net: introduce a function to check if a netdev name is in use
[platform/kernel/linux-starfive.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "net-sysfs.h"
155
156 #define MAX_GRO_SKBS 8
157
158 /* This should be increased if a protocol with a bigger head is added. */
159 #define GRO_MAX_HEAD (MAX_HEADER + 128)
160
161 static DEFINE_SPINLOCK(ptype_lock);
162 static DEFINE_SPINLOCK(offload_lock);
163 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164 struct list_head ptype_all __read_mostly;       /* Taps */
165 static struct list_head offload_base __read_mostly;
166
167 static int netif_rx_internal(struct sk_buff *skb);
168 static int call_netdevice_notifiers_info(unsigned long val,
169                                          struct netdev_notifier_info *info);
170 static int call_netdevice_notifiers_extack(unsigned long val,
171                                            struct net_device *dev,
172                                            struct netlink_ext_ack *extack);
173 static struct napi_struct *napi_by_id(unsigned int napi_id);
174
175 /*
176  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177  * semaphore.
178  *
179  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
180  *
181  * Writers must hold the rtnl semaphore while they loop through the
182  * dev_base_head list, and hold dev_base_lock for writing when they do the
183  * actual updates.  This allows pure readers to access the list even
184  * while a writer is preparing to update it.
185  *
186  * To put it another way, dev_base_lock is held for writing only to
187  * protect against pure readers; the rtnl semaphore provides the
188  * protection against other writers.
189  *
190  * See, for example usages, register_netdevice() and
191  * unregister_netdevice(), which must be called with the rtnl
192  * semaphore held.
193  */
194 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
196
197 static DEFINE_MUTEX(ifalias_mutex);
198
199 /* protects napi_hash addition/deletion and napi_gen_id */
200 static DEFINE_SPINLOCK(napi_hash_lock);
201
202 static unsigned int napi_gen_id = NR_CPUS;
203 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
204
205 static DECLARE_RWSEM(devnet_rename_sem);
206
207 static inline void dev_base_seq_inc(struct net *net)
208 {
209         while (++net->dev_base_seq == 0)
210                 ;
211 }
212
213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214 {
215         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
216
217         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218 }
219
220 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221 {
222         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223 }
224
225 static inline void rps_lock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_lock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 static inline void rps_unlock(struct softnet_data *sd)
233 {
234 #ifdef CONFIG_RPS
235         spin_unlock(&sd->input_pkt_queue.lock);
236 #endif
237 }
238
239 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240                                                        const char *name)
241 {
242         struct netdev_name_node *name_node;
243
244         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245         if (!name_node)
246                 return NULL;
247         INIT_HLIST_NODE(&name_node->hlist);
248         name_node->dev = dev;
249         name_node->name = name;
250         return name_node;
251 }
252
253 static struct netdev_name_node *
254 netdev_name_node_head_alloc(struct net_device *dev)
255 {
256         struct netdev_name_node *name_node;
257
258         name_node = netdev_name_node_alloc(dev, dev->name);
259         if (!name_node)
260                 return NULL;
261         INIT_LIST_HEAD(&name_node->list);
262         return name_node;
263 }
264
265 static void netdev_name_node_free(struct netdev_name_node *name_node)
266 {
267         kfree(name_node);
268 }
269
270 static void netdev_name_node_add(struct net *net,
271                                  struct netdev_name_node *name_node)
272 {
273         hlist_add_head_rcu(&name_node->hlist,
274                            dev_name_hash(net, name_node->name));
275 }
276
277 static void netdev_name_node_del(struct netdev_name_node *name_node)
278 {
279         hlist_del_rcu(&name_node->hlist);
280 }
281
282 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283                                                         const char *name)
284 {
285         struct hlist_head *head = dev_name_hash(net, name);
286         struct netdev_name_node *name_node;
287
288         hlist_for_each_entry(name_node, head, hlist)
289                 if (!strcmp(name_node->name, name))
290                         return name_node;
291         return NULL;
292 }
293
294 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295                                                             const char *name)
296 {
297         struct hlist_head *head = dev_name_hash(net, name);
298         struct netdev_name_node *name_node;
299
300         hlist_for_each_entry_rcu(name_node, head, hlist)
301                 if (!strcmp(name_node->name, name))
302                         return name_node;
303         return NULL;
304 }
305
306 bool netdev_name_in_use(struct net *net, const char *name)
307 {
308         return netdev_name_node_lookup(net, name);
309 }
310 EXPORT_SYMBOL(netdev_name_in_use);
311
312 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
313 {
314         struct netdev_name_node *name_node;
315         struct net *net = dev_net(dev);
316
317         name_node = netdev_name_node_lookup(net, name);
318         if (name_node)
319                 return -EEXIST;
320         name_node = netdev_name_node_alloc(dev, name);
321         if (!name_node)
322                 return -ENOMEM;
323         netdev_name_node_add(net, name_node);
324         /* The node that holds dev->name acts as a head of per-device list. */
325         list_add_tail(&name_node->list, &dev->name_node->list);
326
327         return 0;
328 }
329 EXPORT_SYMBOL(netdev_name_node_alt_create);
330
331 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
332 {
333         list_del(&name_node->list);
334         netdev_name_node_del(name_node);
335         kfree(name_node->name);
336         netdev_name_node_free(name_node);
337 }
338
339 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
340 {
341         struct netdev_name_node *name_node;
342         struct net *net = dev_net(dev);
343
344         name_node = netdev_name_node_lookup(net, name);
345         if (!name_node)
346                 return -ENOENT;
347         /* lookup might have found our primary name or a name belonging
348          * to another device.
349          */
350         if (name_node == dev->name_node || name_node->dev != dev)
351                 return -EINVAL;
352
353         __netdev_name_node_alt_destroy(name_node);
354
355         return 0;
356 }
357 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
358
359 static void netdev_name_node_alt_flush(struct net_device *dev)
360 {
361         struct netdev_name_node *name_node, *tmp;
362
363         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
364                 __netdev_name_node_alt_destroy(name_node);
365 }
366
367 /* Device list insertion */
368 static void list_netdevice(struct net_device *dev)
369 {
370         struct net *net = dev_net(dev);
371
372         ASSERT_RTNL();
373
374         write_lock_bh(&dev_base_lock);
375         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
376         netdev_name_node_add(net, dev->name_node);
377         hlist_add_head_rcu(&dev->index_hlist,
378                            dev_index_hash(net, dev->ifindex));
379         write_unlock_bh(&dev_base_lock);
380
381         dev_base_seq_inc(net);
382 }
383
384 /* Device list removal
385  * caller must respect a RCU grace period before freeing/reusing dev
386  */
387 static void unlist_netdevice(struct net_device *dev)
388 {
389         ASSERT_RTNL();
390
391         /* Unlink dev from the device chain */
392         write_lock_bh(&dev_base_lock);
393         list_del_rcu(&dev->dev_list);
394         netdev_name_node_del(dev->name_node);
395         hlist_del_rcu(&dev->index_hlist);
396         write_unlock_bh(&dev_base_lock);
397
398         dev_base_seq_inc(dev_net(dev));
399 }
400
401 /*
402  *      Our notifier list
403  */
404
405 static RAW_NOTIFIER_HEAD(netdev_chain);
406
407 /*
408  *      Device drivers call our routines to queue packets here. We empty the
409  *      queue in the local softnet handler.
410  */
411
412 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
413 EXPORT_PER_CPU_SYMBOL(softnet_data);
414
415 #ifdef CONFIG_LOCKDEP
416 /*
417  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
418  * according to dev->type
419  */
420 static const unsigned short netdev_lock_type[] = {
421          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
422          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
423          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
424          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
425          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
426          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
427          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
428          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
429          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
430          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
431          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
432          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
433          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
434          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
435          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
436
437 static const char *const netdev_lock_name[] = {
438         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
439         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
440         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
441         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
442         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
443         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
444         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
445         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
446         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
447         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
448         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
449         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
450         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
451         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
452         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
453
454 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
455 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
456
457 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
458 {
459         int i;
460
461         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
462                 if (netdev_lock_type[i] == dev_type)
463                         return i;
464         /* the last key is used by default */
465         return ARRAY_SIZE(netdev_lock_type) - 1;
466 }
467
468 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
469                                                  unsigned short dev_type)
470 {
471         int i;
472
473         i = netdev_lock_pos(dev_type);
474         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
475                                    netdev_lock_name[i]);
476 }
477
478 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
479 {
480         int i;
481
482         i = netdev_lock_pos(dev->type);
483         lockdep_set_class_and_name(&dev->addr_list_lock,
484                                    &netdev_addr_lock_key[i],
485                                    netdev_lock_name[i]);
486 }
487 #else
488 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
489                                                  unsigned short dev_type)
490 {
491 }
492
493 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494 {
495 }
496 #endif
497
498 /*******************************************************************************
499  *
500  *              Protocol management and registration routines
501  *
502  *******************************************************************************/
503
504
505 /*
506  *      Add a protocol ID to the list. Now that the input handler is
507  *      smarter we can dispense with all the messy stuff that used to be
508  *      here.
509  *
510  *      BEWARE!!! Protocol handlers, mangling input packets,
511  *      MUST BE last in hash buckets and checking protocol handlers
512  *      MUST start from promiscuous ptype_all chain in net_bh.
513  *      It is true now, do not change it.
514  *      Explanation follows: if protocol handler, mangling packet, will
515  *      be the first on list, it is not able to sense, that packet
516  *      is cloned and should be copied-on-write, so that it will
517  *      change it and subsequent readers will get broken packet.
518  *                                                      --ANK (980803)
519  */
520
521 static inline struct list_head *ptype_head(const struct packet_type *pt)
522 {
523         if (pt->type == htons(ETH_P_ALL))
524                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
525         else
526                 return pt->dev ? &pt->dev->ptype_specific :
527                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
528 }
529
530 /**
531  *      dev_add_pack - add packet handler
532  *      @pt: packet type declaration
533  *
534  *      Add a protocol handler to the networking stack. The passed &packet_type
535  *      is linked into kernel lists and may not be freed until it has been
536  *      removed from the kernel lists.
537  *
538  *      This call does not sleep therefore it can not
539  *      guarantee all CPU's that are in middle of receiving packets
540  *      will see the new packet type (until the next received packet).
541  */
542
543 void dev_add_pack(struct packet_type *pt)
544 {
545         struct list_head *head = ptype_head(pt);
546
547         spin_lock(&ptype_lock);
548         list_add_rcu(&pt->list, head);
549         spin_unlock(&ptype_lock);
550 }
551 EXPORT_SYMBOL(dev_add_pack);
552
553 /**
554  *      __dev_remove_pack        - remove packet handler
555  *      @pt: packet type declaration
556  *
557  *      Remove a protocol handler that was previously added to the kernel
558  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
559  *      from the kernel lists and can be freed or reused once this function
560  *      returns.
561  *
562  *      The packet type might still be in use by receivers
563  *      and must not be freed until after all the CPU's have gone
564  *      through a quiescent state.
565  */
566 void __dev_remove_pack(struct packet_type *pt)
567 {
568         struct list_head *head = ptype_head(pt);
569         struct packet_type *pt1;
570
571         spin_lock(&ptype_lock);
572
573         list_for_each_entry(pt1, head, list) {
574                 if (pt == pt1) {
575                         list_del_rcu(&pt->list);
576                         goto out;
577                 }
578         }
579
580         pr_warn("dev_remove_pack: %p not found\n", pt);
581 out:
582         spin_unlock(&ptype_lock);
583 }
584 EXPORT_SYMBOL(__dev_remove_pack);
585
586 /**
587  *      dev_remove_pack  - remove packet handler
588  *      @pt: packet type declaration
589  *
590  *      Remove a protocol handler that was previously added to the kernel
591  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
592  *      from the kernel lists and can be freed or reused once this function
593  *      returns.
594  *
595  *      This call sleeps to guarantee that no CPU is looking at the packet
596  *      type after return.
597  */
598 void dev_remove_pack(struct packet_type *pt)
599 {
600         __dev_remove_pack(pt);
601
602         synchronize_net();
603 }
604 EXPORT_SYMBOL(dev_remove_pack);
605
606
607 /**
608  *      dev_add_offload - register offload handlers
609  *      @po: protocol offload declaration
610  *
611  *      Add protocol offload handlers to the networking stack. The passed
612  *      &proto_offload is linked into kernel lists and may not be freed until
613  *      it has been removed from the kernel lists.
614  *
615  *      This call does not sleep therefore it can not
616  *      guarantee all CPU's that are in middle of receiving packets
617  *      will see the new offload handlers (until the next received packet).
618  */
619 void dev_add_offload(struct packet_offload *po)
620 {
621         struct packet_offload *elem;
622
623         spin_lock(&offload_lock);
624         list_for_each_entry(elem, &offload_base, list) {
625                 if (po->priority < elem->priority)
626                         break;
627         }
628         list_add_rcu(&po->list, elem->list.prev);
629         spin_unlock(&offload_lock);
630 }
631 EXPORT_SYMBOL(dev_add_offload);
632
633 /**
634  *      __dev_remove_offload     - remove offload handler
635  *      @po: packet offload declaration
636  *
637  *      Remove a protocol offload handler that was previously added to the
638  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
639  *      is removed from the kernel lists and can be freed or reused once this
640  *      function returns.
641  *
642  *      The packet type might still be in use by receivers
643  *      and must not be freed until after all the CPU's have gone
644  *      through a quiescent state.
645  */
646 static void __dev_remove_offload(struct packet_offload *po)
647 {
648         struct list_head *head = &offload_base;
649         struct packet_offload *po1;
650
651         spin_lock(&offload_lock);
652
653         list_for_each_entry(po1, head, list) {
654                 if (po == po1) {
655                         list_del_rcu(&po->list);
656                         goto out;
657                 }
658         }
659
660         pr_warn("dev_remove_offload: %p not found\n", po);
661 out:
662         spin_unlock(&offload_lock);
663 }
664
665 /**
666  *      dev_remove_offload       - remove packet offload handler
667  *      @po: packet offload declaration
668  *
669  *      Remove a packet offload handler that was previously added to the kernel
670  *      offload handlers by dev_add_offload(). The passed &offload_type is
671  *      removed from the kernel lists and can be freed or reused once this
672  *      function returns.
673  *
674  *      This call sleeps to guarantee that no CPU is looking at the packet
675  *      type after return.
676  */
677 void dev_remove_offload(struct packet_offload *po)
678 {
679         __dev_remove_offload(po);
680
681         synchronize_net();
682 }
683 EXPORT_SYMBOL(dev_remove_offload);
684
685 /*******************************************************************************
686  *
687  *                          Device Interface Subroutines
688  *
689  *******************************************************************************/
690
691 /**
692  *      dev_get_iflink  - get 'iflink' value of a interface
693  *      @dev: targeted interface
694  *
695  *      Indicates the ifindex the interface is linked to.
696  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
697  */
698
699 int dev_get_iflink(const struct net_device *dev)
700 {
701         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
702                 return dev->netdev_ops->ndo_get_iflink(dev);
703
704         return dev->ifindex;
705 }
706 EXPORT_SYMBOL(dev_get_iflink);
707
708 /**
709  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
710  *      @dev: targeted interface
711  *      @skb: The packet.
712  *
713  *      For better visibility of tunnel traffic OVS needs to retrieve
714  *      egress tunnel information for a packet. Following API allows
715  *      user to get this info.
716  */
717 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
718 {
719         struct ip_tunnel_info *info;
720
721         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
722                 return -EINVAL;
723
724         info = skb_tunnel_info_unclone(skb);
725         if (!info)
726                 return -ENOMEM;
727         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
728                 return -EINVAL;
729
730         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
731 }
732 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
733
734 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
735 {
736         int k = stack->num_paths++;
737
738         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
739                 return NULL;
740
741         return &stack->path[k];
742 }
743
744 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
745                           struct net_device_path_stack *stack)
746 {
747         const struct net_device *last_dev;
748         struct net_device_path_ctx ctx = {
749                 .dev    = dev,
750                 .daddr  = daddr,
751         };
752         struct net_device_path *path;
753         int ret = 0;
754
755         stack->num_paths = 0;
756         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
757                 last_dev = ctx.dev;
758                 path = dev_fwd_path(stack);
759                 if (!path)
760                         return -1;
761
762                 memset(path, 0, sizeof(struct net_device_path));
763                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
764                 if (ret < 0)
765                         return -1;
766
767                 if (WARN_ON_ONCE(last_dev == ctx.dev))
768                         return -1;
769         }
770         path = dev_fwd_path(stack);
771         if (!path)
772                 return -1;
773         path->type = DEV_PATH_ETHERNET;
774         path->dev = ctx.dev;
775
776         return ret;
777 }
778 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
779
780 /**
781  *      __dev_get_by_name       - find a device by its name
782  *      @net: the applicable net namespace
783  *      @name: name to find
784  *
785  *      Find an interface by name. Must be called under RTNL semaphore
786  *      or @dev_base_lock. If the name is found a pointer to the device
787  *      is returned. If the name is not found then %NULL is returned. The
788  *      reference counters are not incremented so the caller must be
789  *      careful with locks.
790  */
791
792 struct net_device *__dev_get_by_name(struct net *net, const char *name)
793 {
794         struct netdev_name_node *node_name;
795
796         node_name = netdev_name_node_lookup(net, name);
797         return node_name ? node_name->dev : NULL;
798 }
799 EXPORT_SYMBOL(__dev_get_by_name);
800
801 /**
802  * dev_get_by_name_rcu  - find a device by its name
803  * @net: the applicable net namespace
804  * @name: name to find
805  *
806  * Find an interface by name.
807  * If the name is found a pointer to the device is returned.
808  * If the name is not found then %NULL is returned.
809  * The reference counters are not incremented so the caller must be
810  * careful with locks. The caller must hold RCU lock.
811  */
812
813 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
814 {
815         struct netdev_name_node *node_name;
816
817         node_name = netdev_name_node_lookup_rcu(net, name);
818         return node_name ? node_name->dev : NULL;
819 }
820 EXPORT_SYMBOL(dev_get_by_name_rcu);
821
822 /**
823  *      dev_get_by_name         - find a device by its name
824  *      @net: the applicable net namespace
825  *      @name: name to find
826  *
827  *      Find an interface by name. This can be called from any
828  *      context and does its own locking. The returned handle has
829  *      the usage count incremented and the caller must use dev_put() to
830  *      release it when it is no longer needed. %NULL is returned if no
831  *      matching device is found.
832  */
833
834 struct net_device *dev_get_by_name(struct net *net, const char *name)
835 {
836         struct net_device *dev;
837
838         rcu_read_lock();
839         dev = dev_get_by_name_rcu(net, name);
840         dev_hold(dev);
841         rcu_read_unlock();
842         return dev;
843 }
844 EXPORT_SYMBOL(dev_get_by_name);
845
846 /**
847  *      __dev_get_by_index - find a device by its ifindex
848  *      @net: the applicable net namespace
849  *      @ifindex: index of device
850  *
851  *      Search for an interface by index. Returns %NULL if the device
852  *      is not found or a pointer to the device. The device has not
853  *      had its reference counter increased so the caller must be careful
854  *      about locking. The caller must hold either the RTNL semaphore
855  *      or @dev_base_lock.
856  */
857
858 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
859 {
860         struct net_device *dev;
861         struct hlist_head *head = dev_index_hash(net, ifindex);
862
863         hlist_for_each_entry(dev, head, index_hlist)
864                 if (dev->ifindex == ifindex)
865                         return dev;
866
867         return NULL;
868 }
869 EXPORT_SYMBOL(__dev_get_by_index);
870
871 /**
872  *      dev_get_by_index_rcu - find a device by its ifindex
873  *      @net: the applicable net namespace
874  *      @ifindex: index of device
875  *
876  *      Search for an interface by index. Returns %NULL if the device
877  *      is not found or a pointer to the device. The device has not
878  *      had its reference counter increased so the caller must be careful
879  *      about locking. The caller must hold RCU lock.
880  */
881
882 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
883 {
884         struct net_device *dev;
885         struct hlist_head *head = dev_index_hash(net, ifindex);
886
887         hlist_for_each_entry_rcu(dev, head, index_hlist)
888                 if (dev->ifindex == ifindex)
889                         return dev;
890
891         return NULL;
892 }
893 EXPORT_SYMBOL(dev_get_by_index_rcu);
894
895
896 /**
897  *      dev_get_by_index - find a device by its ifindex
898  *      @net: the applicable net namespace
899  *      @ifindex: index of device
900  *
901  *      Search for an interface by index. Returns NULL if the device
902  *      is not found or a pointer to the device. The device returned has
903  *      had a reference added and the pointer is safe until the user calls
904  *      dev_put to indicate they have finished with it.
905  */
906
907 struct net_device *dev_get_by_index(struct net *net, int ifindex)
908 {
909         struct net_device *dev;
910
911         rcu_read_lock();
912         dev = dev_get_by_index_rcu(net, ifindex);
913         dev_hold(dev);
914         rcu_read_unlock();
915         return dev;
916 }
917 EXPORT_SYMBOL(dev_get_by_index);
918
919 /**
920  *      dev_get_by_napi_id - find a device by napi_id
921  *      @napi_id: ID of the NAPI struct
922  *
923  *      Search for an interface by NAPI ID. Returns %NULL if the device
924  *      is not found or a pointer to the device. The device has not had
925  *      its reference counter increased so the caller must be careful
926  *      about locking. The caller must hold RCU lock.
927  */
928
929 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
930 {
931         struct napi_struct *napi;
932
933         WARN_ON_ONCE(!rcu_read_lock_held());
934
935         if (napi_id < MIN_NAPI_ID)
936                 return NULL;
937
938         napi = napi_by_id(napi_id);
939
940         return napi ? napi->dev : NULL;
941 }
942 EXPORT_SYMBOL(dev_get_by_napi_id);
943
944 /**
945  *      netdev_get_name - get a netdevice name, knowing its ifindex.
946  *      @net: network namespace
947  *      @name: a pointer to the buffer where the name will be stored.
948  *      @ifindex: the ifindex of the interface to get the name from.
949  */
950 int netdev_get_name(struct net *net, char *name, int ifindex)
951 {
952         struct net_device *dev;
953         int ret;
954
955         down_read(&devnet_rename_sem);
956         rcu_read_lock();
957
958         dev = dev_get_by_index_rcu(net, ifindex);
959         if (!dev) {
960                 ret = -ENODEV;
961                 goto out;
962         }
963
964         strcpy(name, dev->name);
965
966         ret = 0;
967 out:
968         rcu_read_unlock();
969         up_read(&devnet_rename_sem);
970         return ret;
971 }
972
973 /**
974  *      dev_getbyhwaddr_rcu - find a device by its hardware address
975  *      @net: the applicable net namespace
976  *      @type: media type of device
977  *      @ha: hardware address
978  *
979  *      Search for an interface by MAC address. Returns NULL if the device
980  *      is not found or a pointer to the device.
981  *      The caller must hold RCU or RTNL.
982  *      The returned device has not had its ref count increased
983  *      and the caller must therefore be careful about locking
984  *
985  */
986
987 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
988                                        const char *ha)
989 {
990         struct net_device *dev;
991
992         for_each_netdev_rcu(net, dev)
993                 if (dev->type == type &&
994                     !memcmp(dev->dev_addr, ha, dev->addr_len))
995                         return dev;
996
997         return NULL;
998 }
999 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1000
1001 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1002 {
1003         struct net_device *dev, *ret = NULL;
1004
1005         rcu_read_lock();
1006         for_each_netdev_rcu(net, dev)
1007                 if (dev->type == type) {
1008                         dev_hold(dev);
1009                         ret = dev;
1010                         break;
1011                 }
1012         rcu_read_unlock();
1013         return ret;
1014 }
1015 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1016
1017 /**
1018  *      __dev_get_by_flags - find any device with given flags
1019  *      @net: the applicable net namespace
1020  *      @if_flags: IFF_* values
1021  *      @mask: bitmask of bits in if_flags to check
1022  *
1023  *      Search for any interface with the given flags. Returns NULL if a device
1024  *      is not found or a pointer to the device. Must be called inside
1025  *      rtnl_lock(), and result refcount is unchanged.
1026  */
1027
1028 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1029                                       unsigned short mask)
1030 {
1031         struct net_device *dev, *ret;
1032
1033         ASSERT_RTNL();
1034
1035         ret = NULL;
1036         for_each_netdev(net, dev) {
1037                 if (((dev->flags ^ if_flags) & mask) == 0) {
1038                         ret = dev;
1039                         break;
1040                 }
1041         }
1042         return ret;
1043 }
1044 EXPORT_SYMBOL(__dev_get_by_flags);
1045
1046 /**
1047  *      dev_valid_name - check if name is okay for network device
1048  *      @name: name string
1049  *
1050  *      Network device names need to be valid file names to
1051  *      allow sysfs to work.  We also disallow any kind of
1052  *      whitespace.
1053  */
1054 bool dev_valid_name(const char *name)
1055 {
1056         if (*name == '\0')
1057                 return false;
1058         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1059                 return false;
1060         if (!strcmp(name, ".") || !strcmp(name, ".."))
1061                 return false;
1062
1063         while (*name) {
1064                 if (*name == '/' || *name == ':' || isspace(*name))
1065                         return false;
1066                 name++;
1067         }
1068         return true;
1069 }
1070 EXPORT_SYMBOL(dev_valid_name);
1071
1072 /**
1073  *      __dev_alloc_name - allocate a name for a device
1074  *      @net: network namespace to allocate the device name in
1075  *      @name: name format string
1076  *      @buf:  scratch buffer and result name string
1077  *
1078  *      Passed a format string - eg "lt%d" it will try and find a suitable
1079  *      id. It scans list of devices to build up a free map, then chooses
1080  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1081  *      while allocating the name and adding the device in order to avoid
1082  *      duplicates.
1083  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1084  *      Returns the number of the unit assigned or a negative errno code.
1085  */
1086
1087 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1088 {
1089         int i = 0;
1090         const char *p;
1091         const int max_netdevices = 8*PAGE_SIZE;
1092         unsigned long *inuse;
1093         struct net_device *d;
1094
1095         if (!dev_valid_name(name))
1096                 return -EINVAL;
1097
1098         p = strchr(name, '%');
1099         if (p) {
1100                 /*
1101                  * Verify the string as this thing may have come from
1102                  * the user.  There must be either one "%d" and no other "%"
1103                  * characters.
1104                  */
1105                 if (p[1] != 'd' || strchr(p + 2, '%'))
1106                         return -EINVAL;
1107
1108                 /* Use one page as a bit array of possible slots */
1109                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1110                 if (!inuse)
1111                         return -ENOMEM;
1112
1113                 for_each_netdev(net, d) {
1114                         struct netdev_name_node *name_node;
1115                         list_for_each_entry(name_node, &d->name_node->list, list) {
1116                                 if (!sscanf(name_node->name, name, &i))
1117                                         continue;
1118                                 if (i < 0 || i >= max_netdevices)
1119                                         continue;
1120
1121                                 /*  avoid cases where sscanf is not exact inverse of printf */
1122                                 snprintf(buf, IFNAMSIZ, name, i);
1123                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1124                                         set_bit(i, inuse);
1125                         }
1126                         if (!sscanf(d->name, name, &i))
1127                                 continue;
1128                         if (i < 0 || i >= max_netdevices)
1129                                 continue;
1130
1131                         /*  avoid cases where sscanf is not exact inverse of printf */
1132                         snprintf(buf, IFNAMSIZ, name, i);
1133                         if (!strncmp(buf, d->name, IFNAMSIZ))
1134                                 set_bit(i, inuse);
1135                 }
1136
1137                 i = find_first_zero_bit(inuse, max_netdevices);
1138                 free_page((unsigned long) inuse);
1139         }
1140
1141         snprintf(buf, IFNAMSIZ, name, i);
1142         if (!netdev_name_in_use(net, buf))
1143                 return i;
1144
1145         /* It is possible to run out of possible slots
1146          * when the name is long and there isn't enough space left
1147          * for the digits, or if all bits are used.
1148          */
1149         return -ENFILE;
1150 }
1151
1152 static int dev_alloc_name_ns(struct net *net,
1153                              struct net_device *dev,
1154                              const char *name)
1155 {
1156         char buf[IFNAMSIZ];
1157         int ret;
1158
1159         BUG_ON(!net);
1160         ret = __dev_alloc_name(net, name, buf);
1161         if (ret >= 0)
1162                 strlcpy(dev->name, buf, IFNAMSIZ);
1163         return ret;
1164 }
1165
1166 /**
1167  *      dev_alloc_name - allocate a name for a device
1168  *      @dev: device
1169  *      @name: name format string
1170  *
1171  *      Passed a format string - eg "lt%d" it will try and find a suitable
1172  *      id. It scans list of devices to build up a free map, then chooses
1173  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1174  *      while allocating the name and adding the device in order to avoid
1175  *      duplicates.
1176  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1177  *      Returns the number of the unit assigned or a negative errno code.
1178  */
1179
1180 int dev_alloc_name(struct net_device *dev, const char *name)
1181 {
1182         return dev_alloc_name_ns(dev_net(dev), dev, name);
1183 }
1184 EXPORT_SYMBOL(dev_alloc_name);
1185
1186 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1187                               const char *name)
1188 {
1189         BUG_ON(!net);
1190
1191         if (!dev_valid_name(name))
1192                 return -EINVAL;
1193
1194         if (strchr(name, '%'))
1195                 return dev_alloc_name_ns(net, dev, name);
1196         else if (netdev_name_in_use(net, name))
1197                 return -EEXIST;
1198         else if (dev->name != name)
1199                 strlcpy(dev->name, name, IFNAMSIZ);
1200
1201         return 0;
1202 }
1203
1204 /**
1205  *      dev_change_name - change name of a device
1206  *      @dev: device
1207  *      @newname: name (or format string) must be at least IFNAMSIZ
1208  *
1209  *      Change name of a device, can pass format strings "eth%d".
1210  *      for wildcarding.
1211  */
1212 int dev_change_name(struct net_device *dev, const char *newname)
1213 {
1214         unsigned char old_assign_type;
1215         char oldname[IFNAMSIZ];
1216         int err = 0;
1217         int ret;
1218         struct net *net;
1219
1220         ASSERT_RTNL();
1221         BUG_ON(!dev_net(dev));
1222
1223         net = dev_net(dev);
1224
1225         /* Some auto-enslaved devices e.g. failover slaves are
1226          * special, as userspace might rename the device after
1227          * the interface had been brought up and running since
1228          * the point kernel initiated auto-enslavement. Allow
1229          * live name change even when these slave devices are
1230          * up and running.
1231          *
1232          * Typically, users of these auto-enslaving devices
1233          * don't actually care about slave name change, as
1234          * they are supposed to operate on master interface
1235          * directly.
1236          */
1237         if (dev->flags & IFF_UP &&
1238             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1239                 return -EBUSY;
1240
1241         down_write(&devnet_rename_sem);
1242
1243         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1244                 up_write(&devnet_rename_sem);
1245                 return 0;
1246         }
1247
1248         memcpy(oldname, dev->name, IFNAMSIZ);
1249
1250         err = dev_get_valid_name(net, dev, newname);
1251         if (err < 0) {
1252                 up_write(&devnet_rename_sem);
1253                 return err;
1254         }
1255
1256         if (oldname[0] && !strchr(oldname, '%'))
1257                 netdev_info(dev, "renamed from %s\n", oldname);
1258
1259         old_assign_type = dev->name_assign_type;
1260         dev->name_assign_type = NET_NAME_RENAMED;
1261
1262 rollback:
1263         ret = device_rename(&dev->dev, dev->name);
1264         if (ret) {
1265                 memcpy(dev->name, oldname, IFNAMSIZ);
1266                 dev->name_assign_type = old_assign_type;
1267                 up_write(&devnet_rename_sem);
1268                 return ret;
1269         }
1270
1271         up_write(&devnet_rename_sem);
1272
1273         netdev_adjacent_rename_links(dev, oldname);
1274
1275         write_lock_bh(&dev_base_lock);
1276         netdev_name_node_del(dev->name_node);
1277         write_unlock_bh(&dev_base_lock);
1278
1279         synchronize_rcu();
1280
1281         write_lock_bh(&dev_base_lock);
1282         netdev_name_node_add(net, dev->name_node);
1283         write_unlock_bh(&dev_base_lock);
1284
1285         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1286         ret = notifier_to_errno(ret);
1287
1288         if (ret) {
1289                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1290                 if (err >= 0) {
1291                         err = ret;
1292                         down_write(&devnet_rename_sem);
1293                         memcpy(dev->name, oldname, IFNAMSIZ);
1294                         memcpy(oldname, newname, IFNAMSIZ);
1295                         dev->name_assign_type = old_assign_type;
1296                         old_assign_type = NET_NAME_RENAMED;
1297                         goto rollback;
1298                 } else {
1299                         pr_err("%s: name change rollback failed: %d\n",
1300                                dev->name, ret);
1301                 }
1302         }
1303
1304         return err;
1305 }
1306
1307 /**
1308  *      dev_set_alias - change ifalias of a device
1309  *      @dev: device
1310  *      @alias: name up to IFALIASZ
1311  *      @len: limit of bytes to copy from info
1312  *
1313  *      Set ifalias for a device,
1314  */
1315 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1316 {
1317         struct dev_ifalias *new_alias = NULL;
1318
1319         if (len >= IFALIASZ)
1320                 return -EINVAL;
1321
1322         if (len) {
1323                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1324                 if (!new_alias)
1325                         return -ENOMEM;
1326
1327                 memcpy(new_alias->ifalias, alias, len);
1328                 new_alias->ifalias[len] = 0;
1329         }
1330
1331         mutex_lock(&ifalias_mutex);
1332         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1333                                         mutex_is_locked(&ifalias_mutex));
1334         mutex_unlock(&ifalias_mutex);
1335
1336         if (new_alias)
1337                 kfree_rcu(new_alias, rcuhead);
1338
1339         return len;
1340 }
1341 EXPORT_SYMBOL(dev_set_alias);
1342
1343 /**
1344  *      dev_get_alias - get ifalias of a device
1345  *      @dev: device
1346  *      @name: buffer to store name of ifalias
1347  *      @len: size of buffer
1348  *
1349  *      get ifalias for a device.  Caller must make sure dev cannot go
1350  *      away,  e.g. rcu read lock or own a reference count to device.
