, that packet
537  *      is cloned and should be copied-on-write, so that it will
538  *      change it and subsequent readers will get broken packet.
539  *                                                      --ANK (980803)
540  */
541
542 static inline struct list_head *ptype_head(const struct packet_type *pt)
543 {
544         if (pt->type == htons(ETH_P_ALL))
545                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
546         else
547                 return pt->dev ? &pt->dev->ptype_specific :
548                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
549 }
550
551 /**
552  *      dev_add_pack - add packet handler
553  *      @pt: packet type declaration
554  *
555  *      Add a protocol handler to the networking stack. The passed &packet_type
556  *      is linked into kernel lists and may not be freed until it has been
557  *      removed from the kernel lists.
558  *
559  *      This call does not sleep therefore it can not
560  *      guarantee all CPU's that are in middle of receiving packets
561  *      will see the new packet type (until the next received packet).
562  */
563
564 void dev_add_pack(struct packet_type *pt)
565 {
566         struct list_head *head = ptype_head(pt);
567
568         spin_lock(&ptype_lock);
569         list_add_rcu(&pt->list, head);
570         spin_unlock(&ptype_lock);
571 }
572 EXPORT_SYMBOL(dev_add_pack);
573
574 /**
575  *      __dev_remove_pack        - remove packet handler
576  *      @pt: packet type declaration
577  *
578  *      Remove a protocol handler that was previously added to the kernel
579  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
580  *      from the kernel lists and can be freed or reused once this function
581  *      returns.
582  *
583  *      The packet type might still be in use by receivers
584  *      and must not be freed until after all the CPU's have gone
585  *      through a quiescent state.
586  */
587 void __dev_remove_pack(struct packet_type *pt)
588 {
589         struct list_head *head = ptype_head(pt);
590         struct packet_type *pt1;
591
592         spin_lock(&ptype_lock);
593
594         list_for_each_entry(pt1, head, list) {
595                 if (pt == pt1) {
596                         list_del_rcu(&pt->list);
597                         goto out;
598                 }
599         }
600
601         pr_warn("dev_remove_pack: %p not found\n", pt);
602 out:
603         spin_unlock(&ptype_lock);
604 }
605 EXPORT_SYMBOL(__dev_remove_pack);
606
607 /**
608  *      dev_remove_pack  - remove packet handler
609  *      @pt: packet type declaration
610  *
611  *      Remove a protocol handler that was previously added to the kernel
612  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
613  *      from the kernel lists and can be freed or reused once this function
614  *      returns.
615  *
616  *      This call sleeps to guarantee that no CPU is looking at the packet
617  *      type after return.
618  */
619 void dev_remove_pack(struct packet_type *pt)
620 {
621         __dev_remove_pack(pt);
622
623         synchronize_net();
624 }
625 EXPORT_SYMBOL(dev_remove_pack);
626
627
628 /*******************************************************************************
629  *
630  *                          Device Interface Subroutines
631  *
632  *******************************************************************************/
633
634 /**
635  *      dev_get_iflink  - get 'iflink' value of a interface
636  *      @dev: targeted interface
637  *
638  *      Indicates the ifindex the interface is linked to.
639  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
640  */
641
642 int dev_get_iflink(const struct net_device *dev)
643 {
644         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
645                 return dev->netdev_ops->ndo_get_iflink(dev);
646
647         return dev->ifindex;
648 }
649 EXPORT_SYMBOL(dev_get_iflink);
650
651 /**
652  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
653  *      @dev: targeted interface
654  *      @skb: The packet.
655  *
656  *      For better visibility of tunnel traffic OVS needs to retrieve
657  *      egress tunnel information for a packet. Following API allows
658  *      user to get this info.
659  */
660 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
661 {
662         struct ip_tunnel_info *info;
663
664         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
665                 return -EINVAL;
666
667         info = skb_tunnel_info_unclone(skb);
668         if (!info)
669                 return -ENOMEM;
670         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
671                 return -EINVAL;
672
673         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
674 }
675 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
676
677 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
678 {
679         int k = stack->num_paths++;
680
681         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
682                 return NULL;
683
684         return &stack->path[k];
685 }
686
687 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
688                           struct net_device_path_stack *stack)
689 {
690         const struct net_device *last_dev;
691         struct net_device_path_ctx ctx = {
692                 .dev    = dev,
693         };
694         struct net_device_path *path;
695         int ret = 0;
696
697         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
698         stack->num_paths = 0;
699         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
700                 last_dev = ctx.dev;
701                 path = dev_fwd_path(stack);
702                 if (!path)
703                         return -1;
704
705                 memset(path, 0, sizeof(struct net_device_path));
706                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
707                 if (ret < 0)
708                         return -1;
709
710                 if (WARN_ON_ONCE(last_dev == ctx.dev))
711                         return -1;
712         }
713
714         if (!ctx.dev)
715                 return ret;
716
717         path = dev_fwd_path(stack);
718         if (!path)
719                 return -1;
720         path->type = DEV_PATH_ETHERNET;
721         path->dev = ctx.dev;
722
723         return ret;
724 }
725 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
726
727 /**
728  *      __dev_get_by_name       - find a device by its name
729  *      @net: the applicable net namespace
730  *      @name: name to find
731  *
732  *      Find an interface by name. Must be called under RTNL semaphore
733  *      or @dev_base_lock. If the name is found a pointer to the device
734  *      is returned. If the name is not found then %NULL is returned. The
735  *      reference counters are not incremented so the caller must be
736  *      careful with locks.
737  */
738
739 struct net_device *__dev_get_by_name(struct net *net, const char *name)
740 {
741         struct netdev_name_node *node_name;
742
743         node_name = netdev_name_node_lookup(net, name);
744         return node_name ? node_name->dev : NULL;
745 }
746 EXPORT_SYMBOL(__dev_get_by_name);
747
748 /**
749  * dev_get_by_name_rcu  - find a device by its name
750  * @net: the applicable net namespace
751  * @name: name to find
752  *
753  * Find an interface by name.
754  * If the name is found a pointer to the device is returned.
755  * If the name is not found then %NULL is returned.
756  * The reference counters are not incremented so the caller must be
757  * careful with locks. The caller must hold RCU lock.
758  */
759
760 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
761 {
762         struct netdev_name_node *node_name;
763
764         node_name = netdev_name_node_lookup_rcu(net, name);
765         return node_name ? node_name->dev : NULL;
766 }
767 EXPORT_SYMBOL(dev_get_by_name_rcu);
768
769 /* Deprecated for new users, call netdev_get_by_name() instead */
770 struct net_device *dev_get_by_name(struct net *net, const char *name)
771 {
772         struct net_device *dev;
773
774         rcu_read_lock();
775         dev = dev_get_by_name_rcu(net, name);
776         dev_hold(dev);
777         rcu_read_unlock();
778         return dev;
779 }
780 EXPORT_SYMBOL(dev_get_by_name);
781
782 /**
783  *      netdev_get_by_name() - find a device by its name
784  *      @net: the applicable net namespace
785  *      @name: name to find
786  *      @tracker: tracking object for the acquired reference
787  *      @gfp: allocation flags for the tracker
788  *
789  *      Find an interface by name. This can be called from any
790  *      context and does its own locking. The returned handle has
791  *      the usage count incremented and the caller must use netdev_put() to
792  *      release it when it is no longer needed. %NULL is returned if no
793  *      matching device is found.
794  */
795 struct net_device *netdev_get_by_name(struct net *net, const char *name,
796                                       netdevice_tracker *tracker, gfp_t gfp)
797 {
798         struct net_device *dev;
799
800         dev = dev_get_by_name(net, name);
801         if (dev)
802                 netdev_tracker_alloc(dev, tracker, gfp);
803         return dev;
804 }
805 EXPORT_SYMBOL(netdev_get_by_name);
806
807 /**
808  *      __dev_get_by_index - find a device by its ifindex
809  *      @net: the applicable net namespace
810  *      @ifindex: index of device
811  *
812  *      Search for an interface by index. Returns %NULL if the device
813  *      is not found or a pointer to the device. The device has not
814  *      had its reference counter increased so the caller must be careful
815  *      about locking. The caller must hold either the RTNL semaphore
816  *      or @dev_base_lock.
817  */
818
819 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
820 {
821         struct net_device *dev;
822         struct hlist_head *head = dev_index_hash(net, ifindex);
823
824         hlist_for_each_entry(dev, head, index_hlist)
825                 if (dev->ifindex == ifindex)
826                         return dev;
827
828         return NULL;
829 }
830 EXPORT_SYMBOL(__dev_get_by_index);
831
832 /**
833  *      dev_get_by_index_rcu - find a device by its ifindex
834  *      @net: the applicable net namespace
835  *      @ifindex: index of device
836  *
837  *      Search for an interface by index. Returns %NULL if the device
838  *      is not found or a pointer to the device. The device has not
839  *      had its reference counter increased so the caller must be careful
840  *      about locking. The caller must hold RCU lock.
841  */
842
843 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
844 {
845         struct net_device *dev;
846         struct hlist_head *head = dev_index_hash(net, ifindex);
847
848         hlist_for_each_entry_rcu(dev, head, index_hlist)
849                 if (dev->ifindex == ifindex)
850                         return dev;
851
852         return NULL;
853 }
854 EXPORT_SYMBOL(dev_get_by_index_rcu);
855
856 /* Deprecated for new users, call netdev_get_by_index() instead */
857 struct net_device *dev_get_by_index(struct net *net, int ifindex)
858 {
859         struct net_device *dev;
860
861         rcu_read_lock();
862         dev = dev_get_by_index_rcu(net, ifindex);
863         dev_hold(dev);
864         rcu_read_unlock();
865         return dev;
866 }
867 EXPORT_SYMBOL(dev_get_by_index);
868
869 /**
870  *      netdev_get_by_index() - find a device by its ifindex
871  *      @net: the applicable net namespace
872  *      @ifindex: index of device
873  *      @tracker: tracking object for the acquired reference
874  *      @gfp: allocation flags for the tracker
875  *
876  *      Search for an interface by index. Returns NULL if the device
877  *      is not found or a pointer to the device. The device returned has
878  *      had a reference added and the pointer is safe until the user calls
879  *      netdev_put() to indicate they have finished with it.
880  */
881 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
882                                        netdevice_tracker *tracker, gfp_t gfp)
883 {
884         struct net_device *dev;
885
886         dev = dev_get_by_index(net, ifindex);
887         if (dev)
888                 netdev_tracker_alloc(dev, tracker, gfp);
889         return dev;
890 }
891 EXPORT_SYMBOL(netdev_get_by_index);
892
893 /**
894  *      dev_get_by_napi_id - find a device by napi_id
895  *      @napi_id: ID of the NAPI struct
896  *
897  *      Search for an interface by NAPI ID. Returns %NULL if the device
898  *      is not found or a pointer to the device. The device has not had
899  *      its reference counter increased so the caller must be careful
900  *      about locking. The caller must hold RCU lock.
901  */
902
903 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
904 {
905         struct napi_struct *napi;
906
907         WARN_ON_ONCE(!rcu_read_lock_held());
908
909         if (napi_id < MIN_NAPI_ID)
910                 return NULL;
911
912         napi = napi_by_id(napi_id);
913
914         return napi ? napi->dev : NULL;
915 }
916 EXPORT_SYMBOL(dev_get_by_napi_id);
917
918 /**
919  *      netdev_get_name - get a netdevice name, knowing its ifindex.
920  *      @net: network namespace
921  *      @name: a pointer to the buffer where the name will be stored.
922  *      @ifindex: the ifindex of the interface to get the name from.
923  */
924 int netdev_get_name(struct net *net, char *name, int ifindex)
925 {
926         struct net_device *dev;
927         int ret;
928
929         down_read(&devnet_rename_sem);
930         rcu_read_lock();
931
932         dev = dev_get_by_index_rcu(net, ifindex);
933         if (!dev) {
934                 ret = -ENODEV;
935                 goto out;
936         }
937
938         strcpy(name, dev->name);
939
940         ret = 0;
941 out:
942         rcu_read_unlock();
943         up_read(&devnet_rename_sem);
944         return ret;
945 }
946
947 /**
948  *      dev_getbyhwaddr_rcu - find a device by its hardware address
949  *      @net: the applicable net namespace
950  *      @type: media type of device
951  *      @ha: hardware address
952  *
953  *      Search for an interface by MAC address. Returns NULL if the device
954  *      is not found or a pointer to the device.
955  *      The caller must hold RCU or RTNL.
956  *      The returned device has not had its ref count increased
957  *      and the caller must therefore be careful about locking
958  *
959  */
960
961 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
962                                        const char *ha)
963 {
964         struct net_device *dev;
965
966         for_each_netdev_rcu(net, dev)
967                 if (dev->type == type &&
968                     !memcmp(dev->dev_addr, ha, dev->addr_len))
969                         return dev;
970
971         return NULL;
972 }
973 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
974
975 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
976 {
977         struct net_device *dev, *ret = NULL;
978
979         rcu_read_lock();
980         for_each_netdev_rcu(net, dev)
981                 if (dev->type == type) {
982                         dev_hold(dev);
983                         ret = dev;
984                         break;
985                 }
986         rcu_read_unlock();
987         return ret;
988 }
989 EXPORT_SYMBOL(dev_getfirstbyhwtype);
990
991 /**
992  *      __dev_get_by_flags - find any device with given flags
993  *      @net: the applicable net namespace
994  *      @if_flags: IFF_* values
995  *      @mask: bitmask of bits in if_flags to check
996  *
997  *      Search for any interface with the given flags. Returns NULL if a device
998  *      is not found or a pointer to the device. Must be called inside
999  *      rtnl_lock(), and result refcount is unchanged.
1000  */
1001
1002 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1003                                       unsigned short mask)
1004 {
1005         struct net_device *dev, *ret;
1006
1007         ASSERT_RTNL();
1008
1009         ret = NULL;
1010         for_each_netdev(net, dev) {
1011                 if (((dev->flags ^ if_flags) & mask) == 0) {
1012                         ret = dev;
1013                         break;
1014                 }
1015         }
1016         return ret;
1017 }
1018 EXPORT_SYMBOL(__dev_get_by_flags);
1019
1020 /**
1021  *      dev_valid_name - check if name is okay for network device
1022  *      @name: name string
1023  *
1024  *      Network device names need to be valid file names to
1025  *      allow sysfs to work.  We also disallow any kind of
1026  *      whitespace.
1027  */
1028 bool dev_valid_name(const char *name)
1029 {
1030         if (*name == '\0')
1031                 return false;
1032         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1033                 return false;
1034         if (!strcmp(name, ".") || !strcmp(name, ".."))
1035                 return false;
1036
1037         while (*name) {
1038                 if (*name == '/' || *name == ':' || isspace(*name))
1039                         return false;
1040                 name++;
1041         }
1042         return true;
1043 }
1044 EXPORT_SYMBOL(dev_valid_name);
1045
1046 /**
1047  *      __dev_alloc_name - allocate a name for a device
1048  *      @net: network namespace to allocate the device name in
1049  *      @name: name format string
1050  *      @buf:  scratch buffer and result name string
1051  *
1052  *      Passed a format string - eg "lt%d" it will try and find a suitable
1053  *      id. It scans list of devices to build up a free map, then chooses
1054  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1055  *      while allocating the name and adding the device in order to avoid
1056  *      duplicates.
1057  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1058  *      Returns the number of the unit assigned or a negative errno code.
1059  */
1060
1061 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1062 {
1063         int i = 0;
1064         const char *p;
1065         const int max_netdevices = 8*PAGE_SIZE;
1066         unsigned long *inuse;
1067         struct net_device *d;
1068
1069         if (!dev_valid_name(name))
1070                 return -EINVAL;
1071
1072         p = strchr(name, '%');
1073         if (p) {
1074                 /*
1075                  * Verify the string as this thing may have come from
1076                  * the user.  There must be either one "%d" and no other "%"
1077                  * characters.
1078                  */
1079                 if (p[1] != 'd' || strchr(p + 2, '%'))
1080                         return -EINVAL;
1081
1082                 /* Use one page as a bit array of possible slots */
1083                 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1084                 if (!inuse)
1085                         return -ENOMEM;
1086
1087                 for_each_netdev(net, d) {
1088                         struct netdev_name_node *name_node;
1089                         list_for_each_entry(name_node, &d->name_node->list, list) {
1090                                 if (!sscanf(name_node->name, name, &i))
1091                                         continue;
1092                                 if (i < 0 || i >= max_netdevices)
1093                                         continue;
1094
1095                                 /*  avoid cases where sscanf is not exact inverse of printf */
1096                                 snprintf(buf, IFNAMSIZ, name, i);
1097                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1098                                         __set_bit(i, inuse);
1099                         }
1100                         if (!sscanf(d->name, name, &i))
1101                                 continue;
1102                         if (i < 0 || i >= max_netdevices)
1103                                 continue;
1104
1105                         /*  avoid cases where sscanf is not exact inverse of printf */
1106                         snprintf(buf, IFNAMSIZ, name, i);
1107                         if (!strncmp(buf, d->name, IFNAMSIZ))
1108                                 __set_bit(i, inuse);
1109                 }
1110
1111                 i = find_first_zero_bit(inuse, max_netdevices);
1112                 bitmap_free(inuse);
1113         }
1114
1115         snprintf(buf, IFNAMSIZ, name, i);
1116         if (!netdev_name_in_use(net, buf))
1117                 return i;
1118
1119         /* It is possible to run out of possible slots
1120          * when the name is long and there isn't enough space left
1121          * for the digits, or if all bits are used.
1122          */
1123         return -ENFILE;
1124 }
1125
1126 static int dev_alloc_name_ns(struct net *net,
1127                              struct net_device *dev,
1128                              const char *name)
1129 {
1130         char buf[IFNAMSIZ];
1131         int ret;
1132
1133         BUG_ON(!net);
1134         ret = __dev_alloc_name(net, name, buf);
1135         if (ret >= 0)
1136                 strscpy(dev->name, buf, IFNAMSIZ);
1137         return ret;
1138 }
1139
1140 /**
1141  *      dev_alloc_name - allocate a name for a device
1142  *      @dev: device
1143  *      @name: name format string
1144  *
1145  *      Passed a format string - eg "lt%d" it will try and find a suitable
1146  *      id. It scans list of devices to build up a free map, then chooses
1147  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1148  *      while allocating the name and adding the device in order to avoid
1149  *      duplicates.
1150  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1151  *      Returns the number of the unit assigned or a negative errno code.
1152  */
1153
1154 int dev_alloc_name(struct net_device *dev, const char *name)
1155 {
1156         return dev_alloc_name_ns(dev_net(dev), dev, name);
1157 }
1158 EXPORT_SYMBOL(dev_alloc_name);
1159
1160 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1161                               const char *name)
1162 {
1163         BUG_ON(!net);
1164
1165         if (!dev_valid_name(name))
1166                 return -EINVAL;
1167
1168         if (strchr(name, '%'))
1169                 return dev_alloc_name_ns(net, dev, name);
1170         else if (netdev_name_in_use(net, name))
1171                 return -EEXIST;
1172         else if (dev->name != name)
1173                 strscpy(dev->name, name, IFNAMSIZ);
1174
1175         return 0;
1176 }
1177
1178 /**
1179  *      dev_change_name - change name of a device
1180  *      @dev: device
1181  *      @newname: name (or format string) must be at least IFNAMSIZ
1182  *
1183  *      Change name of a device, can pass format strings "eth%d".
1184  *      for wildcarding.
1185  */
1186 int dev_change_name(struct net_device *dev, const char *newname)
1187 {
1188         unsigned char old_assign_type;
1189         char oldname[IFNAMSIZ];
1190         int err = 0;
1191         int ret;
1192         struct net *net;
1193
1194         ASSERT_RTNL();
1195         BUG_ON(!dev_net(dev));
1196
1197         net = dev_net(dev);
1198
1199         down_write(&devnet_rename_sem);
1200
1201         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1202                 up_write(&devnet_rename_sem);
1203                 return 0;
1204         }
1205
1206         memcpy(oldname, dev->name, IFNAMSIZ);
1207
1208         err = dev_get_valid_name(net, dev, newname);
1209         if (err < 0) {
1210                 up_write(&devnet_rename_sem);
1211                 return err;
1212         }
1213
1214         if (oldname[0] && !strchr(oldname, '%'))
1215                 netdev_info(dev, "renamed from %s%s\n", oldname,
1216                             dev->flags & IFF_UP ? " (while UP)" : "");
1217
1218         old_assign_type = dev->name_assign_type;
1219         dev->name_assign_type = NET_NAME_RENAMED;
1220
1221 rollback:
1222         ret = device_rename(&dev->dev, dev->name);
1223         if (ret) {
1224                 memcpy(dev->name, oldname, IFNAMSIZ);
1225                 dev->name_assign_type = old_assign_type;
1226                 up_write(&devnet_rename_sem);
1227                 return ret;
1228         }
1229
1230         up_write(&devnet_rename_sem);
1231
1232         netdev_adjacent_rename_links(dev, oldname);
1233
1234         write_lock(&dev_base_lock);
1235         netdev_name_node_del(dev->name_node);
1236         write_unlock(&dev_base_lock);
1237
1238         synchronize_rcu();
1239
1240         write_lock(&dev_base_lock);
1241         netdev_name_node_add(net, dev->name_node);
1242         write_unlock(&dev_base_lock);
1243
1244         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1245         ret = notifier_to_errno(ret);
1246
1247         if (ret) {
1248                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1249                 if (err >= 0) {
1250                         err = ret;
1251                         down_write(&devnet_rename_sem);
1252                         memcpy(dev->name, oldname, IFNAMSIZ);
1253                         memcpy(oldname, newname, IFNAMSIZ);
1254                         dev->name_assign_type = old_assign_type;
1255                         old_assign_type = NET_NAME_RENAMED;
1256                         goto rollback;
1257                 } else {
1258                         netdev_err(dev, "name change rollback failed: %d\n",
1259                                    ret);
1260                 }
1261         }
1262
1263         return err;
1264 }
1265
1266 /**
1267  *      dev_set_alias - change ifalias of a device
1268  *      @dev: device
1269  *      @alias: name up to IFALIASZ
1270  *      @len: limit of bytes to copy from info
1271  *
1272  *      Set ifalias for a device,
1273  */
1274 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1275 {
1276         struct dev_ifalias *new_alias = NULL;
1277
1278         if (len >= IFALIASZ)
1279                 return -EINVAL;
1280
1281         if (len) {
1282                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1283                 if (!new_alias)
1284                         return -ENOMEM;
1285
1286                 memcpy(new_alias->ifalias, alias, len);
1287                 new_alias->ifalias[len] = 0;
1288         }
1289
1290         mutex_lock(&ifalias_mutex);
1291         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1292                                         mutex_is_locked(&ifalias_mutex));
1293         mutex_unlock(&ifalias_mutex);
1294
1295         if (new_alias)
1296                 kfree_rcu(new_alias, rcuhead);
1297
1298         return len;
1299 }
1300 EXPORT_SYMBOL(dev_set_alias);
1301
1302 /**
1303  *      dev_get_alias - get ifalias of a device
1304  *      @dev: device
1305  *      @name: buffer to store name of ifalias
1306  *      @len: size of buffer
1307  *
1308  *      get ifalias for a device.  Caller must make sure dev cannot go
1309  *      away,  e.g. rcu read lock or own a reference count to device.
1310  */
1311 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1312 {
1313         const struct dev_ifalias *alias;
1314         int ret = 0;
1315
1316         rcu_read_lock();
1317         alias = rcu_dereference(dev->ifalias);
1318         if (alias)
1319                 ret = snprintf(name, len, "%s", alias->ifalias);
1320         rcu_read_unlock();
1321
1322         return ret;
1323 }
1324
1325 /**
1326  *      netdev_features_change - device changes features
1327  *      @dev: device to cause notification
1328  *
1329  *      Called to indicate a device has changed features.
1330  */
1331 void netdev_features_change(struct net_device *dev)
1332 {
1333         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1334 }
1335 EXPORT_SYMBOL(netdev_features_change);
1336
1337 /**
1338  *      netdev_state_change - device changes state
1339  *      @dev: device to cause notification
1340  *
1341  *      Called to indicate a device has changed state. This function calls
1342  *      the notifier chains for netdev_chain and sends a NEWLINK message
1343  *      to the routing socket.
1344  */
1345 void netdev_state_change(struct net_device *dev)
1346 {
1347         if (dev->flags & IFF_UP) {
1348                 struct netdev_notifier_change_info change_info = {
1349                         .info.dev = dev,
1350                 };
1351
1352                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1353                                               &change_info.info);
1354                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1355         }
1356 }
1357 EXPORT_SYMBOL(netdev_state_change);
1358
1359 /**
1360  * __netdev_notify_peers - notify network peers about existence of @dev,
1361  * to be called when rtnl lock is already held.
1362  * @dev: network device
1363  *
1364  * Generate traffic such that interested network peers are aware of
1365  * @dev, such as by generating a gratuitous ARP. This may be used when
1366  * a device wants to inform the rest of the network about some sort of
1367  * reconfiguration such as a failover event or virtual machine
1368  * migration.
1369  */
1370 void __netdev_notify_peers(struct net_device *dev)
1371 {
1372         ASSERT_RTNL();
1373         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1374         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1375 }
1376 EXPORT_SYMBOL(__netdev_notify_peers);
1377
1378 /**
1379  * netdev_notify_peers - notify network peers about existence of @dev
1380  * @dev: network device
1381  *
1382  * Generate traffic such that interested network peers are aware of
1383  * @dev, such as by generating a gratuitous ARP. This may be used when
1384  * a device wants to inform the rest of the network about some sort of
1385  * reconfiguration such as a failover event or virtual machine
1386  * migration.
1387  */
1388 void netdev_notify_peers(struct net_device *dev)
1389 {
1390         rtnl_lock();
1391         __netdev_notify_peers(dev);
1392         rtnl_unlock();
1393 }
1394 EXPORT_SYMBOL(netdev_notify_peers);
1395
1396 static int napi_threaded_poll(void *data);
1397
1398 static int napi_kthread_create(struct napi_struct *n)
1399 {
1400         int err = 0;
1401
1402         /* Create and wake up the kthread once to put it in
1403          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1404          * warning and work with loadavg.
1405          */
1406         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1407                                 n->dev->name, n->napi_id);
1408         if (IS_ERR(n->thread)) {
1409                 err = PTR_ERR(n->thread);
1410                 pr_err("kthread_run failed with err %d\n", err);
1411                 n->thread = NULL;
1412         }
1413
1414         return err;
1415 }
1416
1417 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1418 {
1419         const struct net_device_ops *ops = dev->netdev_ops;
1420         int ret;
1421
1422         ASSERT_RTNL();
1423         dev_addr_check(dev);
1424
1425         if (!netif_device_present(dev)) {
1426                 /* may be detached because parent is runtime-suspended */
1427                 if (dev->dev.parent)
1428                         pm_runtime_resume(dev->dev.parent);
1429                 if (!netif_device_present(dev))
1430                         return -ENODEV;
1431         }
1432
1433         /* Block netpoll from trying to do any rx path servicing.
1434          * If we don't do this there is a chance ndo_poll_controller
1435          * or ndo_poll may be running while we open the device
1436          */
1437         netpoll_poll_disable(dev);
1438
1439         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1440         ret = notifier_to_errno(ret);
1441         if (ret)
1442                 return ret;
1443
1444         set_bit(__LINK_STATE_START, &dev->state);
1445
1446         if (ops->ndo_validate_addr)
1447                 ret = ops->ndo_validate_addr(dev);
1448
1449         if (!ret && ops->ndo_open)
1450                 ret = ops->ndo_open(dev);
1451
1452         netpoll_poll_enable(dev);
1453
1454         if (ret)
1455                 clear_bit(__LINK_STATE_START, &dev->state);
1456         else {
1457                 dev->flags |= IFF_UP;
1458                 dev_set_rx_mode(dev);
1459                 dev_activate(dev);
1460                 add_device_randomness(dev->dev_addr, dev->addr_len);
1461         }
1462
1463         return ret;
1464 }
1465
1466 /**
1467  *      dev_open        - prepare an interface for use.
1468  *      @dev: device to open
1469  *      @extack: netlink extended ack
1470  *
1471  *      Takes a device from down to up state. The device's private open
1472  *      function is invoked and then the multicast lists are loaded. Finally
1473  *      the device is moved into the up state and a %NETDEV_UP message is
1474  *      sent to the netdev notifier chain.
1475  *
1476  *      Calling this function on an active interface is a nop. On a failure
1477  *      a negative errno code is returned.
1478  */
1479 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1480 {
1481         int ret;
1482
1483         if (dev->flags & IFF_UP)
1484                 return 0;
1485
1486         ret = __dev_open(dev, extack);
1487         if (ret < 0)
1488                 return ret;
1489
1490         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1491         call_netdevice_notifiers(NETDEV_UP, dev);
1492
1493         return ret;
1494 }
1495 EXPORT_SYMBOL(dev_open);
1496
1497 static void __dev_close_many(struct list_head *head)
1498 {
1499         struct net_device *dev;
1500
1501         ASSERT_RTNL();
1502         might_sleep();
1503
1504         list_for_each_entry(dev, head, close_list) {
1505                 /* Temporarily disable netpoll until the interface is down */
1506                 netpoll_poll_disable(dev);
1507
1508                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1509
1510                 clear_bit(__LINK_STATE_START, &dev->state);
1511
1512                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1513                  * can be even on different cpu. So just clear netif_running().
1514                  *
1515                  * dev->stop() will invoke napi_disable() on all of it's
1516                  * napi_struct instances on this device.
1517                  */
1518                 smp_mb__after_atomic(); /* Commit netif_running(). */
1519         }
1520
1521         dev_deactivate_many(head);
1522
1523         list_for_each_entry(dev, head, close_list) {
1524                 const struct net_device_ops *ops = dev->netdev_ops;
1525
1526                 /*
1527                  *      Call the device specific close. This cannot fail.
1528                  *      Only if device is UP
1529                  *
1530                  *      We allow it to be called even after a DETACH hot-plug
1531                  *      event.
1532                  */
1533                 if (ops->ndo_stop)
1534                         ops->ndo_stop(dev);
1535
1536                 dev->flags &= ~IFF_UP;
1537                 netpoll_poll_enable(dev);
1538         }
1539 }
1540
1541 static void __dev_close(struct net_device *dev)
1542 {
1543         LIST_HEAD(single);
1544
1545         list_add(&dev->close_list, &single);
1546         __dev_close_many(&single);
1547         list_del(&single);
1548 }
1549
1550 void dev_close_many(struct list_head *head, bool unlink)
1551 {
1552         struct net_device *dev, *tmp;
1553
1554         /* Remove the devices that don't need to be closed */
1555         list_for_each_entry_safe(dev, tmp, head, close_list)
1556                 if (!(dev->flags & IFF_UP))
1557                         list_del_init(&dev->close_list);
1558
1559         __dev_close_many(head);
1560
1561         list_for_each_entry_safe(dev, tmp, head, close_list) {
1562                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1563                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1564                 if (unlink)
1565                         list_del_init(&dev->close_list);
1566         }
1567 }
1568 EXPORT_SYMBOL(dev_close_many);
1569
1570 /**
1571  *      dev_close - shutdown an interface.
1572  *      @dev: device to shutdown
1573  *
1574  *      This function moves an active device into down state. A
1575  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1576  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1577  *      chain.
1578  */
1579 void dev_close(struct net_device *dev)
1580 {
1581         if (dev->flags & IFF_UP) {
1582                 LIST_HEAD(single);
1583
1584                 list_add(&dev->close_list, &single);
1585                 dev_close_many(&single, true);
1586                 list_del(&single);
1587         }
1588 }
1589 EXPORT_SYMBOL(dev_close);
1590
1591
1592 /**
1593  *      dev_disable_lro - disable Large Receive Offload on a device
1594  *      @dev: device
1595  *
1596  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1597  *      called under RTNL.  This is needed if received packets may be
1598  *      forwarded to another interface.
1599  */
1600 void dev_disable_lro(struct net_device *dev)
1601 {
1602         struct net_device *lower_dev;
1603         struct list_head *iter;
1604
1605         dev->wanted_features &= ~NETIF_F_LRO;
1606         netdev_update_features(dev);
1607
1608         if (unlikely(dev->features & NETIF_F_LRO))
1609                 netdev_WARN(dev, "failed to disable LRO!\n");
1610
1611         netdev_for_each_lower_dev(dev, lower_dev, iter)
1612                 dev_disable_lro(lower_dev);
1613 }
1614 EXPORT_SYMBOL(dev_disable_lro);
1615
1616 /**
1617  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1618  *      @dev: device
1619  *
1620  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1621  *      called under RTNL.  This is needed if Generic XDP is installed on
1622  *      the device.
1623  */
1624 static void dev_disable_gro_hw(struct net_device *dev)
1625 {
1626         dev->wanted_features &= ~NETIF_F_GRO_HW;
1627         netdev_update_features(dev);
1628
1629         if (unlikely(dev->features & NETIF_F_GRO_HW))
1630                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1631 }
1632
1633 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1634 {
1635 #define N(val)                                          \
1636         case NETDEV_##val:                              \
1637                 return "NETDEV_" __stringify(val);
1638         switch (cmd) {
1639         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1640         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1641         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1642         N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1643         N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1644         N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1645         N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1646         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1647         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1648         N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1649         N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1650         N(XDP_FEAT_CHANGE)
1651         }
1652 #undef N
1653         return "UNKNOWN_NETDEV_EVENT";
1654 }
1655 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1656
1657 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1658                                    struct net_device *dev)
1659 {
1660         struct netdev_notifier_info info = {
1661                 .dev = dev,
1662         };
1663
1664         return nb->notifier_call(nb, val, &info);
1665 }
1666
1667 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1668                                              struct net_device *dev)
1669 {
1670         int err;
1671
1672         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1673         err = notifier_to_errno(err);
1674         if (err)
1675                 return err;
1676
1677         if (!(dev->flags & IFF_UP))
1678                 return 0;
1679
1680         call_netdevice_notifier(nb, NETDEV_UP, dev);
1681         return 0;
1682 }
1683
1684 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1685                                                 struct net_device *dev)
1686 {
1687         if (dev->flags & IFF_UP) {
1688                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1689                                         dev);
1690                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1691         }
1692         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1693 }
1694
1695 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1696                                                  struct net *net)
1697 {
1698         struct net_device *dev;
1699         int err;
1700
1701         for_each_netdev(net, dev) {
1702                 err = call_netdevice_register_notifiers(nb, dev);
1703                 if (err)
1704                         goto rollback;
1705         }
1706         return 0;
1707
1708 rollback:
1709         for_each_netdev_continue_reverse(net, dev)
1710                 call_netdevice_unregister_notifiers(nb, dev);
1711         return err;
1712 }
1713
1714 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1715                                                     struct net *net)
1716 {
1717         struct net_device *dev;
1718
1719         for_each_netdev(net, dev)
1720                 call_netdevice_unregister_notifiers(nb, dev);
1721 }
1722
1723 static int dev_boot_phase = 1;
1724
1725 /**
1726  * register_netdevice_notifier - register a network notifier block
1727  * @nb: notifier
1728  *
1729  * Register a notifier to be called when network device events occur.
1730  * The notifier passed is linked into the kernel structures and must
1731  * not be reused until it has been unregistered. A negative errno code
1732  * is returned on a failure.
1733  *
1734  * When registered all registration and up events are replayed
1735  * to the new notifier to allow device to have a race free
1736  * view of the network device list.
1737  */
1738
1739 int register_netdevice_notifier(struct notifier_block *nb)
1740 {
1741         struct net *net;
1742         int err;
1743
1744         /* Close race with setup_net() and cleanup_net() */
1745         down_write(&pernet_ops_rwsem);
1746         rtnl_lock();
1747         err = raw_notifier_chain_register(&netdev_chain, nb);
1748         if (err)
1749                 goto unlock;
1750         if (dev_boot_phase)
1751                 goto unlock;
1752         for_each_net(net) {
1753                 err = call_netdevice_register_net_notifiers(nb, net);
1754                 if (err)
1755                         goto rollback;
1756         }
1757
1758 unlock:
1759         rtnl_unlock();
1760         up_write(&pernet_ops_rwsem);
1761         return err;
1762
1763 rollback:
1764         for_each_net_continue_reverse(net)
1765                 call_netdevice_unregister_net_notifiers(nb, net);
1766
1767         raw_notifier_chain_unregister(&netdev_chain, nb);
1768         goto unlock;
1769 }
1770 EXPORT_SYMBOL(register_netdevice_notifier);
1771
1772 /**
1773  * unregister_netdevice_notifier - unregister a network notifier block
1774  * @nb: notifier
1775  *
1776  * Unregister a notifier previously registered by
1777  * register_netdevice_notifier(). The notifier is unlinked into the
1778  * kernel structures and may then be reused. A negative errno code
1779  * is returned on a failure.
1780  *
1781  * After unregistering unregister and down device events are synthesized
1782  * for all devices on the device list to the removed notifier to remove
1783  * the need for special case cleanup code.
1784  */
1785
1786 int unregister_netdevice_notifier(struct notifier_block *nb)
1787 {
1788         struct net *net;
1789         int err;
1790
1791         /* Close race with setup_net() and cleanup_net() */
1792         down_write(&pernet_ops_rwsem);
1793         rtnl_lock();
1794         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1795         if (err)
1796                 goto unlock;
1797
1798         for_each_net(net)
1799                 call_netdevice_unregister_net_notifiers(nb, net);
1800
1801 unlock:
1802         rtnl_unlock();
1803         up_write(&pernet_ops_rwsem);
1804         return err;
1805 }
1806 EXPORT_SYMBOL(unregister_netdevice_notifier);
1807
1808 static int __register_netdevice_notifier_net(struct net *net,
1809                                              struct notifier_block *nb,
1810                                              bool ignore_call_fail)
1811 {
1812         int err;
1813
1814         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1815         if (err)
1816                 return err;
1817         if (dev_boot_phase)
1818                 return 0;
1819
1820         err = call_netdevice_register_net_notifiers(nb, net);
1821         if (err && !ignore_call_fail)
1822                 goto chain_unregister;
1823
1824         return 0;
1825
1826 chain_unregister:
1827         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1828         return err;
1829 }
1830
1831 static int __unregister_netdevice_notifier_net(struct net *net,
1832                                                struct notifier_block *nb)
1833 {
1834         int err;
1835
1836         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1837         if (err)
1838                 return err;
1839
1840         call_netdevice_unregister_net_notifiers(nb, net);
1841         return 0;
1842 }
1843
1844 /**
1845  * register_netdevice_notifier_net - register a per-netns network notifier block
1846  * @net: network namespace
1847  * @nb: notifier
1848  *
1849  * Register a notifier to be called when network device events occur.
1850  * The notifier passed is linked into the kernel structures and must
1851  * not be reused until it has been unregistered. A negative errno code
1852  * is returned on a failure.
1853  *
1854  * When registered all registration and up events are replayed
1855  * to the new notifier to allow device to have a race free
1856  * view of the network device list.
1857  */
1858
1859 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1860 {
1861         int err;
1862
1863         rtnl_lock();
1864         err = __register_netdevice_notifier_net(net, nb, false);
1865         rtnl_unlock();
1866         return err;
1867 }
1868 EXPORT_SYMBOL(register_netdevice_notifier_net);
1869
1870 /**
1871  * unregister_netdevice_notifier_net - unregister a per-netns
1872  *                                     network notifier block
1873  * @net: network namespace
1874  * @nb: notifier
1875  *
1876  * Unregister a notifier previously registered by
1877  * register_netdevice_notifier_net(). The notifier is unlinked from the
1878  * kernel structures and may then be reused. A negative errno code
1879  * is returned on a failure.
1880  *
1881  * After unregistering unregister and down device events are synthesized
1882  * for all devices on the device list to the removed notifier to remove
1883  * the need for special case cleanup code.
