1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET3 Protocol independent device support routines.
5 * Derived from the non IP parts of dev.c 1.0.19
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
47 * Rudi Cilibrasi : Pass the right thing to
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
104 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
158 #include "net-sysfs.h"
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly; /* Taps */
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 struct net_device *dev,
167 struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176 * Writers must hold the rtnl semaphore while they loop through the
177 * dev_base_head list, and hold dev_base_lock for writing when they do the
178 * actual updates. This allows pure readers to access the list even
179 * while a writer is preparing to update it.
181 * To put it another way, dev_base_lock is held for writing only to
182 * protect against pure readers; the rtnl semaphore provides the
183 * protection against other writers.
185 * See, for example usages, register_netdevice() and
186 * unregister_netdevice(), which must be called with the rtnl
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
192 static DEFINE_MUTEX(ifalias_mutex);
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200 static DECLARE_RWSEM(devnet_rename_sem);
202 static inline void dev_base_seq_inc(struct net *net)
204 while (++net->dev_base_seq == 0)
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 unsigned long *flags)
223 if (IS_ENABLED(CONFIG_RPS))
224 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 local_irq_save(*flags);
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
231 if (IS_ENABLED(CONFIG_RPS))
232 spin_lock_irq(&sd->input_pkt_queue.lock);
233 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 unsigned long *flags)
240 if (IS_ENABLED(CONFIG_RPS))
241 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 local_irq_restore(*flags);
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
248 if (IS_ENABLED(CONFIG_RPS))
249 spin_unlock_irq(&sd->input_pkt_queue.lock);
250 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
257 struct netdev_name_node *name_node;
259 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
262 INIT_HLIST_NODE(&name_node->hlist);
263 name_node->dev = dev;
264 name_node->name = name;
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
271 struct netdev_name_node *name_node;
273 name_node = netdev_name_node_alloc(dev, dev->name);
276 INIT_LIST_HEAD(&name_node->list);
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
285 static void netdev_name_node_add(struct net *net,
286 struct netdev_name_node *name_node)
288 hlist_add_head_rcu(&name_node->hlist,
289 dev_name_hash(net, name_node->name));
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
294 hlist_del_rcu(&name_node->hlist);
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
300 struct hlist_head *head = dev_name_hash(net, name);
301 struct netdev_name_node *name_node;
303 hlist_for_each_entry(name_node, head, hlist)
304 if (!strcmp(name_node->name, name))
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
312 struct hlist_head *head = dev_name_hash(net, name);
313 struct netdev_name_node *name_node;
315 hlist_for_each_entry_rcu(name_node, head, hlist)
316 if (!strcmp(name_node->name, name))
321 bool netdev_name_in_use(struct net *net, const char *name)
323 return netdev_name_node_lookup(net, name);
325 EXPORT_SYMBOL(netdev_name_in_use);
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
329 struct netdev_name_node *name_node;
330 struct net *net = dev_net(dev);
332 name_node = netdev_name_node_lookup(net, name);
335 name_node = netdev_name_node_alloc(dev, name);
338 netdev_name_node_add(net, name_node);
339 /* The node that holds dev->name acts as a head of per-device list. */
340 list_add_tail(&name_node->list, &dev->name_node->list);
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
347 list_del(&name_node->list);
348 netdev_name_node_del(name_node);
349 kfree(name_node->name);
350 netdev_name_node_free(name_node);
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
355 struct netdev_name_node *name_node;
356 struct net *net = dev_net(dev);
358 name_node = netdev_name_node_lookup(net, name);
361 /* lookup might have found our primary name or a name belonging
364 if (name_node == dev->name_node || name_node->dev != dev)
367 __netdev_name_node_alt_destroy(name_node);
372 static void netdev_name_node_alt_flush(struct net_device *dev)
374 struct netdev_name_node *name_node, *tmp;
376 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377 __netdev_name_node_alt_destroy(name_node);
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
383 struct net *net = dev_net(dev);
387 write_lock(&dev_base_lock);
388 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389 netdev_name_node_add(net, dev->name_node);
390 hlist_add_head_rcu(&dev->index_hlist,
391 dev_index_hash(net, dev->ifindex));
392 write_unlock(&dev_base_lock);
393 /* We reserved the ifindex, this can't fail */
394 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
396 dev_base_seq_inc(net);
399 /* Device list removal
400 * caller must respect a RCU grace period before freeing/reusing dev
402 static void unlist_netdevice(struct net_device *dev, bool lock)
404 struct net *net = dev_net(dev);
408 xa_erase(&net->dev_by_index, dev->ifindex);
410 /* Unlink dev from the device chain */
412 write_lock(&dev_base_lock);
413 list_del_rcu(&dev->dev_list);
414 netdev_name_node_del(dev->name_node);
415 hlist_del_rcu(&dev->index_hlist);
417 write_unlock(&dev_base_lock);
419 dev_base_seq_inc(dev_net(dev));
426 static RAW_NOTIFIER_HEAD(netdev_chain);
429 * Device drivers call our routines to queue packets here. We empty the
430 * queue in the local softnet handler.
433 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
434 EXPORT_PER_CPU_SYMBOL(softnet_data);
436 #ifdef CONFIG_LOCKDEP
438 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
439 * according to dev->type
441 static const unsigned short netdev_lock_type[] = {
442 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
443 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
444 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
445 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
446 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
447 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
448 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
449 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
450 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
451 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
452 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
453 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
454 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
455 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
456 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
458 static const char *const netdev_lock_name[] = {
459 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
460 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
461 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
462 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
463 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
464 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
465 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
466 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
467 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
468 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
469 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
470 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
471 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
472 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
473 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
475 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
476 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
478 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
482 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
483 if (netdev_lock_type[i] == dev_type)
485 /* the last key is used by default */
486 return ARRAY_SIZE(netdev_lock_type) - 1;
489 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
490 unsigned short dev_type)
494 i = netdev_lock_pos(dev_type);
495 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
496 netdev_lock_name[i]);
499 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
503 i = netdev_lock_pos(dev->type);
504 lockdep_set_class_and_name(&dev->addr_list_lock,
505 &netdev_addr_lock_key[i],
506 netdev_lock_name[i]);
509 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
510 unsigned short dev_type)
514 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
519 /*******************************************************************************
521 * Protocol management and registration routines
523 *******************************************************************************/
527 * Add a protocol ID to the list. Now that the input handler is
528 * smarter we can dispense with all the messy stuff that used to be
531 * BEWARE!!! Protocol handlers, mangling input packets,
532 * MUST BE last in hash buckets and checking protocol handlers
533 * MUST start from promiscuous ptype_all chain in net_bh.
534 * It is true now, do not change it.
535 * Explanation follows: if protocol handler, mangling packet, will
536 * be the first on list, it is not able to sense, that packet
537 * is cloned and should be copied-on-write, so that it will
538 * change it and subsequent readers will get broken packet.
542 static inline struct list_head *ptype_head(const struct packet_type *pt)
544 if (pt->type == htons(ETH_P_ALL))
545 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
547 return pt->dev ? &pt->dev->ptype_specific :
548 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
552 * dev_add_pack - add packet handler
553 * @pt: packet type declaration
555 * Add a protocol handler to the networking stack. The passed &packet_type
556 * is linked into kernel lists and may not be freed until it has been
557 * removed from the kernel lists.
559 * This call does not sleep therefore it can not
560 * guarantee all CPU's that are in middle of receiving packets
561 * will see the new packet type (until the next received packet).
564 void dev_add_pack(struct packet_type *pt)
566 struct list_head *head = ptype_head(pt);
568 spin_lock(&ptype_lock);
569 list_add_rcu(&pt->list, head);
570 spin_unlock(&ptype_lock);
572 EXPORT_SYMBOL(dev_add_pack);
575 * __dev_remove_pack - remove packet handler
576 * @pt: packet type declaration
578 * Remove a protocol handler that was previously added to the kernel
579 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
580 * from the kernel lists and can be freed or reused once this function
583 * The packet type might still be in use by receivers
584 * and must not be freed until after all the CPU's have gone
585 * through a quiescent state.
587 void __dev_remove_pack(struct packet_type *pt)
589 struct list_head *head = ptype_head(pt);
590 struct packet_type *pt1;
592 spin_lock(&ptype_lock);
594 list_for_each_entry(pt1, head, list) {
596 list_del_rcu(&pt->list);
601 pr_warn("dev_remove_pack: %p not found\n", pt);
603 spin_unlock(&ptype_lock);
605 EXPORT_SYMBOL(__dev_remove_pack);
608 * dev_remove_pack - remove packet handler
609 * @pt: packet type declaration
611 * Remove a protocol handler that was previously added to the kernel
612 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
613 * from the kernel lists and can be freed or reused once this function
616 * This call sleeps to guarantee that no CPU is looking at the packet
619 void dev_remove_pack(struct packet_type *pt)
621 __dev_remove_pack(pt);
625 EXPORT_SYMBOL(dev_remove_pack);
628 /*******************************************************************************
630 * Device Interface Subroutines
632 *******************************************************************************/
635 * dev_get_iflink - get 'iflink' value of a interface
636 * @dev: targeted interface
638 * Indicates the ifindex the interface is linked to.
639 * Physical interfaces have the same 'ifindex' and 'iflink' values.
642 int dev_get_iflink(const struct net_device *dev)
644 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
645 return dev->netdev_ops->ndo_get_iflink(dev);
649 EXPORT_SYMBOL(dev_get_iflink);
652 * dev_fill_metadata_dst - Retrieve tunnel egress information.
653 * @dev: targeted interface
656 * For better visibility of tunnel traffic OVS needs to retrieve
657 * egress tunnel information for a packet. Following API allows
658 * user to get this info.
660 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
662 struct ip_tunnel_info *info;
664 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
667 info = skb_tunnel_info_unclone(skb);
670 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
673 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
675 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
677 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
679 int k = stack->num_paths++;
681 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
684 return &stack->path[k];
687 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
688 struct net_device_path_stack *stack)
690 const struct net_device *last_dev;
691 struct net_device_path_ctx ctx = {
694 struct net_device_path *path;
697 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
698 stack->num_paths = 0;
699 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
701 path = dev_fwd_path(stack);
705 memset(path, 0, sizeof(struct net_device_path));
706 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
710 if (WARN_ON_ONCE(last_dev == ctx.dev))
717 path = dev_fwd_path(stack);
720 path->type = DEV_PATH_ETHERNET;
725 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
728 * __dev_get_by_name - find a device by its name
729 * @net: the applicable net namespace
730 * @name: name to find
732 * Find an interface by name. Must be called under RTNL semaphore
733 * or @dev_base_lock. If the name is found a pointer to the device
734 * is returned. If the name is not found then %NULL is returned. The
735 * reference counters are not incremented so the caller must be
736 * careful with locks.
739 struct net_device *__dev_get_by_name(struct net *net, const char *name)
741 struct netdev_name_node *node_name;
743 node_name = netdev_name_node_lookup(net, name);
744 return node_name ? node_name->dev : NULL;
746 EXPORT_SYMBOL(__dev_get_by_name);
749 * dev_get_by_name_rcu - find a device by its name
750 * @net: the applicable net namespace
751 * @name: name to find
753 * Find an interface by name.
754 * If the name is found a pointer to the device is returned.
755 * If the name is not found then %NULL is returned.
756 * The reference counters are not incremented so the caller must be
757 * careful with locks. The caller must hold RCU lock.
760 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 struct netdev_name_node *node_name;
764 node_name = netdev_name_node_lookup_rcu(net, name);
765 return node_name ? node_name->dev : NULL;
767 EXPORT_SYMBOL(dev_get_by_name_rcu);
769 /* Deprecated for new users, call netdev_get_by_name() instead */
770 struct net_device *dev_get_by_name(struct net *net, const char *name)
772 struct net_device *dev;
775 dev = dev_get_by_name_rcu(net, name);
780 EXPORT_SYMBOL(dev_get_by_name);
783 * netdev_get_by_name() - find a device by its name
784 * @net: the applicable net namespace
785 * @name: name to find
786 * @tracker: tracking object for the acquired reference
787 * @gfp: allocation flags for the tracker
789 * Find an interface by name. This can be called from any
790 * context and does its own locking. The returned handle has
791 * the usage count incremented and the caller must use netdev_put() to
792 * release it when it is no longer needed. %NULL is returned if no
793 * matching device is found.
795 struct net_device *netdev_get_by_name(struct net *net, const char *name,
796 netdevice_tracker *tracker, gfp_t gfp)
798 struct net_device *dev;
800 dev = dev_get_by_name(net, name);
802 netdev_tracker_alloc(dev, tracker, gfp);
805 EXPORT_SYMBOL(netdev_get_by_name);
808 * __dev_get_by_index - find a device by its ifindex
809 * @net: the applicable net namespace
810 * @ifindex: index of device
812 * Search for an interface by index. Returns %NULL if the device
813 * is not found or a pointer to the device. The device has not
814 * had its reference counter increased so the caller must be careful
815 * about locking. The caller must hold either the RTNL semaphore
819 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
821 struct net_device *dev;
822 struct hlist_head *head = dev_index_hash(net, ifindex);
824 hlist_for_each_entry(dev, head, index_hlist)
825 if (dev->ifindex == ifindex)
830 EXPORT_SYMBOL(__dev_get_by_index);
833 * dev_get_by_index_rcu - find a device by its ifindex
834 * @net: the applicable net namespace
835 * @ifindex: index of device
837 * Search for an interface by index. Returns %NULL if the device
838 * is not found or a pointer to the device. The device has not
839 * had its reference counter increased so the caller must be careful
840 * about locking. The caller must hold RCU lock.
843 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
845 struct net_device *dev;
846 struct hlist_head *head = dev_index_hash(net, ifindex);
848 hlist_for_each_entry_rcu(dev, head, index_hlist)
849 if (dev->ifindex == ifindex)
854 EXPORT_SYMBOL(dev_get_by_index_rcu);
856 /* Deprecated for new users, call netdev_get_by_index() instead */
857 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 struct net_device *dev;
862 dev = dev_get_by_index_rcu(net, ifindex);
867 EXPORT_SYMBOL(dev_get_by_index);
870 * netdev_get_by_index() - find a device by its ifindex
871 * @net: the applicable net namespace
872 * @ifindex: index of device
873 * @tracker: tracking object for the acquired reference
874 * @gfp: allocation flags for the tracker
876 * Search for an interface by index. Returns NULL if the device
877 * is not found or a pointer to the device. The device returned has
878 * had a reference added and the pointer is safe until the user calls
879 * netdev_put() to indicate they have finished with it.
881 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
882 netdevice_tracker *tracker, gfp_t gfp)
884 struct net_device *dev;
886 dev = dev_get_by_index(net, ifindex);
888 netdev_tracker_alloc(dev, tracker, gfp);
891 EXPORT_SYMBOL(netdev_get_by_index);
894 * dev_get_by_napi_id - find a device by napi_id
895 * @napi_id: ID of the NAPI struct
897 * Search for an interface by NAPI ID. Returns %NULL if the device
898 * is not found or a pointer to the device. The device has not had
899 * its reference counter increased so the caller must be careful
900 * about locking. The caller must hold RCU lock.
903 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
905 struct napi_struct *napi;
907 WARN_ON_ONCE(!rcu_read_lock_held());
909 if (napi_id < MIN_NAPI_ID)
912 napi = napi_by_id(napi_id);
914 return napi ? napi->dev : NULL;
916 EXPORT_SYMBOL(dev_get_by_napi_id);
919 * netdev_get_name - get a netdevice name, knowing its ifindex.
920 * @net: network namespace
921 * @name: a pointer to the buffer where the name will be stored.
922 * @ifindex: the ifindex of the interface to get the name from.
924 int netdev_get_name(struct net *net, char *name, int ifindex)
926 struct net_device *dev;
929 down_read(&devnet_rename_sem);
932 dev = dev_get_by_index_rcu(net, ifindex);
938 strcpy(name, dev->name);
943 up_read(&devnet_rename_sem);
948 * dev_getbyhwaddr_rcu - find a device by its hardware address
949 * @net: the applicable net namespace
950 * @type: media type of device
951 * @ha: hardware address
953 * Search for an interface by MAC address. Returns NULL if the device
954 * is not found or a pointer to the device.
955 * The caller must hold RCU or RTNL.
956 * The returned device has not had its ref count increased
957 * and the caller must therefore be careful about locking
961 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
964 struct net_device *dev;
966 for_each_netdev_rcu(net, dev)
967 if (dev->type == type &&
968 !memcmp(dev->dev_addr, ha, dev->addr_len))
973 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
975 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
977 struct net_device *dev, *ret = NULL;
980 for_each_netdev_rcu(net, dev)
981 if (dev->type == type) {
989 EXPORT_SYMBOL(dev_getfirstbyhwtype);
992 * __dev_get_by_flags - find any device with given flags
993 * @net: the applicable net namespace
994 * @if_flags: IFF_* values
995 * @mask: bitmask of bits in if_flags to check
997 * Search for any interface with the given flags. Returns NULL if a device
998 * is not found or a pointer to the device. Must be called inside
999 * rtnl_lock(), and result refcount is unchanged.
1002 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1003 unsigned short mask)
1005 struct net_device *dev, *ret;
1010 for_each_netdev(net, dev) {
1011 if (((dev->flags ^ if_flags) & mask) == 0) {
1018 EXPORT_SYMBOL(__dev_get_by_flags);
1021 * dev_valid_name - check if name is okay for network device
1022 * @name: name string
1024 * Network device names need to be valid file names to
1025 * allow sysfs to work. We also disallow any kind of
1028 bool dev_valid_name(const char *name)
1032 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1034 if (!strcmp(name, ".") || !strcmp(name, ".."))
1038 if (*name == '/' || *name == ':' || isspace(*name))
1044 EXPORT_SYMBOL(dev_valid_name);
1047 * __dev_alloc_name - allocate a name for a device
1048 * @net: network namespace to allocate the device name in
1049 * @name: name format string
1050 * @buf: scratch buffer and result name string
1052 * Passed a format string - eg "lt%d" it will try and find a suitable
1053 * id. It scans list of devices to build up a free map, then chooses
1054 * the first empty slot. The caller must hold the dev_base or rtnl lock
1055 * while allocating the name and adding the device in order to avoid
1057 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1058 * Returns the number of the unit assigned or a negative errno code.
1061 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1065 const int max_netdevices = 8*PAGE_SIZE;
1066 unsigned long *inuse;
1067 struct net_device *d;
1069 if (!dev_valid_name(name))
1072 p = strchr(name, '%');
1075 * Verify the string as this thing may have come from
1076 * the user. There must be either one "%d" and no other "%"
1079 if (p[1] != 'd' || strchr(p + 2, '%'))
1082 /* Use one page as a bit array of possible slots */
1083 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1087 for_each_netdev(net, d) {
1088 struct netdev_name_node *name_node;
1090 netdev_for_each_altname(d, name_node) {
1091 if (!sscanf(name_node->name, name, &i))
1093 if (i < 0 || i >= max_netdevices)
1096 /* avoid cases where sscanf is not exact inverse of printf */
1097 snprintf(buf, IFNAMSIZ, name, i);
1098 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1099 __set_bit(i, inuse);
1101 if (!sscanf(d->name, name, &i))
1103 if (i < 0 || i >= max_netdevices)
1106 /* avoid cases where sscanf is not exact inverse of printf */
1107 snprintf(buf, IFNAMSIZ, name, i);
1108 if (!strncmp(buf, d->name, IFNAMSIZ))
1109 __set_bit(i, inuse);
1112 i = find_first_zero_bit(inuse, max_netdevices);
1116 snprintf(buf, IFNAMSIZ, name, i);
1117 if (!netdev_name_in_use(net, buf))
1120 /* It is possible to run out of possible slots
1121 * when the name is long and there isn't enough space left
1122 * for the digits, or if all bits are used.
1127 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1128 const char *want_name, char *out_name)
1132 if (!dev_valid_name(want_name))
1135 if (strchr(want_name, '%')) {
1136 ret = __dev_alloc_name(net, want_name, out_name);
1137 return ret < 0 ? ret : 0;
1138 } else if (netdev_name_in_use(net, want_name)) {
1140 } else if (out_name != want_name) {
1141 strscpy(out_name, want_name, IFNAMSIZ);
1147 static int dev_alloc_name_ns(struct net *net,
1148 struct net_device *dev,
1155 ret = __dev_alloc_name(net, name, buf);
1157 strscpy(dev->name, buf, IFNAMSIZ);
1162 * dev_alloc_name - allocate a name for a device
1164 * @name: name format string
1166 * Passed a format string - eg "lt%d" it will try and find a suitable
1167 * id. It scans list of devices to build up a free map, then chooses
1168 * the first empty slot. The caller must hold the dev_base or rtnl lock
1169 * while allocating the name and adding the device in order to avoid
1171 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1172 * Returns the number of the unit assigned or a negative errno code.
1175 int dev_alloc_name(struct net_device *dev, const char *name)
1177 return dev_alloc_name_ns(dev_net(dev), dev, name);
1179 EXPORT_SYMBOL(dev_alloc_name);
1181 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1187 ret = dev_prep_valid_name(net, dev, name, buf);
1189 strscpy(dev->name, buf, IFNAMSIZ);
1194 * dev_change_name - change name of a device
1196 * @newname: name (or format string) must be at least IFNAMSIZ
1198 * Change name of a device, can pass format strings "eth%d".
1201 int dev_change_name(struct net_device *dev, const char *newname)
1203 unsigned char old_assign_type;
1204 char oldname[IFNAMSIZ];
1210 BUG_ON(!dev_net(dev));
1214 down_write(&devnet_rename_sem);
1216 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1217 up_write(&devnet_rename_sem);
1221 memcpy(oldname, dev->name, IFNAMSIZ);
1223 err = dev_get_valid_name(net, dev, newname);
1225 up_write(&devnet_rename_sem);
1229 if (oldname[0] && !strchr(oldname, '%'))
1230 netdev_info(dev, "renamed from %s%s\n", oldname,
1231 dev->flags & IFF_UP ? " (while UP)" : "");
1233 old_assign_type = dev->name_assign_type;
1234 dev->name_assign_type = NET_NAME_RENAMED;
1237 ret = device_rename(&dev->dev, dev->name);
1239 memcpy(dev->name, oldname, IFNAMSIZ);
1240 dev->name_assign_type = old_assign_type;
1241 up_write(&devnet_rename_sem);
1245 up_write(&devnet_rename_sem);
1247 netdev_adjacent_rename_links(dev, oldname);
1249 write_lock(&dev_base_lock);
1250 netdev_name_node_del(dev->name_node);
1251 write_unlock(&dev_base_lock);
1255 write_lock(&dev_base_lock);
1256 netdev_name_node_add(net, dev->name_node);
1257 write_unlock(&dev_base_lock);
1259 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1260 ret = notifier_to_errno(ret);
1263 /* err >= 0 after dev_alloc_name() or stores the first errno */
1266 down_write(&devnet_rename_sem);
1267 memcpy(dev->name, oldname, IFNAMSIZ);
1268 memcpy(oldname, newname, IFNAMSIZ);
1269 dev->name_assign_type = old_assign_type;
1270 old_assign_type = NET_NAME_RENAMED;
1273 netdev_err(dev, "name change rollback failed: %d\n",
1282 * dev_set_alias - change ifalias of a device
1284 * @alias: name up to IFALIASZ
1285 * @len: limit of bytes to copy from info
1287 * Set ifalias for a device,
1289 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1291 struct dev_ifalias *new_alias = NULL;
1293 if (len >= IFALIASZ)
1297 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1301 memcpy(new_alias->ifalias, alias, len);
1302 new_alias->ifalias[len] = 0;
1305 mutex_lock(&ifalias_mutex);
1306 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1307 mutex_is_locked(&ifalias_mutex));
1308 mutex_unlock(&ifalias_mutex);
1311 kfree_rcu(new_alias, rcuhead);
1315 EXPORT_SYMBOL(dev_set_alias);
1318 * dev_get_alias - get ifalias of a device
1320 * @name: buffer to store name of ifalias
1321 * @len: size of buffer
1323 * get ifalias for a device. Caller must make sure dev cannot go
1324 * away, e.g. rcu read lock or own a reference count to device.
1326 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1328 const struct dev_ifalias *alias;
1332 alias = rcu_dereference(dev->ifalias);
1334 ret = snprintf(name, len, "%s", alias->ifalias);
1341 * netdev_features_change - device changes features
1342 * @dev: device to cause notification
1344 * Called to indicate a device has changed features.
1346 void netdev_features_change(struct net_device *dev)
1348 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1350 EXPORT_SYMBOL(netdev_features_change);
1353 * netdev_state_change - device changes state
1354 * @dev: device to cause notification
1356 * Called to indicate a device has changed state. This function calls
1357 * the notifier chains for netdev_chain and sends a NEWLINK message
1358 * to the routing socket.
1360 void netdev_state_change(struct net_device *dev)
1362 if (dev->flags & IFF_UP) {
1363 struct netdev_notifier_change_info change_info = {
1367 call_netdevice_notifiers_info(NETDEV_CHANGE,
1369 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1372 EXPORT_SYMBOL(netdev_state_change);
1375 * __netdev_notify_peers - notify network peers about existence of @dev,
1376 * to be called when rtnl lock is already held.
1377 * @dev: network device
1379 * Generate traffic such that interested network peers are aware of
1380 * @dev, such as by generating a gratuitous ARP. This may be used when
1381 * a device wants to inform the rest of the network about some sort of
1382 * reconfiguration such as a failover event or virtual machine
1385 void __netdev_notify_peers(struct net_device *dev)
1388 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1389 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1391 EXPORT_SYMBOL(__netdev_notify_peers);
1394 * netdev_notify_peers - notify network peers about existence of @dev
1395 * @dev: network device
1397 * Generate traffic such that interested network peers are aware of
1398 * @dev, such as by generating a gratuitous ARP. This may be used when
1399 * a device wants to inform the rest of the network about some sort of
1400 * reconfiguration such as a failover event or virtual machine
1403 void netdev_notify_peers(struct net_device *dev)
1406 __netdev_notify_peers(dev);
1409 EXPORT_SYMBOL(netdev_notify_peers);
1411 static int napi_threaded_poll(void *data);
1413 static int napi_kthread_create(struct napi_struct *n)
1417 /* Create and wake up the kthread once to put it in
1418 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1419 * warning and work with loadavg.
1421 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1422 n->dev->name, n->napi_id);
1423 if (IS_ERR(n->thread)) {
1424 err = PTR_ERR(n->thread);
1425 pr_err("kthread_run failed with err %d\n", err);
1432 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1434 const struct net_device_ops *ops = dev->netdev_ops;
1438 dev_addr_check(dev);
1440 if (!netif_device_present(dev)) {
1441 /* may be detached because parent is runtime-suspended */
1442 if (dev->dev.parent)
1443 pm_runtime_resume(dev->dev.parent);
1444 if (!netif_device_present(dev))
1448 /* Block netpoll from trying to do any rx path servicing.
1449 * If we don't do this there is a chance ndo_poll_controller
1450 * or ndo_poll may be running while we open the device
1452 netpoll_poll_disable(dev);
1454 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1455 ret = notifier_to_errno(ret);
1459 set_bit(__LINK_STATE_START, &dev->state);
1461 if (ops->ndo_validate_addr)
1462 ret = ops->ndo_validate_addr(dev);
1464 if (!ret && ops->ndo_open)
1465 ret = ops->ndo_open(dev);
1467 netpoll_poll_enable(dev);
1470 clear_bit(__LINK_STATE_START, &dev->state);
1472 dev->flags |= IFF_UP;
1473 dev_set_rx_mode(dev);
1475 add_device_randomness(dev->dev_addr, dev->addr_len);
1482 * dev_open - prepare an interface for use.
1483 * @dev: device to open
1484 * @extack: netlink extended ack
1486 * Takes a device from down to up state. The device's private open
1487 * function is invoked and then the multicast lists are loaded. Finally
1488 * the device is moved into the up state and a %NETDEV_UP message is
1489 * sent to the netdev notifier chain.
1491 * Calling this function on an active interface is a nop. On a failure
1492 * a negative errno code is returned.
1494 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1498 if (dev->flags & IFF_UP)
1501 ret = __dev_open(dev, extack);
1505 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1506 call_netdevice_notifiers(NETDEV_UP, dev);
1510 EXPORT_SYMBOL(dev_open);
1512 static void __dev_close_many(struct list_head *head)
1514 struct net_device *dev;
1519 list_for_each_entry(dev, head, close_list) {
1520 /* Temporarily disable netpoll until the interface is down */
1521 netpoll_poll_disable(dev);
1523 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1525 clear_bit(__LINK_STATE_START, &dev->state);
1527 /* Synchronize to scheduled poll. We cannot touch poll list, it
1528 * can be even on different cpu. So just clear netif_running().
1530 * dev->stop() will invoke napi_disable() on all of it's
1531 * napi_struct instances on this device.
1533 smp_mb__after_atomic(); /* Commit netif_running(). */
1536 dev_deactivate_many(head);
1538 list_for_each_entry(dev, head, close_list) {
1539 const struct net_device_ops *ops = dev->netdev_ops;
1542 * Call the device specific close. This cannot fail.
1543 * Only if device is UP
1545 * We allow it to be called even after a DETACH hot-plug
1551 dev->flags &= ~IFF_UP;
1552 netpoll_poll_enable(dev);
1556 static void __dev_close(struct net_device *dev)
1560 list_add(&dev->close_list, &single);
1561 __dev_close_many(&single);
1565 void dev_close_many(struct list_head *head, bool unlink)
1567 struct net_device *dev, *tmp;
1569 /* Remove the devices that don't need to be closed */
1570 list_for_each_entry_safe(dev, tmp, head, close_list)
1571 if (!(dev->flags & IFF_UP))
1572 list_del_init(&dev->close_list);
1574 __dev_close_many(head);
1576 list_for_each_entry_safe(dev, tmp, head, close_list) {
1577 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1578 call_netdevice_notifiers(NETDEV_DOWN, dev);
1580 list_del_init(&dev->close_list);
1583 EXPORT_SYMBOL(dev_close_many);
1586 * dev_close - shutdown an interface.