1351  */
1352 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1353 {
1354         const struct dev_ifalias *alias;
1355         int ret = 0;
1356
1357         rcu_read_lock();
1358         alias = rcu_dereference(dev->ifalias);
1359         if (alias)
1360                 ret = snprintf(name, len, "%s", alias->ifalias);
1361         rcu_read_unlock();
1362
1363         return ret;
1364 }
1365
1366 /**
1367  *      netdev_features_change - device changes features
1368  *      @dev: device to cause notification
1369  *
1370  *      Called to indicate a device has changed features.
1371  */
1372 void netdev_features_change(struct net_device *dev)
1373 {
1374         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1375 }
1376 EXPORT_SYMBOL(netdev_features_change);
1377
1378 /**
1379  *      netdev_state_change - device changes state
1380  *      @dev: device to cause notification
1381  *
1382  *      Called to indicate a device has changed state. This function calls
1383  *      the notifier chains for netdev_chain and sends a NEWLINK message
1384  *      to the routing socket.
1385  */
1386 void netdev_state_change(struct net_device *dev)
1387 {
1388         if (dev->flags & IFF_UP) {
1389                 struct netdev_notifier_change_info change_info = {
1390                         .info.dev = dev,
1391                 };
1392
1393                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1394                                               &change_info.info);
1395                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1396         }
1397 }
1398 EXPORT_SYMBOL(netdev_state_change);
1399
1400 /**
1401  * __netdev_notify_peers - notify network peers about existence of @dev,
1402  * to be called when rtnl lock is already held.
1403  * @dev: network device
1404  *
1405  * Generate traffic such that interested network peers are aware of
1406  * @dev, such as by generating a gratuitous ARP. This may be used when
1407  * a device wants to inform the rest of the network about some sort of
1408  * reconfiguration such as a failover event or virtual machine
1409  * migration.
1410  */
1411 void __netdev_notify_peers(struct net_device *dev)
1412 {
1413         ASSERT_RTNL();
1414         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1415         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1416 }
1417 EXPORT_SYMBOL(__netdev_notify_peers);
1418
1419 /**
1420  * netdev_notify_peers - notify network peers about existence of @dev
1421  * @dev: network device
1422  *
1423  * Generate traffic such that interested network peers are aware of
1424  * @dev, such as by generating a gratuitous ARP. This may be used when
1425  * a device wants to inform the rest of the network about some sort of
1426  * reconfiguration such as a failover event or virtual machine
1427  * migration.
1428  */
1429 void netdev_notify_peers(struct net_device *dev)
1430 {
1431         rtnl_lock();
1432         __netdev_notify_peers(dev);
1433         rtnl_unlock();
1434 }
1435 EXPORT_SYMBOL(netdev_notify_peers);
1436
1437 static int napi_threaded_poll(void *data);
1438
1439 static int napi_kthread_create(struct napi_struct *n)
1440 {
1441         int err = 0;
1442
1443         /* Create and wake up the kthread once to put it in
1444          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1445          * warning and work with loadavg.
1446          */
1447         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1448                                 n->dev->name, n->napi_id);
1449         if (IS_ERR(n->thread)) {
1450                 err = PTR_ERR(n->thread);
1451                 pr_err("kthread_run failed with err %d\n", err);
1452                 n->thread = NULL;
1453         }
1454
1455         return err;
1456 }
1457
1458 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1459 {
1460         const struct net_device_ops *ops = dev->netdev_ops;
1461         int ret;
1462
1463         ASSERT_RTNL();
1464
1465         if (!netif_device_present(dev)) {
1466                 /* may be detached because parent is runtime-suspended */
1467                 if (dev->dev.parent)
1468                         pm_runtime_resume(dev->dev.parent);
1469                 if (!netif_device_present(dev))
1470                         return -ENODEV;
1471         }
1472
1473         /* Block netpoll from trying to do any rx path servicing.
1474          * If we don't do this there is a chance ndo_poll_controller
1475          * or ndo_poll may be running while we open the device
1476          */
1477         netpoll_poll_disable(dev);
1478
1479         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1480         ret = notifier_to_errno(ret);
1481         if (ret)
1482                 return ret;
1483
1484         set_bit(__LINK_STATE_START, &dev->state);
1485
1486         if (ops->ndo_validate_addr)
1487                 ret = ops->ndo_validate_addr(dev);
1488
1489         if (!ret && ops->ndo_open)
1490                 ret = ops->ndo_open(dev);
1491
1492         netpoll_poll_enable(dev);
1493
1494         if (ret)
1495                 clear_bit(__LINK_STATE_START, &dev->state);
1496         else {
1497                 dev->flags |= IFF_UP;
1498                 dev_set_rx_mode(dev);
1499                 dev_activate(dev);
1500                 add_device_randomness(dev->dev_addr, dev->addr_len);
1501         }
1502
1503         return ret;
1504 }
1505
1506 /**
1507  *      dev_open        - prepare an interface for use.
1508  *      @dev: device to open
1509  *      @extack: netlink extended ack
1510  *
1511  *      Takes a device from down to up state. The device's private open
1512  *      function is invoked and then the multicast lists are loaded. Finally
1513  *      the device is moved into the up state and a %NETDEV_UP message is
1514  *      sent to the netdev notifier chain.
1515  *
1516  *      Calling this function on an active interface is a nop. On a failure
1517  *      a negative errno code is returned.
1518  */
1519 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1520 {
1521         int ret;
1522
1523         if (dev->flags & IFF_UP)
1524                 return 0;
1525
1526         ret = __dev_open(dev, extack);
1527         if (ret < 0)
1528                 return ret;
1529
1530         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1531         call_netdevice_notifiers(NETDEV_UP, dev);
1532
1533         return ret;
1534 }
1535 EXPORT_SYMBOL(dev_open);
1536
1537 static void __dev_close_many(struct list_head *head)
1538 {
1539         struct net_device *dev;
1540
1541         ASSERT_RTNL();
1542         might_sleep();
1543
1544         list_for_each_entry(dev, head, close_list) {
1545                 /* Temporarily disable netpoll until the interface is down */
1546                 netpoll_poll_disable(dev);
1547
1548                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1549
1550                 clear_bit(__LINK_STATE_START, &dev->state);
1551
1552                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1553                  * can be even on different cpu. So just clear netif_running().
1554                  *
1555                  * dev->stop() will invoke napi_disable() on all of it's
1556                  * napi_struct instances on this device.
1557                  */
1558                 smp_mb__after_atomic(); /* Commit netif_running(). */
1559         }
1560
1561         dev_deactivate_many(head);
1562
1563         list_for_each_entry(dev, head, close_list) {
1564                 const struct net_device_ops *ops = dev->netdev_ops;
1565
1566                 /*
1567                  *      Call the device specific close. This cannot fail.
1568                  *      Only if device is UP
1569                  *
1570                  *      We allow it to be called even after a DETACH hot-plug
1571                  *      event.
1572                  */
1573                 if (ops->ndo_stop)
1574                         ops->ndo_stop(dev);
1575
1576                 dev->flags &= ~IFF_UP;
1577                 netpoll_poll_enable(dev);
1578         }
1579 }
1580
1581 static void __dev_close(struct net_device *dev)
1582 {
1583         LIST_HEAD(single);
1584
1585         list_add(&dev->close_list, &single);
1586         __dev_close_many(&single);
1587         list_del(&single);
1588 }
1589
1590 void dev_close_many(struct list_head *head, bool unlink)
1591 {
1592         struct net_device *dev, *tmp;
1593
1594         /* Remove the devices that don't need to be closed */
1595         list_for_each_entry_safe(dev, tmp, head, close_list)
1596                 if (!(dev->flags & IFF_UP))
1597                         list_del_init(&dev->close_list);
1598
1599         __dev_close_many(head);
1600
1601         list_for_each_entry_safe(dev, tmp, head, close_list) {
1602                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1603                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1604                 if (unlink)
1605                         list_del_init(&dev->close_list);
1606         }
1607 }
1608 EXPORT_SYMBOL(dev_close_many);
1609
1610 /**
1611  *      dev_close - shutdown an interface.
1612  *      @dev: device to shutdown
1613  *
1614  *      This function moves an active device into down state. A
1615  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1616  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1617  *      chain.
1618  */
1619 void dev_close(struct net_device *dev)
1620 {
1621         if (dev->flags & IFF_UP) {
1622                 LIST_HEAD(single);
1623
1624                 list_add(&dev->close_list, &single);
1625                 dev_close_many(&single, true);
1626                 list_del(&single);
1627         }
1628 }
1629 EXPORT_SYMBOL(dev_close);
1630
1631
1632 /**
1633  *      dev_disable_lro - disable Large Receive Offload on a device
1634  *      @dev: device
1635  *
1636  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1637  *      called under RTNL.  This is needed if received packets may be
1638  *      forwarded to another interface.
1639  */
1640 void dev_disable_lro(struct net_device *dev)
1641 {
1642         struct net_device *lower_dev;
1643         struct list_head *iter;
1644
1645         dev->wanted_features &= ~NETIF_F_LRO;
1646         netdev_update_features(dev);
1647
1648         if (unlikely(dev->features & NETIF_F_LRO))
1649                 netdev_WARN(dev, "failed to disable LRO!\n");
1650
1651         netdev_for_each_lower_dev(dev, lower_dev, iter)
1652                 dev_disable_lro(lower_dev);
1653 }
1654 EXPORT_SYMBOL(dev_disable_lro);
1655
1656 /**
1657  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1658  *      @dev: device
1659  *
1660  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1661  *      called under RTNL.  This is needed if Generic XDP is installed on
1662  *      the device.
1663  */
1664 static void dev_disable_gro_hw(struct net_device *dev)
1665 {
1666         dev->wanted_features &= ~NETIF_F_GRO_HW;
1667         netdev_update_features(dev);
1668
1669         if (unlikely(dev->features & NETIF_F_GRO_HW))
1670                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1671 }
1672
1673 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1674 {
1675 #define N(val)                                          \
1676         case NETDEV_##val:                              \
1677                 return "NETDEV_" __stringify(val);
1678         switch (cmd) {
1679         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1680         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1681         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1682         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1683         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1684         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1685         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1686         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1687         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1688         N(PRE_CHANGEADDR)
1689         }
1690 #undef N
1691         return "UNKNOWN_NETDEV_EVENT";
1692 }
1693 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1694
1695 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1696                                    struct net_device *dev)
1697 {
1698         struct netdev_notifier_info info = {
1699                 .dev = dev,
1700         };
1701
1702         return nb->notifier_call(nb, val, &info);
1703 }
1704
1705 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1706                                              struct net_device *dev)
1707 {
1708         int err;
1709
1710         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1711         err = notifier_to_errno(err);
1712         if (err)
1713                 return err;
1714
1715         if (!(dev->flags & IFF_UP))
1716                 return 0;
1717
1718         call_netdevice_notifier(nb, NETDEV_UP, dev);
1719         return 0;
1720 }
1721
1722 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1723                                                 struct net_device *dev)
1724 {
1725         if (dev->flags & IFF_UP) {
1726                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1727                                         dev);
1728                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1729         }
1730         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1731 }
1732
1733 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1734                                                  struct net *net)
1735 {
1736         struct net_device *dev;
1737         int err;
1738
1739         for_each_netdev(net, dev) {
1740                 err = call_netdevice_register_notifiers(nb, dev);
1741                 if (err)
1742                         goto rollback;
1743         }
1744         return 0;
1745
1746 rollback:
1747         for_each_netdev_continue_reverse(net, dev)
1748                 call_netdevice_unregister_notifiers(nb, dev);
1749         return err;
1750 }
1751
1752 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1753                                                     struct net *net)
1754 {
1755         struct net_device *dev;
1756
1757         for_each_netdev(net, dev)
1758                 call_netdevice_unregister_notifiers(nb, dev);
1759 }
1760
1761 static int dev_boot_phase = 1;
1762
1763 /**
1764  * register_netdevice_notifier - register a network notifier block
1765  * @nb: notifier
1766  *
1767  * Register a notifier to be called when network device events occur.
1768  * The notifier passed is linked into the kernel structures and must
1769  * not be reused until it has been unregistered. A negative errno code
1770  * is returned on a failure.
1771  *
1772  * When registered all registration and up events are replayed
1773  * to the new notifier to allow device to have a race free
1774  * view of the network device list.
1775  */
1776
1777 int register_netdevice_notifier(struct notifier_block *nb)
1778 {
1779         struct net *net;
1780         int err;
1781
1782         /* Close race with setup_net() and cleanup_net() */
1783         down_write(&pernet_ops_rwsem);
1784         rtnl_lock();
1785         err = raw_notifier_chain_register(&netdev_chain, nb);
1786         if (err)
1787                 goto unlock;
1788         if (dev_boot_phase)
1789                 goto unlock;
1790         for_each_net(net) {
1791                 err = call_netdevice_register_net_notifiers(nb, net);
1792                 if (err)
1793                         goto rollback;
1794         }
1795
1796 unlock:
1797         rtnl_unlock();
1798         up_write(&pernet_ops_rwsem);
1799         return err;
1800
1801 rollback:
1802         for_each_net_continue_reverse(net)
1803                 call_netdevice_unregister_net_notifiers(nb, net);
1804
1805         raw_notifier_chain_unregister(&netdev_chain, nb);
1806         goto unlock;
1807 }
1808 EXPORT_SYMBOL(register_netdevice_notifier);
1809
1810 /**
1811  * unregister_netdevice_notifier - unregister a network notifier block
1812  * @nb: notifier
1813  *
1814  * Unregister a notifier previously registered by
1815  * register_netdevice_notifier(). The notifier is unlinked into the
1816  * kernel structures and may then be reused. A negative errno code
1817  * is returned on a failure.
1818  *
1819  * After unregistering unregister and down device events are synthesized
1820  * for all devices on the device list to the removed notifier to remove
1821  * the need for special case cleanup code.
1822  */
1823
1824 int unregister_netdevice_notifier(struct notifier_block *nb)
1825 {
1826         struct net *net;
1827         int err;
1828
1829         /* Close race with setup_net() and cleanup_net() */
1830         down_write(&pernet_ops_rwsem);
1831         rtnl_lock();
1832         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1833         if (err)
1834                 goto unlock;
1835
1836         for_each_net(net)
1837                 call_netdevice_unregister_net_notifiers(nb, net);
1838
1839 unlock:
1840         rtnl_unlock();
1841         up_write(&pernet_ops_rwsem);
1842         return err;
1843 }
1844 EXPORT_SYMBOL(unregister_netdevice_notifier);
1845
1846 static int __register_netdevice_notifier_net(struct net *net,
1847                                              struct notifier_block *nb,
1848                                              bool ignore_call_fail)
1849 {
1850         int err;
1851
1852         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1853         if (err)
1854                 return err;
1855         if (dev_boot_phase)
1856                 return 0;
1857
1858         err = call_netdevice_register_net_notifiers(nb, net);
1859         if (err && !ignore_call_fail)
1860                 goto chain_unregister;
1861
1862         return 0;
1863
1864 chain_unregister:
1865         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1866         return err;
1867 }
1868
1869 static int __unregister_netdevice_notifier_net(struct net *net,
1870                                                struct notifier_block *nb)
1871 {
1872         int err;
1873
1874         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1875         if (err)
1876                 return err;
1877
1878         call_netdevice_unregister_net_notifiers(nb, net);
1879         return 0;
1880 }
1881
1882 /**
1883  * register_netdevice_notifier_net - register a per-netns network notifier block
1884  * @net: network namespace
1885  * @nb: notifier
1886  *
1887  * Register a notifier to be called when network device events occur.
1888  * The notifier passed is linked into the kernel structures and must
1889  * not be reused until it has been unregistered. A negative errno code
1890  * is returned on a failure.
1891  *
1892  * When registered all registration and up events are replayed
1893  * to the new notifier to allow device to have a race free
1894  * view of the network device list.
1895  */
1896
1897 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1898 {
1899         int err;
1900
1901         rtnl_lock();
1902         err = __register_netdevice_notifier_net(net, nb, false);
1903         rtnl_unlock();
1904         return err;
1905 }
1906 EXPORT_SYMBOL(register_netdevice_notifier_net);
1907
1908 /**
1909  * unregister_netdevice_notifier_net - unregister a per-netns
1910  *                                     network notifier block
1911  * @net: network namespace
1912  * @nb: notifier
1913  *
1914  * Unregister a notifier previously registered by
1915  * register_netdevice_notifier(). The notifier is unlinked into the
1916  * kernel structures and may then be reused. A negative errno code
1917  * is returned on a failure.
1918  *
1919  * After unregistering unregister and down device events are synthesized
1920  * for all devices on the device list to the removed notifier to remove
1921  * the need for special case cleanup code.
1922  */
1923
1924 int unregister_netdevice_notifier_net(struct net *net,
1925                                       struct notifier_block *nb)
1926 {
1927         int err;
1928
1929         rtnl_lock();
1930         err = __unregister_netdevice_notifier_net(net, nb);
1931         rtnl_unlock();
1932         return err;
1933 }
1934 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1935
1936 int register_netdevice_notifier_dev_net(struct net_device *dev,
1937                                         struct notifier_block *nb,
1938                                         struct netdev_net_notifier *nn)
1939 {
1940         int err;
1941
1942         rtnl_lock();
1943         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1944         if (!err) {
1945                 nn->nb = nb;
1946                 list_add(&nn->list, &dev->net_notifier_list);
1947         }
1948         rtnl_unlock();
1949         return err;
1950 }
1951 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1952
1953 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1954                                           struct notifier_block *nb,
1955                                           struct netdev_net_notifier *nn)
1956 {
1957         int err;
1958
1959         rtnl_lock();
1960         list_del(&nn->list);
1961         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1962         rtnl_unlock();
1963         return err;
1964 }
1965 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1966
1967 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1968                                              struct net *net)
1969 {
1970         struct netdev_net_notifier *nn;
1971
1972         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1973                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1974                 __register_netdevice_notifier_net(net, nn->nb, true);
1975         }
1976 }
1977
1978 /**
1979  *      call_netdevice_notifiers_info - call all network notifier blocks
1980  *      @val: value passed unmodified to notifier function
1981  *      @info: notifier information data
1982  *
1983  *      Call all network notifier blocks.  Parameters and return value
1984  *      are as for raw_notifier_call_chain().
1985  */
1986
1987 static int call_netdevice_notifiers_info(unsigned long val,
1988                                          struct netdev_notifier_info *info)
1989 {
1990         struct net *net = dev_net(info->dev);
1991         int ret;
1992
1993         ASSERT_RTNL();
1994
1995         /* Run per-netns notifier block chain first, then run the global one.
1996          * Hopefully, one day, the global one is going to be removed after
1997          * all notifier block registrators get converted to be per-netns.
1998          */
1999         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2000         if (ret & NOTIFY_STOP_MASK)
2001                 return ret;
2002         return raw_notifier_call_chain(&netdev_chain, val, info);
2003 }
2004
2005 static int call_netdevice_notifiers_extack(unsigned long val,
2006                                            struct net_device *dev,
2007                                            struct netlink_ext_ack *extack)
2008 {
2009         struct netdev_notifier_info info = {
2010                 .dev = dev,
2011                 .extack = extack,
2012         };
2013
2014         return call_netdevice_notifiers_info(val, &info);
2015 }
2016
2017 /**
2018  *      call_netdevice_notifiers - call all network notifier blocks
2019  *      @val: value passed unmodified to notifier function
2020  *      @dev: net_device pointer passed unmodified to notifier function
2021  *
2022  *      Call all network notifier blocks.  Parameters and return value
2023  *      are as for raw_notifier_call_chain().
2024  */
2025
2026 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2027 {
2028         return call_netdevice_notifiers_extack(val, dev, NULL);
2029 }
2030 EXPORT_SYMBOL(call_netdevice_notifiers);
2031
2032 /**
2033  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2034  *      @val: value passed unmodified to notifier function
2035  *      @dev: net_device pointer passed unmodified to notifier function
2036  *      @arg: additional u32 argument passed to the notifier function
2037  *
2038  *      Call all network notifier blocks.  Parameters and return value
2039  *      are as for raw_notifier_call_chain().
2040  */
2041 static int call_netdevice_notifiers_mtu(unsigned long val,
2042                                         struct net_device *dev, u32 arg)
2043 {
2044         struct netdev_notifier_info_ext info = {
2045                 .info.dev = dev,
2046                 .ext.mtu = arg,
2047         };
2048
2049         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2050
2051         return call_netdevice_notifiers_info(val, &info.info);
2052 }
2053
2054 #ifdef CONFIG_NET_INGRESS
2055 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2056
2057 void net_inc_ingress_queue(void)
2058 {
2059         static_branch_inc(&ingress_needed_key);
2060 }
2061 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2062
2063 void net_dec_ingress_queue(void)
2064 {
2065         static_branch_dec(&ingress_needed_key);
2066 }
2067 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2068 #endif
2069
2070 #ifdef CONFIG_NET_EGRESS
2071 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2072
2073 void net_inc_egress_queue(void)
2074 {
2075         static_branch_inc(&egress_needed_key);
2076 }
2077 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2078
2079 void net_dec_egress_queue(void)
2080 {
2081         static_branch_dec(&egress_needed_key);
2082 }
2083 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2084 #endif
2085
2086 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2087 #ifdef CONFIG_JUMP_LABEL
2088 static atomic_t netstamp_needed_deferred;
2089 static atomic_t netstamp_wanted;
2090 static void netstamp_clear(struct work_struct *work)
2091 {
2092         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2093         int wanted;
2094
2095         wanted = atomic_add_return(deferred, &netstamp_wanted);
2096         if (wanted > 0)
2097                 static_branch_enable(&netstamp_needed_key);
2098         else
2099                 static_branch_disable(&netstamp_needed_key);
2100 }
2101 static DECLARE_WORK(netstamp_work, netstamp_clear);
2102 #endif
2103
2104 void net_enable_timestamp(void)
2105 {
2106 #ifdef CONFIG_JUMP_LABEL
2107         int wanted;
2108
2109         while (1) {
2110                 wanted = atomic_read(&netstamp_wanted);
2111                 if (wanted <= 0)
2112                         break;
2113                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2114                         return;
2115         }
2116         atomic_inc(&netstamp_needed_deferred);
2117         schedule_work(&netstamp_work);
2118 #else
2119         static_branch_inc(&netstamp_needed_key);
2120 #endif
2121 }
2122 EXPORT_SYMBOL(net_enable_timestamp);
2123
2124 void net_disable_timestamp(void)
2125 {
2126 #ifdef CONFIG_JUMP_LABEL
2127         int wanted;
2128
2129         while (1) {
2130                 wanted = atomic_read(&netstamp_wanted);
2131                 if (wanted <= 1)
2132                         break;
2133                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2134                         return;
2135         }
2136         atomic_dec(&netstamp_needed_deferred);
2137         schedule_work(&netstamp_work);
2138 #else
2139         static_branch_dec(&netstamp_needed_key);
2140 #endif
2141 }
2142 EXPORT_SYMBOL(net_disable_timestamp);
2143
2144 static inline void net_timestamp_set(struct sk_buff *skb)
2145 {
2146         skb->tstamp = 0;
2147         if (static_branch_unlikely(&netstamp_needed_key))
2148                 __net_timestamp(skb);
2149 }
2150
2151 #define net_timestamp_check(COND, SKB)                          \
2152         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2153                 if ((COND) && !(SKB)->tstamp)                   \
2154                         __net_timestamp(SKB);                   \
2155         }                                                       \
2156
2157 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2158 {
2159         return __is_skb_forwardable(dev, skb, true);
2160 }
2161 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2162
2163 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2164                               bool check_mtu)
2165 {
2166         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2167
2168         if (likely(!ret)) {
2169                 skb->protocol = eth_type_trans(skb, dev);
2170                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2171         }
2172
2173         return ret;
2174 }
2175
2176 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2177 {
2178         return __dev_forward_skb2(dev, skb, true);
2179 }
2180 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2181
2182 /**
2183  * dev_forward_skb - loopback an skb to another netif
2184  *
2185  * @dev: destination network device
2186  * @skb: buffer to forward
2187  *
2188  * return values:
2189  *      NET_RX_SUCCESS  (no congestion)
2190  *      NET_RX_DROP     (packet was dropped, but freed)
2191  *
2192  * dev_forward_skb can be used for injecting an skb from the
2193  * start_xmit function of one device into the receive queue
2194  * of another device.
2195  *
2196  * The receiving device may be in another namespace, so
2197  * we have to clear all information in the skb that could
2198  * impact namespace isolation.
2199  */
2200 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2201 {
2202         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2203 }
2204 EXPORT_SYMBOL_GPL(dev_forward_skb);
2205
2206 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2207 {
2208         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2209 }
2210
2211 static inline int deliver_skb(struct sk_buff *skb,
2212                               struct packet_type *pt_prev,
2213                               struct net_device *orig_dev)
2214 {
2215         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2216                 return -ENOMEM;
2217         refcount_inc(&skb->users);
2218         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2219 }
2220
2221 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2222                                           struct packet_type **pt,
2223                                           struct net_device *orig_dev,
2224                                           __be16 type,
2225                                           struct list_head *ptype_list)
2226 {
2227         struct packet_type *ptype, *pt_prev = *pt;
2228
2229         list_for_each_entry_rcu(ptype, ptype_list, list) {
2230                 if (ptype->type != type)
2231                         continue;
2232                 if (pt_prev)
2233                         deliver_skb(skb, pt_prev, orig_dev);
2234                 pt_prev = ptype;
2235         }
2236         *pt = pt_prev;
2237 }
2238
2239 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2240 {
2241         if (!ptype->af_packet_priv || !skb->sk)
2242                 return false;
2243
2244         if (ptype->id_match)
2245                 return ptype->id_match(ptype, skb->sk);
2246         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2247                 return true;
2248
2249         return false;
2250 }
2251
2252 /**
2253  * dev_nit_active - return true if any network interface taps are in use
2254  *
2255  * @dev: network device to check for the presence of taps
2256  */
2257 bool dev_nit_active(struct net_device *dev)
2258 {
2259         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2260 }
2261 EXPORT_SYMBOL_GPL(dev_nit_active);
2262
2263 /*
2264  *      Support routine. Sends outgoing frames to any network
2265  *      taps currently in use.
2266  */
2267
2268 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2269 {
2270         struct packet_type *ptype;
2271         struct sk_buff *skb2 = NULL;
2272         struct packet_type *pt_prev = NULL;
2273         struct list_head *ptype_list = &ptype_all;
2274
2275         rcu_read_lock();
2276 again:
2277         list_for_each_entry_rcu(ptype, ptype_list, list) {
2278                 if (ptype->ignore_outgoing)
2279                         continue;
2280
2281                 /* Never send packets back to the socket
2282                  * they originated from - MvS (miquels@drinkel.ow.org)
2283                  */
2284                 if (skb_loop_sk(ptype, skb))
2285                         continue;
2286
2287                 if (pt_prev) {
2288                         deliver_skb(skb2, pt_prev, skb->dev);
2289                         pt_prev = ptype;
2290                         continue;
2291                 }
2292
2293                 /* need to clone skb, done only once */
2294                 skb2 = skb_clone(skb, GFP_ATOMIC);
2295                 if (!skb2)
2296                         goto out_unlock;
2297
2298                 net_timestamp_set(skb2);
2299
2300                 /* skb->nh should be correctly
2301                  * set by sender, so that the second statement is
2302                  * just protection against buggy protocols.
2303                  */
2304                 skb_reset_mac_header(skb2);
2305
2306                 if (skb_network_header(skb2) < skb2->data ||
2307                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2308                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2309                                              ntohs(skb2->protocol),
2310                                              dev->name);
2311                         skb_reset_network_header(skb2);
2312                 }
2313
2314                 skb2->transport_header = skb2->network_header;
2315                 skb2->pkt_type = PACKET_OUTGOING;
2316                 pt_prev = ptype;
2317         }
2318
2319         if (ptype_list == &ptype_all) {
2320                 ptype_list = &dev->ptype_all;
2321                 goto again;
2322         }
2323 out_unlock:
2324         if (pt_prev) {
2325                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2326                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2327                 else
2328                         kfree_skb(skb2);
2329         }
2330         rcu_read_unlock();
2331 }
2332 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2333
2334 /**
2335  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2336  * @dev: Network device
2337  * @txq: number of queues available
2338  *
2339  * If real_num_tx_queues is changed the tc mappings may no longer be
2340  * valid. To resolve this verify the tc mapping remains valid and if
2341  * not NULL the mapping. With no priorities mapping to this
2342  * offset/count pair it will no longer be used. In the worst case TC0
2343  * is invalid nothing can be done so disable priority mappings. If is
2344  * expected that drivers will fix this mapping if they can before
2345  * calling netif_set_real_num_tx_queues.
2346  */
2347 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2348 {
2349         int i;
2350         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2351
2352         /* If TC0 is invalidated disable TC mapping */
2353         if (tc->offset + tc->count > txq) {
2354                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2355                 dev->num_tc = 0;
2356                 return;
2357         }
2358
2359         /* Invalidated prio to tc mappings set to TC0 */
2360         for (i = 1; i < TC_BITMASK + 1; i++) {
2361                 int q = netdev_get_prio_tc_map(dev, i);
2362
2363                 tc = &dev->tc_to_txq[q];
2364                 if (tc->offset + tc->count > txq) {
2365                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2366                                 i, q);
2367                         netdev_set_prio_tc_map(dev, i, 0);
2368                 }
2369         }
2370 }
2371
2372 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2373 {
2374         if (dev->num_tc) {
2375                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2376                 int i;
2377
2378                 /* walk through the TCs and see if it falls into any of them */
2379                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2380                         if ((txq - tc->offset) < tc->count)
2381                                 return i;
2382                 }
2383
2384                 /* didn't find it, just return -1 to indicate no match */
2385                 return -1;
2386         }
2387
2388         return 0;
2389 }
2390 EXPORT_SYMBOL(netdev_txq_to_tc);
2391
2392 #ifdef CONFIG_XPS
2393 static struct static_key xps_needed __read_mostly;
2394 static struct static_key xps_rxqs_needed __read_mostly;
2395 static DEFINE_MUTEX(xps_map_mutex);
2396 #define xmap_dereference(P)             \
2397         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2398
2399 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2400                              struct xps_dev_maps *old_maps, int tci, u16 index)
2401 {
2402         struct xps_map *map = NULL;
2403         int pos;
2404
2405         if (dev_maps)
2406                 map = xmap_dereference(dev_maps->attr_map[tci]);
2407         if (!map)
2408                 return false;
2409
2410         for (pos = map->len; pos--;) {
2411                 if (map->queues[pos] != index)
2412                         continue;
2413
2414                 if (map->len > 1) {
2415                         map->queues[pos] = map->queues[--map->len];
2416                         break;
2417                 }
2418
2419                 if (old_maps)
2420                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2421                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2422                 kfree_rcu(map, rcu);
2423                 return false;
2424         }
2425
2426         return true;
2427 }
2428
2429 static bool remove_xps_queue_cpu(struct net_device *dev,
2430                                  struct xps_dev_maps *dev_maps,
2431                                  int cpu, u16 offset, u16 count)
2432 {
2433         int num_tc = dev_maps->num_tc;
2434         bool active = false;
2435         int tci;
2436
2437         for (tci = cpu * num_tc; num_tc--; tci++) {
2438                 int i, j;
2439
2440                 for (i = count, j = offset; i--; j++) {
2441                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2442                                 break;
2443                 }
2444
2445                 active |= i < 0;
2446         }
2447
2448         return active;
2449 }
2450
2451 static void reset_xps_maps(struct net_device *dev,
2452                            struct xps_dev_maps *dev_maps,
2453                            enum xps_map_type type)
2454 {
2455         static_key_slow_dec_cpuslocked(&xps_needed);
2456         if (type == XPS_RXQS)
2457                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2458
2459         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2460
2461         kfree_rcu(dev_maps, rcu);
2462 }
2463
2464 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2465                            u16 offset, u16 count)
2466 {
2467         struct xps_dev_maps *dev_maps;
2468         bool active = false;
2469         int i, j;
2470
2471         dev_maps = xmap_dereference(dev->xps_maps[type]);
2472         if (!dev_maps)
2473                 return;
2474
2475         for (j = 0; j < dev_maps->nr_ids; j++)
2476                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2477         if (!active)
2478                 reset_xps_maps(dev, dev_maps, type);
2479
2480         if (type == XPS_CPUS) {
2481                 for (i = offset + (count - 1); count--; i--)
2482                         netdev_queue_numa_node_write(
2483                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2484         }
2485 }
2486
2487 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2488                                    u16 count)
2489 {
2490         if (!static_key_false(&xps_needed))
2491                 return;
2492
2493         cpus_read_lock();
2494         mutex_lock(&xps_map_mutex);
2495
2496         if (static_key_false(&xps_rxqs_needed))
2497                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2498
2499         clean_xps_maps(dev, XPS_CPUS, offset, count);
2500
2501         mutex_unlock(&xps_map_mutex);
2502         cpus_read_unlock();
2503 }
2504
2505 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2506 {
2507         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2508 }
2509
2510 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2511                                       u16 index, bool is_rxqs_map)
2512 {
2513         struct xps_map *new_map;
2514         int alloc_len = XPS_MIN_MAP_ALLOC;
2515         int i, pos;
2516
2517         for (pos = 0; map && pos < map->len; pos++) {
2518                 if (map->queues[pos] != index)
2519                         continue;
2520                 return map;
2521         }
2522
2523         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2524         if (map) {
2525                 if (pos < map->alloc_len)
2526                         return map;
2527
2528                 alloc_len = map->alloc_len * 2;
2529         }
2530
2531         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2532          *  map
2533          */
2534         if (is_rxqs_map)
2535                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2536         else
2537                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2538                                        cpu_to_node(attr_index));
2539         if (!new_map)
2540                 return NULL;
2541
2542         for (i = 0; i < pos; i++)
2543                 new_map->queues[i] = map->queues[i];
2544         new_map->alloc_len = alloc_len;
2545         new_map->len = pos;
2546
2547         return new_map;
2548 }
2549
2550 /* Copy xps maps at a given index */
2551 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2552                               struct xps_dev_maps *new_dev_maps, int index,
2553                               int tc, bool skip_tc)
2554 {
2555         int i, tci = index * dev_maps->num_tc;
2556         struct xps_map *map;
2557
2558         /* copy maps belonging to foreign traffic classes */
2559         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2560                 if (i == tc && skip_tc)
2561                         continue;
2562
2563                 /* fill in the new device map from the old device map */
2564                 map = xmap_dereference(dev_maps->attr_map[tci]);
2565                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2566         }
2567 }
2568
2569 /* Must be called under cpus_read_lock */
2570 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2571                           u16 index, enum xps_map_type type)
2572 {
2573         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2574         const unsigned long *online_mask = NULL;
2575         bool active = false, copy = false;
2576         int i, j, tci, numa_node_id = -2;
2577         int maps_sz, num_tc = 1, tc = 0;
2578         struct xps_map *map, *new_map;
2579         unsigned int nr_ids;
2580
2581         if (dev->num_tc) {
2582                 /* Do not allow XPS on subordinate device directly */
2583                 num_tc = dev->num_tc;
2584                 if (num_tc < 0)
2585                         return -EINVAL;
2586
2587                 /* If queue belongs to subordinate dev use its map */
2588                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2589
2590                 tc = netdev_txq_to_tc(dev, index);
2591                 if (tc < 0)
2592                         return -EINVAL;
2593         }
2594
2595         mutex_lock(&xps_map_mutex);
2596
2597         dev_maps = xmap_dereference(dev->xps_maps[type]);
2598         if (type == XPS_RXQS) {
2599                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2600                 nr_ids = dev->num_rx_queues;
2601         } else {
2602                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2603                 if (num_possible_cpus() > 1)
2604                         online_mask = cpumask_bits(cpu_online_mask);
2605                 nr_ids = nr_cpu_ids;
2606         }
2607
2608         if (maps_sz < L1_CACHE_BYTES)
2609                 maps_sz = L1_CACHE_BYTES;
2610
2611         /* The old dev_maps could be larger or smaller than the one we're
2612          * setting up now, as dev->num_tc or nr_ids could have been updated in
2613          * between. We could try to be smart, but let's be safe instead and only
2614          * copy foreign traffic classes if the two map sizes match.