1884  */
1885
1886 int unregister_netdevice_notifier_net(struct net *net,
1887                                       struct notifier_block *nb)
1888 {
1889         int err;
1890
1891         rtnl_lock();
1892         err = __unregister_netdevice_notifier_net(net, nb);
1893         rtnl_unlock();
1894         return err;
1895 }
1896 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1897
1898 static void __move_netdevice_notifier_net(struct net *src_net,
1899                                           struct net *dst_net,
1900                                           struct notifier_block *nb)
1901 {
1902         __unregister_netdevice_notifier_net(src_net, nb);
1903         __register_netdevice_notifier_net(dst_net, nb, true);
1904 }
1905
1906 int register_netdevice_notifier_dev_net(struct net_device *dev,
1907                                         struct notifier_block *nb,
1908                                         struct netdev_net_notifier *nn)
1909 {
1910         int err;
1911
1912         rtnl_lock();
1913         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1914         if (!err) {
1915                 nn->nb = nb;
1916                 list_add(&nn->list, &dev->net_notifier_list);
1917         }
1918         rtnl_unlock();
1919         return err;
1920 }
1921 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1922
1923 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1924                                           struct notifier_block *nb,
1925                                           struct netdev_net_notifier *nn)
1926 {
1927         int err;
1928
1929         rtnl_lock();
1930         list_del(&nn->list);
1931         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1932         rtnl_unlock();
1933         return err;
1934 }
1935 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1936
1937 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1938                                              struct net *net)
1939 {
1940         struct netdev_net_notifier *nn;
1941
1942         list_for_each_entry(nn, &dev->net_notifier_list, list)
1943                 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1944 }
1945
1946 /**
1947  *      call_netdevice_notifiers_info - call all network notifier blocks
1948  *      @val: value passed unmodified to notifier function
1949  *      @info: notifier information data
1950  *
1951  *      Call all network notifier blocks.  Parameters and return value
1952  *      are as for raw_notifier_call_chain().
1953  */
1954
1955 int call_netdevice_notifiers_info(unsigned long val,
1956                                   struct netdev_notifier_info *info)
1957 {
1958         struct net *net = dev_net(info->dev);
1959         int ret;
1960
1961         ASSERT_RTNL();
1962
1963         /* Run per-netns notifier block chain first, then run the global one.
1964          * Hopefully, one day, the global one is going to be removed after
1965          * all notifier block registrators get converted to be per-netns.
1966          */
1967         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1968         if (ret & NOTIFY_STOP_MASK)
1969                 return ret;
1970         return raw_notifier_call_chain(&netdev_chain, val, info);
1971 }
1972
1973 /**
1974  *      call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1975  *                                             for and rollback on error
1976  *      @val_up: value passed unmodified to notifier function
1977  *      @val_down: value passed unmodified to the notifier function when
1978  *                 recovering from an error on @val_up
1979  *      @info: notifier information data
1980  *
1981  *      Call all per-netns network notifier blocks, but not notifier blocks on
1982  *      the global notifier chain. Parameters and return value are as for
1983  *      raw_notifier_call_chain_robust().
1984  */
1985
1986 static int
1987 call_netdevice_notifiers_info_robust(unsigned long val_up,
1988                                      unsigned long val_down,
1989                                      struct netdev_notifier_info *info)
1990 {
1991         struct net *net = dev_net(info->dev);
1992
1993         ASSERT_RTNL();
1994
1995         return raw_notifier_call_chain_robust(&net->netdev_chain,
1996                                               val_up, val_down, info);
1997 }
1998
1999 static int call_netdevice_notifiers_extack(unsigned long val,
2000                                            struct net_device *dev,
2001                                            struct netlink_ext_ack *extack)
2002 {
2003         struct netdev_notifier_info info = {
2004                 .dev = dev,
2005                 .extack = extack,
2006         };
2007
2008         return call_netdevice_notifiers_info(val, &info);
2009 }
2010
2011 /**
2012  *      call_netdevice_notifiers - call all network notifier blocks
2013  *      @val: value passed unmodified to notifier function
2014  *      @dev: net_device pointer passed unmodified to notifier function
2015  *
2016  *      Call all network notifier blocks.  Parameters and return value
2017  *      are as for raw_notifier_call_chain().
2018  */
2019
2020 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2021 {
2022         return call_netdevice_notifiers_extack(val, dev, NULL);
2023 }
2024 EXPORT_SYMBOL(call_netdevice_notifiers);
2025
2026 /**
2027  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2028  *      @val: value passed unmodified to notifier function
2029  *      @dev: net_device pointer passed unmodified to notifier function
2030  *      @arg: additional u32 argument passed to the notifier function
2031  *
2032  *      Call all network notifier blocks.  Parameters and return value
2033  *      are as for raw_notifier_call_chain().
2034  */
2035 static int call_netdevice_notifiers_mtu(unsigned long val,
2036                                         struct net_device *dev, u32 arg)
2037 {
2038         struct netdev_notifier_info_ext info = {
2039                 .info.dev = dev,
2040                 .ext.mtu = arg,
2041         };
2042
2043         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2044
2045         return call_netdevice_notifiers_info(val, &info.info);
2046 }
2047
2048 #ifdef CONFIG_NET_INGRESS
2049 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2050
2051 void net_inc_ingress_queue(void)
2052 {
2053         static_branch_inc(&ingress_needed_key);
2054 }
2055 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2056
2057 void net_dec_ingress_queue(void)
2058 {
2059         static_branch_dec(&ingress_needed_key);
2060 }
2061 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2062 #endif
2063
2064 #ifdef CONFIG_NET_EGRESS
2065 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2066
2067 void net_inc_egress_queue(void)
2068 {
2069         static_branch_inc(&egress_needed_key);
2070 }
2071 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2072
2073 void net_dec_egress_queue(void)
2074 {
2075         static_branch_dec(&egress_needed_key);
2076 }
2077 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2078 #endif
2079
2080 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2081 EXPORT_SYMBOL(netstamp_needed_key);
2082 #ifdef CONFIG_JUMP_LABEL
2083 static atomic_t netstamp_needed_deferred;
2084 static atomic_t netstamp_wanted;
2085 static void netstamp_clear(struct work_struct *work)
2086 {
2087         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2088         int wanted;
2089
2090         wanted = atomic_add_return(deferred, &netstamp_wanted);
2091         if (wanted > 0)
2092                 static_branch_enable(&netstamp_needed_key);
2093         else
2094                 static_branch_disable(&netstamp_needed_key);
2095 }
2096 static DECLARE_WORK(netstamp_work, netstamp_clear);
2097 #endif
2098
2099 void net_enable_timestamp(void)
2100 {
2101 #ifdef CONFIG_JUMP_LABEL
2102         int wanted = atomic_read(&netstamp_wanted);
2103
2104         while (wanted > 0) {
2105                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2106                         return;
2107         }
2108         atomic_inc(&netstamp_needed_deferred);
2109         schedule_work(&netstamp_work);
2110 #else
2111         static_branch_inc(&netstamp_needed_key);
2112 #endif
2113 }
2114 EXPORT_SYMBOL(net_enable_timestamp);
2115
2116 void net_disable_timestamp(void)
2117 {
2118 #ifdef CONFIG_JUMP_LABEL
2119         int wanted = atomic_read(&netstamp_wanted);
2120
2121         while (wanted > 1) {
2122                 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2123                         return;
2124         }
2125         atomic_dec(&netstamp_needed_deferred);
2126         schedule_work(&netstamp_work);
2127 #else
2128         static_branch_dec(&netstamp_needed_key);
2129 #endif
2130 }
2131 EXPORT_SYMBOL(net_disable_timestamp);
2132
2133 static inline void net_timestamp_set(struct sk_buff *skb)
2134 {
2135         skb->tstamp = 0;
2136         skb->mono_delivery_time = 0;
2137         if (static_branch_unlikely(&netstamp_needed_key))
2138                 skb->tstamp = ktime_get_real();
2139 }
2140
2141 #define net_timestamp_check(COND, SKB)                          \
2142         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2143                 if ((COND) && !(SKB)->tstamp)                   \
2144                         (SKB)->tstamp = ktime_get_real();       \
2145         }                                                       \
2146
2147 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2148 {
2149         return __is_skb_forwardable(dev, skb, true);
2150 }
2151 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2152
2153 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2154                               bool check_mtu)
2155 {
2156         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2157
2158         if (likely(!ret)) {
2159                 skb->protocol = eth_type_trans(skb, dev);
2160                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2161         }
2162
2163         return ret;
2164 }
2165
2166 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2167 {
2168         return __dev_forward_skb2(dev, skb, true);
2169 }
2170 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2171
2172 /**
2173  * dev_forward_skb - loopback an skb to another netif
2174  *
2175  * @dev: destination network device
2176  * @skb: buffer to forward
2177  *
2178  * return values:
2179  *      NET_RX_SUCCESS  (no congestion)
2180  *      NET_RX_DROP     (packet was dropped, but freed)
2181  *
2182  * dev_forward_skb can be used for injecting an skb from the
2183  * start_xmit function of one device into the receive queue
2184  * of another device.
2185  *
2186  * The receiving device may be in another namespace, so
2187  * we have to clear all information in the skb that could
2188  * impact namespace isolation.
2189  */
2190 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2191 {
2192         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2193 }
2194 EXPORT_SYMBOL_GPL(dev_forward_skb);
2195
2196 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2197 {
2198         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2199 }
2200
2201 static inline int deliver_skb(struct sk_buff *skb,
2202                               struct packet_type *pt_prev,
2203                               struct net_device *orig_dev)
2204 {
2205         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2206                 return -ENOMEM;
2207         refcount_inc(&skb->users);
2208         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2209 }
2210
2211 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2212                                           struct packet_type **pt,
2213                                           struct net_device *orig_dev,
2214                                           __be16 type,
2215                                           struct list_head *ptype_list)
2216 {
2217         struct packet_type *ptype, *pt_prev = *pt;
2218
2219         list_for_each_entry_rcu(ptype, ptype_list, list) {
2220                 if (ptype->type != type)
2221                         continue;
2222                 if (pt_prev)
2223                         deliver_skb(skb, pt_prev, orig_dev);
2224                 pt_prev = ptype;
2225         }
2226         *pt = pt_prev;
2227 }
2228
2229 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2230 {
2231         if (!ptype->af_packet_priv || !skb->sk)
2232                 return false;
2233
2234         if (ptype->id_match)
2235                 return ptype->id_match(ptype, skb->sk);
2236         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2237                 return true;
2238
2239         return false;
2240 }
2241
2242 /**
2243  * dev_nit_active - return true if any network interface taps are in use
2244  *
2245  * @dev: network device to check for the presence of taps
2246  */
2247 bool dev_nit_active(struct net_device *dev)
2248 {
2249         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2250 }
2251 EXPORT_SYMBOL_GPL(dev_nit_active);
2252
2253 /*
2254  *      Support routine. Sends outgoing frames to any network
2255  *      taps currently in use.
2256  */
2257
2258 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2259 {
2260         struct packet_type *ptype;
2261         struct sk_buff *skb2 = NULL;
2262         struct packet_type *pt_prev = NULL;
2263         struct list_head *ptype_list = &ptype_all;
2264
2265         rcu_read_lock();
2266 again:
2267         list_for_each_entry_rcu(ptype, ptype_list, list) {
2268                 if (ptype->ignore_outgoing)
2269                         continue;
2270
2271                 /* Never send packets back to the socket
2272                  * they originated from - MvS (miquels@drinkel.ow.org)
2273                  */
2274                 if (skb_loop_sk(ptype, skb))
2275                         continue;
2276
2277                 if (pt_prev) {
2278                         deliver_skb(skb2, pt_prev, skb->dev);
2279                         pt_prev = ptype;
2280                         continue;
2281                 }
2282
2283                 /* need to clone skb, done only once */
2284                 skb2 = skb_clone(skb, GFP_ATOMIC);
2285                 if (!skb2)
2286                         goto out_unlock;
2287
2288                 net_timestamp_set(skb2);
2289
2290                 /* skb->nh should be correctly
2291                  * set by sender, so that the second statement is
2292                  * just protection against buggy protocols.
2293                  */
2294                 skb_reset_mac_header(skb2);
2295
2296                 if (skb_network_header(skb2) < skb2->data ||
2297                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2298                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2299                                              ntohs(skb2->protocol),
2300                                              dev->name);
2301                         skb_reset_network_header(skb2);
2302                 }
2303
2304                 skb2->transport_header = skb2->network_header;
2305                 skb2->pkt_type = PACKET_OUTGOING;
2306                 pt_prev = ptype;
2307         }
2308
2309         if (ptype_list == &ptype_all) {
2310                 ptype_list = &dev->ptype_all;
2311                 goto again;
2312         }
2313 out_unlock:
2314         if (pt_prev) {
2315                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2316                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2317                 else
2318                         kfree_skb(skb2);
2319         }
2320         rcu_read_unlock();
2321 }
2322 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2323
2324 /**
2325  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2326  * @dev: Network device
2327  * @txq: number of queues available
2328  *
2329  * If real_num_tx_queues is changed the tc mappings may no longer be
2330  * valid. To resolve this verify the tc mapping remains valid and if
2331  * not NULL the mapping. With no priorities mapping to this
2332  * offset/count pair it will no longer be used. In the worst case TC0
2333  * is invalid nothing can be done so disable priority mappings. If is
2334  * expected that drivers will fix this mapping if they can before
2335  * calling netif_set_real_num_tx_queues.
2336  */
2337 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2338 {
2339         int i;
2340         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2341
2342         /* If TC0 is invalidated disable TC mapping */
2343         if (tc->offset + tc->count > txq) {
2344                 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2345                 dev->num_tc = 0;
2346                 return;
2347         }
2348
2349         /* Invalidated prio to tc mappings set to TC0 */
2350         for (i = 1; i < TC_BITMASK + 1; i++) {
2351                 int q = netdev_get_prio_tc_map(dev, i);
2352
2353                 tc = &dev->tc_to_txq[q];
2354                 if (tc->offset + tc->count > txq) {
2355                         netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2356                                     i, q);
2357                         netdev_set_prio_tc_map(dev, i, 0);
2358                 }
2359         }
2360 }
2361
2362 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2363 {
2364         if (dev->num_tc) {
2365                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2366                 int i;
2367
2368                 /* walk through the TCs and see if it falls into any of them */
2369                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2370                         if ((txq - tc->offset) < tc->count)
2371                                 return i;
2372                 }
2373
2374                 /* didn't find it, just return -1 to indicate no match */
2375                 return -1;
2376         }
2377
2378         return 0;
2379 }
2380 EXPORT_SYMBOL(netdev_txq_to_tc);
2381
2382 #ifdef CONFIG_XPS
2383 static struct static_key xps_needed __read_mostly;
2384 static struct static_key xps_rxqs_needed __read_mostly;
2385 static DEFINE_MUTEX(xps_map_mutex);
2386 #define xmap_dereference(P)             \
2387         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2388
2389 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2390                              struct xps_dev_maps *old_maps, int tci, u16 index)
2391 {
2392         struct xps_map *map = NULL;
2393         int pos;
2394
2395         map = xmap_dereference(dev_maps->attr_map[tci]);
2396         if (!map)
2397                 return false;
2398
2399         for (pos = map->len; pos--;) {
2400                 if (map->queues[pos] != index)
2401                         continue;
2402
2403                 if (map->len > 1) {
2404                         map->queues[pos] = map->queues[--map->len];
2405                         break;
2406                 }
2407
2408                 if (old_maps)
2409                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2410                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2411                 kfree_rcu(map, rcu);
2412                 return false;
2413         }
2414
2415         return true;
2416 }
2417
2418 static bool remove_xps_queue_cpu(struct net_device *dev,
2419                                  struct xps_dev_maps *dev_maps,
2420                                  int cpu, u16 offset, u16 count)
2421 {
2422         int num_tc = dev_maps->num_tc;
2423         bool active = false;
2424         int tci;
2425
2426         for (tci = cpu * num_tc; num_tc--; tci++) {
2427                 int i, j;
2428
2429                 for (i = count, j = offset; i--; j++) {
2430                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2431                                 break;
2432                 }
2433
2434                 active |= i < 0;
2435         }
2436
2437         return active;
2438 }
2439
2440 static void reset_xps_maps(struct net_device *dev,
2441                            struct xps_dev_maps *dev_maps,
2442                            enum xps_map_type type)
2443 {
2444         static_key_slow_dec_cpuslocked(&xps_needed);
2445         if (type == XPS_RXQS)
2446                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2447
2448         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2449
2450         kfree_rcu(dev_maps, rcu);
2451 }
2452
2453 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2454                            u16 offset, u16 count)
2455 {
2456         struct xps_dev_maps *dev_maps;
2457         bool active = false;
2458         int i, j;
2459
2460         dev_maps = xmap_dereference(dev->xps_maps[type]);
2461         if (!dev_maps)
2462                 return;
2463
2464         for (j = 0; j < dev_maps->nr_ids; j++)
2465                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2466         if (!active)
2467                 reset_xps_maps(dev, dev_maps, type);
2468
2469         if (type == XPS_CPUS) {
2470                 for (i = offset + (count - 1); count--; i--)
2471                         netdev_queue_numa_node_write(
2472                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2473         }
2474 }
2475
2476 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2477                                    u16 count)
2478 {
2479         if (!static_key_false(&xps_needed))
2480                 return;
2481
2482         cpus_read_lock();
2483         mutex_lock(&xps_map_mutex);
2484
2485         if (static_key_false(&xps_rxqs_needed))
2486                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2487
2488         clean_xps_maps(dev, XPS_CPUS, offset, count);
2489
2490         mutex_unlock(&xps_map_mutex);
2491         cpus_read_unlock();
2492 }
2493
2494 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2495 {
2496         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2497 }
2498
2499 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2500                                       u16 index, bool is_rxqs_map)
2501 {
2502         struct xps_map *new_map;
2503         int alloc_len = XPS_MIN_MAP_ALLOC;
2504         int i, pos;
2505
2506         for (pos = 0; map && pos < map->len; pos++) {
2507                 if (map->queues[pos] != index)
2508                         continue;
2509                 return map;
2510         }
2511
2512         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2513         if (map) {
2514                 if (pos < map->alloc_len)
2515                         return map;
2516
2517                 alloc_len = map->alloc_len * 2;
2518         }
2519
2520         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2521          *  map
2522          */
2523         if (is_rxqs_map)
2524                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2525         else
2526                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2527                                        cpu_to_node(attr_index));
2528         if (!new_map)
2529                 return NULL;
2530
2531         for (i = 0; i < pos; i++)
2532                 new_map->queues[i] = map->queues[i];
2533         new_map->alloc_len = alloc_len;
2534         new_map->len = pos;
2535
2536         return new_map;
2537 }
2538
2539 /* Copy xps maps at a given index */
2540 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2541                               struct xps_dev_maps *new_dev_maps, int index,
2542                               int tc, bool skip_tc)
2543 {
2544         int i, tci = index * dev_maps->num_tc;
2545         struct xps_map *map;
2546
2547         /* copy maps belonging to foreign traffic classes */
2548         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2549                 if (i == tc && skip_tc)
2550                         continue;
2551
2552                 /* fill in the new device map from the old device map */
2553                 map = xmap_dereference(dev_maps->attr_map[tci]);
2554                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2555         }
2556 }
2557
2558 /* Must be called under cpus_read_lock */
2559 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2560                           u16 index, enum xps_map_type type)
2561 {
2562         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2563         const unsigned long *online_mask = NULL;
2564         bool active = false, copy = false;
2565         int i, j, tci, numa_node_id = -2;
2566         int maps_sz, num_tc = 1, tc = 0;
2567         struct xps_map *map, *new_map;
2568         unsigned int nr_ids;
2569
2570         WARN_ON_ONCE(index >= dev->num_tx_queues);
2571
2572         if (dev->num_tc) {
2573                 /* Do not allow XPS on subordinate device directly */
2574                 num_tc = dev->num_tc;
2575                 if (num_tc < 0)
2576                         return -EINVAL;
2577
2578                 /* If queue belongs to subordinate dev use its map */
2579                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2580
2581                 tc = netdev_txq_to_tc(dev, index);
2582                 if (tc < 0)
2583                         return -EINVAL;
2584         }
2585
2586         mutex_lock(&xps_map_mutex);
2587
2588         dev_maps = xmap_dereference(dev->xps_maps[type]);
2589         if (type == XPS_RXQS) {
2590                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2591                 nr_ids = dev->num_rx_queues;
2592         } else {
2593                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2594                 if (num_possible_cpus() > 1)
2595                         online_mask = cpumask_bits(cpu_online_mask);
2596                 nr_ids = nr_cpu_ids;
2597         }
2598
2599         if (maps_sz < L1_CACHE_BYTES)
2600                 maps_sz = L1_CACHE_BYTES;
2601
2602         /* The old dev_maps could be larger or smaller than the one we're
2603          * setting up now, as dev->num_tc or nr_ids could have been updated in
2604          * between. We could try to be smart, but let's be safe instead and only
2605          * copy foreign traffic classes if the two map sizes match.
2606          */
2607         if (dev_maps &&
2608             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2609                 copy = true;
2610
2611         /* allocate memory for queue storage */
2612         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2613              j < nr_ids;) {
2614                 if (!new_dev_maps) {
2615                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2616                         if (!new_dev_maps) {
2617                                 mutex_unlock(&xps_map_mutex);
2618                                 return -ENOMEM;
2619                         }
2620
2621                         new_dev_maps->nr_ids = nr_ids;
2622                         new_dev_maps->num_tc = num_tc;
2623                 }
2624
2625                 tci = j * num_tc + tc;
2626                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2627
2628                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2629                 if (!map)
2630                         goto error;
2631
2632                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2633         }
2634
2635         if (!new_dev_maps)
2636                 goto out_no_new_maps;
2637
2638         if (!dev_maps) {
2639                 /* Increment static keys at most once per type */
2640                 static_key_slow_inc_cpuslocked(&xps_needed);
2641                 if (type == XPS_RXQS)
2642                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2643         }
2644
2645         for (j = 0; j < nr_ids; j++) {
2646                 bool skip_tc = false;
2647
2648                 tci = j * num_tc + tc;
2649                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2650                     netif_attr_test_online(j, online_mask, nr_ids)) {
2651                         /* add tx-queue to CPU/rx-queue maps */
2652                         int pos = 0;
2653
2654                         skip_tc = true;
2655
2656                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2657                         while ((pos < map->len) && (map->queues[pos] != index))
2658                                 pos++;
2659
2660                         if (pos == map->len)
2661                                 map->queues[map->len++] = index;
2662 #ifdef CONFIG_NUMA
2663                         if (type == XPS_CPUS) {
2664                                 if (numa_node_id == -2)
2665                                         numa_node_id = cpu_to_node(j);
2666                                 else if (numa_node_id != cpu_to_node(j))
2667                                         numa_node_id = -1;
2668                         }
2669 #endif
2670                 }
2671
2672                 if (copy)
2673                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2674                                           skip_tc);
2675         }
2676
2677         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2678
2679         /* Cleanup old maps */
2680         if (!dev_maps)
2681                 goto out_no_old_maps;
2682
2683         for (j = 0; j < dev_maps->nr_ids; j++) {
2684                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2685                         map = xmap_dereference(dev_maps->attr_map[tci]);
2686                         if (!map)
2687                                 continue;
2688
2689                         if (copy) {
2690                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2691                                 if (map == new_map)
2692                                         continue;
2693                         }
2694
2695                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2696                         kfree_rcu(map, rcu);
2697                 }
2698         }
2699
2700         old_dev_maps = dev_maps;
2701
2702 out_no_old_maps:
2703         dev_maps = new_dev_maps;
2704         active = true;
2705
2706 out_no_new_maps:
2707         if (type == XPS_CPUS)
2708                 /* update Tx queue numa node */
2709                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2710                                              (numa_node_id >= 0) ?
2711                                              numa_node_id : NUMA_NO_NODE);
2712
2713         if (!dev_maps)
2714                 goto out_no_maps;
2715
2716         /* removes tx-queue from unused CPUs/rx-queues */
2717         for (j = 0; j < dev_maps->nr_ids; j++) {
2718                 tci = j * dev_maps->num_tc;
2719
2720                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2721                         if (i == tc &&
2722                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2723                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2724                                 continue;
2725
2726                         active |= remove_xps_queue(dev_maps,
2727                                                    copy ? old_dev_maps : NULL,
2728                                                    tci, index);
2729                 }
2730         }
2731
2732         if (old_dev_maps)
2733                 kfree_rcu(old_dev_maps, rcu);
2734
2735         /* free map if not active */
2736         if (!active)
2737                 reset_xps_maps(dev, dev_maps, type);
2738
2739 out_no_maps:
2740         mutex_unlock(&xps_map_mutex);
2741
2742         return 0;
2743 error:
2744         /* remove any maps that we added */
2745         for (j = 0; j < nr_ids; j++) {
2746                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2747                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2748                         map = copy ?
2749                               xmap_dereference(dev_maps->attr_map[tci]) :
2750                               NULL;
2751                         if (new_map && new_map != map)
2752                                 kfree(new_map);
2753                 }
2754         }
2755
2756         mutex_unlock(&xps_map_mutex);
2757
2758         kfree(new_dev_maps);
2759         return -ENOMEM;
2760 }
2761 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2762
2763 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2764                         u16 index)
2765 {
2766         int ret;
2767
2768         cpus_read_lock();
2769         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2770         cpus_read_unlock();
2771
2772         return ret;
2773 }
2774 EXPORT_SYMBOL(netif_set_xps_queue);
2775
2776 #endif
2777 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2778 {
2779         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2780
2781         /* Unbind any subordinate channels */
2782         while (txq-- != &dev->_tx[0]) {
2783                 if (txq->sb_dev)
2784                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2785         }
2786 }
2787
2788 void netdev_reset_tc(struct net_device *dev)
2789 {
2790 #ifdef CONFIG_XPS
2791         netif_reset_xps_queues_gt(dev, 0);
2792 #endif
2793         netdev_unbind_all_sb_channels(dev);
2794
2795         /* Reset TC configuration of device */
2796         dev->num_tc = 0;
2797         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2798         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2799 }
2800 EXPORT_SYMBOL(netdev_reset_tc);
2801
2802 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2803 {
2804         if (tc >= dev->num_tc)
2805                 return -EINVAL;
2806
2807 #ifdef CONFIG_XPS
2808         netif_reset_xps_queues(dev, offset, count);
2809 #endif
2810         dev->tc_to_txq[tc].count = count;
2811         dev->tc_to_txq[tc].offset = offset;
2812         return 0;
2813 }
2814 EXPORT_SYMBOL(netdev_set_tc_queue);
2815
2816 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2817 {
2818         if (num_tc > TC_MAX_QUEUE)
2819                 return -EINVAL;
2820
2821 #ifdef CONFIG_XPS
2822         netif_reset_xps_queues_gt(dev, 0);
2823 #endif
2824         netdev_unbind_all_sb_channels(dev);
2825
2826         dev->num_tc = num_tc;
2827         return 0;
2828 }
2829 EXPORT_SYMBOL(netdev_set_num_tc);
2830
2831 void netdev_unbind_sb_channel(struct net_device *dev,
2832                               struct net_device *sb_dev)
2833 {
2834         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2835
2836 #ifdef CONFIG_XPS
2837         netif_reset_xps_queues_gt(sb_dev, 0);
2838 #endif
2839         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2840         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2841
2842         while (txq-- != &dev->_tx[0]) {
2843                 if (txq->sb_dev == sb_dev)
2844                         txq->sb_dev = NULL;
2845         }
2846 }
2847 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2848
2849 int netdev_bind_sb_channel_queue(struct net_device *dev,
2850                                  struct net_device *sb_dev,
2851                                  u8 tc, u16 count, u16 offset)
2852 {
2853         /* Make certain the sb_dev and dev are already configured */
2854         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2855                 return -EINVAL;
2856
2857         /* We cannot hand out queues we don't have */
2858         if ((offset + count) > dev->real_num_tx_queues)
2859                 return -EINVAL;
2860
2861         /* Record the mapping */
2862         sb_dev->tc_to_txq[tc].count = count;
2863         sb_dev->tc_to_txq[tc].offset = offset;
2864
2865         /* Provide a way for Tx queue to find the tc_to_txq map or
2866          * XPS map for itself.
2867          */
2868         while (count--)
2869                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2870
2871         return 0;
2872 }
2873 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2874
2875 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2876 {
2877         /* Do not use a multiqueue device to represent a subordinate channel */
2878         if (netif_is_multiqueue(dev))
2879                 return -ENODEV;
2880
2881         /* We allow channels 1 - 32767 to be used for subordinate channels.
2882          * Channel 0 is meant to be "native" mode and used only to represent
2883          * the main root device. We allow writing 0 to reset the device back
2884          * to normal mode after being used as a subordinate channel.
2885          */
2886         if (channel > S16_MAX)
2887                 return -EINVAL;
2888
2889         dev->num_tc = -channel;
2890
2891         return 0;
2892 }
2893 EXPORT_SYMBOL(netdev_set_sb_channel);
2894
2895 /*
2896  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2897  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2898  */
2899 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2900 {
2901         bool disabling;
2902         int rc;
2903
2904         disabling = txq < dev->real_num_tx_queues;
2905
2906         if (txq < 1 || txq > dev->num_tx_queues)
2907                 return -EINVAL;
2908
2909         if (dev->reg_state == NETREG_REGISTERED ||
2910             dev->reg_state == NETREG_UNREGISTERING) {
2911                 ASSERT_RTNL();
2912
2913                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2914                                                   txq);
2915                 if (rc)
2916                         return rc;
2917
2918                 if (dev->num_tc)
2919                         netif_setup_tc(dev, txq);
2920
2921                 dev_qdisc_change_real_num_tx(dev, txq);
2922
2923                 dev->real_num_tx_queues = txq;
2924
2925                 if (disabling) {
2926                         synchronize_net();
2927                         qdisc_reset_all_tx_gt(dev, txq);
2928 #ifdef CONFIG_XPS
2929                         netif_reset_xps_queues_gt(dev, txq);
2930 #endif
2931                 }
2932         } else {
2933                 dev->real_num_tx_queues = txq;
2934         }
2935
2936         return 0;
2937 }
2938 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2939
2940 #ifdef CONFIG_SYSFS
2941 /**
2942  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2943  *      @dev: Network device
2944  *      @rxq: Actual number of RX queues
2945  *
2946  *      This must be called either with the rtnl_lock held or before
2947  *      registration of the net device.  Returns 0 on success, or a
2948  *      negative error code.  If called before registration, it always
2949  *      succeeds.
2950  */
2951 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2952 {
2953         int rc;
2954
2955         if (rxq < 1 || rxq > dev->num_rx_queues)
2956                 return -EINVAL;
2957
2958         if (dev->reg_state == NETREG_REGISTERED) {
2959                 ASSERT_RTNL();
2960
2961                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2962                                                   rxq);
2963                 if (rc)
2964                         return rc;
2965         }
2966
2967         dev->real_num_rx_queues = rxq;
2968         return 0;
2969 }
2970 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2971 #endif
2972
2973 /**
2974  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2975  *      @dev: Network device
2976  *      @txq: Actual number of TX queues
2977  *      @rxq: Actual number of RX queues
2978  *
2979  *      Set the real number of both TX and RX queues.
2980  *      Does nothing if the number of queues is already correct.
2981  */
2982 int netif_set_real_num_queues(struct net_device *dev,
2983                               unsigned int txq, unsigned int rxq)
2984 {
2985         unsigned int old_rxq = dev->real_num_rx_queues;
2986         int err;
2987
2988         if (txq < 1 || txq > dev->num_tx_queues ||
2989             rxq < 1 || rxq > dev->num_rx_queues)
2990                 return -EINVAL;
2991
2992         /* Start from increases, so the error path only does decreases -
2993          * decreases can't fail.
2994          */
2995         if (rxq > dev->real_num_rx_queues) {
2996                 err = netif_set_real_num_rx_queues(dev, rxq);
2997                 if (err)
2998                         return err;
2999         }
3000         if (txq > dev->real_num_tx_queues) {
3001                 err = netif_set_real_num_tx_queues(dev, txq);
3002                 if (err)
3003                         goto undo_rx;
3004         }
3005         if (rxq < dev->real_num_rx_queues)
3006                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3007         if (txq < dev->real_num_tx_queues)
3008                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3009
3010         return 0;
3011 undo_rx:
3012         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3013         return err;
3014 }
3015 EXPORT_SYMBOL(netif_set_real_num_queues);
3016
3017 /**
3018  * netif_set_tso_max_size() - set the max size of TSO frames supported
3019  * @dev:        netdev to update
3020  * @size:       max skb->len of a TSO frame
3021  *
3022  * Set the limit on the size of TSO super-frames the device can handle.
3023  * Unless explicitly set the stack will assume the value of
3024  * %GSO_LEGACY_MAX_SIZE.
3025  */
3026 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3027 {
3028         dev->tso_max_size = min(GSO_MAX_SIZE, size);
3029         if (size < READ_ONCE(dev->gso_max_size))
3030                 netif_set_gso_max_size(dev, size);
3031         if (size < READ_ONCE(dev->gso_ipv4_max_size))
3032                 netif_set_gso_ipv4_max_size(dev, size);
3033 }
3034 EXPORT_SYMBOL(netif_set_tso_max_size);
3035
3036 /**
3037  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3038  * @dev:        netdev to update
3039  * @segs:       max number of TCP segments
3040  *
3041  * Set the limit on the number of TCP segments the device can generate from
3042  * a single TSO super-frame.
3043  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3044  */
3045 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3046 {
3047         dev->tso_max_segs = segs;
3048         if (segs < READ_ONCE(dev->gso_max_segs))
3049                 netif_set_gso_max_segs(dev, segs);
3050 }
3051 EXPORT_SYMBOL(netif_set_tso_max_segs);
3052
3053 /**
3054  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3055  * @to:         netdev to update
3056  * @from:       netdev from which to copy the limits
3057  */
3058 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3059 {
3060         netif_set_tso_max_size(to, from->tso_max_size);
3061         netif_set_tso_max_segs(to, from->tso_max_segs);
3062 }
3063 EXPORT_SYMBOL(netif_inherit_tso_max);
3064
3065 /**
3066  * netif_get_num_default_rss_queues - default number of RSS queues
3067  *
3068  * Default value is the number of physical cores if there are only 1 or 2, or
3069  * divided by 2 if there are more.
3070  */
3071 int netif_get_num_default_rss_queues(void)
3072 {
3073         cpumask_var_t cpus;
3074         int cpu, count = 0;
3075
3076         if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3077                 return 1;
3078
3079         cpumask_copy(cpus, cpu_online_mask);
3080         for_each_cpu(cpu, cpus) {
3081                 ++count;
3082                 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3083         }
3084         free_cpumask_var(cpus);
3085
3086         return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3087 }
3088 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3089
3090 static void __netif_reschedule(struct Qdisc *q)
3091 {
3092         struct softnet_data *sd;
3093         unsigned long flags;
3094
3095         local_irq_save(flags);
3096         sd = this_cpu_ptr(&softnet_data);
3097         q->next_sched = NULL;
3098         *sd->output_queue_tailp = q;
3099         sd->output_queue_tailp = &q->next_sched;
3100         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3101         local_irq_restore(flags);
3102 }
3103
3104 void __netif_schedule(struct Qdisc *q)
3105 {
3106         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3107                 __netif_reschedule(q);
3108 }
3109 EXPORT_SYMBOL(__netif_schedule);
3110
3111 struct dev_kfree_skb_cb {
3112         enum skb_drop_reason reason;
3113 };
3114
3115 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3116 {
3117         return (struct dev_kfree_skb_cb *)skb->cb;
3118 }
3119
3120 void netif_schedule_queue(struct netdev_queue *txq)
3121 {
3122         rcu_read_lock();
3123         if (!netif_xmit_stopped(txq)) {
3124                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3125
3126                 __netif_schedule(q);
3127         }
3128         rcu_read_unlock();
3129 }
3130 EXPORT_SYMBOL(netif_schedule_queue);
3131
3132 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3133 {
3134         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3135                 struct Qdisc *q;
3136
3137                 rcu_read_lock();
3138                 q = rcu_dereference(dev_queue->qdisc);
3139                 __netif_schedule(q);
3140                 rcu_read_unlock();
3141         }
3142 }
3143 EXPORT_SYMBOL(netif_tx_wake_queue);
3144
3145 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3146 {
3147         unsigned long flags;
3148
3149         if (unlikely(!skb))
3150                 return;
3151
3152         if (likely(refcount_read(&skb->users) == 1)) {
3153                 smp_rmb();
3154                 refcount_set(&skb->users, 0);
3155         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3156                 return;
3157         }
3158         get_kfree_skb_cb(skb)->reason = reason;
3159         local_irq_save(flags);
3160         skb->next = __this_cpu_read(softnet_data.completion_queue);
3161         __this_cpu_write(softnet_data.completion_queue, skb);
3162         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3163         local_irq_restore(flags);
3164 }
3165 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3166
3167 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3168 {
3169         if (in_hardirq() || irqs_disabled())
3170                 dev_kfree_skb_irq_reason(skb, reason);
3171         else
3172                 kfree_skb_reason(skb, reason);
3173 }
3174 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3175
3176
3177 /**
3178  * netif_device_detach - mark device as removed
3179  * @dev: network device
3180  *
3181  * Mark device as removed from system and therefore no longer available.
3182  */
3183 void netif_device_detach(struct net_device *dev)
3184 {
3185         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3186             netif_running(dev)) {
3187                 netif_tx_stop_all_queues(dev);
3188         }
3189 }
3190 EXPORT_SYMBOL(netif_device_detach);
3191
3192 /**
3193  * netif_device_attach - mark device as attached
3194  * @dev: network device
3195  *
3196  * Mark device as attached from system and restart if needed.
3197  */
3198 void netif_device_attach(struct net_device *dev)
3199 {
3200         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3201             netif_running(dev)) {
3202                 netif_tx_wake_all_queues(dev);
3203                 __netdev_watchdog_up(dev);
3204         }
3205 }
3206 EXPORT_SYMBOL(netif_device_attach);
3207
3208 /*
3209  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3210  * to be used as a distribution range.
3211  */
3212 static u16 skb_tx_hash(const struct net_device *dev,
3213                        const struct net_device *sb_dev,
3214                        struct sk_buff *skb)
3215 {
3216         u32 hash;
3217         u16 qoffset = 0;
3218         u16 qcount = dev->real_num_tx_queues;
3219
3220         if (dev->num_tc) {
3221                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3222
3223                 qoffset = sb_dev->tc_to_txq[tc].offset;
3224                 qcount = sb_dev->tc_to_txq[tc].count;
3225                 if (unlikely(!qcount)) {
3226                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3227                                              sb_dev->name, qoffset, tc);
3228                         qoffset = 0;
3229                         qcount = dev->real_num_tx_queues;
3230                 }
3231         }
3232
3233         if (skb_rx_queue_recorded(skb)) {
3234                 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3235                 hash = skb_get_rx_queue(skb);
3236                 if (hash >= qoffset)
3237                         hash -= qoffset;
3238                 while (unlikely(hash >= qcount))
3239                         hash -= qcount;
3240                 return hash + qoffset;
3241         }
3242
3243         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3244 }
3245
3246 void skb_warn_bad_offload(const struct sk_buff *skb)
3247 {
3248         static const netdev_features_t null_features;
3249         struct net_device *dev = skb->dev;
3250         const char *name = "";
3251
3252         if (!net_ratelimit())
3253                 return;
3254
3255         if (dev) {
3256                 if (dev->dev.parent)
3257                         name = dev_driver_string(dev->dev.parent);
3258                 else
3259                         name = netdev_name(dev);
3260         }
3261         skb_dump(KERN_WARNING, skb, false);
3262         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3263              name, dev ? &dev->features : &null_features,
3264              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3265 }
3266
3267 /*
3268  * Invalidate hardware checksum when packet is to be mangled, and
3269  * complete checksum manually on outgoing path.
3270  */
3271 int skb_checksum_help(struct sk_buff *skb)
3272 {
3273         __wsum csum;
3274         int ret = 0, offset;
3275
3276         if (skb->ip_summed == CHECKSUM_COMPLETE)
3277                 goto out_set_summed;
3278
3279         if (unlikely(skb_is_gso(skb))) {
3280                 skb_warn_bad_offload(skb);
3281                 return -EINVAL;
3282         }
3283
3284         /* Before computing a checksum, we should make sure no frag could
3285          * be modified by an external entity : checksum could be wrong.
3286          */
3287         if (skb_has_shared_frag(skb)) {
3288                 ret = __skb_linearize(skb);
3289                 if (ret)
3290                         goto out;
3291         }
3292
3293         offset = skb_checksum_start_offset(skb);
3294         ret = -EINVAL;
3295         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3296                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3297                 goto out;
3298         }
3299         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3300
3301         offset += skb->csum_offset;
3302         if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3303                 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3304                 goto out;
3305         }
3306         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3307         if (ret)
3308                 goto out;
3309
3310         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3311 out_set_summed:
3312         skb->ip_summed = CHECKSUM_NONE;
3313 out:
3314         return ret;
3315 }
3316 EXPORT_SYMBOL(skb_checksum_help);
3317
3318 int skb_crc32c_csum_help(struct sk_buff *skb)
3319 {
3320         __le32 crc32c_csum;
3321         int ret = 0, offset, start;
3322
3323         if (skb->ip_summed != CHECKSUM_PARTIAL)
3324                 goto out;
3325
3326         if (unlikely(skb_is_gso(skb)))
3327                 goto out;
3328
3329         /* Before computing a checksum, we should make sure no frag could
3330          * be modified by an external entity : checksum could be wrong.