1587 * @dev: device to shutdown
1589 * This function moves an active device into down state. A
1590 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1591 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1594 void dev_close(struct net_device *dev)
1596 if (dev->flags & IFF_UP) {
1599 list_add(&dev->close_list, &single);
1600 dev_close_many(&single, true);
1604 EXPORT_SYMBOL(dev_close);
1608 * dev_disable_lro - disable Large Receive Offload on a device
1611 * Disable Large Receive Offload (LRO) on a net device. Must be
1612 * called under RTNL. This is needed if received packets may be
1613 * forwarded to another interface.
1615 void dev_disable_lro(struct net_device *dev)
1617 struct net_device *lower_dev;
1618 struct list_head *iter;
1620 dev->wanted_features &= ~NETIF_F_LRO;
1621 netdev_update_features(dev);
1623 if (unlikely(dev->features & NETIF_F_LRO))
1624 netdev_WARN(dev, "failed to disable LRO!\n");
1626 netdev_for_each_lower_dev(dev, lower_dev, iter)
1627 dev_disable_lro(lower_dev);
1629 EXPORT_SYMBOL(dev_disable_lro);
1632 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1635 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1636 * called under RTNL. This is needed if Generic XDP is installed on
1639 static void dev_disable_gro_hw(struct net_device *dev)
1641 dev->wanted_features &= ~NETIF_F_GRO_HW;
1642 netdev_update_features(dev);
1644 if (unlikely(dev->features & NETIF_F_GRO_HW))
1645 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1648 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1651 case NETDEV_##val: \
1652 return "NETDEV_" __stringify(val);
1654 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1655 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1656 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1657 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1658 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1659 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1660 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1661 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1662 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1663 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1664 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1668 return "UNKNOWN_NETDEV_EVENT";
1670 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1672 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1673 struct net_device *dev)
1675 struct netdev_notifier_info info = {
1679 return nb->notifier_call(nb, val, &info);
1682 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1683 struct net_device *dev)
1687 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1688 err = notifier_to_errno(err);
1692 if (!(dev->flags & IFF_UP))
1695 call_netdevice_notifier(nb, NETDEV_UP, dev);
1699 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1700 struct net_device *dev)
1702 if (dev->flags & IFF_UP) {
1703 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1705 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1707 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1710 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1713 struct net_device *dev;
1716 for_each_netdev(net, dev) {
1717 err = call_netdevice_register_notifiers(nb, dev);
1724 for_each_netdev_continue_reverse(net, dev)
1725 call_netdevice_unregister_notifiers(nb, dev);
1729 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1732 struct net_device *dev;
1734 for_each_netdev(net, dev)
1735 call_netdevice_unregister_notifiers(nb, dev);
1738 static int dev_boot_phase = 1;
1741 * register_netdevice_notifier - register a network notifier block
1744 * Register a notifier to be called when network device events occur.
1745 * The notifier passed is linked into the kernel structures and must
1746 * not be reused until it has been unregistered. A negative errno code
1747 * is returned on a failure.
1749 * When registered all registration and up events are replayed
1750 * to the new notifier to allow device to have a race free
1751 * view of the network device list.
1754 int register_netdevice_notifier(struct notifier_block *nb)
1759 /* Close race with setup_net() and cleanup_net() */
1760 down_write(&pernet_ops_rwsem);
1762 err = raw_notifier_chain_register(&netdev_chain, nb);
1768 err = call_netdevice_register_net_notifiers(nb, net);
1775 up_write(&pernet_ops_rwsem);
1779 for_each_net_continue_reverse(net)
1780 call_netdevice_unregister_net_notifiers(nb, net);
1782 raw_notifier_chain_unregister(&netdev_chain, nb);
1785 EXPORT_SYMBOL(register_netdevice_notifier);
1788 * unregister_netdevice_notifier - unregister a network notifier block
1791 * Unregister a notifier previously registered by
1792 * register_netdevice_notifier(). The notifier is unlinked into the
1793 * kernel structures and may then be reused. A negative errno code
1794 * is returned on a failure.
1796 * After unregistering unregister and down device events are synthesized
1797 * for all devices on the device list to the removed notifier to remove
1798 * the need for special case cleanup code.
1801 int unregister_netdevice_notifier(struct notifier_block *nb)
1806 /* Close race with setup_net() and cleanup_net() */
1807 down_write(&pernet_ops_rwsem);
1809 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1814 call_netdevice_unregister_net_notifiers(nb, net);
1818 up_write(&pernet_ops_rwsem);
1821 EXPORT_SYMBOL(unregister_netdevice_notifier);
1823 static int __register_netdevice_notifier_net(struct net *net,
1824 struct notifier_block *nb,
1825 bool ignore_call_fail)
1829 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1835 err = call_netdevice_register_net_notifiers(nb, net);
1836 if (err && !ignore_call_fail)
1837 goto chain_unregister;
1842 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1846 static int __unregister_netdevice_notifier_net(struct net *net,
1847 struct notifier_block *nb)
1851 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1855 call_netdevice_unregister_net_notifiers(nb, net);
1860 * register_netdevice_notifier_net - register a per-netns network notifier block
1861 * @net: network namespace
1864 * Register a notifier to be called when network device events occur.
1865 * The notifier passed is linked into the kernel structures and must
1866 * not be reused until it has been unregistered. A negative errno code
1867 * is returned on a failure.
1869 * When registered all registration and up events are replayed
1870 * to the new notifier to allow device to have a race free
1871 * view of the network device list.
1874 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1879 err = __register_netdevice_notifier_net(net, nb, false);
1883 EXPORT_SYMBOL(register_netdevice_notifier_net);
1886 * unregister_netdevice_notifier_net - unregister a per-netns
1887 * network notifier block
1888 * @net: network namespace
1891 * Unregister a notifier previously registered by
1892 * register_netdevice_notifier_net(). The notifier is unlinked from the
1893 * kernel structures and may then be reused. A negative errno code
1894 * is returned on a failure.
1896 * After unregistering unregister and down device events are synthesized
1897 * for all devices on the device list to the removed notifier to remove
1898 * the need for special case cleanup code.
1901 int unregister_netdevice_notifier_net(struct net *net,
1902 struct notifier_block *nb)
1907 err = __unregister_netdevice_notifier_net(net, nb);
1911 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1913 static void __move_netdevice_notifier_net(struct net *src_net,
1914 struct net *dst_net,
1915 struct notifier_block *nb)
1917 __unregister_netdevice_notifier_net(src_net, nb);
1918 __register_netdevice_notifier_net(dst_net, nb, true);
1921 int register_netdevice_notifier_dev_net(struct net_device *dev,
1922 struct notifier_block *nb,
1923 struct netdev_net_notifier *nn)
1928 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1931 list_add(&nn->list, &dev->net_notifier_list);
1936 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1938 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1939 struct notifier_block *nb,
1940 struct netdev_net_notifier *nn)
1945 list_del(&nn->list);
1946 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1950 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1952 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1955 struct netdev_net_notifier *nn;
1957 list_for_each_entry(nn, &dev->net_notifier_list, list)
1958 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1962 * call_netdevice_notifiers_info - call all network notifier blocks
1963 * @val: value passed unmodified to notifier function
1964 * @info: notifier information data
1966 * Call all network notifier blocks. Parameters and return value
1967 * are as for raw_notifier_call_chain().
1970 int call_netdevice_notifiers_info(unsigned long val,
1971 struct netdev_notifier_info *info)
1973 struct net *net = dev_net(info->dev);
1978 /* Run per-netns notifier block chain first, then run the global one.
1979 * Hopefully, one day, the global one is going to be removed after
1980 * all notifier block registrators get converted to be per-netns.
1982 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1983 if (ret & NOTIFY_STOP_MASK)
1985 return raw_notifier_call_chain(&netdev_chain, val, info);
1989 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1990 * for and rollback on error
1991 * @val_up: value passed unmodified to notifier function
1992 * @val_down: value passed unmodified to the notifier function when
1993 * recovering from an error on @val_up
1994 * @info: notifier information data
1996 * Call all per-netns network notifier blocks, but not notifier blocks on
1997 * the global notifier chain. Parameters and return value are as for
1998 * raw_notifier_call_chain_robust().
2002 call_netdevice_notifiers_info_robust(unsigned long val_up,
2003 unsigned long val_down,
2004 struct netdev_notifier_info *info)
2006 struct net *net = dev_net(info->dev);
2010 return raw_notifier_call_chain_robust(&net->netdev_chain,
2011 val_up, val_down, info);
2014 static int call_netdevice_notifiers_extack(unsigned long val,
2015 struct net_device *dev,
2016 struct netlink_ext_ack *extack)
2018 struct netdev_notifier_info info = {
2023 return call_netdevice_notifiers_info(val, &info);
2027 * call_netdevice_notifiers - call all network notifier blocks
2028 * @val: value passed unmodified to notifier function
2029 * @dev: net_device pointer passed unmodified to notifier function
2031 * Call all network notifier blocks. Parameters and return value
2032 * are as for raw_notifier_call_chain().
2035 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2037 return call_netdevice_notifiers_extack(val, dev, NULL);
2039 EXPORT_SYMBOL(call_netdevice_notifiers);
2042 * call_netdevice_notifiers_mtu - call all network notifier blocks
2043 * @val: value passed unmodified to notifier function
2044 * @dev: net_device pointer passed unmodified to notifier function
2045 * @arg: additional u32 argument passed to the notifier function
2047 * Call all network notifier blocks. Parameters and return value
2048 * are as for raw_notifier_call_chain().
2050 static int call_netdevice_notifiers_mtu(unsigned long val,
2051 struct net_device *dev, u32 arg)
2053 struct netdev_notifier_info_ext info = {
2058 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2060 return call_netdevice_notifiers_info(val, &info.info);
2063 #ifdef CONFIG_NET_INGRESS
2064 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2066 void net_inc_ingress_queue(void)
2068 static_branch_inc(&ingress_needed_key);
2070 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2072 void net_dec_ingress_queue(void)
2074 static_branch_dec(&ingress_needed_key);
2076 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2079 #ifdef CONFIG_NET_EGRESS
2080 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2082 void net_inc_egress_queue(void)
2084 static_branch_inc(&egress_needed_key);
2086 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2088 void net_dec_egress_queue(void)
2090 static_branch_dec(&egress_needed_key);
2092 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2095 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2096 EXPORT_SYMBOL(netstamp_needed_key);
2097 #ifdef CONFIG_JUMP_LABEL
2098 static atomic_t netstamp_needed_deferred;
2099 static atomic_t netstamp_wanted;
2100 static void netstamp_clear(struct work_struct *work)
2102 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2105 wanted = atomic_add_return(deferred, &netstamp_wanted);
2107 static_branch_enable(&netstamp_needed_key);
2109 static_branch_disable(&netstamp_needed_key);
2111 static DECLARE_WORK(netstamp_work, netstamp_clear);
2114 void net_enable_timestamp(void)
2116 #ifdef CONFIG_JUMP_LABEL
2117 int wanted = atomic_read(&netstamp_wanted);
2119 while (wanted > 0) {
2120 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2123 atomic_inc(&netstamp_needed_deferred);
2124 schedule_work(&netstamp_work);
2126 static_branch_inc(&netstamp_needed_key);
2129 EXPORT_SYMBOL(net_enable_timestamp);
2131 void net_disable_timestamp(void)
2133 #ifdef CONFIG_JUMP_LABEL
2134 int wanted = atomic_read(&netstamp_wanted);
2136 while (wanted > 1) {
2137 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2140 atomic_dec(&netstamp_needed_deferred);
2141 schedule_work(&netstamp_work);
2143 static_branch_dec(&netstamp_needed_key);
2146 EXPORT_SYMBOL(net_disable_timestamp);
2148 static inline void net_timestamp_set(struct sk_buff *skb)
2151 skb->mono_delivery_time = 0;
2152 if (static_branch_unlikely(&netstamp_needed_key))
2153 skb->tstamp = ktime_get_real();
2156 #define net_timestamp_check(COND, SKB) \
2157 if (static_branch_unlikely(&netstamp_needed_key)) { \
2158 if ((COND) && !(SKB)->tstamp) \
2159 (SKB)->tstamp = ktime_get_real(); \
2162 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2164 return __is_skb_forwardable(dev, skb, true);
2166 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2168 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2171 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2174 skb->protocol = eth_type_trans(skb, dev);
2175 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2181 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2183 return __dev_forward_skb2(dev, skb, true);
2185 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2188 * dev_forward_skb - loopback an skb to another netif
2190 * @dev: destination network device
2191 * @skb: buffer to forward
2194 * NET_RX_SUCCESS (no congestion)
2195 * NET_RX_DROP (packet was dropped, but freed)
2197 * dev_forward_skb can be used for injecting an skb from the
2198 * start_xmit function of one device into the receive queue
2199 * of another device.
2201 * The receiving device may be in another namespace, so
2202 * we have to clear all information in the skb that could
2203 * impact namespace isolation.
2205 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2207 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2209 EXPORT_SYMBOL_GPL(dev_forward_skb);
2211 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2213 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2216 static inline int deliver_skb(struct sk_buff *skb,
2217 struct packet_type *pt_prev,
2218 struct net_device *orig_dev)
2220 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2222 refcount_inc(&skb->users);
2223 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2226 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2227 struct packet_type **pt,
2228 struct net_device *orig_dev,
2230 struct list_head *ptype_list)
2232 struct packet_type *ptype, *pt_prev = *pt;
2234 list_for_each_entry_rcu(ptype, ptype_list, list) {
2235 if (ptype->type != type)
2238 deliver_skb(skb, pt_prev, orig_dev);
2244 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2246 if (!ptype->af_packet_priv || !skb->sk)
2249 if (ptype->id_match)
2250 return ptype->id_match(ptype, skb->sk);
2251 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2258 * dev_nit_active - return true if any network interface taps are in use
2260 * @dev: network device to check for the presence of taps
2262 bool dev_nit_active(struct net_device *dev)
2264 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2266 EXPORT_SYMBOL_GPL(dev_nit_active);
2269 * Support routine. Sends outgoing frames to any network
2270 * taps currently in use.
2273 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2275 struct packet_type *ptype;
2276 struct sk_buff *skb2 = NULL;
2277 struct packet_type *pt_prev = NULL;
2278 struct list_head *ptype_list = &ptype_all;
2282 list_for_each_entry_rcu(ptype, ptype_list, list) {
2283 if (ptype->ignore_outgoing)
2286 /* Never send packets back to the socket
2287 * they originated from - MvS (miquels@drinkel.ow.org)
2289 if (skb_loop_sk(ptype, skb))
2293 deliver_skb(skb2, pt_prev, skb->dev);
2298 /* need to clone skb, done only once */
2299 skb2 = skb_clone(skb, GFP_ATOMIC);
2303 net_timestamp_set(skb2);
2305 /* skb->nh should be correctly
2306 * set by sender, so that the second statement is
2307 * just protection against buggy protocols.
2309 skb_reset_mac_header(skb2);
2311 if (skb_network_header(skb2) < skb2->data ||
2312 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2313 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2314 ntohs(skb2->protocol),
2316 skb_reset_network_header(skb2);
2319 skb2->transport_header = skb2->network_header;
2320 skb2->pkt_type = PACKET_OUTGOING;
2324 if (ptype_list == &ptype_all) {
2325 ptype_list = &dev->ptype_all;
2330 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2331 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2337 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2340 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2341 * @dev: Network device
2342 * @txq: number of queues available
2344 * If real_num_tx_queues is changed the tc mappings may no longer be
2345 * valid. To resolve this verify the tc mapping remains valid and if
2346 * not NULL the mapping. With no priorities mapping to this
2347 * offset/count pair it will no longer be used. In the worst case TC0
2348 * is invalid nothing can be done so disable priority mappings. If is
2349 * expected that drivers will fix this mapping if they can before
2350 * calling netif_set_real_num_tx_queues.
2352 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2355 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2357 /* If TC0 is invalidated disable TC mapping */
2358 if (tc->offset + tc->count > txq) {
2359 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2364 /* Invalidated prio to tc mappings set to TC0 */
2365 for (i = 1; i < TC_BITMASK + 1; i++) {
2366 int q = netdev_get_prio_tc_map(dev, i);
2368 tc = &dev->tc_to_txq[q];
2369 if (tc->offset + tc->count > txq) {
2370 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2372 netdev_set_prio_tc_map(dev, i, 0);
2377 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2380 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2383 /* walk through the TCs and see if it falls into any of them */
2384 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2385 if ((txq - tc->offset) < tc->count)
2389 /* didn't find it, just return -1 to indicate no match */
2395 EXPORT_SYMBOL(netdev_txq_to_tc);
2398 static struct static_key xps_needed __read_mostly;
2399 static struct static_key xps_rxqs_needed __read_mostly;
2400 static DEFINE_MUTEX(xps_map_mutex);
2401 #define xmap_dereference(P) \
2402 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2404 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2405 struct xps_dev_maps *old_maps, int tci, u16 index)
2407 struct xps_map *map = NULL;
2410 map = xmap_dereference(dev_maps->attr_map[tci]);
2414 for (pos = map->len; pos--;) {
2415 if (map->queues[pos] != index)
2419 map->queues[pos] = map->queues[--map->len];
2424 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2425 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2426 kfree_rcu(map, rcu);
2433 static bool remove_xps_queue_cpu(struct net_device *dev,
2434 struct xps_dev_maps *dev_maps,
2435 int cpu, u16 offset, u16 count)
2437 int num_tc = dev_maps->num_tc;
2438 bool active = false;
2441 for (tci = cpu * num_tc; num_tc--; tci++) {
2444 for (i = count, j = offset; i--; j++) {
2445 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2455 static void reset_xps_maps(struct net_device *dev,
2456 struct xps_dev_maps *dev_maps,
2457 enum xps_map_type type)
2459 static_key_slow_dec_cpuslocked(&xps_needed);
2460 if (type == XPS_RXQS)
2461 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2463 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2465 kfree_rcu(dev_maps, rcu);
2468 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2469 u16 offset, u16 count)
2471 struct xps_dev_maps *dev_maps;
2472 bool active = false;
2475 dev_maps = xmap_dereference(dev->xps_maps[type]);
2479 for (j = 0; j < dev_maps->nr_ids; j++)
2480 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2482 reset_xps_maps(dev, dev_maps, type);
2484 if (type == XPS_CPUS) {
2485 for (i = offset + (count - 1); count--; i--)
2486 netdev_queue_numa_node_write(
2487 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2491 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2494 if (!static_key_false(&xps_needed))
2498 mutex_lock(&xps_map_mutex);
2500 if (static_key_false(&xps_rxqs_needed))
2501 clean_xps_maps(dev, XPS_RXQS, offset, count);
2503 clean_xps_maps(dev, XPS_CPUS, offset, count);
2505 mutex_unlock(&xps_map_mutex);
2509 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2511 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2514 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2515 u16 index, bool is_rxqs_map)
2517 struct xps_map *new_map;
2518 int alloc_len = XPS_MIN_MAP_ALLOC;
2521 for (pos = 0; map && pos < map->len; pos++) {
2522 if (map->queues[pos] != index)
2527 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2529 if (pos < map->alloc_len)
2532 alloc_len = map->alloc_len * 2;
2535 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2539 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2541 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2542 cpu_to_node(attr_index));
2546 for (i = 0; i < pos; i++)
2547 new_map->queues[i] = map->queues[i];
2548 new_map->alloc_len = alloc_len;
2554 /* Copy xps maps at a given index */
2555 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2556 struct xps_dev_maps *new_dev_maps, int index,
2557 int tc, bool skip_tc)
2559 int i, tci = index * dev_maps->num_tc;
2560 struct xps_map *map;
2562 /* copy maps belonging to foreign traffic classes */
2563 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2564 if (i == tc && skip_tc)
2567 /* fill in the new device map from the old device map */
2568 map = xmap_dereference(dev_maps->attr_map[tci]);
2569 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2573 /* Must be called under cpus_read_lock */
2574 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2575 u16 index, enum xps_map_type type)
2577 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2578 const unsigned long *online_mask = NULL;
2579 bool active = false, copy = false;
2580 int i, j, tci, numa_node_id = -2;
2581 int maps_sz, num_tc = 1, tc = 0;
2582 struct xps_map *map, *new_map;
2583 unsigned int nr_ids;
2585 WARN_ON_ONCE(index >= dev->num_tx_queues);
2588 /* Do not allow XPS on subordinate device directly */
2589 num_tc = dev->num_tc;
2593 /* If queue belongs to subordinate dev use its map */
2594 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2596 tc = netdev_txq_to_tc(dev, index);
2601 mutex_lock(&xps_map_mutex);
2603 dev_maps = xmap_dereference(dev->xps_maps[type]);
2604 if (type == XPS_RXQS) {
2605 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2606 nr_ids = dev->num_rx_queues;
2608 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2609 if (num_possible_cpus() > 1)
2610 online_mask = cpumask_bits(cpu_online_mask);
2611 nr_ids = nr_cpu_ids;
2614 if (maps_sz < L1_CACHE_BYTES)
2615 maps_sz = L1_CACHE_BYTES;
2617 /* The old dev_maps could be larger or smaller than the one we're
2618 * setting up now, as dev->num_tc or nr_ids could have been updated in
2619 * between. We could try to be smart, but let's be safe instead and only
2620 * copy foreign traffic classes if the two map sizes match.
2623 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2626 /* allocate memory for queue storage */
2627 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2629 if (!new_dev_maps) {
2630 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2631 if (!new_dev_maps) {
2632 mutex_unlock(&xps_map_mutex);
2636 new_dev_maps->nr_ids = nr_ids;
2637 new_dev_maps->num_tc = num_tc;
2640 tci = j * num_tc + tc;
2641 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2643 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2647 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2651 goto out_no_new_maps;
2654 /* Increment static keys at most once per type */
2655 static_key_slow_inc_cpuslocked(&xps_needed);
2656 if (type == XPS_RXQS)
2657 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2660 for (j = 0; j < nr_ids; j++) {
2661 bool skip_tc = false;
2663 tci = j * num_tc + tc;
2664 if (netif_attr_test_mask(j, mask, nr_ids) &&
2665 netif_attr_test_online(j, online_mask, nr_ids)) {
2666 /* add tx-queue to CPU/rx-queue maps */
2671 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2672 while ((pos < map->len) && (map->queues[pos] != index))
2675 if (pos == map->len)
2676 map->queues[map->len++] = index;
2678 if (type == XPS_CPUS) {
2679 if (numa_node_id == -2)
2680 numa_node_id = cpu_to_node(j);
2681 else if (numa_node_id != cpu_to_node(j))
2688 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2692 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2694 /* Cleanup old maps */
2696 goto out_no_old_maps;
2698 for (j = 0; j < dev_maps->nr_ids; j++) {
2699 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2700 map = xmap_dereference(dev_maps->attr_map[tci]);
2705 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2710 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2711 kfree_rcu(map, rcu);
2715 old_dev_maps = dev_maps;
2718 dev_maps = new_dev_maps;
2722 if (type == XPS_CPUS)
2723 /* update Tx queue numa node */
2724 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2725 (numa_node_id >= 0) ?
2726 numa_node_id : NUMA_NO_NODE);
2731 /* removes tx-queue from unused CPUs/rx-queues */
2732 for (j = 0; j < dev_maps->nr_ids; j++) {
2733 tci = j * dev_maps->num_tc;
2735 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2737 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2738 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2741 active |= remove_xps_queue(dev_maps,
2742 copy ? old_dev_maps : NULL,
2748 kfree_rcu(old_dev_maps, rcu);
2750 /* free map if not active */
2752 reset_xps_maps(dev, dev_maps, type);
2755 mutex_unlock(&xps_map_mutex);
2759 /* remove any maps that we added */
2760 for (j = 0; j < nr_ids; j++) {
2761 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2762 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2764 xmap_dereference(dev_maps->attr_map[tci]) :
2766 if (new_map && new_map != map)
2771 mutex_unlock(&xps_map_mutex);
2773 kfree(new_dev_maps);
2776 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2778 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2784 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2789 EXPORT_SYMBOL(netif_set_xps_queue);
2792 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2794 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2796 /* Unbind any subordinate channels */
2797 while (txq-- != &dev->_tx[0]) {
2799 netdev_unbind_sb_channel(dev, txq->sb_dev);
2803 void netdev_reset_tc(struct net_device *dev)
2806 netif_reset_xps_queues_gt(dev, 0);
2808 netdev_unbind_all_sb_channels(dev);
2810 /* Reset TC configuration of device */
2812 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2813 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2815 EXPORT_SYMBOL(netdev_reset_tc);
2817 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2819 if (tc >= dev->num_tc)
2823 netif_reset_xps_queues(dev, offset, count);
2825 dev->tc_to_txq[tc].count = count;
2826 dev->tc_to_txq[tc].offset = offset;
2829 EXPORT_SYMBOL(netdev_set_tc_queue);
2831 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2833 if (num_tc > TC_MAX_QUEUE)
2837 netif_reset_xps_queues_gt(dev, 0);
2839 netdev_unbind_all_sb_channels(dev);
2841 dev->num_tc = num_tc;
2844 EXPORT_SYMBOL(netdev_set_num_tc);
2846 void netdev_unbind_sb_channel(struct net_device *dev,
2847 struct net_device *sb_dev)
2849 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2852 netif_reset_xps_queues_gt(sb_dev, 0);
2854 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2855 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2857 while (txq-- != &dev->_tx[0]) {
2858 if (txq->sb_dev == sb_dev)
2862 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2864 int netdev_bind_sb_channel_queue(struct net_device *dev,
2865 struct net_device *sb_dev,
2866 u8 tc, u16 count, u16 offset)
2868 /* Make certain the sb_dev and dev are already configured */
2869 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2872 /* We cannot hand out queues we don't have */
2873 if ((offset + count) > dev->real_num_tx_queues)
2876 /* Record the mapping */
2877 sb_dev->tc_to_txq[tc].count = count;
2878 sb_dev->tc_to_txq[tc].offset = offset;
2880 /* Provide a way for Tx queue to find the tc_to_txq map or
2881 * XPS map for itself.
2884 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2888 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2890 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2892 /* Do not use a multiqueue device to represent a subordinate channel */
2893 if (netif_is_multiqueue(dev))
2896 /* We allow channels 1 - 32767 to be used for subordinate channels.
2897 * Channel 0 is meant to be "native" mode and used only to represent
2898 * the main root device. We allow writing 0 to reset the device back
2899 * to normal mode after being used as a subordinate channel.
2901 if (channel > S16_MAX)
2904 dev->num_tc = -channel;
2908 EXPORT_SYMBOL(netdev_set_sb_channel);
2911 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2912 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2914 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2919 disabling = txq < dev->real_num_tx_queues;
2921 if (txq < 1 || txq > dev->num_tx_queues)
2924 if (dev->reg_state == NETREG_REGISTERED ||
2925 dev->reg_state == NETREG_UNREGISTERING) {
2928 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2934 netif_setup_tc(dev, txq);
2936 dev_qdisc_change_real_num_tx(dev, txq);
2938 dev->real_num_tx_queues = txq;
2942 qdisc_reset_all_tx_gt(dev, txq);
2944 netif_reset_xps_queues_gt(dev, txq);
2948 dev->real_num_tx_queues = txq;
2953 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2957 * netif_set_real_num_rx_queues - set actual number of RX queues used
2958 * @dev: Network device
2959 * @rxq: Actual number of RX queues
2961 * This must be called either with the rtnl_lock held or before
2962 * registration of the net device. Returns 0 on success, or a
2963 * negative error code. If called before registration, it always
2966 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2970 if (rxq < 1 || rxq > dev->num_rx_queues)
2973 if (dev->reg_state == NETREG_REGISTERED) {
2976 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2982 dev->real_num_rx_queues = rxq;
2985 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2989 * netif_set_real_num_queues - set actual number of RX and TX queues used
2990 * @dev: Network device
2991 * @txq: Actual number of TX queues
2992 * @rxq: Actual number of RX queues
2994 * Set the real number of both TX and RX queues.
2995 * Does nothing if the number of queues is already correct.
2997 int netif_set_real_num_queues(struct net_device *dev,
2998 unsigned int txq, unsigned int rxq)
3000 unsigned int old_rxq = dev->real_num_rx_queues;
3003 if (txq < 1 || txq > dev->num_tx_queues ||
3004 rxq < 1 || rxq > dev->num_rx_queues)
3007 /* Start from increases, so the error path only does decreases -
3008 * decreases can't fail.
3010 if (rxq > dev->real_num_rx_queues) {
3011 err = netif_set_real_num_rx_queues(dev, rxq);
3015 if (txq > dev->real_num_tx_queues) {
3016 err = netif_set_real_num_tx_queues(dev, txq);
3020 if (rxq < dev->real_num_rx_queues)
3021 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3022 if (txq < dev->real_num_tx_queues)
3023 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3027 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3030 EXPORT_SYMBOL(netif_set_real_num_queues);
3033 * netif_set_tso_max_size() - set the max size of TSO frames supported
3034 * @dev: netdev to update
3035 * @size: max skb->len of a TSO frame
3037 * Set the limit on the size of TSO super-frames the device can handle.
3038 * Unless explicitly set the stack will assume the value of
3039 * %GSO_LEGACY_MAX_SIZE.
3041 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3043 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3044 if (size < READ_ONCE(dev->gso_max_size))
3045 netif_set_gso_max_size(dev, size);
3046 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3047 netif_set_gso_ipv4_max_size(dev, size);
3049 EXPORT_SYMBOL(netif_set_tso_max_size);
3052 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3053 * @dev: netdev to update
3054 * @segs: max number of TCP segments
3056 * Set the limit on the number of TCP segments the device can generate from
3057 * a single TSO super-frame.