2615          */
2616         if (dev_maps &&
2617             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2618                 copy = true;
2619
2620         /* allocate memory for queue storage */
2621         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2622              j < nr_ids;) {
2623                 if (!new_dev_maps) {
2624                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2625                         if (!new_dev_maps) {
2626                                 mutex_unlock(&xps_map_mutex);
2627                                 return -ENOMEM;
2628                         }
2629
2630                         new_dev_maps->nr_ids = nr_ids;
2631                         new_dev_maps->num_tc = num_tc;
2632                 }
2633
2634                 tci = j * num_tc + tc;
2635                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2636
2637                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2638                 if (!map)
2639                         goto error;
2640
2641                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2642         }
2643
2644         if (!new_dev_maps)
2645                 goto out_no_new_maps;
2646
2647         if (!dev_maps) {
2648                 /* Increment static keys at most once per type */
2649                 static_key_slow_inc_cpuslocked(&xps_needed);
2650                 if (type == XPS_RXQS)
2651                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2652         }
2653
2654         for (j = 0; j < nr_ids; j++) {
2655                 bool skip_tc = false;
2656
2657                 tci = j * num_tc + tc;
2658                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2659                     netif_attr_test_online(j, online_mask, nr_ids)) {
2660                         /* add tx-queue to CPU/rx-queue maps */
2661                         int pos = 0;
2662
2663                         skip_tc = true;
2664
2665                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2666                         while ((pos < map->len) && (map->queues[pos] != index))
2667                                 pos++;
2668
2669                         if (pos == map->len)
2670                                 map->queues[map->len++] = index;
2671 #ifdef CONFIG_NUMA
2672                         if (type == XPS_CPUS) {
2673                                 if (numa_node_id == -2)
2674                                         numa_node_id = cpu_to_node(j);
2675                                 else if (numa_node_id != cpu_to_node(j))
2676                                         numa_node_id = -1;
2677                         }
2678 #endif
2679                 }
2680
2681                 if (copy)
2682                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2683                                           skip_tc);
2684         }
2685
2686         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2687
2688         /* Cleanup old maps */
2689         if (!dev_maps)
2690                 goto out_no_old_maps;
2691
2692         for (j = 0; j < dev_maps->nr_ids; j++) {
2693                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2694                         map = xmap_dereference(dev_maps->attr_map[tci]);
2695                         if (!map)
2696                                 continue;
2697
2698                         if (copy) {
2699                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2700                                 if (map == new_map)
2701                                         continue;
2702                         }
2703
2704                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2705                         kfree_rcu(map, rcu);
2706                 }
2707         }
2708
2709         old_dev_maps = dev_maps;
2710
2711 out_no_old_maps:
2712         dev_maps = new_dev_maps;
2713         active = true;
2714
2715 out_no_new_maps:
2716         if (type == XPS_CPUS)
2717                 /* update Tx queue numa node */
2718                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2719                                              (numa_node_id >= 0) ?
2720                                              numa_node_id : NUMA_NO_NODE);
2721
2722         if (!dev_maps)
2723                 goto out_no_maps;
2724
2725         /* removes tx-queue from unused CPUs/rx-queues */
2726         for (j = 0; j < dev_maps->nr_ids; j++) {
2727                 tci = j * dev_maps->num_tc;
2728
2729                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2730                         if (i == tc &&
2731                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2732                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2733                                 continue;
2734
2735                         active |= remove_xps_queue(dev_maps,
2736                                                    copy ? old_dev_maps : NULL,
2737                                                    tci, index);
2738                 }
2739         }
2740
2741         if (old_dev_maps)
2742                 kfree_rcu(old_dev_maps, rcu);
2743
2744         /* free map if not active */
2745         if (!active)
2746                 reset_xps_maps(dev, dev_maps, type);
2747
2748 out_no_maps:
2749         mutex_unlock(&xps_map_mutex);
2750
2751         return 0;
2752 error:
2753         /* remove any maps that we added */
2754         for (j = 0; j < nr_ids; j++) {
2755                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2756                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2757                         map = copy ?
2758                               xmap_dereference(dev_maps->attr_map[tci]) :
2759                               NULL;
2760                         if (new_map && new_map != map)
2761                                 kfree(new_map);
2762                 }
2763         }
2764
2765         mutex_unlock(&xps_map_mutex);
2766
2767         kfree(new_dev_maps);
2768         return -ENOMEM;
2769 }
2770 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2771
2772 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2773                         u16 index)
2774 {
2775         int ret;
2776
2777         cpus_read_lock();
2778         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2779         cpus_read_unlock();
2780
2781         return ret;
2782 }
2783 EXPORT_SYMBOL(netif_set_xps_queue);
2784
2785 #endif
2786 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2787 {
2788         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2789
2790         /* Unbind any subordinate channels */
2791         while (txq-- != &dev->_tx[0]) {
2792                 if (txq->sb_dev)
2793                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2794         }
2795 }
2796
2797 void netdev_reset_tc(struct net_device *dev)
2798 {
2799 #ifdef CONFIG_XPS
2800         netif_reset_xps_queues_gt(dev, 0);
2801 #endif
2802         netdev_unbind_all_sb_channels(dev);
2803
2804         /* Reset TC configuration of device */
2805         dev->num_tc = 0;
2806         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2807         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2808 }
2809 EXPORT_SYMBOL(netdev_reset_tc);
2810
2811 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2812 {
2813         if (tc >= dev->num_tc)
2814                 return -EINVAL;
2815
2816 #ifdef CONFIG_XPS
2817         netif_reset_xps_queues(dev, offset, count);
2818 #endif
2819         dev->tc_to_txq[tc].count = count;
2820         dev->tc_to_txq[tc].offset = offset;
2821         return 0;
2822 }
2823 EXPORT_SYMBOL(netdev_set_tc_queue);
2824
2825 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2826 {
2827         if (num_tc > TC_MAX_QUEUE)
2828                 return -EINVAL;
2829
2830 #ifdef CONFIG_XPS
2831         netif_reset_xps_queues_gt(dev, 0);
2832 #endif
2833         netdev_unbind_all_sb_channels(dev);
2834
2835         dev->num_tc = num_tc;
2836         return 0;
2837 }
2838 EXPORT_SYMBOL(netdev_set_num_tc);
2839
2840 void netdev_unbind_sb_channel(struct net_device *dev,
2841                               struct net_device *sb_dev)
2842 {
2843         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2844
2845 #ifdef CONFIG_XPS
2846         netif_reset_xps_queues_gt(sb_dev, 0);
2847 #endif
2848         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2849         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2850
2851         while (txq-- != &dev->_tx[0]) {
2852                 if (txq->sb_dev == sb_dev)
2853                         txq->sb_dev = NULL;
2854         }
2855 }
2856 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2857
2858 int netdev_bind_sb_channel_queue(struct net_device *dev,
2859                                  struct net_device *sb_dev,
2860                                  u8 tc, u16 count, u16 offset)
2861 {
2862         /* Make certain the sb_dev and dev are already configured */
2863         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2864                 return -EINVAL;
2865
2866         /* We cannot hand out queues we don't have */
2867         if ((offset + count) > dev->real_num_tx_queues)
2868                 return -EINVAL;
2869
2870         /* Record the mapping */
2871         sb_dev->tc_to_txq[tc].count = count;
2872         sb_dev->tc_to_txq[tc].offset = offset;
2873
2874         /* Provide a way for Tx queue to find the tc_to_txq map or
2875          * XPS map for itself.
2876          */
2877         while (count--)
2878                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2879
2880         return 0;
2881 }
2882 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2883
2884 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2885 {
2886         /* Do not use a multiqueue device to represent a subordinate channel */
2887         if (netif_is_multiqueue(dev))
2888                 return -ENODEV;
2889
2890         /* We allow channels 1 - 32767 to be used for subordinate channels.
2891          * Channel 0 is meant to be "native" mode and used only to represent
2892          * the main root device. We allow writing 0 to reset the device back
2893          * to normal mode after being used as a subordinate channel.
2894          */
2895         if (channel > S16_MAX)
2896                 return -EINVAL;
2897
2898         dev->num_tc = -channel;
2899
2900         return 0;
2901 }
2902 EXPORT_SYMBOL(netdev_set_sb_channel);
2903
2904 /*
2905  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2906  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2907  */
2908 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2909 {
2910         bool disabling;
2911         int rc;
2912
2913         disabling = txq < dev->real_num_tx_queues;
2914
2915         if (txq < 1 || txq > dev->num_tx_queues)
2916                 return -EINVAL;
2917
2918         if (dev->reg_state == NETREG_REGISTERED ||
2919             dev->reg_state == NETREG_UNREGISTERING) {
2920                 ASSERT_RTNL();
2921
2922                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2923                                                   txq);
2924                 if (rc)
2925                         return rc;
2926
2927                 if (dev->num_tc)
2928                         netif_setup_tc(dev, txq);
2929
2930                 dev_qdisc_change_real_num_tx(dev, txq);
2931
2932                 dev->real_num_tx_queues = txq;
2933
2934                 if (disabling) {
2935                         synchronize_net();
2936                         qdisc_reset_all_tx_gt(dev, txq);
2937 #ifdef CONFIG_XPS
2938                         netif_reset_xps_queues_gt(dev, txq);
2939 #endif
2940                 }
2941         } else {
2942                 dev->real_num_tx_queues = txq;
2943         }
2944
2945         return 0;
2946 }
2947 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2948
2949 #ifdef CONFIG_SYSFS
2950 /**
2951  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2952  *      @dev: Network device
2953  *      @rxq: Actual number of RX queues
2954  *
2955  *      This must be called either with the rtnl_lock held or before
2956  *      registration of the net device.  Returns 0 on success, or a
2957  *      negative error code.  If called before registration, it always
2958  *      succeeds.
2959  */
2960 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2961 {
2962         int rc;
2963
2964         if (rxq < 1 || rxq > dev->num_rx_queues)
2965                 return -EINVAL;
2966
2967         if (dev->reg_state == NETREG_REGISTERED) {
2968                 ASSERT_RTNL();
2969
2970                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2971                                                   rxq);
2972                 if (rc)
2973                         return rc;
2974         }
2975
2976         dev->real_num_rx_queues = rxq;
2977         return 0;
2978 }
2979 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2980 #endif
2981
2982 /**
2983  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2984  *      @dev: Network device
2985  *      @txq: Actual number of TX queues
2986  *      @rxq: Actual number of RX queues
2987  *
2988  *      Set the real number of both TX and RX queues.
2989  *      Does nothing if the number of queues is already correct.
2990  */
2991 int netif_set_real_num_queues(struct net_device *dev,
2992                               unsigned int txq, unsigned int rxq)
2993 {
2994         unsigned int old_rxq = dev->real_num_rx_queues;
2995         int err;
2996
2997         if (txq < 1 || txq > dev->num_tx_queues ||
2998             rxq < 1 || rxq > dev->num_rx_queues)
2999                 return -EINVAL;
3000
3001         /* Start from increases, so the error path only does decreases -
3002          * decreases can't fail.
3003          */
3004         if (rxq > dev->real_num_rx_queues) {
3005                 err = netif_set_real_num_rx_queues(dev, rxq);
3006                 if (err)
3007                         return err;
3008         }
3009         if (txq > dev->real_num_tx_queues) {
3010                 err = netif_set_real_num_tx_queues(dev, txq);
3011                 if (err)
3012                         goto undo_rx;
3013         }
3014         if (rxq < dev->real_num_rx_queues)
3015                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3016         if (txq < dev->real_num_tx_queues)
3017                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3018
3019         return 0;
3020 undo_rx:
3021         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3022         return err;
3023 }
3024 EXPORT_SYMBOL(netif_set_real_num_queues);
3025
3026 /**
3027  * netif_get_num_default_rss_queues - default number of RSS queues
3028  *
3029  * This routine should set an upper limit on the number of RSS queues
3030  * used by default by multiqueue devices.
3031  */
3032 int netif_get_num_default_rss_queues(void)
3033 {
3034         return is_kdump_kernel() ?
3035                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3036 }
3037 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3038
3039 static void __netif_reschedule(struct Qdisc *q)
3040 {
3041         struct softnet_data *sd;
3042         unsigned long flags;
3043
3044         local_irq_save(flags);
3045         sd = this_cpu_ptr(&softnet_data);
3046         q->next_sched = NULL;
3047         *sd->output_queue_tailp = q;
3048         sd->output_queue_tailp = &q->next_sched;
3049         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3050         local_irq_restore(flags);
3051 }
3052
3053 void __netif_schedule(struct Qdisc *q)
3054 {
3055         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3056                 __netif_reschedule(q);
3057 }
3058 EXPORT_SYMBOL(__netif_schedule);
3059
3060 struct dev_kfree_skb_cb {
3061         enum skb_free_reason reason;
3062 };
3063
3064 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3065 {
3066         return (struct dev_kfree_skb_cb *)skb->cb;
3067 }
3068
3069 void netif_schedule_queue(struct netdev_queue *txq)
3070 {
3071         rcu_read_lock();
3072         if (!netif_xmit_stopped(txq)) {
3073                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3074
3075                 __netif_schedule(q);
3076         }
3077         rcu_read_unlock();
3078 }
3079 EXPORT_SYMBOL(netif_schedule_queue);
3080
3081 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3082 {
3083         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3084                 struct Qdisc *q;
3085
3086                 rcu_read_lock();
3087                 q = rcu_dereference(dev_queue->qdisc);
3088                 __netif_schedule(q);
3089                 rcu_read_unlock();
3090         }
3091 }
3092 EXPORT_SYMBOL(netif_tx_wake_queue);
3093
3094 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3095 {
3096         unsigned long flags;
3097
3098         if (unlikely(!skb))
3099                 return;
3100
3101         if (likely(refcount_read(&skb->users) == 1)) {
3102                 smp_rmb();
3103                 refcount_set(&skb->users, 0);
3104         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3105                 return;
3106         }
3107         get_kfree_skb_cb(skb)->reason = reason;
3108         local_irq_save(flags);
3109         skb->next = __this_cpu_read(softnet_data.completion_queue);
3110         __this_cpu_write(softnet_data.completion_queue, skb);
3111         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3112         local_irq_restore(flags);
3113 }
3114 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3115
3116 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3117 {
3118         if (in_hardirq() || irqs_disabled())
3119                 __dev_kfree_skb_irq(skb, reason);
3120         else
3121                 dev_kfree_skb(skb);
3122 }
3123 EXPORT_SYMBOL(__dev_kfree_skb_any);
3124
3125
3126 /**
3127  * netif_device_detach - mark device as removed
3128  * @dev: network device
3129  *
3130  * Mark device as removed from system and therefore no longer available.
3131  */
3132 void netif_device_detach(struct net_device *dev)
3133 {
3134         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3135             netif_running(dev)) {
3136                 netif_tx_stop_all_queues(dev);
3137         }
3138 }
3139 EXPORT_SYMBOL(netif_device_detach);
3140
3141 /**
3142  * netif_device_attach - mark device as attached
3143  * @dev: network device
3144  *
3145  * Mark device as attached from system and restart if needed.
3146  */
3147 void netif_device_attach(struct net_device *dev)
3148 {
3149         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3150             netif_running(dev)) {
3151                 netif_tx_wake_all_queues(dev);
3152                 __netdev_watchdog_up(dev);
3153         }
3154 }
3155 EXPORT_SYMBOL(netif_device_attach);
3156
3157 /*
3158  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3159  * to be used as a distribution range.
3160  */
3161 static u16 skb_tx_hash(const struct net_device *dev,
3162                        const struct net_device *sb_dev,
3163                        struct sk_buff *skb)
3164 {
3165         u32 hash;
3166         u16 qoffset = 0;
3167         u16 qcount = dev->real_num_tx_queues;
3168
3169         if (dev->num_tc) {
3170                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3171
3172                 qoffset = sb_dev->tc_to_txq[tc].offset;
3173                 qcount = sb_dev->tc_to_txq[tc].count;
3174         }
3175
3176         if (skb_rx_queue_recorded(skb)) {
3177                 hash = skb_get_rx_queue(skb);
3178                 if (hash >= qoffset)
3179                         hash -= qoffset;
3180                 while (unlikely(hash >= qcount))
3181                         hash -= qcount;
3182                 return hash + qoffset;
3183         }
3184
3185         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3186 }
3187
3188 static void skb_warn_bad_offload(const struct sk_buff *skb)
3189 {
3190         static const netdev_features_t null_features;
3191         struct net_device *dev = skb->dev;
3192         const char *name = "";
3193
3194         if (!net_ratelimit())
3195                 return;
3196
3197         if (dev) {
3198                 if (dev->dev.parent)
3199                         name = dev_driver_string(dev->dev.parent);
3200                 else
3201                         name = netdev_name(dev);
3202         }
3203         skb_dump(KERN_WARNING, skb, false);
3204         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3205              name, dev ? &dev->features : &null_features,
3206              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3207 }
3208
3209 /*
3210  * Invalidate hardware checksum when packet is to be mangled, and
3211  * complete checksum manually on outgoing path.
3212  */
3213 int skb_checksum_help(struct sk_buff *skb)
3214 {
3215         __wsum csum;
3216         int ret = 0, offset;
3217
3218         if (skb->ip_summed == CHECKSUM_COMPLETE)
3219                 goto out_set_summed;
3220
3221         if (unlikely(skb_is_gso(skb))) {
3222                 skb_warn_bad_offload(skb);
3223                 return -EINVAL;
3224         }
3225
3226         /* Before computing a checksum, we should make sure no frag could
3227          * be modified by an external entity : checksum could be wrong.
3228          */
3229         if (skb_has_shared_frag(skb)) {
3230                 ret = __skb_linearize(skb);
3231                 if (ret)
3232                         goto out;
3233         }
3234
3235         offset = skb_checksum_start_offset(skb);
3236         BUG_ON(offset >= skb_headlen(skb));
3237         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3238
3239         offset += skb->csum_offset;
3240         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3241
3242         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3243         if (ret)
3244                 goto out;
3245
3246         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3247 out_set_summed:
3248         skb->ip_summed = CHECKSUM_NONE;
3249 out:
3250         return ret;
3251 }
3252 EXPORT_SYMBOL(skb_checksum_help);
3253
3254 int skb_crc32c_csum_help(struct sk_buff *skb)
3255 {
3256         __le32 crc32c_csum;
3257         int ret = 0, offset, start;
3258
3259         if (skb->ip_summed != CHECKSUM_PARTIAL)
3260                 goto out;
3261
3262         if (unlikely(skb_is_gso(skb)))
3263                 goto out;
3264
3265         /* Before computing a checksum, we should make sure no frag could
3266          * be modified by an external entity : checksum could be wrong.
3267          */
3268         if (unlikely(skb_has_shared_frag(skb))) {
3269                 ret = __skb_linearize(skb);
3270                 if (ret)
3271                         goto out;
3272         }
3273         start = skb_checksum_start_offset(skb);
3274         offset = start + offsetof(struct sctphdr, checksum);
3275         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3276                 ret = -EINVAL;
3277                 goto out;
3278         }
3279
3280         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3281         if (ret)
3282                 goto out;
3283
3284         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3285                                                   skb->len - start, ~(__u32)0,
3286                                                   crc32c_csum_stub));
3287         *(__le32 *)(skb->data + offset) = crc32c_csum;
3288         skb->ip_summed = CHECKSUM_NONE;
3289         skb->csum_not_inet = 0;
3290 out:
3291         return ret;
3292 }
3293
3294 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3295 {
3296         __be16 type = skb->protocol;
3297
3298         /* Tunnel gso handlers can set protocol to ethernet. */
3299         if (type == htons(ETH_P_TEB)) {
3300                 struct ethhdr *eth;
3301
3302                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3303                         return 0;
3304
3305                 eth = (struct ethhdr *)skb->data;
3306                 type = eth->h_proto;
3307         }
3308
3309         return __vlan_get_protocol(skb, type, depth);
3310 }
3311
3312 /**
3313  *      skb_mac_gso_segment - mac layer segmentation handler.
3314  *      @skb: buffer to segment
3315  *      @features: features for the output path (see dev->features)
3316  */
3317 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3318                                     netdev_features_t features)
3319 {
3320         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3321         struct packet_offload *ptype;
3322         int vlan_depth = skb->mac_len;
3323         __be16 type = skb_network_protocol(skb, &vlan_depth);
3324
3325         if (unlikely(!type))
3326                 return ERR_PTR(-EINVAL);
3327
3328         __skb_pull(skb, vlan_depth);
3329
3330         rcu_read_lock();
3331         list_for_each_entry_rcu(ptype, &offload_base, list) {
3332                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3333                         segs = ptype->callbacks.gso_segment(skb, features);
3334                         break;
3335                 }
3336         }
3337         rcu_read_unlock();
3338
3339         __skb_push(skb, skb->data - skb_mac_header(skb));
3340
3341         return segs;
3342 }
3343 EXPORT_SYMBOL(skb_mac_gso_segment);
3344
3345
3346 /* openvswitch calls this on rx path, so we need a different check.
3347  */
3348 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3349 {
3350         if (tx_path)
3351                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3352                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3353
3354         return skb->ip_summed == CHECKSUM_NONE;
3355 }
3356
3357 /**
3358  *      __skb_gso_segment - Perform segmentation on skb.
3359  *      @skb: buffer to segment
3360  *      @features: features for the output path (see dev->features)
3361  *      @tx_path: whether it is called in TX path
3362  *
3363  *      This function segments the given skb and returns a list of segments.
3364  *
3365  *      It may return NULL if the skb requires no segmentation.  This is
3366  *      only possible when GSO is used for verifying header integrity.
3367  *
3368  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3369  */
3370 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3371                                   netdev_features_t features, bool tx_path)
3372 {
3373         struct sk_buff *segs;
3374
3375         if (unlikely(skb_needs_check(skb, tx_path))) {
3376                 int err;
3377
3378                 /* We're going to init ->check field in TCP or UDP header */
3379                 err = skb_cow_head(skb, 0);
3380                 if (err < 0)
3381                         return ERR_PTR(err);
3382         }
3383
3384         /* Only report GSO partial support if it will enable us to
3385          * support segmentation on this frame without needing additional
3386          * work.
3387          */
3388         if (features & NETIF_F_GSO_PARTIAL) {
3389                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3390                 struct net_device *dev = skb->dev;
3391
3392                 partial_features |= dev->features & dev->gso_partial_features;
3393                 if (!skb_gso_ok(skb, features | partial_features))
3394                         features &= ~NETIF_F_GSO_PARTIAL;
3395         }
3396
3397         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3398                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3399
3400         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3401         SKB_GSO_CB(skb)->encap_level = 0;
3402
3403         skb_reset_mac_header(skb);
3404         skb_reset_mac_len(skb);
3405
3406         segs = skb_mac_gso_segment(skb, features);
3407
3408         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3409                 skb_warn_bad_offload(skb);
3410
3411         return segs;
3412 }
3413 EXPORT_SYMBOL(__skb_gso_segment);
3414
3415 /* Take action when hardware reception checksum errors are detected. */
3416 #ifdef CONFIG_BUG
3417 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3418 {
3419         pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3420         skb_dump(KERN_ERR, skb, true);
3421         dump_stack();
3422 }
3423
3424 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3425 {
3426         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3427 }
3428 EXPORT_SYMBOL(netdev_rx_csum_fault);
3429 #endif
3430
3431 /* XXX: check that highmem exists at all on the given machine. */
3432 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3433 {
3434 #ifdef CONFIG_HIGHMEM
3435         int i;
3436
3437         if (!(dev->features & NETIF_F_HIGHDMA)) {
3438                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3439                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3440
3441                         if (PageHighMem(skb_frag_page(frag)))
3442                                 return 1;
3443                 }
3444         }
3445 #endif
3446         return 0;
3447 }
3448
3449 /* If MPLS offload request, verify we are testing hardware MPLS features
3450  * instead of standard features for the netdev.
3451  */
3452 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3453 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3454                                            netdev_features_t features,
3455                                            __be16 type)
3456 {
3457         if (eth_p_mpls(type))
3458                 features &= skb->dev->mpls_features;
3459
3460         return features;
3461 }
3462 #else
3463 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3464                                            netdev_features_t features,
3465                                            __be16 type)
3466 {
3467         return features;
3468 }
3469 #endif
3470
3471 static netdev_features_t harmonize_features(struct sk_buff *skb,
3472         netdev_features_t features)
3473 {
3474         __be16 type;
3475
3476         type = skb_network_protocol(skb, NULL);
3477         features = net_mpls_features(skb, features, type);
3478
3479         if (skb->ip_summed != CHECKSUM_NONE &&
3480             !can_checksum_protocol(features, type)) {
3481                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3482         }
3483         if (illegal_highdma(skb->dev, skb))
3484                 features &= ~NETIF_F_SG;
3485
3486         return features;
3487 }
3488
3489 netdev_features_t passthru_features_check(struct sk_buff *skb,
3490                                           struct net_device *dev,
3491                                           netdev_features_t features)
3492 {
3493         return features;
3494 }
3495 EXPORT_SYMBOL(passthru_features_check);
3496
3497 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3498                                              struct net_device *dev,
3499                                              netdev_features_t features)
3500 {
3501         return vlan_features_check(skb, features);
3502 }
3503
3504 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3505                                             struct net_device *dev,
3506                                             netdev_features_t features)
3507 {
3508         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3509
3510         if (gso_segs > dev->gso_max_segs)
3511                 return features & ~NETIF_F_GSO_MASK;
3512
3513         if (!skb_shinfo(skb)->gso_type) {
3514                 skb_warn_bad_offload(skb);
3515                 return features & ~NETIF_F_GSO_MASK;
3516         }
3517
3518         /* Support for GSO partial features requires software
3519          * intervention before we can actually process the packets
3520          * so we need to strip support for any partial features now
3521          * and we can pull them back in after we have partially
3522          * segmented the frame.
3523          */
3524         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3525                 features &= ~dev->gso_partial_features;
3526
3527         /* Make sure to clear the IPv4 ID mangling feature if the
3528          * IPv4 header has the potential to be fragmented.
3529          */
3530         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3531                 struct iphdr *iph = skb->encapsulation ?
3532                                     inner_ip_hdr(skb) : ip_hdr(skb);
3533
3534                 if (!(iph->frag_off & htons(IP_DF)))
3535                         features &= ~NETIF_F_TSO_MANGLEID;
3536         }
3537
3538         return features;
3539 }
3540
3541 netdev_features_t netif_skb_features(struct sk_buff *skb)
3542 {
3543         struct net_device *dev = skb->dev;
3544         netdev_features_t features = dev->features;
3545
3546         if (skb_is_gso(skb))
3547                 features = gso_features_check(skb, dev, features);
3548
3549         /* If encapsulation offload request, verify we are testing
3550          * hardware encapsulation features instead of standard
3551          * features for the netdev
3552          */
3553         if (skb->encapsulation)
3554                 features &= dev->hw_enc_features;
3555
3556         if (skb_vlan_tagged(skb))
3557                 features = netdev_intersect_features(features,
3558                                                      dev->vlan_features |
3559                                                      NETIF_F_HW_VLAN_CTAG_TX |
3560                                                      NETIF_F_HW_VLAN_STAG_TX);
3561
3562         if (dev->netdev_ops->ndo_features_check)
3563                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3564                                                                 features);
3565         else
3566                 features &= dflt_features_check(skb, dev, features);
3567
3568         return harmonize_features(skb, features);
3569 }
3570 EXPORT_SYMBOL(netif_skb_features);
3571
3572 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3573                     struct netdev_queue *txq, bool more)
3574 {
3575         unsigned int len;
3576         int rc;
3577
3578         if (dev_nit_active(dev))
3579                 dev_queue_xmit_nit(skb, dev);
3580
3581         len = skb->len;
3582         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3583         trace_net_dev_start_xmit(skb, dev);
3584         rc = netdev_start_xmit(skb, dev, txq, more);
3585         trace_net_dev_xmit(skb, rc, dev, len);
3586
3587         return rc;
3588 }
3589
3590 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3591                                     struct netdev_queue *txq, int *ret)
3592 {
3593         struct sk_buff *skb = first;
3594         int rc = NETDEV_TX_OK;
3595
3596         while (skb) {
3597                 struct sk_buff *next = skb->next;
3598
3599                 skb_mark_not_on_list(skb);
3600                 rc = xmit_one(skb, dev, txq, next != NULL);
3601                 if (unlikely(!dev_xmit_complete(rc))) {
3602                         skb->next = next;
3603                         goto out;
3604                 }
3605
3606                 skb = next;
3607                 if (netif_tx_queue_stopped(txq) && skb) {
3608                         rc = NETDEV_TX_BUSY;
3609                         break;
3610                 }
3611         }
3612
3613 out:
3614         *ret = rc;
3615         return skb;
3616 }
3617
3618 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3619                                           netdev_features_t features)
3620 {
3621         if (skb_vlan_tag_present(skb) &&
3622             !vlan_hw_offload_capable(features, skb->vlan_proto))
3623                 skb = __vlan_hwaccel_push_inside(skb);
3624         return skb;
3625 }
3626
3627 int skb_csum_hwoffload_help(struct sk_buff *skb,
3628                             const netdev_features_t features)
3629 {
3630         if (unlikely(skb_csum_is_sctp(skb)))
3631                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3632                         skb_crc32c_csum_help(skb);
3633
3634         if (features & NETIF_F_HW_CSUM)
3635                 return 0;
3636
3637         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3638                 switch (skb->csum_offset) {
3639                 case offsetof(struct tcphdr, check):
3640                 case offsetof(struct udphdr, check):
3641                         return 0;
3642                 }
3643         }
3644
3645         return skb_checksum_help(skb);
3646 }
3647 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3648
3649 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3650 {
3651         netdev_features_t features;
3652
3653         features = netif_skb_features(skb);
3654         skb = validate_xmit_vlan(skb, features);
3655         if (unlikely(!skb))
3656                 goto out_null;
3657
3658         skb = sk_validate_xmit_skb(skb, dev);
3659         if (unlikely(!skb))
3660                 goto out_null;
3661
3662         if (netif_needs_gso(skb, features)) {
3663                 struct sk_buff *segs;
3664
3665                 segs = skb_gso_segment(skb, features);
3666                 if (IS_ERR(segs)) {
3667                         goto out_kfree_skb;
3668                 } else if (segs) {
3669                         consume_skb(skb);
3670                         skb = segs;
3671                 }
3672         } else {
3673                 if (skb_needs_linearize(skb, features) &&
3674                     __skb_linearize(skb))
3675                         goto out_kfree_skb;
3676
3677                 /* If packet is not checksummed and device does not
3678                  * support checksumming for this protocol, complete
3679                  * checksumming here.