3331          */
3332         if (unlikely(skb_has_shared_frag(skb))) {
3333                 ret = __skb_linearize(skb);
3334                 if (ret)
3335                         goto out;
3336         }
3337         start = skb_checksum_start_offset(skb);
3338         offset = start + offsetof(struct sctphdr, checksum);
3339         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3340                 ret = -EINVAL;
3341                 goto out;
3342         }
3343
3344         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3345         if (ret)
3346                 goto out;
3347
3348         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3349                                                   skb->len - start, ~(__u32)0,
3350                                                   crc32c_csum_stub));
3351         *(__le32 *)(skb->data + offset) = crc32c_csum;
3352         skb_reset_csum_not_inet(skb);
3353 out:
3354         return ret;
3355 }
3356
3357 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3358 {
3359         __be16 type = skb->protocol;
3360
3361         /* Tunnel gso handlers can set protocol to ethernet. */
3362         if (type == htons(ETH_P_TEB)) {
3363                 struct ethhdr *eth;
3364
3365                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3366                         return 0;
3367
3368                 eth = (struct ethhdr *)skb->data;
3369                 type = eth->h_proto;
3370         }
3371
3372         return vlan_get_protocol_and_depth(skb, type, depth);
3373 }
3374
3375
3376 /* Take action when hardware reception checksum errors are detected. */
3377 #ifdef CONFIG_BUG
3378 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3379 {
3380         netdev_err(dev, "hw csum failure\n");
3381         skb_dump(KERN_ERR, skb, true);
3382         dump_stack();
3383 }
3384
3385 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3386 {
3387         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3388 }
3389 EXPORT_SYMBOL(netdev_rx_csum_fault);
3390 #endif
3391
3392 /* XXX: check that highmem exists at all on the given machine. */
3393 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3394 {
3395 #ifdef CONFIG_HIGHMEM
3396         int i;
3397
3398         if (!(dev->features & NETIF_F_HIGHDMA)) {
3399                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3400                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3401
3402                         if (PageHighMem(skb_frag_page(frag)))
3403                                 return 1;
3404                 }
3405         }
3406 #endif
3407         return 0;
3408 }
3409
3410 /* If MPLS offload request, verify we are testing hardware MPLS features
3411  * instead of standard features for the netdev.
3412  */
3413 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3414 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3415                                            netdev_features_t features,
3416                                            __be16 type)
3417 {
3418         if (eth_p_mpls(type))
3419                 features &= skb->dev->mpls_features;
3420
3421         return features;
3422 }
3423 #else
3424 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3425                                            netdev_features_t features,
3426                                            __be16 type)
3427 {
3428         return features;
3429 }
3430 #endif
3431
3432 static netdev_features_t harmonize_features(struct sk_buff *skb,
3433         netdev_features_t features)
3434 {
3435         __be16 type;
3436
3437         type = skb_network_protocol(skb, NULL);
3438         features = net_mpls_features(skb, features, type);
3439
3440         if (skb->ip_summed != CHECKSUM_NONE &&
3441             !can_checksum_protocol(features, type)) {
3442                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3443         }
3444         if (illegal_highdma(skb->dev, skb))
3445                 features &= ~NETIF_F_SG;
3446
3447         return features;
3448 }
3449
3450 netdev_features_t passthru_features_check(struct sk_buff *skb,
3451                                           struct net_device *dev,
3452                                           netdev_features_t features)
3453 {
3454         return features;
3455 }
3456 EXPORT_SYMBOL(passthru_features_check);
3457
3458 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3459                                              struct net_device *dev,
3460                                              netdev_features_t features)
3461 {
3462         return vlan_features_check(skb, features);
3463 }
3464
3465 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3466                                             struct net_device *dev,
3467                                             netdev_features_t features)
3468 {
3469         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3470
3471         if (gso_segs > READ_ONCE(dev->gso_max_segs))
3472                 return features & ~NETIF_F_GSO_MASK;
3473
3474         if (!skb_shinfo(skb)->gso_type) {
3475                 skb_warn_bad_offload(skb);
3476                 return features & ~NETIF_F_GSO_MASK;
3477         }
3478
3479         /* Support for GSO partial features requires software
3480          * intervention before we can actually process the packets
3481          * so we need to strip support for any partial features now
3482          * and we can pull them back in after we have partially
3483          * segmented the frame.
3484          */
3485         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3486                 features &= ~dev->gso_partial_features;
3487
3488         /* Make sure to clear the IPv4 ID mangling feature if the
3489          * IPv4 header has the potential to be fragmented.
3490          */
3491         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3492                 struct iphdr *iph = skb->encapsulation ?
3493                                     inner_ip_hdr(skb) : ip_hdr(skb);
3494
3495                 if (!(iph->frag_off & htons(IP_DF)))
3496                         features &= ~NETIF_F_TSO_MANGLEID;
3497         }
3498
3499         return features;
3500 }
3501
3502 netdev_features_t netif_skb_features(struct sk_buff *skb)
3503 {
3504         struct net_device *dev = skb->dev;
3505         netdev_features_t features = dev->features;
3506
3507         if (skb_is_gso(skb))
3508                 features = gso_features_check(skb, dev, features);
3509
3510         /* If encapsulation offload request, verify we are testing
3511          * hardware encapsulation features instead of standard
3512          * features for the netdev
3513          */
3514         if (skb->encapsulation)
3515                 features &= dev->hw_enc_features;
3516
3517         if (skb_vlan_tagged(skb))
3518                 features = netdev_intersect_features(features,
3519                                                      dev->vlan_features |
3520                                                      NETIF_F_HW_VLAN_CTAG_TX |
3521                                                      NETIF_F_HW_VLAN_STAG_TX);
3522
3523         if (dev->netdev_ops->ndo_features_check)
3524                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3525                                                                 features);
3526         else
3527                 features &= dflt_features_check(skb, dev, features);
3528
3529         return harmonize_features(skb, features);
3530 }
3531 EXPORT_SYMBOL(netif_skb_features);
3532
3533 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3534                     struct netdev_queue *txq, bool more)
3535 {
3536         unsigned int len;
3537         int rc;
3538
3539         if (dev_nit_active(dev))
3540                 dev_queue_xmit_nit(skb, dev);
3541
3542         len = skb->len;
3543         trace_net_dev_start_xmit(skb, dev);
3544         rc = netdev_start_xmit(skb, dev, txq, more);
3545         trace_net_dev_xmit(skb, rc, dev, len);
3546
3547         return rc;
3548 }
3549
3550 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3551                                     struct netdev_queue *txq, int *ret)
3552 {
3553         struct sk_buff *skb = first;
3554         int rc = NETDEV_TX_OK;
3555
3556         while (skb) {
3557                 struct sk_buff *next = skb->next;
3558
3559                 skb_mark_not_on_list(skb);
3560                 rc = xmit_one(skb, dev, txq, next != NULL);
3561                 if (unlikely(!dev_xmit_complete(rc))) {
3562                         skb->next = next;
3563                         goto out;
3564                 }
3565
3566                 skb = next;
3567                 if (netif_tx_queue_stopped(txq) && skb) {
3568                         rc = NETDEV_TX_BUSY;
3569                         break;
3570                 }
3571         }
3572
3573 out:
3574         *ret = rc;
3575         return skb;
3576 }
3577
3578 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3579                                           netdev_features_t features)
3580 {
3581         if (skb_vlan_tag_present(skb) &&
3582             !vlan_hw_offload_capable(features, skb->vlan_proto))
3583                 skb = __vlan_hwaccel_push_inside(skb);
3584         return skb;
3585 }
3586
3587 int skb_csum_hwoffload_help(struct sk_buff *skb,
3588                             const netdev_features_t features)
3589 {
3590         if (unlikely(skb_csum_is_sctp(skb)))
3591                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3592                         skb_crc32c_csum_help(skb);
3593
3594         if (features & NETIF_F_HW_CSUM)
3595                 return 0;
3596
3597         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3598                 switch (skb->csum_offset) {
3599                 case offsetof(struct tcphdr, check):
3600                 case offsetof(struct udphdr, check):
3601                         return 0;
3602                 }
3603         }
3604
3605         return skb_checksum_help(skb);
3606 }
3607 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3608
3609 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3610 {
3611         netdev_features_t features;
3612
3613         features = netif_skb_features(skb);
3614         skb = validate_xmit_vlan(skb, features);
3615         if (unlikely(!skb))
3616                 goto out_null;
3617
3618         skb = sk_validate_xmit_skb(skb, dev);
3619         if (unlikely(!skb))
3620                 goto out_null;
3621
3622         if (netif_needs_gso(skb, features)) {
3623                 struct sk_buff *segs;
3624
3625                 segs = skb_gso_segment(skb, features);
3626                 if (IS_ERR(segs)) {
3627                         goto out_kfree_skb;
3628                 } else if (segs) {
3629                         consume_skb(skb);
3630                         skb = segs;
3631                 }
3632         } else {
3633                 if (skb_needs_linearize(skb, features) &&
3634                     __skb_linearize(skb))
3635                         goto out_kfree_skb;
3636
3637                 /* If packet is not checksummed and device does not
3638                  * support checksumming for this protocol, complete
3639                  * checksumming here.
3640                  */
3641                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3642                         if (skb->encapsulation)
3643                                 skb_set_inner_transport_header(skb,
3644                                                                skb_checksum_start_offset(skb));
3645                         else
3646                                 skb_set_transport_header(skb,
3647                                                          skb_checksum_start_offset(skb));
3648                         if (skb_csum_hwoffload_help(skb, features))
3649                                 goto out_kfree_skb;
3650                 }
3651         }
3652
3653         skb = validate_xmit_xfrm(skb, features, again);
3654
3655         return skb;
3656
3657 out_kfree_skb:
3658         kfree_skb(skb);
3659 out_null:
3660         dev_core_stats_tx_dropped_inc(dev);
3661         return NULL;
3662 }
3663
3664 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3665 {
3666         struct sk_buff *next, *head = NULL, *tail;
3667
3668         for (; skb != NULL; skb = next) {
3669                 next = skb->next;
3670                 skb_mark_not_on_list(skb);
3671
3672                 /* in case skb wont be segmented, point to itself */
3673                 skb->prev = skb;
3674
3675                 skb = validate_xmit_skb(skb, dev, again);
3676                 if (!skb)
3677                         continue;
3678
3679                 if (!head)
3680                         head = skb;
3681                 else
3682                         tail->next = skb;
3683                 /* If skb was segmented, skb->prev points to
3684                  * the last segment. If not, it still contains skb.
3685                  */
3686                 tail = skb->prev;
3687         }
3688         return head;
3689 }
3690 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3691
3692 static void qdisc_pkt_len_init(struct sk_buff *skb)
3693 {
3694         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3695
3696         qdisc_skb_cb(skb)->pkt_len = skb->len;
3697
3698         /* To get more precise estimation of bytes sent on wire,
3699          * we add to pkt_len the headers size of all segments
3700          */
3701         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3702                 u16 gso_segs = shinfo->gso_segs;
3703                 unsigned int hdr_len;
3704
3705                 /* mac layer + network layer */
3706                 hdr_len = skb_transport_offset(skb);
3707
3708                 /* + transport layer */
3709                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3710                         const struct tcphdr *th;
3711                         struct tcphdr _tcphdr;
3712
3713                         th = skb_header_pointer(skb, hdr_len,
3714                                                 sizeof(_tcphdr), &_tcphdr);
3715                         if (likely(th))
3716                                 hdr_len += __tcp_hdrlen(th);
3717                 } else {
3718                         struct udphdr _udphdr;
3719
3720                         if (skb_header_pointer(skb, hdr_len,
3721                                                sizeof(_udphdr), &_udphdr))
3722                                 hdr_len += sizeof(struct udphdr);
3723                 }
3724
3725                 if (shinfo->gso_type & SKB_GSO_DODGY)
3726                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3727                                                 shinfo->gso_size);
3728
3729                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3730         }
3731 }
3732
3733 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3734                              struct sk_buff **to_free,
3735                              struct netdev_queue *txq)
3736 {
3737         int rc;
3738
3739         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3740         if (rc == NET_XMIT_SUCCESS)
3741                 trace_qdisc_enqueue(q, txq, skb);
3742         return rc;
3743 }
3744
3745 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3746                                  struct net_device *dev,
3747                                  struct netdev_queue *txq)
3748 {
3749         spinlock_t *root_lock = qdisc_lock(q);
3750         struct sk_buff *to_free = NULL;
3751         bool contended;
3752         int rc;
3753
3754         qdisc_calculate_pkt_len(skb, q);
3755
3756         if (q->flags & TCQ_F_NOLOCK) {
3757                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3758                     qdisc_run_begin(q)) {
3759                         /* Retest nolock_qdisc_is_empty() within the protection
3760                          * of q->seqlock to protect from racing with requeuing.
3761                          */
3762                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3763                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3764                                 __qdisc_run(q);
3765                                 qdisc_run_end(q);
3766
3767                                 goto no_lock_out;
3768                         }
3769
3770                         qdisc_bstats_cpu_update(q, skb);
3771                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3772                             !nolock_qdisc_is_empty(q))
3773                                 __qdisc_run(q);
3774
3775                         qdisc_run_end(q);
3776                         return NET_XMIT_SUCCESS;
3777                 }
3778
3779                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3780                 qdisc_run(q);
3781
3782 no_lock_out:
3783                 if (unlikely(to_free))
3784                         kfree_skb_list_reason(to_free,
3785                                               SKB_DROP_REASON_QDISC_DROP);
3786                 return rc;
3787         }
3788
3789         /*
3790          * Heuristic to force contended enqueues to serialize on a
3791          * separate lock before trying to get qdisc main lock.
3792          * This permits qdisc->running owner to get the lock more
3793          * often and dequeue packets faster.
3794          * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3795          * and then other tasks will only enqueue packets. The packets will be
3796          * sent after the qdisc owner is scheduled again. To prevent this
3797          * scenario the task always serialize on the lock.
3798          */
3799         contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3800         if (unlikely(contended))
3801                 spin_lock(&q->busylock);
3802
3803         spin_lock(root_lock);
3804         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3805                 __qdisc_drop(skb, &to_free);
3806                 rc = NET_XMIT_DROP;
3807         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3808                    qdisc_run_begin(q)) {
3809                 /*
3810                  * This is a work-conserving queue; there are no old skbs
3811                  * waiting to be sent out; and the qdisc is not running -
3812                  * xmit the skb directly.
3813                  */
3814
3815                 qdisc_bstats_update(q, skb);
3816
3817                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3818                         if (unlikely(contended)) {
3819                                 spin_unlock(&q->busylock);
3820                                 contended = false;
3821                         }
3822                         __qdisc_run(q);
3823                 }
3824
3825                 qdisc_run_end(q);
3826                 rc = NET_XMIT_SUCCESS;
3827         } else {
3828                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3829                 if (qdisc_run_begin(q)) {
3830                         if (unlikely(contended)) {
3831                                 spin_unlock(&q->busylock);
3832                                 contended = false;
3833                         }
3834                         __qdisc_run(q);
3835                         qdisc_run_end(q);
3836                 }
3837         }
3838         spin_unlock(root_lock);
3839         if (unlikely(to_free))
3840                 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3841         if (unlikely(contended))
3842                 spin_unlock(&q->busylock);
3843         return rc;
3844 }
3845
3846 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3847 static void skb_update_prio(struct sk_buff *skb)
3848 {
3849         const struct netprio_map *map;
3850         const struct sock *sk;
3851         unsigned int prioidx;
3852
3853         if (skb->priority)
3854                 return;
3855         map = rcu_dereference_bh(skb->dev->priomap);
3856         if (!map)
3857                 return;
3858         sk = skb_to_full_sk(skb);
3859         if (!sk)
3860                 return;
3861
3862         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3863
3864         if (prioidx < map->priomap_len)
3865                 skb->priority = map->priomap[prioidx];
3866 }
3867 #else
3868 #define skb_update_prio(skb)
3869 #endif
3870
3871 /**
3872  *      dev_loopback_xmit - loop back @skb
3873  *      @net: network namespace this loopback is happening in
3874  *      @sk:  sk needed to be a netfilter okfn
3875  *      @skb: buffer to transmit
3876  */
3877 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3878 {
3879         skb_reset_mac_header(skb);
3880         __skb_pull(skb, skb_network_offset(skb));
3881         skb->pkt_type = PACKET_LOOPBACK;
3882         if (skb->ip_summed == CHECKSUM_NONE)
3883                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3884         DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3885         skb_dst_force(skb);
3886         netif_rx(skb);
3887         return 0;
3888 }
3889 EXPORT_SYMBOL(dev_loopback_xmit);
3890
3891 #ifdef CONFIG_NET_EGRESS
3892 static struct netdev_queue *
3893 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3894 {
3895         int qm = skb_get_queue_mapping(skb);
3896
3897         return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3898 }
3899
3900 static bool netdev_xmit_txqueue_skipped(void)
3901 {
3902         return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3903 }
3904
3905 void netdev_xmit_skip_txqueue(bool skip)
3906 {
3907         __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3908 }
3909 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3910 #endif /* CONFIG_NET_EGRESS */
3911
3912 #ifdef CONFIG_NET_XGRESS
3913 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb)
3914 {
3915         int ret = TC_ACT_UNSPEC;
3916 #ifdef CONFIG_NET_CLS_ACT
3917         struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3918         struct tcf_result res;
3919
3920         if (!miniq)
3921                 return ret;
3922
3923         tc_skb_cb(skb)->mru = 0;
3924         tc_skb_cb(skb)->post_ct = false;
3925
3926         mini_qdisc_bstats_cpu_update(miniq, skb);
3927         ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3928         /* Only tcf related quirks below. */
3929         switch (ret) {
3930         case TC_ACT_SHOT:
3931                 mini_qdisc_qstats_cpu_drop(miniq);
3932                 break;
3933         case TC_ACT_OK:
3934         case TC_ACT_RECLASSIFY:
3935                 skb->tc_index = TC_H_MIN(res.classid);
3936                 break;
3937         }
3938 #endif /* CONFIG_NET_CLS_ACT */
3939         return ret;
3940 }
3941
3942 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3943
3944 void tcx_inc(void)
3945 {
3946         static_branch_inc(&tcx_needed_key);
3947 }
3948
3949 void tcx_dec(void)
3950 {
3951         static_branch_dec(&tcx_needed_key);
3952 }
3953
3954 static __always_inline enum tcx_action_base
3955 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3956         const bool needs_mac)
3957 {
3958         const struct bpf_mprog_fp *fp;
3959         const struct bpf_prog *prog;
3960         int ret = TCX_NEXT;
3961
3962         if (needs_mac)
3963                 __skb_push(skb, skb->mac_len);
3964         bpf_mprog_foreach_prog(entry, fp, prog) {
3965                 bpf_compute_data_pointers(skb);
3966                 ret = bpf_prog_run(prog, skb);
3967                 if (ret != TCX_NEXT)
3968                         break;
3969         }
3970         if (needs_mac)
3971                 __skb_pull(skb, skb->mac_len);
3972         return tcx_action_code(skb, ret);
3973 }
3974
3975 static __always_inline struct sk_buff *
3976 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3977                    struct net_device *orig_dev, bool *another)
3978 {
3979         struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3980         int sch_ret;
3981
3982         if (!entry)
3983                 return skb;
3984         if (*pt_prev) {
3985                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3986                 *pt_prev = NULL;
3987         }
3988
3989         qdisc_skb_cb(skb)->pkt_len = skb->len;
3990         tcx_set_ingress(skb, true);
3991
3992         if (static_branch_unlikely(&tcx_needed_key)) {
3993                 sch_ret = tcx_run(entry, skb, true);
3994                 if (sch_ret != TC_ACT_UNSPEC)
3995                         goto ingress_verdict;
3996         }
3997         sch_ret = tc_run(tcx_entry(entry), skb);
3998 ingress_verdict:
3999         switch (sch_ret) {
4000         case TC_ACT_REDIRECT:
4001                 /* skb_mac_header check was done by BPF, so we can safely
4002                  * push the L2 header back before redirecting to another
4003                  * netdev.
4004                  */
4005                 __skb_push(skb, skb->mac_len);
4006                 if (skb_do_redirect(skb) == -EAGAIN) {
4007                         __skb_pull(skb, skb->mac_len);
4008                         *another = true;
4009                         break;
4010                 }
4011                 *ret = NET_RX_SUCCESS;
4012                 return NULL;
4013         case TC_ACT_SHOT:
4014                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
4015                 *ret = NET_RX_DROP;
4016                 return NULL;
4017         /* used by tc_run */
4018         case TC_ACT_STOLEN:
4019         case TC_ACT_QUEUED:
4020         case TC_ACT_TRAP:
4021                 consume_skb(skb);
4022                 fallthrough;
4023         case TC_ACT_CONSUMED:
4024                 *ret = NET_RX_SUCCESS;
4025                 return NULL;
4026         }
4027
4028         return skb;
4029 }
4030
4031 static __always_inline struct sk_buff *
4032 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4033 {
4034         struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4035         int sch_ret;
4036
4037         if (!entry)
4038                 return skb;
4039
4040         /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4041          * already set by the caller.
4042          */
4043         if (static_branch_unlikely(&tcx_needed_key)) {
4044                 sch_ret = tcx_run(entry, skb, false);
4045                 if (sch_ret != TC_ACT_UNSPEC)
4046                         goto egress_verdict;
4047         }
4048         sch_ret = tc_run(tcx_entry(entry), skb);
4049 egress_verdict:
4050         switch (sch_ret) {
4051         case TC_ACT_REDIRECT:
4052                 /* No need to push/pop skb's mac_header here on egress! */
4053                 skb_do_redirect(skb);
4054                 *ret = NET_XMIT_SUCCESS;
4055                 return NULL;
4056         case TC_ACT_SHOT:
4057                 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
4058                 *ret = NET_XMIT_DROP;
4059                 return NULL;
4060         /* used by tc_run */
4061         case TC_ACT_STOLEN:
4062         case TC_ACT_QUEUED:
4063         case TC_ACT_TRAP:
4064                 consume_skb(skb);
4065                 fallthrough;
4066         case TC_ACT_CONSUMED:
4067                 *ret = NET_XMIT_SUCCESS;
4068                 return NULL;
4069         }
4070
4071         return skb;
4072 }
4073 #else
4074 static __always_inline struct sk_buff *
4075 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4076                    struct net_device *orig_dev, bool *another)
4077 {
4078         return skb;
4079 }
4080
4081 static __always_inline struct sk_buff *
4082 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4083 {
4084         return skb;
4085 }
4086 #endif /* CONFIG_NET_XGRESS */
4087
4088 #ifdef CONFIG_XPS
4089 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4090                                struct xps_dev_maps *dev_maps, unsigned int tci)
4091 {
4092         int tc = netdev_get_prio_tc_map(dev, skb->priority);
4093         struct xps_map *map;
4094         int queue_index = -1;
4095
4096         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4097                 return queue_index;
4098
4099         tci *= dev_maps->num_tc;
4100         tci += tc;
4101
4102         map = rcu_dereference(dev_maps->attr_map[tci]);
4103         if (map) {
4104                 if (map->len == 1)
4105                         queue_index = map->queues[0];
4106                 else
4107                         queue_index = map->queues[reciprocal_scale(
4108                                                 skb_get_hash(skb), map->len)];
4109                 if (unlikely(queue_index >= dev->real_num_tx_queues))
4110                         queue_index = -1;
4111         }
4112         return queue_index;
4113 }
4114 #endif
4115
4116 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4117                          struct sk_buff *skb)
4118 {
4119 #ifdef CONFIG_XPS
4120         struct xps_dev_maps *dev_maps;
4121         struct sock *sk = skb->sk;
4122         int queue_index = -1;
4123
4124         if (!static_key_false(&xps_needed))
4125                 return -1;
4126
4127         rcu_read_lock();
4128         if (!static_key_false(&xps_rxqs_needed))
4129                 goto get_cpus_map;
4130
4131         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4132         if (dev_maps) {
4133                 int tci = sk_rx_queue_get(sk);
4134
4135                 if (tci >= 0)
4136                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4137                                                           tci);
4138         }
4139
4140 get_cpus_map:
4141         if (queue_index < 0) {
4142                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4143                 if (dev_maps) {
4144                         unsigned int tci = skb->sender_cpu - 1;
4145
4146                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4147                                                           tci);
4148                 }
4149         }
4150         rcu_read_unlock();
4151
4152         return queue_index;
4153 #else
4154         return -1;
4155 #endif
4156 }
4157
4158 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4159                      struct net_device *sb_dev)
4160 {
4161         return 0;
4162 }
4163 EXPORT_SYMBOL(dev_pick_tx_zero);
4164
4165 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4166                        struct net_device *sb_dev)
4167 {
4168         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4169 }
4170 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4171
4172 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4173                      struct net_device *sb_dev)
4174 {
4175         struct sock *sk = skb->sk;
4176         int queue_index = sk_tx_queue_get(sk);
4177
4178         sb_dev = sb_dev ? : dev;
4179
4180         if (queue_index < 0 || skb->ooo_okay ||
4181             queue_index >= dev->real_num_tx_queues) {
4182                 int new_index = get_xps_queue(dev, sb_dev, skb);
4183
4184                 if (new_index < 0)
4185                         new_index = skb_tx_hash(dev, sb_dev, skb);
4186
4187                 if (queue_index != new_index && sk &&
4188                     sk_fullsock(sk) &&
4189                     rcu_access_pointer(sk->sk_dst_cache))
4190                         sk_tx_queue_set(sk, new_index);
4191
4192                 queue_index = new_index;
4193         }
4194
4195         return queue_index;
4196 }
4197 EXPORT_SYMBOL(netdev_pick_tx);
4198
4199 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4200                                          struct sk_buff *skb,
4201                                          struct net_device *sb_dev)
4202 {
4203         int queue_index = 0;
4204
4205 #ifdef CONFIG_XPS
4206         u32 sender_cpu = skb->sender_cpu - 1;
4207
4208         if (sender_cpu >= (u32)NR_CPUS)
4209                 skb->sender_cpu = raw_smp_processor_id() + 1;
4210 #endif
4211
4212         if (dev->real_num_tx_queues != 1) {
4213                 const struct net_device_ops *ops = dev->netdev_ops;
4214
4215                 if (ops->ndo_select_queue)
4216                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4217                 else
4218                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4219
4220                 queue_index = netdev_cap_txqueue(dev, queue_index);
4221         }
4222
4223         skb_set_queue_mapping(skb, queue_index);
4224         return netdev_get_tx_queue(dev, queue_index);
4225 }
4226
4227 /**
4228  * __dev_queue_xmit() - transmit a buffer
4229  * @skb:        buffer to transmit
4230  * @sb_dev:     suboordinate device used for L2 forwarding offload
4231  *
4232  * Queue a buffer for transmission to a network device. The caller must
4233  * have set the device and priority and built the buffer before calling
4234  * this function. The function can be called from an interrupt.
4235  *
4236  * When calling this method, interrupts MUST be enabled. This is because
4237  * the BH enable code must have IRQs enabled so that it will not deadlock.
4238  *
4239  * Regardless of the return value, the skb is consumed, so it is currently
4240  * difficult to retry a send to this method. (You can bump the ref count
4241  * before sending to hold a reference for retry if you are careful.)
4242  *
4243  * Return:
4244  * * 0                          - buffer successfully transmitted
4245  * * positive qdisc return code - NET_XMIT_DROP etc.
4246  * * negative errno             - other errors
4247  */
4248 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4249 {
4250         struct net_device *dev = skb->dev;
4251         struct netdev_queue *txq = NULL;
4252         struct Qdisc *q;
4253         int rc = -ENOMEM;
4254         bool again = false;
4255
4256         skb_reset_mac_header(skb);
4257         skb_assert_len(skb);
4258
4259         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4260                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4261
4262         /* Disable soft irqs for various locks below. Also
4263          * stops preemption for RCU.
4264          */
4265         rcu_read_lock_bh();
4266
4267         skb_update_prio(skb);
4268
4269         qdisc_pkt_len_init(skb);
4270         tcx_set_ingress(skb, false);
4271 #ifdef CONFIG_NET_EGRESS
4272         if (static_branch_unlikely(&egress_needed_key)) {
4273                 if (nf_hook_egress_active()) {
4274                         skb = nf_hook_egress(skb, &rc, dev);
4275                         if (!skb)
4276                                 goto out;
4277                 }
4278
4279                 netdev_xmit_skip_txqueue(false);
4280
4281                 nf_skip_egress(skb, true);
4282                 skb = sch_handle_egress(skb, &rc, dev);
4283                 if (!skb)
4284                         goto out;
4285                 nf_skip_egress(skb, false);
4286
4287                 if (netdev_xmit_txqueue_skipped())
4288                         txq = netdev_tx_queue_mapping(dev, skb);
4289         }
4290 #endif
4291         /* If device/qdisc don't need skb->dst, release it right now while
4292          * its hot in this cpu cache.
4293          */
4294         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4295                 skb_dst_drop(skb);
4296         else
4297                 skb_dst_force(skb);
4298
4299         if (!txq)
4300                 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4301
4302         q = rcu_dereference_bh(txq->qdisc);
4303
4304         trace_net_dev_queue(skb);
4305         if (q->enqueue) {
4306                 rc = __dev_xmit_skb(skb, q, dev, txq);
4307                 goto out;
4308         }
4309
4310         /* The device has no queue. Common case for software devices:
4311          * loopback, all the sorts of tunnels...
4312
4313          * Really, it is unlikely that netif_tx_lock protection is necessary
4314          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4315          * counters.)
4316          * However, it is possible, that they rely on protection
4317          * made by us here.
4318
4319          * Check this and shot the lock. It is not prone from deadlocks.
4320          *Either shot noqueue qdisc, it is even simpler 8)
4321          */
4322         if (dev->flags & IFF_UP) {
4323                 int cpu = smp_processor_id(); /* ok because BHs are off */
4324
4325                 /* Other cpus might concurrently change txq->xmit_lock_owner
4326                  * to -1 or to their cpu id, but not to our id.
4327                  */
4328                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4329                         if (dev_xmit_recursion())
4330                                 goto recursion_alert;
4331
4332                         skb = validate_xmit_skb(skb, dev, &again);
4333                         if (!skb)
4334                                 goto out;
4335
4336                         HARD_TX_LOCK(dev, txq, cpu);
4337
4338                         if (!netif_xmit_stopped(txq)) {
4339                                 dev_xmit_recursion_inc();
4340                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4341                                 dev_xmit_recursion_dec();
4342                                 if (dev_xmit_complete(rc)) {
4343                                         HARD_TX_UNLOCK(dev, txq);
4344                                         goto out;
4345                                 }
4346                         }
4347                         HARD_TX_UNLOCK(dev, txq);
4348                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4349                                              dev->name);
4350                 } else {
4351                         /* Recursion is detected! It is possible,
4352                          * unfortunately
4353                          */
4354 recursion_alert:
4355                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4356                                              dev->name);
4357                 }
4358         }
4359
4360         rc = -ENETDOWN;
4361         rcu_read_unlock_bh();
4362
4363         dev_core_stats_tx_dropped_inc(dev);
4364         kfree_skb_list(skb);
4365         return rc;
4366 out:
4367         rcu_read_unlock_bh();
4368         return rc;
4369 }
4370 EXPORT_SYMBOL(__dev_queue_xmit);
4371
4372 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4373 {
4374         struct net_device *dev = skb->dev;
4375         struct sk_buff *orig_skb = skb;
4376         struct netdev_queue *txq;
4377         int ret = NETDEV_TX_BUSY;
4378         bool again = false;
4379
4380         if (unlikely(!netif_running(dev) ||
4381                      !netif_carrier_ok(dev)))
4382                 goto drop;
4383
4384         skb = validate_xmit_skb_list(skb, dev, &again);
4385         if (skb != orig_skb)
4386                 goto drop;
4387
4388         skb_set_queue_mapping(skb, queue_id);
4389         txq = skb_get_tx_queue(dev, skb);
4390
4391         local_bh_disable();
4392
4393         dev_xmit_recursion_inc();
4394         HARD_TX_LOCK(dev, txq, smp_processor_id());
4395         if (!netif_xmit_frozen_or_drv_stopped(txq))
4396                 ret = netdev_start_xmit(skb, dev, txq, false);
4397         HARD_TX_UNLOCK(dev, txq);
4398         dev_xmit_recursion_dec();
4399
4400         local_bh_enable();
4401         return ret;
4402 drop:
4403         dev_core_stats_tx_dropped_inc(dev);
4404         kfree_skb_list(skb);
4405         return NET_XMIT_DROP;
4406 }
4407 EXPORT_SYMBOL(__dev_direct_xmit);
4408
4409 /*************************************************************************
4410  *                      Receiver routines
4411  *************************************************************************/
4412
4413 int netdev_max_backlog __read_mostly = 1000;
4414 EXPORT_SYMBOL(netdev_max_backlog);
4415
4416 int netdev_tstamp_prequeue __read_mostly = 1;
4417 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4418 int netdev_budget __read_mostly = 300;
4419 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4420 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4421 int weight_p __read_mostly = 64;           /* old backlog weight */
4422 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4423 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4424 int dev_rx_weight __read_mostly = 64;
4425 int dev_tx_weight __read_mostly = 64;
4426
4427 /* Called with irq disabled */
4428 static inline void ____napi_schedule(struct softnet_data *sd,
4429                                      struct napi_struct *napi)
4430 {
4431         struct task_struct *thread;
4432
4433         lockdep_assert_irqs_disabled();
4434
4435         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4436                 /* Paired with smp_mb__before_atomic() in
4437                  * napi_enable()/dev_set_threaded().
4438                  * Use READ_ONCE() to guarantee a complete
4439                  * read on napi->thread. Only call
4440                  * wake_up_process() when it's not NULL.
4441                  */
4442                 thread = READ_ONCE(napi->thread);
4443                 if (thread) {
4444                         /* Avoid doing set_bit() if the thread is in
4445                          * INTERRUPTIBLE state, cause napi_thread_wait()
4446                          * makes sure to proceed with napi polling
4447                          * if the thread is explicitly woken from here.
4448                          */
4449                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4450                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4451                         wake_up_process(thread);
4452                         return;
4453                 }
4454         }
4455
4456         list_add_tail(&napi->poll_list, &sd->poll_list);
4457         WRITE_ONCE(napi->list_owner, smp_processor_id());
4458         /* If not called from net_rx_action()
4459          * we have to raise NET_RX_SOFTIRQ.
4460          */
4461         if (!sd->in_net_rx_action)
4462                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4463 }
4464
4465 #ifdef CONFIG_RPS
4466
4467 /* One global table that all flow-based protocols share. */
4468 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4469 EXPORT_SYMBOL(rps_sock_flow_table);
4470 u32 rps_cpu_mask __read_mostly;
4471 EXPORT_SYMBOL(rps_cpu_mask);
4472
4473 struct static_key_false rps_needed __read_mostly;
4474 EXPORT_SYMBOL(rps_needed);
4475 struct static_key_false rfs_needed __read_mostly;
4476 EXPORT_SYMBOL(rfs_needed);
4477
4478 static struct rps_dev_flow *
4479 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4480             struct rps_dev_flow *rflow, u16 next_cpu)
4481 {
4482         if (next_cpu < nr_cpu_ids) {
4483 #ifdef CONFIG_RFS_ACCEL
4484                 struct netdev_rx_queue *rxqueue;
4485                 struct rps_dev_flow_table *flow_table;
4486                 struct rps_dev_flow *old_rflow;
4487                 u32 flow_id;
4488                 u16 rxq_index;
4489                 int rc;
4490
4491                 /* Should we steer this flow to a different hardware queue? */
4492                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4493                     !(dev->features & NETIF_F_NTUPLE))
4494                         goto out;
4495                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4496                 if (rxq_index == skb_get_rx_queue(skb))
4497                         goto out;
4498
4499                 rxqueue = dev->_rx + rxq_index;
4500                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4501                 if (!flow_table)
4502                         goto out;
4503                 flow_id = skb_get_hash(skb) & flow_table->mask;
4504                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4505                                                         rxq_index, flow_id);
4506                 if (rc < 0)
4507                         goto out;
4508                 old_rflow = rflow;
4509                 rflow = &flow_table->flows[flow_id];
4510                 rflow->filter = rc;
4511                 if (old_rflow->filter == rflow->filter)
4512                         old_rflow->filter = RPS_NO_FILTER;
4513         out:
4514 #endif
4515                 rflow->last_qtail =
4516                         per_cpu(softnet_data, next_cpu).input_queue_head;
4517         }
4518
4519         rflow->cpu = next_cpu;
4520         return rflow;
4521 }
4522
4523 /*
4524  * get_rps_cpu is called from netif_receive_skb and returns the target
4525  * CPU from the RPS map of the receiving queue for a given skb.
4526  * rcu_read_lock must be held on entry.
4527  */
4528 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4529                        struct rps_dev_flow **rflowp)
4530 {
4531         const struct rps_sock_flow_table *sock_flow_table;
4532         struct netdev_rx_queue *rxqueue = dev->_rx;
4533         struct rps_dev_flow_table *flow_table;
4534         struct rps_map *map;
4535         int cpu = -1;
4536         u32 tcpu;
4537         u32 hash;
4538
4539         if (skb_rx_queue_recorded(skb)) {
4540                 u16 index = skb_get_rx_queue(skb);
4541
4542                 if (unlikely(index >= dev->real_num_rx_queues)) {
4543                         WARN_ONCE(dev->real_num_rx_queues > 1,
4544                                   "%s received packet on queue %u, but number "
4545                                   "of RX queues is %u\n",
4546                                   dev->name, index, dev->real_num_rx_queues);
4547                         goto done;
4548                 }
4549                 rxqueue += index;
4550         }
4551
4552         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4553
4554         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4555         map = rcu_dereference(rxqueue->rps_map);
4556         if (!flow_table && !map)
4557                 goto done;
4558
4559         skb_reset_network_header(skb);
4560         hash = skb_get_hash(skb);
4561         if (!hash)
4562                 goto done;
4563
4564         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4565         if (flow_table && sock_flow_table) {
4566                 struct rps_dev_flow *rflow;
4567                 u32 next_cpu;
4568                 u32 ident;
4569
4570                 /* First check into global flow table if there is a match.
4571                  * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4572                  */
4573                 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4574                 if ((ident ^ hash) & ~rps_cpu_mask)
4575                         goto try_rps;
4576
4577                 next_cpu = ident & rps_cpu_mask;
4578
4579                 /* OK, now we know there is a match,
4580                  * we can look at the local (per receive queue) flow table
4581                  */
4582                 rflow = &flow_table->flows[hash & flow_table->mask];
4583                 tcpu = rflow->cpu;
4584
4585                 /*
4586                  * If the desired CPU (where last recvmsg was done) is
4587                  * different from current CPU (one in the rx-queue flow
4588                  * table entry), switch if one of the following holds:
4589                  *   - Current CPU is unset (>= nr_cpu_ids).
4590                  *   - Current CPU is offline.
4591                  *   - The current CPU's queue tail has advanced beyond the
4592                  *     last packet that was enqueued using this table entry.
4593                  *     This guarantees that all previous packets for the flow
4594                  *     have been dequeued, thus preserving in order delivery.
4595                  */
4596                 if (unlikely(tcpu != next_cpu) &&
4597                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4598                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4599                       rflow->last_qtail)) >= 0)) {
4600                         tcpu = next_cpu;
4601                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4602                 }
4603
4604                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4605                         *rflowp = rflow;
4606                         cpu = tcpu;
4607                         goto done;
4608                 }
4609         }
4610
4611 try_rps:
4612
4613         if (map) {
4614                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4615                 if (cpu_online(tcpu)) {
4616                         cpu = tcpu;
4617                         goto done;
4618                 }
4619         }
4620
4621 done:
4622         return cpu;
4623 }
4624
4625 #ifdef CONFIG_RFS_ACCEL
4626
4627 /**
4628  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4629  * @dev: Device on which the filter was set
4630  * @rxq_index: RX queue index
4631  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4632  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4633  *
4634  * Drivers that implement ndo_rx_flow_steer() should periodically call
4635  * this function for each installed filter and remove the filters for
4636  * which it returns %true.