3058 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3060 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3062 dev->tso_max_segs = segs;
3063 if (segs < READ_ONCE(dev->gso_max_segs))
3064 netif_set_gso_max_segs(dev, segs);
3066 EXPORT_SYMBOL(netif_set_tso_max_segs);
3069 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3070 * @to: netdev to update
3071 * @from: netdev from which to copy the limits
3073 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3075 netif_set_tso_max_size(to, from->tso_max_size);
3076 netif_set_tso_max_segs(to, from->tso_max_segs);
3078 EXPORT_SYMBOL(netif_inherit_tso_max);
3081 * netif_get_num_default_rss_queues - default number of RSS queues
3083 * Default value is the number of physical cores if there are only 1 or 2, or
3084 * divided by 2 if there are more.
3086 int netif_get_num_default_rss_queues(void)
3091 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3094 cpumask_copy(cpus, cpu_online_mask);
3095 for_each_cpu(cpu, cpus) {
3097 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3099 free_cpumask_var(cpus);
3101 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3103 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3105 static void __netif_reschedule(struct Qdisc *q)
3107 struct softnet_data *sd;
3108 unsigned long flags;
3110 local_irq_save(flags);
3111 sd = this_cpu_ptr(&softnet_data);
3112 q->next_sched = NULL;
3113 *sd->output_queue_tailp = q;
3114 sd->output_queue_tailp = &q->next_sched;
3115 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3116 local_irq_restore(flags);
3119 void __netif_schedule(struct Qdisc *q)
3121 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3122 __netif_reschedule(q);
3124 EXPORT_SYMBOL(__netif_schedule);
3126 struct dev_kfree_skb_cb {
3127 enum skb_drop_reason reason;
3130 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3132 return (struct dev_kfree_skb_cb *)skb->cb;
3135 void netif_schedule_queue(struct netdev_queue *txq)
3138 if (!netif_xmit_stopped(txq)) {
3139 struct Qdisc *q = rcu_dereference(txq->qdisc);
3141 __netif_schedule(q);
3145 EXPORT_SYMBOL(netif_schedule_queue);
3147 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3149 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3153 q = rcu_dereference(dev_queue->qdisc);
3154 __netif_schedule(q);
3158 EXPORT_SYMBOL(netif_tx_wake_queue);
3160 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3162 unsigned long flags;
3167 if (likely(refcount_read(&skb->users) == 1)) {
3169 refcount_set(&skb->users, 0);
3170 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3173 get_kfree_skb_cb(skb)->reason = reason;
3174 local_irq_save(flags);
3175 skb->next = __this_cpu_read(softnet_data.completion_queue);
3176 __this_cpu_write(softnet_data.completion_queue, skb);
3177 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3178 local_irq_restore(flags);
3180 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3182 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3184 if (in_hardirq() || irqs_disabled())
3185 dev_kfree_skb_irq_reason(skb, reason);
3187 kfree_skb_reason(skb, reason);
3189 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3193 * netif_device_detach - mark device as removed
3194 * @dev: network device
3196 * Mark device as removed from system and therefore no longer available.
3198 void netif_device_detach(struct net_device *dev)
3200 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3201 netif_running(dev)) {
3202 netif_tx_stop_all_queues(dev);
3205 EXPORT_SYMBOL(netif_device_detach);
3208 * netif_device_attach - mark device as attached
3209 * @dev: network device
3211 * Mark device as attached from system and restart if needed.
3213 void netif_device_attach(struct net_device *dev)
3215 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3216 netif_running(dev)) {
3217 netif_tx_wake_all_queues(dev);
3218 __netdev_watchdog_up(dev);
3221 EXPORT_SYMBOL(netif_device_attach);
3224 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3225 * to be used as a distribution range.
3227 static u16 skb_tx_hash(const struct net_device *dev,
3228 const struct net_device *sb_dev,
3229 struct sk_buff *skb)
3233 u16 qcount = dev->real_num_tx_queues;
3236 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3238 qoffset = sb_dev->tc_to_txq[tc].offset;
3239 qcount = sb_dev->tc_to_txq[tc].count;
3240 if (unlikely(!qcount)) {
3241 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3242 sb_dev->name, qoffset, tc);
3244 qcount = dev->real_num_tx_queues;
3248 if (skb_rx_queue_recorded(skb)) {
3249 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3250 hash = skb_get_rx_queue(skb);
3251 if (hash >= qoffset)
3253 while (unlikely(hash >= qcount))
3255 return hash + qoffset;
3258 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3261 void skb_warn_bad_offload(const struct sk_buff *skb)
3263 static const netdev_features_t null_features;
3264 struct net_device *dev = skb->dev;
3265 const char *name = "";
3267 if (!net_ratelimit())
3271 if (dev->dev.parent)
3272 name = dev_driver_string(dev->dev.parent);
3274 name = netdev_name(dev);
3276 skb_dump(KERN_WARNING, skb, false);
3277 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3278 name, dev ? &dev->features : &null_features,
3279 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3283 * Invalidate hardware checksum when packet is to be mangled, and
3284 * complete checksum manually on outgoing path.
3286 int skb_checksum_help(struct sk_buff *skb)
3289 int ret = 0, offset;
3291 if (skb->ip_summed == CHECKSUM_COMPLETE)
3292 goto out_set_summed;
3294 if (unlikely(skb_is_gso(skb))) {
3295 skb_warn_bad_offload(skb);
3299 /* Before computing a checksum, we should make sure no frag could
3300 * be modified by an external entity : checksum could be wrong.
3302 if (skb_has_shared_frag(skb)) {
3303 ret = __skb_linearize(skb);
3308 offset = skb_checksum_start_offset(skb);
3310 if (unlikely(offset >= skb_headlen(skb))) {
3311 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3312 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3313 offset, skb_headlen(skb));
3316 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3318 offset += skb->csum_offset;
3319 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3320 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3321 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3322 offset + sizeof(__sum16), skb_headlen(skb));
3325 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3329 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3331 skb->ip_summed = CHECKSUM_NONE;
3335 EXPORT_SYMBOL(skb_checksum_help);
3337 int skb_crc32c_csum_help(struct sk_buff *skb)
3340 int ret = 0, offset, start;
3342 if (skb->ip_summed != CHECKSUM_PARTIAL)
3345 if (unlikely(skb_is_gso(skb)))
3348 /* Before computing a checksum, we should make sure no frag could
3349 * be modified by an external entity : checksum could be wrong.
3351 if (unlikely(skb_has_shared_frag(skb))) {
3352 ret = __skb_linearize(skb);
3356 start = skb_checksum_start_offset(skb);
3357 offset = start + offsetof(struct sctphdr, checksum);
3358 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3363 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3367 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3368 skb->len - start, ~(__u32)0,
3370 *(__le32 *)(skb->data + offset) = crc32c_csum;
3371 skb_reset_csum_not_inet(skb);
3376 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3378 __be16 type = skb->protocol;
3380 /* Tunnel gso handlers can set protocol to ethernet. */
3381 if (type == htons(ETH_P_TEB)) {
3384 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3387 eth = (struct ethhdr *)skb->data;
3388 type = eth->h_proto;
3391 return vlan_get_protocol_and_depth(skb, type, depth);
3395 /* Take action when hardware reception checksum errors are detected. */
3397 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3399 netdev_err(dev, "hw csum failure\n");
3400 skb_dump(KERN_ERR, skb, true);
3404 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3406 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3408 EXPORT_SYMBOL(netdev_rx_csum_fault);
3411 /* XXX: check that highmem exists at all on the given machine. */
3412 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3414 #ifdef CONFIG_HIGHMEM
3417 if (!(dev->features & NETIF_F_HIGHDMA)) {
3418 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3419 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3421 if (PageHighMem(skb_frag_page(frag)))
3429 /* If MPLS offload request, verify we are testing hardware MPLS features
3430 * instead of standard features for the netdev.
3432 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3433 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3434 netdev_features_t features,
3437 if (eth_p_mpls(type))
3438 features &= skb->dev->mpls_features;
3443 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3444 netdev_features_t features,
3451 static netdev_features_t harmonize_features(struct sk_buff *skb,
3452 netdev_features_t features)
3456 type = skb_network_protocol(skb, NULL);
3457 features = net_mpls_features(skb, features, type);
3459 if (skb->ip_summed != CHECKSUM_NONE &&
3460 !can_checksum_protocol(features, type)) {
3461 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3463 if (illegal_highdma(skb->dev, skb))
3464 features &= ~NETIF_F_SG;
3469 netdev_features_t passthru_features_check(struct sk_buff *skb,
3470 struct net_device *dev,
3471 netdev_features_t features)
3475 EXPORT_SYMBOL(passthru_features_check);
3477 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3478 struct net_device *dev,
3479 netdev_features_t features)
3481 return vlan_features_check(skb, features);
3484 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3485 struct net_device *dev,
3486 netdev_features_t features)
3488 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3490 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3491 return features & ~NETIF_F_GSO_MASK;
3493 if (!skb_shinfo(skb)->gso_type) {
3494 skb_warn_bad_offload(skb);
3495 return features & ~NETIF_F_GSO_MASK;
3498 /* Support for GSO partial features requires software
3499 * intervention before we can actually process the packets
3500 * so we need to strip support for any partial features now
3501 * and we can pull them back in after we have partially
3502 * segmented the frame.
3504 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3505 features &= ~dev->gso_partial_features;
3507 /* Make sure to clear the IPv4 ID mangling feature if the
3508 * IPv4 header has the potential to be fragmented.
3510 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3511 struct iphdr *iph = skb->encapsulation ?
3512 inner_ip_hdr(skb) : ip_hdr(skb);
3514 if (!(iph->frag_off & htons(IP_DF)))
3515 features &= ~NETIF_F_TSO_MANGLEID;
3521 netdev_features_t netif_skb_features(struct sk_buff *skb)
3523 struct net_device *dev = skb->dev;
3524 netdev_features_t features = dev->features;
3526 if (skb_is_gso(skb))
3527 features = gso_features_check(skb, dev, features);
3529 /* If encapsulation offload request, verify we are testing
3530 * hardware encapsulation features instead of standard
3531 * features for the netdev
3533 if (skb->encapsulation)
3534 features &= dev->hw_enc_features;
3536 if (skb_vlan_tagged(skb))
3537 features = netdev_intersect_features(features,
3538 dev->vlan_features |
3539 NETIF_F_HW_VLAN_CTAG_TX |
3540 NETIF_F_HW_VLAN_STAG_TX);
3542 if (dev->netdev_ops->ndo_features_check)
3543 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3546 features &= dflt_features_check(skb, dev, features);
3548 return harmonize_features(skb, features);
3550 EXPORT_SYMBOL(netif_skb_features);
3552 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3553 struct netdev_queue *txq, bool more)
3558 if (dev_nit_active(dev))
3559 dev_queue_xmit_nit(skb, dev);
3562 trace_net_dev_start_xmit(skb, dev);
3563 rc = netdev_start_xmit(skb, dev, txq, more);
3564 trace_net_dev_xmit(skb, rc, dev, len);
3569 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3570 struct netdev_queue *txq, int *ret)
3572 struct sk_buff *skb = first;
3573 int rc = NETDEV_TX_OK;
3576 struct sk_buff *next = skb->next;
3578 skb_mark_not_on_list(skb);
3579 rc = xmit_one(skb, dev, txq, next != NULL);
3580 if (unlikely(!dev_xmit_complete(rc))) {
3586 if (netif_tx_queue_stopped(txq) && skb) {
3587 rc = NETDEV_TX_BUSY;
3597 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3598 netdev_features_t features)
3600 if (skb_vlan_tag_present(skb) &&
3601 !vlan_hw_offload_capable(features, skb->vlan_proto))
3602 skb = __vlan_hwaccel_push_inside(skb);
3606 int skb_csum_hwoffload_help(struct sk_buff *skb,
3607 const netdev_features_t features)
3609 if (unlikely(skb_csum_is_sctp(skb)))
3610 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3611 skb_crc32c_csum_help(skb);
3613 if (features & NETIF_F_HW_CSUM)
3616 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3617 switch (skb->csum_offset) {
3618 case offsetof(struct tcphdr, check):
3619 case offsetof(struct udphdr, check):
3624 return skb_checksum_help(skb);
3626 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3628 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3630 netdev_features_t features;
3632 features = netif_skb_features(skb);
3633 skb = validate_xmit_vlan(skb, features);
3637 skb = sk_validate_xmit_skb(skb, dev);
3641 if (netif_needs_gso(skb, features)) {
3642 struct sk_buff *segs;
3644 segs = skb_gso_segment(skb, features);
3652 if (skb_needs_linearize(skb, features) &&
3653 __skb_linearize(skb))
3656 /* If packet is not checksummed and device does not
3657 * support checksumming for this protocol, complete
3658 * checksumming here.
3660 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3661 if (skb->encapsulation)
3662 skb_set_inner_transport_header(skb,
3663 skb_checksum_start_offset(skb));
3665 skb_set_transport_header(skb,
3666 skb_checksum_start_offset(skb));
3667 if (skb_csum_hwoffload_help(skb, features))
3672 skb = validate_xmit_xfrm(skb, features, again);
3679 dev_core_stats_tx_dropped_inc(dev);
3683 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3685 struct sk_buff *next, *head = NULL, *tail;
3687 for (; skb != NULL; skb = next) {
3689 skb_mark_not_on_list(skb);
3691 /* in case skb wont be segmented, point to itself */
3694 skb = validate_xmit_skb(skb, dev, again);
3702 /* If skb was segmented, skb->prev points to
3703 * the last segment. If not, it still contains skb.
3709 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3711 static void qdisc_pkt_len_init(struct sk_buff *skb)
3713 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3715 qdisc_skb_cb(skb)->pkt_len = skb->len;
3717 /* To get more precise estimation of bytes sent on wire,
3718 * we add to pkt_len the headers size of all segments
3720 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3721 u16 gso_segs = shinfo->gso_segs;
3722 unsigned int hdr_len;
3724 /* mac layer + network layer */
3725 hdr_len = skb_transport_offset(skb);
3727 /* + transport layer */
3728 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3729 const struct tcphdr *th;
3730 struct tcphdr _tcphdr;
3732 th = skb_header_pointer(skb, hdr_len,
3733 sizeof(_tcphdr), &_tcphdr);
3735 hdr_len += __tcp_hdrlen(th);
3737 struct udphdr _udphdr;
3739 if (skb_header_pointer(skb, hdr_len,
3740 sizeof(_udphdr), &_udphdr))
3741 hdr_len += sizeof(struct udphdr);
3744 if (shinfo->gso_type & SKB_GSO_DODGY)
3745 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3748 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3752 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3753 struct sk_buff **to_free,
3754 struct netdev_queue *txq)
3758 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3759 if (rc == NET_XMIT_SUCCESS)
3760 trace_qdisc_enqueue(q, txq, skb);
3764 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3765 struct net_device *dev,
3766 struct netdev_queue *txq)
3768 spinlock_t *root_lock = qdisc_lock(q);
3769 struct sk_buff *to_free = NULL;
3773 qdisc_calculate_pkt_len(skb, q);
3775 if (q->flags & TCQ_F_NOLOCK) {
3776 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3777 qdisc_run_begin(q)) {
3778 /* Retest nolock_qdisc_is_empty() within the protection
3779 * of q->seqlock to protect from racing with requeuing.
3781 if (unlikely(!nolock_qdisc_is_empty(q))) {
3782 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3789 qdisc_bstats_cpu_update(q, skb);
3790 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3791 !nolock_qdisc_is_empty(q))
3795 return NET_XMIT_SUCCESS;
3798 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3802 if (unlikely(to_free))
3803 kfree_skb_list_reason(to_free,
3804 SKB_DROP_REASON_QDISC_DROP);
3809 * Heuristic to force contended enqueues to serialize on a
3810 * separate lock before trying to get qdisc main lock.
3811 * This permits qdisc->running owner to get the lock more
3812 * often and dequeue packets faster.
3813 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3814 * and then other tasks will only enqueue packets. The packets will be
3815 * sent after the qdisc owner is scheduled again. To prevent this
3816 * scenario the task always serialize on the lock.
3818 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3819 if (unlikely(contended))
3820 spin_lock(&q->busylock);
3822 spin_lock(root_lock);
3823 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3824 __qdisc_drop(skb, &to_free);
3826 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3827 qdisc_run_begin(q)) {
3829 * This is a work-conserving queue; there are no old skbs
3830 * waiting to be sent out; and the qdisc is not running -
3831 * xmit the skb directly.
3834 qdisc_bstats_update(q, skb);
3836 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3837 if (unlikely(contended)) {
3838 spin_unlock(&q->busylock);
3845 rc = NET_XMIT_SUCCESS;
3847 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3848 if (qdisc_run_begin(q)) {
3849 if (unlikely(contended)) {
3850 spin_unlock(&q->busylock);
3857 spin_unlock(root_lock);
3858 if (unlikely(to_free))
3859 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3860 if (unlikely(contended))
3861 spin_unlock(&q->busylock);
3865 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3866 static void skb_update_prio(struct sk_buff *skb)
3868 const struct netprio_map *map;
3869 const struct sock *sk;
3870 unsigned int prioidx;
3874 map = rcu_dereference_bh(skb->dev->priomap);
3877 sk = skb_to_full_sk(skb);
3881 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3883 if (prioidx < map->priomap_len)
3884 skb->priority = map->priomap[prioidx];
3887 #define skb_update_prio(skb)
3891 * dev_loopback_xmit - loop back @skb
3892 * @net: network namespace this loopback is happening in
3893 * @sk: sk needed to be a netfilter okfn
3894 * @skb: buffer to transmit
3896 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3898 skb_reset_mac_header(skb);
3899 __skb_pull(skb, skb_network_offset(skb));
3900 skb->pkt_type = PACKET_LOOPBACK;
3901 if (skb->ip_summed == CHECKSUM_NONE)
3902 skb->ip_summed = CHECKSUM_UNNECESSARY;
3903 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3908 EXPORT_SYMBOL(dev_loopback_xmit);
3910 #ifdef CONFIG_NET_EGRESS
3911 static struct netdev_queue *
3912 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3914 int qm = skb_get_queue_mapping(skb);
3916 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3919 static bool netdev_xmit_txqueue_skipped(void)
3921 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3924 void netdev_xmit_skip_txqueue(bool skip)
3926 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3928 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3929 #endif /* CONFIG_NET_EGRESS */
3931 #ifdef CONFIG_NET_XGRESS
3932 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb)
3934 int ret = TC_ACT_UNSPEC;
3935 #ifdef CONFIG_NET_CLS_ACT
3936 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3937 struct tcf_result res;
3942 tc_skb_cb(skb)->mru = 0;
3943 tc_skb_cb(skb)->post_ct = false;
3945 mini_qdisc_bstats_cpu_update(miniq, skb);
3946 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3947 /* Only tcf related quirks below. */
3950 mini_qdisc_qstats_cpu_drop(miniq);
3953 case TC_ACT_RECLASSIFY:
3954 skb->tc_index = TC_H_MIN(res.classid);
3957 #endif /* CONFIG_NET_CLS_ACT */
3961 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3965 static_branch_inc(&tcx_needed_key);
3970 static_branch_dec(&tcx_needed_key);
3973 static __always_inline enum tcx_action_base
3974 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3975 const bool needs_mac)
3977 const struct bpf_mprog_fp *fp;
3978 const struct bpf_prog *prog;
3982 __skb_push(skb, skb->mac_len);
3983 bpf_mprog_foreach_prog(entry, fp, prog) {
3984 bpf_compute_data_pointers(skb);
3985 ret = bpf_prog_run(prog, skb);
3986 if (ret != TCX_NEXT)
3990 __skb_pull(skb, skb->mac_len);
3991 return tcx_action_code(skb, ret);
3994 static __always_inline struct sk_buff *
3995 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3996 struct net_device *orig_dev, bool *another)
3998 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4004 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4008 qdisc_skb_cb(skb)->pkt_len = skb->len;
4009 tcx_set_ingress(skb, true);
4011 if (static_branch_unlikely(&tcx_needed_key)) {
4012 sch_ret = tcx_run(entry, skb, true);
4013 if (sch_ret != TC_ACT_UNSPEC)
4014 goto ingress_verdict;
4016 sch_ret = tc_run(tcx_entry(entry), skb);
4019 case TC_ACT_REDIRECT:
4020 /* skb_mac_header check was done by BPF, so we can safely
4021 * push the L2 header back before redirecting to another
4024 __skb_push(skb, skb->mac_len);
4025 if (skb_do_redirect(skb) == -EAGAIN) {
4026 __skb_pull(skb, skb->mac_len);
4030 *ret = NET_RX_SUCCESS;
4033 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
4036 /* used by tc_run */
4042 case TC_ACT_CONSUMED:
4043 *ret = NET_RX_SUCCESS;
4050 static __always_inline struct sk_buff *
4051 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4053 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4059 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4060 * already set by the caller.
4062 if (static_branch_unlikely(&tcx_needed_key)) {
4063 sch_ret = tcx_run(entry, skb, false);
4064 if (sch_ret != TC_ACT_UNSPEC)
4065 goto egress_verdict;
4067 sch_ret = tc_run(tcx_entry(entry), skb);
4070 case TC_ACT_REDIRECT:
4071 /* No need to push/pop skb's mac_header here on egress! */
4072 skb_do_redirect(skb);
4073 *ret = NET_XMIT_SUCCESS;
4076 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
4077 *ret = NET_XMIT_DROP;
4079 /* used by tc_run */
4085 case TC_ACT_CONSUMED:
4086 *ret = NET_XMIT_SUCCESS;
4093 static __always_inline struct sk_buff *
4094 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4095 struct net_device *orig_dev, bool *another)
4100 static __always_inline struct sk_buff *
4101 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4105 #endif /* CONFIG_NET_XGRESS */
4108 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4109 struct xps_dev_maps *dev_maps, unsigned int tci)
4111 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4112 struct xps_map *map;
4113 int queue_index = -1;
4115 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4118 tci *= dev_maps->num_tc;
4121 map = rcu_dereference(dev_maps->attr_map[tci]);
4124 queue_index = map->queues[0];
4126 queue_index = map->queues[reciprocal_scale(
4127 skb_get_hash(skb), map->len)];
4128 if (unlikely(queue_index >= dev->real_num_tx_queues))
4135 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4136 struct sk_buff *skb)
4139 struct xps_dev_maps *dev_maps;
4140 struct sock *sk = skb->sk;
4141 int queue_index = -1;
4143 if (!static_key_false(&xps_needed))
4147 if (!static_key_false(&xps_rxqs_needed))
4150 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4152 int tci = sk_rx_queue_get(sk);
4155 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4160 if (queue_index < 0) {
4161 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4163 unsigned int tci = skb->sender_cpu - 1;
4165 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4177 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4178 struct net_device *sb_dev)
4182 EXPORT_SYMBOL(dev_pick_tx_zero);
4184 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4185 struct net_device *sb_dev)
4187 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4189 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4191 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4192 struct net_device *sb_dev)
4194 struct sock *sk = skb->sk;
4195 int queue_index = sk_tx_queue_get(sk);
4197 sb_dev = sb_dev ? : dev;
4199 if (queue_index < 0 || skb->ooo_okay ||
4200 queue_index >= dev->real_num_tx_queues) {
4201 int new_index = get_xps_queue(dev, sb_dev, skb);
4204 new_index = skb_tx_hash(dev, sb_dev, skb);
4206 if (queue_index != new_index && sk &&
4208 rcu_access_pointer(sk->sk_dst_cache))
4209 sk_tx_queue_set(sk, new_index);
4211 queue_index = new_index;
4216 EXPORT_SYMBOL(netdev_pick_tx);
4218 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4219 struct sk_buff *skb,
4220 struct net_device *sb_dev)
4222 int queue_index = 0;
4225 u32 sender_cpu = skb->sender_cpu - 1;
4227 if (sender_cpu >= (u32)NR_CPUS)
4228 skb->sender_cpu = raw_smp_processor_id() + 1;
4231 if (dev->real_num_tx_queues != 1) {
4232 const struct net_device_ops *ops = dev->netdev_ops;
4234 if (ops->ndo_select_queue)
4235 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4237 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4239 queue_index = netdev_cap_txqueue(dev, queue_index);
4242 skb_set_queue_mapping(skb, queue_index);
4243 return netdev_get_tx_queue(dev, queue_index);
4247 * __dev_queue_xmit() - transmit a buffer
4248 * @skb: buffer to transmit
4249 * @sb_dev: suboordinate device used for L2 forwarding offload
4251 * Queue a buffer for transmission to a network device. The caller must
4252 * have set the device and priority and built the buffer before calling
4253 * this function. The function can be called from an interrupt.
4255 * When calling this method, interrupts MUST be enabled. This is because
4256 * the BH enable code must have IRQs enabled so that it will not deadlock.
4258 * Regardless of the return value, the skb is consumed, so it is currently
4259 * difficult to retry a send to this method. (You can bump the ref count
4260 * before sending to hold a reference for retry if you are careful.)
4263 * * 0 - buffer successfully transmitted
4264 * * positive qdisc return code - NET_XMIT_DROP etc.
4265 * * negative errno - other errors
4267 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4269 struct net_device *dev = skb->dev;
4270 struct netdev_queue *txq = NULL;
4275 skb_reset_mac_header(skb);
4276 skb_assert_len(skb);
4278 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4279 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4281 /* Disable soft irqs for various locks below. Also
4282 * stops preemption for RCU.
4286 skb_update_prio(skb);
4288 qdisc_pkt_len_init(skb);
4289 tcx_set_ingress(skb, false);
4290 #ifdef CONFIG_NET_EGRESS
4291 if (static_branch_unlikely(&egress_needed_key)) {
4292 if (nf_hook_egress_active()) {
4293 skb = nf_hook_egress(skb, &rc, dev);
4298 netdev_xmit_skip_txqueue(false);
4300 nf_skip_egress(skb, true);
4301 skb = sch_handle_egress(skb, &rc, dev);
4304 nf_skip_egress(skb, false);
4306 if (netdev_xmit_txqueue_skipped())
4307 txq = netdev_tx_queue_mapping(dev, skb);
4310 /* If device/qdisc don't need skb->dst, release it right now while
4311 * its hot in this cpu cache.
4313 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4319 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4321 q = rcu_dereference_bh(txq->qdisc);
4323 trace_net_dev_queue(skb);
4325 rc = __dev_xmit_skb(skb, q, dev, txq);
4329 /* The device has no queue. Common case for software devices:
4330 * loopback, all the sorts of tunnels...
4332 * Really, it is unlikely that netif_tx_lock protection is necessary
4333 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4335 * However, it is possible, that they rely on protection
4338 * Check this and shot the lock. It is not prone from deadlocks.
4339 *Either shot noqueue qdisc, it is even simpler 8)
4341 if (dev->flags & IFF_UP) {
4342 int cpu = smp_processor_id(); /* ok because BHs are off */
4344 /* Other cpus might concurrently change txq->xmit_lock_owner
4345 * to -1 or to their cpu id, but not to our id.
4347 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4348 if (dev_xmit_recursion())
4349 goto recursion_alert;
4351 skb = validate_xmit_skb(skb, dev, &again);
4355 HARD_TX_LOCK(dev, txq, cpu);
4357 if (!netif_xmit_stopped(txq)) {
4358 dev_xmit_recursion_inc();
4359 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4360 dev_xmit_recursion_dec();
4361 if (dev_xmit_complete(rc)) {
4362 HARD_TX_UNLOCK(dev, txq);
4366 HARD_TX_UNLOCK(dev, txq);
4367 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4370 /* Recursion is detected! It is possible,
4374 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4380 rcu_read_unlock_bh();
4382 dev_core_stats_tx_dropped_inc(dev);
4383 kfree_skb_list(skb);
4386 rcu_read_unlock_bh();
4389 EXPORT_SYMBOL(__dev_queue_xmit);
4391 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4393 struct net_device *dev = skb->dev;
4394 struct sk_buff *orig_skb = skb;
4395 struct netdev_queue *txq;
4396 int ret = NETDEV_TX_BUSY;
4399 if (unlikely(!netif_running(dev) ||
4400 !netif_carrier_ok(dev)))
4403 skb = validate_xmit_skb_list(skb, dev, &again);
4404 if (skb != orig_skb)
4407 skb_set_queue_mapping(skb, queue_id);
4408 txq = skb_get_tx_queue(dev, skb);
4412 dev_xmit_recursion_inc();
4413 HARD_TX_LOCK(dev, txq, smp_processor_id());
4414 if (!netif_xmit_frozen_or_drv_stopped(txq))
4415 ret = netdev_start_xmit(skb, dev, txq, false);
4416 HARD_TX_UNLOCK(dev, txq);
4417 dev_xmit_recursion_dec();
4422 dev_core_stats_tx_dropped_inc(dev);
4423 kfree_skb_list(skb);
4424 return NET_XMIT_DROP;
4426 EXPORT_SYMBOL(__dev_direct_xmit);
4428 /*************************************************************************
4430 *************************************************************************/
4432 int netdev_max_backlog __read_mostly = 1000;
4433 EXPORT_SYMBOL(netdev_max_backlog);
4435 int netdev_tstamp_prequeue __read_mostly = 1;
4436 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4437 int netdev_budget __read_mostly = 300;
4438 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4439 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4440 int weight_p __read_mostly = 64; /* old backlog weight */
4441 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4442 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4443 int dev_rx_weight __read_mostly = 64;
4444 int dev_tx_weight __read_mostly = 64;
4446 /* Called with irq disabled */
4447 static inline void ____napi_schedule(struct softnet_data *sd,
4448 struct napi_struct *napi)
4450 struct task_struct *thread;
4452 lockdep_assert_irqs_disabled();
4454 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4455 /* Paired with smp_mb__before_atomic() in
4456 * napi_enable()/dev_set_threaded().