3680                  */
3681                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3682                         if (skb->encapsulation)
3683                                 skb_set_inner_transport_header(skb,
3684                                                                skb_checksum_start_offset(skb));
3685                         else
3686                                 skb_set_transport_header(skb,
3687                                                          skb_checksum_start_offset(skb));
3688                         if (skb_csum_hwoffload_help(skb, features))
3689                                 goto out_kfree_skb;
3690                 }
3691         }
3692
3693         skb = validate_xmit_xfrm(skb, features, again);
3694
3695         return skb;
3696
3697 out_kfree_skb:
3698         kfree_skb(skb);
3699 out_null:
3700         atomic_long_inc(&dev->tx_dropped);
3701         return NULL;
3702 }
3703
3704 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3705 {
3706         struct sk_buff *next, *head = NULL, *tail;
3707
3708         for (; skb != NULL; skb = next) {
3709                 next = skb->next;
3710                 skb_mark_not_on_list(skb);
3711
3712                 /* in case skb wont be segmented, point to itself */
3713                 skb->prev = skb;
3714
3715                 skb = validate_xmit_skb(skb, dev, again);
3716                 if (!skb)
3717                         continue;
3718
3719                 if (!head)
3720                         head = skb;
3721                 else
3722                         tail->next = skb;
3723                 /* If skb was segmented, skb->prev points to
3724                  * the last segment. If not, it still contains skb.
3725                  */
3726                 tail = skb->prev;
3727         }
3728         return head;
3729 }
3730 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3731
3732 static void qdisc_pkt_len_init(struct sk_buff *skb)
3733 {
3734         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3735
3736         qdisc_skb_cb(skb)->pkt_len = skb->len;
3737
3738         /* To get more precise estimation of bytes sent on wire,
3739          * we add to pkt_len the headers size of all segments
3740          */
3741         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3742                 unsigned int hdr_len;
3743                 u16 gso_segs = shinfo->gso_segs;
3744
3745                 /* mac layer + network layer */
3746                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3747
3748                 /* + transport layer */
3749                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3750                         const struct tcphdr *th;
3751                         struct tcphdr _tcphdr;
3752
3753                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3754                                                 sizeof(_tcphdr), &_tcphdr);
3755                         if (likely(th))
3756                                 hdr_len += __tcp_hdrlen(th);
3757                 } else {
3758                         struct udphdr _udphdr;
3759
3760                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3761                                                sizeof(_udphdr), &_udphdr))
3762                                 hdr_len += sizeof(struct udphdr);
3763                 }
3764
3765                 if (shinfo->gso_type & SKB_GSO_DODGY)
3766                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3767                                                 shinfo->gso_size);
3768
3769                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3770         }
3771 }
3772
3773 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3774                              struct sk_buff **to_free,
3775                              struct netdev_queue *txq)
3776 {
3777         int rc;
3778
3779         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3780         if (rc == NET_XMIT_SUCCESS)
3781                 trace_qdisc_enqueue(q, txq, skb);
3782         return rc;
3783 }
3784
3785 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3786                                  struct net_device *dev,
3787                                  struct netdev_queue *txq)
3788 {
3789         spinlock_t *root_lock = qdisc_lock(q);
3790         struct sk_buff *to_free = NULL;
3791         bool contended;
3792         int rc;
3793
3794         qdisc_calculate_pkt_len(skb, q);
3795
3796         if (q->flags & TCQ_F_NOLOCK) {
3797                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3798                     qdisc_run_begin(q)) {
3799                         /* Retest nolock_qdisc_is_empty() within the protection
3800                          * of q->seqlock to protect from racing with requeuing.
3801                          */
3802                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3803                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3804                                 __qdisc_run(q);
3805                                 qdisc_run_end(q);
3806
3807                                 goto no_lock_out;
3808                         }
3809
3810                         qdisc_bstats_cpu_update(q, skb);
3811                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3812                             !nolock_qdisc_is_empty(q))
3813                                 __qdisc_run(q);
3814
3815                         qdisc_run_end(q);
3816                         return NET_XMIT_SUCCESS;
3817                 }
3818
3819                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3820                 qdisc_run(q);
3821
3822 no_lock_out:
3823                 if (unlikely(to_free))
3824                         kfree_skb_list(to_free);
3825                 return rc;
3826         }
3827
3828         /*
3829          * Heuristic to force contended enqueues to serialize on a
3830          * separate lock before trying to get qdisc main lock.
3831          * This permits qdisc->running owner to get the lock more
3832          * often and dequeue packets faster.
3833          */
3834         contended = qdisc_is_running(q);
3835         if (unlikely(contended))
3836                 spin_lock(&q->busylock);
3837
3838         spin_lock(root_lock);
3839         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3840                 __qdisc_drop(skb, &to_free);
3841                 rc = NET_XMIT_DROP;
3842         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3843                    qdisc_run_begin(q)) {
3844                 /*
3845                  * This is a work-conserving queue; there are no old skbs
3846                  * waiting to be sent out; and the qdisc is not running -
3847                  * xmit the skb directly.
3848                  */
3849
3850                 qdisc_bstats_update(q, skb);
3851
3852                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3853                         if (unlikely(contended)) {
3854                                 spin_unlock(&q->busylock);
3855                                 contended = false;
3856                         }
3857                         __qdisc_run(q);
3858                 }
3859
3860                 qdisc_run_end(q);
3861                 rc = NET_XMIT_SUCCESS;
3862         } else {
3863                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3864                 if (qdisc_run_begin(q)) {
3865                         if (unlikely(contended)) {
3866                                 spin_unlock(&q->busylock);
3867                                 contended = false;
3868                         }
3869                         __qdisc_run(q);
3870                         qdisc_run_end(q);
3871                 }
3872         }
3873         spin_unlock(root_lock);
3874         if (unlikely(to_free))
3875                 kfree_skb_list(to_free);
3876         if (unlikely(contended))
3877                 spin_unlock(&q->busylock);
3878         return rc;
3879 }
3880
3881 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3882 static void skb_update_prio(struct sk_buff *skb)
3883 {
3884         const struct netprio_map *map;
3885         const struct sock *sk;
3886         unsigned int prioidx;
3887
3888         if (skb->priority)
3889                 return;
3890         map = rcu_dereference_bh(skb->dev->priomap);
3891         if (!map)
3892                 return;
3893         sk = skb_to_full_sk(skb);
3894         if (!sk)
3895                 return;
3896
3897         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3898
3899         if (prioidx < map->priomap_len)
3900                 skb->priority = map->priomap[prioidx];
3901 }
3902 #else
3903 #define skb_update_prio(skb)
3904 #endif
3905
3906 /**
3907  *      dev_loopback_xmit - loop back @skb
3908  *      @net: network namespace this loopback is happening in
3909  *      @sk:  sk needed to be a netfilter okfn
3910  *      @skb: buffer to transmit
3911  */
3912 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3913 {
3914         skb_reset_mac_header(skb);
3915         __skb_pull(skb, skb_network_offset(skb));
3916         skb->pkt_type = PACKET_LOOPBACK;
3917         skb->ip_summed = CHECKSUM_UNNECESSARY;
3918         WARN_ON(!skb_dst(skb));
3919         skb_dst_force(skb);
3920         netif_rx_ni(skb);
3921         return 0;
3922 }
3923 EXPORT_SYMBOL(dev_loopback_xmit);
3924
3925 #ifdef CONFIG_NET_EGRESS
3926 static struct sk_buff *
3927 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3928 {
3929         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3930         struct tcf_result cl_res;
3931
3932         if (!miniq)
3933                 return skb;
3934
3935         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3936         qdisc_skb_cb(skb)->mru = 0;
3937         qdisc_skb_cb(skb)->post_ct = false;
3938         mini_qdisc_bstats_cpu_update(miniq, skb);
3939
3940         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3941         case TC_ACT_OK:
3942         case TC_ACT_RECLASSIFY:
3943                 skb->tc_index = TC_H_MIN(cl_res.classid);
3944                 break;
3945         case TC_ACT_SHOT:
3946                 mini_qdisc_qstats_cpu_drop(miniq);
3947                 *ret = NET_XMIT_DROP;
3948                 kfree_skb(skb);
3949                 return NULL;
3950         case TC_ACT_STOLEN:
3951         case TC_ACT_QUEUED:
3952         case TC_ACT_TRAP:
3953                 *ret = NET_XMIT_SUCCESS;
3954                 consume_skb(skb);
3955                 return NULL;
3956         case TC_ACT_REDIRECT:
3957                 /* No need to push/pop skb's mac_header here on egress! */
3958                 skb_do_redirect(skb);
3959                 *ret = NET_XMIT_SUCCESS;
3960                 return NULL;
3961         default:
3962                 break;
3963         }
3964
3965         return skb;
3966 }
3967 #endif /* CONFIG_NET_EGRESS */
3968
3969 #ifdef CONFIG_XPS
3970 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3971                                struct xps_dev_maps *dev_maps, unsigned int tci)
3972 {
3973         int tc = netdev_get_prio_tc_map(dev, skb->priority);
3974         struct xps_map *map;
3975         int queue_index = -1;
3976
3977         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3978                 return queue_index;
3979
3980         tci *= dev_maps->num_tc;
3981         tci += tc;
3982
3983         map = rcu_dereference(dev_maps->attr_map[tci]);
3984         if (map) {
3985                 if (map->len == 1)
3986                         queue_index = map->queues[0];
3987                 else
3988                         queue_index = map->queues[reciprocal_scale(
3989                                                 skb_get_hash(skb), map->len)];
3990                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3991                         queue_index = -1;
3992         }
3993         return queue_index;
3994 }
3995 #endif
3996
3997 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3998                          struct sk_buff *skb)
3999 {
4000 #ifdef CONFIG_XPS
4001         struct xps_dev_maps *dev_maps;
4002         struct sock *sk = skb->sk;
4003         int queue_index = -1;
4004
4005         if (!static_key_false(&xps_needed))
4006                 return -1;
4007
4008         rcu_read_lock();
4009         if (!static_key_false(&xps_rxqs_needed))
4010                 goto get_cpus_map;
4011
4012         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4013         if (dev_maps) {
4014                 int tci = sk_rx_queue_get(sk);
4015
4016                 if (tci >= 0)
4017                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4018                                                           tci);
4019         }
4020
4021 get_cpus_map:
4022         if (queue_index < 0) {
4023                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4024                 if (dev_maps) {
4025                         unsigned int tci = skb->sender_cpu - 1;
4026
4027                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4028                                                           tci);
4029                 }
4030         }
4031         rcu_read_unlock();
4032
4033         return queue_index;
4034 #else
4035         return -1;
4036 #endif
4037 }
4038
4039 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4040                      struct net_device *sb_dev)
4041 {
4042         return 0;
4043 }
4044 EXPORT_SYMBOL(dev_pick_tx_zero);
4045
4046 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4047                        struct net_device *sb_dev)
4048 {
4049         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4050 }
4051 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4052
4053 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4054                      struct net_device *sb_dev)
4055 {
4056         struct sock *sk = skb->sk;
4057         int queue_index = sk_tx_queue_get(sk);
4058
4059         sb_dev = sb_dev ? : dev;
4060
4061         if (queue_index < 0 || skb->ooo_okay ||
4062             queue_index >= dev->real_num_tx_queues) {
4063                 int new_index = get_xps_queue(dev, sb_dev, skb);
4064
4065                 if (new_index < 0)
4066                         new_index = skb_tx_hash(dev, sb_dev, skb);
4067
4068                 if (queue_index != new_index && sk &&
4069                     sk_fullsock(sk) &&
4070                     rcu_access_pointer(sk->sk_dst_cache))
4071                         sk_tx_queue_set(sk, new_index);
4072
4073                 queue_index = new_index;
4074         }
4075
4076         return queue_index;
4077 }
4078 EXPORT_SYMBOL(netdev_pick_tx);
4079
4080 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4081                                          struct sk_buff *skb,
4082                                          struct net_device *sb_dev)
4083 {
4084         int queue_index = 0;
4085
4086 #ifdef CONFIG_XPS
4087         u32 sender_cpu = skb->sender_cpu - 1;
4088
4089         if (sender_cpu >= (u32)NR_CPUS)
4090                 skb->sender_cpu = raw_smp_processor_id() + 1;
4091 #endif
4092
4093         if (dev->real_num_tx_queues != 1) {
4094                 const struct net_device_ops *ops = dev->netdev_ops;
4095
4096                 if (ops->ndo_select_queue)
4097                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4098                 else
4099                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4100
4101                 queue_index = netdev_cap_txqueue(dev, queue_index);
4102         }
4103
4104         skb_set_queue_mapping(skb, queue_index);
4105         return netdev_get_tx_queue(dev, queue_index);
4106 }
4107
4108 /**
4109  *      __dev_queue_xmit - transmit a buffer
4110  *      @skb: buffer to transmit
4111  *      @sb_dev: suboordinate device used for L2 forwarding offload
4112  *
4113  *      Queue a buffer for transmission to a network device. The caller must
4114  *      have set the device and priority and built the buffer before calling
4115  *      this function. The function can be called from an interrupt.
4116  *
4117  *      A negative errno code is returned on a failure. A success does not
4118  *      guarantee the frame will be transmitted as it may be dropped due
4119  *      to congestion or traffic shaping.
4120  *
4121  * -----------------------------------------------------------------------------------
4122  *      I notice this method can also return errors from the queue disciplines,
4123  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4124  *      be positive.
4125  *
4126  *      Regardless of the return value, the skb is consumed, so it is currently
4127  *      difficult to retry a send to this method.  (You can bump the ref count
4128  *      before sending to hold a reference for retry if you are careful.)
4129  *
4130  *      When calling this method, interrupts MUST be enabled.  This is because
4131  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4132  *          --BLG
4133  */
4134 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4135 {
4136         struct net_device *dev = skb->dev;
4137         struct netdev_queue *txq;
4138         struct Qdisc *q;
4139         int rc = -ENOMEM;
4140         bool again = false;
4141
4142         skb_reset_mac_header(skb);
4143
4144         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4145                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4146
4147         /* Disable soft irqs for various locks below. Also
4148          * stops preemption for RCU.
4149          */
4150         rcu_read_lock_bh();
4151
4152         skb_update_prio(skb);
4153
4154         qdisc_pkt_len_init(skb);
4155 #ifdef CONFIG_NET_CLS_ACT
4156         skb->tc_at_ingress = 0;
4157 # ifdef CONFIG_NET_EGRESS
4158         if (static_branch_unlikely(&egress_needed_key)) {
4159                 skb = sch_handle_egress(skb, &rc, dev);
4160                 if (!skb)
4161                         goto out;
4162         }
4163 # endif
4164 #endif
4165         /* If device/qdisc don't need skb->dst, release it right now while
4166          * its hot in this cpu cache.
4167          */
4168         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4169                 skb_dst_drop(skb);
4170         else
4171                 skb_dst_force(skb);
4172
4173         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4174         q = rcu_dereference_bh(txq->qdisc);
4175
4176         trace_net_dev_queue(skb);
4177         if (q->enqueue) {
4178                 rc = __dev_xmit_skb(skb, q, dev, txq);
4179                 goto out;
4180         }
4181
4182         /* The device has no queue. Common case for software devices:
4183          * loopback, all the sorts of tunnels...
4184
4185          * Really, it is unlikely that netif_tx_lock protection is necessary
4186          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4187          * counters.)
4188          * However, it is possible, that they rely on protection
4189          * made by us here.
4190
4191          * Check this and shot the lock. It is not prone from deadlocks.
4192          *Either shot noqueue qdisc, it is even simpler 8)
4193          */
4194         if (dev->flags & IFF_UP) {
4195                 int cpu = smp_processor_id(); /* ok because BHs are off */
4196
4197                 if (txq->xmit_lock_owner != cpu) {
4198                         if (dev_xmit_recursion())
4199                                 goto recursion_alert;
4200
4201                         skb = validate_xmit_skb(skb, dev, &again);
4202                         if (!skb)
4203                                 goto out;
4204
4205                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4206                         HARD_TX_LOCK(dev, txq, cpu);
4207
4208                         if (!netif_xmit_stopped(txq)) {
4209                                 dev_xmit_recursion_inc();
4210                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4211                                 dev_xmit_recursion_dec();
4212                                 if (dev_xmit_complete(rc)) {
4213                                         HARD_TX_UNLOCK(dev, txq);
4214                                         goto out;
4215                                 }
4216                         }
4217                         HARD_TX_UNLOCK(dev, txq);
4218                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4219                                              dev->name);
4220                 } else {
4221                         /* Recursion is detected! It is possible,
4222                          * unfortunately
4223                          */
4224 recursion_alert:
4225                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4226                                              dev->name);
4227                 }
4228         }
4229
4230         rc = -ENETDOWN;
4231         rcu_read_unlock_bh();
4232
4233         atomic_long_inc(&dev->tx_dropped);
4234         kfree_skb_list(skb);
4235         return rc;
4236 out:
4237         rcu_read_unlock_bh();
4238         return rc;
4239 }
4240
4241 int dev_queue_xmit(struct sk_buff *skb)
4242 {
4243         return __dev_queue_xmit(skb, NULL);
4244 }
4245 EXPORT_SYMBOL(dev_queue_xmit);
4246
4247 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4248 {
4249         return __dev_queue_xmit(skb, sb_dev);
4250 }
4251 EXPORT_SYMBOL(dev_queue_xmit_accel);
4252
4253 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4254 {
4255         struct net_device *dev = skb->dev;
4256         struct sk_buff *orig_skb = skb;
4257         struct netdev_queue *txq;
4258         int ret = NETDEV_TX_BUSY;
4259         bool again = false;
4260
4261         if (unlikely(!netif_running(dev) ||
4262                      !netif_carrier_ok(dev)))
4263                 goto drop;
4264
4265         skb = validate_xmit_skb_list(skb, dev, &again);
4266         if (skb != orig_skb)
4267                 goto drop;
4268
4269         skb_set_queue_mapping(skb, queue_id);
4270         txq = skb_get_tx_queue(dev, skb);
4271         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4272
4273         local_bh_disable();
4274
4275         dev_xmit_recursion_inc();
4276         HARD_TX_LOCK(dev, txq, smp_processor_id());
4277         if (!netif_xmit_frozen_or_drv_stopped(txq))
4278                 ret = netdev_start_xmit(skb, dev, txq, false);
4279         HARD_TX_UNLOCK(dev, txq);
4280         dev_xmit_recursion_dec();
4281
4282         local_bh_enable();
4283         return ret;
4284 drop:
4285         atomic_long_inc(&dev->tx_dropped);
4286         kfree_skb_list(skb);
4287         return NET_XMIT_DROP;
4288 }
4289 EXPORT_SYMBOL(__dev_direct_xmit);
4290
4291 /*************************************************************************
4292  *                      Receiver routines
4293  *************************************************************************/
4294
4295 int netdev_max_backlog __read_mostly = 1000;
4296 EXPORT_SYMBOL(netdev_max_backlog);
4297
4298 int netdev_tstamp_prequeue __read_mostly = 1;
4299 int netdev_budget __read_mostly = 300;
4300 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4301 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4302 int weight_p __read_mostly = 64;           /* old backlog weight */
4303 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4304 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4305 int dev_rx_weight __read_mostly = 64;
4306 int dev_tx_weight __read_mostly = 64;
4307 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4308 int gro_normal_batch __read_mostly = 8;
4309
4310 /* Called with irq disabled */
4311 static inline void ____napi_schedule(struct softnet_data *sd,
4312                                      struct napi_struct *napi)
4313 {
4314         struct task_struct *thread;
4315
4316         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4317                 /* Paired with smp_mb__before_atomic() in
4318                  * napi_enable()/dev_set_threaded().
4319                  * Use READ_ONCE() to guarantee a complete
4320                  * read on napi->thread. Only call
4321                  * wake_up_process() when it's not NULL.
4322                  */
4323                 thread = READ_ONCE(napi->thread);
4324                 if (thread) {
4325                         /* Avoid doing set_bit() if the thread is in
4326                          * INTERRUPTIBLE state, cause napi_thread_wait()
4327                          * makes sure to proceed with napi polling
4328                          * if the thread is explicitly woken from here.
4329                          */
4330                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4331                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4332                         wake_up_process(thread);
4333                         return;
4334                 }
4335         }
4336
4337         list_add_tail(&napi->poll_list, &sd->poll_list);
4338         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4339 }
4340
4341 #ifdef CONFIG_RPS
4342
4343 /* One global table that all flow-based protocols share. */
4344 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4345 EXPORT_SYMBOL(rps_sock_flow_table);
4346 u32 rps_cpu_mask __read_mostly;
4347 EXPORT_SYMBOL(rps_cpu_mask);
4348
4349 struct static_key_false rps_needed __read_mostly;
4350 EXPORT_SYMBOL(rps_needed);
4351 struct static_key_false rfs_needed __read_mostly;
4352 EXPORT_SYMBOL(rfs_needed);
4353
4354 static struct rps_dev_flow *
4355 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4356             struct rps_dev_flow *rflow, u16 next_cpu)
4357 {
4358         if (next_cpu < nr_cpu_ids) {
4359 #ifdef CONFIG_RFS_ACCEL
4360                 struct netdev_rx_queue *rxqueue;
4361                 struct rps_dev_flow_table *flow_table;
4362                 struct rps_dev_flow *old_rflow;
4363                 u32 flow_id;
4364                 u16 rxq_index;
4365                 int rc;
4366
4367                 /* Should we steer this flow to a different hardware queue? */
4368                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4369                     !(dev->features & NETIF_F_NTUPLE))
4370                         goto out;
4371                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4372                 if (rxq_index == skb_get_rx_queue(skb))
4373                         goto out;
4374
4375                 rxqueue = dev->_rx + rxq_index;
4376                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4377                 if (!flow_table)
4378                         goto out;
4379                 flow_id = skb_get_hash(skb) & flow_table->mask;
4380                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4381                                                         rxq_index, flow_id);
4382                 if (rc < 0)
4383                         goto out;
4384                 old_rflow = rflow;
4385                 rflow = &flow_table->flows[flow_id];
4386                 rflow->filter = rc;
4387                 if (old_rflow->filter == rflow->filter)
4388                         old_rflow->filter = RPS_NO_FILTER;
4389         out:
4390 #endif
4391                 rflow->last_qtail =
4392                         per_cpu(softnet_data, next_cpu).input_queue_head;
4393         }
4394
4395         rflow->cpu = next_cpu;
4396         return rflow;
4397 }
4398
4399 /*
4400  * get_rps_cpu is called from netif_receive_skb and returns the target
4401  * CPU from the RPS map of the receiving queue for a given skb.
4402  * rcu_read_lock must be held on entry.
4403  */
4404 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4405                        struct rps_dev_flow **rflowp)
4406 {
4407         const struct rps_sock_flow_table *sock_flow_table;
4408         struct netdev_rx_queue *rxqueue = dev->_rx;
4409         struct rps_dev_flow_table *flow_table;
4410         struct rps_map *map;
4411         int cpu = -1;
4412         u32 tcpu;
4413         u32 hash;
4414
4415         if (skb_rx_queue_recorded(skb)) {
4416                 u16 index = skb_get_rx_queue(skb);
4417
4418                 if (unlikely(index >= dev->real_num_rx_queues)) {
4419                         WARN_ONCE(dev->real_num_rx_queues > 1,
4420                                   "%s received packet on queue %u, but number "
4421                                   "of RX queues is %u\n",
4422                                   dev->name, index, dev->real_num_rx_queues);
4423                         goto done;
4424                 }
4425                 rxqueue += index;
4426         }
4427
4428         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4429
4430         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4431         map = rcu_dereference(rxqueue->rps_map);
4432         if (!flow_table && !map)
4433                 goto done;
4434
4435         skb_reset_network_header(skb);
4436         hash = skb_get_hash(skb);
4437         if (!hash)
4438                 goto done;
4439
4440         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4441         if (flow_table && sock_flow_table) {
4442                 struct rps_dev_flow *rflow;
4443                 u32 next_cpu;
4444                 u32 ident;
4445
4446                 /* First check into global flow table if there is a match */
4447                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4448                 if ((ident ^ hash) & ~rps_cpu_mask)
4449                         goto try_rps;
4450
4451                 next_cpu = ident & rps_cpu_mask;
4452
4453                 /* OK, now we know there is a match,
4454                  * we can look at the local (per receive queue) flow table
4455                  */
4456                 rflow = &flow_table->flows[hash & flow_table->mask];
4457                 tcpu = rflow->cpu;
4458
4459                 /*
4460                  * If the desired CPU (where last recvmsg was done) is
4461                  * different from current CPU (one in the rx-queue flow
4462                  * table entry), switch if one of the following holds:
4463                  *   - Current CPU is unset (>= nr_cpu_ids).
4464                  *   - Current CPU is offline.
4465                  *   - The current CPU's queue tail has advanced beyond the
4466                  *     last packet that was enqueued using this table entry.
4467                  *     This guarantees that all previous packets for the flow
4468                  *     have been dequeued, thus preserving in order delivery.
4469                  */
4470                 if (unlikely(tcpu != next_cpu) &&
4471                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4472                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4473                       rflow->last_qtail)) >= 0)) {
4474                         tcpu = next_cpu;
4475                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4476                 }
4477
4478                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4479                         *rflowp = rflow;
4480                         cpu = tcpu;
4481                         goto done;
4482                 }
4483         }
4484
4485 try_rps:
4486
4487         if (map) {
4488                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4489                 if (cpu_online(tcpu)) {
4490                         cpu = tcpu;
4491                         goto done;
4492                 }
4493         }
4494
4495 done:
4496         return cpu;
4497 }
4498
4499 #ifdef CONFIG_RFS_ACCEL
4500
4501 /**
4502  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4503  * @dev: Device on which the filter was set
4504  * @rxq_index: RX queue index
4505  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4506  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4507  *
4508  * Drivers that implement ndo_rx_flow_steer() should periodically call
4509  * this function for each installed filter and remove the filters for
4510  * which it returns %true.
4511  */
4512 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4513                          u32 flow_id, u16 filter_id)
4514 {
4515         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4516         struct rps_dev_flow_table *flow_table;
4517         struct rps_dev_flow *rflow;
4518         bool expire = true;
4519         unsigned int cpu;
4520
4521         rcu_read_lock();
4522         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4523         if (flow_table && flow_id <= flow_table->mask) {
4524                 rflow = &flow_table->flows[flow_id];
4525                 cpu = READ_ONCE(rflow->cpu);
4526                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4527                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4528                            rflow->last_qtail) <
4529                      (int)(10 * flow_table->mask)))
4530                         expire = false;
4531         }
4532         rcu_read_unlock();
4533         return expire;
4534 }
4535 EXPORT_SYMBOL(rps_may_expire_flow);
4536
4537 #endif /* CONFIG_RFS_ACCEL */
4538
4539 /* Called from hardirq (IPI) context */
4540 static void rps_trigger_softirq(void *data)
4541 {
4542         struct softnet_data *sd = data;
4543
4544         ____napi_schedule(sd, &sd->backlog);
4545         sd->received_rps++;
4546 }
4547
4548 #endif /* CONFIG_RPS */
4549
4550 /*
4551  * Check if this softnet_data structure is another cpu one
4552  * If yes, queue it to our IPI list and return 1
4553  * If no, return 0
4554  */
4555 static int rps_ipi_queued(struct softnet_data *sd)
4556 {
4557 #ifdef CONFIG_RPS
4558         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4559
4560         if (sd != mysd) {
4561                 sd->rps_ipi_next = mysd->rps_ipi_list;
4562                 mysd->rps_ipi_list = sd;
4563
4564                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4565                 return 1;
4566         }
4567 #endif /* CONFIG_RPS */
4568         return 0;
4569 }
4570
4571 #ifdef CONFIG_NET_FLOW_LIMIT
4572 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4573 #endif
4574
4575 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4576 {
4577 #ifdef CONFIG_NET_FLOW_LIMIT
4578         struct sd_flow_limit *fl;
4579         struct softnet_data *sd;
4580         unsigned int old_flow, new_flow;
4581
4582         if (qlen < (netdev_max_backlog >> 1))
4583                 return false;
4584
4585         sd = this_cpu_ptr(&softnet_data);
4586
4587         rcu_read_lock();
4588         fl = rcu_dereference(sd->flow_limit);
4589         if (fl) {
4590                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4591                 old_flow = fl->history[fl->history_head];
4592                 fl->history[fl->history_head] = new_flow;
4593
4594                 fl->history_head++;
4595                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4596
4597                 if (likely(fl->buckets[old_flow]))
4598                         fl->buckets[old_flow]--;
4599
4600                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4601                         fl->count++;
4602                         rcu_read_unlock();
4603                         return true;
4604                 }
4605         }
4606         rcu_read_unlock();
4607 #endif
4608         return false;
4609 }
4610
4611 /*
4612  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4613  * queue (may be a remote CPU queue).
4614  */
4615 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4616                               unsigned int *qtail)
4617 {
4618         struct softnet_data *sd;
4619         unsigned long flags;
4620         unsigned int qlen;
4621
4622         sd = &per_cpu(softnet_data, cpu);
4623
4624         local_irq_save(flags);
4625
4626         rps_lock(sd);
4627         if (!netif_running(skb->dev))
4628                 goto drop;
4629         qlen = skb_queue_len(&sd->input_pkt_queue);
4630         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4631                 if (qlen) {
4632 enqueue:
4633                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4634                         input_queue_tail_incr_save(sd, qtail);
4635                         rps_unlock(sd);
4636                         local_irq_restore(flags);
4637                         return NET_RX_SUCCESS;
4638                 }
4639
4640                 /* Schedule NAPI for backlog device
4641                  * We can use non atomic operation since we own the queue lock
4642                  */
4643                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4644                         if (!rps_ipi_queued(sd))
4645                                 ____napi_schedule(sd, &sd->backlog);
4646                 }
4647                 goto enqueue;
4648         }
4649
4650 drop:
4651         sd->dropped++;
4652         rps_unlock(sd);
4653
4654         local_irq_restore(flags);
4655
4656         atomic_long_inc(&skb->dev->rx_dropped);
4657         kfree_skb(skb);
4658         return NET_RX_DROP;
4659 }
4660
4661 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4662 {
4663         struct net_device *dev = skb->dev;
4664         struct netdev_rx_queue *rxqueue;
4665
4666         rxqueue = dev->_rx;
4667
4668         if (skb_rx_queue_recorded(skb)) {
4669                 u16 index = skb_get_rx_queue(skb);
4670
4671                 if (unlikely(index >= dev->real_num_rx_queues)) {
4672                         WARN_ONCE(dev->real_num_rx_queues > 1,
4673                                   "%s received packet on queue %u, but number "
4674                                   "of RX queues is %u\n",
4675                                   dev->name, index, dev->real_num_rx_queues);
4676
4677                         return rxqueue; /* Return first rxqueue */
4678                 }
4679                 rxqueue += index;
4680         }
4681         return rxqueue;
4682 }
4683
4684 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4685                              struct bpf_prog *xdp_prog)
4686 {
4687         void *orig_data, *orig_data_end, *hard_start;
4688         struct netdev_rx_queue *rxqueue;
4689         bool orig_bcast, orig_host;
4690         u32 mac_len, frame_sz;
4691         __be16 orig_eth_type;
4692         struct ethhdr *eth;
4693         u32 metalen, act;
4694         int off;
4695
4696         /* The XDP program wants to see the packet starting at the MAC
4697          * header.
4698          */
4699         mac_len = skb->data - skb_mac_header(skb);
4700         hard_start = skb->data - skb_headroom(skb);
4701
4702         /* SKB "head" area always have tailroom for skb_shared_info */
4703         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4704         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4705
4706         rxqueue = netif_get_rxqueue(skb);
4707         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4708         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4709                          skb_headlen(skb) + mac_len, true);
4710
4711         orig_data_end = xdp->data_end;
4712         orig_data = xdp->data;
4713         eth = (struct ethhdr *)xdp->data;
4714         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4715         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4716         orig_eth_type = eth->h_proto;
4717
4718         act = bpf_prog_run_xdp(xdp_prog, xdp);
4719
4720         /* check if bpf_xdp_adjust_head was used */
4721         off = xdp->data - orig_data;
4722         if (off) {
4723                 if (off > 0)
4724                         __skb_pull(skb, off);
4725                 else if (off < 0)
4726                         __skb_push(skb, -off);
4727
4728                 skb->mac_header += off;
4729                 skb_reset_network_header(skb);
4730         }
4731
4732         /* check if bpf_xdp_adjust_tail was used */
4733         off = xdp->data_end - orig_data_end;
4734         if (off != 0) {
4735                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4736                 skb->len += off; /* positive on grow, negative on shrink */
4737         }
4738
4739         /* check if XDP changed eth hdr such SKB needs update */
4740         eth = (struct ethhdr *)xdp->data;
4741         if ((orig_eth_type != eth->h_proto) ||
4742             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4743                                                   skb->dev->dev_addr)) ||
4744             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4745                 __skb_push(skb, ETH_HLEN);
4746                 skb->pkt_type = PACKET_HOST;
4747                 skb->protocol = eth_type_trans(skb, skb->dev);
4748         }
4749
4750         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4751          * before calling us again on redirect path. We do not call do_redirect
4752          * as we leave that up to the caller.
4753          *
4754          * Caller is responsible for managing lifetime of skb (i.e. calling
4755          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4756          */
4757         switch (act) {
4758         case XDP_REDIRECT:
4759         case XDP_TX:
4760                 __skb_push(skb, mac_len);
4761                 break;
4762         case XDP_PASS:
4763                 metalen = xdp->data - xdp->data_meta;
4764                 if (metalen)
4765                         skb_metadata_set(skb, metalen);
4766                 break;
4767         }
4768
4769         return act;
4770 }
4771
4772 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4773                                      struct xdp_buff *xdp,
4774                                      struct bpf_prog *xdp_prog)
4775 {
4776         u32 act = XDP_DROP;
4777
4778         /* Reinjected packets coming from act_mirred or similar should
4779          * not get XDP generic processing.