4637  */
4638 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4639                          u32 flow_id, u16 filter_id)
4640 {
4641         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4642         struct rps_dev_flow_table *flow_table;
4643         struct rps_dev_flow *rflow;
4644         bool expire = true;
4645         unsigned int cpu;
4646
4647         rcu_read_lock();
4648         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4649         if (flow_table && flow_id <= flow_table->mask) {
4650                 rflow = &flow_table->flows[flow_id];
4651                 cpu = READ_ONCE(rflow->cpu);
4652                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4653                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4654                            rflow->last_qtail) <
4655                      (int)(10 * flow_table->mask)))
4656                         expire = false;
4657         }
4658         rcu_read_unlock();
4659         return expire;
4660 }
4661 EXPORT_SYMBOL(rps_may_expire_flow);
4662
4663 #endif /* CONFIG_RFS_ACCEL */
4664
4665 /* Called from hardirq (IPI) context */
4666 static void rps_trigger_softirq(void *data)
4667 {
4668         struct softnet_data *sd = data;
4669
4670         ____napi_schedule(sd, &sd->backlog);
4671         sd->received_rps++;
4672 }
4673
4674 #endif /* CONFIG_RPS */
4675
4676 /* Called from hardirq (IPI) context */
4677 static void trigger_rx_softirq(void *data)
4678 {
4679         struct softnet_data *sd = data;
4680
4681         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4682         smp_store_release(&sd->defer_ipi_scheduled, 0);
4683 }
4684
4685 /*
4686  * After we queued a packet into sd->input_pkt_queue,
4687  * we need to make sure this queue is serviced soon.
4688  *
4689  * - If this is another cpu queue, link it to our rps_ipi_list,
4690  *   and make sure we will process rps_ipi_list from net_rx_action().
4691  *
4692  * - If this is our own queue, NAPI schedule our backlog.
4693  *   Note that this also raises NET_RX_SOFTIRQ.
4694  */
4695 static void napi_schedule_rps(struct softnet_data *sd)
4696 {
4697         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4698
4699 #ifdef CONFIG_RPS
4700         if (sd != mysd) {
4701                 sd->rps_ipi_next = mysd->rps_ipi_list;
4702                 mysd->rps_ipi_list = sd;
4703
4704                 /* If not called from net_rx_action() or napi_threaded_poll()
4705                  * we have to raise NET_RX_SOFTIRQ.
4706                  */
4707                 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4708                         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4709                 return;
4710         }
4711 #endif /* CONFIG_RPS */
4712         __napi_schedule_irqoff(&mysd->backlog);
4713 }
4714
4715 #ifdef CONFIG_NET_FLOW_LIMIT
4716 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4717 #endif
4718
4719 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4720 {
4721 #ifdef CONFIG_NET_FLOW_LIMIT
4722         struct sd_flow_limit *fl;
4723         struct softnet_data *sd;
4724         unsigned int old_flow, new_flow;
4725
4726         if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4727                 return false;
4728
4729         sd = this_cpu_ptr(&softnet_data);
4730
4731         rcu_read_lock();
4732         fl = rcu_dereference(sd->flow_limit);
4733         if (fl) {
4734                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4735                 old_flow = fl->history[fl->history_head];
4736                 fl->history[fl->history_head] = new_flow;
4737
4738                 fl->history_head++;
4739                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4740
4741                 if (likely(fl->buckets[old_flow]))
4742                         fl->buckets[old_flow]--;
4743
4744                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4745                         fl->count++;
4746                         rcu_read_unlock();
4747                         return true;
4748                 }
4749         }
4750         rcu_read_unlock();
4751 #endif
4752         return false;
4753 }
4754
4755 /*
4756  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4757  * queue (may be a remote CPU queue).
4758  */
4759 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4760                               unsigned int *qtail)
4761 {
4762         enum skb_drop_reason reason;
4763         struct softnet_data *sd;
4764         unsigned long flags;
4765         unsigned int qlen;
4766
4767         reason = SKB_DROP_REASON_NOT_SPECIFIED;
4768         sd = &per_cpu(softnet_data, cpu);
4769
4770         rps_lock_irqsave(sd, &flags);
4771         if (!netif_running(skb->dev))
4772                 goto drop;
4773         qlen = skb_queue_len(&sd->input_pkt_queue);
4774         if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4775                 if (qlen) {
4776 enqueue:
4777                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4778                         input_queue_tail_incr_save(sd, qtail);
4779                         rps_unlock_irq_restore(sd, &flags);
4780                         return NET_RX_SUCCESS;
4781                 }
4782
4783                 /* Schedule NAPI for backlog device
4784                  * We can use non atomic operation since we own the queue lock
4785                  */
4786                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4787                         napi_schedule_rps(sd);
4788                 goto enqueue;
4789         }
4790         reason = SKB_DROP_REASON_CPU_BACKLOG;
4791
4792 drop:
4793         sd->dropped++;
4794         rps_unlock_irq_restore(sd, &flags);
4795
4796         dev_core_stats_rx_dropped_inc(skb->dev);
4797         kfree_skb_reason(skb, reason);
4798         return NET_RX_DROP;
4799 }
4800
4801 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4802 {
4803         struct net_device *dev = skb->dev;
4804         struct netdev_rx_queue *rxqueue;
4805
4806         rxqueue = dev->_rx;
4807
4808         if (skb_rx_queue_recorded(skb)) {
4809                 u16 index = skb_get_rx_queue(skb);
4810
4811                 if (unlikely(index >= dev->real_num_rx_queues)) {
4812                         WARN_ONCE(dev->real_num_rx_queues > 1,
4813                                   "%s received packet on queue %u, but number "
4814                                   "of RX queues is %u\n",
4815                                   dev->name, index, dev->real_num_rx_queues);
4816
4817                         return rxqueue; /* Return first rxqueue */
4818                 }
4819                 rxqueue += index;
4820         }
4821         return rxqueue;
4822 }
4823
4824 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4825                              struct bpf_prog *xdp_prog)
4826 {
4827         void *orig_data, *orig_data_end, *hard_start;
4828         struct netdev_rx_queue *rxqueue;
4829         bool orig_bcast, orig_host;
4830         u32 mac_len, frame_sz;
4831         __be16 orig_eth_type;
4832         struct ethhdr *eth;
4833         u32 metalen, act;
4834         int off;
4835
4836         /* The XDP program wants to see the packet starting at the MAC
4837          * header.
4838          */
4839         mac_len = skb->data - skb_mac_header(skb);
4840         hard_start = skb->data - skb_headroom(skb);
4841
4842         /* SKB "head" area always have tailroom for skb_shared_info */
4843         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4844         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4845
4846         rxqueue = netif_get_rxqueue(skb);
4847         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4848         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4849                          skb_headlen(skb) + mac_len, true);
4850
4851         orig_data_end = xdp->data_end;
4852         orig_data = xdp->data;
4853         eth = (struct ethhdr *)xdp->data;
4854         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4855         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4856         orig_eth_type = eth->h_proto;
4857
4858         act = bpf_prog_run_xdp(xdp_prog, xdp);
4859
4860         /* check if bpf_xdp_adjust_head was used */
4861         off = xdp->data - orig_data;
4862         if (off) {
4863                 if (off > 0)
4864                         __skb_pull(skb, off);
4865                 else if (off < 0)
4866                         __skb_push(skb, -off);
4867
4868                 skb->mac_header += off;
4869                 skb_reset_network_header(skb);
4870         }
4871
4872         /* check if bpf_xdp_adjust_tail was used */
4873         off = xdp->data_end - orig_data_end;
4874         if (off != 0) {
4875                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4876                 skb->len += off; /* positive on grow, negative on shrink */
4877         }
4878
4879         /* check if XDP changed eth hdr such SKB needs update */
4880         eth = (struct ethhdr *)xdp->data;
4881         if ((orig_eth_type != eth->h_proto) ||
4882             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4883                                                   skb->dev->dev_addr)) ||
4884             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4885                 __skb_push(skb, ETH_HLEN);
4886                 skb->pkt_type = PACKET_HOST;
4887                 skb->protocol = eth_type_trans(skb, skb->dev);
4888         }
4889
4890         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4891          * before calling us again on redirect path. We do not call do_redirect
4892          * as we leave that up to the caller.
4893          *
4894          * Caller is responsible for managing lifetime of skb (i.e. calling
4895          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4896          */
4897         switch (act) {
4898         case XDP_REDIRECT:
4899         case XDP_TX:
4900                 __skb_push(skb, mac_len);
4901                 break;
4902         case XDP_PASS:
4903                 metalen = xdp->data - xdp->data_meta;
4904                 if (metalen)
4905                         skb_metadata_set(skb, metalen);
4906                 break;
4907         }
4908
4909         return act;
4910 }
4911
4912 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4913                                      struct xdp_buff *xdp,
4914                                      struct bpf_prog *xdp_prog)
4915 {
4916         u32 act = XDP_DROP;
4917
4918         /* Reinjected packets coming from act_mirred or similar should
4919          * not get XDP generic processing.
4920          */
4921         if (skb_is_redirected(skb))
4922                 return XDP_PASS;
4923
4924         /* XDP packets must be linear and must have sufficient headroom
4925          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4926          * native XDP provides, thus we need to do it here as well.
4927          */
4928         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4929             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4930                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4931                 int troom = skb->tail + skb->data_len - skb->end;
4932
4933                 /* In case we have to go down the path and also linearize,
4934                  * then lets do the pskb_expand_head() work just once here.
4935                  */
4936                 if (pskb_expand_head(skb,
4937                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4938                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4939                         goto do_drop;
4940                 if (skb_linearize(skb))
4941                         goto do_drop;
4942         }
4943
4944         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4945         switch (act) {
4946         case XDP_REDIRECT:
4947         case XDP_TX:
4948         case XDP_PASS:
4949                 break;
4950         default:
4951                 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4952                 fallthrough;
4953         case XDP_ABORTED:
4954                 trace_xdp_exception(skb->dev, xdp_prog, act);
4955                 fallthrough;
4956         case XDP_DROP:
4957         do_drop:
4958                 kfree_skb(skb);
4959                 break;
4960         }
4961
4962         return act;
4963 }
4964
4965 /* When doing generic XDP we have to bypass the qdisc layer and the
4966  * network taps in order to match in-driver-XDP behavior. This also means
4967  * that XDP packets are able to starve other packets going through a qdisc,
4968  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4969  * queues, so they do not have this starvation issue.
4970  */
4971 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4972 {
4973         struct net_device *dev = skb->dev;
4974         struct netdev_queue *txq;
4975         bool free_skb = true;
4976         int cpu, rc;
4977
4978         txq = netdev_core_pick_tx(dev, skb, NULL);
4979         cpu = smp_processor_id();
4980         HARD_TX_LOCK(dev, txq, cpu);
4981         if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4982                 rc = netdev_start_xmit(skb, dev, txq, 0);
4983                 if (dev_xmit_complete(rc))
4984                         free_skb = false;
4985         }
4986         HARD_TX_UNLOCK(dev, txq);
4987         if (free_skb) {
4988                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4989                 dev_core_stats_tx_dropped_inc(dev);
4990                 kfree_skb(skb);
4991         }
4992 }
4993
4994 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4995
4996 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4997 {
4998         if (xdp_prog) {
4999                 struct xdp_buff xdp;
5000                 u32 act;
5001                 int err;
5002
5003                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5004                 if (act != XDP_PASS) {
5005                         switch (act) {
5006                         case XDP_REDIRECT:
5007                                 err = xdp_do_generic_redirect(skb->dev, skb,
5008                                                               &xdp, xdp_prog);
5009                                 if (err)
5010                                         goto out_redir;
5011                                 break;
5012                         case XDP_TX:
5013                                 generic_xdp_tx(skb, xdp_prog);
5014                                 break;
5015                         }
5016                         return XDP_DROP;
5017                 }
5018         }
5019         return XDP_PASS;
5020 out_redir:
5021         kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5022         return XDP_DROP;
5023 }
5024 EXPORT_SYMBOL_GPL(do_xdp_generic);
5025
5026 static int netif_rx_internal(struct sk_buff *skb)
5027 {
5028         int ret;
5029
5030         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5031
5032         trace_netif_rx(skb);
5033
5034 #ifdef CONFIG_RPS
5035         if (static_branch_unlikely(&rps_needed)) {
5036                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5037                 int cpu;
5038
5039                 rcu_read_lock();
5040
5041                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5042                 if (cpu < 0)
5043                         cpu = smp_processor_id();
5044
5045                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5046
5047                 rcu_read_unlock();
5048         } else
5049 #endif
5050         {
5051                 unsigned int qtail;
5052
5053                 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5054         }
5055         return ret;
5056 }
5057
5058 /**
5059  *      __netif_rx      -       Slightly optimized version of netif_rx
5060  *      @skb: buffer to post
5061  *
5062  *      This behaves as netif_rx except that it does not disable bottom halves.
5063  *      As a result this function may only be invoked from the interrupt context
5064  *      (either hard or soft interrupt).
5065  */
5066 int __netif_rx(struct sk_buff *skb)
5067 {
5068         int ret;
5069
5070         lockdep_assert_once(hardirq_count() | softirq_count());
5071
5072         trace_netif_rx_entry(skb);
5073         ret = netif_rx_internal(skb);
5074         trace_netif_rx_exit(ret);
5075         return ret;
5076 }
5077 EXPORT_SYMBOL(__netif_rx);
5078
5079 /**
5080  *      netif_rx        -       post buffer to the network code
5081  *      @skb: buffer to post
5082  *
5083  *      This function receives a packet from a device driver and queues it for
5084  *      the upper (protocol) levels to process via the backlog NAPI device. It
5085  *      always succeeds. The buffer may be dropped during processing for
5086  *      congestion control or by the protocol layers.
5087  *      The network buffer is passed via the backlog NAPI device. Modern NIC
5088  *      driver should use NAPI and GRO.
5089  *      This function can used from interrupt and from process context. The
5090  *      caller from process context must not disable interrupts before invoking
5091  *      this function.
5092  *
5093  *      return values:
5094  *      NET_RX_SUCCESS  (no congestion)
5095  *      NET_RX_DROP     (packet was dropped)
5096  *
5097  */
5098 int netif_rx(struct sk_buff *skb)
5099 {
5100         bool need_bh_off = !(hardirq_count() | softirq_count());
5101         int ret;
5102
5103         if (need_bh_off)
5104                 local_bh_disable();
5105         trace_netif_rx_entry(skb);
5106         ret = netif_rx_internal(skb);
5107         trace_netif_rx_exit(ret);
5108         if (need_bh_off)
5109                 local_bh_enable();
5110         return ret;
5111 }
5112 EXPORT_SYMBOL(netif_rx);
5113
5114 static __latent_entropy void net_tx_action(struct softirq_action *h)
5115 {
5116         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5117
5118         if (sd->completion_queue) {
5119                 struct sk_buff *clist;
5120
5121                 local_irq_disable();
5122                 clist = sd->completion_queue;
5123                 sd->completion_queue = NULL;
5124                 local_irq_enable();
5125
5126                 while (clist) {
5127                         struct sk_buff *skb = clist;
5128
5129                         clist = clist->next;
5130
5131                         WARN_ON(refcount_read(&skb->users));
5132                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5133                                 trace_consume_skb(skb, net_tx_action);
5134                         else
5135                                 trace_kfree_skb(skb, net_tx_action,
5136                                                 get_kfree_skb_cb(skb)->reason);
5137
5138                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5139                                 __kfree_skb(skb);
5140                         else
5141                                 __napi_kfree_skb(skb,
5142                                                  get_kfree_skb_cb(skb)->reason);
5143                 }
5144         }
5145
5146         if (sd->output_queue) {
5147                 struct Qdisc *head;
5148
5149                 local_irq_disable();
5150                 head = sd->output_queue;
5151                 sd->output_queue = NULL;
5152                 sd->output_queue_tailp = &sd->output_queue;
5153                 local_irq_enable();
5154
5155                 rcu_read_lock();
5156
5157                 while (head) {
5158                         struct Qdisc *q = head;
5159                         spinlock_t *root_lock = NULL;
5160
5161                         head = head->next_sched;
5162
5163                         /* We need to make sure head->next_sched is read
5164                          * before clearing __QDISC_STATE_SCHED
5165                          */
5166                         smp_mb__before_atomic();
5167
5168                         if (!(q->flags & TCQ_F_NOLOCK)) {
5169                                 root_lock = qdisc_lock(q);
5170                                 spin_lock(root_lock);
5171                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5172                                                      &q->state))) {
5173                                 /* There is a synchronize_net() between
5174                                  * STATE_DEACTIVATED flag being set and
5175                                  * qdisc_reset()/some_qdisc_is_busy() in
5176                                  * dev_deactivate(), so we can safely bail out
5177                                  * early here to avoid data race between
5178                                  * qdisc_deactivate() and some_qdisc_is_busy()
5179                                  * for lockless qdisc.
5180                                  */
5181                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5182                                 continue;
5183                         }
5184
5185                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5186                         qdisc_run(q);
5187                         if (root_lock)
5188                                 spin_unlock(root_lock);
5189                 }
5190
5191                 rcu_read_unlock();
5192         }
5193
5194         xfrm_dev_backlog(sd);
5195 }
5196
5197 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5198 /* This hook is defined here for ATM LANE */
5199 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5200                              unsigned char *addr) __read_mostly;
5201 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5202 #endif
5203
5204 /**
5205  *      netdev_is_rx_handler_busy - check if receive handler is registered
5206  *      @dev: device to check
5207  *
5208  *      Check if a receive handler is already registered for a given device.
5209  *      Return true if there one.
5210  *
5211  *      The caller must hold the rtnl_mutex.
5212  */
5213 bool netdev_is_rx_handler_busy(struct net_device *dev)
5214 {
5215         ASSERT_RTNL();
5216         return dev && rtnl_dereference(dev->rx_handler);
5217 }
5218 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5219
5220 /**
5221  *      netdev_rx_handler_register - register receive handler
5222  *      @dev: device to register a handler for
5223  *      @rx_handler: receive handler to register
5224  *      @rx_handler_data: data pointer that is used by rx handler
5225  *
5226  *      Register a receive handler for a device. This handler will then be
5227  *      called from __netif_receive_skb. A negative errno code is returned
5228  *      on a failure.
5229  *
5230  *      The caller must hold the rtnl_mutex.
5231  *
5232  *      For a general description of rx_handler, see enum rx_handler_result.
5233  */
5234 int netdev_rx_handler_register(struct net_device *dev,
5235                                rx_handler_func_t *rx_handler,
5236                                void *rx_handler_data)
5237 {
5238         if (netdev_is_rx_handler_busy(dev))
5239                 return -EBUSY;
5240
5241         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5242                 return -EINVAL;
5243
5244         /* Note: rx_handler_data must be set before rx_handler */
5245         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5246         rcu_assign_pointer(dev->rx_handler, rx_handler);
5247
5248         return 0;
5249 }
5250 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5251
5252 /**
5253  *      netdev_rx_handler_unregister - unregister receive handler
5254  *      @dev: device to unregister a handler from
5255  *
5256  *      Unregister a receive handler from a device.
5257  *
5258  *      The caller must hold the rtnl_mutex.
5259  */
5260 void netdev_rx_handler_unregister(struct net_device *dev)
5261 {
5262
5263         ASSERT_RTNL();
5264         RCU_INIT_POINTER(dev->rx_handler, NULL);
5265         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5266          * section has a guarantee to see a non NULL rx_handler_data
5267          * as well.
5268          */
5269         synchronize_net();
5270         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5271 }
5272 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5273
5274 /*
5275  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5276  * the special handling of PFMEMALLOC skbs.
5277  */
5278 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5279 {
5280         switch (skb->protocol) {
5281         case htons(ETH_P_ARP):
5282         case htons(ETH_P_IP):
5283         case htons(ETH_P_IPV6):
5284         case htons(ETH_P_8021Q):
5285         case htons(ETH_P_8021AD):
5286                 return true;
5287         default:
5288                 return false;
5289         }
5290 }
5291
5292 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5293                              int *ret, struct net_device *orig_dev)
5294 {
5295         if (nf_hook_ingress_active(skb)) {
5296                 int ingress_retval;
5297
5298                 if (*pt_prev) {
5299                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5300                         *pt_prev = NULL;
5301                 }
5302
5303                 rcu_read_lock();
5304                 ingress_retval = nf_hook_ingress(skb);
5305                 rcu_read_unlock();
5306                 return ingress_retval;
5307         }
5308         return 0;
5309 }
5310
5311 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5312                                     struct packet_type **ppt_prev)
5313 {
5314         struct packet_type *ptype, *pt_prev;
5315         rx_handler_func_t *rx_handler;
5316         struct sk_buff *skb = *pskb;
5317         struct net_device *orig_dev;
5318         bool deliver_exact = false;
5319         int ret = NET_RX_DROP;
5320         __be16 type;
5321
5322         net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5323
5324         trace_netif_receive_skb(skb);
5325
5326         orig_dev = skb->dev;
5327
5328         skb_reset_network_header(skb);
5329         if (!skb_transport_header_was_set(skb))
5330                 skb_reset_transport_header(skb);
5331         skb_reset_mac_len(skb);
5332
5333         pt_prev = NULL;
5334
5335 another_round:
5336         skb->skb_iif = skb->dev->ifindex;
5337
5338         __this_cpu_inc(softnet_data.processed);
5339
5340         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5341                 int ret2;
5342
5343                 migrate_disable();
5344                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5345                 migrate_enable();
5346
5347                 if (ret2 != XDP_PASS) {
5348                         ret = NET_RX_DROP;
5349                         goto out;
5350                 }
5351         }
5352
5353         if (eth_type_vlan(skb->protocol)) {
5354                 skb = skb_vlan_untag(skb);
5355                 if (unlikely(!skb))
5356                         goto out;
5357         }
5358
5359         if (skb_skip_tc_classify(skb))
5360                 goto skip_classify;
5361
5362         if (pfmemalloc)
5363                 goto skip_taps;
5364
5365         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5366                 if (pt_prev)
5367                         ret = deliver_skb(skb, pt_prev, orig_dev);
5368                 pt_prev = ptype;
5369         }
5370
5371         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5372                 if (pt_prev)
5373                         ret = deliver_skb(skb, pt_prev, orig_dev);
5374                 pt_prev = ptype;
5375         }
5376
5377 skip_taps:
5378 #ifdef CONFIG_NET_INGRESS
5379         if (static_branch_unlikely(&ingress_needed_key)) {
5380                 bool another = false;
5381
5382                 nf_skip_egress(skb, true);
5383                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5384                                          &another);
5385                 if (another)
5386                         goto another_round;
5387                 if (!skb)
5388                         goto out;
5389
5390                 nf_skip_egress(skb, false);
5391                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5392                         goto out;
5393         }
5394 #endif
5395         skb_reset_redirect(skb);
5396 skip_classify:
5397         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5398                 goto drop;
5399
5400         if (skb_vlan_tag_present(skb)) {
5401                 if (pt_prev) {
5402                         ret = deliver_skb(skb, pt_prev, orig_dev);
5403                         pt_prev = NULL;
5404                 }
5405                 if (vlan_do_receive(&skb))
5406                         goto another_round;
5407                 else if (unlikely(!skb))
5408                         goto out;
5409         }
5410
5411         rx_handler = rcu_dereference(skb->dev->rx_handler);
5412         if (rx_handler) {
5413                 if (pt_prev) {
5414                         ret = deliver_skb(skb, pt_prev, orig_dev);
5415                         pt_prev = NULL;
5416                 }
5417                 switch (rx_handler(&skb)) {
5418                 case RX_HANDLER_CONSUMED:
5419                         ret = NET_RX_SUCCESS;
5420                         goto out;
5421                 case RX_HANDLER_ANOTHER:
5422                         goto another_round;
5423                 case RX_HANDLER_EXACT:
5424                         deliver_exact = true;
5425                         break;
5426                 case RX_HANDLER_PASS:
5427                         break;
5428                 default:
5429                         BUG();
5430                 }
5431         }
5432
5433         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5434 check_vlan_id:
5435                 if (skb_vlan_tag_get_id(skb)) {
5436                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5437                          * find vlan device.
5438                          */
5439                         skb->pkt_type = PACKET_OTHERHOST;
5440                 } else if (eth_type_vlan(skb->protocol)) {
5441                         /* Outer header is 802.1P with vlan 0, inner header is
5442                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5443                          * not find vlan dev for vlan id 0.
5444                          */
5445                         __vlan_hwaccel_clear_tag(skb);
5446                         skb = skb_vlan_untag(skb);
5447                         if (unlikely(!skb))
5448                                 goto out;
5449                         if (vlan_do_receive(&skb))
5450                                 /* After stripping off 802.1P header with vlan 0
5451                                  * vlan dev is found for inner header.
5452                                  */
5453                                 goto another_round;
5454                         else if (unlikely(!skb))
5455                                 goto out;
5456                         else
5457                                 /* We have stripped outer 802.1P vlan 0 header.
5458                                  * But could not find vlan dev.
5459                                  * check again for vlan id to set OTHERHOST.
5460                                  */
5461                                 goto check_vlan_id;
5462                 }
5463                 /* Note: we might in the future use prio bits
5464                  * and set skb->priority like in vlan_do_receive()
5465                  * For the time being, just ignore Priority Code Point
5466                  */
5467                 __vlan_hwaccel_clear_tag(skb);
5468         }
5469
5470         type = skb->protocol;
5471
5472         /* deliver only exact match when indicated */
5473         if (likely(!deliver_exact)) {
5474                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5475                                        &ptype_base[ntohs(type) &
5476                                                    PTYPE_HASH_MASK]);
5477         }
5478
5479         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5480                                &orig_dev->ptype_specific);
5481
5482         if (unlikely(skb->dev != orig_dev)) {
5483                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5484                                        &skb->dev->ptype_specific);
5485         }
5486
5487         if (pt_prev) {
5488                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5489                         goto drop;
5490                 *ppt_prev = pt_prev;
5491         } else {
5492 drop:
5493                 if (!deliver_exact)
5494                         dev_core_stats_rx_dropped_inc(skb->dev);
5495                 else
5496                         dev_core_stats_rx_nohandler_inc(skb->dev);
5497                 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5498                 /* Jamal, now you will not able to escape explaining
5499                  * me how you were going to use this. :-)
5500                  */
5501                 ret = NET_RX_DROP;
5502         }
5503
5504 out:
5505         /* The invariant here is that if *ppt_prev is not NULL
5506          * then skb should also be non-NULL.
5507          *
5508          * Apparently *ppt_prev assignment above holds this invariant due to
5509          * skb dereferencing near it.
5510          */
5511         *pskb = skb;
5512         return ret;
5513 }
5514
5515 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5516 {
5517         struct net_device *orig_dev = skb->dev;
5518         struct packet_type *pt_prev = NULL;
5519         int ret;
5520
5521         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5522         if (pt_prev)
5523                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5524                                          skb->dev, pt_prev, orig_dev);
5525         return ret;
5526 }
5527
5528 /**
5529  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5530  *      @skb: buffer to process
5531  *
5532  *      More direct receive version of netif_receive_skb().  It should
5533  *      only be used by callers that have a need to skip RPS and Generic XDP.
5534  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5535  *
5536  *      This function may only be called from softirq context and interrupts
5537  *      should be enabled.
5538  *
5539  *      Return values (usually ignored):
5540  *      NET_RX_SUCCESS: no congestion
5541  *      NET_RX_DROP: packet was dropped
5542  */
5543 int netif_receive_skb_core(struct sk_buff *skb)
5544 {
5545         int ret;
5546
5547         rcu_read_lock();
5548         ret = __netif_receive_skb_one_core(skb, false);
5549         rcu_read_unlock();
5550
5551         return ret;
5552 }
5553 EXPORT_SYMBOL(netif_receive_skb_core);
5554
5555 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5556                                                   struct packet_type *pt_prev,
5557                                                   struct net_device *orig_dev)
5558 {
5559         struct sk_buff *skb, *next;
5560
5561         if (!pt_prev)
5562                 return;
5563         if (list_empty(head))
5564                 return;
5565         if (pt_prev->list_func != NULL)
5566                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5567                                    ip_list_rcv, head, pt_prev, orig_dev);
5568         else
5569                 list_for_each_entry_safe(skb, next, head, list) {
5570                         skb_list_del_init(skb);
5571                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5572                 }
5573 }
5574
5575 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5576 {
5577         /* Fast-path assumptions:
5578          * - There is no RX handler.
5579          * - Only one packet_type matches.
5580          * If either of these fails, we will end up doing some per-packet
5581          * processing in-line, then handling the 'last ptype' for the whole
5582          * sublist.  This can't cause out-of-order delivery to any single ptype,
5583          * because the 'last ptype' must be constant across the sublist, and all
5584          * other ptypes are handled per-packet.
5585          */
5586         /* Current (common) ptype of sublist */
5587         struct packet_type *pt_curr = NULL;
5588         /* Current (common) orig_dev of sublist */
5589         struct net_device *od_curr = NULL;
5590         struct list_head sublist;
5591         struct sk_buff *skb, *next;
5592
5593         INIT_LIST_HEAD(&sublist);
5594         list_for_each_entry_safe(skb, next, head, list) {
5595                 struct net_device *orig_dev = skb->dev;
5596                 struct packet_type *pt_prev = NULL;
5597
5598                 skb_list_del_init(skb);
5599                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5600                 if (!pt_prev)
5601                         continue;
5602                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5603                         /* dispatch old sublist */
5604                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5605                         /* start new sublist */
5606                         INIT_LIST_HEAD(&sublist);
5607                         pt_curr = pt_prev;
5608                         od_curr = orig_dev;
5609                 }
5610                 list_add_tail(&skb->list, &sublist);
5611         }
5612
5613         /* dispatch final sublist */
5614         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5615 }
5616
5617 static int __netif_receive_skb(struct sk_buff *skb)
5618 {
5619         int ret;
5620
5621         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5622                 unsigned int noreclaim_flag;
5623
5624                 /*
5625                  * PFMEMALLOC skbs are special, they should
5626                  * - be delivered to SOCK_MEMALLOC sockets only
5627                  * - stay away from userspace
5628                  * - have bounded memory usage
5629                  *
5630                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5631                  * context down to all allocation sites.
5632                  */
5633                 noreclaim_flag = memalloc_noreclaim_save();
5634                 ret = __netif_receive_skb_one_core(skb, true);
5635                 memalloc_noreclaim_restore(noreclaim_flag);
5636         } else
5637                 ret = __netif_receive_skb_one_core(skb, false);
5638
5639         return ret;
5640 }
5641
5642 static void __netif_receive_skb_list(struct list_head *head)
5643 {
5644         unsigned long noreclaim_flag = 0;
5645         struct sk_buff *skb, *next;
5646         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5647
5648         list_for_each_entry_safe(skb, next, head, list) {
5649                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5650                         struct list_head sublist;
5651
5652                         /* Handle the previous sublist */
5653                         list_cut_before(&sublist, head, &skb->list);
5654                         if (!list_empty(&sublist))
5655                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5656                         pfmemalloc = !pfmemalloc;
5657                         /* See comments in __netif_receive_skb */
5658                         if (pfmemalloc)
5659                                 noreclaim_flag = memalloc_noreclaim_save();
5660                         else
5661                                 memalloc_noreclaim_restore(noreclaim_flag);
5662                 }
5663         }
5664         /* Handle the remaining sublist */
5665         if (!list_empty(head))
5666                 __netif_receive_skb_list_core(head, pfmemalloc);
5667         /* Restore pflags */
5668         if (pfmemalloc)
5669                 memalloc_noreclaim_restore(noreclaim_flag);
5670 }
5671
5672 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5673 {
5674         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5675         struct bpf_prog *new = xdp->prog;
5676         int ret = 0;
5677
5678         switch (xdp->command) {
5679         case XDP_SETUP_PROG:
5680                 rcu_assign_pointer(dev->xdp_prog, new);
5681                 if (old)
5682                         bpf_prog_put(old);
5683
5684                 if (old && !new) {
5685                         static_branch_dec(&generic_xdp_needed_key);
5686                 } else if (new && !old) {
5687                         static_branch_inc(&generic_xdp_needed_key);
5688                         dev_disable_lro(dev);
5689                         dev_disable_gro_hw(dev);
5690                 }
5691                 break;
5692
5693         default:
5694                 ret = -EINVAL;
5695                 break;
5696         }
5697
5698         return ret;
5699 }
5700
5701 static int netif_receive_skb_internal(struct sk_buff *skb)
5702 {
5703         int ret;
5704
5705         net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5706
5707         if (skb_defer_rx_timestamp(skb))
5708                 return NET_RX_SUCCESS;
5709
5710         rcu_read_lock();
5711 #ifdef CONFIG_RPS
5712         if (static_branch_unlikely(&rps_needed)) {
5713                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5714                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5715
5716                 if (cpu >= 0) {
5717                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5718                         rcu_read_unlock();
5719                         return ret;
5720                 }
5721         }
5722 #endif
5723         ret = __netif_receive_skb(skb);
5724         rcu_read_unlock();
5725         return ret;
5726 }
5727
5728 void netif_receive_skb_list_internal(struct list_head *head)
5729 {
5730         struct sk_buff *skb, *next;
5731         struct list_head sublist;
5732
5733         INIT_LIST_HEAD(&sublist);
5734         list_for_each_entry_safe(skb, next, head, list) {
5735                 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5736                 skb_list_del_init(skb);
5737                 if (!skb_defer_rx_timestamp(skb))
5738                         list_add_tail(&skb->list, &sublist);
5739         }
5740         list_splice_init(&sublist, head);
5741
5742         rcu_read_lock();
5743 #ifdef CONFIG_RPS
5744         if (static_branch_unlikely(&rps_needed)) {
5745                 list_for_each_entry_safe(skb, next, head, list) {
5746                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5747                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5748
5749                         if (cpu >= 0) {
5750                                 /* Will be handled, remove from list */
5751                                 skb_list_del_init(skb);
5752                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5753                         }
5754                 }
5755         }
5756 #endif
5757         __netif_receive_skb_list(head);
5758         rcu_read_unlock();
5759 }
5760
5761 /**
5762  *      netif_receive_skb - process receive buffer from network
5763  *      @skb: buffer to process
5764  *
5765  *      netif_receive_skb() is the main receive data processing function.
5766  *      It always succeeds. The buffer may be dropped during processing
5767  *      for congestion control or by the protocol layers.
5768  *
5769  *      This function may only be called from softirq context and interrupts
5770  *      should be enabled.
5771  *
5772  *      Return values (usually ignored):
5773  *      NET_RX_SUCCESS: no congestion
5774  *      NET_RX_DROP: packet was dropped
5775  */
5776 int netif_receive_skb(struct sk_buff *skb)
5777 {
5778         int ret;
5779
5780         trace_netif_receive_skb_entry(skb);
5781
5782         ret = netif_receive_skb_internal(skb);
5783         trace_netif_receive_skb_exit(ret);
5784
5785         return ret;
5786 }
5787 EXPORT_SYMBOL(netif_receive_skb);
5788
5789 /**
5790  *      netif_receive_skb_list - process many receive buffers from network
5791  *      @head: list of skbs to process.
5792  *
5793  *      Since return value of netif_receive_skb() is normally ignored, and
5794  *      wouldn't be meaningful for a list, this function returns void.
5795  *
5796  *      This function may only be called from softirq context and interrupts
5797  *      should be enabled.
5798  */
5799 void netif_receive_skb_list(struct list_head *head)
5800 {
5801         struct sk_buff *skb;
5802
5803         if (list_empty(head))
5804                 return;
5805         if (trace_netif_receive_skb_list_entry_enabled()) {
5806                 list_for_each_entry(skb, head, list)
5807                         trace_netif_receive_skb_list_entry(skb);
5808         }
5809         netif_receive_skb_list_internal(head);
5810         trace_netif_receive_skb_list_exit(0);
5811 }
5812 EXPORT_SYMBOL(netif_receive_skb_list);
5813
5814 static DEFINE_PER_CPU(struct work_struct, flush_works);
5815
5816 /* Network device is going away, flush any packets still pending */
5817 static void flush_backlog(struct work_struct *work)
5818 {
5819         struct sk_buff *skb, *tmp;
5820         struct softnet_data *sd;
5821
5822         local_bh_disable();
5823         sd = this_cpu_ptr(&softnet_data);
5824
5825         rps_lock_irq_disable(sd);
5826         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5827                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5828                         __skb_unlink(skb, &sd->input_pkt_queue);
5829                         dev_kfree_skb_irq(skb);
5830                         input_queue_head_incr(sd);
5831                 }
5832         }
5833         rps_unlock_irq_enable(sd);
5834
5835         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5836                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5837                         __skb_unlink(skb, &sd->process_queue);
5838                         kfree_skb(skb);
5839                         input_queue_head_incr(sd);
5840                 }
5841         }
5842         local_bh_enable();
5843 }
5844
5845 static bool flush_required(int cpu)
5846 {
5847 #if IS_ENABLED(CONFIG_RPS)
5848         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5849         bool do_flush;
5850
5851         rps_lock_irq_disable(sd);
5852
5853         /* as insertion into process_queue happens with the rps lock held,
5854          * process_queue access may race only with dequeue
5855          */
5856         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5857                    !skb_queue_empty_lockless(&sd->process_queue);
5858         rps_unlock_irq_enable(sd);
5859
5860         return do_flush;
5861 #endif
5862         /* without RPS we can't safely check input_pkt_queue: during a
5863          * concurrent remote skb_queue_splice() we can detect as empty both
5864          * input_pkt_queue and process_queue even if the latter could end-up
5865          * containing a lot of packets.
5866          */
5867         return true;
5868 }
5869
5870 static void flush_all_backlogs(void)
5871 {
5872         static cpumask_t flush_cpus;
5873         unsigned int cpu;
5874
5875         /* since we are under rtnl lock protection we can use static data
5876          * for the cpumask and avoid allocating on stack the possibly
5877          * large mask
5878          */
5879         ASSERT_RTNL();
5880
5881         cpus_read_lock();
5882
5883         cpumask_clear(&flush_cpus);
5884         for_each_online_cpu(cpu) {
5885                 if (flush_required(cpu)) {
5886                         queue_work_on(cpu, system_highpri_wq,
5887                                       per_cpu_ptr(&flush_works, cpu));
5888                         cpumask_set_cpu(cpu, &flush_cpus);
5889                 }
5890         }
5891
5892         /* we can have in flight packet[s] on the cpus we are not flushing,
5893          * synchronize_net() in unregister_netdevice_many() will take care of
5894          * them
5895          */
5896         for_each_cpu(cpu, &flush_cpus)
5897                 flush_work(per_cpu_ptr(&flush_works, cpu));
5898
5899         cpus_read_unlock();
5900 }
5901
5902 static void net_rps_send_ipi(struct softnet_data *remsd)
5903 {
5904 #ifdef CONFIG_RPS
5905         while (remsd) {
5906                 struct softnet_data *next = remsd->rps_ipi_next;
5907
5908                 if (cpu_online(remsd->cpu))
5909                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5910                 remsd = next;
5911         }
5912 #endif
5913 }
5914
5915 /*
5916  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5917  * Note: called with local irq disabled, but exits with local irq enabled.
5918  */
5919 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5920 {
5921 #ifdef CONFIG_RPS
5922         struct softnet_data *remsd = sd->rps_ipi_list;
5923
5924         if (remsd) {
5925                 sd->rps_ipi_list = NULL;
5926
5927                 local_irq_enable();
5928
5929                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5930                 net_rps_send_ipi(remsd);
5931         } else
5932 #endif
5933                 local_irq_enable();
5934 }
5935
5936 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5937 {
5938 #ifdef CONFIG_RPS
5939         return sd->rps_ipi_list != NULL;
5940 #else
5941         return false;
5942 #endif
5943 }
5944
5945 static int process_backlog(struct napi_struct *napi, int quota)
5946 {
5947         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5948         bool again = true;
5949         int work = 0;
5950
5951         /* Check if we have pending ipi, its better to send them now,
5952          * not waiting net_rx_action() end.
5953          */
5954         if (sd_has_rps_ipi_waiting(sd)) {
5955                 local_irq_disable();
5956                 net_rps_action_and_irq_enable(sd);
5957         }
5958
5959         napi->weight = READ_ONCE(dev_rx_weight);
5960         while (again) {
5961                 struct sk_buff *skb;
5962
5963                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5964                         rcu_read_lock();
5965                         __netif_receive_skb(skb);
5966                         rcu_read_unlock();
5967                         input_queue_head_incr(sd);
5968                         if (++work >= quota)
5969                                 return work;
5970
5971                 }
5972
5973                 rps_lock_irq_disable(sd);
5974                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5975                         /*
5976                          * Inline a custom version of __napi_complete().