4457 * Use READ_ONCE() to guarantee a complete
4458 * read on napi->thread. Only call
4459 * wake_up_process() when it's not NULL.
4461 thread = READ_ONCE(napi->thread);
4463 /* Avoid doing set_bit() if the thread is in
4464 * INTERRUPTIBLE state, cause napi_thread_wait()
4465 * makes sure to proceed with napi polling
4466 * if the thread is explicitly woken from here.
4468 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4469 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4470 wake_up_process(thread);
4475 list_add_tail(&napi->poll_list, &sd->poll_list);
4476 WRITE_ONCE(napi->list_owner, smp_processor_id());
4477 /* If not called from net_rx_action()
4478 * we have to raise NET_RX_SOFTIRQ.
4480 if (!sd->in_net_rx_action)
4481 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4486 /* One global table that all flow-based protocols share. */
4487 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4488 EXPORT_SYMBOL(rps_sock_flow_table);
4489 u32 rps_cpu_mask __read_mostly;
4490 EXPORT_SYMBOL(rps_cpu_mask);
4492 struct static_key_false rps_needed __read_mostly;
4493 EXPORT_SYMBOL(rps_needed);
4494 struct static_key_false rfs_needed __read_mostly;
4495 EXPORT_SYMBOL(rfs_needed);
4497 static struct rps_dev_flow *
4498 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4499 struct rps_dev_flow *rflow, u16 next_cpu)
4501 if (next_cpu < nr_cpu_ids) {
4502 #ifdef CONFIG_RFS_ACCEL
4503 struct netdev_rx_queue *rxqueue;
4504 struct rps_dev_flow_table *flow_table;
4505 struct rps_dev_flow *old_rflow;
4510 /* Should we steer this flow to a different hardware queue? */
4511 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4512 !(dev->features & NETIF_F_NTUPLE))
4514 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4515 if (rxq_index == skb_get_rx_queue(skb))
4518 rxqueue = dev->_rx + rxq_index;
4519 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4522 flow_id = skb_get_hash(skb) & flow_table->mask;
4523 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4524 rxq_index, flow_id);
4528 rflow = &flow_table->flows[flow_id];
4530 if (old_rflow->filter == rflow->filter)
4531 old_rflow->filter = RPS_NO_FILTER;
4535 per_cpu(softnet_data, next_cpu).input_queue_head;
4538 rflow->cpu = next_cpu;
4543 * get_rps_cpu is called from netif_receive_skb and returns the target
4544 * CPU from the RPS map of the receiving queue for a given skb.
4545 * rcu_read_lock must be held on entry.
4547 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4548 struct rps_dev_flow **rflowp)
4550 const struct rps_sock_flow_table *sock_flow_table;
4551 struct netdev_rx_queue *rxqueue = dev->_rx;
4552 struct rps_dev_flow_table *flow_table;
4553 struct rps_map *map;
4558 if (skb_rx_queue_recorded(skb)) {
4559 u16 index = skb_get_rx_queue(skb);
4561 if (unlikely(index >= dev->real_num_rx_queues)) {
4562 WARN_ONCE(dev->real_num_rx_queues > 1,
4563 "%s received packet on queue %u, but number "
4564 "of RX queues is %u\n",
4565 dev->name, index, dev->real_num_rx_queues);
4571 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4573 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4574 map = rcu_dereference(rxqueue->rps_map);
4575 if (!flow_table && !map)
4578 skb_reset_network_header(skb);
4579 hash = skb_get_hash(skb);
4583 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4584 if (flow_table && sock_flow_table) {
4585 struct rps_dev_flow *rflow;
4589 /* First check into global flow table if there is a match.
4590 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4592 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4593 if ((ident ^ hash) & ~rps_cpu_mask)
4596 next_cpu = ident & rps_cpu_mask;
4598 /* OK, now we know there is a match,
4599 * we can look at the local (per receive queue) flow table
4601 rflow = &flow_table->flows[hash & flow_table->mask];
4605 * If the desired CPU (where last recvmsg was done) is
4606 * different from current CPU (one in the rx-queue flow
4607 * table entry), switch if one of the following holds:
4608 * - Current CPU is unset (>= nr_cpu_ids).
4609 * - Current CPU is offline.
4610 * - The current CPU's queue tail has advanced beyond the
4611 * last packet that was enqueued using this table entry.
4612 * This guarantees that all previous packets for the flow
4613 * have been dequeued, thus preserving in order delivery.
4615 if (unlikely(tcpu != next_cpu) &&
4616 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4617 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4618 rflow->last_qtail)) >= 0)) {
4620 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4623 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4633 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4634 if (cpu_online(tcpu)) {
4644 #ifdef CONFIG_RFS_ACCEL
4647 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4648 * @dev: Device on which the filter was set
4649 * @rxq_index: RX queue index
4650 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4651 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4653 * Drivers that implement ndo_rx_flow_steer() should periodically call
4654 * this function for each installed filter and remove the filters for
4655 * which it returns %true.
4657 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4658 u32 flow_id, u16 filter_id)
4660 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4661 struct rps_dev_flow_table *flow_table;
4662 struct rps_dev_flow *rflow;
4667 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4668 if (flow_table && flow_id <= flow_table->mask) {
4669 rflow = &flow_table->flows[flow_id];
4670 cpu = READ_ONCE(rflow->cpu);
4671 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4672 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4673 rflow->last_qtail) <
4674 (int)(10 * flow_table->mask)))
4680 EXPORT_SYMBOL(rps_may_expire_flow);
4682 #endif /* CONFIG_RFS_ACCEL */
4684 /* Called from hardirq (IPI) context */
4685 static void rps_trigger_softirq(void *data)
4687 struct softnet_data *sd = data;
4689 ____napi_schedule(sd, &sd->backlog);
4693 #endif /* CONFIG_RPS */
4695 /* Called from hardirq (IPI) context */
4696 static void trigger_rx_softirq(void *data)
4698 struct softnet_data *sd = data;
4700 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4701 smp_store_release(&sd->defer_ipi_scheduled, 0);
4705 * After we queued a packet into sd->input_pkt_queue,
4706 * we need to make sure this queue is serviced soon.
4708 * - If this is another cpu queue, link it to our rps_ipi_list,
4709 * and make sure we will process rps_ipi_list from net_rx_action().
4711 * - If this is our own queue, NAPI schedule our backlog.
4712 * Note that this also raises NET_RX_SOFTIRQ.
4714 static void napi_schedule_rps(struct softnet_data *sd)
4716 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4720 sd->rps_ipi_next = mysd->rps_ipi_list;
4721 mysd->rps_ipi_list = sd;
4723 /* If not called from net_rx_action() or napi_threaded_poll()
4724 * we have to raise NET_RX_SOFTIRQ.
4726 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4727 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4730 #endif /* CONFIG_RPS */
4731 __napi_schedule_irqoff(&mysd->backlog);
4734 #ifdef CONFIG_NET_FLOW_LIMIT
4735 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4738 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4740 #ifdef CONFIG_NET_FLOW_LIMIT
4741 struct sd_flow_limit *fl;
4742 struct softnet_data *sd;
4743 unsigned int old_flow, new_flow;
4745 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4748 sd = this_cpu_ptr(&softnet_data);
4751 fl = rcu_dereference(sd->flow_limit);
4753 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4754 old_flow = fl->history[fl->history_head];
4755 fl->history[fl->history_head] = new_flow;
4758 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4760 if (likely(fl->buckets[old_flow]))
4761 fl->buckets[old_flow]--;
4763 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4775 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4776 * queue (may be a remote CPU queue).
4778 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4779 unsigned int *qtail)
4781 enum skb_drop_reason reason;
4782 struct softnet_data *sd;
4783 unsigned long flags;
4786 reason = SKB_DROP_REASON_NOT_SPECIFIED;
4787 sd = &per_cpu(softnet_data, cpu);
4789 rps_lock_irqsave(sd, &flags);
4790 if (!netif_running(skb->dev))
4792 qlen = skb_queue_len(&sd->input_pkt_queue);
4793 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4796 __skb_queue_tail(&sd->input_pkt_queue, skb);
4797 input_queue_tail_incr_save(sd, qtail);
4798 rps_unlock_irq_restore(sd, &flags);
4799 return NET_RX_SUCCESS;
4802 /* Schedule NAPI for backlog device
4803 * We can use non atomic operation since we own the queue lock
4805 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4806 napi_schedule_rps(sd);
4809 reason = SKB_DROP_REASON_CPU_BACKLOG;
4813 rps_unlock_irq_restore(sd, &flags);
4815 dev_core_stats_rx_dropped_inc(skb->dev);
4816 kfree_skb_reason(skb, reason);
4820 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4822 struct net_device *dev = skb->dev;
4823 struct netdev_rx_queue *rxqueue;
4827 if (skb_rx_queue_recorded(skb)) {
4828 u16 index = skb_get_rx_queue(skb);
4830 if (unlikely(index >= dev->real_num_rx_queues)) {
4831 WARN_ONCE(dev->real_num_rx_queues > 1,
4832 "%s received packet on queue %u, but number "
4833 "of RX queues is %u\n",
4834 dev->name, index, dev->real_num_rx_queues);
4836 return rxqueue; /* Return first rxqueue */
4843 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4844 struct bpf_prog *xdp_prog)
4846 void *orig_data, *orig_data_end, *hard_start;
4847 struct netdev_rx_queue *rxqueue;
4848 bool orig_bcast, orig_host;
4849 u32 mac_len, frame_sz;
4850 __be16 orig_eth_type;
4855 /* The XDP program wants to see the packet starting at the MAC
4858 mac_len = skb->data - skb_mac_header(skb);
4859 hard_start = skb->data - skb_headroom(skb);
4861 /* SKB "head" area always have tailroom for skb_shared_info */
4862 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4863 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4865 rxqueue = netif_get_rxqueue(skb);
4866 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4867 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4868 skb_headlen(skb) + mac_len, true);
4870 orig_data_end = xdp->data_end;
4871 orig_data = xdp->data;
4872 eth = (struct ethhdr *)xdp->data;
4873 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4874 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4875 orig_eth_type = eth->h_proto;
4877 act = bpf_prog_run_xdp(xdp_prog, xdp);
4879 /* check if bpf_xdp_adjust_head was used */
4880 off = xdp->data - orig_data;
4883 __skb_pull(skb, off);
4885 __skb_push(skb, -off);
4887 skb->mac_header += off;
4888 skb_reset_network_header(skb);
4891 /* check if bpf_xdp_adjust_tail was used */
4892 off = xdp->data_end - orig_data_end;
4894 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4895 skb->len += off; /* positive on grow, negative on shrink */
4898 /* check if XDP changed eth hdr such SKB needs update */
4899 eth = (struct ethhdr *)xdp->data;
4900 if ((orig_eth_type != eth->h_proto) ||
4901 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4902 skb->dev->dev_addr)) ||
4903 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4904 __skb_push(skb, ETH_HLEN);
4905 skb->pkt_type = PACKET_HOST;
4906 skb->protocol = eth_type_trans(skb, skb->dev);
4909 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4910 * before calling us again on redirect path. We do not call do_redirect
4911 * as we leave that up to the caller.
4913 * Caller is responsible for managing lifetime of skb (i.e. calling
4914 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4919 __skb_push(skb, mac_len);
4922 metalen = xdp->data - xdp->data_meta;
4924 skb_metadata_set(skb, metalen);
4931 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4932 struct xdp_buff *xdp,
4933 struct bpf_prog *xdp_prog)
4937 /* Reinjected packets coming from act_mirred or similar should
4938 * not get XDP generic processing.
4940 if (skb_is_redirected(skb))
4943 /* XDP packets must be linear and must have sufficient headroom
4944 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4945 * native XDP provides, thus we need to do it here as well.
4947 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4948 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4949 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4950 int troom = skb->tail + skb->data_len - skb->end;
4952 /* In case we have to go down the path and also linearize,
4953 * then lets do the pskb_expand_head() work just once here.
4955 if (pskb_expand_head(skb,
4956 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4957 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4959 if (skb_linearize(skb))
4963 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4970 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4973 trace_xdp_exception(skb->dev, xdp_prog, act);
4984 /* When doing generic XDP we have to bypass the qdisc layer and the
4985 * network taps in order to match in-driver-XDP behavior. This also means
4986 * that XDP packets are able to starve other packets going through a qdisc,
4987 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4988 * queues, so they do not have this starvation issue.
4990 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4992 struct net_device *dev = skb->dev;
4993 struct netdev_queue *txq;
4994 bool free_skb = true;
4997 txq = netdev_core_pick_tx(dev, skb, NULL);
4998 cpu = smp_processor_id();
4999 HARD_TX_LOCK(dev, txq, cpu);
5000 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5001 rc = netdev_start_xmit(skb, dev, txq, 0);
5002 if (dev_xmit_complete(rc))
5005 HARD_TX_UNLOCK(dev, txq);
5007 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5008 dev_core_stats_tx_dropped_inc(dev);
5013 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5015 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5018 struct xdp_buff xdp;
5022 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5023 if (act != XDP_PASS) {
5026 err = xdp_do_generic_redirect(skb->dev, skb,
5032 generic_xdp_tx(skb, xdp_prog);
5040 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5043 EXPORT_SYMBOL_GPL(do_xdp_generic);
5045 static int netif_rx_internal(struct sk_buff *skb)
5049 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5051 trace_netif_rx(skb);
5054 if (static_branch_unlikely(&rps_needed)) {
5055 struct rps_dev_flow voidflow, *rflow = &voidflow;
5060 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5062 cpu = smp_processor_id();
5064 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5072 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5078 * __netif_rx - Slightly optimized version of netif_rx
5079 * @skb: buffer to post
5081 * This behaves as netif_rx except that it does not disable bottom halves.
5082 * As a result this function may only be invoked from the interrupt context
5083 * (either hard or soft interrupt).
5085 int __netif_rx(struct sk_buff *skb)
5089 lockdep_assert_once(hardirq_count() | softirq_count());
5091 trace_netif_rx_entry(skb);
5092 ret = netif_rx_internal(skb);
5093 trace_netif_rx_exit(ret);
5096 EXPORT_SYMBOL(__netif_rx);
5099 * netif_rx - post buffer to the network code
5100 * @skb: buffer to post
5102 * This function receives a packet from a device driver and queues it for
5103 * the upper (protocol) levels to process via the backlog NAPI device. It
5104 * always succeeds. The buffer may be dropped during processing for
5105 * congestion control or by the protocol layers.
5106 * The network buffer is passed via the backlog NAPI device. Modern NIC
5107 * driver should use NAPI and GRO.
5108 * This function can used from interrupt and from process context. The
5109 * caller from process context must not disable interrupts before invoking
5113 * NET_RX_SUCCESS (no congestion)
5114 * NET_RX_DROP (packet was dropped)
5117 int netif_rx(struct sk_buff *skb)
5119 bool need_bh_off = !(hardirq_count() | softirq_count());
5124 trace_netif_rx_entry(skb);
5125 ret = netif_rx_internal(skb);
5126 trace_netif_rx_exit(ret);
5131 EXPORT_SYMBOL(netif_rx);
5133 static __latent_entropy void net_tx_action(struct softirq_action *h)
5135 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5137 if (sd->completion_queue) {
5138 struct sk_buff *clist;
5140 local_irq_disable();
5141 clist = sd->completion_queue;
5142 sd->completion_queue = NULL;
5146 struct sk_buff *skb = clist;
5148 clist = clist->next;
5150 WARN_ON(refcount_read(&skb->users));
5151 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5152 trace_consume_skb(skb, net_tx_action);
5154 trace_kfree_skb(skb, net_tx_action,
5155 get_kfree_skb_cb(skb)->reason);
5157 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5160 __napi_kfree_skb(skb,
5161 get_kfree_skb_cb(skb)->reason);
5165 if (sd->output_queue) {
5168 local_irq_disable();
5169 head = sd->output_queue;
5170 sd->output_queue = NULL;
5171 sd->output_queue_tailp = &sd->output_queue;
5177 struct Qdisc *q = head;
5178 spinlock_t *root_lock = NULL;
5180 head = head->next_sched;
5182 /* We need to make sure head->next_sched is read
5183 * before clearing __QDISC_STATE_SCHED
5185 smp_mb__before_atomic();
5187 if (!(q->flags & TCQ_F_NOLOCK)) {
5188 root_lock = qdisc_lock(q);
5189 spin_lock(root_lock);
5190 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5192 /* There is a synchronize_net() between
5193 * STATE_DEACTIVATED flag being set and
5194 * qdisc_reset()/some_qdisc_is_busy() in
5195 * dev_deactivate(), so we can safely bail out
5196 * early here to avoid data race between
5197 * qdisc_deactivate() and some_qdisc_is_busy()
5198 * for lockless qdisc.
5200 clear_bit(__QDISC_STATE_SCHED, &q->state);
5204 clear_bit(__QDISC_STATE_SCHED, &q->state);
5207 spin_unlock(root_lock);
5213 xfrm_dev_backlog(sd);
5216 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5217 /* This hook is defined here for ATM LANE */
5218 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5219 unsigned char *addr) __read_mostly;
5220 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5224 * netdev_is_rx_handler_busy - check if receive handler is registered
5225 * @dev: device to check
5227 * Check if a receive handler is already registered for a given device.
5228 * Return true if there one.
5230 * The caller must hold the rtnl_mutex.
5232 bool netdev_is_rx_handler_busy(struct net_device *dev)
5235 return dev && rtnl_dereference(dev->rx_handler);
5237 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5240 * netdev_rx_handler_register - register receive handler
5241 * @dev: device to register a handler for
5242 * @rx_handler: receive handler to register
5243 * @rx_handler_data: data pointer that is used by rx handler
5245 * Register a receive handler for a device. This handler will then be
5246 * called from __netif_receive_skb. A negative errno code is returned
5249 * The caller must hold the rtnl_mutex.
5251 * For a general description of rx_handler, see enum rx_handler_result.
5253 int netdev_rx_handler_register(struct net_device *dev,
5254 rx_handler_func_t *rx_handler,
5255 void *rx_handler_data)
5257 if (netdev_is_rx_handler_busy(dev))
5260 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5263 /* Note: rx_handler_data must be set before rx_handler */
5264 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5265 rcu_assign_pointer(dev->rx_handler, rx_handler);
5269 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5272 * netdev_rx_handler_unregister - unregister receive handler
5273 * @dev: device to unregister a handler from
5275 * Unregister a receive handler from a device.
5277 * The caller must hold the rtnl_mutex.
5279 void netdev_rx_handler_unregister(struct net_device *dev)
5283 RCU_INIT_POINTER(dev->rx_handler, NULL);
5284 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5285 * section has a guarantee to see a non NULL rx_handler_data
5289 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5291 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5294 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5295 * the special handling of PFMEMALLOC skbs.
5297 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5299 switch (skb->protocol) {
5300 case htons(ETH_P_ARP):
5301 case htons(ETH_P_IP):
5302 case htons(ETH_P_IPV6):
5303 case htons(ETH_P_8021Q):
5304 case htons(ETH_P_8021AD):
5311 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5312 int *ret, struct net_device *orig_dev)
5314 if (nf_hook_ingress_active(skb)) {
5318 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5323 ingress_retval = nf_hook_ingress(skb);
5325 return ingress_retval;
5330 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5331 struct packet_type **ppt_prev)
5333 struct packet_type *ptype, *pt_prev;
5334 rx_handler_func_t *rx_handler;
5335 struct sk_buff *skb = *pskb;
5336 struct net_device *orig_dev;
5337 bool deliver_exact = false;
5338 int ret = NET_RX_DROP;
5341 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5343 trace_netif_receive_skb(skb);
5345 orig_dev = skb->dev;
5347 skb_reset_network_header(skb);
5348 if (!skb_transport_header_was_set(skb))
5349 skb_reset_transport_header(skb);
5350 skb_reset_mac_len(skb);
5355 skb->skb_iif = skb->dev->ifindex;
5357 __this_cpu_inc(softnet_data.processed);
5359 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5363 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5366 if (ret2 != XDP_PASS) {
5372 if (eth_type_vlan(skb->protocol)) {
5373 skb = skb_vlan_untag(skb);
5378 if (skb_skip_tc_classify(skb))
5384 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5386 ret = deliver_skb(skb, pt_prev, orig_dev);
5390 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5392 ret = deliver_skb(skb, pt_prev, orig_dev);
5397 #ifdef CONFIG_NET_INGRESS
5398 if (static_branch_unlikely(&ingress_needed_key)) {
5399 bool another = false;
5401 nf_skip_egress(skb, true);
5402 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5409 nf_skip_egress(skb, false);
5410 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5414 skb_reset_redirect(skb);
5416 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5419 if (skb_vlan_tag_present(skb)) {
5421 ret = deliver_skb(skb, pt_prev, orig_dev);
5424 if (vlan_do_receive(&skb))
5426 else if (unlikely(!skb))
5430 rx_handler = rcu_dereference(skb->dev->rx_handler);
5433 ret = deliver_skb(skb, pt_prev, orig_dev);
5436 switch (rx_handler(&skb)) {
5437 case RX_HANDLER_CONSUMED:
5438 ret = NET_RX_SUCCESS;
5440 case RX_HANDLER_ANOTHER:
5442 case RX_HANDLER_EXACT:
5443 deliver_exact = true;
5445 case RX_HANDLER_PASS:
5452 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5454 if (skb_vlan_tag_get_id(skb)) {
5455 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5458 skb->pkt_type = PACKET_OTHERHOST;
5459 } else if (eth_type_vlan(skb->protocol)) {
5460 /* Outer header is 802.1P with vlan 0, inner header is
5461 * 802.1Q or 802.1AD and vlan_do_receive() above could
5462 * not find vlan dev for vlan id 0.
5464 __vlan_hwaccel_clear_tag(skb);
5465 skb = skb_vlan_untag(skb);
5468 if (vlan_do_receive(&skb))
5469 /* After stripping off 802.1P header with vlan 0
5470 * vlan dev is found for inner header.
5473 else if (unlikely(!skb))
5476 /* We have stripped outer 802.1P vlan 0 header.
5477 * But could not find vlan dev.
5478 * check again for vlan id to set OTHERHOST.
5482 /* Note: we might in the future use prio bits
5483 * and set skb->priority like in vlan_do_receive()
5484 * For the time being, just ignore Priority Code Point
5486 __vlan_hwaccel_clear_tag(skb);
5489 type = skb->protocol;
5491 /* deliver only exact match when indicated */
5492 if (likely(!deliver_exact)) {
5493 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5494 &ptype_base[ntohs(type) &
5498 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5499 &orig_dev->ptype_specific);
5501 if (unlikely(skb->dev != orig_dev)) {
5502 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5503 &skb->dev->ptype_specific);
5507 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5509 *ppt_prev = pt_prev;
5513 dev_core_stats_rx_dropped_inc(skb->dev);
5515 dev_core_stats_rx_nohandler_inc(skb->dev);
5516 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5517 /* Jamal, now you will not able to escape explaining
5518 * me how you were going to use this. :-)
5524 /* The invariant here is that if *ppt_prev is not NULL
5525 * then skb should also be non-NULL.
5527 * Apparently *ppt_prev assignment above holds this invariant due to
5528 * skb dereferencing near it.
5534 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5536 struct net_device *orig_dev = skb->dev;
5537 struct packet_type *pt_prev = NULL;
5540 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5542 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5543 skb->dev, pt_prev, orig_dev);
5548 * netif_receive_skb_core - special purpose version of netif_receive_skb
5549 * @skb: buffer to process
5551 * More direct receive version of netif_receive_skb(). It should
5552 * only be used by callers that have a need to skip RPS and Generic XDP.
5553 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5555 * This function may only be called from softirq context and interrupts
5556 * should be enabled.
5558 * Return values (usually ignored):
5559 * NET_RX_SUCCESS: no congestion
5560 * NET_RX_DROP: packet was dropped
5562 int netif_receive_skb_core(struct sk_buff *skb)
5567 ret = __netif_receive_skb_one_core(skb, false);
5572 EXPORT_SYMBOL(netif_receive_skb_core);
5574 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5575 struct packet_type *pt_prev,
5576 struct net_device *orig_dev)
5578 struct sk_buff *skb, *next;
5582 if (list_empty(head))
5584 if (pt_prev->list_func != NULL)
5585 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5586 ip_list_rcv, head, pt_prev, orig_dev);
5588 list_for_each_entry_safe(skb, next, head, list) {
5589 skb_list_del_init(skb);
5590 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5594 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5596 /* Fast-path assumptions:
5597 * - There is no RX handler.
5598 * - Only one packet_type matches.
5599 * If either of these fails, we will end up doing some per-packet
5600 * processing in-line, then handling the 'last ptype' for the whole
5601 * sublist. This can't cause out-of-order delivery to any single ptype,
5602 * because the 'last ptype' must be constant across the sublist, and all
5603 * other ptypes are handled per-packet.
5605 /* Current (common) ptype of sublist */
5606 struct packet_type *pt_curr = NULL;
5607 /* Current (common) orig_dev of sublist */
5608 struct net_device *od_curr = NULL;
5609 struct list_head sublist;
5610 struct sk_buff *skb, *next;
5612 INIT_LIST_HEAD(&sublist);
5613 list_for_each_entry_safe(skb, next, head, list) {
5614 struct net_device *orig_dev = skb->dev;
5615 struct packet_type *pt_prev = NULL;
5617 skb_list_del_init(skb);
5618 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5621 if (pt_curr != pt_prev || od_curr != orig_dev) {
5622 /* dispatch old sublist */
5623 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5624 /* start new sublist */
5625 INIT_LIST_HEAD(&sublist);
5629 list_add_tail(&skb->list, &sublist);
5632 /* dispatch final sublist */
5633 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5636 static int __netif_receive_skb(struct sk_buff *skb)
5640 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5641 unsigned int noreclaim_flag;
5644 * PFMEMALLOC skbs are special, they should
5645 * - be delivered to SOCK_MEMALLOC sockets only
5646 * - stay away from userspace
5647 * - have bounded memory usage
5649 * Use PF_MEMALLOC as this saves us from propagating the allocation
5650 * context down to all allocation sites.
5652 noreclaim_flag = memalloc_noreclaim_save();
5653 ret = __netif_receive_skb_one_core(skb, true);
5654 memalloc_noreclaim_restore(noreclaim_flag);
5656 ret = __netif_receive_skb_one_core(skb, false);
5661 static void __netif_receive_skb_list(struct list_head *head)
5663 unsigned long noreclaim_flag = 0;
5664 struct sk_buff *skb, *next;
5665 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5667 list_for_each_entry_safe(skb, next, head, list) {
5668 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5669 struct list_head sublist;
5671 /* Handle the previous sublist */
5672 list_cut_before(&sublist, head, &skb->list);
5673 if (!list_empty(&sublist))
5674 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5675 pfmemalloc = !pfmemalloc;
5676 /* See comments in __netif_receive_skb */
5678 noreclaim_flag = memalloc_noreclaim_save();
5680 memalloc_noreclaim_restore(noreclaim_flag);
5683 /* Handle the remaining sublist */
5684 if (!list_empty(head))
5685 __netif_receive_skb_list_core(head, pfmemalloc);
5686 /* Restore pflags */
5688 memalloc_noreclaim_restore(noreclaim_flag);
5691 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5693 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5694 struct bpf_prog *new = xdp->prog;
5697 switch (xdp->command) {
5698 case XDP_SETUP_PROG:
5699 rcu_assign_pointer(dev->xdp_prog, new);
5704 static_branch_dec(&generic_xdp_needed_key);
5705 } else if (new && !old) {
5706 static_branch_inc(&generic_xdp_needed_key);
5707 dev_disable_lro(dev);
5708 dev_disable_gro_hw(dev);
5720 static int netif_receive_skb_internal(struct sk_buff *skb)
5724 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5726 if (skb_defer_rx_timestamp(skb))
5727 return NET_RX_SUCCESS;
5731 if (static_branch_unlikely(&rps_needed)) {
5732 struct rps_dev_flow voidflow, *rflow = &voidflow;
5733 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5736 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5742 ret = __netif_receive_skb(skb);
5747 void netif_receive_skb_list_internal(struct list_head *head)
5749 struct sk_buff *skb, *next;
5750 struct list_head sublist;
5752 INIT_LIST_HEAD(&sublist);
5753 list_for_each_entry_safe(skb, next, head, list) {
5754 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5755 skb_list_del_init(skb);
5756 if (!skb_defer_rx_timestamp(skb))
5757 list_add_tail(&skb->list, &sublist);
5759 list_splice_init(&sublist, head);
5763 if (static_branch_unlikely(&rps_needed)) {
5764 list_for_each_entry_safe(skb, next, head, list) {
5765 struct rps_dev_flow voidflow, *rflow = &voidflow;
5766 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5769 /* Will be handled, remove from list */
5770 skb_list_del_init(skb);
5771 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5776 __netif_receive_skb_list(head);
5781 * netif_receive_skb - process receive buffer from network
5782 * @skb: buffer to process
5784 * netif_receive_skb() is the main receive data processing function.
5785 * It always succeeds. The buffer may be dropped during processing
5786 * for congestion control or by the protocol layers.
5788 * This function may only be called from softirq context and interrupts
5789 * should be enabled.
5791 * Return values (usually ignored):
5792 * NET_RX_SUCCESS: no congestion
5793 * NET_RX_DROP: packet was dropped
5795 int netif_receive_skb(struct sk_buff *skb)
5799 trace_netif_receive_skb_entry(skb);
5801 ret = netif_receive_skb_internal(skb);
5802 trace_netif_receive_skb_exit(ret);
5806 EXPORT_SYMBOL(netif_receive_skb);
5809 * netif_receive_skb_list - process many receive buffers from network
5810 * @head: list of skbs to process.