4780          */
4781         if (skb_is_redirected(skb))
4782                 return XDP_PASS;
4783
4784         /* XDP packets must be linear and must have sufficient headroom
4785          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4786          * native XDP provides, thus we need to do it here as well.
4787          */
4788         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4789             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4790                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4791                 int troom = skb->tail + skb->data_len - skb->end;
4792
4793                 /* In case we have to go down the path and also linearize,
4794                  * then lets do the pskb_expand_head() work just once here.
4795                  */
4796                 if (pskb_expand_head(skb,
4797                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4798                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4799                         goto do_drop;
4800                 if (skb_linearize(skb))
4801                         goto do_drop;
4802         }
4803
4804         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4805         switch (act) {
4806         case XDP_REDIRECT:
4807         case XDP_TX:
4808         case XDP_PASS:
4809                 break;
4810         default:
4811                 bpf_warn_invalid_xdp_action(act);
4812                 fallthrough;
4813         case XDP_ABORTED:
4814                 trace_xdp_exception(skb->dev, xdp_prog, act);
4815                 fallthrough;
4816         case XDP_DROP:
4817         do_drop:
4818                 kfree_skb(skb);
4819                 break;
4820         }
4821
4822         return act;
4823 }
4824
4825 /* When doing generic XDP we have to bypass the qdisc layer and the
4826  * network taps in order to match in-driver-XDP behavior.
4827  */
4828 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4829 {
4830         struct net_device *dev = skb->dev;
4831         struct netdev_queue *txq;
4832         bool free_skb = true;
4833         int cpu, rc;
4834
4835         txq = netdev_core_pick_tx(dev, skb, NULL);
4836         cpu = smp_processor_id();
4837         HARD_TX_LOCK(dev, txq, cpu);
4838         if (!netif_xmit_stopped(txq)) {
4839                 rc = netdev_start_xmit(skb, dev, txq, 0);
4840                 if (dev_xmit_complete(rc))
4841                         free_skb = false;
4842         }
4843         HARD_TX_UNLOCK(dev, txq);
4844         if (free_skb) {
4845                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4846                 kfree_skb(skb);
4847         }
4848 }
4849
4850 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4851
4852 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4853 {
4854         if (xdp_prog) {
4855                 struct xdp_buff xdp;
4856                 u32 act;
4857                 int err;
4858
4859                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4860                 if (act != XDP_PASS) {
4861                         switch (act) {
4862                         case XDP_REDIRECT:
4863                                 err = xdp_do_generic_redirect(skb->dev, skb,
4864                                                               &xdp, xdp_prog);
4865                                 if (err)
4866                                         goto out_redir;
4867                                 break;
4868                         case XDP_TX:
4869                                 generic_xdp_tx(skb, xdp_prog);
4870                                 break;
4871                         }
4872                         return XDP_DROP;
4873                 }
4874         }
4875         return XDP_PASS;
4876 out_redir:
4877         kfree_skb(skb);
4878         return XDP_DROP;
4879 }
4880 EXPORT_SYMBOL_GPL(do_xdp_generic);
4881
4882 static int netif_rx_internal(struct sk_buff *skb)
4883 {
4884         int ret;
4885
4886         net_timestamp_check(netdev_tstamp_prequeue, skb);
4887
4888         trace_netif_rx(skb);
4889
4890 #ifdef CONFIG_RPS
4891         if (static_branch_unlikely(&rps_needed)) {
4892                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4893                 int cpu;
4894
4895                 preempt_disable();
4896                 rcu_read_lock();
4897
4898                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4899                 if (cpu < 0)
4900                         cpu = smp_processor_id();
4901
4902                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4903
4904                 rcu_read_unlock();
4905                 preempt_enable();
4906         } else
4907 #endif
4908         {
4909                 unsigned int qtail;
4910
4911                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4912                 put_cpu();
4913         }
4914         return ret;
4915 }
4916
4917 /**
4918  *      netif_rx        -       post buffer to the network code
4919  *      @skb: buffer to post
4920  *
4921  *      This function receives a packet from a device driver and queues it for
4922  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4923  *      may be dropped during processing for congestion control or by the
4924  *      protocol layers.
4925  *
4926  *      return values:
4927  *      NET_RX_SUCCESS  (no congestion)
4928  *      NET_RX_DROP     (packet was dropped)
4929  *
4930  */
4931
4932 int netif_rx(struct sk_buff *skb)
4933 {
4934         int ret;
4935
4936         trace_netif_rx_entry(skb);
4937
4938         ret = netif_rx_internal(skb);
4939         trace_netif_rx_exit(ret);
4940
4941         return ret;
4942 }
4943 EXPORT_SYMBOL(netif_rx);
4944
4945 int netif_rx_ni(struct sk_buff *skb)
4946 {
4947         int err;
4948
4949         trace_netif_rx_ni_entry(skb);
4950
4951         preempt_disable();
4952         err = netif_rx_internal(skb);
4953         if (local_softirq_pending())
4954                 do_softirq();
4955         preempt_enable();
4956         trace_netif_rx_ni_exit(err);
4957
4958         return err;
4959 }
4960 EXPORT_SYMBOL(netif_rx_ni);
4961
4962 int netif_rx_any_context(struct sk_buff *skb)
4963 {
4964         /*
4965          * If invoked from contexts which do not invoke bottom half
4966          * processing either at return from interrupt or when softrqs are
4967          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4968          * directly.
4969          */
4970         if (in_interrupt())
4971                 return netif_rx(skb);
4972         else
4973                 return netif_rx_ni(skb);
4974 }
4975 EXPORT_SYMBOL(netif_rx_any_context);
4976
4977 static __latent_entropy void net_tx_action(struct softirq_action *h)
4978 {
4979         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4980
4981         if (sd->completion_queue) {
4982                 struct sk_buff *clist;
4983
4984                 local_irq_disable();
4985                 clist = sd->completion_queue;
4986                 sd->completion_queue = NULL;
4987                 local_irq_enable();
4988
4989                 while (clist) {
4990                         struct sk_buff *skb = clist;
4991
4992                         clist = clist->next;
4993
4994                         WARN_ON(refcount_read(&skb->users));
4995                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4996                                 trace_consume_skb(skb);
4997                         else
4998                                 trace_kfree_skb(skb, net_tx_action);
4999
5000                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5001                                 __kfree_skb(skb);
5002                         else
5003                                 __kfree_skb_defer(skb);
5004                 }
5005         }
5006
5007         if (sd->output_queue) {
5008                 struct Qdisc *head;
5009
5010                 local_irq_disable();
5011                 head = sd->output_queue;
5012                 sd->output_queue = NULL;
5013                 sd->output_queue_tailp = &sd->output_queue;
5014                 local_irq_enable();
5015
5016                 rcu_read_lock();
5017
5018                 while (head) {
5019                         struct Qdisc *q = head;
5020                         spinlock_t *root_lock = NULL;
5021
5022                         head = head->next_sched;
5023
5024                         /* We need to make sure head->next_sched is read
5025                          * before clearing __QDISC_STATE_SCHED
5026                          */
5027                         smp_mb__before_atomic();
5028
5029                         if (!(q->flags & TCQ_F_NOLOCK)) {
5030                                 root_lock = qdisc_lock(q);
5031                                 spin_lock(root_lock);
5032                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5033                                                      &q->state))) {
5034                                 /* There is a synchronize_net() between
5035                                  * STATE_DEACTIVATED flag being set and
5036                                  * qdisc_reset()/some_qdisc_is_busy() in
5037                                  * dev_deactivate(), so we can safely bail out
5038                                  * early here to avoid data race between
5039                                  * qdisc_deactivate() and some_qdisc_is_busy()
5040                                  * for lockless qdisc.
5041                                  */
5042                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5043                                 continue;
5044                         }
5045
5046                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5047                         qdisc_run(q);
5048                         if (root_lock)
5049                                 spin_unlock(root_lock);
5050                 }
5051
5052                 rcu_read_unlock();
5053         }
5054
5055         xfrm_dev_backlog(sd);
5056 }
5057
5058 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5059 /* This hook is defined here for ATM LANE */
5060 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5061                              unsigned char *addr) __read_mostly;
5062 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5063 #endif
5064
5065 static inline struct sk_buff *
5066 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5067                    struct net_device *orig_dev, bool *another)
5068 {
5069 #ifdef CONFIG_NET_CLS_ACT
5070         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5071         struct tcf_result cl_res;
5072
5073         /* If there's at least one ingress present somewhere (so
5074          * we get here via enabled static key), remaining devices
5075          * that are not configured with an ingress qdisc will bail
5076          * out here.
5077          */
5078         if (!miniq)
5079                 return skb;
5080
5081         if (*pt_prev) {
5082                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5083                 *pt_prev = NULL;
5084         }
5085
5086         qdisc_skb_cb(skb)->pkt_len = skb->len;
5087         qdisc_skb_cb(skb)->mru = 0;
5088         qdisc_skb_cb(skb)->post_ct = false;
5089         skb->tc_at_ingress = 1;
5090         mini_qdisc_bstats_cpu_update(miniq, skb);
5091
5092         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5093         case TC_ACT_OK:
5094         case TC_ACT_RECLASSIFY:
5095                 skb->tc_index = TC_H_MIN(cl_res.classid);
5096                 break;
5097         case TC_ACT_SHOT:
5098                 mini_qdisc_qstats_cpu_drop(miniq);
5099                 kfree_skb(skb);
5100                 return NULL;
5101         case TC_ACT_STOLEN:
5102         case TC_ACT_QUEUED:
5103         case TC_ACT_TRAP:
5104                 consume_skb(skb);
5105                 return NULL;
5106         case TC_ACT_REDIRECT:
5107                 /* skb_mac_header check was done by cls/act_bpf, so
5108                  * we can safely push the L2 header back before
5109                  * redirecting to another netdev
5110                  */
5111                 __skb_push(skb, skb->mac_len);
5112                 if (skb_do_redirect(skb) == -EAGAIN) {
5113                         __skb_pull(skb, skb->mac_len);
5114                         *another = true;
5115                         break;
5116                 }
5117                 return NULL;
5118         case TC_ACT_CONSUMED:
5119                 return NULL;
5120         default:
5121                 break;
5122         }
5123 #endif /* CONFIG_NET_CLS_ACT */
5124         return skb;
5125 }
5126
5127 /**
5128  *      netdev_is_rx_handler_busy - check if receive handler is registered
5129  *      @dev: device to check
5130  *
5131  *      Check if a receive handler is already registered for a given device.
5132  *      Return true if there one.
5133  *
5134  *      The caller must hold the rtnl_mutex.
5135  */
5136 bool netdev_is_rx_handler_busy(struct net_device *dev)
5137 {
5138         ASSERT_RTNL();
5139         return dev && rtnl_dereference(dev->rx_handler);
5140 }
5141 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5142
5143 /**
5144  *      netdev_rx_handler_register - register receive handler
5145  *      @dev: device to register a handler for
5146  *      @rx_handler: receive handler to register
5147  *      @rx_handler_data: data pointer that is used by rx handler
5148  *
5149  *      Register a receive handler for a device. This handler will then be
5150  *      called from __netif_receive_skb. A negative errno code is returned
5151  *      on a failure.
5152  *
5153  *      The caller must hold the rtnl_mutex.
5154  *
5155  *      For a general description of rx_handler, see enum rx_handler_result.
5156  */
5157 int netdev_rx_handler_register(struct net_device *dev,
5158                                rx_handler_func_t *rx_handler,
5159                                void *rx_handler_data)
5160 {
5161         if (netdev_is_rx_handler_busy(dev))
5162                 return -EBUSY;
5163
5164         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5165                 return -EINVAL;
5166
5167         /* Note: rx_handler_data must be set before rx_handler */
5168         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5169         rcu_assign_pointer(dev->rx_handler, rx_handler);
5170
5171         return 0;
5172 }
5173 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5174
5175 /**
5176  *      netdev_rx_handler_unregister - unregister receive handler
5177  *      @dev: device to unregister a handler from
5178  *
5179  *      Unregister a receive handler from a device.
5180  *
5181  *      The caller must hold the rtnl_mutex.
5182  */
5183 void netdev_rx_handler_unregister(struct net_device *dev)
5184 {
5185
5186         ASSERT_RTNL();
5187         RCU_INIT_POINTER(dev->rx_handler, NULL);
5188         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5189          * section has a guarantee to see a non NULL rx_handler_data
5190          * as well.
5191          */
5192         synchronize_net();
5193         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5194 }
5195 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5196
5197 /*
5198  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5199  * the special handling of PFMEMALLOC skbs.
5200  */
5201 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5202 {
5203         switch (skb->protocol) {
5204         case htons(ETH_P_ARP):
5205         case htons(ETH_P_IP):
5206         case htons(ETH_P_IPV6):
5207         case htons(ETH_P_8021Q):
5208         case htons(ETH_P_8021AD):
5209                 return true;
5210         default:
5211                 return false;
5212         }
5213 }
5214
5215 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5216                              int *ret, struct net_device *orig_dev)
5217 {
5218         if (nf_hook_ingress_active(skb)) {
5219                 int ingress_retval;
5220
5221                 if (*pt_prev) {
5222                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5223                         *pt_prev = NULL;
5224                 }
5225
5226                 rcu_read_lock();
5227                 ingress_retval = nf_hook_ingress(skb);
5228                 rcu_read_unlock();
5229                 return ingress_retval;
5230         }
5231         return 0;
5232 }
5233
5234 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5235                                     struct packet_type **ppt_prev)
5236 {
5237         struct packet_type *ptype, *pt_prev;
5238         rx_handler_func_t *rx_handler;
5239         struct sk_buff *skb = *pskb;
5240         struct net_device *orig_dev;
5241         bool deliver_exact = false;
5242         int ret = NET_RX_DROP;
5243         __be16 type;
5244
5245         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5246
5247         trace_netif_receive_skb(skb);
5248
5249         orig_dev = skb->dev;
5250
5251         skb_reset_network_header(skb);
5252         if (!skb_transport_header_was_set(skb))
5253                 skb_reset_transport_header(skb);
5254         skb_reset_mac_len(skb);
5255
5256         pt_prev = NULL;
5257
5258 another_round:
5259         skb->skb_iif = skb->dev->ifindex;
5260
5261         __this_cpu_inc(softnet_data.processed);
5262
5263         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5264                 int ret2;
5265
5266                 migrate_disable();
5267                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5268                 migrate_enable();
5269
5270                 if (ret2 != XDP_PASS) {
5271                         ret = NET_RX_DROP;
5272                         goto out;
5273                 }
5274         }
5275
5276         if (eth_type_vlan(skb->protocol)) {
5277                 skb = skb_vlan_untag(skb);
5278                 if (unlikely(!skb))
5279                         goto out;
5280         }
5281
5282         if (skb_skip_tc_classify(skb))
5283                 goto skip_classify;
5284
5285         if (pfmemalloc)
5286                 goto skip_taps;
5287
5288         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5289                 if (pt_prev)
5290                         ret = deliver_skb(skb, pt_prev, orig_dev);
5291                 pt_prev = ptype;
5292         }
5293
5294         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5295                 if (pt_prev)
5296                         ret = deliver_skb(skb, pt_prev, orig_dev);
5297                 pt_prev = ptype;
5298         }
5299
5300 skip_taps:
5301 #ifdef CONFIG_NET_INGRESS
5302         if (static_branch_unlikely(&ingress_needed_key)) {
5303                 bool another = false;
5304
5305                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5306                                          &another);
5307                 if (another)
5308                         goto another_round;
5309                 if (!skb)
5310                         goto out;
5311
5312                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5313                         goto out;
5314         }
5315 #endif
5316         skb_reset_redirect(skb);
5317 skip_classify:
5318         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5319                 goto drop;
5320
5321         if (skb_vlan_tag_present(skb)) {
5322                 if (pt_prev) {
5323                         ret = deliver_skb(skb, pt_prev, orig_dev);
5324                         pt_prev = NULL;
5325                 }
5326                 if (vlan_do_receive(&skb))
5327                         goto another_round;
5328                 else if (unlikely(!skb))
5329                         goto out;
5330         }
5331
5332         rx_handler = rcu_dereference(skb->dev->rx_handler);
5333         if (rx_handler) {
5334                 if (pt_prev) {
5335                         ret = deliver_skb(skb, pt_prev, orig_dev);
5336                         pt_prev = NULL;
5337                 }
5338                 switch (rx_handler(&skb)) {
5339                 case RX_HANDLER_CONSUMED:
5340                         ret = NET_RX_SUCCESS;
5341                         goto out;
5342                 case RX_HANDLER_ANOTHER:
5343                         goto another_round;
5344                 case RX_HANDLER_EXACT:
5345                         deliver_exact = true;
5346                         break;
5347                 case RX_HANDLER_PASS:
5348                         break;
5349                 default:
5350                         BUG();
5351                 }
5352         }
5353
5354         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5355 check_vlan_id:
5356                 if (skb_vlan_tag_get_id(skb)) {
5357                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5358                          * find vlan device.
5359                          */
5360                         skb->pkt_type = PACKET_OTHERHOST;
5361                 } else if (eth_type_vlan(skb->protocol)) {
5362                         /* Outer header is 802.1P with vlan 0, inner header is
5363                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5364                          * not find vlan dev for vlan id 0.
5365                          */
5366                         __vlan_hwaccel_clear_tag(skb);
5367                         skb = skb_vlan_untag(skb);
5368                         if (unlikely(!skb))
5369                                 goto out;
5370                         if (vlan_do_receive(&skb))
5371                                 /* After stripping off 802.1P header with vlan 0
5372                                  * vlan dev is found for inner header.
5373                                  */
5374                                 goto another_round;
5375                         else if (unlikely(!skb))
5376                                 goto out;
5377                         else
5378                                 /* We have stripped outer 802.1P vlan 0 header.
5379                                  * But could not find vlan dev.
5380                                  * check again for vlan id to set OTHERHOST.
5381                                  */
5382                                 goto check_vlan_id;
5383                 }
5384                 /* Note: we might in the future use prio bits
5385                  * and set skb->priority like in vlan_do_receive()
5386                  * For the time being, just ignore Priority Code Point
5387                  */
5388                 __vlan_hwaccel_clear_tag(skb);
5389         }
5390
5391         type = skb->protocol;
5392
5393         /* deliver only exact match when indicated */
5394         if (likely(!deliver_exact)) {
5395                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5396                                        &ptype_base[ntohs(type) &
5397                                                    PTYPE_HASH_MASK]);
5398         }
5399
5400         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5401                                &orig_dev->ptype_specific);
5402
5403         if (unlikely(skb->dev != orig_dev)) {
5404                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5405                                        &skb->dev->ptype_specific);
5406         }
5407
5408         if (pt_prev) {
5409                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5410                         goto drop;
5411                 *ppt_prev = pt_prev;
5412         } else {
5413 drop:
5414                 if (!deliver_exact)
5415                         atomic_long_inc(&skb->dev->rx_dropped);
5416                 else
5417                         atomic_long_inc(&skb->dev->rx_nohandler);
5418                 kfree_skb(skb);
5419                 /* Jamal, now you will not able to escape explaining
5420                  * me how you were going to use this. :-)
5421                  */
5422                 ret = NET_RX_DROP;
5423         }
5424
5425 out:
5426         /* The invariant here is that if *ppt_prev is not NULL
5427          * then skb should also be non-NULL.
5428          *
5429          * Apparently *ppt_prev assignment above holds this invariant due to
5430          * skb dereferencing near it.
5431          */
5432         *pskb = skb;
5433         return ret;
5434 }
5435
5436 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5437 {
5438         struct net_device *orig_dev = skb->dev;
5439         struct packet_type *pt_prev = NULL;
5440         int ret;
5441
5442         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5443         if (pt_prev)
5444                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5445                                          skb->dev, pt_prev, orig_dev);
5446         return ret;
5447 }
5448
5449 /**
5450  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5451  *      @skb: buffer to process
5452  *
5453  *      More direct receive version of netif_receive_skb().  It should
5454  *      only be used by callers that have a need to skip RPS and Generic XDP.
5455  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5456  *
5457  *      This function may only be called from softirq context and interrupts
5458  *      should be enabled.
5459  *
5460  *      Return values (usually ignored):
5461  *      NET_RX_SUCCESS: no congestion
5462  *      NET_RX_DROP: packet was dropped
5463  */
5464 int netif_receive_skb_core(struct sk_buff *skb)
5465 {
5466         int ret;
5467
5468         rcu_read_lock();
5469         ret = __netif_receive_skb_one_core(skb, false);
5470         rcu_read_unlock();
5471
5472         return ret;
5473 }
5474 EXPORT_SYMBOL(netif_receive_skb_core);
5475
5476 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5477                                                   struct packet_type *pt_prev,
5478                                                   struct net_device *orig_dev)
5479 {
5480         struct sk_buff *skb, *next;
5481
5482         if (!pt_prev)
5483                 return;
5484         if (list_empty(head))
5485                 return;
5486         if (pt_prev->list_func != NULL)
5487                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5488                                    ip_list_rcv, head, pt_prev, orig_dev);
5489         else
5490                 list_for_each_entry_safe(skb, next, head, list) {
5491                         skb_list_del_init(skb);
5492                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5493                 }
5494 }
5495
5496 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5497 {
5498         /* Fast-path assumptions:
5499          * - There is no RX handler.
5500          * - Only one packet_type matches.
5501          * If either of these fails, we will end up doing some per-packet
5502          * processing in-line, then handling the 'last ptype' for the whole
5503          * sublist.  This can't cause out-of-order delivery to any single ptype,
5504          * because the 'last ptype' must be constant across the sublist, and all
5505          * other ptypes are handled per-packet.
5506          */
5507         /* Current (common) ptype of sublist */
5508         struct packet_type *pt_curr = NULL;
5509         /* Current (common) orig_dev of sublist */
5510         struct net_device *od_curr = NULL;
5511         struct list_head sublist;
5512         struct sk_buff *skb, *next;
5513
5514         INIT_LIST_HEAD(&sublist);
5515         list_for_each_entry_safe(skb, next, head, list) {
5516                 struct net_device *orig_dev = skb->dev;
5517                 struct packet_type *pt_prev = NULL;
5518
5519                 skb_list_del_init(skb);
5520                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5521                 if (!pt_prev)
5522                         continue;
5523                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5524                         /* dispatch old sublist */
5525                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5526                         /* start new sublist */
5527                         INIT_LIST_HEAD(&sublist);
5528                         pt_curr = pt_prev;
5529                         od_curr = orig_dev;
5530                 }
5531                 list_add_tail(&skb->list, &sublist);
5532         }
5533
5534         /* dispatch final sublist */
5535         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5536 }
5537
5538 static int __netif_receive_skb(struct sk_buff *skb)
5539 {
5540         int ret;
5541
5542         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5543                 unsigned int noreclaim_flag;
5544
5545                 /*
5546                  * PFMEMALLOC skbs are special, they should
5547                  * - be delivered to SOCK_MEMALLOC sockets only
5548                  * - stay away from userspace
5549                  * - have bounded memory usage
5550                  *
5551                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5552                  * context down to all allocation sites.
5553                  */
5554                 noreclaim_flag = memalloc_noreclaim_save();
5555                 ret = __netif_receive_skb_one_core(skb, true);
5556                 memalloc_noreclaim_restore(noreclaim_flag);
5557         } else
5558                 ret = __netif_receive_skb_one_core(skb, false);
5559
5560         return ret;
5561 }
5562
5563 static void __netif_receive_skb_list(struct list_head *head)
5564 {
5565         unsigned long noreclaim_flag = 0;
5566         struct sk_buff *skb, *next;
5567         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5568
5569         list_for_each_entry_safe(skb, next, head, list) {
5570                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5571                         struct list_head sublist;
5572
5573                         /* Handle the previous sublist */
5574                         list_cut_before(&sublist, head, &skb->list);
5575                         if (!list_empty(&sublist))
5576                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5577                         pfmemalloc = !pfmemalloc;
5578                         /* See comments in __netif_receive_skb */
5579                         if (pfmemalloc)
5580                                 noreclaim_flag = memalloc_noreclaim_save();
5581                         else
5582                                 memalloc_noreclaim_restore(noreclaim_flag);
5583                 }
5584         }
5585         /* Handle the remaining sublist */
5586         if (!list_empty(head))
5587                 __netif_receive_skb_list_core(head, pfmemalloc);
5588         /* Restore pflags */
5589         if (pfmemalloc)
5590                 memalloc_noreclaim_restore(noreclaim_flag);
5591 }
5592
5593 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5594 {
5595         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5596         struct bpf_prog *new = xdp->prog;
5597         int ret = 0;
5598
5599         switch (xdp->command) {
5600         case XDP_SETUP_PROG:
5601                 rcu_assign_pointer(dev->xdp_prog, new);
5602                 if (old)
5603                         bpf_prog_put(old);
5604
5605                 if (old && !new) {
5606                         static_branch_dec(&generic_xdp_needed_key);
5607                 } else if (new && !old) {
5608                         static_branch_inc(&generic_xdp_needed_key);
5609                         dev_disable_lro(dev);
5610                         dev_disable_gro_hw(dev);
5611                 }
5612                 break;
5613
5614         default:
5615                 ret = -EINVAL;
5616                 break;
5617         }
5618
5619         return ret;
5620 }
5621
5622 static int netif_receive_skb_internal(struct sk_buff *skb)
5623 {
5624         int ret;
5625
5626         net_timestamp_check(netdev_tstamp_prequeue, skb);
5627
5628         if (skb_defer_rx_timestamp(skb))
5629                 return NET_RX_SUCCESS;
5630
5631         rcu_read_lock();
5632 #ifdef CONFIG_RPS
5633         if (static_branch_unlikely(&rps_needed)) {
5634                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5635                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5636
5637                 if (cpu >= 0) {
5638                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5639                         rcu_read_unlock();
5640                         return ret;
5641                 }
5642         }
5643 #endif
5644         ret = __netif_receive_skb(skb);
5645         rcu_read_unlock();
5646         return ret;
5647 }
5648
5649 static void netif_receive_skb_list_internal(struct list_head *head)
5650 {
5651         struct sk_buff *skb, *next;
5652         struct list_head sublist;
5653
5654         INIT_LIST_HEAD(&sublist);
5655         list_for_each_entry_safe(skb, next, head, list) {
5656                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5657                 skb_list_del_init(skb);
5658                 if (!skb_defer_rx_timestamp(skb))
5659                         list_add_tail(&skb->list, &sublist);
5660         }
5661         list_splice_init(&sublist, head);
5662
5663         rcu_read_lock();
5664 #ifdef CONFIG_RPS
5665         if (static_branch_unlikely(&rps_needed)) {
5666                 list_for_each_entry_safe(skb, next, head, list) {
5667                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5668                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5669
5670                         if (cpu >= 0) {
5671                                 /* Will be handled, remove from list */
5672                                 skb_list_del_init(skb);
5673                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5674                         }
5675                 }
5676         }
5677 #endif
5678         __netif_receive_skb_list(head);
5679         rcu_read_unlock();
5680 }
5681
5682 /**
5683  *      netif_receive_skb - process receive buffer from network
5684  *      @skb: buffer to process
5685  *
5686  *      netif_receive_skb() is the main receive data processing function.
5687  *      It always succeeds. The buffer may be dropped during processing
5688  *      for congestion control or by the protocol layers.
5689  *
5690  *      This function may only be called from softirq context and interrupts
5691  *      should be enabled.
5692  *
5693  *      Return values (usually ignored):
5694  *      NET_RX_SUCCESS: no congestion
5695  *      NET_RX_DROP: packet was dropped
5696  */
5697 int netif_receive_skb(struct sk_buff *skb)
5698 {
5699         int ret;
5700
5701         trace_netif_receive_skb_entry(skb);
5702
5703         ret = netif_receive_skb_internal(skb);
5704         trace_netif_receive_skb_exit(ret);
5705
5706         return ret;
5707 }
5708 EXPORT_SYMBOL(netif_receive_skb);
5709
5710 /**
5711  *      netif_receive_skb_list - process many receive buffers from network
5712  *      @head: list of skbs to process.
5713  *
5714  *      Since return value of netif_receive_skb() is normally ignored, and
5715  *      wouldn't be meaningful for a list, this function returns void.
5716  *
5717  *      This function may only be called from softirq context and interrupts
5718  *      should be enabled.
5719  */
5720 void netif_receive_skb_list(struct list_head *head)
5721 {
5722         struct sk_buff *skb;
5723
5724         if (list_empty(head))
5725                 return;
5726         if (trace_netif_receive_skb_list_entry_enabled()) {
5727                 list_for_each_entry(skb, head, list)
5728                         trace_netif_receive_skb_list_entry(skb);
5729         }
5730         netif_receive_skb_list_internal(head);
5731         trace_netif_receive_skb_list_exit(0);
5732 }
5733 EXPORT_SYMBOL(netif_receive_skb_list);
5734
5735 static DEFINE_PER_CPU(struct work_struct, flush_works);
5736
5737 /* Network device is going away, flush any packets still pending */
5738 static void flush_backlog(struct work_struct *work)
5739 {
5740         struct sk_buff *skb, *tmp;
5741         struct softnet_data *sd;
5742
5743         local_bh_disable();
5744         sd = this_cpu_ptr(&softnet_data);
5745
5746         local_irq_disable();
5747         rps_lock(sd);
5748         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5749                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5750                         __skb_unlink(skb, &sd->input_pkt_queue);
5751                         dev_kfree_skb_irq(skb);
5752                         input_queue_head_incr(sd);
5753                 }
5754         }
5755         rps_unlock(sd);
5756         local_irq_enable();
5757
5758         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5759                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5760                         __skb_unlink(skb, &sd->process_queue);
5761                         kfree_skb(skb);
5762                         input_queue_head_incr(sd);
5763                 }
5764         }
5765         local_bh_enable();
5766 }
5767
5768 static bool flush_required(int cpu)
5769 {
5770 #if IS_ENABLED(CONFIG_RPS)
5771         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5772         bool do_flush;
5773
5774         local_irq_disable();
5775         rps_lock(sd);
5776
5777         /* as insertion into process_queue happens with the rps lock held,
5778          * process_queue access may race only with dequeue
5779          */
5780         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5781                    !skb_queue_empty_lockless(&sd->process_queue);
5782         rps_unlock(sd);
5783         local_irq_enable();
5784
5785         return do_flush;
5786 #endif
5787         /* without RPS we can't safely check input_pkt_queue: during a
5788          * concurrent remote skb_queue_splice() we can detect as empty both
5789          * input_pkt_queue and process_queue even if the latter could end-up
5790          * containing a lot of packets.
5791          */
5792         return true;
5793 }
5794
5795 static void flush_all_backlogs(void)
5796 {
5797         static cpumask_t flush_cpus;
5798         unsigned int cpu;
5799
5800         /* since we are under rtnl lock protection we can use static data
5801          * for the cpumask and avoid allocating on stack the possibly
5802          * large mask
5803          */
5804         ASSERT_RTNL();
5805
5806         cpus_read_lock();
5807
5808         cpumask_clear(&flush_cpus);
5809         for_each_online_cpu(cpu) {
5810                 if (flush_required(cpu)) {
5811                         queue_work_on(cpu, system_highpri_wq,
5812                                       per_cpu_ptr(&flush_works, cpu));
5813                         cpumask_set_cpu(cpu, &flush_cpus);
5814                 }
5815         }
5816
5817         /* we can have in flight packet[s] on the cpus we are not flushing,
5818          * synchronize_net() in unregister_netdevice_many() will take care of
5819          * them
5820          */
5821         for_each_cpu(cpu, &flush_cpus)
5822                 flush_work(per_cpu_ptr(&flush_works, cpu));
5823
5824         cpus_read_unlock();
5825 }
5826
5827 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5828 static void gro_normal_list(struct napi_struct *napi)
5829 {
5830         if (!napi->rx_count)
5831                 return;
5832         netif_receive_skb_list_internal(&napi->rx_list);
5833         INIT_LIST_HEAD(&napi->rx_list);
5834         napi->rx_count = 0;
5835 }
5836
5837 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5838  * pass the whole batch up to the stack.
5839  */
5840 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5841 {
5842         list_add_tail(&skb->list, &napi->rx_list);
5843         napi->rx_count += segs;
5844         if (napi->rx_count >= gro_normal_batch)
5845                 gro_normal_list(napi);
5846 }
5847
5848 static void napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5849 {
5850         struct packet_offload *ptype;
5851         __be16 type = skb->protocol;
5852         struct list_head *head = &offload_base;
5853         int err = -ENOENT;
5854
5855         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5856
5857         if (NAPI_GRO_CB(skb)->count == 1) {
5858                 skb_shinfo(skb)->gso_size = 0;
5859                 goto out;
5860         }
5861
5862         rcu_read_lock();
5863         list_for_each_entry_rcu(ptype, head, list) {
5864                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5865                         continue;
5866
5867                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5868                                          ipv6_gro_complete, inet_gro_complete,
5869                                          skb, 0);
5870                 break;
5871         }
5872         rcu_read_unlock();
5873
5874         if (err) {
5875                 WARN_ON(&ptype->list == head);
5876                 kfree_skb(skb);
5877                 return;
5878         }
5879
5880 out:
5881         gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5882 }
5883
5884 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5885                                    bool flush_old)
5886 {
5887         struct list_head *head = &napi->gro_hash[index].list;
5888         struct sk_buff *skb, *p;
5889
5890         list_for_each_entry_safe_reverse(skb, p, head, list) {
5891                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5892                         return;
5893                 skb_list_del_init(skb);
5894                 napi_gro_complete(napi, skb);
5895                 napi->gro_hash[index].count--;
5896         }
5897
5898         if (!napi->gro_hash[index].count)
5899                 __clear_bit(index, &napi->gro_bitmask);
5900 }
5901
5902 /* napi->gro_hash[].list contains packets ordered by age.