5977                          * only current cpu owns and manipulates this napi,
5978                          * and NAPI_STATE_SCHED is the only possible flag set
5979                          * on backlog.
5980                          * We can use a plain write instead of clear_bit(),
5981                          * and we dont need an smp_mb() memory barrier.
5982                          */
5983                         napi->state = 0;
5984                         again = false;
5985                 } else {
5986                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5987                                                    &sd->process_queue);
5988                 }
5989                 rps_unlock_irq_enable(sd);
5990         }
5991
5992         return work;
5993 }
5994
5995 /**
5996  * __napi_schedule - schedule for receive
5997  * @n: entry to schedule
5998  *
5999  * The entry's receive function will be scheduled to run.
6000  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6001  */
6002 void __napi_schedule(struct napi_struct *n)
6003 {
6004         unsigned long flags;
6005
6006         local_irq_save(flags);
6007         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6008         local_irq_restore(flags);
6009 }
6010 EXPORT_SYMBOL(__napi_schedule);
6011
6012 /**
6013  *      napi_schedule_prep - check if napi can be scheduled
6014  *      @n: napi context
6015  *
6016  * Test if NAPI routine is already running, and if not mark
6017  * it as running.  This is used as a condition variable to
6018  * insure only one NAPI poll instance runs.  We also make
6019  * sure there is no pending NAPI disable.
6020  */
6021 bool napi_schedule_prep(struct napi_struct *n)
6022 {
6023         unsigned long new, val = READ_ONCE(n->state);
6024
6025         do {
6026                 if (unlikely(val & NAPIF_STATE_DISABLE))
6027                         return false;
6028                 new = val | NAPIF_STATE_SCHED;
6029
6030                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6031                  * This was suggested by Alexander Duyck, as compiler
6032                  * emits better code than :
6033                  * if (val & NAPIF_STATE_SCHED)
6034                  *     new |= NAPIF_STATE_MISSED;
6035                  */
6036                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6037                                                    NAPIF_STATE_MISSED;
6038         } while (!try_cmpxchg(&n->state, &val, new));
6039
6040         return !(val & NAPIF_STATE_SCHED);
6041 }
6042 EXPORT_SYMBOL(napi_schedule_prep);
6043
6044 /**
6045  * __napi_schedule_irqoff - schedule for receive
6046  * @n: entry to schedule
6047  *
6048  * Variant of __napi_schedule() assuming hard irqs are masked.
6049  *
6050  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6051  * because the interrupt disabled assumption might not be true
6052  * due to force-threaded interrupts and spinlock substitution.
6053  */
6054 void __napi_schedule_irqoff(struct napi_struct *n)
6055 {
6056         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6057                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6058         else
6059                 __napi_schedule(n);
6060 }
6061 EXPORT_SYMBOL(__napi_schedule_irqoff);
6062
6063 bool napi_complete_done(struct napi_struct *n, int work_done)
6064 {
6065         unsigned long flags, val, new, timeout = 0;
6066         bool ret = true;
6067
6068         /*
6069          * 1) Don't let napi dequeue from the cpu poll list
6070          *    just in case its running on a different cpu.
6071          * 2) If we are busy polling, do nothing here, we have
6072          *    the guarantee we will be called later.
6073          */
6074         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6075                                  NAPIF_STATE_IN_BUSY_POLL)))
6076                 return false;
6077
6078         if (work_done) {
6079                 if (n->gro_bitmask)
6080                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6081                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6082         }
6083         if (n->defer_hard_irqs_count > 0) {
6084                 n->defer_hard_irqs_count--;
6085                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6086                 if (timeout)
6087                         ret = false;
6088         }
6089         if (n->gro_bitmask) {
6090                 /* When the NAPI instance uses a timeout and keeps postponing
6091                  * it, we need to bound somehow the time packets are kept in
6092                  * the GRO layer
6093                  */
6094                 napi_gro_flush(n, !!timeout);
6095         }
6096
6097         gro_normal_list(n);
6098
6099         if (unlikely(!list_empty(&n->poll_list))) {
6100                 /* If n->poll_list is not empty, we need to mask irqs */
6101                 local_irq_save(flags);
6102                 list_del_init(&n->poll_list);
6103                 local_irq_restore(flags);
6104         }
6105         WRITE_ONCE(n->list_owner, -1);
6106
6107         val = READ_ONCE(n->state);
6108         do {
6109                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6110
6111                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6112                               NAPIF_STATE_SCHED_THREADED |
6113                               NAPIF_STATE_PREFER_BUSY_POLL);
6114
6115                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6116                  * because we will call napi->poll() one more time.
6117                  * This C code was suggested by Alexander Duyck to help gcc.
6118                  */
6119                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6120                                                     NAPIF_STATE_SCHED;
6121         } while (!try_cmpxchg(&n->state, &val, new));
6122
6123         if (unlikely(val & NAPIF_STATE_MISSED)) {
6124                 __napi_schedule(n);
6125                 return false;
6126         }
6127
6128         if (timeout)
6129                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6130                               HRTIMER_MODE_REL_PINNED);
6131         return ret;
6132 }
6133 EXPORT_SYMBOL(napi_complete_done);
6134
6135 /* must be called under rcu_read_lock(), as we dont take a reference */
6136 static struct napi_struct *napi_by_id(unsigned int napi_id)
6137 {
6138         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6139         struct napi_struct *napi;
6140
6141         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6142                 if (napi->napi_id == napi_id)
6143                         return napi;
6144
6145         return NULL;
6146 }
6147
6148 #if defined(CONFIG_NET_RX_BUSY_POLL)
6149
6150 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6151 {
6152         if (!skip_schedule) {
6153                 gro_normal_list(napi);
6154                 __napi_schedule(napi);
6155                 return;
6156         }
6157
6158         if (napi->gro_bitmask) {
6159                 /* flush too old packets
6160                  * If HZ < 1000, flush all packets.
6161                  */
6162                 napi_gro_flush(napi, HZ >= 1000);
6163         }
6164
6165         gro_normal_list(napi);
6166         clear_bit(NAPI_STATE_SCHED, &napi->state);
6167 }
6168
6169 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6170                            u16 budget)
6171 {
6172         bool skip_schedule = false;
6173         unsigned long timeout;
6174         int rc;
6175
6176         /* Busy polling means there is a high chance device driver hard irq
6177          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6178          * set in napi_schedule_prep().
6179          * Since we are about to call napi->poll() once more, we can safely
6180          * clear NAPI_STATE_MISSED.
6181          *
6182          * Note: x86 could use a single "lock and ..." instruction
6183          * to perform these two clear_bit()
6184          */
6185         clear_bit(NAPI_STATE_MISSED, &napi->state);
6186         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6187
6188         local_bh_disable();
6189
6190         if (prefer_busy_poll) {
6191                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6192                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6193                 if (napi->defer_hard_irqs_count && timeout) {
6194                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6195                         skip_schedule = true;
6196                 }
6197         }
6198
6199         /* All we really want here is to re-enable device interrupts.
6200          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6201          */
6202         rc = napi->poll(napi, budget);
6203         /* We can't gro_normal_list() here, because napi->poll() might have
6204          * rearmed the napi (napi_complete_done()) in which case it could
6205          * already be running on another CPU.
6206          */
6207         trace_napi_poll(napi, rc, budget);
6208         netpoll_poll_unlock(have_poll_lock);
6209         if (rc == budget)
6210                 __busy_poll_stop(napi, skip_schedule);
6211         local_bh_enable();
6212 }
6213
6214 void napi_busy_loop(unsigned int napi_id,
6215                     bool (*loop_end)(void *, unsigned long),
6216                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6217 {
6218         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6219         int (*napi_poll)(struct napi_struct *napi, int budget);
6220         void *have_poll_lock = NULL;
6221         struct napi_struct *napi;
6222
6223 restart:
6224         napi_poll = NULL;
6225
6226         rcu_read_lock();
6227
6228         napi = napi_by_id(napi_id);
6229         if (!napi)
6230                 goto out;
6231
6232         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6233                 preempt_disable();
6234         for (;;) {
6235                 int work = 0;
6236
6237                 local_bh_disable();
6238                 if (!napi_poll) {
6239                         unsigned long val = READ_ONCE(napi->state);
6240
6241                         /* If multiple threads are competing for this napi,
6242                          * we avoid dirtying napi->state as much as we can.
6243                          */
6244                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6245                                    NAPIF_STATE_IN_BUSY_POLL)) {
6246                                 if (prefer_busy_poll)
6247                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6248                                 goto count;
6249                         }
6250                         if (cmpxchg(&napi->state, val,
6251                                     val | NAPIF_STATE_IN_BUSY_POLL |
6252                                           NAPIF_STATE_SCHED) != val) {
6253                                 if (prefer_busy_poll)
6254                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6255                                 goto count;
6256                         }
6257                         have_poll_lock = netpoll_poll_lock(napi);
6258                         napi_poll = napi->poll;
6259                 }
6260                 work = napi_poll(napi, budget);
6261                 trace_napi_poll(napi, work, budget);
6262                 gro_normal_list(napi);
6263 count:
6264                 if (work > 0)
6265                         __NET_ADD_STATS(dev_net(napi->dev),
6266                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6267                 local_bh_enable();
6268
6269                 if (!loop_end || loop_end(loop_end_arg, start_time))
6270                         break;
6271
6272                 if (unlikely(need_resched())) {
6273                         if (napi_poll)
6274                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6275                         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6276                                 preempt_enable();
6277                         rcu_read_unlock();
6278                         cond_resched();
6279                         if (loop_end(loop_end_arg, start_time))
6280                                 return;
6281                         goto restart;
6282                 }
6283                 cpu_relax();
6284         }
6285         if (napi_poll)
6286                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6287         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6288                 preempt_enable();
6289 out:
6290         rcu_read_unlock();
6291 }
6292 EXPORT_SYMBOL(napi_busy_loop);
6293
6294 #endif /* CONFIG_NET_RX_BUSY_POLL */
6295
6296 static void napi_hash_add(struct napi_struct *napi)
6297 {
6298         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6299                 return;
6300
6301         spin_lock(&napi_hash_lock);
6302
6303         /* 0..NR_CPUS range is reserved for sender_cpu use */
6304         do {
6305                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6306                         napi_gen_id = MIN_NAPI_ID;
6307         } while (napi_by_id(napi_gen_id));
6308         napi->napi_id = napi_gen_id;
6309
6310         hlist_add_head_rcu(&napi->napi_hash_node,
6311                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6312
6313         spin_unlock(&napi_hash_lock);
6314 }
6315
6316 /* Warning : caller is responsible to make sure rcu grace period
6317  * is respected before freeing memory containing @napi
6318  */
6319 static void napi_hash_del(struct napi_struct *napi)
6320 {
6321         spin_lock(&napi_hash_lock);
6322
6323         hlist_del_init_rcu(&napi->napi_hash_node);
6324
6325         spin_unlock(&napi_hash_lock);
6326 }
6327
6328 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6329 {
6330         struct napi_struct *napi;
6331
6332         napi = container_of(timer, struct napi_struct, timer);
6333
6334         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6335          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6336          */
6337         if (!napi_disable_pending(napi) &&
6338             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6339                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6340                 __napi_schedule_irqoff(napi);
6341         }
6342
6343         return HRTIMER_NORESTART;
6344 }
6345
6346 static void init_gro_hash(struct napi_struct *napi)
6347 {
6348         int i;
6349
6350         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6351                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6352                 napi->gro_hash[i].count = 0;
6353         }
6354         napi->gro_bitmask = 0;
6355 }
6356
6357 int dev_set_threaded(struct net_device *dev, bool threaded)
6358 {
6359         struct napi_struct *napi;
6360         int err = 0;
6361
6362         if (dev->threaded == threaded)
6363                 return 0;
6364
6365         if (threaded) {
6366                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6367                         if (!napi->thread) {
6368                                 err = napi_kthread_create(napi);
6369                                 if (err) {
6370                                         threaded = false;
6371                                         break;
6372                                 }
6373                         }
6374                 }
6375         }
6376
6377         dev->threaded = threaded;
6378
6379         /* Make sure kthread is created before THREADED bit
6380          * is set.
6381          */
6382         smp_mb__before_atomic();
6383
6384         /* Setting/unsetting threaded mode on a napi might not immediately
6385          * take effect, if the current napi instance is actively being
6386          * polled. In this case, the switch between threaded mode and
6387          * softirq mode will happen in the next round of napi_schedule().
6388          * This should not cause hiccups/stalls to the live traffic.
6389          */
6390         list_for_each_entry(napi, &dev->napi_list, dev_list)
6391                 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6392
6393         return err;
6394 }
6395 EXPORT_SYMBOL(dev_set_threaded);
6396
6397 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6398                            int (*poll)(struct napi_struct *, int), int weight)
6399 {
6400         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6401                 return;
6402
6403         INIT_LIST_HEAD(&napi->poll_list);
6404         INIT_HLIST_NODE(&napi->napi_hash_node);
6405         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6406         napi->timer.function = napi_watchdog;
6407         init_gro_hash(napi);
6408         napi->skb = NULL;
6409         INIT_LIST_HEAD(&napi->rx_list);
6410         napi->rx_count = 0;
6411         napi->poll = poll;
6412         if (weight > NAPI_POLL_WEIGHT)
6413                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6414                                 weight);
6415         napi->weight = weight;
6416         napi->dev = dev;
6417 #ifdef CONFIG_NETPOLL
6418         napi->poll_owner = -1;
6419 #endif
6420         napi->list_owner = -1;
6421         set_bit(NAPI_STATE_SCHED, &napi->state);
6422         set_bit(NAPI_STATE_NPSVC, &napi->state);
6423         list_add_rcu(&napi->dev_list, &dev->napi_list);
6424         napi_hash_add(napi);
6425         napi_get_frags_check(napi);
6426         /* Create kthread for this napi if dev->threaded is set.
6427          * Clear dev->threaded if kthread creation failed so that
6428          * threaded mode will not be enabled in napi_enable().
6429          */
6430         if (dev->threaded && napi_kthread_create(napi))
6431                 dev->threaded = 0;
6432 }
6433 EXPORT_SYMBOL(netif_napi_add_weight);
6434
6435 void napi_disable(struct napi_struct *n)
6436 {
6437         unsigned long val, new;
6438
6439         might_sleep();
6440         set_bit(NAPI_STATE_DISABLE, &n->state);
6441
6442         val = READ_ONCE(n->state);
6443         do {
6444                 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6445                         usleep_range(20, 200);
6446                         val = READ_ONCE(n->state);
6447                 }
6448
6449                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6450                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6451         } while (!try_cmpxchg(&n->state, &val, new));
6452
6453         hrtimer_cancel(&n->timer);
6454
6455         clear_bit(NAPI_STATE_DISABLE, &n->state);
6456 }
6457 EXPORT_SYMBOL(napi_disable);
6458
6459 /**
6460  *      napi_enable - enable NAPI scheduling
6461  *      @n: NAPI context
6462  *
6463  * Resume NAPI from being scheduled on this context.
6464  * Must be paired with napi_disable.
6465  */
6466 void napi_enable(struct napi_struct *n)
6467 {
6468         unsigned long new, val = READ_ONCE(n->state);
6469
6470         do {
6471                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6472
6473                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6474                 if (n->dev->threaded && n->thread)
6475                         new |= NAPIF_STATE_THREADED;
6476         } while (!try_cmpxchg(&n->state, &val, new));
6477 }
6478 EXPORT_SYMBOL(napi_enable);
6479
6480 static void flush_gro_hash(struct napi_struct *napi)
6481 {
6482         int i;
6483
6484         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6485                 struct sk_buff *skb, *n;
6486
6487                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6488                         kfree_skb(skb);
6489                 napi->gro_hash[i].count = 0;
6490         }
6491 }
6492
6493 /* Must be called in process context */
6494 void __netif_napi_del(struct napi_struct *napi)
6495 {
6496         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6497                 return;
6498
6499         napi_hash_del(napi);
6500         list_del_rcu(&napi->dev_list);
6501         napi_free_frags(napi);
6502
6503         flush_gro_hash(napi);
6504         napi->gro_bitmask = 0;
6505
6506         if (napi->thread) {
6507                 kthread_stop(napi->thread);
6508                 napi->thread = NULL;
6509         }
6510 }
6511 EXPORT_SYMBOL(__netif_napi_del);
6512
6513 static int __napi_poll(struct napi_struct *n, bool *repoll)
6514 {
6515         int work, weight;
6516
6517         weight = n->weight;
6518
6519         /* This NAPI_STATE_SCHED test is for avoiding a race
6520          * with netpoll's poll_napi().  Only the entity which
6521          * obtains the lock and sees NAPI_STATE_SCHED set will
6522          * actually make the ->poll() call.  Therefore we avoid
6523          * accidentally calling ->poll() when NAPI is not scheduled.
6524          */
6525         work = 0;
6526         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6527                 work = n->poll(n, weight);
6528                 trace_napi_poll(n, work, weight);
6529         }
6530
6531         if (unlikely(work > weight))
6532                 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6533                                 n->poll, work, weight);
6534
6535         if (likely(work < weight))
6536                 return work;
6537
6538         /* Drivers must not modify the NAPI state if they
6539          * consume the entire weight.  In such cases this code
6540          * still "owns" the NAPI instance and therefore can
6541          * move the instance around on the list at-will.
6542          */
6543         if (unlikely(napi_disable_pending(n))) {
6544                 napi_complete(n);
6545                 return work;
6546         }
6547
6548         /* The NAPI context has more processing work, but busy-polling
6549          * is preferred. Exit early.
6550          */
6551         if (napi_prefer_busy_poll(n)) {
6552                 if (napi_complete_done(n, work)) {
6553                         /* If timeout is not set, we need to make sure
6554                          * that the NAPI is re-scheduled.
6555                          */
6556                         napi_schedule(n);
6557                 }
6558                 return work;
6559         }
6560
6561         if (n->gro_bitmask) {
6562                 /* flush too old packets
6563                  * If HZ < 1000, flush all packets.
6564                  */
6565                 napi_gro_flush(n, HZ >= 1000);
6566         }
6567
6568         gro_normal_list(n);
6569
6570         /* Some drivers may have called napi_schedule
6571          * prior to exhausting their budget.
6572          */
6573         if (unlikely(!list_empty(&n->poll_list))) {
6574                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6575                              n->dev ? n->dev->name : "backlog");
6576                 return work;
6577         }
6578
6579         *repoll = true;
6580
6581         return work;
6582 }
6583
6584 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6585 {
6586         bool do_repoll = false;
6587         void *have;
6588         int work;
6589
6590         list_del_init(&n->poll_list);
6591
6592         have = netpoll_poll_lock(n);
6593
6594         work = __napi_poll(n, &do_repoll);
6595
6596         if (do_repoll)
6597                 list_add_tail(&n->poll_list, repoll);
6598
6599         netpoll_poll_unlock(have);
6600
6601         return work;
6602 }
6603
6604 static int napi_thread_wait(struct napi_struct *napi)
6605 {
6606         bool woken = false;
6607
6608         set_current_state(TASK_INTERRUPTIBLE);
6609
6610         while (!kthread_should_stop()) {
6611                 /* Testing SCHED_THREADED bit here to make sure the current
6612                  * kthread owns this napi and could poll on this napi.
6613                  * Testing SCHED bit is not enough because SCHED bit might be
6614                  * set by some other busy poll thread or by napi_disable().
6615                  */
6616                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6617                         WARN_ON(!list_empty(&napi->poll_list));
6618                         __set_current_state(TASK_RUNNING);
6619                         return 0;
6620                 }
6621
6622                 schedule();
6623                 /* woken being true indicates this thread owns this napi. */
6624                 woken = true;
6625                 set_current_state(TASK_INTERRUPTIBLE);
6626         }
6627         __set_current_state(TASK_RUNNING);
6628
6629         return -1;
6630 }
6631
6632 static void skb_defer_free_flush(struct softnet_data *sd)
6633 {
6634         struct sk_buff *skb, *next;
6635
6636         /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6637         if (!READ_ONCE(sd->defer_list))
6638                 return;
6639
6640         spin_lock(&sd->defer_lock);
6641         skb = sd->defer_list;
6642         sd->defer_list = NULL;
6643         sd->defer_count = 0;
6644         spin_unlock(&sd->defer_lock);
6645
6646         while (skb != NULL) {
6647                 next = skb->next;
6648                 napi_consume_skb(skb, 1);
6649                 skb = next;
6650         }
6651 }
6652
6653 static int napi_threaded_poll(void *data)
6654 {
6655         struct napi_struct *napi = data;
6656         struct softnet_data *sd;
6657         void *have;
6658
6659         while (!napi_thread_wait(napi)) {
6660                 for (;;) {
6661                         bool repoll = false;
6662
6663                         local_bh_disable();
6664                         sd = this_cpu_ptr(&softnet_data);
6665                         sd->in_napi_threaded_poll = true;
6666
6667                         have = netpoll_poll_lock(napi);
6668                         __napi_poll(napi, &repoll);
6669                         netpoll_poll_unlock(have);
6670
6671                         sd->in_napi_threaded_poll = false;
6672                         barrier();
6673
6674                         if (sd_has_rps_ipi_waiting(sd)) {
6675                                 local_irq_disable();
6676                                 net_rps_action_and_irq_enable(sd);
6677                         }
6678                         skb_defer_free_flush(sd);
6679                         local_bh_enable();
6680
6681                         if (!repoll)
6682                                 break;
6683
6684                         cond_resched();
6685                 }
6686         }
6687         return 0;
6688 }
6689
6690 static __latent_entropy void net_rx_action(struct softirq_action *h)
6691 {
6692         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6693         unsigned long time_limit = jiffies +
6694                 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6695         int budget = READ_ONCE(netdev_budget);
6696         LIST_HEAD(list);
6697         LIST_HEAD(repoll);
6698
6699 start:
6700         sd->in_net_rx_action = true;
6701         local_irq_disable();
6702         list_splice_init(&sd->poll_list, &list);
6703         local_irq_enable();
6704
6705         for (;;) {
6706                 struct napi_struct *n;
6707
6708                 skb_defer_free_flush(sd);
6709
6710                 if (list_empty(&list)) {
6711                         if (list_empty(&repoll)) {
6712                                 sd->in_net_rx_action = false;
6713                                 barrier();
6714                                 /* We need to check if ____napi_schedule()
6715                                  * had refilled poll_list while
6716                                  * sd->in_net_rx_action was true.
6717                                  */
6718                                 if (!list_empty(&sd->poll_list))
6719                                         goto start;
6720                                 if (!sd_has_rps_ipi_waiting(sd))
6721                                         goto end;
6722                         }
6723                         break;
6724                 }
6725
6726                 n = list_first_entry(&list, struct napi_struct, poll_list);
6727                 budget -= napi_poll(n, &repoll);
6728
6729                 /* If softirq window is exhausted then punt.
6730                  * Allow this to run for 2 jiffies since which will allow
6731                  * an average latency of 1.5/HZ.
6732                  */
6733                 if (unlikely(budget <= 0 ||
6734                              time_after_eq(jiffies, time_limit))) {
6735                         sd->time_squeeze++;
6736                         break;
6737                 }
6738         }
6739
6740         local_irq_disable();
6741
6742         list_splice_tail_init(&sd->poll_list, &list);
6743         list_splice_tail(&repoll, &list);
6744         list_splice(&list, &sd->poll_list);
6745         if (!list_empty(&sd->poll_list))
6746                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6747         else
6748                 sd->in_net_rx_action = false;
6749
6750         net_rps_action_and_irq_enable(sd);
6751 end:;
6752 }
6753
6754 struct netdev_adjacent {
6755         struct net_device *dev;
6756         netdevice_tracker dev_tracker;
6757
6758         /* upper master flag, there can only be one master device per list */
6759         bool master;
6760
6761         /* lookup ignore flag */
6762         bool ignore;
6763
6764         /* counter for the number of times this device was added to us */
6765         u16 ref_nr;
6766
6767         /* private field for the users */
6768         void *private;
6769
6770         struct list_head list;
6771         struct rcu_head rcu;
6772 };
6773
6774 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6775                                                  struct list_head *adj_list)
6776 {
6777         struct netdev_adjacent *adj;
6778
6779         list_for_each_entry(adj, adj_list, list) {
6780                 if (adj->dev == adj_dev)
6781                         return adj;
6782         }
6783         return NULL;
6784 }
6785
6786 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6787                                     struct netdev_nested_priv *priv)
6788 {
6789         struct net_device *dev = (struct net_device *)priv->data;
6790
6791         return upper_dev == dev;
6792 }
6793
6794 /**
6795  * netdev_has_upper_dev - Check if device is linked to an upper device
6796  * @dev: device
6797  * @upper_dev: upper device to check
6798  *
6799  * Find out if a device is linked to specified upper device and return true
6800  * in case it is. Note that this checks only immediate upper device,
6801  * not through a complete stack of devices. The caller must hold the RTNL lock.
6802  */
6803 bool netdev_has_upper_dev(struct net_device *dev,
6804                           struct net_device *upper_dev)
6805 {
6806         struct netdev_nested_priv priv = {
6807                 .data = (void *)upper_dev,
6808         };
6809
6810         ASSERT_RTNL();
6811
6812         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6813                                              &priv);
6814 }
6815 EXPORT_SYMBOL(netdev_has_upper_dev);
6816
6817 /**
6818  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6819  * @dev: device
6820  * @upper_dev: upper device to check
6821  *
6822  * Find out if a device is linked to specified upper device and return true
6823  * in case it is. Note that this checks the entire upper device chain.
6824  * The caller must hold rcu lock.
6825  */
6826
6827 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6828                                   struct net_device *upper_dev)
6829 {
6830         struct netdev_nested_priv priv = {
6831                 .data = (void *)upper_dev,
6832         };
6833
6834         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6835                                                &priv);
6836 }
6837 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6838
6839 /**
6840  * netdev_has_any_upper_dev - Check if device is linked to some device
6841  * @dev: device
6842  *
6843  * Find out if a device is linked to an upper device and return true in case
6844  * it is. The caller must hold the RTNL lock.
6845  */
6846 bool netdev_has_any_upper_dev(struct net_device *dev)
6847 {
6848         ASSERT_RTNL();
6849
6850         return !list_empty(&dev->adj_list.upper);
6851 }
6852 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6853
6854 /**
6855  * netdev_master_upper_dev_get - Get master upper device
6856  * @dev: device
6857  *
6858  * Find a master upper device and return pointer to it or NULL in case
6859  * it's not there. The caller must hold the RTNL lock.
6860  */
6861 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6862 {
6863         struct netdev_adjacent *upper;
6864
6865         ASSERT_RTNL();
6866
6867         if (list_empty(&dev->adj_list.upper))
6868                 return NULL;
6869
6870         upper = list_first_entry(&dev->adj_list.upper,
6871                                  struct netdev_adjacent, list);
6872         if (likely(upper->master))
6873                 return upper->dev;
6874         return NULL;
6875 }
6876 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6877
6878 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6879 {
6880         struct netdev_adjacent *upper;
6881
6882         ASSERT_RTNL();
6883
6884         if (list_empty(&dev->adj_list.upper))
6885                 return NULL;
6886
6887         upper = list_first_entry(&dev->adj_list.upper,
6888                                  struct netdev_adjacent, list);
6889         if (likely(upper->master) && !upper->ignore)
6890                 return upper->dev;
6891         return NULL;
6892 }
6893
6894 /**
6895  * netdev_has_any_lower_dev - Check if device is linked to some device
6896  * @dev: device
6897  *
6898  * Find out if a device is linked to a lower device and return true in case
6899  * it is. The caller must hold the RTNL lock.
6900  */
6901 static bool netdev_has_any_lower_dev(struct net_device *dev)
6902 {
6903         ASSERT_RTNL();
6904
6905         return !list_empty(&dev->adj_list.lower);
6906 }
6907
6908 void *netdev_adjacent_get_private(struct list_head *adj_list)
6909 {
6910         struct netdev_adjacent *adj;
6911
6912         adj = list_entry(adj_list, struct netdev_adjacent, list);
6913
6914         return adj->private;
6915 }
6916 EXPORT_SYMBOL(netdev_adjacent_get_private);
6917
6918 /**
6919  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6920  * @dev: device
6921  * @iter: list_head ** of the current position
6922  *
6923  * Gets the next device from the dev's upper list, starting from iter
6924  * position. The caller must hold RCU read lock.
6925  */
6926 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6927                                                  struct list_head **iter)
6928 {
6929         struct netdev_adjacent *upper;
6930
6931         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6932
6933         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6934
6935         if (&upper->list == &dev->adj_list.upper)
6936                 return NULL;
6937
6938         *iter = &upper->list;
6939
6940         return upper->dev;
6941 }
6942 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6943
6944 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6945                                                   struct list_head **iter,
6946                                                   bool *ignore)
6947 {
6948         struct netdev_adjacent *upper;
6949
6950         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6951
6952         if (&upper->list == &dev->adj_list.upper)
6953                 return NULL;
6954
6955         *iter = &upper->list;
6956         *ignore = upper->ignore;
6957
6958         return upper->dev;
6959 }
6960
6961 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6962                                                     struct list_head **iter)
6963 {
6964         struct netdev_adjacent *upper;
6965
6966         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6967
6968         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6969
6970         if (&upper->list == &dev->adj_list.upper)
6971                 return NULL;
6972
6973         *iter = &upper->list;
6974
6975         return upper->dev;
6976 }
6977
6978 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6979                                        int (*fn)(struct net_device *dev,
6980                                          struct netdev_nested_priv *priv),
6981                                        struct netdev_nested_priv *priv)
6982 {
6983         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6984         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6985         int ret, cur = 0;
6986         bool ignore;
6987
6988         now = dev;
6989         iter = &dev->adj_list.upper;
6990
6991         while (1) {
6992                 if (now != dev) {
6993                         ret = fn(now, priv);
6994                         if (ret)
6995                                 return ret;
6996                 }
6997
6998                 next = NULL;
6999                 while (1) {
7000                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7001                         if (!udev)
7002                                 break;
7003                         if (ignore)
7004                                 continue;
7005
7006                         next = udev;
7007                         niter = &udev->adj_list.upper;
7008                         dev_stack[cur] = now;
7009                         iter_stack[cur++] = iter;
7010                         break;
7011                 }
7012
7013                 if (!next) {
7014                         if (!cur)
7015                                 return 0;
7016                         next = dev_stack[--cur];
7017                         niter = iter_stack[cur];
7018                 }
7019
7020                 now = next;
7021                 iter = niter;
7022         }
7023
7024         return 0;
7025 }
7026
7027 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7028                                   int (*fn)(struct net_device *dev,
7029                                             struct netdev_nested_priv *priv),
7030                                   struct netdev_nested_priv *priv)
7031 {
7032         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7033         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7034         int ret, cur = 0;
7035
7036         now = dev;
7037         iter = &dev->adj_list.upper;
7038
7039         while (1) {
7040                 if (now != dev) {
7041                         ret = fn(now, priv);
7042                         if (ret)
7043                                 return ret;
7044                 }
7045
7046                 next = NULL;
7047                 while (1) {
7048                         udev = netdev_next_upper_dev_rcu(now, &iter);
7049                         if (!udev)
7050                                 break;
7051
7052                         next = udev;
7053                         niter = &udev->adj_list.upper;
7054                         dev_stack[cur] = now;
7055                         iter_stack[cur++] = iter;
7056                         break;
7057                 }
7058
7059                 if (!next) {
7060                         if (!cur)
7061                                 return 0;
7062                         next = dev_stack[--cur];
7063                         niter = iter_stack[cur];
7064                 }
7065
7066                 now = next;
7067                 iter = niter;
7068         }
7069
7070         return 0;
7071 }
7072 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7073
7074 static bool __netdev_has_upper_dev(struct net_device *dev,
7075                                    struct net_device *upper_dev)
7076 {
7077         struct netdev_nested_priv priv = {
7078                 .flags = 0,
7079                 .data = (void *)upper_dev,
7080         };
7081
7082         ASSERT_RTNL();
7083
7084         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7085                                            &priv);
7086 }
7087
7088 /**
7089  * netdev_lower_get_next_private - Get the next ->private from the
7090  *                                 lower neighbour list
7091  * @dev: device
7092  * @iter: list_head ** of the current position
7093  *
7094  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7095  * list, starting from iter position. The caller must hold either hold the
7096  * RTNL lock or its own locking that guarantees that the neighbour lower
7097  * list will remain unchanged.
7098  */
7099 void *netdev_lower_get_next_private(struct net_device *dev,
7100                                     struct list_head **iter)
7101 {
7102         struct netdev_adjacent *lower;
7103
7104         lower = list_entry(*iter, struct netdev_adjacent, list);
7105
7106         if (&lower->list == &dev->adj_list.lower)
7107                 return NULL;
7108
7109         *iter = lower->list.next;
7110
7111         return lower->private;
7112 }
7113 EXPORT_SYMBOL(netdev_lower_get_next_private);
7114
7115 /**
7116  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7117  *                                     lower neighbour list, RCU
7118  *                                     variant
7119  * @dev: device
7120  * @iter: list_head ** of the current position
7121  *
7122  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7123  * list, starting from iter position. The caller must hold RCU read lock.
7124  */
7125 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7126                                         struct list_head **iter)
7127 {
7128         struct netdev_adjacent *lower;
7129
7130         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7131
7132         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7133
7134         if (&lower->list == &dev->adj_list.lower)
7135                 return NULL;
7136
7137         *iter = &lower->list;
7138
7139         return lower->private;
7140 }
7141 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7142
7143 /**
7144  * netdev_lower_get_next - Get the next device from the lower neighbour
7145  *                         list
7146  * @dev: device
7147  * @iter: list_head ** of the current position
7148  *
7149  * Gets the next netdev_adjacent from the dev's lower neighbour
7150  * list, starting from iter position. The caller must hold RTNL lock or
7151  * its own locking that guarantees that the neighbour lower
7152  * list will remain unchanged.
7153  */
7154 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7155 {
7156         struct netdev_adjacent *lower;
7157
7158         lower = list_entry(*iter, struct netdev_adjacent, list);
7159
7160         if (&lower->list == &dev->adj_list.lower)
7161                 return NULL;
7162
7163         *iter = lower->list.next;
7164
7165         return lower->dev;
7166 }
7167 EXPORT_SYMBOL(netdev_lower_get_next);
7168
7169 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7170                                                 struct list_head **iter)
7171 {
7172         struct netdev_adjacent *lower;
7173
7174         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7175
7176         if (&lower->list == &dev->adj_list.lower)
7177                 return NULL;
7178
7179         *iter = &lower->list;
7180
7181         return lower->dev;
7182 }
7183
7184 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7185                                                   struct list_head **iter,
7186                                                   bool *ignore)
7187 {
7188         struct netdev_adjacent *lower;
7189
7190         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7191
7192         if (&lower->list == &dev->adj_list.lower)
7193                 return NULL;
7194
7195         *iter = &lower->list;
7196         *ignore = lower->ignore;
7197
7198         return lower->dev;
7199 }
7200
7201 int netdev_walk_all_lower_dev(struct net_device *dev,
7202                               int (*fn)(struct net_device *dev,
7203                                         struct netdev_nested_priv *priv),
7204                               struct netdev_nested_priv *priv)
7205 {
7206         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7207         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7208         int ret, cur = 0;
7209
7210         now = dev;
7211         iter = &dev->adj_list.lower;
7212
7213         while (1) {
7214                 if (now != dev) {
7215                         ret = fn(now, priv);
7216                         if (ret)
7217                                 return ret;
7218                 }
7219
7220                 next = NULL;
7221                 while (1) {
7222                         ldev = netdev_next_lower_dev(now, &iter);
7223                         if (!ldev)
7224                                 break;
7225
7226                         next = ldev;
7227                         niter = &ldev->adj_list.lower;
7228                         dev_stack[cur] = now;
7229                         iter_stack[cur++] = iter;
7230                         break;
7231                 }
7232
7233                 if (!next) {
7234                         if (!cur)
7235                                 return 0;
7236                         next = dev_stack[--cur];
7237                         niter = iter_stack[cur];
7238                 }
7239
7240                 now = next;
7241                 iter = niter;
7242         }
7243
7244         return 0;
7245 }
7246 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7247
7248 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7249                                        int (*fn)(struct net_device *dev,
7250                                          struct netdev_nested_priv *priv),
7251                                        struct netdev_nested_priv *priv)
7252 {
7253         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7254         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7255         int ret, cur = 0;
7256         bool ignore;
7257
7258         now = dev;
7259         iter = &dev->adj_list.lower;
7260
7261         while (1) {
7262                 if (now != dev) {
7263                         ret = fn(now, priv);
7264                         if (ret)
7265                                 return ret;
7266                 }
7267
7268                 next = NULL;
7269                 while (1) {
7270                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7271                         if (!ldev)
7272                                 break;
7273                         if (ignore)
7274                                 continue;
7275
7276                         next = ldev;
7277                         niter = &ldev->adj_list.lower;
7278                         dev_stack[cur] = now;
7279                         iter_stack[cur++] = iter;
7280                         break;
7281                 }
7282
7283                 if (!next) {
7284                         if (!cur)
7285                                 return 0;
7286                         next = dev_stack[--cur];
7287                         niter = iter_stack[cur];
7288                 }
7289
7290                 now = next;
7291                 iter = niter;
7292         }
7293
7294         return 0;
7295 }
7296
7297 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7298                                              struct list_head **iter)
7299 {
7300         struct netdev_adjacent *lower;
7301
7302         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7303         if (&lower->list == &dev->adj_list.lower)
7304                 return NULL;
7305
7306         *iter = &lower->list;
7307
7308         return lower->dev;
7309 }
7310 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7311
7312 static u8 __netdev_upper_depth(struct net_device *dev)
7313 {
7314         struct net_device *udev;
7315         struct list_head *iter;
7316         u8 max_depth = 0;
7317         bool ignore;
7318
7319         for (iter = &dev->adj_list.upper,
7320              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7321              udev;
7322              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7323                 if (ignore)
7324                         continue;
7325                 if (max_depth < udev->upper_level)
7326                         max_depth = udev->upper_level;
7327         }
7328
7329         return max_depth;
7330 }
7331
7332 static u8 __netdev_lower_depth(struct net_device *dev)
7333 {
7334         struct net_device *ldev;
7335         struct list_head *iter;
7336         u8 max_depth = 0;
7337         bool ignore;
7338
7339         for (iter = &dev->adj_list.lower,
7340              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7341              ldev;
7342              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7343                 if (ignore)
7344                         continue;
7345                 if (max_depth < ldev->lower_level)
7346                         max_depth = ldev->lower_level;
7347         }
7348
7349         return max_depth;
7350 }
7351
7352 static int __netdev_update_upper_level(struct net_device *dev,
7353                                        struct netdev_nested_priv *__unused)
7354 {
7355         dev->upper_level = __netdev_upper_depth(dev) + 1;
7356         return 0;
7357 }
7358
7359 #ifdef CONFIG_LOCKDEP
7360 static LIST_HEAD(net_unlink_list);
7361
7362 static void net_unlink_todo(struct net_device *dev)
7363 {
7364         if (list_empty(&dev->unlink_list))
7365                 list_add_tail(&dev->unlink_list, &net_unlink_list);
7366 }
7367 #endif
7368
7369 static int __netdev_update_lower_level(struct net_device *dev,
7370                                        struct netdev_nested_priv *priv)
7371 {
7372         dev->lower_level = __netdev_lower_depth(dev) + 1;
7373
7374 #ifdef CONFIG_LOCKDEP
7375         if (!priv)
7376                 return 0;
7377
7378         if (priv->flags & NESTED_SYNC_IMM)
7379                 dev->nested_level = dev->lower_level - 1;
7380         if (priv->flags & NESTED_SYNC_TODO)
7381                 net_unlink_todo(dev);
7382 #endif
7383         return 0;
7384 }
7385
7386 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7387                                   int (*fn)(struct net_device *dev,
7388                                             struct netdev_nested_priv *priv),
7389                                   struct netdev_nested_priv *priv)
7390 {
7391         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7392         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7393         int ret, cur = 0;
7394
7395         now = dev;
7396         iter = &dev->adj_list.lower;
7397
7398         while (1) {
7399                 if (now != dev) {
7400                         ret = fn(now, priv);
7401                         if (ret)
7402                                 return ret;
7403                 }
7404
7405                 next = NULL;
7406                 while (1) {
7407                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7408                         if (!ldev)
7409                                 break;
7410
7411                         next = ldev;
7412                         niter = &ldev->adj_list.lower;
7413                         dev_stack[cur] = now;
7414                         iter_stack[cur++] = iter;
7415                         break;
7416                 }
7417
7418                 if (!next) {
7419                         if (!cur)
7420                                 return 0;
7421                         next = dev_stack[--cur];
7422                         niter = iter_stack[cur];
7423                 }
7424
7425                 now = next;
7426                 iter = niter;
7427         }
7428
7429         return 0;
7430 }
7431 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7432
7433 /**
7434  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7435  *                                     lower neighbour list, RCU
7436  *                                     variant
7437  * @dev: device
7438  *
7439  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7440  * list. The caller must hold RCU read lock.