5812 * Since return value of netif_receive_skb() is normally ignored, and
5813 * wouldn't be meaningful for a list, this function returns void.
5815 * This function may only be called from softirq context and interrupts
5816 * should be enabled.
5818 void netif_receive_skb_list(struct list_head *head)
5820 struct sk_buff *skb;
5822 if (list_empty(head))
5824 if (trace_netif_receive_skb_list_entry_enabled()) {
5825 list_for_each_entry(skb, head, list)
5826 trace_netif_receive_skb_list_entry(skb);
5828 netif_receive_skb_list_internal(head);
5829 trace_netif_receive_skb_list_exit(0);
5831 EXPORT_SYMBOL(netif_receive_skb_list);
5833 static DEFINE_PER_CPU(struct work_struct, flush_works);
5835 /* Network device is going away, flush any packets still pending */
5836 static void flush_backlog(struct work_struct *work)
5838 struct sk_buff *skb, *tmp;
5839 struct softnet_data *sd;
5842 sd = this_cpu_ptr(&softnet_data);
5844 rps_lock_irq_disable(sd);
5845 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5846 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5847 __skb_unlink(skb, &sd->input_pkt_queue);
5848 dev_kfree_skb_irq(skb);
5849 input_queue_head_incr(sd);
5852 rps_unlock_irq_enable(sd);
5854 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5855 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5856 __skb_unlink(skb, &sd->process_queue);
5858 input_queue_head_incr(sd);
5864 static bool flush_required(int cpu)
5866 #if IS_ENABLED(CONFIG_RPS)
5867 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5870 rps_lock_irq_disable(sd);
5872 /* as insertion into process_queue happens with the rps lock held,
5873 * process_queue access may race only with dequeue
5875 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5876 !skb_queue_empty_lockless(&sd->process_queue);
5877 rps_unlock_irq_enable(sd);
5881 /* without RPS we can't safely check input_pkt_queue: during a
5882 * concurrent remote skb_queue_splice() we can detect as empty both
5883 * input_pkt_queue and process_queue even if the latter could end-up
5884 * containing a lot of packets.
5889 static void flush_all_backlogs(void)
5891 static cpumask_t flush_cpus;
5894 /* since we are under rtnl lock protection we can use static data
5895 * for the cpumask and avoid allocating on stack the possibly
5902 cpumask_clear(&flush_cpus);
5903 for_each_online_cpu(cpu) {
5904 if (flush_required(cpu)) {
5905 queue_work_on(cpu, system_highpri_wq,
5906 per_cpu_ptr(&flush_works, cpu));
5907 cpumask_set_cpu(cpu, &flush_cpus);
5911 /* we can have in flight packet[s] on the cpus we are not flushing,
5912 * synchronize_net() in unregister_netdevice_many() will take care of
5915 for_each_cpu(cpu, &flush_cpus)
5916 flush_work(per_cpu_ptr(&flush_works, cpu));
5921 static void net_rps_send_ipi(struct softnet_data *remsd)
5925 struct softnet_data *next = remsd->rps_ipi_next;
5927 if (cpu_online(remsd->cpu))
5928 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5935 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5936 * Note: called with local irq disabled, but exits with local irq enabled.
5938 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5941 struct softnet_data *remsd = sd->rps_ipi_list;
5944 sd->rps_ipi_list = NULL;
5948 /* Send pending IPI's to kick RPS processing on remote cpus. */
5949 net_rps_send_ipi(remsd);
5955 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5958 return sd->rps_ipi_list != NULL;
5964 static int process_backlog(struct napi_struct *napi, int quota)
5966 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5970 /* Check if we have pending ipi, its better to send them now,
5971 * not waiting net_rx_action() end.
5973 if (sd_has_rps_ipi_waiting(sd)) {
5974 local_irq_disable();
5975 net_rps_action_and_irq_enable(sd);
5978 napi->weight = READ_ONCE(dev_rx_weight);
5980 struct sk_buff *skb;
5982 while ((skb = __skb_dequeue(&sd->process_queue))) {
5984 __netif_receive_skb(skb);
5986 input_queue_head_incr(sd);
5987 if (++work >= quota)
5992 rps_lock_irq_disable(sd);
5993 if (skb_queue_empty(&sd->input_pkt_queue)) {
5995 * Inline a custom version of __napi_complete().
5996 * only current cpu owns and manipulates this napi,
5997 * and NAPI_STATE_SCHED is the only possible flag set
5999 * We can use a plain write instead of clear_bit(),
6000 * and we dont need an smp_mb() memory barrier.
6005 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6006 &sd->process_queue);
6008 rps_unlock_irq_enable(sd);
6015 * __napi_schedule - schedule for receive
6016 * @n: entry to schedule
6018 * The entry's receive function will be scheduled to run.
6019 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6021 void __napi_schedule(struct napi_struct *n)
6023 unsigned long flags;
6025 local_irq_save(flags);
6026 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6027 local_irq_restore(flags);
6029 EXPORT_SYMBOL(__napi_schedule);
6032 * napi_schedule_prep - check if napi can be scheduled
6035 * Test if NAPI routine is already running, and if not mark
6036 * it as running. This is used as a condition variable to
6037 * insure only one NAPI poll instance runs. We also make
6038 * sure there is no pending NAPI disable.
6040 bool napi_schedule_prep(struct napi_struct *n)
6042 unsigned long new, val = READ_ONCE(n->state);
6045 if (unlikely(val & NAPIF_STATE_DISABLE))
6047 new = val | NAPIF_STATE_SCHED;
6049 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6050 * This was suggested by Alexander Duyck, as compiler
6051 * emits better code than :
6052 * if (val & NAPIF_STATE_SCHED)
6053 * new |= NAPIF_STATE_MISSED;
6055 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6057 } while (!try_cmpxchg(&n->state, &val, new));
6059 return !(val & NAPIF_STATE_SCHED);
6061 EXPORT_SYMBOL(napi_schedule_prep);
6064 * __napi_schedule_irqoff - schedule for receive
6065 * @n: entry to schedule
6067 * Variant of __napi_schedule() assuming hard irqs are masked.
6069 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6070 * because the interrupt disabled assumption might not be true
6071 * due to force-threaded interrupts and spinlock substitution.
6073 void __napi_schedule_irqoff(struct napi_struct *n)
6075 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6076 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6080 EXPORT_SYMBOL(__napi_schedule_irqoff);
6082 bool napi_complete_done(struct napi_struct *n, int work_done)
6084 unsigned long flags, val, new, timeout = 0;
6088 * 1) Don't let napi dequeue from the cpu poll list
6089 * just in case its running on a different cpu.
6090 * 2) If we are busy polling, do nothing here, we have
6091 * the guarantee we will be called later.
6093 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6094 NAPIF_STATE_IN_BUSY_POLL)))
6099 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6100 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6102 if (n->defer_hard_irqs_count > 0) {
6103 n->defer_hard_irqs_count--;
6104 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6108 if (n->gro_bitmask) {
6109 /* When the NAPI instance uses a timeout and keeps postponing
6110 * it, we need to bound somehow the time packets are kept in
6113 napi_gro_flush(n, !!timeout);
6118 if (unlikely(!list_empty(&n->poll_list))) {
6119 /* If n->poll_list is not empty, we need to mask irqs */
6120 local_irq_save(flags);
6121 list_del_init(&n->poll_list);
6122 local_irq_restore(flags);
6124 WRITE_ONCE(n->list_owner, -1);
6126 val = READ_ONCE(n->state);
6128 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6130 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6131 NAPIF_STATE_SCHED_THREADED |
6132 NAPIF_STATE_PREFER_BUSY_POLL);
6134 /* If STATE_MISSED was set, leave STATE_SCHED set,
6135 * because we will call napi->poll() one more time.
6136 * This C code was suggested by Alexander Duyck to help gcc.
6138 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6140 } while (!try_cmpxchg(&n->state, &val, new));
6142 if (unlikely(val & NAPIF_STATE_MISSED)) {
6148 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6149 HRTIMER_MODE_REL_PINNED);
6152 EXPORT_SYMBOL(napi_complete_done);
6154 /* must be called under rcu_read_lock(), as we dont take a reference */
6155 static struct napi_struct *napi_by_id(unsigned int napi_id)
6157 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6158 struct napi_struct *napi;
6160 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6161 if (napi->napi_id == napi_id)
6167 #if defined(CONFIG_NET_RX_BUSY_POLL)
6169 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6171 if (!skip_schedule) {
6172 gro_normal_list(napi);
6173 __napi_schedule(napi);
6177 if (napi->gro_bitmask) {
6178 /* flush too old packets
6179 * If HZ < 1000, flush all packets.
6181 napi_gro_flush(napi, HZ >= 1000);
6184 gro_normal_list(napi);
6185 clear_bit(NAPI_STATE_SCHED, &napi->state);
6188 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6191 bool skip_schedule = false;
6192 unsigned long timeout;
6195 /* Busy polling means there is a high chance device driver hard irq
6196 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6197 * set in napi_schedule_prep().
6198 * Since we are about to call napi->poll() once more, we can safely
6199 * clear NAPI_STATE_MISSED.
6201 * Note: x86 could use a single "lock and ..." instruction
6202 * to perform these two clear_bit()
6204 clear_bit(NAPI_STATE_MISSED, &napi->state);
6205 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6209 if (prefer_busy_poll) {
6210 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6211 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6212 if (napi->defer_hard_irqs_count && timeout) {
6213 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6214 skip_schedule = true;
6218 /* All we really want here is to re-enable device interrupts.
6219 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6221 rc = napi->poll(napi, budget);
6222 /* We can't gro_normal_list() here, because napi->poll() might have
6223 * rearmed the napi (napi_complete_done()) in which case it could
6224 * already be running on another CPU.
6226 trace_napi_poll(napi, rc, budget);
6227 netpoll_poll_unlock(have_poll_lock);
6229 __busy_poll_stop(napi, skip_schedule);
6233 void napi_busy_loop(unsigned int napi_id,
6234 bool (*loop_end)(void *, unsigned long),
6235 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6237 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6238 int (*napi_poll)(struct napi_struct *napi, int budget);
6239 void *have_poll_lock = NULL;
6240 struct napi_struct *napi;
6247 napi = napi_by_id(napi_id);
6251 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6258 unsigned long val = READ_ONCE(napi->state);
6260 /* If multiple threads are competing for this napi,
6261 * we avoid dirtying napi->state as much as we can.
6263 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6264 NAPIF_STATE_IN_BUSY_POLL)) {
6265 if (prefer_busy_poll)
6266 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6269 if (cmpxchg(&napi->state, val,
6270 val | NAPIF_STATE_IN_BUSY_POLL |
6271 NAPIF_STATE_SCHED) != val) {
6272 if (prefer_busy_poll)
6273 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6276 have_poll_lock = netpoll_poll_lock(napi);
6277 napi_poll = napi->poll;
6279 work = napi_poll(napi, budget);
6280 trace_napi_poll(napi, work, budget);
6281 gro_normal_list(napi);
6284 __NET_ADD_STATS(dev_net(napi->dev),
6285 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6288 if (!loop_end || loop_end(loop_end_arg, start_time))
6291 if (unlikely(need_resched())) {
6293 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6294 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6298 if (loop_end(loop_end_arg, start_time))
6305 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6306 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6311 EXPORT_SYMBOL(napi_busy_loop);
6313 #endif /* CONFIG_NET_RX_BUSY_POLL */
6315 static void napi_hash_add(struct napi_struct *napi)
6317 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6320 spin_lock(&napi_hash_lock);
6322 /* 0..NR_CPUS range is reserved for sender_cpu use */
6324 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6325 napi_gen_id = MIN_NAPI_ID;
6326 } while (napi_by_id(napi_gen_id));
6327 napi->napi_id = napi_gen_id;
6329 hlist_add_head_rcu(&napi->napi_hash_node,
6330 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6332 spin_unlock(&napi_hash_lock);
6335 /* Warning : caller is responsible to make sure rcu grace period
6336 * is respected before freeing memory containing @napi
6338 static void napi_hash_del(struct napi_struct *napi)
6340 spin_lock(&napi_hash_lock);
6342 hlist_del_init_rcu(&napi->napi_hash_node);
6344 spin_unlock(&napi_hash_lock);
6347 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6349 struct napi_struct *napi;
6351 napi = container_of(timer, struct napi_struct, timer);
6353 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6354 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6356 if (!napi_disable_pending(napi) &&
6357 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6358 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6359 __napi_schedule_irqoff(napi);
6362 return HRTIMER_NORESTART;
6365 static void init_gro_hash(struct napi_struct *napi)
6369 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6370 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6371 napi->gro_hash[i].count = 0;
6373 napi->gro_bitmask = 0;
6376 int dev_set_threaded(struct net_device *dev, bool threaded)
6378 struct napi_struct *napi;
6381 if (dev->threaded == threaded)
6385 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6386 if (!napi->thread) {
6387 err = napi_kthread_create(napi);
6396 dev->threaded = threaded;
6398 /* Make sure kthread is created before THREADED bit
6401 smp_mb__before_atomic();
6403 /* Setting/unsetting threaded mode on a napi might not immediately
6404 * take effect, if the current napi instance is actively being
6405 * polled. In this case, the switch between threaded mode and
6406 * softirq mode will happen in the next round of napi_schedule().
6407 * This should not cause hiccups/stalls to the live traffic.
6409 list_for_each_entry(napi, &dev->napi_list, dev_list)
6410 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6414 EXPORT_SYMBOL(dev_set_threaded);
6416 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6417 int (*poll)(struct napi_struct *, int), int weight)
6419 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6422 INIT_LIST_HEAD(&napi->poll_list);
6423 INIT_HLIST_NODE(&napi->napi_hash_node);
6424 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6425 napi->timer.function = napi_watchdog;
6426 init_gro_hash(napi);
6428 INIT_LIST_HEAD(&napi->rx_list);
6431 if (weight > NAPI_POLL_WEIGHT)
6432 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6434 napi->weight = weight;
6436 #ifdef CONFIG_NETPOLL
6437 napi->poll_owner = -1;
6439 napi->list_owner = -1;
6440 set_bit(NAPI_STATE_SCHED, &napi->state);
6441 set_bit(NAPI_STATE_NPSVC, &napi->state);
6442 list_add_rcu(&napi->dev_list, &dev->napi_list);
6443 napi_hash_add(napi);
6444 napi_get_frags_check(napi);
6445 /* Create kthread for this napi if dev->threaded is set.
6446 * Clear dev->threaded if kthread creation failed so that
6447 * threaded mode will not be enabled in napi_enable().
6449 if (dev->threaded && napi_kthread_create(napi))
6452 EXPORT_SYMBOL(netif_napi_add_weight);
6454 void napi_disable(struct napi_struct *n)
6456 unsigned long val, new;
6459 set_bit(NAPI_STATE_DISABLE, &n->state);
6461 val = READ_ONCE(n->state);
6463 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6464 usleep_range(20, 200);
6465 val = READ_ONCE(n->state);
6468 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6469 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6470 } while (!try_cmpxchg(&n->state, &val, new));
6472 hrtimer_cancel(&n->timer);
6474 clear_bit(NAPI_STATE_DISABLE, &n->state);
6476 EXPORT_SYMBOL(napi_disable);
6479 * napi_enable - enable NAPI scheduling
6482 * Resume NAPI from being scheduled on this context.
6483 * Must be paired with napi_disable.
6485 void napi_enable(struct napi_struct *n)
6487 unsigned long new, val = READ_ONCE(n->state);
6490 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6492 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6493 if (n->dev->threaded && n->thread)
6494 new |= NAPIF_STATE_THREADED;
6495 } while (!try_cmpxchg(&n->state, &val, new));
6497 EXPORT_SYMBOL(napi_enable);
6499 static void flush_gro_hash(struct napi_struct *napi)
6503 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6504 struct sk_buff *skb, *n;
6506 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6508 napi->gro_hash[i].count = 0;
6512 /* Must be called in process context */
6513 void __netif_napi_del(struct napi_struct *napi)
6515 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6518 napi_hash_del(napi);
6519 list_del_rcu(&napi->dev_list);
6520 napi_free_frags(napi);
6522 flush_gro_hash(napi);
6523 napi->gro_bitmask = 0;
6526 kthread_stop(napi->thread);
6527 napi->thread = NULL;
6530 EXPORT_SYMBOL(__netif_napi_del);
6532 static int __napi_poll(struct napi_struct *n, bool *repoll)
6538 /* This NAPI_STATE_SCHED test is for avoiding a race
6539 * with netpoll's poll_napi(). Only the entity which
6540 * obtains the lock and sees NAPI_STATE_SCHED set will
6541 * actually make the ->poll() call. Therefore we avoid
6542 * accidentally calling ->poll() when NAPI is not scheduled.
6545 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6546 work = n->poll(n, weight);
6547 trace_napi_poll(n, work, weight);
6550 if (unlikely(work > weight))
6551 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6552 n->poll, work, weight);
6554 if (likely(work < weight))
6557 /* Drivers must not modify the NAPI state if they
6558 * consume the entire weight. In such cases this code
6559 * still "owns" the NAPI instance and therefore can
6560 * move the instance around on the list at-will.
6562 if (unlikely(napi_disable_pending(n))) {
6567 /* The NAPI context has more processing work, but busy-polling
6568 * is preferred. Exit early.
6570 if (napi_prefer_busy_poll(n)) {
6571 if (napi_complete_done(n, work)) {
6572 /* If timeout is not set, we need to make sure
6573 * that the NAPI is re-scheduled.
6580 if (n->gro_bitmask) {
6581 /* flush too old packets
6582 * If HZ < 1000, flush all packets.
6584 napi_gro_flush(n, HZ >= 1000);
6589 /* Some drivers may have called napi_schedule
6590 * prior to exhausting their budget.
6592 if (unlikely(!list_empty(&n->poll_list))) {
6593 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6594 n->dev ? n->dev->name : "backlog");
6603 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6605 bool do_repoll = false;
6609 list_del_init(&n->poll_list);
6611 have = netpoll_poll_lock(n);
6613 work = __napi_poll(n, &do_repoll);
6616 list_add_tail(&n->poll_list, repoll);
6618 netpoll_poll_unlock(have);
6623 static int napi_thread_wait(struct napi_struct *napi)
6627 set_current_state(TASK_INTERRUPTIBLE);
6629 while (!kthread_should_stop()) {
6630 /* Testing SCHED_THREADED bit here to make sure the current
6631 * kthread owns this napi and could poll on this napi.
6632 * Testing SCHED bit is not enough because SCHED bit might be
6633 * set by some other busy poll thread or by napi_disable().
6635 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6636 WARN_ON(!list_empty(&napi->poll_list));
6637 __set_current_state(TASK_RUNNING);
6642 /* woken being true indicates this thread owns this napi. */
6644 set_current_state(TASK_INTERRUPTIBLE);
6646 __set_current_state(TASK_RUNNING);
6651 static void skb_defer_free_flush(struct softnet_data *sd)
6653 struct sk_buff *skb, *next;
6655 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6656 if (!READ_ONCE(sd->defer_list))
6659 spin_lock(&sd->defer_lock);
6660 skb = sd->defer_list;
6661 sd->defer_list = NULL;
6662 sd->defer_count = 0;
6663 spin_unlock(&sd->defer_lock);
6665 while (skb != NULL) {
6667 napi_consume_skb(skb, 1);
6672 static int napi_threaded_poll(void *data)
6674 struct napi_struct *napi = data;
6675 struct softnet_data *sd;
6678 while (!napi_thread_wait(napi)) {
6680 bool repoll = false;
6683 sd = this_cpu_ptr(&softnet_data);
6684 sd->in_napi_threaded_poll = true;
6686 have = netpoll_poll_lock(napi);
6687 __napi_poll(napi, &repoll);
6688 netpoll_poll_unlock(have);
6690 sd->in_napi_threaded_poll = false;
6693 if (sd_has_rps_ipi_waiting(sd)) {
6694 local_irq_disable();
6695 net_rps_action_and_irq_enable(sd);
6697 skb_defer_free_flush(sd);
6709 static __latent_entropy void net_rx_action(struct softirq_action *h)
6711 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6712 unsigned long time_limit = jiffies +
6713 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6714 int budget = READ_ONCE(netdev_budget);
6719 sd->in_net_rx_action = true;
6720 local_irq_disable();
6721 list_splice_init(&sd->poll_list, &list);
6725 struct napi_struct *n;
6727 skb_defer_free_flush(sd);
6729 if (list_empty(&list)) {
6730 if (list_empty(&repoll)) {
6731 sd->in_net_rx_action = false;
6733 /* We need to check if ____napi_schedule()
6734 * had refilled poll_list while
6735 * sd->in_net_rx_action was true.
6737 if (!list_empty(&sd->poll_list))
6739 if (!sd_has_rps_ipi_waiting(sd))
6745 n = list_first_entry(&list, struct napi_struct, poll_list);
6746 budget -= napi_poll(n, &repoll);
6748 /* If softirq window is exhausted then punt.
6749 * Allow this to run for 2 jiffies since which will allow
6750 * an average latency of 1.5/HZ.
6752 if (unlikely(budget <= 0 ||
6753 time_after_eq(jiffies, time_limit))) {
6759 local_irq_disable();
6761 list_splice_tail_init(&sd->poll_list, &list);
6762 list_splice_tail(&repoll, &list);
6763 list_splice(&list, &sd->poll_list);
6764 if (!list_empty(&sd->poll_list))
6765 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6767 sd->in_net_rx_action = false;
6769 net_rps_action_and_irq_enable(sd);
6773 struct netdev_adjacent {
6774 struct net_device *dev;
6775 netdevice_tracker dev_tracker;
6777 /* upper master flag, there can only be one master device per list */
6780 /* lookup ignore flag */
6783 /* counter for the number of times this device was added to us */
6786 /* private field for the users */
6789 struct list_head list;
6790 struct rcu_head rcu;
6793 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6794 struct list_head *adj_list)
6796 struct netdev_adjacent *adj;
6798 list_for_each_entry(adj, adj_list, list) {
6799 if (adj->dev == adj_dev)
6805 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6806 struct netdev_nested_priv *priv)
6808 struct net_device *dev = (struct net_device *)priv->data;
6810 return upper_dev == dev;
6814 * netdev_has_upper_dev - Check if device is linked to an upper device
6816 * @upper_dev: upper device to check
6818 * Find out if a device is linked to specified upper device and return true
6819 * in case it is. Note that this checks only immediate upper device,
6820 * not through a complete stack of devices. The caller must hold the RTNL lock.
6822 bool netdev_has_upper_dev(struct net_device *dev,
6823 struct net_device *upper_dev)
6825 struct netdev_nested_priv priv = {
6826 .data = (void *)upper_dev,
6831 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6834 EXPORT_SYMBOL(netdev_has_upper_dev);
6837 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6839 * @upper_dev: upper device to check
6841 * Find out if a device is linked to specified upper device and return true
6842 * in case it is. Note that this checks the entire upper device chain.
6843 * The caller must hold rcu lock.
6846 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6847 struct net_device *upper_dev)
6849 struct netdev_nested_priv priv = {
6850 .data = (void *)upper_dev,
6853 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6856 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6859 * netdev_has_any_upper_dev - Check if device is linked to some device
6862 * Find out if a device is linked to an upper device and return true in case
6863 * it is. The caller must hold the RTNL lock.
6865 bool netdev_has_any_upper_dev(struct net_device *dev)
6869 return !list_empty(&dev->adj_list.upper);
6871 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6874 * netdev_master_upper_dev_get - Get master upper device
6877 * Find a master upper device and return pointer to it or NULL in case
6878 * it's not there. The caller must hold the RTNL lock.
6880 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6882 struct netdev_adjacent *upper;
6886 if (list_empty(&dev->adj_list.upper))
6889 upper = list_first_entry(&dev->adj_list.upper,
6890 struct netdev_adjacent, list);
6891 if (likely(upper->master))
6895 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6897 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6899 struct netdev_adjacent *upper;
6903 if (list_empty(&dev->adj_list.upper))
6906 upper = list_first_entry(&dev->adj_list.upper,
6907 struct netdev_adjacent, list);
6908 if (likely(upper->master) && !upper->ignore)
6914 * netdev_has_any_lower_dev - Check if device is linked to some device
6917 * Find out if a device is linked to a lower device and return true in case
6918 * it is. The caller must hold the RTNL lock.
6920 static bool netdev_has_any_lower_dev(struct net_device *dev)
6924 return !list_empty(&dev->adj_list.lower);
6927 void *netdev_adjacent_get_private(struct list_head *adj_list)
6929 struct netdev_adjacent *adj;
6931 adj = list_entry(adj_list, struct netdev_adjacent, list);
6933 return adj->private;
6935 EXPORT_SYMBOL(netdev_adjacent_get_private);
6938 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6940 * @iter: list_head ** of the current position
6942 * Gets the next device from the dev's upper list, starting from iter
6943 * position. The caller must hold RCU read lock.
6945 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6946 struct list_head **iter)
6948 struct netdev_adjacent *upper;
6950 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6952 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6954 if (&upper->list == &dev->adj_list.upper)
6957 *iter = &upper->list;
6961 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6963 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6964 struct list_head **iter,
6967 struct netdev_adjacent *upper;
6969 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6971 if (&upper->list == &dev->adj_list.upper)
6974 *iter = &upper->list;
6975 *ignore = upper->ignore;
6980 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6981 struct list_head **iter)
6983 struct netdev_adjacent *upper;
6985 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6987 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6989 if (&upper->list == &dev->adj_list.upper)
6992 *iter = &upper->list;
6997 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6998 int (*fn)(struct net_device *dev,
6999 struct netdev_nested_priv *priv),
7000 struct netdev_nested_priv *priv)
7002 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7003 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7008 iter = &dev->adj_list.upper;
7012 ret = fn(now, priv);
7019 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7026 niter = &udev->adj_list.upper;
7027 dev_stack[cur] = now;
7028 iter_stack[cur++] = iter;
7035 next = dev_stack[--cur];
7036 niter = iter_stack[cur];
7046 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7047 int (*fn)(struct net_device *dev,
7048 struct netdev_nested_priv *priv),
7049 struct netdev_nested_priv *priv)
7051 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7052 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7056 iter = &dev->adj_list.upper;
7060 ret = fn(now, priv);
7067 udev = netdev_next_upper_dev_rcu(now, &iter);
7072 niter = &udev->adj_list.upper;
7073 dev_stack[cur] = now;
7074 iter_stack[cur++] = iter;
7081 next = dev_stack[--cur];
7082 niter = iter_stack[cur];
7091 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7093 static bool __netdev_has_upper_dev(struct net_device *dev,
7094 struct net_device *upper_dev)
7096 struct netdev_nested_priv priv = {
7098 .data = (void *)upper_dev,
7103 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7108 * netdev_lower_get_next_private - Get the next ->private from the
7109 * lower neighbour list
7111 * @iter: list_head ** of the current position
7113 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7114 * list, starting from iter position. The caller must hold either hold the
7115 * RTNL lock or its own locking that guarantees that the neighbour lower
7116 * list will remain unchanged.
7118 void *netdev_lower_get_next_private(struct net_device *dev,
7119 struct list_head **iter)
7121 struct netdev_adjacent *lower;
7123 lower = list_entry(*iter, struct netdev_adjacent, list);
7125 if (&lower->list == &dev->adj_list.lower)
7128 *iter = lower->list.next;
7130 return lower->private;
7132 EXPORT_SYMBOL(netdev_lower_get_next_private);
7135 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7136 * lower neighbour list, RCU
7139 * @iter: list_head ** of the current position
7141 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7142 * list, starting from iter position. The caller must hold RCU read lock.
7144 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7145 struct list_head **iter)
7147 struct netdev_adjacent *lower;
7149 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7151 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7153 if (&lower->list == &dev->adj_list.lower)
7156 *iter = &lower->list;
7158 return lower->private;
7160 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7163 * netdev_lower_get_next - Get the next device from the lower neighbour
7166 * @iter: list_head ** of the current position
7168 * Gets the next netdev_adjacent from the dev's lower neighbour
7169 * list, starting from iter position. The caller must hold RTNL lock or
7170 * its own locking that guarantees that the neighbour lower
7171 * list will remain unchanged.