5903  * youngest packets at the head of it.
5904  * Complete skbs in reverse order to reduce latencies.
5905  */
5906 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5907 {
5908         unsigned long bitmask = napi->gro_bitmask;
5909         unsigned int i, base = ~0U;
5910
5911         while ((i = ffs(bitmask)) != 0) {
5912                 bitmask >>= i;
5913                 base += i;
5914                 __napi_gro_flush_chain(napi, base, flush_old);
5915         }
5916 }
5917 EXPORT_SYMBOL(napi_gro_flush);
5918
5919 static void gro_list_prepare(const struct list_head *head,
5920                              const struct sk_buff *skb)
5921 {
5922         unsigned int maclen = skb->dev->hard_header_len;
5923         u32 hash = skb_get_hash_raw(skb);
5924         struct sk_buff *p;
5925
5926         list_for_each_entry(p, head, list) {
5927                 unsigned long diffs;
5928
5929                 NAPI_GRO_CB(p)->flush = 0;
5930
5931                 if (hash != skb_get_hash_raw(p)) {
5932                         NAPI_GRO_CB(p)->same_flow = 0;
5933                         continue;
5934                 }
5935
5936                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5937                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5938                 if (skb_vlan_tag_present(p))
5939                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5940                 diffs |= skb_metadata_differs(p, skb);
5941                 if (maclen == ETH_HLEN)
5942                         diffs |= compare_ether_header(skb_mac_header(p),
5943                                                       skb_mac_header(skb));
5944                 else if (!diffs)
5945                         diffs = memcmp(skb_mac_header(p),
5946                                        skb_mac_header(skb),
5947                                        maclen);
5948
5949                 /* in most common scenarions 'slow_gro' is 0
5950                  * otherwise we are already on some slower paths
5951                  * either skip all the infrequent tests altogether or
5952                  * avoid trying too hard to skip each of them individually
5953                  */
5954                 if (!diffs && unlikely(skb->slow_gro | p->slow_gro)) {
5955 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5956                         struct tc_skb_ext *skb_ext;
5957                         struct tc_skb_ext *p_ext;
5958 #endif
5959
5960                         diffs |= p->sk != skb->sk;
5961                         diffs |= skb_metadata_dst_cmp(p, skb);
5962                         diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5963
5964 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5965                         skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5966                         p_ext = skb_ext_find(p, TC_SKB_EXT);
5967
5968                         diffs |= (!!p_ext) ^ (!!skb_ext);
5969                         if (!diffs && unlikely(skb_ext))
5970                                 diffs |= p_ext->chain ^ skb_ext->chain;
5971 #endif
5972                 }
5973
5974                 NAPI_GRO_CB(p)->same_flow = !diffs;
5975         }
5976 }
5977
5978 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5979 {
5980         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5981         const skb_frag_t *frag0 = &pinfo->frags[0];
5982
5983         NAPI_GRO_CB(skb)->data_offset = 0;
5984         NAPI_GRO_CB(skb)->frag0 = NULL;
5985         NAPI_GRO_CB(skb)->frag0_len = 0;
5986
5987         if (!skb_headlen(skb) && pinfo->nr_frags &&
5988             !PageHighMem(skb_frag_page(frag0)) &&
5989             (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
5990                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5991                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5992                                                     skb_frag_size(frag0),
5993                                                     skb->end - skb->tail);
5994         }
5995 }
5996
5997 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5998 {
5999         struct skb_shared_info *pinfo = skb_shinfo(skb);
6000
6001         BUG_ON(skb->end - skb->tail < grow);
6002
6003         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6004
6005         skb->data_len -= grow;
6006         skb->tail += grow;
6007
6008         skb_frag_off_add(&pinfo->frags[0], grow);
6009         skb_frag_size_sub(&pinfo->frags[0], grow);
6010
6011         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6012                 skb_frag_unref(skb, 0);
6013                 memmove(pinfo->frags, pinfo->frags + 1,
6014                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6015         }
6016 }
6017
6018 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6019 {
6020         struct sk_buff *oldest;
6021
6022         oldest = list_last_entry(head, struct sk_buff, list);
6023
6024         /* We are called with head length >= MAX_GRO_SKBS, so this is
6025          * impossible.
6026          */
6027         if (WARN_ON_ONCE(!oldest))
6028                 return;
6029
6030         /* Do not adjust napi->gro_hash[].count, caller is adding a new
6031          * SKB to the chain.
6032          */
6033         skb_list_del_init(oldest);
6034         napi_gro_complete(napi, oldest);
6035 }
6036
6037 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6038 {
6039         u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6040         struct gro_list *gro_list = &napi->gro_hash[bucket];
6041         struct list_head *head = &offload_base;
6042         struct packet_offload *ptype;
6043         __be16 type = skb->protocol;
6044         struct sk_buff *pp = NULL;
6045         enum gro_result ret;
6046         int same_flow;
6047         int grow;
6048
6049         if (netif_elide_gro(skb->dev))
6050                 goto normal;
6051
6052         gro_list_prepare(&gro_list->list, skb);
6053
6054         rcu_read_lock();
6055         list_for_each_entry_rcu(ptype, head, list) {
6056                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6057                         continue;
6058
6059                 skb_set_network_header(skb, skb_gro_offset(skb));
6060                 skb_reset_mac_len(skb);
6061                 NAPI_GRO_CB(skb)->same_flow = 0;
6062                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6063                 NAPI_GRO_CB(skb)->free = 0;
6064                 NAPI_GRO_CB(skb)->encap_mark = 0;
6065                 NAPI_GRO_CB(skb)->recursion_counter = 0;
6066                 NAPI_GRO_CB(skb)->is_fou = 0;
6067                 NAPI_GRO_CB(skb)->is_atomic = 1;
6068                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6069
6070                 /* Setup for GRO checksum validation */
6071                 switch (skb->ip_summed) {
6072                 case CHECKSUM_COMPLETE:
6073                         NAPI_GRO_CB(skb)->csum = skb->csum;
6074                         NAPI_GRO_CB(skb)->csum_valid = 1;
6075                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6076                         break;
6077                 case CHECKSUM_UNNECESSARY:
6078                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6079                         NAPI_GRO_CB(skb)->csum_valid = 0;
6080                         break;
6081                 default:
6082                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6083                         NAPI_GRO_CB(skb)->csum_valid = 0;
6084                 }
6085
6086                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6087                                         ipv6_gro_receive, inet_gro_receive,
6088                                         &gro_list->list, skb);
6089                 break;
6090         }
6091         rcu_read_unlock();
6092
6093         if (&ptype->list == head)
6094                 goto normal;
6095
6096         if (PTR_ERR(pp) == -EINPROGRESS) {
6097                 ret = GRO_CONSUMED;
6098                 goto ok;
6099         }
6100
6101         same_flow = NAPI_GRO_CB(skb)->same_flow;
6102         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6103
6104         if (pp) {
6105                 skb_list_del_init(pp);
6106                 napi_gro_complete(napi, pp);
6107                 gro_list->count--;
6108         }
6109
6110         if (same_flow)
6111                 goto ok;
6112
6113         if (NAPI_GRO_CB(skb)->flush)
6114                 goto normal;
6115
6116         if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6117                 gro_flush_oldest(napi, &gro_list->list);
6118         else
6119                 gro_list->count++;
6120
6121         NAPI_GRO_CB(skb)->count = 1;
6122         NAPI_GRO_CB(skb)->age = jiffies;
6123         NAPI_GRO_CB(skb)->last = skb;
6124         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6125         list_add(&skb->list, &gro_list->list);
6126         ret = GRO_HELD;
6127
6128 pull:
6129         grow = skb_gro_offset(skb) - skb_headlen(skb);
6130         if (grow > 0)
6131                 gro_pull_from_frag0(skb, grow);
6132 ok:
6133         if (gro_list->count) {
6134                 if (!test_bit(bucket, &napi->gro_bitmask))
6135                         __set_bit(bucket, &napi->gro_bitmask);
6136         } else if (test_bit(bucket, &napi->gro_bitmask)) {
6137                 __clear_bit(bucket, &napi->gro_bitmask);
6138         }
6139
6140         return ret;
6141
6142 normal:
6143         ret = GRO_NORMAL;
6144         goto pull;
6145 }
6146
6147 struct packet_offload *gro_find_receive_by_type(__be16 type)
6148 {
6149         struct list_head *offload_head = &offload_base;
6150         struct packet_offload *ptype;
6151
6152         list_for_each_entry_rcu(ptype, offload_head, list) {
6153                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6154                         continue;
6155                 return ptype;
6156         }
6157         return NULL;
6158 }
6159 EXPORT_SYMBOL(gro_find_receive_by_type);
6160
6161 struct packet_offload *gro_find_complete_by_type(__be16 type)
6162 {
6163         struct list_head *offload_head = &offload_base;
6164         struct packet_offload *ptype;
6165
6166         list_for_each_entry_rcu(ptype, offload_head, list) {
6167                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6168                         continue;
6169                 return ptype;
6170         }
6171         return NULL;
6172 }
6173 EXPORT_SYMBOL(gro_find_complete_by_type);
6174
6175 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6176                                     struct sk_buff *skb,
6177                                     gro_result_t ret)
6178 {
6179         switch (ret) {
6180         case GRO_NORMAL:
6181                 gro_normal_one(napi, skb, 1);
6182                 break;
6183
6184         case GRO_MERGED_FREE:
6185                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6186                         napi_skb_free_stolen_head(skb);
6187                 else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6188                         __kfree_skb(skb);
6189                 else
6190                         __kfree_skb_defer(skb);
6191                 break;
6192
6193         case GRO_HELD:
6194         case GRO_MERGED:
6195         case GRO_CONSUMED:
6196                 break;
6197         }
6198
6199         return ret;
6200 }
6201
6202 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6203 {
6204         gro_result_t ret;
6205
6206         skb_mark_napi_id(skb, napi);
6207         trace_napi_gro_receive_entry(skb);
6208
6209         skb_gro_reset_offset(skb, 0);
6210
6211         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6212         trace_napi_gro_receive_exit(ret);
6213
6214         return ret;
6215 }
6216 EXPORT_SYMBOL(napi_gro_receive);
6217
6218 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6219 {
6220         if (unlikely(skb->pfmemalloc)) {
6221                 consume_skb(skb);
6222                 return;
6223         }
6224         __skb_pull(skb, skb_headlen(skb));
6225         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6226         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6227         __vlan_hwaccel_clear_tag(skb);
6228         skb->dev = napi->dev;
6229         skb->skb_iif = 0;
6230
6231         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6232         skb->pkt_type = PACKET_HOST;
6233
6234         skb->encapsulation = 0;
6235         skb_shinfo(skb)->gso_type = 0;
6236         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6237         if (unlikely(skb->slow_gro)) {
6238                 skb_orphan(skb);
6239                 skb_ext_reset(skb);
6240                 nf_reset_ct(skb);
6241                 skb->slow_gro = 0;
6242         }
6243
6244         napi->skb = skb;
6245 }
6246
6247 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6248 {
6249         struct sk_buff *skb = napi->skb;
6250
6251         if (!skb) {
6252                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6253                 if (skb) {
6254                         napi->skb = skb;
6255                         skb_mark_napi_id(skb, napi);
6256                 }
6257         }
6258         return skb;
6259 }
6260 EXPORT_SYMBOL(napi_get_frags);
6261
6262 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6263                                       struct sk_buff *skb,
6264                                       gro_result_t ret)
6265 {
6266         switch (ret) {
6267         case GRO_NORMAL:
6268         case GRO_HELD:
6269                 __skb_push(skb, ETH_HLEN);
6270                 skb->protocol = eth_type_trans(skb, skb->dev);
6271                 if (ret == GRO_NORMAL)
6272                         gro_normal_one(napi, skb, 1);
6273                 break;
6274
6275         case GRO_MERGED_FREE:
6276                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6277                         napi_skb_free_stolen_head(skb);
6278                 else
6279                         napi_reuse_skb(napi, skb);
6280                 break;
6281
6282         case GRO_MERGED:
6283         case GRO_CONSUMED:
6284                 break;
6285         }
6286
6287         return ret;
6288 }
6289
6290 /* Upper GRO stack assumes network header starts at gro_offset=0
6291  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6292  * We copy ethernet header into skb->data to have a common layout.
6293  */
6294 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6295 {
6296         struct sk_buff *skb = napi->skb;
6297         const struct ethhdr *eth;
6298         unsigned int hlen = sizeof(*eth);
6299
6300         napi->skb = NULL;
6301
6302         skb_reset_mac_header(skb);
6303         skb_gro_reset_offset(skb, hlen);
6304
6305         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6306                 eth = skb_gro_header_slow(skb, hlen, 0);
6307                 if (unlikely(!eth)) {
6308                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6309                                              __func__, napi->dev->name);
6310                         napi_reuse_skb(napi, skb);
6311                         return NULL;
6312                 }
6313         } else {
6314                 eth = (const struct ethhdr *)skb->data;
6315                 gro_pull_from_frag0(skb, hlen);
6316                 NAPI_GRO_CB(skb)->frag0 += hlen;
6317                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6318         }
6319         __skb_pull(skb, hlen);
6320
6321         /*
6322          * This works because the only protocols we care about don't require
6323          * special handling.
6324          * We'll fix it up properly in napi_frags_finish()
6325          */
6326         skb->protocol = eth->h_proto;
6327
6328         return skb;
6329 }
6330
6331 gro_result_t napi_gro_frags(struct napi_struct *napi)
6332 {
6333         gro_result_t ret;
6334         struct sk_buff *skb = napi_frags_skb(napi);
6335
6336         trace_napi_gro_frags_entry(skb);
6337
6338         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6339         trace_napi_gro_frags_exit(ret);
6340
6341         return ret;
6342 }
6343 EXPORT_SYMBOL(napi_gro_frags);
6344
6345 /* Compute the checksum from gro_offset and return the folded value
6346  * after adding in any pseudo checksum.
6347  */
6348 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6349 {
6350         __wsum wsum;
6351         __sum16 sum;
6352
6353         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6354
6355         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6356         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6357         /* See comments in __skb_checksum_complete(). */
6358         if (likely(!sum)) {
6359                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6360                     !skb->csum_complete_sw)
6361                         netdev_rx_csum_fault(skb->dev, skb);
6362         }
6363
6364         NAPI_GRO_CB(skb)->csum = wsum;
6365         NAPI_GRO_CB(skb)->csum_valid = 1;
6366
6367         return sum;
6368 }
6369 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6370
6371 static void net_rps_send_ipi(struct softnet_data *remsd)
6372 {
6373 #ifdef CONFIG_RPS
6374         while (remsd) {
6375                 struct softnet_data *next = remsd->rps_ipi_next;
6376
6377                 if (cpu_online(remsd->cpu))
6378                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6379                 remsd = next;
6380         }
6381 #endif
6382 }
6383
6384 /*
6385  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6386  * Note: called with local irq disabled, but exits with local irq enabled.
6387  */
6388 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6389 {
6390 #ifdef CONFIG_RPS
6391         struct softnet_data *remsd = sd->rps_ipi_list;
6392
6393         if (remsd) {
6394                 sd->rps_ipi_list = NULL;
6395
6396                 local_irq_enable();
6397
6398                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6399                 net_rps_send_ipi(remsd);
6400         } else
6401 #endif
6402                 local_irq_enable();
6403 }
6404
6405 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6406 {
6407 #ifdef CONFIG_RPS
6408         return sd->rps_ipi_list != NULL;
6409 #else
6410         return false;
6411 #endif
6412 }
6413
6414 static int process_backlog(struct napi_struct *napi, int quota)
6415 {
6416         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6417         bool again = true;
6418         int work = 0;
6419
6420         /* Check if we have pending ipi, its better to send them now,
6421          * not waiting net_rx_action() end.
6422          */
6423         if (sd_has_rps_ipi_waiting(sd)) {
6424                 local_irq_disable();
6425                 net_rps_action_and_irq_enable(sd);
6426         }
6427
6428         napi->weight = dev_rx_weight;
6429         while (again) {
6430                 struct sk_buff *skb;
6431
6432                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6433                         rcu_read_lock();
6434                         __netif_receive_skb(skb);
6435                         rcu_read_unlock();
6436                         input_queue_head_incr(sd);
6437                         if (++work >= quota)
6438                                 return work;
6439
6440                 }
6441
6442                 local_irq_disable();
6443                 rps_lock(sd);
6444                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6445                         /*
6446                          * Inline a custom version of __napi_complete().
6447                          * only current cpu owns and manipulates this napi,
6448                          * and NAPI_STATE_SCHED is the only possible flag set
6449                          * on backlog.
6450                          * We can use a plain write instead of clear_bit(),
6451                          * and we dont need an smp_mb() memory barrier.
6452                          */
6453                         napi->state = 0;
6454                         again = false;
6455                 } else {
6456                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6457                                                    &sd->process_queue);
6458                 }
6459                 rps_unlock(sd);
6460                 local_irq_enable();
6461         }
6462
6463         return work;
6464 }
6465
6466 /**
6467  * __napi_schedule - schedule for receive
6468  * @n: entry to schedule
6469  *
6470  * The entry's receive function will be scheduled to run.
6471  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6472  */
6473 void __napi_schedule(struct napi_struct *n)
6474 {
6475         unsigned long flags;
6476
6477         local_irq_save(flags);
6478         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6479         local_irq_restore(flags);
6480 }
6481 EXPORT_SYMBOL(__napi_schedule);
6482
6483 /**
6484  *      napi_schedule_prep - check if napi can be scheduled
6485  *      @n: napi context
6486  *
6487  * Test if NAPI routine is already running, and if not mark
6488  * it as running.  This is used as a condition variable to
6489  * insure only one NAPI poll instance runs.  We also make
6490  * sure there is no pending NAPI disable.
6491  */
6492 bool napi_schedule_prep(struct napi_struct *n)
6493 {
6494         unsigned long val, new;
6495
6496         do {
6497                 val = READ_ONCE(n->state);
6498                 if (unlikely(val & NAPIF_STATE_DISABLE))
6499                         return false;
6500                 new = val | NAPIF_STATE_SCHED;
6501
6502                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6503                  * This was suggested by Alexander Duyck, as compiler
6504                  * emits better code than :
6505                  * if (val & NAPIF_STATE_SCHED)
6506                  *     new |= NAPIF_STATE_MISSED;
6507                  */
6508                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6509                                                    NAPIF_STATE_MISSED;
6510         } while (cmpxchg(&n->state, val, new) != val);
6511
6512         return !(val & NAPIF_STATE_SCHED);
6513 }
6514 EXPORT_SYMBOL(napi_schedule_prep);
6515
6516 /**
6517  * __napi_schedule_irqoff - schedule for receive
6518  * @n: entry to schedule
6519  *
6520  * Variant of __napi_schedule() assuming hard irqs are masked.
6521  *
6522  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6523  * because the interrupt disabled assumption might not be true
6524  * due to force-threaded interrupts and spinlock substitution.
6525  */
6526 void __napi_schedule_irqoff(struct napi_struct *n)
6527 {
6528         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6529                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6530         else
6531                 __napi_schedule(n);
6532 }
6533 EXPORT_SYMBOL(__napi_schedule_irqoff);
6534
6535 bool napi_complete_done(struct napi_struct *n, int work_done)
6536 {
6537         unsigned long flags, val, new, timeout = 0;
6538         bool ret = true;
6539
6540         /*
6541          * 1) Don't let napi dequeue from the cpu poll list
6542          *    just in case its running on a different cpu.
6543          * 2) If we are busy polling, do nothing here, we have
6544          *    the guarantee we will be called later.
6545          */
6546         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6547                                  NAPIF_STATE_IN_BUSY_POLL)))
6548                 return false;
6549
6550         if (work_done) {
6551                 if (n->gro_bitmask)
6552                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6553                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6554         }
6555         if (n->defer_hard_irqs_count > 0) {
6556                 n->defer_hard_irqs_count--;
6557                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6558                 if (timeout)
6559                         ret = false;
6560         }
6561         if (n->gro_bitmask) {
6562                 /* When the NAPI instance uses a timeout and keeps postponing
6563                  * it, we need to bound somehow the time packets are kept in
6564                  * the GRO layer
6565                  */
6566                 napi_gro_flush(n, !!timeout);
6567         }
6568
6569         gro_normal_list(n);
6570
6571         if (unlikely(!list_empty(&n->poll_list))) {
6572                 /* If n->poll_list is not empty, we need to mask irqs */
6573                 local_irq_save(flags);
6574                 list_del_init(&n->poll_list);
6575                 local_irq_restore(flags);
6576         }
6577
6578         do {
6579                 val = READ_ONCE(n->state);
6580
6581                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6582
6583                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6584                               NAPIF_STATE_SCHED_THREADED |
6585                               NAPIF_STATE_PREFER_BUSY_POLL);
6586
6587                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6588                  * because we will call napi->poll() one more time.
6589                  * This C code was suggested by Alexander Duyck to help gcc.
6590                  */
6591                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6592                                                     NAPIF_STATE_SCHED;
6593         } while (cmpxchg(&n->state, val, new) != val);
6594
6595         if (unlikely(val & NAPIF_STATE_MISSED)) {
6596                 __napi_schedule(n);
6597                 return false;
6598         }
6599
6600         if (timeout)
6601                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6602                               HRTIMER_MODE_REL_PINNED);
6603         return ret;
6604 }
6605 EXPORT_SYMBOL(napi_complete_done);
6606
6607 /* must be called under rcu_read_lock(), as we dont take a reference */
6608 static struct napi_struct *napi_by_id(unsigned int napi_id)
6609 {
6610         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6611         struct napi_struct *napi;
6612
6613         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6614                 if (napi->napi_id == napi_id)
6615                         return napi;
6616
6617         return NULL;
6618 }
6619
6620 #if defined(CONFIG_NET_RX_BUSY_POLL)
6621
6622 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6623 {
6624         if (!skip_schedule) {
6625                 gro_normal_list(napi);
6626                 __napi_schedule(napi);
6627                 return;
6628         }
6629
6630         if (napi->gro_bitmask) {
6631                 /* flush too old packets
6632                  * If HZ < 1000, flush all packets.
6633                  */
6634                 napi_gro_flush(napi, HZ >= 1000);
6635         }
6636
6637         gro_normal_list(napi);
6638         clear_bit(NAPI_STATE_SCHED, &napi->state);
6639 }
6640
6641 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6642                            u16 budget)
6643 {
6644         bool skip_schedule = false;
6645         unsigned long timeout;
6646         int rc;
6647
6648         /* Busy polling means there is a high chance device driver hard irq
6649          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6650          * set in napi_schedule_prep().
6651          * Since we are about to call napi->poll() once more, we can safely
6652          * clear NAPI_STATE_MISSED.
6653          *
6654          * Note: x86 could use a single "lock and ..." instruction
6655          * to perform these two clear_bit()
6656          */
6657         clear_bit(NAPI_STATE_MISSED, &napi->state);
6658         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6659
6660         local_bh_disable();
6661
6662         if (prefer_busy_poll) {
6663                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6664                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6665                 if (napi->defer_hard_irqs_count && timeout) {
6666                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6667                         skip_schedule = true;
6668                 }
6669         }
6670
6671         /* All we really want here is to re-enable device interrupts.
6672          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6673          */
6674         rc = napi->poll(napi, budget);
6675         /* We can't gro_normal_list() here, because napi->poll() might have
6676          * rearmed the napi (napi_complete_done()) in which case it could
6677          * already be running on another CPU.
6678          */
6679         trace_napi_poll(napi, rc, budget);
6680         netpoll_poll_unlock(have_poll_lock);
6681         if (rc == budget)
6682                 __busy_poll_stop(napi, skip_schedule);
6683         local_bh_enable();
6684 }
6685
6686 void napi_busy_loop(unsigned int napi_id,
6687                     bool (*loop_end)(void *, unsigned long),
6688                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6689 {
6690         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6691         int (*napi_poll)(struct napi_struct *napi, int budget);
6692         void *have_poll_lock = NULL;
6693         struct napi_struct *napi;
6694
6695 restart:
6696         napi_poll = NULL;
6697
6698         rcu_read_lock();
6699
6700         napi = napi_by_id(napi_id);
6701         if (!napi)
6702                 goto out;
6703
6704         preempt_disable();
6705         for (;;) {
6706                 int work = 0;
6707
6708                 local_bh_disable();
6709                 if (!napi_poll) {
6710                         unsigned long val = READ_ONCE(napi->state);
6711
6712                         /* If multiple threads are competing for this napi,
6713                          * we avoid dirtying napi->state as much as we can.
6714                          */
6715                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6716                                    NAPIF_STATE_IN_BUSY_POLL)) {
6717                                 if (prefer_busy_poll)
6718                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6719                                 goto count;
6720                         }
6721                         if (cmpxchg(&napi->state, val,
6722                                     val | NAPIF_STATE_IN_BUSY_POLL |
6723                                           NAPIF_STATE_SCHED) != val) {
6724                                 if (prefer_busy_poll)
6725                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6726                                 goto count;
6727                         }
6728                         have_poll_lock = netpoll_poll_lock(napi);
6729                         napi_poll = napi->poll;
6730                 }
6731                 work = napi_poll(napi, budget);
6732                 trace_napi_poll(napi, work, budget);
6733                 gro_normal_list(napi);
6734 count:
6735                 if (work > 0)
6736                         __NET_ADD_STATS(dev_net(napi->dev),
6737                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6738                 local_bh_enable();
6739
6740                 if (!loop_end || loop_end(loop_end_arg, start_time))
6741                         break;
6742
6743                 if (unlikely(need_resched())) {
6744                         if (napi_poll)
6745                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6746                         preempt_enable();
6747                         rcu_read_unlock();
6748                         cond_resched();
6749                         if (loop_end(loop_end_arg, start_time))
6750                                 return;
6751                         goto restart;
6752                 }
6753                 cpu_relax();
6754         }
6755         if (napi_poll)
6756                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6757         preempt_enable();
6758 out:
6759         rcu_read_unlock();
6760 }
6761 EXPORT_SYMBOL(napi_busy_loop);
6762
6763 #endif /* CONFIG_NET_RX_BUSY_POLL */
6764
6765 static void napi_hash_add(struct napi_struct *napi)
6766 {
6767         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6768                 return;
6769
6770         spin_lock(&napi_hash_lock);
6771
6772         /* 0..NR_CPUS range is reserved for sender_cpu use */
6773         do {
6774                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6775                         napi_gen_id = MIN_NAPI_ID;
6776         } while (napi_by_id(napi_gen_id));
6777         napi->napi_id = napi_gen_id;
6778
6779         hlist_add_head_rcu(&napi->napi_hash_node,
6780                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6781
6782         spin_unlock(&napi_hash_lock);
6783 }
6784
6785 /* Warning : caller is responsible to make sure rcu grace period
6786  * is respected before freeing memory containing @napi
6787  */
6788 static void napi_hash_del(struct napi_struct *napi)
6789 {
6790         spin_lock(&napi_hash_lock);
6791
6792         hlist_del_init_rcu(&napi->napi_hash_node);
6793
6794         spin_unlock(&napi_hash_lock);
6795 }
6796
6797 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6798 {
6799         struct napi_struct *napi;
6800
6801         napi = container_of(timer, struct napi_struct, timer);
6802
6803         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6804          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6805          */
6806         if (!napi_disable_pending(napi) &&
6807             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6808                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6809                 __napi_schedule_irqoff(napi);
6810         }
6811
6812         return HRTIMER_NORESTART;
6813 }
6814
6815 static void init_gro_hash(struct napi_struct *napi)
6816 {
6817         int i;
6818
6819         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6820                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6821                 napi->gro_hash[i].count = 0;
6822         }
6823         napi->gro_bitmask = 0;
6824 }
6825
6826 int dev_set_threaded(struct net_device *dev, bool threaded)
6827 {
6828         struct napi_struct *napi;
6829         int err = 0;
6830
6831         if (dev->threaded == threaded)
6832                 return 0;
6833
6834         if (threaded) {
6835                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6836                         if (!napi->thread) {
6837                                 err = napi_kthread_create(napi);
6838                                 if (err) {
6839                                         threaded = false;
6840                                         break;
6841                                 }
6842                         }
6843                 }
6844         }
6845
6846         dev->threaded = threaded;
6847
6848         /* Make sure kthread is created before THREADED bit
6849          * is set.
6850          */
6851         smp_mb__before_atomic();
6852
6853         /* Setting/unsetting threaded mode on a napi might not immediately
6854          * take effect, if the current napi instance is actively being
6855          * polled. In this case, the switch between threaded mode and
6856          * softirq mode will happen in the next round of napi_schedule().
6857          * This should not cause hiccups/stalls to the live traffic.
6858          */
6859         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6860                 if (threaded)
6861                         set_bit(NAPI_STATE_THREADED, &napi->state);
6862                 else
6863                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6864         }
6865
6866         return err;
6867 }
6868 EXPORT_SYMBOL(dev_set_threaded);
6869
6870 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6871                     int (*poll)(struct napi_struct *, int), int weight)
6872 {
6873         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6874                 return;
6875
6876         INIT_LIST_HEAD(&napi->poll_list);
6877         INIT_HLIST_NODE(&napi->napi_hash_node);
6878         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6879         napi->timer.function = napi_watchdog;
6880         init_gro_hash(napi);
6881         napi->skb = NULL;
6882         INIT_LIST_HEAD(&napi->rx_list);
6883         napi->rx_count = 0;
6884         napi->poll = poll;
6885         if (weight > NAPI_POLL_WEIGHT)
6886                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6887                                 weight);
6888         napi->weight = weight;
6889         napi->dev = dev;
6890 #ifdef CONFIG_NETPOLL
6891         napi->poll_owner = -1;
6892 #endif
6893         set_bit(NAPI_STATE_SCHED, &napi->state);
6894         set_bit(NAPI_STATE_NPSVC, &napi->state);
6895         list_add_rcu(&napi->dev_list, &dev->napi_list);
6896         napi_hash_add(napi);
6897         /* Create kthread for this napi if dev->threaded is set.
6898          * Clear dev->threaded if kthread creation failed so that
6899          * threaded mode will not be enabled in napi_enable().
6900          */
6901         if (dev->threaded && napi_kthread_create(napi))
6902                 dev->threaded = 0;
6903 }
6904 EXPORT_SYMBOL(netif_napi_add);
6905
6906 void napi_disable(struct napi_struct *n)
6907 {
6908         unsigned long val, new;
6909
6910         might_sleep();
6911         set_bit(NAPI_STATE_DISABLE, &n->state);
6912
6913         do {
6914                 val = READ_ONCE(n->state);
6915                 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6916                         usleep_range(20, 200);
6917                         continue;
6918                 }
6919
6920                 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6921                 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6922         } while (cmpxchg(&n->state, val, new) != val);
6923
6924         hrtimer_cancel(&n->timer);
6925
6926         clear_bit(NAPI_STATE_DISABLE, &n->state);
6927 }
6928 EXPORT_SYMBOL(napi_disable);
6929
6930 /**
6931  *      napi_enable - enable NAPI scheduling
6932  *      @n: NAPI context
6933  *
6934  * Resume NAPI from being scheduled on this context.
6935  * Must be paired with napi_disable.
6936  */
6937 void napi_enable(struct napi_struct *n)
6938 {
6939         unsigned long val, new;
6940
6941         do {
6942                 val = READ_ONCE(n->state);
6943                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6944
6945                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6946                 if (n->dev->threaded && n->thread)
6947                         new |= NAPIF_STATE_THREADED;
6948         } while (cmpxchg(&n->state, val, new) != val);
6949 }
6950 EXPORT_SYMBOL(napi_enable);
6951
6952 static void flush_gro_hash(struct napi_struct *napi)
6953 {
6954         int i;
6955
6956         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6957                 struct sk_buff *skb, *n;
6958
6959                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6960                         kfree_skb(skb);
6961                 napi->gro_hash[i].count = 0;
6962         }
6963 }
6964
6965 /* Must be called in process context */
6966 void __netif_napi_del(struct napi_struct *napi)
6967 {
6968         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6969                 return;
6970
6971         napi_hash_del(napi);
6972         list_del_rcu(&napi->dev_list);
6973         napi_free_frags(napi);
6974
6975         flush_gro_hash(napi);
6976         napi->gro_bitmask = 0;
6977
6978         if (napi->thread) {
6979                 kthread_stop(napi->thread);
6980                 napi->thread = NULL;
6981         }
6982 }
6983 EXPORT_SYMBOL(__netif_napi_del);
6984
6985 static int __napi_poll(struct napi_struct *n, bool *repoll)
6986 {
6987         int work, weight;
6988
6989         weight = n->weight;
6990
6991         /* This NAPI_STATE_SCHED test is for avoiding a race
6992          * with netpoll's poll_napi().  Only the entity which
6993          * obtains the lock and sees NAPI_STATE_SCHED set will
6994          * actually make the ->poll() call.  Therefore we avoid
6995          * accidentally calling ->poll() when NAPI is not scheduled.
6996          */
6997         work = 0;
6998         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6999                 work = n->poll(n, weight);
7000                 trace_napi_poll(n, work, weight);
7001         }
7002
7003         if (unlikely(work > weight))
7004                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7005                             n->poll, work, weight);
7006
7007         if (likely(work < weight))
7008                 return work;
7009
7010         /* Drivers must not modify the NAPI state if they
7011          * consume the entire weight.  In such cases this code
7012          * still "owns" the NAPI instance and therefore can
7013          * move the instance around on the list at-will.
7014          */
7015         if (unlikely(napi_disable_pending(n))) {
7016                 napi_complete(n);
7017                 return work;
7018         }
7019
7020         /* The NAPI context has more processing work, but busy-polling
7021          * is preferred. Exit early.