7441  */
7442 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7443 {
7444         struct netdev_adjacent *lower;
7445
7446         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7447                         struct netdev_adjacent, list);
7448         if (lower)
7449                 return lower->private;
7450         return NULL;
7451 }
7452 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7453
7454 /**
7455  * netdev_master_upper_dev_get_rcu - Get master upper device
7456  * @dev: device
7457  *
7458  * Find a master upper device and return pointer to it or NULL in case
7459  * it's not there. The caller must hold the RCU read lock.
7460  */
7461 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7462 {
7463         struct netdev_adjacent *upper;
7464
7465         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7466                                        struct netdev_adjacent, list);
7467         if (upper && likely(upper->master))
7468                 return upper->dev;
7469         return NULL;
7470 }
7471 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7472
7473 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7474                               struct net_device *adj_dev,
7475                               struct list_head *dev_list)
7476 {
7477         char linkname[IFNAMSIZ+7];
7478
7479         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7480                 "upper_%s" : "lower_%s", adj_dev->name);
7481         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7482                                  linkname);
7483 }
7484 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7485                                char *name,
7486                                struct list_head *dev_list)
7487 {
7488         char linkname[IFNAMSIZ+7];
7489
7490         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7491                 "upper_%s" : "lower_%s", name);
7492         sysfs_remove_link(&(dev->dev.kobj), linkname);
7493 }
7494
7495 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7496                                                  struct net_device *adj_dev,
7497                                                  struct list_head *dev_list)
7498 {
7499         return (dev_list == &dev->adj_list.upper ||
7500                 dev_list == &dev->adj_list.lower) &&
7501                 net_eq(dev_net(dev), dev_net(adj_dev));
7502 }
7503
7504 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7505                                         struct net_device *adj_dev,
7506                                         struct list_head *dev_list,
7507                                         void *private, bool master)
7508 {
7509         struct netdev_adjacent *adj;
7510         int ret;
7511
7512         adj = __netdev_find_adj(adj_dev, dev_list);
7513
7514         if (adj) {
7515                 adj->ref_nr += 1;
7516                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7517                          dev->name, adj_dev->name, adj->ref_nr);
7518
7519                 return 0;
7520         }
7521
7522         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7523         if (!adj)
7524                 return -ENOMEM;
7525
7526         adj->dev = adj_dev;
7527         adj->master = master;
7528         adj->ref_nr = 1;
7529         adj->private = private;
7530         adj->ignore = false;
7531         netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7532
7533         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7534                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7535
7536         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7537                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7538                 if (ret)
7539                         goto free_adj;
7540         }
7541
7542         /* Ensure that master link is always the first item in list. */
7543         if (master) {
7544                 ret = sysfs_create_link(&(dev->dev.kobj),
7545                                         &(adj_dev->dev.kobj), "master");
7546                 if (ret)
7547                         goto remove_symlinks;
7548
7549                 list_add_rcu(&adj->list, dev_list);
7550         } else {
7551                 list_add_tail_rcu(&adj->list, dev_list);
7552         }
7553
7554         return 0;
7555
7556 remove_symlinks:
7557         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7558                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7559 free_adj:
7560         netdev_put(adj_dev, &adj->dev_tracker);
7561         kfree(adj);
7562
7563         return ret;
7564 }
7565
7566 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7567                                          struct net_device *adj_dev,
7568                                          u16 ref_nr,
7569                                          struct list_head *dev_list)
7570 {
7571         struct netdev_adjacent *adj;
7572
7573         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7574                  dev->name, adj_dev->name, ref_nr);
7575
7576         adj = __netdev_find_adj(adj_dev, dev_list);
7577
7578         if (!adj) {
7579                 pr_err("Adjacency does not exist for device %s from %s\n",
7580                        dev->name, adj_dev->name);
7581                 WARN_ON(1);
7582                 return;
7583         }
7584
7585         if (adj->ref_nr > ref_nr) {
7586                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7587                          dev->name, adj_dev->name, ref_nr,
7588                          adj->ref_nr - ref_nr);
7589                 adj->ref_nr -= ref_nr;
7590                 return;
7591         }
7592
7593         if (adj->master)
7594                 sysfs_remove_link(&(dev->dev.kobj), "master");
7595
7596         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7597                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7598
7599         list_del_rcu(&adj->list);
7600         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7601                  adj_dev->name, dev->name, adj_dev->name);
7602         netdev_put(adj_dev, &adj->dev_tracker);
7603         kfree_rcu(adj, rcu);
7604 }
7605
7606 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7607                                             struct net_device *upper_dev,
7608                                             struct list_head *up_list,
7609                                             struct list_head *down_list,
7610                                             void *private, bool master)
7611 {
7612         int ret;
7613
7614         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7615                                            private, master);
7616         if (ret)
7617                 return ret;
7618
7619         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7620                                            private, false);
7621         if (ret) {
7622                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7623                 return ret;
7624         }
7625
7626         return 0;
7627 }
7628
7629 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7630                                                struct net_device *upper_dev,
7631                                                u16 ref_nr,
7632                                                struct list_head *up_list,
7633                                                struct list_head *down_list)
7634 {
7635         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7636         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7637 }
7638
7639 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7640                                                 struct net_device *upper_dev,
7641                                                 void *private, bool master)
7642 {
7643         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7644                                                 &dev->adj_list.upper,
7645                                                 &upper_dev->adj_list.lower,
7646                                                 private, master);
7647 }
7648
7649 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7650                                                    struct net_device *upper_dev)
7651 {
7652         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7653                                            &dev->adj_list.upper,
7654                                            &upper_dev->adj_list.lower);
7655 }
7656
7657 static int __netdev_upper_dev_link(struct net_device *dev,
7658                                    struct net_device *upper_dev, bool master,
7659                                    void *upper_priv, void *upper_info,
7660                                    struct netdev_nested_priv *priv,
7661                                    struct netlink_ext_ack *extack)
7662 {
7663         struct netdev_notifier_changeupper_info changeupper_info = {
7664                 .info = {
7665                         .dev = dev,
7666                         .extack = extack,
7667                 },
7668                 .upper_dev = upper_dev,
7669                 .master = master,
7670                 .linking = true,
7671                 .upper_info = upper_info,
7672         };
7673         struct net_device *master_dev;
7674         int ret = 0;
7675
7676         ASSERT_RTNL();
7677
7678         if (dev == upper_dev)
7679                 return -EBUSY;
7680
7681         /* To prevent loops, check if dev is not upper device to upper_dev. */
7682         if (__netdev_has_upper_dev(upper_dev, dev))
7683                 return -EBUSY;
7684
7685         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7686                 return -EMLINK;
7687
7688         if (!master) {
7689                 if (__netdev_has_upper_dev(dev, upper_dev))
7690                         return -EEXIST;
7691         } else {
7692                 master_dev = __netdev_master_upper_dev_get(dev);
7693                 if (master_dev)
7694                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7695         }
7696
7697         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7698                                             &changeupper_info.info);
7699         ret = notifier_to_errno(ret);
7700         if (ret)
7701                 return ret;
7702
7703         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7704                                                    master);
7705         if (ret)
7706                 return ret;
7707
7708         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7709                                             &changeupper_info.info);
7710         ret = notifier_to_errno(ret);
7711         if (ret)
7712                 goto rollback;
7713
7714         __netdev_update_upper_level(dev, NULL);
7715         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7716
7717         __netdev_update_lower_level(upper_dev, priv);
7718         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7719                                     priv);
7720
7721         return 0;
7722
7723 rollback:
7724         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7725
7726         return ret;
7727 }
7728
7729 /**
7730  * netdev_upper_dev_link - Add a link to the upper device
7731  * @dev: device
7732  * @upper_dev: new upper device
7733  * @extack: netlink extended ack
7734  *
7735  * Adds a link to device which is upper to this one. The caller must hold
7736  * the RTNL lock. On a failure a negative errno code is returned.
7737  * On success the reference counts are adjusted and the function
7738  * returns zero.
7739  */
7740 int netdev_upper_dev_link(struct net_device *dev,
7741                           struct net_device *upper_dev,
7742                           struct netlink_ext_ack *extack)
7743 {
7744         struct netdev_nested_priv priv = {
7745                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7746                 .data = NULL,
7747         };
7748
7749         return __netdev_upper_dev_link(dev, upper_dev, false,
7750                                        NULL, NULL, &priv, extack);
7751 }
7752 EXPORT_SYMBOL(netdev_upper_dev_link);
7753
7754 /**
7755  * netdev_master_upper_dev_link - Add a master link to the upper device
7756  * @dev: device
7757  * @upper_dev: new upper device
7758  * @upper_priv: upper device private
7759  * @upper_info: upper info to be passed down via notifier
7760  * @extack: netlink extended ack
7761  *
7762  * Adds a link to device which is upper to this one. In this case, only
7763  * one master upper device can be linked, although other non-master devices
7764  * might be linked as well. The caller must hold the RTNL lock.
7765  * On a failure a negative errno code is returned. On success the reference
7766  * counts are adjusted and the function returns zero.
7767  */
7768 int netdev_master_upper_dev_link(struct net_device *dev,
7769                                  struct net_device *upper_dev,
7770                                  void *upper_priv, void *upper_info,
7771                                  struct netlink_ext_ack *extack)
7772 {
7773         struct netdev_nested_priv priv = {
7774                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7775                 .data = NULL,
7776         };
7777
7778         return __netdev_upper_dev_link(dev, upper_dev, true,
7779                                        upper_priv, upper_info, &priv, extack);
7780 }
7781 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7782
7783 static void __netdev_upper_dev_unlink(struct net_device *dev,
7784                                       struct net_device *upper_dev,
7785                                       struct netdev_nested_priv *priv)
7786 {
7787         struct netdev_notifier_changeupper_info changeupper_info = {
7788                 .info = {
7789                         .dev = dev,
7790                 },
7791                 .upper_dev = upper_dev,
7792                 .linking = false,
7793         };
7794
7795         ASSERT_RTNL();
7796
7797         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7798
7799         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7800                                       &changeupper_info.info);
7801
7802         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7803
7804         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7805                                       &changeupper_info.info);
7806
7807         __netdev_update_upper_level(dev, NULL);
7808         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7809
7810         __netdev_update_lower_level(upper_dev, priv);
7811         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7812                                     priv);
7813 }
7814
7815 /**
7816  * netdev_upper_dev_unlink - Removes a link to upper device
7817  * @dev: device
7818  * @upper_dev: new upper device
7819  *
7820  * Removes a link to device which is upper to this one. The caller must hold
7821  * the RTNL lock.
7822  */
7823 void netdev_upper_dev_unlink(struct net_device *dev,
7824                              struct net_device *upper_dev)
7825 {
7826         struct netdev_nested_priv priv = {
7827                 .flags = NESTED_SYNC_TODO,
7828                 .data = NULL,
7829         };
7830
7831         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7832 }
7833 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7834
7835 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7836                                       struct net_device *lower_dev,
7837                                       bool val)
7838 {
7839         struct netdev_adjacent *adj;
7840
7841         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7842         if (adj)
7843                 adj->ignore = val;
7844
7845         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7846         if (adj)
7847                 adj->ignore = val;
7848 }
7849
7850 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7851                                         struct net_device *lower_dev)
7852 {
7853         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7854 }
7855
7856 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7857                                        struct net_device *lower_dev)
7858 {
7859         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7860 }
7861
7862 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7863                                    struct net_device *new_dev,
7864                                    struct net_device *dev,
7865                                    struct netlink_ext_ack *extack)
7866 {
7867         struct netdev_nested_priv priv = {
7868                 .flags = 0,
7869                 .data = NULL,
7870         };
7871         int err;
7872
7873         if (!new_dev)
7874                 return 0;
7875
7876         if (old_dev && new_dev != old_dev)
7877                 netdev_adjacent_dev_disable(dev, old_dev);
7878         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7879                                       extack);
7880         if (err) {
7881                 if (old_dev && new_dev != old_dev)
7882                         netdev_adjacent_dev_enable(dev, old_dev);
7883                 return err;
7884         }
7885
7886         return 0;
7887 }
7888 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7889
7890 void netdev_adjacent_change_commit(struct net_device *old_dev,
7891                                    struct net_device *new_dev,
7892                                    struct net_device *dev)
7893 {
7894         struct netdev_nested_priv priv = {
7895                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7896                 .data = NULL,
7897         };
7898
7899         if (!new_dev || !old_dev)
7900                 return;
7901
7902         if (new_dev == old_dev)
7903                 return;
7904
7905         netdev_adjacent_dev_enable(dev, old_dev);
7906         __netdev_upper_dev_unlink(old_dev, dev, &priv);
7907 }
7908 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7909
7910 void netdev_adjacent_change_abort(struct net_device *old_dev,
7911                                   struct net_device *new_dev,
7912                                   struct net_device *dev)
7913 {
7914         struct netdev_nested_priv priv = {
7915                 .flags = 0,
7916                 .data = NULL,
7917         };
7918
7919         if (!new_dev)
7920                 return;
7921
7922         if (old_dev && new_dev != old_dev)
7923                 netdev_adjacent_dev_enable(dev, old_dev);
7924
7925         __netdev_upper_dev_unlink(new_dev, dev, &priv);
7926 }
7927 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7928
7929 /**
7930  * netdev_bonding_info_change - Dispatch event about slave change
7931  * @dev: device
7932  * @bonding_info: info to dispatch
7933  *
7934  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7935  * The caller must hold the RTNL lock.
7936  */
7937 void netdev_bonding_info_change(struct net_device *dev,
7938                                 struct netdev_bonding_info *bonding_info)
7939 {
7940         struct netdev_notifier_bonding_info info = {
7941                 .info.dev = dev,
7942         };
7943
7944         memcpy(&info.bonding_info, bonding_info,
7945                sizeof(struct netdev_bonding_info));
7946         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7947                                       &info.info);
7948 }
7949 EXPORT_SYMBOL(netdev_bonding_info_change);
7950
7951 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7952                                            struct netlink_ext_ack *extack)
7953 {
7954         struct netdev_notifier_offload_xstats_info info = {
7955                 .info.dev = dev,
7956                 .info.extack = extack,
7957                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7958         };
7959         int err;
7960         int rc;
7961
7962         dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7963                                          GFP_KERNEL);
7964         if (!dev->offload_xstats_l3)
7965                 return -ENOMEM;
7966
7967         rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7968                                                   NETDEV_OFFLOAD_XSTATS_DISABLE,
7969                                                   &info.info);
7970         err = notifier_to_errno(rc);
7971         if (err)
7972                 goto free_stats;
7973
7974         return 0;
7975
7976 free_stats:
7977         kfree(dev->offload_xstats_l3);
7978         dev->offload_xstats_l3 = NULL;
7979         return err;
7980 }
7981
7982 int netdev_offload_xstats_enable(struct net_device *dev,
7983                                  enum netdev_offload_xstats_type type,
7984                                  struct netlink_ext_ack *extack)
7985 {
7986         ASSERT_RTNL();
7987
7988         if (netdev_offload_xstats_enabled(dev, type))
7989                 return -EALREADY;
7990
7991         switch (type) {
7992         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7993                 return netdev_offload_xstats_enable_l3(dev, extack);
7994         }
7995
7996         WARN_ON(1);
7997         return -EINVAL;
7998 }
7999 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8000
8001 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8002 {
8003         struct netdev_notifier_offload_xstats_info info = {
8004                 .info.dev = dev,
8005                 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8006         };
8007
8008         call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8009                                       &info.info);
8010         kfree(dev->offload_xstats_l3);
8011         dev->offload_xstats_l3 = NULL;
8012 }
8013
8014 int netdev_offload_xstats_disable(struct net_device *dev,
8015                                   enum netdev_offload_xstats_type type)
8016 {
8017         ASSERT_RTNL();
8018
8019         if (!netdev_offload_xstats_enabled(dev, type))
8020                 return -EALREADY;
8021
8022         switch (type) {
8023         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8024                 netdev_offload_xstats_disable_l3(dev);
8025                 return 0;
8026         }
8027
8028         WARN_ON(1);
8029         return -EINVAL;
8030 }
8031 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8032
8033 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8034 {
8035         netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8036 }
8037
8038 static struct rtnl_hw_stats64 *
8039 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8040                               enum netdev_offload_xstats_type type)
8041 {
8042         switch (type) {
8043         case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8044                 return dev->offload_xstats_l3;
8045         }
8046
8047         WARN_ON(1);
8048         return NULL;
8049 }
8050
8051 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8052                                    enum netdev_offload_xstats_type type)
8053 {
8054         ASSERT_RTNL();
8055
8056         return netdev_offload_xstats_get_ptr(dev, type);
8057 }
8058 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8059
8060 struct netdev_notifier_offload_xstats_ru {
8061         bool used;
8062 };
8063
8064 struct netdev_notifier_offload_xstats_rd {
8065         struct rtnl_hw_stats64 stats;
8066         bool used;
8067 };
8068
8069 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8070                                   const struct rtnl_hw_stats64 *src)
8071 {
8072         dest->rx_packets          += src->rx_packets;
8073         dest->tx_packets          += src->tx_packets;
8074         dest->rx_bytes            += src->rx_bytes;
8075         dest->tx_bytes            += src->tx_bytes;
8076         dest->rx_errors           += src->rx_errors;
8077         dest->tx_errors           += src->tx_errors;
8078         dest->rx_dropped          += src->rx_dropped;
8079         dest->tx_dropped          += src->tx_dropped;
8080         dest->multicast           += src->multicast;
8081 }
8082
8083 static int netdev_offload_xstats_get_used(struct net_device *dev,
8084                                           enum netdev_offload_xstats_type type,
8085                                           bool *p_used,
8086                                           struct netlink_ext_ack *extack)
8087 {
8088         struct netdev_notifier_offload_xstats_ru report_used = {};
8089         struct netdev_notifier_offload_xstats_info info = {
8090                 .info.dev = dev,
8091                 .info.extack = extack,
8092                 .type = type,
8093                 .report_used = &report_used,
8094         };
8095         int rc;
8096
8097         WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8098         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8099                                            &info.info);
8100         *p_used = report_used.used;
8101         return notifier_to_errno(rc);
8102 }
8103
8104 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8105                                            enum netdev_offload_xstats_type type,
8106                                            struct rtnl_hw_stats64 *p_stats,
8107                                            bool *p_used,
8108                                            struct netlink_ext_ack *extack)
8109 {
8110         struct netdev_notifier_offload_xstats_rd report_delta = {};
8111         struct netdev_notifier_offload_xstats_info info = {
8112                 .info.dev = dev,
8113                 .info.extack = extack,
8114                 .type = type,
8115                 .report_delta = &report_delta,
8116         };
8117         struct rtnl_hw_stats64 *stats;
8118         int rc;
8119
8120         stats = netdev_offload_xstats_get_ptr(dev, type);
8121         if (WARN_ON(!stats))
8122                 return -EINVAL;
8123
8124         rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8125                                            &info.info);
8126
8127         /* Cache whatever we got, even if there was an error, otherwise the
8128          * successful stats retrievals would get lost.
8129          */
8130         netdev_hw_stats64_add(stats, &report_delta.stats);
8131
8132         if (p_stats)
8133                 *p_stats = *stats;
8134         *p_used = report_delta.used;
8135
8136         return notifier_to_errno(rc);
8137 }
8138
8139 int netdev_offload_xstats_get(struct net_device *dev,
8140                               enum netdev_offload_xstats_type type,
8141                               struct rtnl_hw_stats64 *p_stats, bool *p_used,
8142                               struct netlink_ext_ack *extack)
8143 {
8144         ASSERT_RTNL();
8145
8146         if (p_stats)
8147                 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8148                                                        p_used, extack);
8149         else
8150                 return netdev_offload_xstats_get_used(dev, type, p_used,
8151                                                       extack);
8152 }
8153 EXPORT_SYMBOL(netdev_offload_xstats_get);
8154
8155 void
8156 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8157                                    const struct rtnl_hw_stats64 *stats)
8158 {
8159         report_delta->used = true;
8160         netdev_hw_stats64_add(&report_delta->stats, stats);
8161 }
8162 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8163
8164 void
8165 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8166 {
8167         report_used->used = true;
8168 }
8169 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8170
8171 void netdev_offload_xstats_push_delta(struct net_device *dev,
8172                                       enum netdev_offload_xstats_type type,
8173                                       const struct rtnl_hw_stats64 *p_stats)
8174 {
8175         struct rtnl_hw_stats64 *stats;
8176
8177         ASSERT_RTNL();
8178
8179         stats = netdev_offload_xstats_get_ptr(dev, type);
8180         if (WARN_ON(!stats))
8181                 return;
8182
8183         netdev_hw_stats64_add(stats, p_stats);
8184 }
8185 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8186
8187 /**
8188  * netdev_get_xmit_slave - Get the xmit slave of master device
8189  * @dev: device
8190  * @skb: The packet
8191  * @all_slaves: assume all the slaves are active
8192  *
8193  * The reference counters are not incremented so the caller must be
8194  * careful with locks. The caller must hold RCU lock.
8195  * %NULL is returned if no slave is found.
8196  */
8197
8198 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8199                                          struct sk_buff *skb,
8200                                          bool all_slaves)
8201 {
8202         const struct net_device_ops *ops = dev->netdev_ops;
8203
8204         if (!ops->ndo_get_xmit_slave)
8205                 return NULL;
8206         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8207 }
8208 EXPORT_SYMBOL(netdev_get_xmit_slave);
8209
8210 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8211                                                   struct sock *sk)
8212 {
8213         const struct net_device_ops *ops = dev->netdev_ops;
8214
8215         if (!ops->ndo_sk_get_lower_dev)
8216                 return NULL;
8217         return ops->ndo_sk_get_lower_dev(dev, sk);
8218 }
8219
8220 /**
8221  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8222  * @dev: device
8223  * @sk: the socket
8224  *
8225  * %NULL is returned if no lower device is found.
8226  */
8227
8228 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8229                                             struct sock *sk)
8230 {
8231         struct net_device *lower;
8232
8233         lower = netdev_sk_get_lower_dev(dev, sk);
8234         while (lower) {
8235                 dev = lower;
8236                 lower = netdev_sk_get_lower_dev(dev, sk);
8237         }
8238
8239         return dev;
8240 }
8241 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8242
8243 static void netdev_adjacent_add_links(struct net_device *dev)
8244 {
8245         struct netdev_adjacent *iter;
8246
8247         struct net *net = dev_net(dev);
8248
8249         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8250                 if (!net_eq(net, dev_net(iter->dev)))
8251                         continue;
8252                 netdev_adjacent_sysfs_add(iter->dev, dev,
8253                                           &iter->dev->adj_list.lower);
8254                 netdev_adjacent_sysfs_add(dev, iter->dev,
8255                                           &dev->adj_list.upper);
8256         }
8257
8258         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8259                 if (!net_eq(net, dev_net(iter->dev)))
8260                         continue;
8261                 netdev_adjacent_sysfs_add(iter->dev, dev,
8262                                           &iter->dev->adj_list.upper);
8263                 netdev_adjacent_sysfs_add(dev, iter->dev,
8264                                           &dev->adj_list.lower);
8265         }
8266 }
8267
8268 static void netdev_adjacent_del_links(struct net_device *dev)
8269 {
8270         struct netdev_adjacent *iter;
8271
8272         struct net *net = dev_net(dev);
8273
8274         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8275                 if (!net_eq(net, dev_net(iter->dev)))
8276                         continue;
8277                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8278                                           &iter->dev->adj_list.lower);
8279                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8280                                           &dev->adj_list.upper);
8281         }
8282
8283         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8284                 if (!net_eq(net, dev_net(iter->dev)))
8285                         continue;
8286                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8287                                           &iter->dev->adj_list.upper);
8288                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8289                                           &dev->adj_list.lower);
8290         }
8291 }
8292
8293 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8294 {
8295         struct netdev_adjacent *iter;
8296
8297         struct net *net = dev_net(dev);
8298
8299         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8300                 if (!net_eq(net, dev_net(iter->dev)))
8301                         continue;
8302                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8303                                           &iter->dev->adj_list.lower);
8304                 netdev_adjacent_sysfs_add(iter->dev, dev,
8305                                           &iter->dev->adj_list.lower);
8306         }
8307
8308         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8309                 if (!net_eq(net, dev_net(iter->dev)))
8310                         continue;
8311                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8312                                           &iter->dev->adj_list.upper);
8313                 netdev_adjacent_sysfs_add(iter->dev, dev,
8314                                           &iter->dev->adj_list.upper);
8315         }
8316 }
8317
8318 void *netdev_lower_dev_get_private(struct net_device *dev,
8319                                    struct net_device *lower_dev)
8320 {
8321         struct netdev_adjacent *lower;
8322
8323         if (!lower_dev)
8324                 return NULL;
8325         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8326         if (!lower)
8327                 return NULL;
8328
8329         return lower->private;
8330 }
8331 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8332
8333
8334 /**
8335  * netdev_lower_state_changed - Dispatch event about lower device state change
8336  * @lower_dev: device
8337  * @lower_state_info: state to dispatch
8338  *
8339  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8340  * The caller must hold the RTNL lock.
8341  */
8342 void netdev_lower_state_changed(struct net_device *lower_dev,
8343                                 void *lower_state_info)
8344 {
8345         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8346                 .info.dev = lower_dev,
8347         };
8348
8349         ASSERT_RTNL();
8350         changelowerstate_info.lower_state_info = lower_state_info;
8351         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8352                                       &changelowerstate_info.info);
8353 }
8354 EXPORT_SYMBOL(netdev_lower_state_changed);
8355
8356 static void dev_change_rx_flags(struct net_device *dev, int flags)
8357 {
8358         const struct net_device_ops *ops = dev->netdev_ops;
8359
8360         if (ops->ndo_change_rx_flags)
8361                 ops->ndo_change_rx_flags(dev, flags);
8362 }
8363
8364 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8365 {
8366         unsigned int old_flags = dev->flags;
8367         kuid_t uid;
8368         kgid_t gid;
8369
8370         ASSERT_RTNL();
8371
8372         dev->flags |= IFF_PROMISC;
8373         dev->promiscuity += inc;
8374         if (dev->promiscuity == 0) {
8375                 /*
8376                  * Avoid overflow.
8377                  * If inc causes overflow, untouch promisc and return error.
8378                  */
8379                 if (inc < 0)
8380                         dev->flags &= ~IFF_PROMISC;
8381                 else {
8382                         dev->promiscuity -= inc;
8383                         netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8384                         return -EOVERFLOW;
8385                 }
8386         }
8387         if (dev->flags != old_flags) {
8388                 netdev_info(dev, "%s promiscuous mode\n",
8389                             dev->flags & IFF_PROMISC ? "entered" : "left");
8390                 if (audit_enabled) {
8391                         current_uid_gid(&uid, &gid);
8392                         audit_log(audit_context(), GFP_ATOMIC,
8393                                   AUDIT_ANOM_PROMISCUOUS,
8394                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8395                                   dev->name, (dev->flags & IFF_PROMISC),
8396                                   (old_flags & IFF_PROMISC),
8397                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8398                                   from_kuid(&init_user_ns, uid),
8399                                   from_kgid(&init_user_ns, gid),
8400                                   audit_get_sessionid(current));
8401                 }
8402
8403                 dev_change_rx_flags(dev, IFF_PROMISC);
8404         }
8405         if (notify)
8406                 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8407         return 0;
8408 }
8409
8410 /**
8411  *      dev_set_promiscuity     - update promiscuity count on a device
8412  *      @dev: device
8413  *      @inc: modifier
8414  *
8415  *      Add or remove promiscuity from a device. While the count in the device
8416  *      remains above zero the interface remains promiscuous. Once it hits zero
8417  *      the device reverts back to normal filtering operation. A negative inc
8418  *      value is used to drop promiscuity on the device.
8419  *      Return 0 if successful or a negative errno code on error.
8420  */
8421 int dev_set_promiscuity(struct net_device *dev, int inc)
8422 {
8423         unsigned int old_flags = dev->flags;
8424         int err;
8425
8426         err = __dev_set_promiscuity(dev, inc, true);
8427         if (err < 0)
8428                 return err;
8429         if (dev->flags != old_flags)
8430                 dev_set_rx_mode(dev);
8431         return err;
8432 }
8433 EXPORT_SYMBOL(dev_set_promiscuity);
8434
8435 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8436 {
8437         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8438
8439         ASSERT_RTNL();
8440
8441         dev->flags |= IFF_ALLMULTI;
8442         dev->allmulti += inc;
8443         if (dev->allmulti == 0) {
8444                 /*
8445                  * Avoid overflow.
8446                  * If inc causes overflow, untouch allmulti and return error.
8447                  */
8448                 if (inc < 0)
8449                         dev->flags &= ~IFF_ALLMULTI;
8450                 else {
8451                         dev->allmulti -= inc;
8452                         netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8453                         return -EOVERFLOW;
8454                 }
8455         }
8456         if (dev->flags ^ old_flags) {
8457                 netdev_info(dev, "%s allmulticast mode\n",
8458                             dev->flags & IFF_ALLMULTI ? "entered" : "left");
8459                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8460                 dev_set_rx_mode(dev);
8461                 if (notify)
8462                         __dev_notify_flags(dev, old_flags,
8463                                            dev->gflags ^ old_gflags, 0, NULL);
8464         }
8465         return 0;
8466 }
8467
8468 /**
8469  *      dev_set_allmulti        - update allmulti count on a device
8470  *      @dev: device
8471  *      @inc: modifier
8472  *
8473  *      Add or remove reception of all multicast frames to a device. While the
8474  *      count in the device remains above zero the interface remains listening
8475  *      to all interfaces. Once it hits zero the device reverts back to normal
8476  *      filtering operation. A negative @inc value is used to drop the counter
8477  *      when releasing a resource needing all multicasts.
8478  *      Return 0 if successful or a negative errno code on error.
8479  */
8480
8481 int dev_set_allmulti(struct net_device *dev, int inc)
8482 {
8483         return __dev_set_allmulti(dev, inc, true);
8484 }
8485 EXPORT_SYMBOL(dev_set_allmulti);
8486
8487 /*
8488  *      Upload unicast and multicast address lists to device and
8489  *      configure RX filtering. When the device doesn't support unicast
8490  *      filtering it is put in promiscuous mode while unicast addresses
8491  *      are present.
8492  */
8493 void __dev_set_rx_mode(struct net_device *dev)
8494 {
8495         const struct net_device_ops *ops = dev->netdev_ops;
8496
8497         /* dev_open will call this function so the list will stay sane. */
8498         if (!(dev->flags&IFF_UP))
8499                 return;
8500
8501         if (!netif_device_present(dev))
8502                 return;
8503
8504         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8505                 /* Unicast addresses changes may only happen under the rtnl,
8506                  * therefore calling __dev_set_promiscuity here is safe.
8507                  */
8508                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8509                         __dev_set_promiscuity(dev, 1, false);
8510                         dev->uc_promisc = true;
8511                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8512                         __dev_set_promiscuity(dev, -1, false);
8513                         dev->uc_promisc = false;
8514                 }
8515         }
8516
8517         if (ops->ndo_set_rx_mode)
8518                 ops->ndo_set_rx_mode(dev);
8519 }
8520
8521 void dev_set_rx_mode(struct net_device *dev)
8522 {
8523         netif_addr_lock_bh(dev);
8524         __dev_set_rx_mode(dev);
8525         netif_addr_unlock_bh(dev);
8526 }
8527
8528 /**
8529  *      dev_get_flags - get flags reported to userspace
8530  *      @dev: device
8531  *
8532  *      Get the combination of flag bits exported through APIs to userspace.
8533  */
8534 unsigned int dev_get_flags(const struct net_device *dev)
8535 {
8536         unsigned int flags;
8537
8538         flags = (dev->flags & ~(IFF_PROMISC |
8539                                 IFF_ALLMULTI |
8540                                 IFF_RUNNING |
8541                                 IFF_LOWER_UP |
8542                                 IFF_DORMANT)) |
8543                 (dev->gflags & (IFF_PROMISC |
8544                                 IFF_ALLMULTI));
8545
8546         if (netif_running(dev)) {
8547                 if (netif_oper_up(dev))
8548                         flags |= IFF_RUNNING;
8549                 if (netif_carrier_ok(dev))
8550                         flags |= IFF_LOWER_UP;
8551                 if (netif_dormant(dev))
8552                         flags |= IFF_DORMANT;
8553         }
8554
8555         return flags;
8556 }
8557 EXPORT_SYMBOL(dev_get_flags);
8558
8559 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8560                        struct netlink_ext_ack *extack)
8561 {
8562         unsigned int old_flags = dev->flags;
8563         int ret;
8564
8565         ASSERT_RTNL();
8566
8567         /*
8568          *      Set the flags on our device.
8569          */
8570
8571         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8572                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8573                                IFF_AUTOMEDIA)) |
8574                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8575                                     IFF_ALLMULTI));
8576
8577         /*
8578          *      Load in the correct multicast list now the flags have changed.
8579          */
8580
8581         if ((old_flags ^ flags) & IFF_MULTICAST)
8582                 dev_change_rx_flags(dev, IFF_MULTICAST);
8583
8584         dev_set_rx_mode(dev);
8585
8586         /*
8587          *      Have we downed the interface. We handle IFF_UP ourselves
8588          *      according to user attempts to set it, rather than blindly
8589          *      setting it.
8590          */
8591
8592         ret = 0;
8593         if ((old_flags ^ flags) & IFF_UP) {
8594                 if (old_flags & IFF_UP)
8595                         __dev_close(dev);
8596                 else
8597                         ret = __dev_open(dev, extack);
8598         }
8599
8600         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8601                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8602                 unsigned int old_flags = dev->flags;
8603
8604                 dev->gflags ^= IFF_PROMISC;
8605
8606                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8607                         if (dev->flags != old_flags)
8608                                 dev_set_rx_mode(dev);
8609         }
8610
8611         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8612          * is important. Some (broken) drivers set IFF_PROMISC, when
8613          * IFF_ALLMULTI is requested not asking us and not reporting.
8614          */
8615         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8616                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8617
8618                 dev->gflags ^= IFF_ALLMULTI;
8619                 __dev_set_allmulti(dev, inc, false);
8620         }
8621
8622         return ret;
8623 }
8624
8625 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8626                         unsigned int gchanges, u32 portid,
8627                         const struct nlmsghdr *nlh)
8628 {
8629         unsigned int changes = dev->flags ^ old_flags;
8630
8631         if (gchanges)
8632                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8633
8634         if (changes & IFF_UP) {
8635                 if (dev->flags & IFF_UP)
8636                         call_netdevice_notifiers(NETDEV_UP, dev);
8637                 else
8638                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8639         }
8640
8641         if (dev->flags & IFF_UP &&
8642             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8643                 struct netdev_notifier_change_info change_info = {
8644                         .info = {
8645                                 .dev = dev,
8646                         },
8647                         .flags_changed = changes,
8648                 };
8649
8650                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8651         }
8652 }
8653
8654 /**
8655  *      dev_change_flags - change device settings
8656  *      @dev: device
8657  *      @flags: device state flags
8658  *      @extack: netlink extended ack
8659  *
8660  *      Change settings on device based state flags. The flags are
8661  *      in the userspace exported format.
8662  */
8663 int dev_change_flags(struct net_device *dev, unsigned int flags,
8664                      struct netlink_ext_ack *extack)
8665 {
8666         int ret;
8667         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8668
8669         ret = __dev_change_flags(dev, flags, extack);
8670         if (ret < 0)
8671                 return ret;
8672
8673         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8674         __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8675         return ret;
8676 }
8677 EXPORT_SYMBOL(dev_change_flags);
8678
8679 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8680 {
8681         const struct net_device_ops *ops = dev->netdev_ops;
8682
8683         if (ops->ndo_change_mtu)
8684                 return ops->ndo_change_mtu(dev, new_mtu);
8685
8686         /* Pairs with all the lockless reads of dev->mtu in the stack */
8687         WRITE_ONCE(dev->mtu, new_mtu);
8688         return 0;
8689 }
8690 EXPORT_SYMBOL(__dev_set_mtu);
8691
8692 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8693                      struct netlink_ext_ack *extack)
8694 {
8695         /* MTU must be positive, and in range */
8696         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8697                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8698                 return -EINVAL;
8699         }
8700
8701         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8702                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8703                 return -EINVAL;
8704         }
8705         return 0;
8706 }
8707
8708 /**
8709  *      dev_set_mtu_ext - Change maximum transfer unit
8710  *      @dev: device
8711  *      @new_mtu: new transfer unit
8712  *      @extack: netlink extended ack
8713  *
8714  *      Change the maximum transfer size of the network device.
8715  */
8716 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8717                     struct netlink_ext_ack *extack)
8718 {
8719         int err, orig_mtu;
8720
8721         if (new_mtu == dev->mtu)
8722                 return 0;
8723
8724         err = dev_validate_mtu(dev, new_mtu, extack);
8725         if (err)
8726                 return err;
8727
8728         if (!netif_device_present(dev))
8729                 return -ENODEV;
8730
8731         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8732         err = notifier_to_errno(err);
8733         if (err)
8734                 return err;
8735
8736         orig_mtu = dev->mtu;
8737         err = __dev_set_mtu(dev, new_mtu);
8738
8739         if (!err) {
8740                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8741                                                    orig_mtu);
8742                 err = notifier_to_errno(err);
8743                 if (err) {
8744                         /* setting mtu back and notifying everyone again,
8745                          * so that they have a chance to revert changes.