7173 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7175 struct netdev_adjacent *lower;
7177 lower = list_entry(*iter, struct netdev_adjacent, list);
7179 if (&lower->list == &dev->adj_list.lower)
7182 *iter = lower->list.next;
7186 EXPORT_SYMBOL(netdev_lower_get_next);
7188 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7189 struct list_head **iter)
7191 struct netdev_adjacent *lower;
7193 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7195 if (&lower->list == &dev->adj_list.lower)
7198 *iter = &lower->list;
7203 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7204 struct list_head **iter,
7207 struct netdev_adjacent *lower;
7209 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7211 if (&lower->list == &dev->adj_list.lower)
7214 *iter = &lower->list;
7215 *ignore = lower->ignore;
7220 int netdev_walk_all_lower_dev(struct net_device *dev,
7221 int (*fn)(struct net_device *dev,
7222 struct netdev_nested_priv *priv),
7223 struct netdev_nested_priv *priv)
7225 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7226 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7230 iter = &dev->adj_list.lower;
7234 ret = fn(now, priv);
7241 ldev = netdev_next_lower_dev(now, &iter);
7246 niter = &ldev->adj_list.lower;
7247 dev_stack[cur] = now;
7248 iter_stack[cur++] = iter;
7255 next = dev_stack[--cur];
7256 niter = iter_stack[cur];
7265 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7267 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7268 int (*fn)(struct net_device *dev,
7269 struct netdev_nested_priv *priv),
7270 struct netdev_nested_priv *priv)
7272 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7273 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7278 iter = &dev->adj_list.lower;
7282 ret = fn(now, priv);
7289 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7296 niter = &ldev->adj_list.lower;
7297 dev_stack[cur] = now;
7298 iter_stack[cur++] = iter;
7305 next = dev_stack[--cur];
7306 niter = iter_stack[cur];
7316 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7317 struct list_head **iter)
7319 struct netdev_adjacent *lower;
7321 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7322 if (&lower->list == &dev->adj_list.lower)
7325 *iter = &lower->list;
7329 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7331 static u8 __netdev_upper_depth(struct net_device *dev)
7333 struct net_device *udev;
7334 struct list_head *iter;
7338 for (iter = &dev->adj_list.upper,
7339 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7341 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7344 if (max_depth < udev->upper_level)
7345 max_depth = udev->upper_level;
7351 static u8 __netdev_lower_depth(struct net_device *dev)
7353 struct net_device *ldev;
7354 struct list_head *iter;
7358 for (iter = &dev->adj_list.lower,
7359 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7361 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7364 if (max_depth < ldev->lower_level)
7365 max_depth = ldev->lower_level;
7371 static int __netdev_update_upper_level(struct net_device *dev,
7372 struct netdev_nested_priv *__unused)
7374 dev->upper_level = __netdev_upper_depth(dev) + 1;
7378 #ifdef CONFIG_LOCKDEP
7379 static LIST_HEAD(net_unlink_list);
7381 static void net_unlink_todo(struct net_device *dev)
7383 if (list_empty(&dev->unlink_list))
7384 list_add_tail(&dev->unlink_list, &net_unlink_list);
7388 static int __netdev_update_lower_level(struct net_device *dev,
7389 struct netdev_nested_priv *priv)
7391 dev->lower_level = __netdev_lower_depth(dev) + 1;
7393 #ifdef CONFIG_LOCKDEP
7397 if (priv->flags & NESTED_SYNC_IMM)
7398 dev->nested_level = dev->lower_level - 1;
7399 if (priv->flags & NESTED_SYNC_TODO)
7400 net_unlink_todo(dev);
7405 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7406 int (*fn)(struct net_device *dev,
7407 struct netdev_nested_priv *priv),
7408 struct netdev_nested_priv *priv)
7410 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7411 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7415 iter = &dev->adj_list.lower;
7419 ret = fn(now, priv);
7426 ldev = netdev_next_lower_dev_rcu(now, &iter);
7431 niter = &ldev->adj_list.lower;
7432 dev_stack[cur] = now;
7433 iter_stack[cur++] = iter;
7440 next = dev_stack[--cur];
7441 niter = iter_stack[cur];
7450 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7453 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7454 * lower neighbour list, RCU
7458 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7459 * list. The caller must hold RCU read lock.
7461 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7463 struct netdev_adjacent *lower;
7465 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7466 struct netdev_adjacent, list);
7468 return lower->private;
7471 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7474 * netdev_master_upper_dev_get_rcu - Get master upper device
7477 * Find a master upper device and return pointer to it or NULL in case
7478 * it's not there. The caller must hold the RCU read lock.
7480 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7482 struct netdev_adjacent *upper;
7484 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7485 struct netdev_adjacent, list);
7486 if (upper && likely(upper->master))
7490 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7492 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7493 struct net_device *adj_dev,
7494 struct list_head *dev_list)
7496 char linkname[IFNAMSIZ+7];
7498 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7499 "upper_%s" : "lower_%s", adj_dev->name);
7500 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7503 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7505 struct list_head *dev_list)
7507 char linkname[IFNAMSIZ+7];
7509 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7510 "upper_%s" : "lower_%s", name);
7511 sysfs_remove_link(&(dev->dev.kobj), linkname);
7514 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7515 struct net_device *adj_dev,
7516 struct list_head *dev_list)
7518 return (dev_list == &dev->adj_list.upper ||
7519 dev_list == &dev->adj_list.lower) &&
7520 net_eq(dev_net(dev), dev_net(adj_dev));
7523 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7524 struct net_device *adj_dev,
7525 struct list_head *dev_list,
7526 void *private, bool master)
7528 struct netdev_adjacent *adj;
7531 adj = __netdev_find_adj(adj_dev, dev_list);
7535 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7536 dev->name, adj_dev->name, adj->ref_nr);
7541 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7546 adj->master = master;
7548 adj->private = private;
7549 adj->ignore = false;
7550 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7552 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7553 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7555 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7556 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7561 /* Ensure that master link is always the first item in list. */
7563 ret = sysfs_create_link(&(dev->dev.kobj),
7564 &(adj_dev->dev.kobj), "master");
7566 goto remove_symlinks;
7568 list_add_rcu(&adj->list, dev_list);
7570 list_add_tail_rcu(&adj->list, dev_list);
7576 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7577 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7579 netdev_put(adj_dev, &adj->dev_tracker);
7585 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7586 struct net_device *adj_dev,
7588 struct list_head *dev_list)
7590 struct netdev_adjacent *adj;
7592 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7593 dev->name, adj_dev->name, ref_nr);
7595 adj = __netdev_find_adj(adj_dev, dev_list);
7598 pr_err("Adjacency does not exist for device %s from %s\n",
7599 dev->name, adj_dev->name);
7604 if (adj->ref_nr > ref_nr) {
7605 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7606 dev->name, adj_dev->name, ref_nr,
7607 adj->ref_nr - ref_nr);
7608 adj->ref_nr -= ref_nr;
7613 sysfs_remove_link(&(dev->dev.kobj), "master");
7615 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7616 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7618 list_del_rcu(&adj->list);
7619 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7620 adj_dev->name, dev->name, adj_dev->name);
7621 netdev_put(adj_dev, &adj->dev_tracker);
7622 kfree_rcu(adj, rcu);
7625 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7626 struct net_device *upper_dev,
7627 struct list_head *up_list,
7628 struct list_head *down_list,
7629 void *private, bool master)
7633 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7638 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7641 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7648 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7649 struct net_device *upper_dev,
7651 struct list_head *up_list,
7652 struct list_head *down_list)
7654 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7655 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7658 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7659 struct net_device *upper_dev,
7660 void *private, bool master)
7662 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7663 &dev->adj_list.upper,
7664 &upper_dev->adj_list.lower,
7668 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7669 struct net_device *upper_dev)
7671 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7672 &dev->adj_list.upper,
7673 &upper_dev->adj_list.lower);
7676 static int __netdev_upper_dev_link(struct net_device *dev,
7677 struct net_device *upper_dev, bool master,
7678 void *upper_priv, void *upper_info,
7679 struct netdev_nested_priv *priv,
7680 struct netlink_ext_ack *extack)
7682 struct netdev_notifier_changeupper_info changeupper_info = {
7687 .upper_dev = upper_dev,
7690 .upper_info = upper_info,
7692 struct net_device *master_dev;
7697 if (dev == upper_dev)
7700 /* To prevent loops, check if dev is not upper device to upper_dev. */
7701 if (__netdev_has_upper_dev(upper_dev, dev))
7704 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7708 if (__netdev_has_upper_dev(dev, upper_dev))
7711 master_dev = __netdev_master_upper_dev_get(dev);
7713 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7716 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7717 &changeupper_info.info);
7718 ret = notifier_to_errno(ret);
7722 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7727 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7728 &changeupper_info.info);
7729 ret = notifier_to_errno(ret);
7733 __netdev_update_upper_level(dev, NULL);
7734 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7736 __netdev_update_lower_level(upper_dev, priv);
7737 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7743 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7749 * netdev_upper_dev_link - Add a link to the upper device
7751 * @upper_dev: new upper device
7752 * @extack: netlink extended ack
7754 * Adds a link to device which is upper to this one. The caller must hold
7755 * the RTNL lock. On a failure a negative errno code is returned.
7756 * On success the reference counts are adjusted and the function
7759 int netdev_upper_dev_link(struct net_device *dev,
7760 struct net_device *upper_dev,
7761 struct netlink_ext_ack *extack)
7763 struct netdev_nested_priv priv = {
7764 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7768 return __netdev_upper_dev_link(dev, upper_dev, false,
7769 NULL, NULL, &priv, extack);
7771 EXPORT_SYMBOL(netdev_upper_dev_link);
7774 * netdev_master_upper_dev_link - Add a master link to the upper device
7776 * @upper_dev: new upper device
7777 * @upper_priv: upper device private
7778 * @upper_info: upper info to be passed down via notifier
7779 * @extack: netlink extended ack
7781 * Adds a link to device which is upper to this one. In this case, only
7782 * one master upper device can be linked, although other non-master devices
7783 * might be linked as well. The caller must hold the RTNL lock.
7784 * On a failure a negative errno code is returned. On success the reference
7785 * counts are adjusted and the function returns zero.
7787 int netdev_master_upper_dev_link(struct net_device *dev,
7788 struct net_device *upper_dev,
7789 void *upper_priv, void *upper_info,
7790 struct netlink_ext_ack *extack)
7792 struct netdev_nested_priv priv = {
7793 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7797 return __netdev_upper_dev_link(dev, upper_dev, true,
7798 upper_priv, upper_info, &priv, extack);
7800 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7802 static void __netdev_upper_dev_unlink(struct net_device *dev,
7803 struct net_device *upper_dev,
7804 struct netdev_nested_priv *priv)
7806 struct netdev_notifier_changeupper_info changeupper_info = {
7810 .upper_dev = upper_dev,
7816 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7818 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7819 &changeupper_info.info);
7821 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7823 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7824 &changeupper_info.info);
7826 __netdev_update_upper_level(dev, NULL);
7827 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7829 __netdev_update_lower_level(upper_dev, priv);
7830 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7835 * netdev_upper_dev_unlink - Removes a link to upper device
7837 * @upper_dev: new upper device
7839 * Removes a link to device which is upper to this one. The caller must hold
7842 void netdev_upper_dev_unlink(struct net_device *dev,
7843 struct net_device *upper_dev)
7845 struct netdev_nested_priv priv = {
7846 .flags = NESTED_SYNC_TODO,
7850 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7852 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7854 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7855 struct net_device *lower_dev,
7858 struct netdev_adjacent *adj;
7860 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7864 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7869 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7870 struct net_device *lower_dev)
7872 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7875 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7876 struct net_device *lower_dev)
7878 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7881 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7882 struct net_device *new_dev,
7883 struct net_device *dev,
7884 struct netlink_ext_ack *extack)
7886 struct netdev_nested_priv priv = {
7895 if (old_dev && new_dev != old_dev)
7896 netdev_adjacent_dev_disable(dev, old_dev);
7897 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7900 if (old_dev && new_dev != old_dev)
7901 netdev_adjacent_dev_enable(dev, old_dev);
7907 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7909 void netdev_adjacent_change_commit(struct net_device *old_dev,
7910 struct net_device *new_dev,
7911 struct net_device *dev)
7913 struct netdev_nested_priv priv = {
7914 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7918 if (!new_dev || !old_dev)
7921 if (new_dev == old_dev)
7924 netdev_adjacent_dev_enable(dev, old_dev);
7925 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7927 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7929 void netdev_adjacent_change_abort(struct net_device *old_dev,
7930 struct net_device *new_dev,
7931 struct net_device *dev)
7933 struct netdev_nested_priv priv = {
7941 if (old_dev && new_dev != old_dev)
7942 netdev_adjacent_dev_enable(dev, old_dev);
7944 __netdev_upper_dev_unlink(new_dev, dev, &priv);
7946 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7949 * netdev_bonding_info_change - Dispatch event about slave change
7951 * @bonding_info: info to dispatch
7953 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7954 * The caller must hold the RTNL lock.
7956 void netdev_bonding_info_change(struct net_device *dev,
7957 struct netdev_bonding_info *bonding_info)
7959 struct netdev_notifier_bonding_info info = {
7963 memcpy(&info.bonding_info, bonding_info,
7964 sizeof(struct netdev_bonding_info));
7965 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7968 EXPORT_SYMBOL(netdev_bonding_info_change);
7970 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7971 struct netlink_ext_ack *extack)
7973 struct netdev_notifier_offload_xstats_info info = {
7975 .info.extack = extack,
7976 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7981 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7983 if (!dev->offload_xstats_l3)
7986 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7987 NETDEV_OFFLOAD_XSTATS_DISABLE,
7989 err = notifier_to_errno(rc);
7996 kfree(dev->offload_xstats_l3);
7997 dev->offload_xstats_l3 = NULL;
8001 int netdev_offload_xstats_enable(struct net_device *dev,
8002 enum netdev_offload_xstats_type type,
8003 struct netlink_ext_ack *extack)
8007 if (netdev_offload_xstats_enabled(dev, type))
8011 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8012 return netdev_offload_xstats_enable_l3(dev, extack);
8018 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8020 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8022 struct netdev_notifier_offload_xstats_info info = {
8024 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8027 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8029 kfree(dev->offload_xstats_l3);
8030 dev->offload_xstats_l3 = NULL;
8033 int netdev_offload_xstats_disable(struct net_device *dev,
8034 enum netdev_offload_xstats_type type)
8038 if (!netdev_offload_xstats_enabled(dev, type))
8042 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8043 netdev_offload_xstats_disable_l3(dev);
8050 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8052 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8054 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8057 static struct rtnl_hw_stats64 *
8058 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8059 enum netdev_offload_xstats_type type)
8062 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8063 return dev->offload_xstats_l3;
8070 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8071 enum netdev_offload_xstats_type type)
8075 return netdev_offload_xstats_get_ptr(dev, type);
8077 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8079 struct netdev_notifier_offload_xstats_ru {
8083 struct netdev_notifier_offload_xstats_rd {
8084 struct rtnl_hw_stats64 stats;
8088 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8089 const struct rtnl_hw_stats64 *src)
8091 dest->rx_packets += src->rx_packets;
8092 dest->tx_packets += src->tx_packets;
8093 dest->rx_bytes += src->rx_bytes;
8094 dest->tx_bytes += src->tx_bytes;
8095 dest->rx_errors += src->rx_errors;
8096 dest->tx_errors += src->tx_errors;
8097 dest->rx_dropped += src->rx_dropped;
8098 dest->tx_dropped += src->tx_dropped;
8099 dest->multicast += src->multicast;
8102 static int netdev_offload_xstats_get_used(struct net_device *dev,
8103 enum netdev_offload_xstats_type type,
8105 struct netlink_ext_ack *extack)
8107 struct netdev_notifier_offload_xstats_ru report_used = {};
8108 struct netdev_notifier_offload_xstats_info info = {
8110 .info.extack = extack,
8112 .report_used = &report_used,
8116 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8117 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8119 *p_used = report_used.used;
8120 return notifier_to_errno(rc);
8123 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8124 enum netdev_offload_xstats_type type,
8125 struct rtnl_hw_stats64 *p_stats,
8127 struct netlink_ext_ack *extack)
8129 struct netdev_notifier_offload_xstats_rd report_delta = {};
8130 struct netdev_notifier_offload_xstats_info info = {
8132 .info.extack = extack,
8134 .report_delta = &report_delta,
8136 struct rtnl_hw_stats64 *stats;
8139 stats = netdev_offload_xstats_get_ptr(dev, type);
8140 if (WARN_ON(!stats))
8143 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8146 /* Cache whatever we got, even if there was an error, otherwise the
8147 * successful stats retrievals would get lost.
8149 netdev_hw_stats64_add(stats, &report_delta.stats);
8153 *p_used = report_delta.used;
8155 return notifier_to_errno(rc);
8158 int netdev_offload_xstats_get(struct net_device *dev,
8159 enum netdev_offload_xstats_type type,
8160 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8161 struct netlink_ext_ack *extack)
8166 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8169 return netdev_offload_xstats_get_used(dev, type, p_used,
8172 EXPORT_SYMBOL(netdev_offload_xstats_get);
8175 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8176 const struct rtnl_hw_stats64 *stats)
8178 report_delta->used = true;
8179 netdev_hw_stats64_add(&report_delta->stats, stats);
8181 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8184 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8186 report_used->used = true;
8188 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8190 void netdev_offload_xstats_push_delta(struct net_device *dev,
8191 enum netdev_offload_xstats_type type,
8192 const struct rtnl_hw_stats64 *p_stats)
8194 struct rtnl_hw_stats64 *stats;
8198 stats = netdev_offload_xstats_get_ptr(dev, type);
8199 if (WARN_ON(!stats))
8202 netdev_hw_stats64_add(stats, p_stats);
8204 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8207 * netdev_get_xmit_slave - Get the xmit slave of master device
8210 * @all_slaves: assume all the slaves are active
8212 * The reference counters are not incremented so the caller must be
8213 * careful with locks. The caller must hold RCU lock.
8214 * %NULL is returned if no slave is found.
8217 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8218 struct sk_buff *skb,
8221 const struct net_device_ops *ops = dev->netdev_ops;
8223 if (!ops->ndo_get_xmit_slave)
8225 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8227 EXPORT_SYMBOL(netdev_get_xmit_slave);
8229 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8232 const struct net_device_ops *ops = dev->netdev_ops;
8234 if (!ops->ndo_sk_get_lower_dev)
8236 return ops->ndo_sk_get_lower_dev(dev, sk);
8240 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8244 * %NULL is returned if no lower device is found.
8247 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8250 struct net_device *lower;
8252 lower = netdev_sk_get_lower_dev(dev, sk);
8255 lower = netdev_sk_get_lower_dev(dev, sk);
8260 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8262 static void netdev_adjacent_add_links(struct net_device *dev)
8264 struct netdev_adjacent *iter;
8266 struct net *net = dev_net(dev);
8268 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8269 if (!net_eq(net, dev_net(iter->dev)))
8271 netdev_adjacent_sysfs_add(iter->dev, dev,
8272 &iter->dev->adj_list.lower);
8273 netdev_adjacent_sysfs_add(dev, iter->dev,
8274 &dev->adj_list.upper);
8277 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8278 if (!net_eq(net, dev_net(iter->dev)))
8280 netdev_adjacent_sysfs_add(iter->dev, dev,
8281 &iter->dev->adj_list.upper);
8282 netdev_adjacent_sysfs_add(dev, iter->dev,
8283 &dev->adj_list.lower);
8287 static void netdev_adjacent_del_links(struct net_device *dev)
8289 struct netdev_adjacent *iter;
8291 struct net *net = dev_net(dev);
8293 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8294 if (!net_eq(net, dev_net(iter->dev)))
8296 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8297 &iter->dev->adj_list.lower);
8298 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8299 &dev->adj_list.upper);
8302 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8303 if (!net_eq(net, dev_net(iter->dev)))
8305 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8306 &iter->dev->adj_list.upper);
8307 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8308 &dev->adj_list.lower);
8312 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8314 struct netdev_adjacent *iter;
8316 struct net *net = dev_net(dev);
8318 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8319 if (!net_eq(net, dev_net(iter->dev)))
8321 netdev_adjacent_sysfs_del(iter->dev, oldname,
8322 &iter->dev->adj_list.lower);
8323 netdev_adjacent_sysfs_add(iter->dev, dev,
8324 &iter->dev->adj_list.lower);
8327 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8328 if (!net_eq(net, dev_net(iter->dev)))
8330 netdev_adjacent_sysfs_del(iter->dev, oldname,
8331 &iter->dev->adj_list.upper);
8332 netdev_adjacent_sysfs_add(iter->dev, dev,
8333 &iter->dev->adj_list.upper);
8337 void *netdev_lower_dev_get_private(struct net_device *dev,
8338 struct net_device *lower_dev)
8340 struct netdev_adjacent *lower;
8344 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8348 return lower->private;
8350 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8354 * netdev_lower_state_changed - Dispatch event about lower device state change
8355 * @lower_dev: device
8356 * @lower_state_info: state to dispatch
8358 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8359 * The caller must hold the RTNL lock.
8361 void netdev_lower_state_changed(struct net_device *lower_dev,
8362 void *lower_state_info)
8364 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8365 .info.dev = lower_dev,
8369 changelowerstate_info.lower_state_info = lower_state_info;
8370 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8371 &changelowerstate_info.info);
8373 EXPORT_SYMBOL(netdev_lower_state_changed);
8375 static void dev_change_rx_flags(struct net_device *dev, int flags)
8377 const struct net_device_ops *ops = dev->netdev_ops;
8379 if (ops->ndo_change_rx_flags)
8380 ops->ndo_change_rx_flags(dev, flags);
8383 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8385 unsigned int old_flags = dev->flags;
8391 dev->flags |= IFF_PROMISC;
8392 dev->promiscuity += inc;
8393 if (dev->promiscuity == 0) {
8396 * If inc causes overflow, untouch promisc and return error.
8399 dev->flags &= ~IFF_PROMISC;
8401 dev->promiscuity -= inc;
8402 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8406 if (dev->flags != old_flags) {
8407 netdev_info(dev, "%s promiscuous mode\n",
8408 dev->flags & IFF_PROMISC ? "entered" : "left");
8409 if (audit_enabled) {
8410 current_uid_gid(&uid, &gid);
8411 audit_log(audit_context(), GFP_ATOMIC,
8412 AUDIT_ANOM_PROMISCUOUS,
8413 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8414 dev->name, (dev->flags & IFF_PROMISC),
8415 (old_flags & IFF_PROMISC),
8416 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8417 from_kuid(&init_user_ns, uid),
8418 from_kgid(&init_user_ns, gid),
8419 audit_get_sessionid(current));
8422 dev_change_rx_flags(dev, IFF_PROMISC);
8425 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8430 * dev_set_promiscuity - update promiscuity count on a device
8434 * Add or remove promiscuity from a device. While the count in the device
8435 * remains above zero the interface remains promiscuous. Once it hits zero
8436 * the device reverts back to normal filtering operation. A negative inc
8437 * value is used to drop promiscuity on the device.
8438 * Return 0 if successful or a negative errno code on error.
8440 int dev_set_promiscuity(struct net_device *dev, int inc)
8442 unsigned int old_flags = dev->flags;
8445 err = __dev_set_promiscuity(dev, inc, true);
8448 if (dev->flags != old_flags)
8449 dev_set_rx_mode(dev);
8452 EXPORT_SYMBOL(dev_set_promiscuity);
8454 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8456 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8460 dev->flags |= IFF_ALLMULTI;
8461 dev->allmulti += inc;
8462 if (dev->allmulti == 0) {
8465 * If inc causes overflow, untouch allmulti and return error.
8468 dev->flags &= ~IFF_ALLMULTI;
8470 dev->allmulti -= inc;
8471 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8475 if (dev->flags ^ old_flags) {
8476 netdev_info(dev, "%s allmulticast mode\n",
8477 dev->flags & IFF_ALLMULTI ? "entered" : "left");
8478 dev_change_rx_flags(dev, IFF_ALLMULTI);
8479 dev_set_rx_mode(dev);
8481 __dev_notify_flags(dev, old_flags,
8482 dev->gflags ^ old_gflags, 0, NULL);
8488 * dev_set_allmulti - update allmulti count on a device
8492 * Add or remove reception of all multicast frames to a device. While the
8493 * count in the device remains above zero the interface remains listening
8494 * to all interfaces. Once it hits zero the device reverts back to normal
8495 * filtering operation. A negative @inc value is used to drop the counter
8496 * when releasing a resource needing all multicasts.
8497 * Return 0 if successful or a negative errno code on error.
8500 int dev_set_allmulti(struct net_device *dev, int inc)
8502 return __dev_set_allmulti(dev, inc, true);
8504 EXPORT_SYMBOL(dev_set_allmulti);
8507 * Upload unicast and multicast address lists to device and
8508 * configure RX filtering. When the device doesn't support unicast
8509 * filtering it is put in promiscuous mode while unicast addresses
8512 void __dev_set_rx_mode(struct net_device *dev)
8514 const struct net_device_ops *ops = dev->netdev_ops;
8516 /* dev_open will call this function so the list will stay sane. */
8517 if (!(dev->flags&IFF_UP))
8520 if (!netif_device_present(dev))
8523 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8524 /* Unicast addresses changes may only happen under the rtnl,
8525 * therefore calling __dev_set_promiscuity here is safe.
8527 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8528 __dev_set_promiscuity(dev, 1, false);
8529 dev->uc_promisc = true;
8530 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8531 __dev_set_promiscuity(dev, -1, false);
8532 dev->uc_promisc = false;
8536 if (ops->ndo_set_rx_mode)
8537 ops->ndo_set_rx_mode(dev);
8540 void dev_set_rx_mode(struct net_device *dev)
8542 netif_addr_lock_bh(dev);
8543 __dev_set_rx_mode(dev);
8544 netif_addr_unlock_bh(dev);
8548 * dev_get_flags - get flags reported to userspace
8551 * Get the combination of flag bits exported through APIs to userspace.
8553 unsigned int dev_get_flags(const struct net_device *dev)
8557 flags = (dev->flags & ~(IFF_PROMISC |
8562 (dev->gflags & (IFF_PROMISC |
8565 if (netif_running(dev)) {
8566 if (netif_oper_up(dev))
8567 flags |= IFF_RUNNING;
8568 if (netif_carrier_ok(dev))
8569 flags |= IFF_LOWER_UP;
8570 if (netif_dormant(dev))
8571 flags |= IFF_DORMANT;
8576 EXPORT_SYMBOL(dev_get_flags);
8578 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8579 struct netlink_ext_ack *extack)
8581 unsigned int old_flags = dev->flags;
8587 * Set the flags on our device.
8590 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8591 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8593 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8597 * Load in the correct multicast list now the flags have changed.
8600 if ((old_flags ^ flags) & IFF_MULTICAST)
8601 dev_change_rx_flags(dev, IFF_MULTICAST);
8603 dev_set_rx_mode(dev);
8606 * Have we downed the interface. We handle IFF_UP ourselves
8607 * according to user attempts to set it, rather than blindly
8612 if ((old_flags ^ flags) & IFF_UP) {
8613 if (old_flags & IFF_UP)
8616 ret = __dev_open(dev, extack);
8619 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8620 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8621 unsigned int old_flags = dev->flags;
8623 dev->gflags ^= IFF_PROMISC;
8625 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8626 if (dev->flags != old_flags)
8627 dev_set_rx_mode(dev);
8630 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8631 * is important. Some (broken) drivers set IFF_PROMISC, when
8632 * IFF_ALLMULTI is requested not asking us and not reporting.
8634 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8635 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8637 dev->gflags ^= IFF_ALLMULTI;
8638 __dev_set_allmulti(dev, inc, false);
8644 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8645 unsigned int gchanges, u32 portid,
8646 const struct nlmsghdr *nlh)
8648 unsigned int changes = dev->flags ^ old_flags;
8651 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8653 if (changes & IFF_UP) {
8654 if (dev->flags & IFF_UP)
8655 call_netdevice_notifiers(NETDEV_UP, dev);
8657 call_netdevice_notifiers(NETDEV_DOWN, dev);
8660 if (dev->flags & IFF_UP &&
8661 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8662 struct netdev_notifier_change_info change_info = {
8666 .flags_changed = changes,
8669 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8674 * dev_change_flags - change device settings
8676 * @flags: device state flags
8677 * @extack: netlink extended ack
8679 * Change settings on device based state flags. The flags are
8680 * in the userspace exported format.
8682 int dev_change_flags(struct net_device *dev, unsigned int flags,
8683 struct netlink_ext_ack *extack)
8686 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8688 ret = __dev_change_flags(dev, flags, extack);
8692 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8693 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8696 EXPORT_SYMBOL(dev_change_flags);
8698 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8700 const struct net_device_ops *ops = dev->netdev_ops;
8702 if (ops->ndo_change_mtu)
8703 return ops->ndo_change_mtu(dev, new_mtu);
8705 /* Pairs with all the lockless reads of dev->mtu in the stack */
8706 WRITE_ONCE(dev->mtu, new_mtu);
8709 EXPORT_SYMBOL(__dev_set_mtu);
8711 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8712 struct netlink_ext_ack *extack)
8714 /* MTU must be positive, and in range */
8715 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8716 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8720 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8721 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8728 * dev_set_mtu_ext - Change maximum transfer unit
8730 * @new_mtu: new transfer unit
8731 * @extack: netlink extended ack
8733 * Change the maximum transfer size of the network device.
8735 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8736 struct netlink_ext_ack *extack)
8740 if (new_mtu == dev->mtu)
8743 err = dev_validate_mtu(dev, new_mtu, extack);
8747 if (!netif_device_present(dev))
8750 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8751 err = notifier_to_errno(err);
8755 orig_mtu = dev->mtu;
8756 err = __dev_set_mtu(dev, new_mtu);
8759 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8761 err = notifier_to_errno(err);
8763 /* setting mtu back and notifying everyone again,
8764 * so that they have a chance to revert changes.