7022          */
7023         if (napi_prefer_busy_poll(n)) {
7024                 if (napi_complete_done(n, work)) {
7025                         /* If timeout is not set, we need to make sure
7026                          * that the NAPI is re-scheduled.
7027                          */
7028                         napi_schedule(n);
7029                 }
7030                 return work;
7031         }
7032
7033         if (n->gro_bitmask) {
7034                 /* flush too old packets
7035                  * If HZ < 1000, flush all packets.
7036                  */
7037                 napi_gro_flush(n, HZ >= 1000);
7038         }
7039
7040         gro_normal_list(n);
7041
7042         /* Some drivers may have called napi_schedule
7043          * prior to exhausting their budget.
7044          */
7045         if (unlikely(!list_empty(&n->poll_list))) {
7046                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7047                              n->dev ? n->dev->name : "backlog");
7048                 return work;
7049         }
7050
7051         *repoll = true;
7052
7053         return work;
7054 }
7055
7056 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7057 {
7058         bool do_repoll = false;
7059         void *have;
7060         int work;
7061
7062         list_del_init(&n->poll_list);
7063
7064         have = netpoll_poll_lock(n);
7065
7066         work = __napi_poll(n, &do_repoll);
7067
7068         if (do_repoll)
7069                 list_add_tail(&n->poll_list, repoll);
7070
7071         netpoll_poll_unlock(have);
7072
7073         return work;
7074 }
7075
7076 static int napi_thread_wait(struct napi_struct *napi)
7077 {
7078         bool woken = false;
7079
7080         set_current_state(TASK_INTERRUPTIBLE);
7081
7082         while (!kthread_should_stop()) {
7083                 /* Testing SCHED_THREADED bit here to make sure the current
7084                  * kthread owns this napi and could poll on this napi.
7085                  * Testing SCHED bit is not enough because SCHED bit might be
7086                  * set by some other busy poll thread or by napi_disable().
7087                  */
7088                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7089                         WARN_ON(!list_empty(&napi->poll_list));
7090                         __set_current_state(TASK_RUNNING);
7091                         return 0;
7092                 }
7093
7094                 schedule();
7095                 /* woken being true indicates this thread owns this napi. */
7096                 woken = true;
7097                 set_current_state(TASK_INTERRUPTIBLE);
7098         }
7099         __set_current_state(TASK_RUNNING);
7100
7101         return -1;
7102 }
7103
7104 static int napi_threaded_poll(void *data)
7105 {
7106         struct napi_struct *napi = data;
7107         void *have;
7108
7109         while (!napi_thread_wait(napi)) {
7110                 for (;;) {
7111                         bool repoll = false;
7112
7113                         local_bh_disable();
7114
7115                         have = netpoll_poll_lock(napi);
7116                         __napi_poll(napi, &repoll);
7117                         netpoll_poll_unlock(have);
7118
7119                         local_bh_enable();
7120
7121                         if (!repoll)
7122                                 break;
7123
7124                         cond_resched();
7125                 }
7126         }
7127         return 0;
7128 }
7129
7130 static __latent_entropy void net_rx_action(struct softirq_action *h)
7131 {
7132         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7133         unsigned long time_limit = jiffies +
7134                 usecs_to_jiffies(netdev_budget_usecs);
7135         int budget = netdev_budget;
7136         LIST_HEAD(list);
7137         LIST_HEAD(repoll);
7138
7139         local_irq_disable();
7140         list_splice_init(&sd->poll_list, &list);
7141         local_irq_enable();
7142
7143         for (;;) {
7144                 struct napi_struct *n;
7145
7146                 if (list_empty(&list)) {
7147                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7148                                 return;
7149                         break;
7150                 }
7151
7152                 n = list_first_entry(&list, struct napi_struct, poll_list);
7153                 budget -= napi_poll(n, &repoll);
7154
7155                 /* If softirq window is exhausted then punt.
7156                  * Allow this to run for 2 jiffies since which will allow
7157                  * an average latency of 1.5/HZ.
7158                  */
7159                 if (unlikely(budget <= 0 ||
7160                              time_after_eq(jiffies, time_limit))) {
7161                         sd->time_squeeze++;
7162                         break;
7163                 }
7164         }
7165
7166         local_irq_disable();
7167
7168         list_splice_tail_init(&sd->poll_list, &list);
7169         list_splice_tail(&repoll, &list);
7170         list_splice(&list, &sd->poll_list);
7171         if (!list_empty(&sd->poll_list))
7172                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7173
7174         net_rps_action_and_irq_enable(sd);
7175 }
7176
7177 struct netdev_adjacent {
7178         struct net_device *dev;
7179
7180         /* upper master flag, there can only be one master device per list */
7181         bool master;
7182
7183         /* lookup ignore flag */
7184         bool ignore;
7185
7186         /* counter for the number of times this device was added to us */
7187         u16 ref_nr;
7188
7189         /* private field for the users */
7190         void *private;
7191
7192         struct list_head list;
7193         struct rcu_head rcu;
7194 };
7195
7196 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7197                                                  struct list_head *adj_list)
7198 {
7199         struct netdev_adjacent *adj;
7200
7201         list_for_each_entry(adj, adj_list, list) {
7202                 if (adj->dev == adj_dev)
7203                         return adj;
7204         }
7205         return NULL;
7206 }
7207
7208 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7209                                     struct netdev_nested_priv *priv)
7210 {
7211         struct net_device *dev = (struct net_device *)priv->data;
7212
7213         return upper_dev == dev;
7214 }
7215
7216 /**
7217  * netdev_has_upper_dev - Check if device is linked to an upper device
7218  * @dev: device
7219  * @upper_dev: upper device to check
7220  *
7221  * Find out if a device is linked to specified upper device and return true
7222  * in case it is. Note that this checks only immediate upper device,
7223  * not through a complete stack of devices. The caller must hold the RTNL lock.
7224  */
7225 bool netdev_has_upper_dev(struct net_device *dev,
7226                           struct net_device *upper_dev)
7227 {
7228         struct netdev_nested_priv priv = {
7229                 .data = (void *)upper_dev,
7230         };
7231
7232         ASSERT_RTNL();
7233
7234         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7235                                              &priv);
7236 }
7237 EXPORT_SYMBOL(netdev_has_upper_dev);
7238
7239 /**
7240  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7241  * @dev: device
7242  * @upper_dev: upper device to check
7243  *
7244  * Find out if a device is linked to specified upper device and return true
7245  * in case it is. Note that this checks the entire upper device chain.
7246  * The caller must hold rcu lock.
7247  */
7248
7249 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7250                                   struct net_device *upper_dev)
7251 {
7252         struct netdev_nested_priv priv = {
7253                 .data = (void *)upper_dev,
7254         };
7255
7256         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7257                                                &priv);
7258 }
7259 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7260
7261 /**
7262  * netdev_has_any_upper_dev - Check if device is linked to some device
7263  * @dev: device
7264  *
7265  * Find out if a device is linked to an upper device and return true in case
7266  * it is. The caller must hold the RTNL lock.
7267  */
7268 bool netdev_has_any_upper_dev(struct net_device *dev)
7269 {
7270         ASSERT_RTNL();
7271
7272         return !list_empty(&dev->adj_list.upper);
7273 }
7274 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7275
7276 /**
7277  * netdev_master_upper_dev_get - Get master upper device
7278  * @dev: device
7279  *
7280  * Find a master upper device and return pointer to it or NULL in case
7281  * it's not there. The caller must hold the RTNL lock.
7282  */
7283 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7284 {
7285         struct netdev_adjacent *upper;
7286
7287         ASSERT_RTNL();
7288
7289         if (list_empty(&dev->adj_list.upper))
7290                 return NULL;
7291
7292         upper = list_first_entry(&dev->adj_list.upper,
7293                                  struct netdev_adjacent, list);
7294         if (likely(upper->master))
7295                 return upper->dev;
7296         return NULL;
7297 }
7298 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7299
7300 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7301 {
7302         struct netdev_adjacent *upper;
7303
7304         ASSERT_RTNL();
7305
7306         if (list_empty(&dev->adj_list.upper))
7307                 return NULL;
7308
7309         upper = list_first_entry(&dev->adj_list.upper,
7310                                  struct netdev_adjacent, list);
7311         if (likely(upper->master) && !upper->ignore)
7312                 return upper->dev;
7313         return NULL;
7314 }
7315
7316 /**
7317  * netdev_has_any_lower_dev - Check if device is linked to some device
7318  * @dev: device
7319  *
7320  * Find out if a device is linked to a lower device and return true in case
7321  * it is. The caller must hold the RTNL lock.
7322  */
7323 static bool netdev_has_any_lower_dev(struct net_device *dev)
7324 {
7325         ASSERT_RTNL();
7326
7327         return !list_empty(&dev->adj_list.lower);
7328 }
7329
7330 void *netdev_adjacent_get_private(struct list_head *adj_list)
7331 {
7332         struct netdev_adjacent *adj;
7333
7334         adj = list_entry(adj_list, struct netdev_adjacent, list);
7335
7336         return adj->private;
7337 }
7338 EXPORT_SYMBOL(netdev_adjacent_get_private);
7339
7340 /**
7341  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7342  * @dev: device
7343  * @iter: list_head ** of the current position
7344  *
7345  * Gets the next device from the dev's upper list, starting from iter
7346  * position. The caller must hold RCU read lock.
7347  */
7348 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7349                                                  struct list_head **iter)
7350 {
7351         struct netdev_adjacent *upper;
7352
7353         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7354
7355         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7356
7357         if (&upper->list == &dev->adj_list.upper)
7358                 return NULL;
7359
7360         *iter = &upper->list;
7361
7362         return upper->dev;
7363 }
7364 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7365
7366 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7367                                                   struct list_head **iter,
7368                                                   bool *ignore)
7369 {
7370         struct netdev_adjacent *upper;
7371
7372         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7373
7374         if (&upper->list == &dev->adj_list.upper)
7375                 return NULL;
7376
7377         *iter = &upper->list;
7378         *ignore = upper->ignore;
7379
7380         return upper->dev;
7381 }
7382
7383 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7384                                                     struct list_head **iter)
7385 {
7386         struct netdev_adjacent *upper;
7387
7388         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7389
7390         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7391
7392         if (&upper->list == &dev->adj_list.upper)
7393                 return NULL;
7394
7395         *iter = &upper->list;
7396
7397         return upper->dev;
7398 }
7399
7400 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7401                                        int (*fn)(struct net_device *dev,
7402                                          struct netdev_nested_priv *priv),
7403                                        struct netdev_nested_priv *priv)
7404 {
7405         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7406         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7407         int ret, cur = 0;
7408         bool ignore;
7409
7410         now = dev;
7411         iter = &dev->adj_list.upper;
7412
7413         while (1) {
7414                 if (now != dev) {
7415                         ret = fn(now, priv);
7416                         if (ret)
7417                                 return ret;
7418                 }
7419
7420                 next = NULL;
7421                 while (1) {
7422                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7423                         if (!udev)
7424                                 break;
7425                         if (ignore)
7426                                 continue;
7427
7428                         next = udev;
7429                         niter = &udev->adj_list.upper;
7430                         dev_stack[cur] = now;
7431                         iter_stack[cur++] = iter;
7432                         break;
7433                 }
7434
7435                 if (!next) {
7436                         if (!cur)
7437                                 return 0;
7438                         next = dev_stack[--cur];
7439                         niter = iter_stack[cur];
7440                 }
7441
7442                 now = next;
7443                 iter = niter;
7444         }
7445
7446         return 0;
7447 }
7448
7449 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7450                                   int (*fn)(struct net_device *dev,
7451                                             struct netdev_nested_priv *priv),
7452                                   struct netdev_nested_priv *priv)
7453 {
7454         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7455         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7456         int ret, cur = 0;
7457
7458         now = dev;
7459         iter = &dev->adj_list.upper;
7460
7461         while (1) {
7462                 if (now != dev) {
7463                         ret = fn(now, priv);
7464                         if (ret)
7465                                 return ret;
7466                 }
7467
7468                 next = NULL;
7469                 while (1) {
7470                         udev = netdev_next_upper_dev_rcu(now, &iter);
7471                         if (!udev)
7472                                 break;
7473
7474                         next = udev;
7475                         niter = &udev->adj_list.upper;
7476                         dev_stack[cur] = now;
7477                         iter_stack[cur++] = iter;
7478                         break;
7479                 }
7480
7481                 if (!next) {
7482                         if (!cur)
7483                                 return 0;
7484                         next = dev_stack[--cur];
7485                         niter = iter_stack[cur];
7486                 }
7487
7488                 now = next;
7489                 iter = niter;
7490         }
7491
7492         return 0;
7493 }
7494 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7495
7496 static bool __netdev_has_upper_dev(struct net_device *dev,
7497                                    struct net_device *upper_dev)
7498 {
7499         struct netdev_nested_priv priv = {
7500                 .flags = 0,
7501                 .data = (void *)upper_dev,
7502         };
7503
7504         ASSERT_RTNL();
7505
7506         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7507                                            &priv);
7508 }
7509
7510 /**
7511  * netdev_lower_get_next_private - Get the next ->private from the
7512  *                                 lower neighbour list
7513  * @dev: device
7514  * @iter: list_head ** of the current position
7515  *
7516  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7517  * list, starting from iter position. The caller must hold either hold the
7518  * RTNL lock or its own locking that guarantees that the neighbour lower
7519  * list will remain unchanged.
7520  */
7521 void *netdev_lower_get_next_private(struct net_device *dev,
7522                                     struct list_head **iter)
7523 {
7524         struct netdev_adjacent *lower;
7525
7526         lower = list_entry(*iter, struct netdev_adjacent, list);
7527
7528         if (&lower->list == &dev->adj_list.lower)
7529                 return NULL;
7530
7531         *iter = lower->list.next;
7532
7533         return lower->private;
7534 }
7535 EXPORT_SYMBOL(netdev_lower_get_next_private);
7536
7537 /**
7538  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7539  *                                     lower neighbour list, RCU
7540  *                                     variant
7541  * @dev: device
7542  * @iter: list_head ** of the current position
7543  *
7544  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7545  * list, starting from iter position. The caller must hold RCU read lock.
7546  */
7547 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7548                                         struct list_head **iter)
7549 {
7550         struct netdev_adjacent *lower;
7551
7552         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7553
7554         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7555
7556         if (&lower->list == &dev->adj_list.lower)
7557                 return NULL;
7558
7559         *iter = &lower->list;
7560
7561         return lower->private;
7562 }
7563 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7564
7565 /**
7566  * netdev_lower_get_next - Get the next device from the lower neighbour
7567  *                         list
7568  * @dev: device
7569  * @iter: list_head ** of the current position
7570  *
7571  * Gets the next netdev_adjacent from the dev's lower neighbour
7572  * list, starting from iter position. The caller must hold RTNL lock or
7573  * its own locking that guarantees that the neighbour lower
7574  * list will remain unchanged.
7575  */
7576 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7577 {
7578         struct netdev_adjacent *lower;
7579
7580         lower = list_entry(*iter, struct netdev_adjacent, list);
7581
7582         if (&lower->list == &dev->adj_list.lower)
7583                 return NULL;
7584
7585         *iter = lower->list.next;
7586
7587         return lower->dev;
7588 }
7589 EXPORT_SYMBOL(netdev_lower_get_next);
7590
7591 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7592                                                 struct list_head **iter)
7593 {
7594         struct netdev_adjacent *lower;
7595
7596         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7597
7598         if (&lower->list == &dev->adj_list.lower)
7599                 return NULL;
7600
7601         *iter = &lower->list;
7602
7603         return lower->dev;
7604 }
7605
7606 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7607                                                   struct list_head **iter,
7608                                                   bool *ignore)
7609 {
7610         struct netdev_adjacent *lower;
7611
7612         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7613
7614         if (&lower->list == &dev->adj_list.lower)
7615                 return NULL;
7616
7617         *iter = &lower->list;
7618         *ignore = lower->ignore;
7619
7620         return lower->dev;
7621 }
7622
7623 int netdev_walk_all_lower_dev(struct net_device *dev,
7624                               int (*fn)(struct net_device *dev,
7625                                         struct netdev_nested_priv *priv),
7626                               struct netdev_nested_priv *priv)
7627 {
7628         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7629         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7630         int ret, cur = 0;
7631
7632         now = dev;
7633         iter = &dev->adj_list.lower;
7634
7635         while (1) {
7636                 if (now != dev) {
7637                         ret = fn(now, priv);
7638                         if (ret)
7639                                 return ret;
7640                 }
7641
7642                 next = NULL;
7643                 while (1) {
7644                         ldev = netdev_next_lower_dev(now, &iter);
7645                         if (!ldev)
7646                                 break;
7647
7648                         next = ldev;
7649                         niter = &ldev->adj_list.lower;
7650                         dev_stack[cur] = now;
7651                         iter_stack[cur++] = iter;
7652                         break;
7653                 }
7654
7655                 if (!next) {
7656                         if (!cur)
7657                                 return 0;
7658                         next = dev_stack[--cur];
7659                         niter = iter_stack[cur];
7660                 }
7661
7662                 now = next;
7663                 iter = niter;
7664         }
7665
7666         return 0;
7667 }
7668 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7669
7670 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7671                                        int (*fn)(struct net_device *dev,
7672                                          struct netdev_nested_priv *priv),
7673                                        struct netdev_nested_priv *priv)
7674 {
7675         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7676         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7677         int ret, cur = 0;
7678         bool ignore;
7679
7680         now = dev;
7681         iter = &dev->adj_list.lower;
7682
7683         while (1) {
7684                 if (now != dev) {
7685                         ret = fn(now, priv);
7686                         if (ret)
7687                                 return ret;
7688                 }
7689
7690                 next = NULL;
7691                 while (1) {
7692                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7693                         if (!ldev)
7694                                 break;
7695                         if (ignore)
7696                                 continue;
7697
7698                         next = ldev;
7699                         niter = &ldev->adj_list.lower;
7700                         dev_stack[cur] = now;
7701                         iter_stack[cur++] = iter;
7702                         break;
7703                 }
7704
7705                 if (!next) {
7706                         if (!cur)
7707                                 return 0;
7708                         next = dev_stack[--cur];
7709                         niter = iter_stack[cur];
7710                 }
7711
7712                 now = next;
7713                 iter = niter;
7714         }
7715
7716         return 0;
7717 }
7718
7719 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7720                                              struct list_head **iter)
7721 {
7722         struct netdev_adjacent *lower;
7723
7724         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7725         if (&lower->list == &dev->adj_list.lower)
7726                 return NULL;
7727
7728         *iter = &lower->list;
7729
7730         return lower->dev;
7731 }
7732 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7733
7734 static u8 __netdev_upper_depth(struct net_device *dev)
7735 {
7736         struct net_device *udev;
7737         struct list_head *iter;
7738         u8 max_depth = 0;
7739         bool ignore;
7740
7741         for (iter = &dev->adj_list.upper,
7742              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7743              udev;
7744              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7745                 if (ignore)
7746                         continue;
7747                 if (max_depth < udev->upper_level)
7748                         max_depth = udev->upper_level;
7749         }
7750
7751         return max_depth;
7752 }
7753
7754 static u8 __netdev_lower_depth(struct net_device *dev)
7755 {
7756         struct net_device *ldev;
7757         struct list_head *iter;
7758         u8 max_depth = 0;
7759         bool ignore;
7760
7761         for (iter = &dev->adj_list.lower,
7762              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7763              ldev;
7764              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7765                 if (ignore)
7766                         continue;
7767                 if (max_depth < ldev->lower_level)
7768                         max_depth = ldev->lower_level;
7769         }
7770
7771         return max_depth;
7772 }
7773
7774 static int __netdev_update_upper_level(struct net_device *dev,
7775                                        struct netdev_nested_priv *__unused)
7776 {
7777         dev->upper_level = __netdev_upper_depth(dev) + 1;
7778         return 0;
7779 }
7780
7781 static int __netdev_update_lower_level(struct net_device *dev,
7782                                        struct netdev_nested_priv *priv)
7783 {
7784         dev->lower_level = __netdev_lower_depth(dev) + 1;
7785
7786 #ifdef CONFIG_LOCKDEP
7787         if (!priv)
7788                 return 0;
7789
7790         if (priv->flags & NESTED_SYNC_IMM)
7791                 dev->nested_level = dev->lower_level - 1;
7792         if (priv->flags & NESTED_SYNC_TODO)
7793                 net_unlink_todo(dev);
7794 #endif
7795         return 0;
7796 }
7797
7798 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7799                                   int (*fn)(struct net_device *dev,
7800                                             struct netdev_nested_priv *priv),
7801                                   struct netdev_nested_priv *priv)
7802 {
7803         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7804         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7805         int ret, cur = 0;
7806
7807         now = dev;
7808         iter = &dev->adj_list.lower;
7809
7810         while (1) {
7811                 if (now != dev) {
7812                         ret = fn(now, priv);
7813                         if (ret)
7814                                 return ret;
7815                 }
7816
7817                 next = NULL;
7818                 while (1) {
7819                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7820                         if (!ldev)
7821                                 break;
7822
7823                         next = ldev;
7824                         niter = &ldev->adj_list.lower;
7825                         dev_stack[cur] = now;
7826                         iter_stack[cur++] = iter;
7827                         break;
7828                 }
7829
7830                 if (!next) {
7831                         if (!cur)
7832                                 return 0;
7833                         next = dev_stack[--cur];
7834                         niter = iter_stack[cur];
7835                 }
7836
7837                 now = next;
7838                 iter = niter;
7839         }
7840
7841         return 0;
7842 }
7843 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7844
7845 /**
7846  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7847  *                                     lower neighbour list, RCU
7848  *                                     variant
7849  * @dev: device
7850  *
7851  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7852  * list. The caller must hold RCU read lock.
7853  */
7854 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7855 {
7856         struct netdev_adjacent *lower;
7857
7858         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7859                         struct netdev_adjacent, list);
7860         if (lower)
7861                 return lower->private;
7862         return NULL;
7863 }
7864 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7865
7866 /**
7867  * netdev_master_upper_dev_get_rcu - Get master upper device
7868  * @dev: device
7869  *
7870  * Find a master upper device and return pointer to it or NULL in case
7871  * it's not there. The caller must hold the RCU read lock.
7872  */
7873 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7874 {
7875         struct netdev_adjacent *upper;
7876
7877         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7878                                        struct netdev_adjacent, list);
7879         if (upper && likely(upper->master))
7880                 return upper->dev;
7881         return NULL;
7882 }
7883 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7884
7885 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7886                               struct net_device *adj_dev,
7887                               struct list_head *dev_list)
7888 {
7889         char linkname[IFNAMSIZ+7];
7890
7891         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7892                 "upper_%s" : "lower_%s", adj_dev->name);
7893         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7894                                  linkname);
7895 }
7896 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7897                                char *name,
7898                                struct list_head *dev_list)
7899 {
7900         char linkname[IFNAMSIZ+7];
7901
7902         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7903                 "upper_%s" : "lower_%s", name);
7904         sysfs_remove_link(&(dev->dev.kobj), linkname);
7905 }
7906
7907 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7908                                                  struct net_device *adj_dev,
7909                                                  struct list_head *dev_list)
7910 {
7911         return (dev_list == &dev->adj_list.upper ||
7912                 dev_list == &dev->adj_list.lower) &&
7913                 net_eq(dev_net(dev), dev_net(adj_dev));
7914 }
7915
7916 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7917                                         struct net_device *adj_dev,
7918                                         struct list_head *dev_list,
7919                                         void *private, bool master)
7920 {
7921         struct netdev_adjacent *adj;
7922         int ret;
7923
7924         adj = __netdev_find_adj(adj_dev, dev_list);
7925
7926         if (adj) {
7927                 adj->ref_nr += 1;
7928                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7929                          dev->name, adj_dev->name, adj->ref_nr);
7930
7931                 return 0;
7932         }
7933
7934         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7935         if (!adj)
7936                 return -ENOMEM;
7937
7938         adj->dev = adj_dev;
7939         adj->master = master;
7940         adj->ref_nr = 1;
7941         adj->private = private;
7942         adj->ignore = false;
7943         dev_hold(adj_dev);
7944
7945         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7946                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7947
7948         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7949                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7950                 if (ret)
7951                         goto free_adj;
7952         }
7953
7954         /* Ensure that master link is always the first item in list. */
7955         if (master) {
7956                 ret = sysfs_create_link(&(dev->dev.kobj),
7957                                         &(adj_dev->dev.kobj), "master");
7958                 if (ret)
7959                         goto remove_symlinks;
7960
7961                 list_add_rcu(&adj->list, dev_list);
7962         } else {
7963                 list_add_tail_rcu(&adj->list, dev_list);
7964         }
7965
7966         return 0;
7967
7968 remove_symlinks:
7969         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7970                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7971 free_adj:
7972         kfree(adj);
7973         dev_put(adj_dev);
7974
7975         return ret;
7976 }
7977
7978 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7979                                          struct net_device *adj_dev,
7980                                          u16 ref_nr,
7981                                          struct list_head *dev_list)
7982 {
7983         struct netdev_adjacent *adj;
7984
7985         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7986                  dev->name, adj_dev->name, ref_nr);
7987
7988         adj = __netdev_find_adj(adj_dev, dev_list);
7989
7990         if (!adj) {
7991                 pr_err("Adjacency does not exist for device %s from %s\n",
7992                        dev->name, adj_dev->name);
7993                 WARN_ON(1);
7994                 return;
7995         }
7996
7997         if (adj->ref_nr > ref_nr) {
7998                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7999                          dev->name, adj_dev->name, ref_nr,
8000                          adj->ref_nr - ref_nr);
8001                 adj->ref_nr -= ref_nr;
8002                 return;
8003         }
8004
8005         if (adj->master)
8006                 sysfs_remove_link(&(dev->dev.kobj), "master");
8007
8008         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8009                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8010
8011         list_del_rcu(&adj->list);
8012         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8013                  adj_dev->name, dev->name, adj_dev->name);
8014         dev_put(adj_dev);
8015         kfree_rcu(adj, rcu);
8016 }
8017
8018 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8019                                             struct net_device *upper_dev,
8020                                             struct list_head *up_list,
8021                                             struct list_head *down_list,
8022                                             void *private, bool master)
8023 {
8024         int ret;
8025
8026         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8027                                            private, master);
8028         if (ret)
8029                 return ret;
8030
8031         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8032                                            private, false);
8033         if (ret) {
8034                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8035                 return ret;
8036         }
8037
8038         return 0;
8039 }
8040
8041 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8042                                                struct net_device *upper_dev,
8043                                                u16 ref_nr,
8044                                                struct list_head *up_list,
8045                                                struct list_head *down_list)
8046 {
8047         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8048         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8049 }
8050
8051 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8052                                                 struct net_device *upper_dev,
8053                                                 void *private, bool master)
8054 {
8055         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8056                                                 &dev->adj_list.upper,
8057                                                 &upper_dev->adj_list.lower,
8058                                                 private, master);
8059 }
8060
8061 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8062                                                    struct net_device *upper_dev)
8063 {
8064         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8065                                            &dev->adj_list.upper,
8066                                            &upper_dev->adj_list.lower);
8067 }
8068
8069 static int __netdev_upper_dev_link(struct net_device *dev,
8070                                    struct net_device *upper_dev, bool master,
8071                                    void *upper_priv, void *upper_info,
8072                                    struct netdev_nested_priv *priv,
8073                                    struct netlink_ext_ack *extack)
8074 {
8075         struct netdev_notifier_changeupper_info changeupper_info = {
8076                 .info = {
8077                         .dev = dev,
8078                         .extack = extack,
8079                 },
8080                 .upper_dev = upper_dev,
8081                 .master = master,
8082                 .linking = true,
8083                 .upper_info = upper_info,
8084         };
8085         struct net_device *master_dev;
8086         int ret = 0;
8087
8088         ASSERT_RTNL();
8089
8090         if (dev == upper_dev)
8091                 return -EBUSY;
8092
8093         /* To prevent loops, check if dev is not upper device to upper_dev. */
8094         if (__netdev_has_upper_dev(upper_dev, dev))
8095                 return -EBUSY;
8096
8097         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8098                 return -EMLINK;
8099
8100         if (!master) {
8101                 if (__netdev_has_upper_dev(dev, upper_dev))
8102                         return -EEXIST;
8103         } else {
8104                 master_dev = __netdev_master_upper_dev_get(dev);
8105                 if (master_dev)
8106                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
8107         }
8108
8109         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8110                                             &changeupper_info.info);
8111         ret = notifier_to_errno(ret);
8112         if (ret)
8113                 return ret;
8114
8115         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8116                                                    master);
8117         if (ret)
8118                 return ret;
8119
8120         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8121                                             &changeupper_info.info);
8122         ret = notifier_to_errno(ret);
8123         if (ret)
8124                 goto rollback;
8125
8126         __netdev_update_upper_level(dev, NULL);
8127         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8128
8129         __netdev_update_lower_level(upper_dev, priv);
8130         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8131                                     priv);
8132
8133         return 0;
8134
8135 rollback:
8136         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8137
8138         return ret;
8139 }
8140
8141 /**
8142  * netdev_upper_dev_link - Add a link to the upper device
8143  * @dev: device
8144  * @upper_dev: new upper device
8145  * @extack: netlink extended ack
8146  *
8147  * Adds a link to device which is upper to this one. The caller must hold
8148  * the RTNL lock. On a failure a negative errno code is returned.
8149  * On success the reference counts are adjusted and the function
8150  * returns zero.
8151  */
8152 int netdev_upper_dev_link(struct net_device *dev,
8153                           struct net_device *upper_dev,
8154                           struct netlink_ext_ack *extack)
8155 {
8156         struct netdev_nested_priv priv = {
8157                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8158                 .data = NULL,
8159         };
8160
8161         return __netdev_upper_dev_link(dev, upper_dev, false,
8162                                        NULL, NULL, &priv, extack);
8163 }
8164 EXPORT_SYMBOL(netdev_upper_dev_link);
8165
8166 /**
8167  * netdev_master_upper_dev_link - Add a master link to the upper device
8168  * @dev: device
8169  * @upper_dev: new upper device
8170  * @upper_priv: upper device private
8171  * @upper_info: upper info to be passed down via notifier
8172  * @extack: netlink extended ack
8173  *
8174  * Adds a link to device which is upper to this one. In this case, only
8175  * one master upper device can be linked, although other non-master devices
8176  * might be linked as well. The caller must hold the RTNL lock.
8177  * On a failure a negative errno code is returned. On success the reference
8178  * counts are adjusted and the function returns zero.
8179  */
8180 int netdev_master_upper_dev_link(struct net_device *dev,
8181                                  struct net_device *upper_dev,
8182                                  void *upper_priv, void *upper_info,
8183                                  struct netlink_ext_ack *extack)
8184 {
8185         struct netdev_nested_priv priv = {
8186                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8187                 .data = NULL,
8188         };
8189
8190         return __netdev_upper_dev_link(dev, upper_dev, true,
8191                                        upper_priv, upper_info, &priv, extack);
8192 }
8193 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8194
8195 static void __netdev_upper_dev_unlink(struct net_device *dev,
8196                                       struct net_device *upper_dev,
8197                                       struct netdev_nested_priv *priv)
8198 {
8199         struct netdev_notifier_changeupper_info changeupper_info = {
8200                 .info = {
8201                         .dev = dev,
8202                 },
8203                 .upper_dev = upper_dev,
8204                 .linking = false,
8205         };
8206
8207         ASSERT_RTNL();
8208
8209         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8210
8211         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8212                                       &changeupper_info.info);
8213
8214         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8215
8216         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8217                                       &changeupper_info.info);
8218
8219         __netdev_update_upper_level(dev, NULL);
8220         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8221
8222         __netdev_update_lower_level(upper_dev, priv);
8223         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8224                                     priv);
8225 }
8226
8227 /**
8228  * netdev_upper_dev_unlink - Removes a link to upper device
8229  * @dev: device
8230  * @upper_dev: new upper device
8231  *
8232  * Removes a link to device which is upper to this one. The caller must hold
8233  * the RTNL lock.
8234  */
8235 void netdev_upper_dev_unlink(struct net_device *dev,
8236                              struct net_device *upper_dev)
8237 {
8238         struct netdev_nested_priv priv = {
8239                 .flags = NESTED_SYNC_TODO,
8240                 .data = NULL,
8241         };
8242
8243         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8244 }
8245 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8246
8247 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8248                                       struct net_device *lower_dev,
8249                                       bool val)
8250 {
8251         struct netdev_adjacent *adj;
8252
8253         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8254         if (adj)
8255                 adj->ignore = val;
8256
8257         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8258         if (adj)
8259                 adj->ignore = val;
8260 }
8261
8262 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8263                                         struct net_device *lower_dev)
8264 {
8265         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8266 }
8267
8268 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8269                                        struct net_device *lower_dev)
8270 {
8271         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8272 }
8273
8274 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8275                                    struct net_device *new_dev,
8276                                    struct net_device *dev,
8277                                    struct netlink_ext_ack *extack)
8278 {
8279         struct netdev_nested_priv priv = {
8280                 .flags = 0,
8281                 .data = NULL,
8282         };
8283         int err;
8284
8285         if (!new_dev)
8286                 return 0;
8287
8288         if (old_dev && new_dev != old_dev)
8289                 netdev_adjacent_dev_disable(dev, old_dev);
8290         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8291                                       extack);
8292         if (err) {
8293                 if (old_dev && new_dev != old_dev)
8294                         netdev_adjacent_dev_enable(dev, old_dev);
8295                 return err;
8296         }
8297
8298         return 0;
8299 }
8300 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8301
8302 void netdev_adjacent_change_commit(struct net_device *old_dev,
8303                                    struct net_device *new_dev,
8304                                    struct net_device *dev)
8305 {
8306         struct netdev_nested_priv priv = {
8307                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8308                 .data = NULL,
8309         };
8310
8311         if (!new_dev || !old_dev)
8312                 return;
8313
8314         if (new_dev == old_dev)
8315                 return;
8316
8317         netdev_adjacent_dev_enable(dev, old_dev);
8318         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8319 }
8320 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8321
8322 void netdev_adjacent_change_abort(struct net_device *old_dev,
8323                                   struct net_device *new_dev,
8324                                   struct net_device *dev)
8325 {
8326         struct netdev_nested_priv priv = {
8327                 .flags = 0,
8328                 .data = NULL,
8329         };
8330
8331         if (!new_dev)
8332                 return;
8333
8334         if (old_dev && new_dev != old_dev)
8335                 netdev_adjacent_dev_enable(dev, old_dev);
8336
8337         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8338 }
8339 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8340
8341 /**
8342  * netdev_bonding_info_change - Dispatch event about slave change
8343  * @dev: device
8344  * @bonding_info: info to dispatch
8345  *
8346  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8347  * The caller must hold the RTNL lock.