8746                          */
8747                         __dev_set_mtu(dev, orig_mtu);
8748                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8749                                                      new_mtu);
8750                 }
8751         }
8752         return err;
8753 }
8754
8755 int dev_set_mtu(struct net_device *dev, int new_mtu)
8756 {
8757         struct netlink_ext_ack extack;
8758         int err;
8759
8760         memset(&extack, 0, sizeof(extack));
8761         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8762         if (err && extack._msg)
8763                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8764         return err;
8765 }
8766 EXPORT_SYMBOL(dev_set_mtu);
8767
8768 /**
8769  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8770  *      @dev: device
8771  *      @new_len: new tx queue length
8772  */
8773 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8774 {
8775         unsigned int orig_len = dev->tx_queue_len;
8776         int res;
8777
8778         if (new_len != (unsigned int)new_len)
8779                 return -ERANGE;
8780
8781         if (new_len != orig_len) {
8782                 dev->tx_queue_len = new_len;
8783                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8784                 res = notifier_to_errno(res);
8785                 if (res)
8786                         goto err_rollback;
8787                 res = dev_qdisc_change_tx_queue_len(dev);
8788                 if (res)
8789                         goto err_rollback;
8790         }
8791
8792         return 0;
8793
8794 err_rollback:
8795         netdev_err(dev, "refused to change device tx_queue_len\n");
8796         dev->tx_queue_len = orig_len;
8797         return res;
8798 }
8799
8800 /**
8801  *      dev_set_group - Change group this device belongs to
8802  *      @dev: device
8803  *      @new_group: group this device should belong to
8804  */
8805 void dev_set_group(struct net_device *dev, int new_group)
8806 {
8807         dev->group = new_group;
8808 }
8809
8810 /**
8811  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8812  *      @dev: device
8813  *      @addr: new address
8814  *      @extack: netlink extended ack
8815  */
8816 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8817                               struct netlink_ext_ack *extack)
8818 {
8819         struct netdev_notifier_pre_changeaddr_info info = {
8820                 .info.dev = dev,
8821                 .info.extack = extack,
8822                 .dev_addr = addr,
8823         };
8824         int rc;
8825
8826         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8827         return notifier_to_errno(rc);
8828 }
8829 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8830
8831 /**
8832  *      dev_set_mac_address - Change Media Access Control Address
8833  *      @dev: device
8834  *      @sa: new address
8835  *      @extack: netlink extended ack
8836  *
8837  *      Change the hardware (MAC) address of the device
8838  */
8839 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8840                         struct netlink_ext_ack *extack)
8841 {
8842         const struct net_device_ops *ops = dev->netdev_ops;
8843         int err;
8844
8845         if (!ops->ndo_set_mac_address)
8846                 return -EOPNOTSUPP;
8847         if (sa->sa_family != dev->type)
8848                 return -EINVAL;
8849         if (!netif_device_present(dev))
8850                 return -ENODEV;
8851         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8852         if (err)
8853                 return err;
8854         if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8855                 err = ops->ndo_set_mac_address(dev, sa);
8856                 if (err)
8857                         return err;
8858         }
8859         dev->addr_assign_type = NET_ADDR_SET;
8860         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8861         add_device_randomness(dev->dev_addr, dev->addr_len);
8862         return 0;
8863 }
8864 EXPORT_SYMBOL(dev_set_mac_address);
8865
8866 static DECLARE_RWSEM(dev_addr_sem);
8867
8868 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8869                              struct netlink_ext_ack *extack)
8870 {
8871         int ret;
8872
8873         down_write(&dev_addr_sem);
8874         ret = dev_set_mac_address(dev, sa, extack);
8875         up_write(&dev_addr_sem);
8876         return ret;
8877 }
8878 EXPORT_SYMBOL(dev_set_mac_address_user);
8879
8880 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8881 {
8882         size_t size = sizeof(sa->sa_data_min);
8883         struct net_device *dev;
8884         int ret = 0;
8885
8886         down_read(&dev_addr_sem);
8887         rcu_read_lock();
8888
8889         dev = dev_get_by_name_rcu(net, dev_name);
8890         if (!dev) {
8891                 ret = -ENODEV;
8892                 goto unlock;
8893         }
8894         if (!dev->addr_len)
8895                 memset(sa->sa_data, 0, size);
8896         else
8897                 memcpy(sa->sa_data, dev->dev_addr,
8898                        min_t(size_t, size, dev->addr_len));
8899         sa->sa_family = dev->type;
8900
8901 unlock:
8902         rcu_read_unlock();
8903         up_read(&dev_addr_sem);
8904         return ret;
8905 }
8906 EXPORT_SYMBOL(dev_get_mac_address);
8907
8908 /**
8909  *      dev_change_carrier - Change device carrier
8910  *      @dev: device
8911  *      @new_carrier: new value
8912  *
8913  *      Change device carrier
8914  */
8915 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8916 {
8917         const struct net_device_ops *ops = dev->netdev_ops;
8918
8919         if (!ops->ndo_change_carrier)
8920                 return -EOPNOTSUPP;
8921         if (!netif_device_present(dev))
8922                 return -ENODEV;
8923         return ops->ndo_change_carrier(dev, new_carrier);
8924 }
8925
8926 /**
8927  *      dev_get_phys_port_id - Get device physical port ID
8928  *      @dev: device
8929  *      @ppid: port ID
8930  *
8931  *      Get device physical port ID
8932  */
8933 int dev_get_phys_port_id(struct net_device *dev,
8934                          struct netdev_phys_item_id *ppid)
8935 {
8936         const struct net_device_ops *ops = dev->netdev_ops;
8937
8938         if (!ops->ndo_get_phys_port_id)
8939                 return -EOPNOTSUPP;
8940         return ops->ndo_get_phys_port_id(dev, ppid);
8941 }
8942
8943 /**
8944  *      dev_get_phys_port_name - Get device physical port name
8945  *      @dev: device
8946  *      @name: port name
8947  *      @len: limit of bytes to copy to name
8948  *
8949  *      Get device physical port name
8950  */
8951 int dev_get_phys_port_name(struct net_device *dev,
8952                            char *name, size_t len)
8953 {
8954         const struct net_device_ops *ops = dev->netdev_ops;
8955         int err;
8956
8957         if (ops->ndo_get_phys_port_name) {
8958                 err = ops->ndo_get_phys_port_name(dev, name, len);
8959                 if (err != -EOPNOTSUPP)
8960                         return err;
8961         }
8962         return devlink_compat_phys_port_name_get(dev, name, len);
8963 }
8964
8965 /**
8966  *      dev_get_port_parent_id - Get the device's port parent identifier
8967  *      @dev: network device
8968  *      @ppid: pointer to a storage for the port's parent identifier
8969  *      @recurse: allow/disallow recursion to lower devices
8970  *
8971  *      Get the devices's port parent identifier
8972  */
8973 int dev_get_port_parent_id(struct net_device *dev,
8974                            struct netdev_phys_item_id *ppid,
8975                            bool recurse)
8976 {
8977         const struct net_device_ops *ops = dev->netdev_ops;
8978         struct netdev_phys_item_id first = { };
8979         struct net_device *lower_dev;
8980         struct list_head *iter;
8981         int err;
8982
8983         if (ops->ndo_get_port_parent_id) {
8984                 err = ops->ndo_get_port_parent_id(dev, ppid);
8985                 if (err != -EOPNOTSUPP)
8986                         return err;
8987         }
8988
8989         err = devlink_compat_switch_id_get(dev, ppid);
8990         if (!recurse || err != -EOPNOTSUPP)
8991                 return err;
8992
8993         netdev_for_each_lower_dev(dev, lower_dev, iter) {
8994                 err = dev_get_port_parent_id(lower_dev, ppid, true);
8995                 if (err)
8996                         break;
8997                 if (!first.id_len)
8998                         first = *ppid;
8999                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9000                         return -EOPNOTSUPP;
9001         }
9002
9003         return err;
9004 }
9005 EXPORT_SYMBOL(dev_get_port_parent_id);
9006
9007 /**
9008  *      netdev_port_same_parent_id - Indicate if two network devices have
9009  *      the same port parent identifier
9010  *      @a: first network device
9011  *      @b: second network device
9012  */
9013 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9014 {
9015         struct netdev_phys_item_id a_id = { };
9016         struct netdev_phys_item_id b_id = { };
9017
9018         if (dev_get_port_parent_id(a, &a_id, true) ||
9019             dev_get_port_parent_id(b, &b_id, true))
9020                 return false;
9021
9022         return netdev_phys_item_id_same(&a_id, &b_id);
9023 }
9024 EXPORT_SYMBOL(netdev_port_same_parent_id);
9025
9026 /**
9027  *      dev_change_proto_down - set carrier according to proto_down.
9028  *
9029  *      @dev: device
9030  *      @proto_down: new value
9031  */
9032 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9033 {
9034         if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9035                 return -EOPNOTSUPP;
9036         if (!netif_device_present(dev))
9037                 return -ENODEV;
9038         if (proto_down)
9039                 netif_carrier_off(dev);
9040         else
9041                 netif_carrier_on(dev);
9042         dev->proto_down = proto_down;
9043         return 0;
9044 }
9045
9046 /**
9047  *      dev_change_proto_down_reason - proto down reason
9048  *
9049  *      @dev: device
9050  *      @mask: proto down mask
9051  *      @value: proto down value
9052  */
9053 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9054                                   u32 value)
9055 {
9056         int b;
9057
9058         if (!mask) {
9059                 dev->proto_down_reason = value;
9060         } else {
9061                 for_each_set_bit(b, &mask, 32) {
9062                         if (value & (1 << b))
9063                                 dev->proto_down_reason |= BIT(b);
9064                         else
9065                                 dev->proto_down_reason &= ~BIT(b);
9066                 }
9067         }
9068 }
9069
9070 struct bpf_xdp_link {
9071         struct bpf_link link;
9072         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9073         int flags;
9074 };
9075
9076 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9077 {
9078         if (flags & XDP_FLAGS_HW_MODE)
9079                 return XDP_MODE_HW;
9080         if (flags & XDP_FLAGS_DRV_MODE)
9081                 return XDP_MODE_DRV;
9082         if (flags & XDP_FLAGS_SKB_MODE)
9083                 return XDP_MODE_SKB;
9084         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9085 }
9086
9087 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9088 {
9089         switch (mode) {
9090         case XDP_MODE_SKB:
9091                 return generic_xdp_install;
9092         case XDP_MODE_DRV:
9093         case XDP_MODE_HW:
9094                 return dev->netdev_ops->ndo_bpf;
9095         default:
9096                 return NULL;
9097         }
9098 }
9099
9100 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9101                                          enum bpf_xdp_mode mode)
9102 {
9103         return dev->xdp_state[mode].link;
9104 }
9105
9106 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9107                                      enum bpf_xdp_mode mode)
9108 {
9109         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9110
9111         if (link)
9112                 return link->link.prog;
9113         return dev->xdp_state[mode].prog;
9114 }
9115
9116 u8 dev_xdp_prog_count(struct net_device *dev)
9117 {
9118         u8 count = 0;
9119         int i;
9120
9121         for (i = 0; i < __MAX_XDP_MODE; i++)
9122                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9123                         count++;
9124         return count;
9125 }
9126 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9127
9128 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9129 {
9130         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9131
9132         return prog ? prog->aux->id : 0;
9133 }
9134
9135 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9136                              struct bpf_xdp_link *link)
9137 {
9138         dev->xdp_state[mode].link = link;
9139         dev->xdp_state[mode].prog = NULL;
9140 }
9141
9142 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9143                              struct bpf_prog *prog)
9144 {
9145         dev->xdp_state[mode].link = NULL;
9146         dev->xdp_state[mode].prog = prog;
9147 }
9148
9149 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9150                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9151                            u32 flags, struct bpf_prog *prog)
9152 {
9153         struct netdev_bpf xdp;
9154         int err;
9155
9156         memset(&xdp, 0, sizeof(xdp));
9157         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9158         xdp.extack = extack;
9159         xdp.flags = flags;
9160         xdp.prog = prog;
9161
9162         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9163          * "moved" into driver), so they don't increment it on their own, but
9164          * they do decrement refcnt when program is detached or replaced.
9165          * Given net_device also owns link/prog, we need to bump refcnt here
9166          * to prevent drivers from underflowing it.
9167          */
9168         if (prog)
9169                 bpf_prog_inc(prog);
9170         err = bpf_op(dev, &xdp);
9171         if (err) {
9172                 if (prog)
9173                         bpf_prog_put(prog);
9174                 return err;
9175         }
9176
9177         if (mode != XDP_MODE_HW)
9178                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9179
9180         return 0;
9181 }
9182
9183 static void dev_xdp_uninstall(struct net_device *dev)
9184 {
9185         struct bpf_xdp_link *link;
9186         struct bpf_prog *prog;
9187         enum bpf_xdp_mode mode;
9188         bpf_op_t bpf_op;
9189
9190         ASSERT_RTNL();
9191
9192         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9193                 prog = dev_xdp_prog(dev, mode);
9194                 if (!prog)
9195                         continue;
9196
9197                 bpf_op = dev_xdp_bpf_op(dev, mode);
9198                 if (!bpf_op)
9199                         continue;
9200
9201                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9202
9203                 /* auto-detach link from net device */
9204                 link = dev_xdp_link(dev, mode);
9205                 if (link)
9206                         link->dev = NULL;
9207                 else
9208                         bpf_prog_put(prog);
9209
9210                 dev_xdp_set_link(dev, mode, NULL);
9211         }
9212 }
9213
9214 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9215                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9216                           struct bpf_prog *old_prog, u32 flags)
9217 {
9218         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9219         struct bpf_prog *cur_prog;
9220         struct net_device *upper;
9221         struct list_head *iter;
9222         enum bpf_xdp_mode mode;
9223         bpf_op_t bpf_op;
9224         int err;
9225
9226         ASSERT_RTNL();
9227
9228         /* either link or prog attachment, never both */
9229         if (link && (new_prog || old_prog))
9230                 return -EINVAL;
9231         /* link supports only XDP mode flags */
9232         if (link && (flags & ~XDP_FLAGS_MODES)) {
9233                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9234                 return -EINVAL;
9235         }
9236         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9237         if (num_modes > 1) {
9238                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9239                 return -EINVAL;
9240         }
9241         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9242         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9243                 NL_SET_ERR_MSG(extack,
9244                                "More than one program loaded, unset mode is ambiguous");
9245                 return -EINVAL;
9246         }
9247         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9248         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9249                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9250                 return -EINVAL;
9251         }
9252
9253         mode = dev_xdp_mode(dev, flags);
9254         /* can't replace attached link */
9255         if (dev_xdp_link(dev, mode)) {
9256                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9257                 return -EBUSY;
9258         }
9259
9260         /* don't allow if an upper device already has a program */
9261         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9262                 if (dev_xdp_prog_count(upper) > 0) {
9263                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9264                         return -EEXIST;
9265                 }
9266         }
9267
9268         cur_prog = dev_xdp_prog(dev, mode);
9269         /* can't replace attached prog with link */
9270         if (link && cur_prog) {
9271                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9272                 return -EBUSY;
9273         }
9274         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9275                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9276                 return -EEXIST;
9277         }
9278
9279         /* put effective new program into new_prog */
9280         if (link)
9281                 new_prog = link->link.prog;
9282
9283         if (new_prog) {
9284                 bool offload = mode == XDP_MODE_HW;
9285                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9286                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9287
9288                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9289                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9290                         return -EBUSY;
9291                 }
9292                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9293                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9294                         return -EEXIST;
9295                 }
9296                 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9297                         NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9298                         return -EINVAL;
9299                 }
9300                 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9301                         NL_SET_ERR_MSG(extack, "Program bound to different device");
9302                         return -EINVAL;
9303                 }
9304                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9305                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9306                         return -EINVAL;
9307                 }
9308                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9309                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9310                         return -EINVAL;
9311                 }
9312         }
9313
9314         /* don't call drivers if the effective program didn't change */
9315         if (new_prog != cur_prog) {
9316                 bpf_op = dev_xdp_bpf_op(dev, mode);
9317                 if (!bpf_op) {
9318                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9319                         return -EOPNOTSUPP;
9320                 }
9321
9322                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9323                 if (err)
9324                         return err;
9325         }
9326
9327         if (link)
9328                 dev_xdp_set_link(dev, mode, link);
9329         else
9330                 dev_xdp_set_prog(dev, mode, new_prog);
9331         if (cur_prog)
9332                 bpf_prog_put(cur_prog);
9333
9334         return 0;
9335 }
9336
9337 static int dev_xdp_attach_link(struct net_device *dev,
9338                                struct netlink_ext_ack *extack,
9339                                struct bpf_xdp_link *link)
9340 {
9341         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9342 }
9343
9344 static int dev_xdp_detach_link(struct net_device *dev,
9345                                struct netlink_ext_ack *extack,
9346                                struct bpf_xdp_link *link)
9347 {
9348         enum bpf_xdp_mode mode;
9349         bpf_op_t bpf_op;
9350
9351         ASSERT_RTNL();
9352
9353         mode = dev_xdp_mode(dev, link->flags);
9354         if (dev_xdp_link(dev, mode) != link)
9355                 return -EINVAL;
9356
9357         bpf_op = dev_xdp_bpf_op(dev, mode);
9358         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9359         dev_xdp_set_link(dev, mode, NULL);
9360         return 0;
9361 }
9362
9363 static void bpf_xdp_link_release(struct bpf_link *link)
9364 {
9365         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9366
9367         rtnl_lock();
9368
9369         /* if racing with net_device's tear down, xdp_link->dev might be
9370          * already NULL, in which case link was already auto-detached
9371          */
9372         if (xdp_link->dev) {
9373                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9374                 xdp_link->dev = NULL;
9375         }
9376
9377         rtnl_unlock();
9378 }
9379
9380 static int bpf_xdp_link_detach(struct bpf_link *link)
9381 {
9382         bpf_xdp_link_release(link);
9383         return 0;
9384 }
9385
9386 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9387 {
9388         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9389
9390         kfree(xdp_link);
9391 }
9392
9393 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9394                                      struct seq_file *seq)
9395 {
9396         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9397         u32 ifindex = 0;
9398
9399         rtnl_lock();
9400         if (xdp_link->dev)
9401                 ifindex = xdp_link->dev->ifindex;
9402         rtnl_unlock();
9403
9404         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9405 }
9406
9407 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9408                                        struct bpf_link_info *info)
9409 {
9410         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9411         u32 ifindex = 0;
9412
9413         rtnl_lock();
9414         if (xdp_link->dev)
9415                 ifindex = xdp_link->dev->ifindex;
9416         rtnl_unlock();
9417
9418         info->xdp.ifindex = ifindex;
9419         return 0;
9420 }
9421
9422 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9423                                struct bpf_prog *old_prog)
9424 {
9425         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9426         enum bpf_xdp_mode mode;
9427         bpf_op_t bpf_op;
9428         int err = 0;
9429
9430         rtnl_lock();
9431
9432         /* link might have been auto-released already, so fail */
9433         if (!xdp_link->dev) {
9434                 err = -ENOLINK;
9435                 goto out_unlock;
9436         }
9437
9438         if (old_prog && link->prog != old_prog) {
9439                 err = -EPERM;
9440                 goto out_unlock;
9441         }
9442         old_prog = link->prog;
9443         if (old_prog->type != new_prog->type ||
9444             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9445                 err = -EINVAL;
9446                 goto out_unlock;
9447         }
9448
9449         if (old_prog == new_prog) {
9450                 /* no-op, don't disturb drivers */
9451                 bpf_prog_put(new_prog);
9452                 goto out_unlock;
9453         }
9454
9455         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9456         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9457         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9458                               xdp_link->flags, new_prog);
9459         if (err)
9460                 goto out_unlock;
9461
9462         old_prog = xchg(&link->prog, new_prog);
9463         bpf_prog_put(old_prog);
9464
9465 out_unlock:
9466         rtnl_unlock();
9467         return err;
9468 }
9469
9470 static const struct bpf_link_ops bpf_xdp_link_lops = {
9471         .release = bpf_xdp_link_release,
9472         .dealloc = bpf_xdp_link_dealloc,
9473         .detach = bpf_xdp_link_detach,
9474         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9475         .fill_link_info = bpf_xdp_link_fill_link_info,
9476         .update_prog = bpf_xdp_link_update,
9477 };
9478
9479 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9480 {
9481         struct net *net = current->nsproxy->net_ns;
9482         struct bpf_link_primer link_primer;
9483         struct netlink_ext_ack extack = {};
9484         struct bpf_xdp_link *link;
9485         struct net_device *dev;
9486         int err, fd;
9487
9488         rtnl_lock();
9489         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9490         if (!dev) {
9491                 rtnl_unlock();
9492                 return -EINVAL;
9493         }
9494
9495         link = kzalloc(sizeof(*link), GFP_USER);
9496         if (!link) {
9497                 err = -ENOMEM;
9498                 goto unlock;
9499         }
9500
9501         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9502         link->dev = dev;
9503         link->flags = attr->link_create.flags;
9504
9505         err = bpf_link_prime(&link->link, &link_primer);
9506         if (err) {
9507                 kfree(link);
9508                 goto unlock;
9509         }
9510
9511         err = dev_xdp_attach_link(dev, &extack, link);
9512         rtnl_unlock();
9513
9514         if (err) {
9515                 link->dev = NULL;
9516                 bpf_link_cleanup(&link_primer);
9517                 trace_bpf_xdp_link_attach_failed(extack._msg);
9518                 goto out_put_dev;
9519         }
9520
9521         fd = bpf_link_settle(&link_primer);
9522         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9523         dev_put(dev);
9524         return fd;
9525
9526 unlock:
9527         rtnl_unlock();
9528
9529 out_put_dev:
9530         dev_put(dev);
9531         return err;
9532 }
9533
9534 /**
9535  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9536  *      @dev: device
9537  *      @extack: netlink extended ack
9538  *      @fd: new program fd or negative value to clear
9539  *      @expected_fd: old program fd that userspace expects to replace or clear
9540  *      @flags: xdp-related flags
9541  *
9542  *      Set or clear a bpf program for a device
9543  */
9544 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9545                       int fd, int expected_fd, u32 flags)
9546 {
9547         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9548         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9549         int err;
9550
9551         ASSERT_RTNL();
9552
9553         if (fd >= 0) {
9554                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9555                                                  mode != XDP_MODE_SKB);
9556                 if (IS_ERR(new_prog))
9557                         return PTR_ERR(new_prog);
9558         }
9559
9560         if (expected_fd >= 0) {
9561                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9562                                                  mode != XDP_MODE_SKB);
9563                 if (IS_ERR(old_prog)) {
9564                         err = PTR_ERR(old_prog);
9565                         old_prog = NULL;
9566                         goto err_out;
9567                 }
9568         }
9569
9570         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9571
9572 err_out:
9573         if (err && new_prog)
9574                 bpf_prog_put(new_prog);
9575         if (old_prog)
9576                 bpf_prog_put(old_prog);
9577         return err;
9578 }
9579
9580 /**
9581  * dev_index_reserve() - allocate an ifindex in a namespace
9582  * @net: the applicable net namespace
9583  * @ifindex: requested ifindex, pass %0 to get one allocated
9584  *
9585  * Allocate a ifindex for a new device. Caller must either use the ifindex
9586  * to store the device (via list_netdevice()) or call dev_index_release()
9587  * to give the index up.
9588  *
9589  * Return: a suitable unique value for a new device interface number or -errno.
9590  */
9591 static int dev_index_reserve(struct net *net, u32 ifindex)
9592 {
9593         int err;
9594
9595         if (ifindex > INT_MAX) {
9596                 DEBUG_NET_WARN_ON_ONCE(1);
9597                 return -EINVAL;
9598         }
9599
9600         if (!ifindex)
9601                 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9602                                       xa_limit_31b, &net->ifindex, GFP_KERNEL);
9603         else
9604                 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9605         if (err < 0)
9606                 return err;
9607
9608         return ifindex;
9609 }
9610
9611 static void dev_index_release(struct net *net, int ifindex)
9612 {
9613         /* Expect only unused indexes, unlist_netdevice() removes the used */
9614         WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9615 }
9616
9617 /* Delayed registration/unregisteration */
9618 LIST_HEAD(net_todo_list);
9619 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9620
9621 static void net_set_todo(struct net_device *dev)
9622 {
9623         list_add_tail(&dev->todo_list, &net_todo_list);
9624         atomic_inc(&dev_net(dev)->dev_unreg_count);
9625 }
9626
9627 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9628         struct net_device *upper, netdev_features_t features)
9629 {
9630         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9631         netdev_features_t feature;
9632         int feature_bit;
9633
9634         for_each_netdev_feature(upper_disables, feature_bit) {
9635                 feature = __NETIF_F_BIT(feature_bit);
9636                 if (!(upper->wanted_features & feature)
9637                     && (features & feature)) {
9638                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9639                                    &feature, upper->name);
9640                         features &= ~feature;
9641                 }
9642         }
9643
9644         return features;
9645 }
9646
9647 static void netdev_sync_lower_features(struct net_device *upper,
9648         struct net_device *lower, netdev_features_t features)
9649 {
9650         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9651         netdev_features_t feature;
9652         int feature_bit;
9653
9654         for_each_netdev_feature(upper_disables, feature_bit) {
9655                 feature = __NETIF_F_BIT(feature_bit);
9656                 if (!(features & feature) && (lower->features & feature)) {
9657                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9658                                    &feature, lower->name);
9659                         lower->wanted_features &= ~feature;
9660                         __netdev_update_features(lower);
9661
9662                         if (unlikely(lower->features & feature))
9663                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9664                                             &feature, lower->name);
9665                         else
9666                                 netdev_features_change(lower);
9667                 }
9668         }
9669 }
9670
9671 static netdev_features_t netdev_fix_features(struct net_device *dev,
9672         netdev_features_t features)
9673 {
9674         /* Fix illegal checksum combinations */
9675         if ((features & NETIF_F_HW_CSUM) &&
9676             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9677                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9678                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9679         }
9680
9681         /* TSO requires that SG is present as well. */
9682         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9683                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9684                 features &= ~NETIF_F_ALL_TSO;
9685         }
9686
9687         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9688                                         !(features & NETIF_F_IP_CSUM)) {
9689                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9690                 features &= ~NETIF_F_TSO;
9691                 features &= ~NETIF_F_TSO_ECN;
9692         }
9693
9694         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9695                                          !(features & NETIF_F_IPV6_CSUM)) {
9696                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9697                 features &= ~NETIF_F_TSO6;
9698         }
9699
9700         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9701         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9702                 features &= ~NETIF_F_TSO_MANGLEID;
9703
9704         /* TSO ECN requires that TSO is present as well. */
9705         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9706                 features &= ~NETIF_F_TSO_ECN;
9707
9708         /* Software GSO depends on SG. */
9709         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9710                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9711                 features &= ~NETIF_F_GSO;
9712         }
9713
9714         /* GSO partial features require GSO partial be set */
9715         if ((features & dev->gso_partial_features) &&
9716             !(features & NETIF_F_GSO_PARTIAL)) {
9717                 netdev_dbg(dev,
9718                            "Dropping partially supported GSO features since no GSO partial.\n");
9719                 features &= ~dev->gso_partial_features;
9720         }
9721
9722         if (!(features & NETIF_F_RXCSUM)) {
9723                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9724                  * successfully merged by hardware must also have the
9725                  * checksum verified by hardware.  If the user does not
9726                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9727                  */
9728                 if (features & NETIF_F_GRO_HW) {
9729                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9730                         features &= ~NETIF_F_GRO_HW;
9731                 }
9732         }
9733
9734         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9735         if (features & NETIF_F_RXFCS) {
9736                 if (features & NETIF_F_LRO) {
9737                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9738                         features &= ~NETIF_F_LRO;
9739                 }
9740
9741                 if (features & NETIF_F_GRO_HW) {
9742                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9743                         features &= ~NETIF_F_GRO_HW;
9744                 }
9745         }
9746
9747         if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9748                 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9749                 features &= ~NETIF_F_LRO;
9750         }
9751
9752         if (features & NETIF_F_HW_TLS_TX) {
9753                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9754                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9755                 bool hw_csum = features & NETIF_F_HW_CSUM;
9756
9757                 if (!ip_csum && !hw_csum) {
9758                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9759                         features &= ~NETIF_F_HW_TLS_TX;
9760                 }
9761         }
9762
9763         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9764                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9765                 features &= ~NETIF_F_HW_TLS_RX;
9766         }
9767
9768         return features;
9769 }
9770
9771 int __netdev_update_features(struct net_device *dev)
9772 {
9773         struct net_device *upper, *lower;
9774         netdev_features_t features;
9775         struct list_head *iter;
9776         int err = -1;
9777
9778         ASSERT_RTNL();
9779
9780         features = netdev_get_wanted_features(dev);
9781
9782         if (dev->netdev_ops->ndo_fix_features)
9783                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9784
9785         /* driver might be less strict about feature dependencies */
9786         features = netdev_fix_features(dev, features);
9787
9788         /* some features can't be enabled if they're off on an upper device */
9789         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9790                 features = netdev_sync_upper_features(dev, upper, features);
9791
9792         if (dev->features == features)
9793                 goto sync_lower;
9794
9795         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9796                 &dev->features, &features);
9797
9798         if (dev->netdev_ops->ndo_set_features)
9799                 err = dev->netdev_ops->ndo_set_features(dev, features);
9800         else
9801                 err = 0;
9802
9803         if (unlikely(err < 0)) {
9804                 netdev_err(dev,
9805                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9806                         err, &features, &dev->features);
9807                 /* return non-0 since some features might have changed and
9808                  * it's better to fire a spurious notification than miss it
9809                  */
9810                 return -1;
9811         }
9812
9813 sync_lower:
9814         /* some features must be disabled on lower devices when disabled
9815          * on an upper device (think: bonding master or bridge)
9816          */
9817         netdev_for_each_lower_dev(dev, lower, iter)
9818                 netdev_sync_lower_features(dev, lower, features);
9819
9820         if (!err) {
9821                 netdev_features_t diff = features ^ dev->features;
9822
9823                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9824                         /* udp_tunnel_{get,drop}_rx_info both need
9825                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9826                          * device, or they won't do anything.
9827                          * Thus we need to update dev->features
9828                          * *before* calling udp_tunnel_get_rx_info,
9829                          * but *after* calling udp_tunnel_drop_rx_info.
9830                          */
9831                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9832                                 dev->features = features;
9833                                 udp_tunnel_get_rx_info(dev);
9834                         } else {
9835                                 udp_tunnel_drop_rx_info(dev);
9836                         }
9837                 }
9838
9839                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9840                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9841                                 dev->features = features;
9842                                 err |= vlan_get_rx_ctag_filter_info(dev);
9843                         } else {
9844                                 vlan_drop_rx_ctag_filter_info(dev);
9845                         }
9846                 }
9847
9848                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9849                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9850                                 dev->features = features;
9851                                 err |= vlan_get_rx_stag_filter_info(dev);
9852                         } else {
9853                                 vlan_drop_rx_stag_filter_info(dev);
9854                         }
9855                 }
9856
9857                 dev->features = features;
9858         }
9859
9860         return err < 0 ? 0 : 1;
9861 }
9862
9863 /**
9864  *      netdev_update_features - recalculate device features
9865  *      @dev: the device to check
9866  *
9867  *      Recalculate dev->features set and send notifications if it
9868  *      has changed. Should be called after driver or hardware dependent
9869  *      conditions might have changed that influence the features.
9870  */
9871 void netdev_update_features(struct net_device *dev)
9872 {
9873         if (__netdev_update_features(dev))
9874                 netdev_features_change(dev);
9875 }
9876 EXPORT_SYMBOL(netdev_update_features);
9877
9878 /**
9879  *      netdev_change_features - recalculate device features
9880  *      @dev: the device to check
9881  *
9882  *      Recalculate dev->features set and send notifications even
9883  *      if they have not changed. Should be called instead of
9884  *      netdev_update_features() if also dev->vlan_features might
9885  *      have changed to allow the changes to be propagated to stacked
9886  *      VLAN devices.
9887  */
9888 void netdev_change_features(struct net_device *dev)
9889 {
9890         __netdev_update_features(dev);
9891         netdev_features_change(dev);
9892 }
9893 EXPORT_SYMBOL(netdev_change_features);
9894
9895 /**
9896  *      netif_stacked_transfer_operstate -      transfer operstate
9897  *      @rootdev: the root or lower level device to transfer state from
9898  *      @dev: the device to transfer operstate to
9899  *
9900  *      Transfer operational state from root to device. This is normally
9901  *      called when a stacking relationship exists between the root
9902  *      device and the device(a leaf device).
9903  */
9904 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9905                                         struct net_device *dev)
9906 {
9907         if (rootdev->operstate == IF_OPER_DORMANT)
9908                 netif_dormant_on(dev);
9909         else
9910                 netif_dormant_off(dev);
9911
9912         if (rootdev->operstate == IF_OPER_TESTING)
9913                 netif_testing_on(dev);
9914         else
9915                 netif_testing_off(dev);
9916
9917         if (netif_carrier_ok(rootdev))
9918                 netif_carrier_on(dev);
9919         else
9920                 netif_carrier_off(dev);
9921 }
9922 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9923
9924 static int netif_alloc_rx_queues(struct net_device *dev)
9925 {
9926         unsigned int i, count = dev->num_rx_queues;
9927         struct netdev_rx_queue *rx;
9928         size_t sz = count * sizeof(*rx);
9929         int err = 0;
9930
9931         BUG_ON(count < 1);
9932
9933         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9934         if (!rx)
9935                 return -ENOMEM;
9936
9937         dev->_rx = rx;
9938
9939         for (i = 0; i < count; i++) {
9940                 rx[i].dev = dev;
9941
9942                 /* XDP RX-queue setup */
9943                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9944                 if (err < 0)
9945                         goto err_rxq_info;
9946         }
9947         return 0;
9948
9949 err_rxq_info:
9950         /* Rollback successful reg's and free other resources */
9951         while (i--)
9952                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9953         kvfree(dev->_rx);
9954         dev->_rx = NULL;
9955         return err;
9956 }
9957
9958 static void netif_free_rx_queues(struct net_device *dev)
9959 {
9960         unsigned int i, count = dev->num_rx_queues;
9961
9962         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9963         if (!dev->_rx)
9964                 return;
9965
9966         for (i = 0; i < count; i++)
9967                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9968
9969         kvfree(dev->_rx);
9970 }
9971
9972 static void netdev_init_one_queue(struct net_device *dev,
9973                                   struct netdev_queue *queue, void *_unused)
9974 {
9975         /* Initialize queue lock */
9976         spin_lock_init(&queue->_xmit_lock);
9977         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9978         queue->xmit_lock_owner = -1;
9979         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9980         queue->dev = dev;
9981 #ifdef CONFIG_BQL
9982         dql_init(&queue->dql, HZ);
9983 #endif
9984 }
9985
9986 static void netif_free_tx_queues(struct net_device *dev)
9987 {
9988         kvfree(dev->_tx);
9989 }
9990
9991 static int netif_alloc_netdev_queues(struct net_device *dev)
9992 {
9993         unsigned int count = dev->num_tx_queues;
9994         struct netdev_queue *tx;
9995         size_t sz = count * sizeof(*tx);
9996
9997         if (count < 1 || count > 0xffff)
9998                 return -EINVAL;
9999
10000         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10001         if (!tx)
10002                 return -ENOMEM;
10003
10004         dev->_tx = tx;
10005
10006         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10007         spin_lock_init(&dev->tx_global_lock);
10008
10009         return 0;
10010 }
10011
10012 void netif_tx_stop_all_queues(struct net_device *dev)
10013 {
10014         unsigned int i;
10015
10016         for (i = 0; i < dev->num_tx_queues; i++) {
10017                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10018
10019                 netif_tx_stop_queue(txq);
10020         }
10021 }
10022 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10023
10024 /**
10025  * register_netdevice() - register a network device
10026  * @dev: device to register
10027  *
10028  * Take a prepared network device structure and make it externally accessible.
10029  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10030  * Callers must hold the rtnl lock - you may want register_netdev()
10031  * instead of this.
10032  */
10033 int register_netdevice(struct net_device *dev)
10034 {
10035         int ret;
10036         struct net *net = dev_net(dev);
10037
10038         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10039                      NETDEV_FEATURE_COUNT);
10040         BUG_ON(dev_boot_phase);
10041         ASSERT_RTNL();
10042
10043         might_sleep();
10044
10045         /* When net_device's are persistent, this will be fatal. */
10046         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10047         BUG_ON(!net);
10048
10049         ret = ethtool_check_ops(dev->ethtool_ops);
10050         if (ret)
10051                 return ret;
10052
10053         spin_lock_init(&dev->addr_list_lock);
10054         netdev_set_addr_lockdep_class(dev);
10055
10056         ret = dev_get_valid_name(net, dev, dev->name);
10057         if (ret < 0)
10058                 goto out;
10059
10060         ret = -ENOMEM;
10061         dev->name_node = netdev_name_node_head_alloc(dev);
10062         if (!dev->name_node)
10063                 goto out;
10064
10065         /* Init, if this function is available */
10066         if (dev->netdev_ops->ndo_init) {
10067                 ret = dev->netdev_ops->ndo_init(dev);
10068                 if (ret) {
10069                         if (ret > 0)
10070                                 ret = -EIO;
10071                         goto err_free_name;
10072                 }
10073         }
10074
10075         if (((dev->hw_features | dev->features) &
10076              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10077             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10078              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10079                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10080                 ret = -EINVAL;
10081                 goto err_uninit;
10082         }
10083
10084         ret = dev_index_reserve(net, dev->ifindex);
10085         if (ret < 0)
10086                 goto err_uninit;
10087         dev->ifindex = ret;
10088
10089         /* Transfer changeable features to wanted_features and enable
10090          * software offloads (GSO and GRO).
10091          */
10092         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10093         dev->features |= NETIF_F_SOFT_FEATURES;
10094
10095         if (dev->udp_tunnel_nic_info) {
10096                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10097                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10098         }
10099
10100         dev->wanted_features = dev->features & dev->hw_features;
10101
10102         if (!(dev->flags & IFF_LOOPBACK))
10103                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10104
10105         /* If IPv4 TCP segmentation offload is supported we should also
10106          * allow the device to enable segmenting the frame with the option
10107          * of ignoring a static IP ID value.  This doesn't enable the
10108          * feature itself but allows the user to enable it later.
10109          */
10110         if (dev->hw_features & NETIF_F_TSO)
10111                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10112         if (dev->vlan_features & NETIF_F_TSO)
10113                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10114         if (dev->mpls_features & NETIF_F_TSO)
10115                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10116         if (dev->hw_enc_features & NETIF_F_TSO)
10117                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10118
10119         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10120          */
10121         dev->vlan_features |= NETIF_F_HIGHDMA;
10122
10123         /* Make NETIF_F_SG inheritable to tunnel devices.
10124          */
10125         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10126
10127         /* Make NETIF_F_SG inheritable to MPLS.
10128          */
10129         dev->mpls_features |= NETIF_F_SG;
10130
10131         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10132         ret = notifier_to_errno(ret);
10133         if (ret)
10134                 goto err_ifindex_release;
10135
10136         ret = netdev_register_kobject(dev);
10137         write_lock(&dev_base_lock);
10138         dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10139         write_unlock(&dev_base_lock);
10140         if (ret)
10141                 goto err_uninit_notify;
10142
10143         __netdev_update_features(dev);
10144
10145         /*
10146          *      Default initial state at registry is that the
10147          *      device is present.
10148          */
10149
10150         set_bit(__LINK_STATE_PRESENT, &dev->state);
10151
10152         linkwatch_init_dev(dev);
10153
10154         dev_init_scheduler(dev);
10155
10156         netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10157         list_netdevice(dev);
10158
10159         add_device_randomness(dev->dev_addr, dev->addr_len);
10160
10161         /* If the device has permanent device address, driver should
10162          * set dev_addr and also addr_assign_type should be set to
10163          * NET_ADDR_PERM (default value).
10164          */
10165         if (dev->addr_assign_type == NET_ADDR_PERM)
10166                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10167
10168         /* Notify protocols, that a new device appeared. */
10169         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10170         ret = notifier_to_errno(ret);
10171         if (ret) {
10172                 /* Expect explicit free_netdev() on failure */
10173                 dev->needs_free_netdev = false;
10174                 unregister_netdevice_queue(dev, NULL);
10175                 goto out;
10176         }
10177         /*
10178          *      Prevent userspace races by waiting until the network
10179          *      device is fully setup before sending notifications.
10180          */
10181         if (!dev->rtnl_link_ops ||
10182             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10183                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10184
10185 out:
10186         return ret;
10187
10188 err_uninit_notify:
10189         call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10190 err_ifindex_release:
10191         dev_index_release(net, dev->ifindex);
10192 err_uninit:
10193         if (dev->netdev_ops->ndo_uninit)
10194                 dev->netdev_ops->ndo_uninit(dev);
10195         if (dev->priv_destructor)
10196                 dev->priv_destructor(dev);
10197 err_free_name:
10198         netdev_name_node_free(dev->name_node);
10199         goto out;
10200 }
10201 EXPORT_SYMBOL(register_netdevice);
10202
10203 /**
10204  *      init_dummy_netdev       - init a dummy network device for NAPI
10205  *      @dev: device to init
10206  *
10207  *      This takes a network device structure and initialize the minimum
10208  *      amount of fields so it can be used to schedule NAPI polls without
10209  *      registering a full blown interface. This is to be used by drivers
10210  *      that need to tie several hardware interfaces to a single NAPI
10211  *      poll scheduler due to HW limitations.
10212  */
10213 int init_dummy_netdev(struct net_device *dev)
10214 {
10215         /* Clear everything. Note we don't initialize spinlocks
10216          * are they aren't supposed to be taken by any of the
10217          * NAPI code and this dummy netdev is supposed to be
10218          * only ever used for NAPI polls
10219          */
10220         memset(dev, 0, sizeof(struct net_device));
10221
10222         /* make sure we BUG if trying to hit standard
10223          * register/unregister code path
10224          */
10225         dev->reg_state = NETREG_DUMMY;
10226
10227         /* NAPI wants this */
10228         INIT_LIST_HEAD(&dev->napi_list);
10229
10230         /* a dummy interface is started by default */
10231         set_bit(__LINK_STATE_PRESENT, &dev->state);
10232         set_bit(__LINK_STATE_START, &dev->state);
10233
10234         /* napi_busy_loop stats accounting wants this */
10235         dev_net_set(dev, &init_net);
10236
10237         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10238          * because users of this 'device' dont need to change
10239          * its refcount.
10240          */
10241
10242         return 0;
10243 }
10244 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10245
10246
10247 /**
10248  *      register_netdev - register a network device
10249  *      @dev: device to register
10250  *
10251  *      Take a completed network device structure and add it to the kernel
10252  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10253  *      chain. 0 is returned on success. A negative errno code is returned
10254  *      on a failure to set up the device, or if the name is a duplicate.
10255  *
10256  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10257  *      and expands the device name if you passed a format string to
10258  *      alloc_netdev.