8766 __dev_set_mtu(dev, orig_mtu);
8767 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8774 int dev_set_mtu(struct net_device *dev, int new_mtu)
8776 struct netlink_ext_ack extack;
8779 memset(&extack, 0, sizeof(extack));
8780 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8781 if (err && extack._msg)
8782 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8785 EXPORT_SYMBOL(dev_set_mtu);
8788 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8790 * @new_len: new tx queue length
8792 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8794 unsigned int orig_len = dev->tx_queue_len;
8797 if (new_len != (unsigned int)new_len)
8800 if (new_len != orig_len) {
8801 dev->tx_queue_len = new_len;
8802 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8803 res = notifier_to_errno(res);
8806 res = dev_qdisc_change_tx_queue_len(dev);
8814 netdev_err(dev, "refused to change device tx_queue_len\n");
8815 dev->tx_queue_len = orig_len;
8820 * dev_set_group - Change group this device belongs to
8822 * @new_group: group this device should belong to
8824 void dev_set_group(struct net_device *dev, int new_group)
8826 dev->group = new_group;
8830 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8832 * @addr: new address
8833 * @extack: netlink extended ack
8835 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8836 struct netlink_ext_ack *extack)
8838 struct netdev_notifier_pre_changeaddr_info info = {
8840 .info.extack = extack,
8845 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8846 return notifier_to_errno(rc);
8848 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8851 * dev_set_mac_address - Change Media Access Control Address
8854 * @extack: netlink extended ack
8856 * Change the hardware (MAC) address of the device
8858 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8859 struct netlink_ext_ack *extack)
8861 const struct net_device_ops *ops = dev->netdev_ops;
8864 if (!ops->ndo_set_mac_address)
8866 if (sa->sa_family != dev->type)
8868 if (!netif_device_present(dev))
8870 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8873 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8874 err = ops->ndo_set_mac_address(dev, sa);
8878 dev->addr_assign_type = NET_ADDR_SET;
8879 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8880 add_device_randomness(dev->dev_addr, dev->addr_len);
8883 EXPORT_SYMBOL(dev_set_mac_address);
8885 static DECLARE_RWSEM(dev_addr_sem);
8887 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8888 struct netlink_ext_ack *extack)
8892 down_write(&dev_addr_sem);
8893 ret = dev_set_mac_address(dev, sa, extack);
8894 up_write(&dev_addr_sem);
8897 EXPORT_SYMBOL(dev_set_mac_address_user);
8899 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8901 size_t size = sizeof(sa->sa_data_min);
8902 struct net_device *dev;
8905 down_read(&dev_addr_sem);
8908 dev = dev_get_by_name_rcu(net, dev_name);
8914 memset(sa->sa_data, 0, size);
8916 memcpy(sa->sa_data, dev->dev_addr,
8917 min_t(size_t, size, dev->addr_len));
8918 sa->sa_family = dev->type;
8922 up_read(&dev_addr_sem);
8925 EXPORT_SYMBOL(dev_get_mac_address);
8928 * dev_change_carrier - Change device carrier
8930 * @new_carrier: new value
8932 * Change device carrier
8934 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8936 const struct net_device_ops *ops = dev->netdev_ops;
8938 if (!ops->ndo_change_carrier)
8940 if (!netif_device_present(dev))
8942 return ops->ndo_change_carrier(dev, new_carrier);
8946 * dev_get_phys_port_id - Get device physical port ID
8950 * Get device physical port ID
8952 int dev_get_phys_port_id(struct net_device *dev,
8953 struct netdev_phys_item_id *ppid)
8955 const struct net_device_ops *ops = dev->netdev_ops;
8957 if (!ops->ndo_get_phys_port_id)
8959 return ops->ndo_get_phys_port_id(dev, ppid);
8963 * dev_get_phys_port_name - Get device physical port name
8966 * @len: limit of bytes to copy to name
8968 * Get device physical port name
8970 int dev_get_phys_port_name(struct net_device *dev,
8971 char *name, size_t len)
8973 const struct net_device_ops *ops = dev->netdev_ops;
8976 if (ops->ndo_get_phys_port_name) {
8977 err = ops->ndo_get_phys_port_name(dev, name, len);
8978 if (err != -EOPNOTSUPP)
8981 return devlink_compat_phys_port_name_get(dev, name, len);
8985 * dev_get_port_parent_id - Get the device's port parent identifier
8986 * @dev: network device
8987 * @ppid: pointer to a storage for the port's parent identifier
8988 * @recurse: allow/disallow recursion to lower devices
8990 * Get the devices's port parent identifier
8992 int dev_get_port_parent_id(struct net_device *dev,
8993 struct netdev_phys_item_id *ppid,
8996 const struct net_device_ops *ops = dev->netdev_ops;
8997 struct netdev_phys_item_id first = { };
8998 struct net_device *lower_dev;
8999 struct list_head *iter;
9002 if (ops->ndo_get_port_parent_id) {
9003 err = ops->ndo_get_port_parent_id(dev, ppid);
9004 if (err != -EOPNOTSUPP)
9008 err = devlink_compat_switch_id_get(dev, ppid);
9009 if (!recurse || err != -EOPNOTSUPP)
9012 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9013 err = dev_get_port_parent_id(lower_dev, ppid, true);
9018 else if (memcmp(&first, ppid, sizeof(*ppid)))
9024 EXPORT_SYMBOL(dev_get_port_parent_id);
9027 * netdev_port_same_parent_id - Indicate if two network devices have
9028 * the same port parent identifier
9029 * @a: first network device
9030 * @b: second network device
9032 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9034 struct netdev_phys_item_id a_id = { };
9035 struct netdev_phys_item_id b_id = { };
9037 if (dev_get_port_parent_id(a, &a_id, true) ||
9038 dev_get_port_parent_id(b, &b_id, true))
9041 return netdev_phys_item_id_same(&a_id, &b_id);
9043 EXPORT_SYMBOL(netdev_port_same_parent_id);
9046 * dev_change_proto_down - set carrier according to proto_down.
9049 * @proto_down: new value
9051 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9053 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9055 if (!netif_device_present(dev))
9058 netif_carrier_off(dev);
9060 netif_carrier_on(dev);
9061 dev->proto_down = proto_down;
9066 * dev_change_proto_down_reason - proto down reason
9069 * @mask: proto down mask
9070 * @value: proto down value
9072 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9078 dev->proto_down_reason = value;
9080 for_each_set_bit(b, &mask, 32) {
9081 if (value & (1 << b))
9082 dev->proto_down_reason |= BIT(b);
9084 dev->proto_down_reason &= ~BIT(b);
9089 struct bpf_xdp_link {
9090 struct bpf_link link;
9091 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9095 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9097 if (flags & XDP_FLAGS_HW_MODE)
9099 if (flags & XDP_FLAGS_DRV_MODE)
9100 return XDP_MODE_DRV;
9101 if (flags & XDP_FLAGS_SKB_MODE)
9102 return XDP_MODE_SKB;
9103 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9106 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9110 return generic_xdp_install;
9113 return dev->netdev_ops->ndo_bpf;
9119 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9120 enum bpf_xdp_mode mode)
9122 return dev->xdp_state[mode].link;
9125 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9126 enum bpf_xdp_mode mode)
9128 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9131 return link->link.prog;
9132 return dev->xdp_state[mode].prog;
9135 u8 dev_xdp_prog_count(struct net_device *dev)
9140 for (i = 0; i < __MAX_XDP_MODE; i++)
9141 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9145 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9147 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9149 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9151 return prog ? prog->aux->id : 0;
9154 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9155 struct bpf_xdp_link *link)
9157 dev->xdp_state[mode].link = link;
9158 dev->xdp_state[mode].prog = NULL;
9161 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9162 struct bpf_prog *prog)
9164 dev->xdp_state[mode].link = NULL;
9165 dev->xdp_state[mode].prog = prog;
9168 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9169 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9170 u32 flags, struct bpf_prog *prog)
9172 struct netdev_bpf xdp;
9175 memset(&xdp, 0, sizeof(xdp));
9176 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9177 xdp.extack = extack;
9181 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9182 * "moved" into driver), so they don't increment it on their own, but
9183 * they do decrement refcnt when program is detached or replaced.
9184 * Given net_device also owns link/prog, we need to bump refcnt here
9185 * to prevent drivers from underflowing it.
9189 err = bpf_op(dev, &xdp);
9196 if (mode != XDP_MODE_HW)
9197 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9202 static void dev_xdp_uninstall(struct net_device *dev)
9204 struct bpf_xdp_link *link;
9205 struct bpf_prog *prog;
9206 enum bpf_xdp_mode mode;
9211 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9212 prog = dev_xdp_prog(dev, mode);
9216 bpf_op = dev_xdp_bpf_op(dev, mode);
9220 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9222 /* auto-detach link from net device */
9223 link = dev_xdp_link(dev, mode);
9229 dev_xdp_set_link(dev, mode, NULL);
9233 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9234 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9235 struct bpf_prog *old_prog, u32 flags)
9237 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9238 struct bpf_prog *cur_prog;
9239 struct net_device *upper;
9240 struct list_head *iter;
9241 enum bpf_xdp_mode mode;
9247 /* either link or prog attachment, never both */
9248 if (link && (new_prog || old_prog))
9250 /* link supports only XDP mode flags */
9251 if (link && (flags & ~XDP_FLAGS_MODES)) {
9252 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9255 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9256 if (num_modes > 1) {
9257 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9260 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9261 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9262 NL_SET_ERR_MSG(extack,
9263 "More than one program loaded, unset mode is ambiguous");
9266 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9267 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9268 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9272 mode = dev_xdp_mode(dev, flags);
9273 /* can't replace attached link */
9274 if (dev_xdp_link(dev, mode)) {
9275 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9279 /* don't allow if an upper device already has a program */
9280 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9281 if (dev_xdp_prog_count(upper) > 0) {
9282 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9287 cur_prog = dev_xdp_prog(dev, mode);
9288 /* can't replace attached prog with link */
9289 if (link && cur_prog) {
9290 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9293 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9294 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9298 /* put effective new program into new_prog */
9300 new_prog = link->link.prog;
9303 bool offload = mode == XDP_MODE_HW;
9304 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9305 ? XDP_MODE_DRV : XDP_MODE_SKB;
9307 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9308 NL_SET_ERR_MSG(extack, "XDP program already attached");
9311 if (!offload && dev_xdp_prog(dev, other_mode)) {
9312 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9315 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9316 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9319 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9320 NL_SET_ERR_MSG(extack, "Program bound to different device");
9323 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9324 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9327 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9328 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9333 /* don't call drivers if the effective program didn't change */
9334 if (new_prog != cur_prog) {
9335 bpf_op = dev_xdp_bpf_op(dev, mode);
9337 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9341 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9347 dev_xdp_set_link(dev, mode, link);
9349 dev_xdp_set_prog(dev, mode, new_prog);
9351 bpf_prog_put(cur_prog);
9356 static int dev_xdp_attach_link(struct net_device *dev,
9357 struct netlink_ext_ack *extack,
9358 struct bpf_xdp_link *link)
9360 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9363 static int dev_xdp_detach_link(struct net_device *dev,
9364 struct netlink_ext_ack *extack,
9365 struct bpf_xdp_link *link)
9367 enum bpf_xdp_mode mode;
9372 mode = dev_xdp_mode(dev, link->flags);
9373 if (dev_xdp_link(dev, mode) != link)
9376 bpf_op = dev_xdp_bpf_op(dev, mode);
9377 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9378 dev_xdp_set_link(dev, mode, NULL);
9382 static void bpf_xdp_link_release(struct bpf_link *link)
9384 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9388 /* if racing with net_device's tear down, xdp_link->dev might be
9389 * already NULL, in which case link was already auto-detached
9391 if (xdp_link->dev) {
9392 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9393 xdp_link->dev = NULL;
9399 static int bpf_xdp_link_detach(struct bpf_link *link)
9401 bpf_xdp_link_release(link);
9405 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9407 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9412 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9413 struct seq_file *seq)
9415 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9420 ifindex = xdp_link->dev->ifindex;
9423 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9426 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9427 struct bpf_link_info *info)
9429 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9434 ifindex = xdp_link->dev->ifindex;
9437 info->xdp.ifindex = ifindex;
9441 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9442 struct bpf_prog *old_prog)
9444 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9445 enum bpf_xdp_mode mode;
9451 /* link might have been auto-released already, so fail */
9452 if (!xdp_link->dev) {
9457 if (old_prog && link->prog != old_prog) {
9461 old_prog = link->prog;
9462 if (old_prog->type != new_prog->type ||
9463 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9468 if (old_prog == new_prog) {
9469 /* no-op, don't disturb drivers */
9470 bpf_prog_put(new_prog);
9474 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9475 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9476 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9477 xdp_link->flags, new_prog);
9481 old_prog = xchg(&link->prog, new_prog);
9482 bpf_prog_put(old_prog);
9489 static const struct bpf_link_ops bpf_xdp_link_lops = {
9490 .release = bpf_xdp_link_release,
9491 .dealloc = bpf_xdp_link_dealloc,
9492 .detach = bpf_xdp_link_detach,
9493 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9494 .fill_link_info = bpf_xdp_link_fill_link_info,
9495 .update_prog = bpf_xdp_link_update,
9498 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9500 struct net *net = current->nsproxy->net_ns;
9501 struct bpf_link_primer link_primer;
9502 struct netlink_ext_ack extack = {};
9503 struct bpf_xdp_link *link;
9504 struct net_device *dev;
9508 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9514 link = kzalloc(sizeof(*link), GFP_USER);
9520 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9522 link->flags = attr->link_create.flags;
9524 err = bpf_link_prime(&link->link, &link_primer);
9530 err = dev_xdp_attach_link(dev, &extack, link);
9535 bpf_link_cleanup(&link_primer);
9536 trace_bpf_xdp_link_attach_failed(extack._msg);
9540 fd = bpf_link_settle(&link_primer);
9541 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9554 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9556 * @extack: netlink extended ack
9557 * @fd: new program fd or negative value to clear
9558 * @expected_fd: old program fd that userspace expects to replace or clear
9559 * @flags: xdp-related flags
9561 * Set or clear a bpf program for a device
9563 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9564 int fd, int expected_fd, u32 flags)
9566 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9567 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9573 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9574 mode != XDP_MODE_SKB);
9575 if (IS_ERR(new_prog))
9576 return PTR_ERR(new_prog);
9579 if (expected_fd >= 0) {
9580 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9581 mode != XDP_MODE_SKB);
9582 if (IS_ERR(old_prog)) {
9583 err = PTR_ERR(old_prog);
9589 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9592 if (err && new_prog)
9593 bpf_prog_put(new_prog);
9595 bpf_prog_put(old_prog);
9600 * dev_index_reserve() - allocate an ifindex in a namespace
9601 * @net: the applicable net namespace
9602 * @ifindex: requested ifindex, pass %0 to get one allocated
9604 * Allocate a ifindex for a new device. Caller must either use the ifindex
9605 * to store the device (via list_netdevice()) or call dev_index_release()
9606 * to give the index up.
9608 * Return: a suitable unique value for a new device interface number or -errno.
9610 static int dev_index_reserve(struct net *net, u32 ifindex)
9614 if (ifindex > INT_MAX) {
9615 DEBUG_NET_WARN_ON_ONCE(1);
9620 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9621 xa_limit_31b, &net->ifindex, GFP_KERNEL);
9623 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9630 static void dev_index_release(struct net *net, int ifindex)
9632 /* Expect only unused indexes, unlist_netdevice() removes the used */
9633 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9636 /* Delayed registration/unregisteration */
9637 LIST_HEAD(net_todo_list);
9638 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9640 static void net_set_todo(struct net_device *dev)
9642 list_add_tail(&dev->todo_list, &net_todo_list);
9643 atomic_inc(&dev_net(dev)->dev_unreg_count);
9646 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9647 struct net_device *upper, netdev_features_t features)
9649 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9650 netdev_features_t feature;
9653 for_each_netdev_feature(upper_disables, feature_bit) {
9654 feature = __NETIF_F_BIT(feature_bit);
9655 if (!(upper->wanted_features & feature)
9656 && (features & feature)) {
9657 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9658 &feature, upper->name);
9659 features &= ~feature;
9666 static void netdev_sync_lower_features(struct net_device *upper,
9667 struct net_device *lower, netdev_features_t features)
9669 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9670 netdev_features_t feature;
9673 for_each_netdev_feature(upper_disables, feature_bit) {
9674 feature = __NETIF_F_BIT(feature_bit);
9675 if (!(features & feature) && (lower->features & feature)) {
9676 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9677 &feature, lower->name);
9678 lower->wanted_features &= ~feature;
9679 __netdev_update_features(lower);
9681 if (unlikely(lower->features & feature))
9682 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9683 &feature, lower->name);
9685 netdev_features_change(lower);
9690 static netdev_features_t netdev_fix_features(struct net_device *dev,
9691 netdev_features_t features)
9693 /* Fix illegal checksum combinations */
9694 if ((features & NETIF_F_HW_CSUM) &&
9695 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9696 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9697 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9700 /* TSO requires that SG is present as well. */
9701 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9702 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9703 features &= ~NETIF_F_ALL_TSO;
9706 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9707 !(features & NETIF_F_IP_CSUM)) {
9708 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9709 features &= ~NETIF_F_TSO;
9710 features &= ~NETIF_F_TSO_ECN;
9713 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9714 !(features & NETIF_F_IPV6_CSUM)) {
9715 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9716 features &= ~NETIF_F_TSO6;
9719 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9720 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9721 features &= ~NETIF_F_TSO_MANGLEID;
9723 /* TSO ECN requires that TSO is present as well. */
9724 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9725 features &= ~NETIF_F_TSO_ECN;
9727 /* Software GSO depends on SG. */
9728 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9729 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9730 features &= ~NETIF_F_GSO;
9733 /* GSO partial features require GSO partial be set */
9734 if ((features & dev->gso_partial_features) &&
9735 !(features & NETIF_F_GSO_PARTIAL)) {
9737 "Dropping partially supported GSO features since no GSO partial.\n");
9738 features &= ~dev->gso_partial_features;
9741 if (!(features & NETIF_F_RXCSUM)) {
9742 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9743 * successfully merged by hardware must also have the
9744 * checksum verified by hardware. If the user does not
9745 * want to enable RXCSUM, logically, we should disable GRO_HW.
9747 if (features & NETIF_F_GRO_HW) {
9748 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9749 features &= ~NETIF_F_GRO_HW;
9753 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9754 if (features & NETIF_F_RXFCS) {
9755 if (features & NETIF_F_LRO) {
9756 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9757 features &= ~NETIF_F_LRO;
9760 if (features & NETIF_F_GRO_HW) {
9761 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9762 features &= ~NETIF_F_GRO_HW;
9766 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9767 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9768 features &= ~NETIF_F_LRO;
9771 if (features & NETIF_F_HW_TLS_TX) {
9772 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9773 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9774 bool hw_csum = features & NETIF_F_HW_CSUM;
9776 if (!ip_csum && !hw_csum) {
9777 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9778 features &= ~NETIF_F_HW_TLS_TX;
9782 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9783 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9784 features &= ~NETIF_F_HW_TLS_RX;
9790 int __netdev_update_features(struct net_device *dev)
9792 struct net_device *upper, *lower;
9793 netdev_features_t features;
9794 struct list_head *iter;
9799 features = netdev_get_wanted_features(dev);
9801 if (dev->netdev_ops->ndo_fix_features)
9802 features = dev->netdev_ops->ndo_fix_features(dev, features);
9804 /* driver might be less strict about feature dependencies */
9805 features = netdev_fix_features(dev, features);
9807 /* some features can't be enabled if they're off on an upper device */
9808 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9809 features = netdev_sync_upper_features(dev, upper, features);
9811 if (dev->features == features)
9814 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9815 &dev->features, &features);
9817 if (dev->netdev_ops->ndo_set_features)
9818 err = dev->netdev_ops->ndo_set_features(dev, features);
9822 if (unlikely(err < 0)) {
9824 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9825 err, &features, &dev->features);
9826 /* return non-0 since some features might have changed and
9827 * it's better to fire a spurious notification than miss it
9833 /* some features must be disabled on lower devices when disabled
9834 * on an upper device (think: bonding master or bridge)
9836 netdev_for_each_lower_dev(dev, lower, iter)
9837 netdev_sync_lower_features(dev, lower, features);
9840 netdev_features_t diff = features ^ dev->features;
9842 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9843 /* udp_tunnel_{get,drop}_rx_info both need
9844 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9845 * device, or they won't do anything.
9846 * Thus we need to update dev->features
9847 * *before* calling udp_tunnel_get_rx_info,
9848 * but *after* calling udp_tunnel_drop_rx_info.
9850 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9851 dev->features = features;
9852 udp_tunnel_get_rx_info(dev);
9854 udp_tunnel_drop_rx_info(dev);
9858 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9859 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9860 dev->features = features;
9861 err |= vlan_get_rx_ctag_filter_info(dev);
9863 vlan_drop_rx_ctag_filter_info(dev);
9867 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9868 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9869 dev->features = features;
9870 err |= vlan_get_rx_stag_filter_info(dev);
9872 vlan_drop_rx_stag_filter_info(dev);
9876 dev->features = features;
9879 return err < 0 ? 0 : 1;
9883 * netdev_update_features - recalculate device features
9884 * @dev: the device to check
9886 * Recalculate dev->features set and send notifications if it
9887 * has changed. Should be called after driver or hardware dependent
9888 * conditions might have changed that influence the features.
9890 void netdev_update_features(struct net_device *dev)
9892 if (__netdev_update_features(dev))
9893 netdev_features_change(dev);
9895 EXPORT_SYMBOL(netdev_update_features);
9898 * netdev_change_features - recalculate device features
9899 * @dev: the device to check
9901 * Recalculate dev->features set and send notifications even
9902 * if they have not changed. Should be called instead of
9903 * netdev_update_features() if also dev->vlan_features might
9904 * have changed to allow the changes to be propagated to stacked
9907 void netdev_change_features(struct net_device *dev)
9909 __netdev_update_features(dev);
9910 netdev_features_change(dev);
9912 EXPORT_SYMBOL(netdev_change_features);
9915 * netif_stacked_transfer_operstate - transfer operstate
9916 * @rootdev: the root or lower level device to transfer state from
9917 * @dev: the device to transfer operstate to
9919 * Transfer operational state from root to device. This is normally
9920 * called when a stacking relationship exists between the root
9921 * device and the device(a leaf device).
9923 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9924 struct net_device *dev)
9926 if (rootdev->operstate == IF_OPER_DORMANT)
9927 netif_dormant_on(dev);
9929 netif_dormant_off(dev);
9931 if (rootdev->operstate == IF_OPER_TESTING)
9932 netif_testing_on(dev);
9934 netif_testing_off(dev);
9936 if (netif_carrier_ok(rootdev))
9937 netif_carrier_on(dev);
9939 netif_carrier_off(dev);
9941 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9943 static int netif_alloc_rx_queues(struct net_device *dev)
9945 unsigned int i, count = dev->num_rx_queues;
9946 struct netdev_rx_queue *rx;
9947 size_t sz = count * sizeof(*rx);
9952 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9958 for (i = 0; i < count; i++) {
9961 /* XDP RX-queue setup */
9962 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9969 /* Rollback successful reg's and free other resources */
9971 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9977 static void netif_free_rx_queues(struct net_device *dev)
9979 unsigned int i, count = dev->num_rx_queues;
9981 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9985 for (i = 0; i < count; i++)
9986 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9991 static void netdev_init_one_queue(struct net_device *dev,
9992 struct netdev_queue *queue, void *_unused)
9994 /* Initialize queue lock */
9995 spin_lock_init(&queue->_xmit_lock);
9996 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9997 queue->xmit_lock_owner = -1;
9998 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10001 dql_init(&queue->dql, HZ);
10005 static void netif_free_tx_queues(struct net_device *dev)
10010 static int netif_alloc_netdev_queues(struct net_device *dev)
10012 unsigned int count = dev->num_tx_queues;
10013 struct netdev_queue *tx;
10014 size_t sz = count * sizeof(*tx);
10016 if (count < 1 || count > 0xffff)
10019 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10025 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10026 spin_lock_init(&dev->tx_global_lock);
10031 void netif_tx_stop_all_queues(struct net_device *dev)
10035 for (i = 0; i < dev->num_tx_queues; i++) {
10036 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10038 netif_tx_stop_queue(txq);
10041 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10044 * register_netdevice() - register a network device
10045 * @dev: device to register
10047 * Take a prepared network device structure and make it externally accessible.
10048 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10049 * Callers must hold the rtnl lock - you may want register_netdev()
10052 int register_netdevice(struct net_device *dev)
10055 struct net *net = dev_net(dev);
10057 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10058 NETDEV_FEATURE_COUNT);
10059 BUG_ON(dev_boot_phase);
10064 /* When net_device's are persistent, this will be fatal. */
10065 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10068 ret = ethtool_check_ops(dev->ethtool_ops);
10072 spin_lock_init(&dev->addr_list_lock);
10073 netdev_set_addr_lockdep_class(dev);
10075 ret = dev_get_valid_name(net, dev, dev->name);
10080 dev->name_node = netdev_name_node_head_alloc(dev);
10081 if (!dev->name_node)
10084 /* Init, if this function is available */
10085 if (dev->netdev_ops->ndo_init) {
10086 ret = dev->netdev_ops->ndo_init(dev);
10090 goto err_free_name;
10094 if (((dev->hw_features | dev->features) &
10095 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10096 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10097 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10098 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10103 ret = dev_index_reserve(net, dev->ifindex);
10106 dev->ifindex = ret;
10108 /* Transfer changeable features to wanted_features and enable
10109 * software offloads (GSO and GRO).
10111 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10112 dev->features |= NETIF_F_SOFT_FEATURES;
10114 if (dev->udp_tunnel_nic_info) {
10115 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10116 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10119 dev->wanted_features = dev->features & dev->hw_features;
10121 if (!(dev->flags & IFF_LOOPBACK))
10122 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10124 /* If IPv4 TCP segmentation offload is supported we should also
10125 * allow the device to enable segmenting the frame with the option
10126 * of ignoring a static IP ID value. This doesn't enable the
10127 * feature itself but allows the user to enable it later.
10129 if (dev->hw_features & NETIF_F_TSO)
10130 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10131 if (dev->vlan_features & NETIF_F_TSO)
10132 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10133 if (dev->mpls_features & NETIF_F_TSO)
10134 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10135 if (dev->hw_enc_features & NETIF_F_TSO)
10136 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10138 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10140 dev->vlan_features |= NETIF_F_HIGHDMA;
10142 /* Make NETIF_F_SG inheritable to tunnel devices.
10144 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10146 /* Make NETIF_F_SG inheritable to MPLS.
10148 dev->mpls_features |= NETIF_F_SG;
10150 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10151 ret = notifier_to_errno(ret);
10153 goto err_ifindex_release;
10155 ret = netdev_register_kobject(dev);
10156 write_lock(&dev_base_lock);
10157 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10158 write_unlock(&dev_base_lock);
10160 goto err_uninit_notify;
10162 __netdev_update_features(dev);
10165 * Default initial state at registry is that the
10166 * device is present.
10169 set_bit(__LINK_STATE_PRESENT, &dev->state);
10171 linkwatch_init_dev(dev);
10173 dev_init_scheduler(dev);
10175 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10176 list_netdevice(dev);
10178 add_device_randomness(dev->dev_addr, dev->addr_len);
10180 /* If the device has permanent device address, driver should
10181 * set dev_addr and also addr_assign_type should be set to
10182 * NET_ADDR_PERM (default value).
10184 if (dev->addr_assign_type == NET_ADDR_PERM)
10185 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10187 /* Notify protocols, that a new device appeared. */
10188 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10189 ret = notifier_to_errno(ret);
10191 /* Expect explicit free_netdev() on failure */
10192 dev->needs_free_netdev = false;
10193 unregister_netdevice_queue(dev, NULL);
10197 * Prevent userspace races by waiting until the network
10198 * device is fully setup before sending notifications.
10200 if (!dev->rtnl_link_ops ||
10201 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10202 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10208 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10209 err_ifindex_release:
10210 dev_index_release(net, dev->ifindex);
10212 if (dev->netdev_ops->ndo_uninit)
10213 dev->netdev_ops->ndo_uninit(dev);
10214 if (dev->priv_destructor)
10215 dev->priv_destructor(dev);
10217 netdev_name_node_free(dev->name_node);
10220 EXPORT_SYMBOL(register_netdevice);
10223 * init_dummy_netdev - init a dummy network device for NAPI
10224 * @dev: device to init
10226 * This takes a network device structure and initialize the minimum
10227 * amount of fields so it can be used to schedule NAPI polls without
10228 * registering a full blown interface. This is to be used by drivers
10229 * that need to tie several hardware interfaces to a single NAPI
10230 * poll scheduler due to HW limitations.
10232 int init_dummy_netdev(struct net_device *dev)
10234 /* Clear everything. Note we don't initialize spinlocks
10235 * are they aren't supposed to be taken by any of the
10236 * NAPI code and this dummy netdev is supposed to be
10237 * only ever used for NAPI polls
10239 memset(dev, 0, sizeof(struct net_device));
10241 /* make sure we BUG if trying to hit standard
10242 * register/unregister code path
10244 dev->reg_state = NETREG_DUMMY;
10246 /* NAPI wants this */
10247 INIT_LIST_HEAD(&dev->napi_list);
10249 /* a dummy interface is started by default */
10250 set_bit(__LINK_STATE_PRESENT, &dev->state);
10251 set_bit(__LINK_STATE_START, &dev->state);
10253 /* napi_busy_loop stats accounting wants this */
10254 dev_net_set(dev, &init_net);
10256 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10257 * because users of this 'device' dont need to change
10263 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10267 * register_netdev - register a network device
10268 * @dev: device to register
10270 * Take a completed network device structure and add it to the kernel
10271 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10272 * chain. 0 is returned on success. A negative errno code is returned
10273 * on a failure to set up the device, or if the name is a duplicate.
10275 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10276 * and expands the device name if you passed a format string to
10279 int register_netdev(struct net_device *dev)
10283 if (rtnl_lock_killable())
10285 err = register_netdevice(dev);
10289 EXPORT_SYMBOL(register_netdev);
10291 int netdev_refcnt_read(const struct net_device *dev)
10293 #ifdef CONFIG_PCPU_DEV_REFCNT
10296 for_each_possible_cpu(i)
10297 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10300 return refcount_read(&dev->dev_refcnt);
10303 EXPORT_SYMBOL(netdev_refcnt_read);
10305 int netdev_unregister_timeout_secs __read_mostly = 10;
10307 #define WAIT_REFS_MIN_MSECS 1
10308 #define WAIT_REFS_MAX_MSECS 250
10310 * netdev_wait_allrefs_any - wait until all references are gone.
10311 * @list: list of net_devices to wait on
10313 * This is called when unregistering network devices.
10315 * Any protocol or device that holds a reference should register
10316 * for netdevice notification, and cleanup and put back the
10317 * reference if they receive an UNREGISTER event.
10318 * We can get stuck here if buggy protocols don't correctly
10321 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10323 unsigned long rebroadcast_time, warning_time;
10324 struct net_device *dev;
10327 rebroadcast_time = warning_time = jiffies;
10329 list_for_each_entry(dev, list, todo_list)
10330 if (netdev_refcnt_read(dev) == 1)
10334 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10337 /* Rebroadcast unregister notification */
10338 list_for_each_entry(dev, list, todo_list)
10339 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10345 list_for_each_entry(dev, list, todo_list)
10346 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10348 /* We must not have linkwatch events
10349 * pending on unregister. If this
10350 * happens, we simply run the queue
10351 * unscheduled, resulting in a noop
10354 linkwatch_run_queue();
10360 rebroadcast_time = jiffies;
10365 wait = WAIT_REFS_MIN_MSECS;
10368 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10371 list_for_each_entry(dev, list, todo_list)
10372 if (netdev_refcnt_read(dev) == 1)
10375 if (time_after(jiffies, warning_time +
10376 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10377 list_for_each_entry(dev, list, todo_list) {
10378 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10379 dev->name, netdev_refcnt_read(dev));
10380 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10383 warning_time = jiffies;
10388 /* The sequence is:
10392 * register_netdevice(x1);
10393 * register_netdevice(x2);
10395 * unregister_netdevice(y1);
10396 * unregister_netdevice(y2);
10402 * We are invoked by rtnl_unlock().
10403 * This allows us to deal with problems:
10404 * 1) We can delete sysfs objects which invoke hotplug
10405 * without deadlocking with linkwatch via keventd.
10406 * 2) Since we run with the RTNL semaphore not held, we can sleep
10407 * safely in order to wait for the netdev refcnt to drop to zero.
10409 * We must not return until all unregister events added during
10410 * the interval the lock was held have been completed.
10412 void netdev_run_todo(void)
10414 struct net_device *dev, *tmp;
10415 struct list_head list;
10416 #ifdef CONFIG_LOCKDEP
10417 struct list_head unlink_list;
10419 list_replace_init(&net_unlink_list, &unlink_list);
10421 while (!list_empty(&unlink_list)) {
10422 struct net_device *dev = list_first_entry(&unlink_list,
10425 list_del_init(&dev->unlink_list);
10426 dev->nested_level = dev->lower_level - 1;
10430 /* Snapshot list, allow later requests */
10431 list_replace_init(&net_todo_list, &list);
10435 /* Wait for rcu callbacks to finish before next phase */
10436 if (!list_empty(&list))
10439 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10440 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10441 netdev_WARN(dev, "run_todo but not unregistering\n");
10442 list_del(&dev->todo_list);
10446 write_lock(&dev_base_lock);
10447 dev->reg_state = NETREG_UNREGISTERED;
10448 write_unlock(&dev_base_lock);
10449 linkwatch_forget_dev(dev);
10452 while (!list_empty(&list)) {
10453 dev = netdev_wait_allrefs_any(&list);
10454 list_del(&dev->todo_list);
10457 BUG_ON(netdev_refcnt_read(dev) != 1);
10458 BUG_ON(!list_empty(&dev->ptype_all));
10459 BUG_ON(!list_empty(&dev->ptype_specific));
10460 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10461 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10463 if (dev->priv_destructor)
10464 dev->priv_destructor(dev);
10465 if (dev->needs_free_netdev)
10468 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10469 wake_up(&netdev_unregistering_wq);
10471 /* Free network device */
10472 kobject_put(&dev->dev.kobj);
10476 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10477 * all the same fields in the same order as net_device_stats, with only
10478 * the type differing, but rtnl_link_stats64 may have additional fields
10479 * at the end for newer counters.
10481 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10482 const struct net_device_stats *netdev_stats)
10484 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10485 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10486 u64 *dst = (u64 *)stats64;
10488 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10489 for (i = 0; i < n; i++)
10490 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10491 /* zero out counters that only exist in rtnl_link_stats64 */
10492 memset((char *)stats64 + n * sizeof(u64), 0,
10493 sizeof(*stats64) - n * sizeof(u64));
10495 EXPORT_SYMBOL(netdev_stats_to_stats64);
10497 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10499 struct net_device_core_stats __percpu *p;
10501 p = alloc_percpu_gfp(struct net_device_core_stats,
10502 GFP_ATOMIC | __GFP_NOWARN);
10504 if (p && cmpxchg(&dev->core_stats, NULL, p))
10507 /* This READ_ONCE() pairs with the cmpxchg() above */
10508 return READ_ONCE(dev->core_stats);
10510 EXPORT_SYMBOL(netdev_core_stats_alloc);
10513 * dev_get_stats - get network device statistics
10514 * @dev: device to get statistics from
10515 * @storage: place to store stats
10517 * Get network statistics from device. Return @storage.
10518 * The device driver may provide its own method by setting
10519 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10520 * otherwise the internal statistics structure is used.
10522 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10523 struct rtnl_link_stats64 *storage)
10525 const struct net_device_ops *ops = dev->netdev_ops;
10526 const struct net_device_core_stats __percpu *p;
10528 if (ops->ndo_get_stats64) {
10529 memset(storage, 0, sizeof(*storage));
10530 ops->ndo_get_stats64(dev, storage);
10531 } else if (ops->ndo_get_stats) {
10532 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10534 netdev_stats_to_stats64(storage, &dev->stats);
10537 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10538 p = READ_ONCE(dev->core_stats);
10540 const struct net_device_core_stats *core_stats;
10543 for_each_possible_cpu(i) {
10544 core_stats = per_cpu_ptr(p, i);
10545 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10546 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10547 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10548 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10553 EXPORT_SYMBOL(dev_get_stats);
10556 * dev_fetch_sw_netstats - get per-cpu network device statistics
10557 * @s: place to store stats
10558 * @netstats: per-cpu network stats to read from
10560 * Read per-cpu network statistics and populate the related fields in @s.
10562 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10563 const struct pcpu_sw_netstats __percpu *netstats)
10567 for_each_possible_cpu(cpu) {
10568 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10569 const struct pcpu_sw_netstats *stats;
10570 unsigned int start;
10572 stats = per_cpu_ptr(netstats, cpu);
10574 start = u64_stats_fetch_begin(&stats->syncp);
10575 rx_packets = u64_stats_read(&stats->rx_packets);
10576 rx_bytes = u64_stats_read(&stats->rx_bytes);
10577 tx_packets = u64_stats_read(&stats->tx_packets);
10578 tx_bytes = u64_stats_read(&stats->tx_bytes);
10579 } while (u64_stats_fetch_retry(&stats->syncp, start));
10581 s->rx_packets += rx_packets;
10582 s->rx_bytes += rx_bytes;
10583 s->tx_packets += tx_packets;
10584 s->tx_bytes += tx_bytes;
10587 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10590 * dev_get_tstats64 - ndo_get_stats64 implementation
10591 * @dev: device to get statistics from
10592 * @s: place to store stats
10594 * Populate @s from dev->stats and dev->tstats. Can be used as
10595 * ndo_get_stats64() callback.
10597 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10599 netdev_stats_to_stats64(s, &dev->stats);
10600 dev_fetch_sw_netstats(s, dev->tstats);
10602 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10604 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10606 struct netdev_queue *queue = dev_ingress_queue(dev);
10608 #ifdef CONFIG_NET_CLS_ACT
10611 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10614 netdev_init_one_queue(dev, queue, NULL);
10615 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10616 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10617 rcu_assign_pointer(dev->ingress_queue, queue);
10622 static const struct ethtool_ops default_ethtool_ops;
10624 void netdev_set_default_ethtool_ops(struct net_device *dev,
10625 const struct ethtool_ops *ops)
10627 if (dev->ethtool_ops == &default_ethtool_ops)
10628 dev->ethtool_ops = ops;
10630 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10633 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10634 * @dev: netdev to enable the IRQ coalescing on
10636 * Sets a conservative default for SW IRQ coalescing. Users can use
10637 * sysfs attributes to override the default values.
10639 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10641 WARN_ON(dev->reg_state == NETREG_REGISTERED);
10643 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10644 dev->gro_flush_timeout = 20000;
10645 dev->napi_defer_hard_irqs = 1;
10648 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10650 void netdev_freemem(struct net_device *dev)
10652 char *addr = (char *)dev - dev->padded;
10658 * alloc_netdev_mqs - allocate network device
10659 * @sizeof_priv: size of private data to allocate space for
10660 * @name: device name format string
10661 * @name_assign_type: origin of device name
10662 * @setup: callback to initialize device
10663 * @txqs: the number of TX subqueues to allocate
10664 * @rxqs: the number of RX subqueues to allocate
10666 * Allocates a struct net_device with private data area for driver use
10667 * and performs basic initialization. Also allocates subqueue structs
10668 * for each queue on the device.
10670 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10671 unsigned char name_assign_type,
10672 void (*setup)(struct net_device *),
10673 unsigned int txqs, unsigned int rxqs)
10675 struct net_device *dev;
10676 unsigned int alloc_size;
10677 struct net_device *p;
10679 BUG_ON(strlen(name) >= sizeof(dev->name));
10682 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10687 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10691 alloc_size = sizeof(struct net_device);
10693 /* ensure 32-byte alignment of private area */
10694 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10695 alloc_size += sizeof_priv;
10697 /* ensure 32-byte alignment of whole construct */
10698 alloc_size += NETDEV_ALIGN - 1;
10700 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10704 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10705 dev->padded = (char *)dev - (char *)p;
10707 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10708 #ifdef CONFIG_PCPU_DEV_REFCNT
10709 dev->pcpu_refcnt = alloc_percpu(int);
10710 if (!dev->pcpu_refcnt)
10714 refcount_set(&dev->dev_refcnt, 1);
10717 if (dev_addr_init(dev))
10723 dev_net_set(dev, &init_net);
10725 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10726 dev->xdp_zc_max_segs = 1;
10727 dev->gso_max_segs = GSO_MAX_SEGS;
10728 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10729 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10730 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10731 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10732 dev->tso_max_segs = TSO_MAX_SEGS;
10733 dev->upper_level = 1;
10734 dev->lower_level = 1;
10735 #ifdef CONFIG_LOCKDEP
10736 dev->nested_level = 0;
10737 INIT_LIST_HEAD(&dev->unlink_list);
10740 INIT_LIST_HEAD(&dev->napi_list);
10741 INIT_LIST_HEAD(&dev->unreg_list);
10742 INIT_LIST_HEAD(&dev->close_list);
10743 INIT_LIST_HEAD(&dev->link_watch_list);
10744 INIT_LIST_HEAD(&dev->adj_list.upper);
10745 INIT_LIST_HEAD(&dev->adj_list.lower);
10746 INIT_LIST_HEAD(&dev->ptype_all);
10747 INIT_LIST_HEAD(&dev->ptype_specific);
10748 INIT_LIST_HEAD(&dev->net_notifier_list);
10749 #ifdef CONFIG_NET_SCHED
10750 hash_init(dev->qdisc_hash);
10752 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10755 if (!dev->tx_queue_len) {
10756 dev->priv_flags |= IFF_NO_QUEUE;
10757 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10760 dev->num_tx_queues = txqs;
10761 dev->real_num_tx_queues = txqs;
10762 if (netif_alloc_netdev_queues(dev))
10765 dev->num_rx_queues = rxqs;
10766 dev->real_num_rx_queues = rxqs;
10767 if (netif_alloc_rx_queues(dev))
10770 strcpy(dev->name, name);
10771 dev->name_assign_type = name_assign_type;
10772 dev->group = INIT_NETDEV_GROUP;
10773 if (!dev->ethtool_ops)
10774 dev->ethtool_ops = &default_ethtool_ops;
10776 nf_hook_netdev_init(dev);
10785 #ifdef CONFIG_PCPU_DEV_REFCNT
10786 free_percpu(dev->pcpu_refcnt);
10789 netdev_freemem(dev);
10792 EXPORT_SYMBOL(alloc_netdev_mqs);
10795 * free_netdev - free network device
10798 * This function does the last stage of destroying an allocated device
10799 * interface. The reference to the device object is released. If this
10800 * is the last reference then it will be freed.Must be called in process
10803 void free_netdev(struct net_device *dev)
10805 struct napi_struct *p, *n;
10809 /* When called immediately after register_netdevice() failed the unwind
10810 * handling may still be dismantling the device. Handle that case by
10811 * deferring the free.
10813 if (dev->reg_state == NETREG_UNREGISTERING) {
10815 dev->needs_free_netdev = true;
10819 netif_free_tx_queues(dev);
10820 netif_free_rx_queues(dev);
10822 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10824 /* Flush device addresses */
10825 dev_addr_flush(dev);
10827 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10830 ref_tracker_dir_exit(&dev->refcnt_tracker);
10831 #ifdef CONFIG_PCPU_DEV_REFCNT
10832 free_percpu(dev->pcpu_refcnt);
10833 dev->pcpu_refcnt = NULL;
10835 free_percpu(dev->core_stats);
10836 dev->core_stats = NULL;
10837 free_percpu(dev->xdp_bulkq);
10838 dev->xdp_bulkq = NULL;
10840 /* Compatibility with error handling in drivers */
10841 if (dev->reg_state == NETREG_UNINITIALIZED) {
10842 netdev_freemem(dev);
10846 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10847 dev->reg_state = NETREG_RELEASED;
10849 /* will free via device release */
10850 put_device(&dev->dev);
10852 EXPORT_SYMBOL(free_netdev);
10855 * synchronize_net - Synchronize with packet receive processing
10857 * Wait for packets currently being received to be done.
10858 * Does not block later packets from starting.
10860 void synchronize_net(void)
10863 if (rtnl_is_locked())
10864 synchronize_rcu_expedited();
10868 EXPORT_SYMBOL(synchronize_net);
10871 * unregister_netdevice_queue - remove device from the kernel
10875 * This function shuts down a device interface and removes it
10876 * from the kernel tables.
10877 * If head not NULL, device is queued to be unregistered later.
10879 * Callers must hold the rtnl semaphore. You may want
10880 * unregister_netdev() instead of this.
10883 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10888 list_move_tail(&dev->unreg_list, head);
10892 list_add(&dev->unreg_list, &single);
10893 unregister_netdevice_many(&single);
10896 EXPORT_SYMBOL(unregister_netdevice_queue);
10898 void unregister_netdevice_many_notify(struct list_head *head,
10899 u32 portid, const struct nlmsghdr *nlh)
10901 struct net_device *dev, *tmp;
10902 LIST_HEAD(close_head);
10904 BUG_ON(dev_boot_phase);
10907 if (list_empty(head))
10910 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10911 /* Some devices call without registering
10912 * for initialization unwind. Remove those
10913 * devices and proceed with the remaining.
10915 if (dev->reg_state == NETREG_UNINITIALIZED) {
10916 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10920 list_del(&dev->unreg_list);
10923 dev->dismantle = true;
10924 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10927 /* If device is running, close it first. */
10928 list_for_each_entry(dev, head, unreg_list)
10929 list_add_tail(&dev->close_list, &close_head);
10930 dev_close_many(&close_head, true);
10932 list_for_each_entry(dev, head, unreg_list) {
10933 /* And unlink it from device chain. */
10934 write_lock(&dev_base_lock);
10935 unlist_netdevice(dev, false);
10936 dev->reg_state = NETREG_UNREGISTERING;
10937 write_unlock(&dev_base_lock);
10939 flush_all_backlogs();
10943 list_for_each_entry(dev, head, unreg_list) {
10944 struct sk_buff *skb = NULL;
10946 /* Shutdown queueing discipline. */
10948 dev_tcx_uninstall(dev);
10949 dev_xdp_uninstall(dev);
10950 bpf_dev_bound_netdev_unregister(dev);
10952 netdev_offload_xstats_disable_all(dev);
10954 /* Notify protocols, that we are about to destroy
10955 * this device. They should clean all the things.
10957 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10959 if (!dev->rtnl_link_ops ||
10960 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10961 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10962 GFP_KERNEL, NULL, 0,
10966 * Flush the unicast and multicast chains
10971 netdev_name_node_alt_flush(dev);
10972 netdev_name_node_free(dev->name_node);
10974 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10976 if (dev->netdev_ops->ndo_uninit)
10977 dev->netdev_ops->ndo_uninit(dev);
10980 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
10982 /* Notifier chain MUST detach us all upper devices. */
10983 WARN_ON(netdev_has_any_upper_dev(dev));
10984 WARN_ON(netdev_has_any_lower_dev(dev));
10986 /* Remove entries from kobject tree */
10987 netdev_unregister_kobject(dev);
10989 /* Remove XPS queueing entries */
10990 netif_reset_xps_queues_gt(dev, 0);
10996 list_for_each_entry(dev, head, unreg_list) {
10997 netdev_put(dev, &dev->dev_registered_tracker);
11005 * unregister_netdevice_many - unregister many devices
11006 * @head: list of devices
11008 * Note: As most callers use a stack allocated list_head,
11009 * we force a list_del() to make sure stack wont be corrupted later.
11011 void unregister_netdevice_many(struct list_head *head)
11013 unregister_netdevice_many_notify(head, 0, NULL);
11015 EXPORT_SYMBOL(unregister_netdevice_many);
11018 * unregister_netdev - remove device from the kernel
11021 * This function shuts down a device interface and removes it
11022 * from the kernel tables.
11024 * This is just a wrapper for unregister_netdevice that takes
11025 * the rtnl semaphore. In general you want to use this and not
11026 * unregister_netdevice.
11028 void unregister_netdev(struct net_device *dev)
11031 unregister_netdevice(dev);
11034 EXPORT_SYMBOL(unregister_netdev);
11037 * __dev_change_net_namespace - move device to different nethost namespace
11039 * @net: network namespace
11040 * @pat: If not NULL name pattern to try if the current device name
11041 * is already taken in the destination network namespace.
11042 * @new_ifindex: If not zero, specifies device index in the target
11045 * This function shuts down a device interface and moves it
11046 * to a new network namespace. On success 0 is returned, on
11047 * a failure a netagive errno code is returned.
11049 * Callers must hold the rtnl semaphore.
11052 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11053 const char *pat, int new_ifindex)
11055 struct netdev_name_node *name_node;
11056 struct net *net_old = dev_net(dev);
11057 char new_name[IFNAMSIZ] = {};
11062 /* Don't allow namespace local devices to be moved. */
11064 if (dev->features & NETIF_F_NETNS_LOCAL)
11067 /* Ensure the device has been registrered */
11068 if (dev->reg_state != NETREG_REGISTERED)
11071 /* Get out if there is nothing todo */
11073 if (net_eq(net_old, net))
11076 /* Pick the destination device name, and ensure
11077 * we can use it in the destination network namespace.
11080 if (netdev_name_in_use(net, dev->name)) {
11081 /* We get here if we can't use the current device name */
11084 err = dev_prep_valid_name(net, dev, pat, new_name);
11088 /* Check that none of the altnames conflicts. */
11090 netdev_for_each_altname(dev, name_node)
11091 if (netdev_name_in_use(net, name_node->name))
11094 /* Check that new_ifindex isn't used yet. */
11096 err = dev_index_reserve(net, new_ifindex);
11100 /* If there is an ifindex conflict assign a new one */
11101 err = dev_index_reserve(net, dev->ifindex);
11103 err = dev_index_reserve(net, 0);
11110 * And now a mini version of register_netdevice unregister_netdevice.
11113 /* If device is running close it first. */
11116 /* And unlink it from device chain */
11117 unlist_netdevice(dev, true);
11121 /* Shutdown queueing discipline. */
11124 /* Notify protocols, that we are about to destroy
11125 * this device. They should clean all the things.
11127 * Note that dev->reg_state stays at NETREG_REGISTERED.
11128 * This is wanted because this way 8021q and macvlan know
11129 * the device is just moving and can keep their slaves up.
11131 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11134 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11136 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11140 * Flush the unicast and multicast chains
11145 /* Send a netdev-removed uevent to the old namespace */
11146 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11147 netdev_adjacent_del_links(dev);
11149 /* Move per-net netdevice notifiers that are following the netdevice */
11150 move_netdevice_notifiers_dev_net(dev, net);
11152 /* Actually switch the network namespace */
11153 dev_net_set(dev, net);
11154 dev->ifindex = new_ifindex;
11156 /* Send a netdev-add uevent to the new namespace */
11157 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11158 netdev_adjacent_add_links(dev);
11160 if (new_name[0]) /* Rename the netdev to prepared name */
11161 strscpy(dev->name, new_name, IFNAMSIZ);
11163 /* Fixup kobjects */
11164 err = device_rename(&dev->dev, dev->name);
11167 /* Adapt owner in case owning user namespace of target network
11168 * namespace is different from the original one.
11170 err = netdev_change_owner(dev, net_old, net);
11173 /* Add the device back in the hashes */
11174 list_netdevice(dev);
11176 /* Notify protocols, that a new device appeared. */
11177 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11180 * Prevent userspace races by waiting until the network
11181 * device is fully setup before sending notifications.
11183 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11190 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11192 static int dev_cpu_dead(unsigned int oldcpu)
11194 struct sk_buff **list_skb;
11195 struct sk_buff *skb;
11197 struct softnet_data *sd, *oldsd, *remsd = NULL;
11199 local_irq_disable();
11200 cpu = smp_processor_id();
11201 sd = &per_cpu(softnet_data, cpu);
11202 oldsd = &per_cpu(softnet_data, oldcpu);
11204 /* Find end of our completion_queue. */
11205 list_skb = &sd->completion_queue;
11207 list_skb = &(*list_skb)->next;
11208 /* Append completion queue from offline CPU. */
11209 *list_skb = oldsd->completion_queue;
11210 oldsd->completion_queue = NULL;
11212 /* Append output queue from offline CPU. */
11213 if (oldsd->output_queue) {
11214 *sd->output_queue_tailp = oldsd->output_queue;
11215 sd->output_queue_tailp = oldsd->output_queue_tailp;
11216 oldsd->output_queue = NULL;
11217 oldsd->output_queue_tailp = &oldsd->output_queue;
11219 /* Append NAPI poll list from offline CPU, with one exception :
11220 * process_backlog() must be called by cpu owning percpu backlog.
11221 * We properly handle process_queue & input_pkt_queue later.
11223 while (!list_empty(&oldsd->poll_list)) {
11224 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11225 struct napi_struct,
11228 list_del_init(&napi->poll_list);
11229 if (napi->poll == process_backlog)
11232 ____napi_schedule(sd, napi);
11235 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11236 local_irq_enable();
11239 remsd = oldsd->rps_ipi_list;
11240 oldsd->rps_ipi_list = NULL;
11242 /* send out pending IPI's on offline CPU */
11243 net_rps_send_ipi(remsd);
11245 /* Process offline CPU's input_pkt_queue */
11246 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11248 input_queue_head_incr(oldsd);
11250 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11252 input_queue_head_incr(oldsd);
11259 * netdev_increment_features - increment feature set by one
11260 * @all: current feature set
11261 * @one: new feature set
11262 * @mask: mask feature set
11264 * Computes a new feature set after adding a device with feature set
11265 * @one to the master device with current feature set @all. Will not
11266 * enable anything that is off in @mask. Returns the new feature set.
11268 netdev_features_t netdev_increment_features(netdev_features_t all,
11269 netdev_features_t one, netdev_features_t mask)
11271 if (mask & NETIF_F_HW_CSUM)
11272 mask |= NETIF_F_CSUM_MASK;
11273 mask |= NETIF_F_VLAN_CHALLENGED;
11275 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11276 all &= one | ~NETIF_F_ALL_FOR_ALL;
11278 /* If one device supports hw checksumming, set for all. */
11279 if (all & NETIF_F_HW_CSUM)
11280 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11284 EXPORT_SYMBOL(netdev_increment_features);
11286 static struct hlist_head * __net_init netdev_create_hash(void)
11289 struct hlist_head *hash;
11291 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11293 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11294 INIT_HLIST_HEAD(&hash[i]);
11299 /* Initialize per network namespace state */
11300 static int __net_init netdev_init(struct net *net)
11302 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11303 8 * sizeof_field(struct napi_struct, gro_bitmask));
11305 INIT_LIST_HEAD(&net->dev_base_head);
11307 net->dev_name_head = netdev_create_hash();
11308 if (net->dev_name_head == NULL)
11311 net->dev_index_head = netdev_create_hash();
11312 if (net->dev_index_head == NULL)
11315 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11317 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11322 kfree(net->dev_name_head);
11328 * netdev_drivername - network driver for the device
11329 * @dev: network device
11331 * Determine network driver for device.
11333 const char *netdev_drivername(const struct net_device *dev)
11335 const struct device_driver *driver;
11336 const struct device *parent;
11337 const char *empty = "";
11339 parent = dev->dev.parent;
11343 driver = parent->driver;
11344 if (driver && driver->name)
11345 return driver->name;
11349 static void __netdev_printk(const char *level, const struct net_device *dev,
11350 struct va_format *vaf)
11352 if (dev && dev->dev.parent) {
11353 dev_printk_emit(level[1] - '0',
11356 dev_driver_string(dev->dev.parent),
11357 dev_name(dev->dev.parent),
11358 netdev_name(dev), netdev_reg_state(dev),
11361 printk("%s%s%s: %pV",
11362 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11364 printk("%s(NULL net_device): %pV", level, vaf);
11368 void netdev_printk(const char *level, const struct net_device *dev,
11369 const char *format, ...)
11371 struct va_format vaf;
11374 va_start(args, format);
11379 __netdev_printk(level, dev, &vaf);
11383 EXPORT_SYMBOL(netdev_printk);
11385 #define define_netdev_printk_level(func, level) \
11386 void func(const struct net_device *dev, const char *fmt, ...) \
11388 struct va_format vaf; \
11391 va_start(args, fmt); \
11396 __netdev_printk(level, dev, &vaf); \
11400 EXPORT_SYMBOL(func);
11402 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11403 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11404 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11405 define_netdev_printk_level(netdev_err, KERN_ERR);
11406 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11407 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11408 define_netdev_printk_level(netdev_info, KERN_INFO);
11410 static void __net_exit netdev_exit(struct net *net)
11412 kfree(net->dev_name_head);
11413 kfree(net->dev_index_head);
11414 xa_destroy(&net->dev_by_index);
11415 if (net != &init_net)
11416 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11419 static struct pernet_operations __net_initdata netdev_net_ops = {
11420 .init = netdev_init,
11421 .exit = netdev_exit,
11424 static void __net_exit default_device_exit_net(struct net *net)
11426 struct net_device *dev, *aux;
11428 * Push all migratable network devices back to the
11429 * initial network namespace
11432 for_each_netdev_safe(net, dev, aux) {
11434 char fb_name[IFNAMSIZ];
11436 /* Ignore unmoveable devices (i.e. loopback) */
11437 if (dev->features & NETIF_F_NETNS_LOCAL)
11440 /* Leave virtual devices for the generic cleanup */
11441 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11444 /* Push remaining network devices to init_net */
11445 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11446 if (netdev_name_in_use(&init_net, fb_name))
11447 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11448 err = dev_change_net_namespace(dev, &init_net, fb_name);
11450 pr_emerg("%s: failed to move %s to init_net: %d\n",
11451 __func__, dev->name, err);
11457 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11459 /* At exit all network devices most be removed from a network
11460 * namespace. Do this in the reverse order of registration.
11461 * Do this across as many network namespaces as possible to
11462 * improve batching efficiency.
11464 struct net_device *dev;
11466 LIST_HEAD(dev_kill_list);
11469 list_for_each_entry(net, net_list, exit_list) {
11470 default_device_exit_net(net);
11474 list_for_each_entry(net, net_list, exit_list) {
11475 for_each_netdev_reverse(net, dev) {
11476 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11477 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11479 unregister_netdevice_queue(dev, &dev_kill_list);
11482 unregister_netdevice_many(&dev_kill_list);
11486 static struct pernet_operations __net_initdata default_device_ops = {
11487 .exit_batch = default_device_exit_batch,
11491 * Initialize the DEV module. At boot time this walks the device list and
11492 * unhooks any devices that fail to initialise (normally hardware not
11493 * present) and leaves us with a valid list of present and active devices.
11498 * This is called single threaded during boot, so no need
11499 * to take the rtnl semaphore.
11501 static int __init net_dev_init(void)
11503 int i, rc = -ENOMEM;
11505 BUG_ON(!dev_boot_phase);
11507 if (dev_proc_init())
11510 if (netdev_kobject_init())
11513 INIT_LIST_HEAD(&ptype_all);
11514 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11515 INIT_LIST_HEAD(&ptype_base[i]);
11517 if (register_pernet_subsys(&netdev_net_ops))
11521 * Initialise the packet receive queues.
11524 for_each_possible_cpu(i) {
11525 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11526 struct softnet_data *sd = &per_cpu(softnet_data, i);
11528 INIT_WORK(flush, flush_backlog);
11530 skb_queue_head_init(&sd->input_pkt_queue);
11531 skb_queue_head_init(&sd->process_queue);
11532 #ifdef CONFIG_XFRM_OFFLOAD
11533 skb_queue_head_init(&sd->xfrm_backlog);
11535 INIT_LIST_HEAD(&sd->poll_list);
11536 sd->output_queue_tailp = &sd->output_queue;
11538 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11541 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11542 spin_lock_init(&sd->defer_lock);
11544 init_gro_hash(&sd->backlog);
11545 sd->backlog.poll = process_backlog;
11546 sd->backlog.weight = weight_p;
11549 dev_boot_phase = 0;
11551 /* The loopback device is special if any other network devices
11552 * is present in a network namespace the loopback device must
11553 * be present. Since we now dynamically allocate and free the
11554 * loopback device ensure this invariant is maintained by
11555 * keeping the loopback device as the first device on the
11556 * list of network devices. Ensuring the loopback devices
11557 * is the first device that appears and the last network device
11560 if (register_pernet_device(&loopback_net_ops))
11563 if (register_pernet_device(&default_device_ops))
11566 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11567 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11569 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11570 NULL, dev_cpu_dead);
11577 subsys_initcall(net_dev_init);