10259  */
10260 int register_netdev(struct net_device *dev)
10261 {
10262         int err;
10263
10264         if (rtnl_lock_killable())
10265                 return -EINTR;
10266         err = register_netdevice(dev);
10267         rtnl_unlock();
10268         return err;
10269 }
10270 EXPORT_SYMBOL(register_netdev);
10271
10272 int netdev_refcnt_read(const struct net_device *dev)
10273 {
10274 #ifdef CONFIG_PCPU_DEV_REFCNT
10275         int i, refcnt = 0;
10276
10277         for_each_possible_cpu(i)
10278                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10279         return refcnt;
10280 #else
10281         return refcount_read(&dev->dev_refcnt);
10282 #endif
10283 }
10284 EXPORT_SYMBOL(netdev_refcnt_read);
10285
10286 int netdev_unregister_timeout_secs __read_mostly = 10;
10287
10288 #define WAIT_REFS_MIN_MSECS 1
10289 #define WAIT_REFS_MAX_MSECS 250
10290 /**
10291  * netdev_wait_allrefs_any - wait until all references are gone.
10292  * @list: list of net_devices to wait on
10293  *
10294  * This is called when unregistering network devices.
10295  *
10296  * Any protocol or device that holds a reference should register
10297  * for netdevice notification, and cleanup and put back the
10298  * reference if they receive an UNREGISTER event.
10299  * We can get stuck here if buggy protocols don't correctly
10300  * call dev_put.
10301  */
10302 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10303 {
10304         unsigned long rebroadcast_time, warning_time;
10305         struct net_device *dev;
10306         int wait = 0;
10307
10308         rebroadcast_time = warning_time = jiffies;
10309
10310         list_for_each_entry(dev, list, todo_list)
10311                 if (netdev_refcnt_read(dev) == 1)
10312                         return dev;
10313
10314         while (true) {
10315                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10316                         rtnl_lock();
10317
10318                         /* Rebroadcast unregister notification */
10319                         list_for_each_entry(dev, list, todo_list)
10320                                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10321
10322                         __rtnl_unlock();
10323                         rcu_barrier();
10324                         rtnl_lock();
10325
10326                         list_for_each_entry(dev, list, todo_list)
10327                                 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10328                                              &dev->state)) {
10329                                         /* We must not have linkwatch events
10330                                          * pending on unregister. If this
10331                                          * happens, we simply run the queue
10332                                          * unscheduled, resulting in a noop
10333                                          * for this device.
10334                                          */
10335                                         linkwatch_run_queue();
10336                                         break;
10337                                 }
10338
10339                         __rtnl_unlock();
10340
10341                         rebroadcast_time = jiffies;
10342                 }
10343
10344                 if (!wait) {
10345                         rcu_barrier();
10346                         wait = WAIT_REFS_MIN_MSECS;
10347                 } else {
10348                         msleep(wait);
10349                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10350                 }
10351
10352                 list_for_each_entry(dev, list, todo_list)
10353                         if (netdev_refcnt_read(dev) == 1)
10354                                 return dev;
10355
10356                 if (time_after(jiffies, warning_time +
10357                                READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10358                         list_for_each_entry(dev, list, todo_list) {
10359                                 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10360                                          dev->name, netdev_refcnt_read(dev));
10361                                 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10362                         }
10363
10364                         warning_time = jiffies;
10365                 }
10366         }
10367 }
10368
10369 /* The sequence is:
10370  *
10371  *      rtnl_lock();
10372  *      ...
10373  *      register_netdevice(x1);
10374  *      register_netdevice(x2);
10375  *      ...
10376  *      unregister_netdevice(y1);
10377  *      unregister_netdevice(y2);
10378  *      ...
10379  *      rtnl_unlock();
10380  *      free_netdev(y1);
10381  *      free_netdev(y2);
10382  *
10383  * We are invoked by rtnl_unlock().
10384  * This allows us to deal with problems:
10385  * 1) We can delete sysfs objects which invoke hotplug
10386  *    without deadlocking with linkwatch via keventd.
10387  * 2) Since we run with the RTNL semaphore not held, we can sleep
10388  *    safely in order to wait for the netdev refcnt to drop to zero.
10389  *
10390  * We must not return until all unregister events added during
10391  * the interval the lock was held have been completed.
10392  */
10393 void netdev_run_todo(void)
10394 {
10395         struct net_device *dev, *tmp;
10396         struct list_head list;
10397 #ifdef CONFIG_LOCKDEP
10398         struct list_head unlink_list;
10399
10400         list_replace_init(&net_unlink_list, &unlink_list);
10401
10402         while (!list_empty(&unlink_list)) {
10403                 struct net_device *dev = list_first_entry(&unlink_list,
10404                                                           struct net_device,
10405                                                           unlink_list);
10406                 list_del_init(&dev->unlink_list);
10407                 dev->nested_level = dev->lower_level - 1;
10408         }
10409 #endif
10410
10411         /* Snapshot list, allow later requests */
10412         list_replace_init(&net_todo_list, &list);
10413
10414         __rtnl_unlock();
10415
10416         /* Wait for rcu callbacks to finish before next phase */
10417         if (!list_empty(&list))
10418                 rcu_barrier();
10419
10420         list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10421                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10422                         netdev_WARN(dev, "run_todo but not unregistering\n");
10423                         list_del(&dev->todo_list);
10424                         continue;
10425                 }
10426
10427                 write_lock(&dev_base_lock);
10428                 dev->reg_state = NETREG_UNREGISTERED;
10429                 write_unlock(&dev_base_lock);
10430                 linkwatch_forget_dev(dev);
10431         }
10432
10433         while (!list_empty(&list)) {
10434                 dev = netdev_wait_allrefs_any(&list);
10435                 list_del(&dev->todo_list);
10436
10437                 /* paranoia */
10438                 BUG_ON(netdev_refcnt_read(dev) != 1);
10439                 BUG_ON(!list_empty(&dev->ptype_all));
10440                 BUG_ON(!list_empty(&dev->ptype_specific));
10441                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10442                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10443
10444                 if (dev->priv_destructor)
10445                         dev->priv_destructor(dev);
10446                 if (dev->needs_free_netdev)
10447                         free_netdev(dev);
10448
10449                 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10450                         wake_up(&netdev_unregistering_wq);
10451
10452                 /* Free network device */
10453                 kobject_put(&dev->dev.kobj);
10454         }
10455 }
10456
10457 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10458  * all the same fields in the same order as net_device_stats, with only
10459  * the type differing, but rtnl_link_stats64 may have additional fields
10460  * at the end for newer counters.
10461  */
10462 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10463                              const struct net_device_stats *netdev_stats)
10464 {
10465         size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10466         const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10467         u64 *dst = (u64 *)stats64;
10468
10469         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10470         for (i = 0; i < n; i++)
10471                 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10472         /* zero out counters that only exist in rtnl_link_stats64 */
10473         memset((char *)stats64 + n * sizeof(u64), 0,
10474                sizeof(*stats64) - n * sizeof(u64));
10475 }
10476 EXPORT_SYMBOL(netdev_stats_to_stats64);
10477
10478 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10479 {
10480         struct net_device_core_stats __percpu *p;
10481
10482         p = alloc_percpu_gfp(struct net_device_core_stats,
10483                              GFP_ATOMIC | __GFP_NOWARN);
10484
10485         if (p && cmpxchg(&dev->core_stats, NULL, p))
10486                 free_percpu(p);
10487
10488         /* This READ_ONCE() pairs with the cmpxchg() above */
10489         return READ_ONCE(dev->core_stats);
10490 }
10491 EXPORT_SYMBOL(netdev_core_stats_alloc);
10492
10493 /**
10494  *      dev_get_stats   - get network device statistics
10495  *      @dev: device to get statistics from
10496  *      @storage: place to store stats
10497  *
10498  *      Get network statistics from device. Return @storage.
10499  *      The device driver may provide its own method by setting
10500  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10501  *      otherwise the internal statistics structure is used.
10502  */
10503 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10504                                         struct rtnl_link_stats64 *storage)
10505 {
10506         const struct net_device_ops *ops = dev->netdev_ops;
10507         const struct net_device_core_stats __percpu *p;
10508
10509         if (ops->ndo_get_stats64) {
10510                 memset(storage, 0, sizeof(*storage));
10511                 ops->ndo_get_stats64(dev, storage);
10512         } else if (ops->ndo_get_stats) {
10513                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10514         } else {
10515                 netdev_stats_to_stats64(storage, &dev->stats);
10516         }
10517
10518         /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10519         p = READ_ONCE(dev->core_stats);
10520         if (p) {
10521                 const struct net_device_core_stats *core_stats;
10522                 int i;
10523
10524                 for_each_possible_cpu(i) {
10525                         core_stats = per_cpu_ptr(p, i);
10526                         storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10527                         storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10528                         storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10529                         storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10530                 }
10531         }
10532         return storage;
10533 }
10534 EXPORT_SYMBOL(dev_get_stats);
10535
10536 /**
10537  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10538  *      @s: place to store stats
10539  *      @netstats: per-cpu network stats to read from
10540  *
10541  *      Read per-cpu network statistics and populate the related fields in @s.
10542  */
10543 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10544                            const struct pcpu_sw_netstats __percpu *netstats)
10545 {
10546         int cpu;
10547
10548         for_each_possible_cpu(cpu) {
10549                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10550                 const struct pcpu_sw_netstats *stats;
10551                 unsigned int start;
10552
10553                 stats = per_cpu_ptr(netstats, cpu);
10554                 do {
10555                         start = u64_stats_fetch_begin(&stats->syncp);
10556                         rx_packets = u64_stats_read(&stats->rx_packets);
10557                         rx_bytes   = u64_stats_read(&stats->rx_bytes);
10558                         tx_packets = u64_stats_read(&stats->tx_packets);
10559                         tx_bytes   = u64_stats_read(&stats->tx_bytes);
10560                 } while (u64_stats_fetch_retry(&stats->syncp, start));
10561
10562                 s->rx_packets += rx_packets;
10563                 s->rx_bytes   += rx_bytes;
10564                 s->tx_packets += tx_packets;
10565                 s->tx_bytes   += tx_bytes;
10566         }
10567 }
10568 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10569
10570 /**
10571  *      dev_get_tstats64 - ndo_get_stats64 implementation
10572  *      @dev: device to get statistics from
10573  *      @s: place to store stats
10574  *
10575  *      Populate @s from dev->stats and dev->tstats. Can be used as
10576  *      ndo_get_stats64() callback.
10577  */
10578 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10579 {
10580         netdev_stats_to_stats64(s, &dev->stats);
10581         dev_fetch_sw_netstats(s, dev->tstats);
10582 }
10583 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10584
10585 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10586 {
10587         struct netdev_queue *queue = dev_ingress_queue(dev);
10588
10589 #ifdef CONFIG_NET_CLS_ACT
10590         if (queue)
10591                 return queue;
10592         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10593         if (!queue)
10594                 return NULL;
10595         netdev_init_one_queue(dev, queue, NULL);
10596         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10597         RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10598         rcu_assign_pointer(dev->ingress_queue, queue);
10599 #endif
10600         return queue;
10601 }
10602
10603 static const struct ethtool_ops default_ethtool_ops;
10604
10605 void netdev_set_default_ethtool_ops(struct net_device *dev,
10606                                     const struct ethtool_ops *ops)
10607 {
10608         if (dev->ethtool_ops == &default_ethtool_ops)
10609                 dev->ethtool_ops = ops;
10610 }
10611 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10612
10613 /**
10614  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10615  * @dev: netdev to enable the IRQ coalescing on
10616  *
10617  * Sets a conservative default for SW IRQ coalescing. Users can use
10618  * sysfs attributes to override the default values.
10619  */
10620 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10621 {
10622         WARN_ON(dev->reg_state == NETREG_REGISTERED);
10623
10624         if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10625                 dev->gro_flush_timeout = 20000;
10626                 dev->napi_defer_hard_irqs = 1;
10627         }
10628 }
10629 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10630
10631 void netdev_freemem(struct net_device *dev)
10632 {
10633         char *addr = (char *)dev - dev->padded;
10634
10635         kvfree(addr);
10636 }
10637
10638 /**
10639  * alloc_netdev_mqs - allocate network device
10640  * @sizeof_priv: size of private data to allocate space for
10641  * @name: device name format string
10642  * @name_assign_type: origin of device name
10643  * @setup: callback to initialize device
10644  * @txqs: the number of TX subqueues to allocate
10645  * @rxqs: the number of RX subqueues to allocate
10646  *
10647  * Allocates a struct net_device with private data area for driver use
10648  * and performs basic initialization.  Also allocates subqueue structs
10649  * for each queue on the device.
10650  */
10651 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10652                 unsigned char name_assign_type,
10653                 void (*setup)(struct net_device *),
10654                 unsigned int txqs, unsigned int rxqs)
10655 {
10656         struct net_device *dev;
10657         unsigned int alloc_size;
10658         struct net_device *p;
10659
10660         BUG_ON(strlen(name) >= sizeof(dev->name));
10661
10662         if (txqs < 1) {
10663                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10664                 return NULL;
10665         }
10666
10667         if (rxqs < 1) {
10668                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10669                 return NULL;
10670         }
10671
10672         alloc_size = sizeof(struct net_device);
10673         if (sizeof_priv) {
10674                 /* ensure 32-byte alignment of private area */
10675                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10676                 alloc_size += sizeof_priv;
10677         }
10678         /* ensure 32-byte alignment of whole construct */
10679         alloc_size += NETDEV_ALIGN - 1;
10680
10681         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10682         if (!p)
10683                 return NULL;
10684
10685         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10686         dev->padded = (char *)dev - (char *)p;
10687
10688         ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10689 #ifdef CONFIG_PCPU_DEV_REFCNT
10690         dev->pcpu_refcnt = alloc_percpu(int);
10691         if (!dev->pcpu_refcnt)
10692                 goto free_dev;
10693         __dev_hold(dev);
10694 #else
10695         refcount_set(&dev->dev_refcnt, 1);
10696 #endif
10697
10698         if (dev_addr_init(dev))
10699                 goto free_pcpu;
10700
10701         dev_mc_init(dev);
10702         dev_uc_init(dev);
10703
10704         dev_net_set(dev, &init_net);
10705
10706         dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10707         dev->xdp_zc_max_segs = 1;
10708         dev->gso_max_segs = GSO_MAX_SEGS;
10709         dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10710         dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10711         dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10712         dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10713         dev->tso_max_segs = TSO_MAX_SEGS;
10714         dev->upper_level = 1;
10715         dev->lower_level = 1;
10716 #ifdef CONFIG_LOCKDEP
10717         dev->nested_level = 0;
10718         INIT_LIST_HEAD(&dev->unlink_list);
10719 #endif
10720
10721         INIT_LIST_HEAD(&dev->napi_list);
10722         INIT_LIST_HEAD(&dev->unreg_list);
10723         INIT_LIST_HEAD(&dev->close_list);
10724         INIT_LIST_HEAD(&dev->link_watch_list);
10725         INIT_LIST_HEAD(&dev->adj_list.upper);
10726         INIT_LIST_HEAD(&dev->adj_list.lower);
10727         INIT_LIST_HEAD(&dev->ptype_all);
10728         INIT_LIST_HEAD(&dev->ptype_specific);
10729         INIT_LIST_HEAD(&dev->net_notifier_list);
10730 #ifdef CONFIG_NET_SCHED
10731         hash_init(dev->qdisc_hash);
10732 #endif
10733         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10734         setup(dev);
10735
10736         if (!dev->tx_queue_len) {
10737                 dev->priv_flags |= IFF_NO_QUEUE;
10738                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10739         }
10740
10741         dev->num_tx_queues = txqs;
10742         dev->real_num_tx_queues = txqs;
10743         if (netif_alloc_netdev_queues(dev))
10744                 goto free_all;
10745
10746         dev->num_rx_queues = rxqs;
10747         dev->real_num_rx_queues = rxqs;
10748         if (netif_alloc_rx_queues(dev))
10749                 goto free_all;
10750
10751         strcpy(dev->name, name);
10752         dev->name_assign_type = name_assign_type;
10753         dev->group = INIT_NETDEV_GROUP;
10754         if (!dev->ethtool_ops)
10755                 dev->ethtool_ops = &default_ethtool_ops;
10756
10757         nf_hook_netdev_init(dev);
10758
10759         return dev;
10760
10761 free_all:
10762         free_netdev(dev);
10763         return NULL;
10764
10765 free_pcpu:
10766 #ifdef CONFIG_PCPU_DEV_REFCNT
10767         free_percpu(dev->pcpu_refcnt);
10768 free_dev:
10769 #endif
10770         netdev_freemem(dev);
10771         return NULL;
10772 }
10773 EXPORT_SYMBOL(alloc_netdev_mqs);
10774
10775 /**
10776  * free_netdev - free network device
10777  * @dev: device
10778  *
10779  * This function does the last stage of destroying an allocated device
10780  * interface. The reference to the device object is released. If this
10781  * is the last reference then it will be freed.Must be called in process
10782  * context.
10783  */
10784 void free_netdev(struct net_device *dev)
10785 {
10786         struct napi_struct *p, *n;
10787
10788         might_sleep();
10789
10790         /* When called immediately after register_netdevice() failed the unwind
10791          * handling may still be dismantling the device. Handle that case by
10792          * deferring the free.
10793          */
10794         if (dev->reg_state == NETREG_UNREGISTERING) {
10795                 ASSERT_RTNL();
10796                 dev->needs_free_netdev = true;
10797                 return;
10798         }
10799
10800         netif_free_tx_queues(dev);
10801         netif_free_rx_queues(dev);
10802
10803         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10804
10805         /* Flush device addresses */
10806         dev_addr_flush(dev);
10807
10808         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10809                 netif_napi_del(p);
10810
10811         ref_tracker_dir_exit(&dev->refcnt_tracker);
10812 #ifdef CONFIG_PCPU_DEV_REFCNT
10813         free_percpu(dev->pcpu_refcnt);
10814         dev->pcpu_refcnt = NULL;
10815 #endif
10816         free_percpu(dev->core_stats);
10817         dev->core_stats = NULL;
10818         free_percpu(dev->xdp_bulkq);
10819         dev->xdp_bulkq = NULL;
10820
10821         /*  Compatibility with error handling in drivers */
10822         if (dev->reg_state == NETREG_UNINITIALIZED) {
10823                 netdev_freemem(dev);
10824                 return;
10825         }
10826
10827         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10828         dev->reg_state = NETREG_RELEASED;
10829
10830         /* will free via device release */
10831         put_device(&dev->dev);
10832 }
10833 EXPORT_SYMBOL(free_netdev);
10834
10835 /**
10836  *      synchronize_net -  Synchronize with packet receive processing
10837  *
10838  *      Wait for packets currently being received to be done.
10839  *      Does not block later packets from starting.
10840  */
10841 void synchronize_net(void)
10842 {
10843         might_sleep();
10844         if (rtnl_is_locked())
10845                 synchronize_rcu_expedited();
10846         else
10847                 synchronize_rcu();
10848 }
10849 EXPORT_SYMBOL(synchronize_net);
10850
10851 /**
10852  *      unregister_netdevice_queue - remove device from the kernel
10853  *      @dev: device
10854  *      @head: list
10855  *
10856  *      This function shuts down a device interface and removes it
10857  *      from the kernel tables.
10858  *      If head not NULL, device is queued to be unregistered later.
10859  *
10860  *      Callers must hold the rtnl semaphore.  You may want
10861  *      unregister_netdev() instead of this.
10862  */
10863
10864 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10865 {
10866         ASSERT_RTNL();
10867
10868         if (head) {
10869                 list_move_tail(&dev->unreg_list, head);
10870         } else {
10871                 LIST_HEAD(single);
10872
10873                 list_add(&dev->unreg_list, &single);
10874                 unregister_netdevice_many(&single);
10875         }
10876 }
10877 EXPORT_SYMBOL(unregister_netdevice_queue);
10878
10879 void unregister_netdevice_many_notify(struct list_head *head,
10880                                       u32 portid, const struct nlmsghdr *nlh)
10881 {
10882         struct net_device *dev, *tmp;
10883         LIST_HEAD(close_head);
10884
10885         BUG_ON(dev_boot_phase);
10886         ASSERT_RTNL();
10887
10888         if (list_empty(head))
10889                 return;
10890
10891         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10892                 /* Some devices call without registering
10893                  * for initialization unwind. Remove those
10894                  * devices and proceed with the remaining.
10895                  */
10896                 if (dev->reg_state == NETREG_UNINITIALIZED) {
10897                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10898                                  dev->name, dev);
10899
10900                         WARN_ON(1);
10901                         list_del(&dev->unreg_list);
10902                         continue;
10903                 }
10904                 dev->dismantle = true;
10905                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10906         }
10907
10908         /* If device is running, close it first. */
10909         list_for_each_entry(dev, head, unreg_list)
10910                 list_add_tail(&dev->close_list, &close_head);
10911         dev_close_many(&close_head, true);
10912
10913         list_for_each_entry(dev, head, unreg_list) {
10914                 /* And unlink it from device chain. */
10915                 write_lock(&dev_base_lock);
10916                 unlist_netdevice(dev, false);
10917                 dev->reg_state = NETREG_UNREGISTERING;
10918                 write_unlock(&dev_base_lock);
10919         }
10920         flush_all_backlogs();
10921
10922         synchronize_net();
10923
10924         list_for_each_entry(dev, head, unreg_list) {
10925                 struct sk_buff *skb = NULL;
10926
10927                 /* Shutdown queueing discipline. */
10928                 dev_shutdown(dev);
10929                 dev_tcx_uninstall(dev);
10930                 dev_xdp_uninstall(dev);
10931                 bpf_dev_bound_netdev_unregister(dev);
10932
10933                 netdev_offload_xstats_disable_all(dev);
10934
10935                 /* Notify protocols, that we are about to destroy
10936                  * this device. They should clean all the things.
10937                  */
10938                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10939
10940                 if (!dev->rtnl_link_ops ||
10941                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10942                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10943                                                      GFP_KERNEL, NULL, 0,
10944                                                      portid, nlh);
10945
10946                 /*
10947                  *      Flush the unicast and multicast chains
10948                  */
10949                 dev_uc_flush(dev);
10950                 dev_mc_flush(dev);
10951
10952                 netdev_name_node_alt_flush(dev);
10953                 netdev_name_node_free(dev->name_node);
10954
10955                 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10956
10957                 if (dev->netdev_ops->ndo_uninit)
10958                         dev->netdev_ops->ndo_uninit(dev);
10959
10960                 if (skb)
10961                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
10962
10963                 /* Notifier chain MUST detach us all upper devices. */
10964                 WARN_ON(netdev_has_any_upper_dev(dev));
10965                 WARN_ON(netdev_has_any_lower_dev(dev));
10966
10967                 /* Remove entries from kobject tree */
10968                 netdev_unregister_kobject(dev);
10969 #ifdef CONFIG_XPS
10970                 /* Remove XPS queueing entries */
10971                 netif_reset_xps_queues_gt(dev, 0);
10972 #endif
10973         }
10974
10975         synchronize_net();
10976
10977         list_for_each_entry(dev, head, unreg_list) {
10978                 netdev_put(dev, &dev->dev_registered_tracker);
10979                 net_set_todo(dev);
10980         }
10981
10982         list_del(head);
10983 }
10984
10985 /**
10986  *      unregister_netdevice_many - unregister many devices
10987  *      @head: list of devices
10988  *
10989  *  Note: As most callers use a stack allocated list_head,
10990  *  we force a list_del() to make sure stack wont be corrupted later.
10991  */
10992 void unregister_netdevice_many(struct list_head *head)
10993 {
10994         unregister_netdevice_many_notify(head, 0, NULL);
10995 }
10996 EXPORT_SYMBOL(unregister_netdevice_many);
10997
10998 /**
10999  *      unregister_netdev - remove device from the kernel
11000  *      @dev: device
11001  *
11002  *      This function shuts down a device interface and removes it
11003  *      from the kernel tables.
11004  *
11005  *      This is just a wrapper for unregister_netdevice that takes
11006  *      the rtnl semaphore.  In general you want to use this and not
11007  *      unregister_netdevice.
11008  */
11009 void unregister_netdev(struct net_device *dev)
11010 {
11011         rtnl_lock();
11012         unregister_netdevice(dev);
11013         rtnl_unlock();
11014 }
11015 EXPORT_SYMBOL(unregister_netdev);
11016
11017 /**
11018  *      __dev_change_net_namespace - move device to different nethost namespace
11019  *      @dev: device
11020  *      @net: network namespace
11021  *      @pat: If not NULL name pattern to try if the current device name
11022  *            is already taken in the destination network namespace.
11023  *      @new_ifindex: If not zero, specifies device index in the target
11024  *                    namespace.
11025  *
11026  *      This function shuts down a device interface and moves it
11027  *      to a new network namespace. On success 0 is returned, on
11028  *      a failure a netagive errno code is returned.
11029  *
11030  *      Callers must hold the rtnl semaphore.
11031  */
11032
11033 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11034                                const char *pat, int new_ifindex)
11035 {
11036         struct net *net_old = dev_net(dev);
11037         int err, new_nsid;
11038
11039         ASSERT_RTNL();
11040
11041         /* Don't allow namespace local devices to be moved. */
11042         err = -EINVAL;
11043         if (dev->features & NETIF_F_NETNS_LOCAL)
11044                 goto out;
11045
11046         /* Ensure the device has been registrered */
11047         if (dev->reg_state != NETREG_REGISTERED)
11048                 goto out;
11049
11050         /* Get out if there is nothing todo */
11051         err = 0;
11052         if (net_eq(net_old, net))
11053                 goto out;
11054
11055         /* Pick the destination device name, and ensure
11056          * we can use it in the destination network namespace.
11057          */
11058         err = -EEXIST;
11059         if (netdev_name_in_use(net, dev->name)) {
11060                 /* We get here if we can't use the current device name */
11061                 if (!pat)
11062                         goto out;
11063                 err = dev_get_valid_name(net, dev, pat);
11064                 if (err < 0)
11065                         goto out;
11066         }
11067
11068         /* Check that new_ifindex isn't used yet. */
11069         if (new_ifindex) {
11070                 err = dev_index_reserve(net, new_ifindex);
11071                 if (err < 0)
11072                         goto out;
11073         } else {
11074                 /* If there is an ifindex conflict assign a new one */
11075                 err = dev_index_reserve(net, dev->ifindex);
11076                 if (err == -EBUSY)
11077                         err = dev_index_reserve(net, 0);
11078                 if (err < 0)
11079                         goto out;
11080                 new_ifindex = err;
11081         }
11082
11083         /*
11084          * And now a mini version of register_netdevice unregister_netdevice.
11085          */
11086
11087         /* If device is running close it first. */
11088         dev_close(dev);
11089
11090         /* And unlink it from device chain */
11091         unlist_netdevice(dev, true);
11092
11093         synchronize_net();
11094
11095         /* Shutdown queueing discipline. */
11096         dev_shutdown(dev);
11097
11098         /* Notify protocols, that we are about to destroy
11099          * this device. They should clean all the things.
11100          *
11101          * Note that dev->reg_state stays at NETREG_REGISTERED.
11102          * This is wanted because this way 8021q and macvlan know
11103          * the device is just moving and can keep their slaves up.
11104          */
11105         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11106         rcu_barrier();
11107
11108         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11109
11110         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11111                             new_ifindex);
11112
11113         /*
11114          *      Flush the unicast and multicast chains
11115          */
11116         dev_uc_flush(dev);
11117         dev_mc_flush(dev);
11118
11119         /* Send a netdev-removed uevent to the old namespace */
11120         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11121         netdev_adjacent_del_links(dev);
11122
11123         /* Move per-net netdevice notifiers that are following the netdevice */
11124         move_netdevice_notifiers_dev_net(dev, net);
11125
11126         /* Actually switch the network namespace */
11127         dev_net_set(dev, net);
11128         dev->ifindex = new_ifindex;
11129
11130         /* Send a netdev-add uevent to the new namespace */
11131         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11132         netdev_adjacent_add_links(dev);
11133
11134         /* Fixup kobjects */
11135         err = device_rename(&dev->dev, dev->name);
11136         WARN_ON(err);
11137
11138         /* Adapt owner in case owning user namespace of target network
11139          * namespace is different from the original one.
11140          */
11141         err = netdev_change_owner(dev, net_old, net);
11142         WARN_ON(err);
11143
11144         /* Add the device back in the hashes */
11145         list_netdevice(dev);
11146
11147         /* Notify protocols, that a new device appeared. */
11148         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11149
11150         /*
11151          *      Prevent userspace races by waiting until the network
11152          *      device is fully setup before sending notifications.
11153          */
11154         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11155
11156         synchronize_net();
11157         err = 0;
11158 out:
11159         return err;
11160 }
11161 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11162
11163 static int dev_cpu_dead(unsigned int oldcpu)
11164 {
11165         struct sk_buff **list_skb;
11166         struct sk_buff *skb;
11167         unsigned int cpu;
11168         struct softnet_data *sd, *oldsd, *remsd = NULL;
11169
11170         local_irq_disable();
11171         cpu = smp_processor_id();
11172         sd = &per_cpu(softnet_data, cpu);
11173         oldsd = &per_cpu(softnet_data, oldcpu);
11174
11175         /* Find end of our completion_queue. */
11176         list_skb = &sd->completion_queue;
11177         while (*list_skb)
11178                 list_skb = &(*list_skb)->next;
11179         /* Append completion queue from offline CPU. */
11180         *list_skb = oldsd->completion_queue;
11181         oldsd->completion_queue = NULL;
11182
11183         /* Append output queue from offline CPU. */
11184         if (oldsd->output_queue) {
11185                 *sd->output_queue_tailp = oldsd->output_queue;
11186                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11187                 oldsd->output_queue = NULL;
11188                 oldsd->output_queue_tailp = &oldsd->output_queue;
11189         }
11190         /* Append NAPI poll list from offline CPU, with one exception :
11191          * process_backlog() must be called by cpu owning percpu backlog.
11192          * We properly handle process_queue & input_pkt_queue later.
11193          */
11194         while (!list_empty(&oldsd->poll_list)) {
11195                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11196                                                             struct napi_struct,
11197                                                             poll_list);
11198
11199                 list_del_init(&napi->poll_list);
11200                 if (napi->poll == process_backlog)
11201                         napi->state = 0;
11202                 else
11203                         ____napi_schedule(sd, napi);
11204         }
11205
11206         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11207         local_irq_enable();
11208
11209 #ifdef CONFIG_RPS
11210         remsd = oldsd->rps_ipi_list;
11211         oldsd->rps_ipi_list = NULL;
11212 #endif
11213         /* send out pending IPI's on offline CPU */
11214         net_rps_send_ipi(remsd);
11215
11216         /* Process offline CPU's input_pkt_queue */
11217         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11218                 netif_rx(skb);
11219                 input_queue_head_incr(oldsd);
11220         }
11221         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11222                 netif_rx(skb);
11223                 input_queue_head_incr(oldsd);
11224         }
11225
11226         return 0;
11227 }
11228
11229 /**
11230  *      netdev_increment_features - increment feature set by one
11231  *      @all: current feature set
11232  *      @one: new feature set
11233  *      @mask: mask feature set
11234  *
11235  *      Computes a new feature set after adding a device with feature set
11236  *      @one to the master device with current feature set @all.  Will not
11237  *      enable anything that is off in @mask. Returns the new feature set.
11238  */
11239 netdev_features_t netdev_increment_features(netdev_features_t all,
11240         netdev_features_t one, netdev_features_t mask)
11241 {
11242         if (mask & NETIF_F_HW_CSUM)
11243                 mask |= NETIF_F_CSUM_MASK;
11244         mask |= NETIF_F_VLAN_CHALLENGED;
11245
11246         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11247         all &= one | ~NETIF_F_ALL_FOR_ALL;
11248
11249         /* If one device supports hw checksumming, set for all. */
11250         if (all & NETIF_F_HW_CSUM)
11251                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11252
11253         return all;
11254 }
11255 EXPORT_SYMBOL(netdev_increment_features);
11256
11257 static struct hlist_head * __net_init netdev_create_hash(void)
11258 {
11259         int i;
11260         struct hlist_head *hash;
11261
11262         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11263         if (hash != NULL)
11264                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11265                         INIT_HLIST_HEAD(&hash[i]);
11266
11267         return hash;
11268 }
11269
11270 /* Initialize per network namespace state */
11271 static int __net_init netdev_init(struct net *net)
11272 {
11273         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11274                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11275
11276         INIT_LIST_HEAD(&net->dev_base_head);
11277
11278         net->dev_name_head = netdev_create_hash();
11279         if (net->dev_name_head == NULL)
11280                 goto err_name;
11281
11282         net->dev_index_head = netdev_create_hash();
11283         if (net->dev_index_head == NULL)
11284                 goto err_idx;
11285
11286         xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11287
11288         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11289
11290         return 0;
11291
11292 err_idx:
11293         kfree(net->dev_name_head);
11294 err_name:
11295         return -ENOMEM;
11296 }
11297
11298 /**
11299  *      netdev_drivername - network driver for the device
11300  *      @dev: network device
11301  *
11302  *      Determine network driver for device.
11303  */
11304 const char *netdev_drivername(const struct net_device *dev)
11305 {
11306         const struct device_driver *driver;
11307         const struct device *parent;
11308         const char *empty = "";
11309
11310         parent = dev->dev.parent;
11311         if (!parent)
11312                 return empty;
11313
11314         driver = parent->driver;
11315         if (driver && driver->name)
11316                 return driver->name;
11317         return empty;
11318 }
11319
11320 static void __netdev_printk(const char *level, const struct net_device *dev,
11321                             struct va_format *vaf)
11322 {
11323         if (dev && dev->dev.parent) {
11324                 dev_printk_emit(level[1] - '0',
11325                                 dev->dev.parent,
11326                                 "%s %s %s%s: %pV",
11327                                 dev_driver_string(dev->dev.parent),
11328                                 dev_name(dev->dev.parent),
11329                                 netdev_name(dev), netdev_reg_state(dev),
11330                                 vaf);
11331         } else if (dev) {
11332                 printk("%s%s%s: %pV",
11333                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11334         } else {
11335                 printk("%s(NULL net_device): %pV", level, vaf);
11336         }
11337 }
11338
11339 void netdev_printk(const char *level, const struct net_device *dev,
11340                    const char *format, ...)
11341 {
11342         struct va_format vaf;
11343         va_list args;
11344
11345         va_start(args, format);
11346
11347         vaf.fmt = format;
11348         vaf.va = &args;
11349
11350         __netdev_printk(level, dev, &vaf);
11351
11352         va_end(args);
11353 }
11354 EXPORT_SYMBOL(netdev_printk);
11355
11356 #define define_netdev_printk_level(func, level)                 \
11357 void func(const struct net_device *dev, const char *fmt, ...)   \
11358 {                                                               \
11359         struct va_format vaf;                                   \
11360         va_list args;                                           \
11361                                                                 \
11362         va_start(args, fmt);                                    \
11363                                                                 \
11364         vaf.fmt = fmt;                                          \
11365         vaf.va = &args;                                         \
11366                                                                 \
11367         __netdev_printk(level, dev, &vaf);                      \
11368                                                                 \
11369         va_end(args);                                           \
11370 }                                                               \
11371 EXPORT_SYMBOL(func);
11372
11373 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11374 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11375 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11376 define_netdev_printk_level(netdev_err, KERN_ERR);
11377 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11378 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11379 define_netdev_printk_level(netdev_info, KERN_INFO);
11380
11381 static void __net_exit netdev_exit(struct net *net)
11382 {
11383         kfree(net->dev_name_head);
11384         kfree(net->dev_index_head);
11385         xa_destroy(&net->dev_by_index);
11386         if (net != &init_net)
11387                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11388 }
11389
11390 static struct pernet_operations __net_initdata netdev_net_ops = {
11391         .init = netdev_init,
11392         .exit = netdev_exit,
11393 };
11394
11395 static void __net_exit default_device_exit_net(struct net *net)
11396 {
11397         struct net_device *dev, *aux;
11398         /*
11399          * Push all migratable network devices back to the
11400          * initial network namespace
11401          */
11402         ASSERT_RTNL();
11403         for_each_netdev_safe(net, dev, aux) {
11404                 int err;
11405                 char fb_name[IFNAMSIZ];
11406
11407                 /* Ignore unmoveable devices (i.e. loopback) */
11408                 if (dev->features & NETIF_F_NETNS_LOCAL)
11409                         continue;
11410
11411                 /* Leave virtual devices for the generic cleanup */
11412                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11413                         continue;
11414
11415                 /* Push remaining network devices to init_net */
11416                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11417                 if (netdev_name_in_use(&init_net, fb_name))
11418                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11419                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11420                 if (err) {
11421                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11422                                  __func__, dev->name, err);
11423                         BUG();
11424                 }
11425         }
11426 }
11427
11428 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11429 {
11430         /* At exit all network devices most be removed from a network
11431          * namespace.  Do this in the reverse order of registration.
11432          * Do this across as many network namespaces as possible to
11433          * improve batching efficiency.
11434          */
11435         struct net_device *dev;
11436         struct net *net;
11437         LIST_HEAD(dev_kill_list);
11438
11439         rtnl_lock();
11440         list_for_each_entry(net, net_list, exit_list) {
11441                 default_device_exit_net(net);
11442                 cond_resched();
11443         }
11444
11445         list_for_each_entry(net, net_list, exit_list) {
11446                 for_each_netdev_reverse(net, dev) {
11447                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11448                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11449                         else
11450                                 unregister_netdevice_queue(dev, &dev_kill_list);
11451                 }
11452         }
11453         unregister_netdevice_many(&dev_kill_list);
11454         rtnl_unlock();
11455 }
11456
11457 static struct pernet_operations __net_initdata default_device_ops = {
11458         .exit_batch = default_device_exit_batch,
11459 };
11460
11461 /*
11462  *      Initialize the DEV module. At boot time this walks the device list and
11463  *      unhooks any devices that fail to initialise (normally hardware not
11464  *      present) and leaves us with a valid list of present and active devices.
11465  *
11466  */
11467
11468 /*
11469  *       This is called single threaded during boot, so no need
11470  *       to take the rtnl semaphore.
11471  */
11472 static int __init net_dev_init(void)
11473 {
11474         int i, rc = -ENOMEM;
11475
11476         BUG_ON(!dev_boot_phase);
11477
11478         if (dev_proc_init())
11479                 goto out;
11480
11481         if (netdev_kobject_init())
11482                 goto out;
11483
11484         INIT_LIST_HEAD(&ptype_all);
11485         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11486                 INIT_LIST_HEAD(&ptype_base[i]);
11487
11488         if (register_pernet_subsys(&netdev_net_ops))
11489                 goto out;
11490
11491         /*
11492          *      Initialise the packet receive queues.
11493          */
11494
11495         for_each_possible_cpu(i) {
11496                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11497                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11498
11499                 INIT_WORK(flush, flush_backlog);
11500
11501                 skb_queue_head_init(&sd->input_pkt_queue);
11502                 skb_queue_head_init(&sd->process_queue);
11503 #ifdef CONFIG_XFRM_OFFLOAD
11504                 skb_queue_head_init(&sd->xfrm_backlog);
11505 #endif
11506                 INIT_LIST_HEAD(&sd->poll_list);
11507                 sd->output_queue_tailp = &sd->output_queue;
11508 #ifdef CONFIG_RPS
11509                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11510                 sd->cpu = i;
11511 #endif
11512                 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11513                 spin_lock_init(&sd->defer_lock);
11514
11515                 init_gro_hash(&sd->backlog);
11516                 sd->backlog.poll = process_backlog;
11517                 sd->backlog.weight = weight_p;
11518         }
11519
11520         dev_boot_phase = 0;
11521
11522         /* The loopback device is special if any other network devices
11523          * is present in a network namespace the loopback device must
11524          * be present. Since we now dynamically allocate and free the
11525          * loopback device ensure this invariant is maintained by
11526          * keeping the loopback device as the first device on the
11527          * list of network devices.  Ensuring the loopback devices
11528          * is the first device that appears and the last network device
11529          * that disappears.
11530          */
11531         if (register_pernet_device(&loopback_net_ops))
11532                 goto out;
11533
11534         if (register_pernet_device(&default_device_ops))
11535                 goto out;
11536
11537         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11538         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11539
11540         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11541                                        NULL, dev_cpu_dead);
11542         WARN_ON(rc < 0);
11543         rc = 0;
11544 out:
11545         return rc;
11546 }
11547
11548 subsys_initcall(net_dev_init);