8348  */
8349 void netdev_bonding_info_change(struct net_device *dev,
8350                                 struct netdev_bonding_info *bonding_info)
8351 {
8352         struct netdev_notifier_bonding_info info = {
8353                 .info.dev = dev,
8354         };
8355
8356         memcpy(&info.bonding_info, bonding_info,
8357                sizeof(struct netdev_bonding_info));
8358         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8359                                       &info.info);
8360 }
8361 EXPORT_SYMBOL(netdev_bonding_info_change);
8362
8363 /**
8364  * netdev_get_xmit_slave - Get the xmit slave of master device
8365  * @dev: device
8366  * @skb: The packet
8367  * @all_slaves: assume all the slaves are active
8368  *
8369  * The reference counters are not incremented so the caller must be
8370  * careful with locks. The caller must hold RCU lock.
8371  * %NULL is returned if no slave is found.
8372  */
8373
8374 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8375                                          struct sk_buff *skb,
8376                                          bool all_slaves)
8377 {
8378         const struct net_device_ops *ops = dev->netdev_ops;
8379
8380         if (!ops->ndo_get_xmit_slave)
8381                 return NULL;
8382         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8383 }
8384 EXPORT_SYMBOL(netdev_get_xmit_slave);
8385
8386 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8387                                                   struct sock *sk)
8388 {
8389         const struct net_device_ops *ops = dev->netdev_ops;
8390
8391         if (!ops->ndo_sk_get_lower_dev)
8392                 return NULL;
8393         return ops->ndo_sk_get_lower_dev(dev, sk);
8394 }
8395
8396 /**
8397  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8398  * @dev: device
8399  * @sk: the socket
8400  *
8401  * %NULL is returned if no lower device is found.
8402  */
8403
8404 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8405                                             struct sock *sk)
8406 {
8407         struct net_device *lower;
8408
8409         lower = netdev_sk_get_lower_dev(dev, sk);
8410         while (lower) {
8411                 dev = lower;
8412                 lower = netdev_sk_get_lower_dev(dev, sk);
8413         }
8414
8415         return dev;
8416 }
8417 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8418
8419 static void netdev_adjacent_add_links(struct net_device *dev)
8420 {
8421         struct netdev_adjacent *iter;
8422
8423         struct net *net = dev_net(dev);
8424
8425         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8426                 if (!net_eq(net, dev_net(iter->dev)))
8427                         continue;
8428                 netdev_adjacent_sysfs_add(iter->dev, dev,
8429                                           &iter->dev->adj_list.lower);
8430                 netdev_adjacent_sysfs_add(dev, iter->dev,
8431                                           &dev->adj_list.upper);
8432         }
8433
8434         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8435                 if (!net_eq(net, dev_net(iter->dev)))
8436                         continue;
8437                 netdev_adjacent_sysfs_add(iter->dev, dev,
8438                                           &iter->dev->adj_list.upper);
8439                 netdev_adjacent_sysfs_add(dev, iter->dev,
8440                                           &dev->adj_list.lower);
8441         }
8442 }
8443
8444 static void netdev_adjacent_del_links(struct net_device *dev)
8445 {
8446         struct netdev_adjacent *iter;
8447
8448         struct net *net = dev_net(dev);
8449
8450         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8451                 if (!net_eq(net, dev_net(iter->dev)))
8452                         continue;
8453                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8454                                           &iter->dev->adj_list.lower);
8455                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8456                                           &dev->adj_list.upper);
8457         }
8458
8459         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8460                 if (!net_eq(net, dev_net(iter->dev)))
8461                         continue;
8462                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8463                                           &iter->dev->adj_list.upper);
8464                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8465                                           &dev->adj_list.lower);
8466         }
8467 }
8468
8469 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8470 {
8471         struct netdev_adjacent *iter;
8472
8473         struct net *net = dev_net(dev);
8474
8475         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8476                 if (!net_eq(net, dev_net(iter->dev)))
8477                         continue;
8478                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8479                                           &iter->dev->adj_list.lower);
8480                 netdev_adjacent_sysfs_add(iter->dev, dev,
8481                                           &iter->dev->adj_list.lower);
8482         }
8483
8484         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8485                 if (!net_eq(net, dev_net(iter->dev)))
8486                         continue;
8487                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8488                                           &iter->dev->adj_list.upper);
8489                 netdev_adjacent_sysfs_add(iter->dev, dev,
8490                                           &iter->dev->adj_list.upper);
8491         }
8492 }
8493
8494 void *netdev_lower_dev_get_private(struct net_device *dev,
8495                                    struct net_device *lower_dev)
8496 {
8497         struct netdev_adjacent *lower;
8498
8499         if (!lower_dev)
8500                 return NULL;
8501         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8502         if (!lower)
8503                 return NULL;
8504
8505         return lower->private;
8506 }
8507 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8508
8509
8510 /**
8511  * netdev_lower_state_changed - Dispatch event about lower device state change
8512  * @lower_dev: device
8513  * @lower_state_info: state to dispatch
8514  *
8515  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8516  * The caller must hold the RTNL lock.
8517  */
8518 void netdev_lower_state_changed(struct net_device *lower_dev,
8519                                 void *lower_state_info)
8520 {
8521         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8522                 .info.dev = lower_dev,
8523         };
8524
8525         ASSERT_RTNL();
8526         changelowerstate_info.lower_state_info = lower_state_info;
8527         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8528                                       &changelowerstate_info.info);
8529 }
8530 EXPORT_SYMBOL(netdev_lower_state_changed);
8531
8532 static void dev_change_rx_flags(struct net_device *dev, int flags)
8533 {
8534         const struct net_device_ops *ops = dev->netdev_ops;
8535
8536         if (ops->ndo_change_rx_flags)
8537                 ops->ndo_change_rx_flags(dev, flags);
8538 }
8539
8540 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8541 {
8542         unsigned int old_flags = dev->flags;
8543         kuid_t uid;
8544         kgid_t gid;
8545
8546         ASSERT_RTNL();
8547
8548         dev->flags |= IFF_PROMISC;
8549         dev->promiscuity += inc;
8550         if (dev->promiscuity == 0) {
8551                 /*
8552                  * Avoid overflow.
8553                  * If inc causes overflow, untouch promisc and return error.
8554                  */
8555                 if (inc < 0)
8556                         dev->flags &= ~IFF_PROMISC;
8557                 else {
8558                         dev->promiscuity -= inc;
8559                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8560                                 dev->name);
8561                         return -EOVERFLOW;
8562                 }
8563         }
8564         if (dev->flags != old_flags) {
8565                 pr_info("device %s %s promiscuous mode\n",
8566                         dev->name,
8567                         dev->flags & IFF_PROMISC ? "entered" : "left");
8568                 if (audit_enabled) {
8569                         current_uid_gid(&uid, &gid);
8570                         audit_log(audit_context(), GFP_ATOMIC,
8571                                   AUDIT_ANOM_PROMISCUOUS,
8572                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8573                                   dev->name, (dev->flags & IFF_PROMISC),
8574                                   (old_flags & IFF_PROMISC),
8575                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8576                                   from_kuid(&init_user_ns, uid),
8577                                   from_kgid(&init_user_ns, gid),
8578                                   audit_get_sessionid(current));
8579                 }
8580
8581                 dev_change_rx_flags(dev, IFF_PROMISC);
8582         }
8583         if (notify)
8584                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8585         return 0;
8586 }
8587
8588 /**
8589  *      dev_set_promiscuity     - update promiscuity count on a device
8590  *      @dev: device
8591  *      @inc: modifier
8592  *
8593  *      Add or remove promiscuity from a device. While the count in the device
8594  *      remains above zero the interface remains promiscuous. Once it hits zero
8595  *      the device reverts back to normal filtering operation. A negative inc
8596  *      value is used to drop promiscuity on the device.
8597  *      Return 0 if successful or a negative errno code on error.
8598  */
8599 int dev_set_promiscuity(struct net_device *dev, int inc)
8600 {
8601         unsigned int old_flags = dev->flags;
8602         int err;
8603
8604         err = __dev_set_promiscuity(dev, inc, true);
8605         if (err < 0)
8606                 return err;
8607         if (dev->flags != old_flags)
8608                 dev_set_rx_mode(dev);
8609         return err;
8610 }
8611 EXPORT_SYMBOL(dev_set_promiscuity);
8612
8613 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8614 {
8615         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8616
8617         ASSERT_RTNL();
8618
8619         dev->flags |= IFF_ALLMULTI;
8620         dev->allmulti += inc;
8621         if (dev->allmulti == 0) {
8622                 /*
8623                  * Avoid overflow.
8624                  * If inc causes overflow, untouch allmulti and return error.
8625                  */
8626                 if (inc < 0)
8627                         dev->flags &= ~IFF_ALLMULTI;
8628                 else {
8629                         dev->allmulti -= inc;
8630                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8631                                 dev->name);
8632                         return -EOVERFLOW;
8633                 }
8634         }
8635         if (dev->flags ^ old_flags) {
8636                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8637                 dev_set_rx_mode(dev);
8638                 if (notify)
8639                         __dev_notify_flags(dev, old_flags,
8640                                            dev->gflags ^ old_gflags);
8641         }
8642         return 0;
8643 }
8644
8645 /**
8646  *      dev_set_allmulti        - update allmulti count on a device
8647  *      @dev: device
8648  *      @inc: modifier
8649  *
8650  *      Add or remove reception of all multicast frames to a device. While the
8651  *      count in the device remains above zero the interface remains listening
8652  *      to all interfaces. Once it hits zero the device reverts back to normal
8653  *      filtering operation. A negative @inc value is used to drop the counter
8654  *      when releasing a resource needing all multicasts.
8655  *      Return 0 if successful or a negative errno code on error.
8656  */
8657
8658 int dev_set_allmulti(struct net_device *dev, int inc)
8659 {
8660         return __dev_set_allmulti(dev, inc, true);
8661 }
8662 EXPORT_SYMBOL(dev_set_allmulti);
8663
8664 /*
8665  *      Upload unicast and multicast address lists to device and
8666  *      configure RX filtering. When the device doesn't support unicast
8667  *      filtering it is put in promiscuous mode while unicast addresses
8668  *      are present.
8669  */
8670 void __dev_set_rx_mode(struct net_device *dev)
8671 {
8672         const struct net_device_ops *ops = dev->netdev_ops;
8673
8674         /* dev_open will call this function so the list will stay sane. */
8675         if (!(dev->flags&IFF_UP))
8676                 return;
8677
8678         if (!netif_device_present(dev))
8679                 return;
8680
8681         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8682                 /* Unicast addresses changes may only happen under the rtnl,
8683                  * therefore calling __dev_set_promiscuity here is safe.
8684                  */
8685                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8686                         __dev_set_promiscuity(dev, 1, false);
8687                         dev->uc_promisc = true;
8688                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8689                         __dev_set_promiscuity(dev, -1, false);
8690                         dev->uc_promisc = false;
8691                 }
8692         }
8693
8694         if (ops->ndo_set_rx_mode)
8695                 ops->ndo_set_rx_mode(dev);
8696 }
8697
8698 void dev_set_rx_mode(struct net_device *dev)
8699 {
8700         netif_addr_lock_bh(dev);
8701         __dev_set_rx_mode(dev);
8702         netif_addr_unlock_bh(dev);
8703 }
8704
8705 /**
8706  *      dev_get_flags - get flags reported to userspace
8707  *      @dev: device
8708  *
8709  *      Get the combination of flag bits exported through APIs to userspace.
8710  */
8711 unsigned int dev_get_flags(const struct net_device *dev)
8712 {
8713         unsigned int flags;
8714
8715         flags = (dev->flags & ~(IFF_PROMISC |
8716                                 IFF_ALLMULTI |
8717                                 IFF_RUNNING |
8718                                 IFF_LOWER_UP |
8719                                 IFF_DORMANT)) |
8720                 (dev->gflags & (IFF_PROMISC |
8721                                 IFF_ALLMULTI));
8722
8723         if (netif_running(dev)) {
8724                 if (netif_oper_up(dev))
8725                         flags |= IFF_RUNNING;
8726                 if (netif_carrier_ok(dev))
8727                         flags |= IFF_LOWER_UP;
8728                 if (netif_dormant(dev))
8729                         flags |= IFF_DORMANT;
8730         }
8731
8732         return flags;
8733 }
8734 EXPORT_SYMBOL(dev_get_flags);
8735
8736 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8737                        struct netlink_ext_ack *extack)
8738 {
8739         unsigned int old_flags = dev->flags;
8740         int ret;
8741
8742         ASSERT_RTNL();
8743
8744         /*
8745          *      Set the flags on our device.
8746          */
8747
8748         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8749                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8750                                IFF_AUTOMEDIA)) |
8751                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8752                                     IFF_ALLMULTI));
8753
8754         /*
8755          *      Load in the correct multicast list now the flags have changed.
8756          */
8757
8758         if ((old_flags ^ flags) & IFF_MULTICAST)
8759                 dev_change_rx_flags(dev, IFF_MULTICAST);
8760
8761         dev_set_rx_mode(dev);
8762
8763         /*
8764          *      Have we downed the interface. We handle IFF_UP ourselves
8765          *      according to user attempts to set it, rather than blindly
8766          *      setting it.
8767          */
8768
8769         ret = 0;
8770         if ((old_flags ^ flags) & IFF_UP) {
8771                 if (old_flags & IFF_UP)
8772                         __dev_close(dev);
8773                 else
8774                         ret = __dev_open(dev, extack);
8775         }
8776
8777         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8778                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8779                 unsigned int old_flags = dev->flags;
8780
8781                 dev->gflags ^= IFF_PROMISC;
8782
8783                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8784                         if (dev->flags != old_flags)
8785                                 dev_set_rx_mode(dev);
8786         }
8787
8788         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8789          * is important. Some (broken) drivers set IFF_PROMISC, when
8790          * IFF_ALLMULTI is requested not asking us and not reporting.
8791          */
8792         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8793                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8794
8795                 dev->gflags ^= IFF_ALLMULTI;
8796                 __dev_set_allmulti(dev, inc, false);
8797         }
8798
8799         return ret;
8800 }
8801
8802 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8803                         unsigned int gchanges)
8804 {
8805         unsigned int changes = dev->flags ^ old_flags;
8806
8807         if (gchanges)
8808                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8809
8810         if (changes & IFF_UP) {
8811                 if (dev->flags & IFF_UP)
8812                         call_netdevice_notifiers(NETDEV_UP, dev);
8813                 else
8814                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8815         }
8816
8817         if (dev->flags & IFF_UP &&
8818             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8819                 struct netdev_notifier_change_info change_info = {
8820                         .info = {
8821                                 .dev = dev,
8822                         },
8823                         .flags_changed = changes,
8824                 };
8825
8826                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8827         }
8828 }
8829
8830 /**
8831  *      dev_change_flags - change device settings
8832  *      @dev: device
8833  *      @flags: device state flags
8834  *      @extack: netlink extended ack
8835  *
8836  *      Change settings on device based state flags. The flags are
8837  *      in the userspace exported format.
8838  */
8839 int dev_change_flags(struct net_device *dev, unsigned int flags,
8840                      struct netlink_ext_ack *extack)
8841 {
8842         int ret;
8843         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8844
8845         ret = __dev_change_flags(dev, flags, extack);
8846         if (ret < 0)
8847                 return ret;
8848
8849         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8850         __dev_notify_flags(dev, old_flags, changes);
8851         return ret;
8852 }
8853 EXPORT_SYMBOL(dev_change_flags);
8854
8855 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8856 {
8857         const struct net_device_ops *ops = dev->netdev_ops;
8858
8859         if (ops->ndo_change_mtu)
8860                 return ops->ndo_change_mtu(dev, new_mtu);
8861
8862         /* Pairs with all the lockless reads of dev->mtu in the stack */
8863         WRITE_ONCE(dev->mtu, new_mtu);
8864         return 0;
8865 }
8866 EXPORT_SYMBOL(__dev_set_mtu);
8867
8868 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8869                      struct netlink_ext_ack *extack)
8870 {
8871         /* MTU must be positive, and in range */
8872         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8873                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8874                 return -EINVAL;
8875         }
8876
8877         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8878                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8879                 return -EINVAL;
8880         }
8881         return 0;
8882 }
8883
8884 /**
8885  *      dev_set_mtu_ext - Change maximum transfer unit
8886  *      @dev: device
8887  *      @new_mtu: new transfer unit
8888  *      @extack: netlink extended ack
8889  *
8890  *      Change the maximum transfer size of the network device.
8891  */
8892 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8893                     struct netlink_ext_ack *extack)
8894 {
8895         int err, orig_mtu;
8896
8897         if (new_mtu == dev->mtu)
8898                 return 0;
8899
8900         err = dev_validate_mtu(dev, new_mtu, extack);
8901         if (err)
8902                 return err;
8903
8904         if (!netif_device_present(dev))
8905                 return -ENODEV;
8906
8907         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8908         err = notifier_to_errno(err);
8909         if (err)
8910                 return err;
8911
8912         orig_mtu = dev->mtu;
8913         err = __dev_set_mtu(dev, new_mtu);
8914
8915         if (!err) {
8916                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8917                                                    orig_mtu);
8918                 err = notifier_to_errno(err);
8919                 if (err) {
8920                         /* setting mtu back and notifying everyone again,
8921                          * so that they have a chance to revert changes.
8922                          */
8923                         __dev_set_mtu(dev, orig_mtu);
8924                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8925                                                      new_mtu);
8926                 }
8927         }
8928         return err;
8929 }
8930
8931 int dev_set_mtu(struct net_device *dev, int new_mtu)
8932 {
8933         struct netlink_ext_ack extack;
8934         int err;
8935
8936         memset(&extack, 0, sizeof(extack));
8937         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8938         if (err && extack._msg)
8939                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8940         return err;
8941 }
8942 EXPORT_SYMBOL(dev_set_mtu);
8943
8944 /**
8945  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8946  *      @dev: device
8947  *      @new_len: new tx queue length
8948  */
8949 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8950 {
8951         unsigned int orig_len = dev->tx_queue_len;
8952         int res;
8953
8954         if (new_len != (unsigned int)new_len)
8955                 return -ERANGE;
8956
8957         if (new_len != orig_len) {
8958                 dev->tx_queue_len = new_len;
8959                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8960                 res = notifier_to_errno(res);
8961                 if (res)
8962                         goto err_rollback;
8963                 res = dev_qdisc_change_tx_queue_len(dev);
8964                 if (res)
8965                         goto err_rollback;
8966         }
8967
8968         return 0;
8969
8970 err_rollback:
8971         netdev_err(dev, "refused to change device tx_queue_len\n");
8972         dev->tx_queue_len = orig_len;
8973         return res;
8974 }
8975
8976 /**
8977  *      dev_set_group - Change group this device belongs to
8978  *      @dev: device
8979  *      @new_group: group this device should belong to
8980  */
8981 void dev_set_group(struct net_device *dev, int new_group)
8982 {
8983         dev->group = new_group;
8984 }
8985 EXPORT_SYMBOL(dev_set_group);
8986
8987 /**
8988  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8989  *      @dev: device
8990  *      @addr: new address
8991  *      @extack: netlink extended ack
8992  */
8993 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8994                               struct netlink_ext_ack *extack)
8995 {
8996         struct netdev_notifier_pre_changeaddr_info info = {
8997                 .info.dev = dev,
8998                 .info.extack = extack,
8999                 .dev_addr = addr,
9000         };
9001         int rc;
9002
9003         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9004         return notifier_to_errno(rc);
9005 }
9006 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9007
9008 /**
9009  *      dev_set_mac_address - Change Media Access Control Address
9010  *      @dev: device
9011  *      @sa: new address
9012  *      @extack: netlink extended ack
9013  *
9014  *      Change the hardware (MAC) address of the device
9015  */
9016 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9017                         struct netlink_ext_ack *extack)
9018 {
9019         const struct net_device_ops *ops = dev->netdev_ops;
9020         int err;
9021
9022         if (!ops->ndo_set_mac_address)
9023                 return -EOPNOTSUPP;
9024         if (sa->sa_family != dev->type)
9025                 return -EINVAL;
9026         if (!netif_device_present(dev))
9027                 return -ENODEV;
9028         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9029         if (err)
9030                 return err;
9031         err = ops->ndo_set_mac_address(dev, sa);
9032         if (err)
9033                 return err;
9034         dev->addr_assign_type = NET_ADDR_SET;
9035         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9036         add_device_randomness(dev->dev_addr, dev->addr_len);
9037         return 0;
9038 }
9039 EXPORT_SYMBOL(dev_set_mac_address);
9040
9041 static DECLARE_RWSEM(dev_addr_sem);
9042
9043 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9044                              struct netlink_ext_ack *extack)
9045 {
9046         int ret;
9047
9048         down_write(&dev_addr_sem);
9049         ret = dev_set_mac_address(dev, sa, extack);
9050         up_write(&dev_addr_sem);
9051         return ret;
9052 }
9053 EXPORT_SYMBOL(dev_set_mac_address_user);
9054
9055 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9056 {
9057         size_t size = sizeof(sa->sa_data);
9058         struct net_device *dev;
9059         int ret = 0;
9060
9061         down_read(&dev_addr_sem);
9062         rcu_read_lock();
9063
9064         dev = dev_get_by_name_rcu(net, dev_name);
9065         if (!dev) {
9066                 ret = -ENODEV;
9067                 goto unlock;
9068         }
9069         if (!dev->addr_len)
9070                 memset(sa->sa_data, 0, size);
9071         else
9072                 memcpy(sa->sa_data, dev->dev_addr,
9073                        min_t(size_t, size, dev->addr_len));
9074         sa->sa_family = dev->type;
9075
9076 unlock:
9077         rcu_read_unlock();
9078         up_read(&dev_addr_sem);
9079         return ret;
9080 }
9081 EXPORT_SYMBOL(dev_get_mac_address);
9082
9083 /**
9084  *      dev_change_carrier - Change device carrier
9085  *      @dev: device
9086  *      @new_carrier: new value
9087  *
9088  *      Change device carrier
9089  */
9090 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9091 {
9092         const struct net_device_ops *ops = dev->netdev_ops;
9093
9094         if (!ops->ndo_change_carrier)
9095                 return -EOPNOTSUPP;
9096         if (!netif_device_present(dev))
9097                 return -ENODEV;
9098         return ops->ndo_change_carrier(dev, new_carrier);
9099 }
9100 EXPORT_SYMBOL(dev_change_carrier);
9101
9102 /**
9103  *      dev_get_phys_port_id - Get device physical port ID
9104  *      @dev: device
9105  *      @ppid: port ID
9106  *
9107  *      Get device physical port ID
9108  */
9109 int dev_get_phys_port_id(struct net_device *dev,
9110                          struct netdev_phys_item_id *ppid)
9111 {
9112         const struct net_device_ops *ops = dev->netdev_ops;
9113
9114         if (!ops->ndo_get_phys_port_id)
9115                 return -EOPNOTSUPP;
9116         return ops->ndo_get_phys_port_id(dev, ppid);
9117 }
9118 EXPORT_SYMBOL(dev_get_phys_port_id);
9119
9120 /**
9121  *      dev_get_phys_port_name - Get device physical port name
9122  *      @dev: device
9123  *      @name: port name
9124  *      @len: limit of bytes to copy to name
9125  *
9126  *      Get device physical port name
9127  */
9128 int dev_get_phys_port_name(struct net_device *dev,
9129                            char *name, size_t len)
9130 {
9131         const struct net_device_ops *ops = dev->netdev_ops;
9132         int err;
9133
9134         if (ops->ndo_get_phys_port_name) {
9135                 err = ops->ndo_get_phys_port_name(dev, name, len);
9136                 if (err != -EOPNOTSUPP)
9137                         return err;
9138         }
9139         return devlink_compat_phys_port_name_get(dev, name, len);
9140 }
9141 EXPORT_SYMBOL(dev_get_phys_port_name);
9142
9143 /**
9144  *      dev_get_port_parent_id - Get the device's port parent identifier
9145  *      @dev: network device
9146  *      @ppid: pointer to a storage for the port's parent identifier
9147  *      @recurse: allow/disallow recursion to lower devices
9148  *
9149  *      Get the devices's port parent identifier
9150  */
9151 int dev_get_port_parent_id(struct net_device *dev,
9152                            struct netdev_phys_item_id *ppid,
9153                            bool recurse)
9154 {
9155         const struct net_device_ops *ops = dev->netdev_ops;
9156         struct netdev_phys_item_id first = { };
9157         struct net_device *lower_dev;
9158         struct list_head *iter;
9159         int err;
9160
9161         if (ops->ndo_get_port_parent_id) {
9162                 err = ops->ndo_get_port_parent_id(dev, ppid);
9163                 if (err != -EOPNOTSUPP)
9164                         return err;
9165         }
9166
9167         err = devlink_compat_switch_id_get(dev, ppid);
9168         if (!err || err != -EOPNOTSUPP)
9169                 return err;
9170
9171         if (!recurse)
9172                 return -EOPNOTSUPP;
9173
9174         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9175                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9176                 if (err)
9177                         break;
9178                 if (!first.id_len)
9179                         first = *ppid;
9180                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9181                         return -EOPNOTSUPP;
9182         }
9183
9184         return err;
9185 }
9186 EXPORT_SYMBOL(dev_get_port_parent_id);
9187
9188 /**
9189  *      netdev_port_same_parent_id - Indicate if two network devices have
9190  *      the same port parent identifier
9191  *      @a: first network device
9192  *      @b: second network device
9193  */
9194 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9195 {
9196         struct netdev_phys_item_id a_id = { };
9197         struct netdev_phys_item_id b_id = { };
9198
9199         if (dev_get_port_parent_id(a, &a_id, true) ||
9200             dev_get_port_parent_id(b, &b_id, true))
9201                 return false;
9202
9203         return netdev_phys_item_id_same(&a_id, &b_id);
9204 }
9205 EXPORT_SYMBOL(netdev_port_same_parent_id);
9206
9207 /**
9208  *      dev_change_proto_down - update protocol port state information
9209  *      @dev: device
9210  *      @proto_down: new value
9211  *
9212  *      This info can be used by switch drivers to set the phys state of the
9213  *      port.
9214  */
9215 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9216 {
9217         const struct net_device_ops *ops = dev->netdev_ops;
9218
9219         if (!ops->ndo_change_proto_down)
9220                 return -EOPNOTSUPP;
9221         if (!netif_device_present(dev))
9222                 return -ENODEV;
9223         return ops->ndo_change_proto_down(dev, proto_down);
9224 }
9225 EXPORT_SYMBOL(dev_change_proto_down);
9226
9227 /**
9228  *      dev_change_proto_down_generic - generic implementation for
9229  *      ndo_change_proto_down that sets carrier according to
9230  *      proto_down.
9231  *
9232  *      @dev: device
9233  *      @proto_down: new value
9234  */
9235 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9236 {
9237         if (proto_down)
9238                 netif_carrier_off(dev);
9239         else
9240                 netif_carrier_on(dev);
9241         dev->proto_down = proto_down;
9242         return 0;
9243 }
9244 EXPORT_SYMBOL(dev_change_proto_down_generic);
9245
9246 /**
9247  *      dev_change_proto_down_reason - proto down reason
9248  *
9249  *      @dev: device
9250  *      @mask: proto down mask
9251  *      @value: proto down value
9252  */
9253 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9254                                   u32 value)
9255 {
9256         int b;
9257
9258         if (!mask) {
9259                 dev->proto_down_reason = value;
9260         } else {
9261                 for_each_set_bit(b, &mask, 32) {
9262                         if (value & (1 << b))
9263                                 dev->proto_down_reason |= BIT(b);
9264                         else
9265                                 dev->proto_down_reason &= ~BIT(b);
9266                 }
9267         }
9268 }
9269 EXPORT_SYMBOL(dev_change_proto_down_reason);
9270
9271 struct bpf_xdp_link {
9272         struct bpf_link link;
9273         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9274         int flags;
9275 };
9276
9277 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9278 {
9279         if (flags & XDP_FLAGS_HW_MODE)
9280                 return XDP_MODE_HW;
9281         if (flags & XDP_FLAGS_DRV_MODE)
9282                 return XDP_MODE_DRV;
9283         if (flags & XDP_FLAGS_SKB_MODE)
9284                 return XDP_MODE_SKB;
9285         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9286 }
9287
9288 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9289 {
9290         switch (mode) {
9291         case XDP_MODE_SKB:
9292                 return generic_xdp_install;
9293         case XDP_MODE_DRV:
9294         case XDP_MODE_HW:
9295                 return dev->netdev_ops->ndo_bpf;
9296         default:
9297                 return NULL;
9298         }
9299 }
9300
9301 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9302                                          enum bpf_xdp_mode mode)
9303 {
9304         return dev->xdp_state[mode].link;
9305 }
9306
9307 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9308                                      enum bpf_xdp_mode mode)
9309 {
9310         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9311
9312         if (link)
9313                 return link->link.prog;
9314         return dev->xdp_state[mode].prog;
9315 }
9316
9317 u8 dev_xdp_prog_count(struct net_device *dev)
9318 {
9319         u8 count = 0;
9320         int i;
9321
9322         for (i = 0; i < __MAX_XDP_MODE; i++)
9323                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9324                         count++;
9325         return count;
9326 }
9327 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9328
9329 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9330 {
9331         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9332
9333         return prog ? prog->aux->id : 0;
9334 }
9335
9336 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9337                              struct bpf_xdp_link *link)
9338 {
9339         dev->xdp_state[mode].link = link;
9340         dev->xdp_state[mode].prog = NULL;
9341 }
9342
9343 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9344                              struct bpf_prog *prog)
9345 {
9346         dev->xdp_state[mode].link = NULL;
9347         dev->xdp_state[mode].prog = prog;
9348 }
9349
9350 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9351                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9352                            u32 flags, struct bpf_prog *prog)
9353 {
9354         struct netdev_bpf xdp;
9355         int err;
9356
9357         memset(&xdp, 0, sizeof(xdp));
9358         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9359         xdp.extack = extack;
9360         xdp.flags = flags;
9361         xdp.prog = prog;
9362
9363         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9364          * "moved" into driver), so they don't increment it on their own, but
9365          * they do decrement refcnt when program is detached or replaced.
9366          * Given net_device also owns link/prog, we need to bump refcnt here
9367          * to prevent drivers from underflowing it.
9368          */
9369         if (prog)
9370                 bpf_prog_inc(prog);
9371         err = bpf_op(dev, &xdp);
9372         if (err) {
9373                 if (prog)
9374                         bpf_prog_put(prog);
9375                 return err;
9376         }
9377
9378         if (mode != XDP_MODE_HW)
9379                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9380
9381         return 0;
9382 }
9383
9384 static void dev_xdp_uninstall(struct net_device *dev)
9385 {
9386         struct bpf_xdp_link *link;
9387         struct bpf_prog *prog;
9388         enum bpf_xdp_mode mode;
9389         bpf_op_t bpf_op;
9390
9391         ASSERT_RTNL();
9392
9393         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9394                 prog = dev_xdp_prog(dev, mode);
9395                 if (!prog)
9396                         continue;
9397
9398                 bpf_op = dev_xdp_bpf_op(dev, mode);
9399                 if (!bpf_op)
9400                         continue;
9401
9402                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9403
9404                 /* auto-detach link from net device */
9405                 link = dev_xdp_link(dev, mode);
9406                 if (link)
9407                         link->dev = NULL;
9408                 else
9409                         bpf_prog_put(prog);
9410
9411                 dev_xdp_set_link(dev, mode, NULL);
9412         }
9413 }
9414
9415 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9416                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9417                           struct bpf_prog *old_prog, u32 flags)
9418 {
9419         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9420         struct bpf_prog *cur_prog;
9421         struct net_device *upper;
9422         struct list_head *iter;
9423         enum bpf_xdp_mode mode;
9424         bpf_op_t bpf_op;
9425         int err;
9426
9427         ASSERT_RTNL();
9428
9429         /* either link or prog attachment, never both */
9430         if (link && (new_prog || old_prog))
9431                 return -EINVAL;
9432         /* link supports only XDP mode flags */
9433         if (link && (flags & ~XDP_FLAGS_MODES)) {
9434                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9435                 return -EINVAL;
9436         }
9437         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9438         if (num_modes > 1) {
9439                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9440                 return -EINVAL;
9441         }
9442         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9443         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9444                 NL_SET_ERR_MSG(extack,
9445                                "More than one program loaded, unset mode is ambiguous");
9446                 return -EINVAL;
9447         }
9448         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9449         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9450                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9451                 return -EINVAL;
9452         }
9453
9454         mode = dev_xdp_mode(dev, flags);
9455         /* can't replace attached link */
9456         if (dev_xdp_link(dev, mode)) {
9457                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9458                 return -EBUSY;
9459         }
9460
9461         /* don't allow if an upper device already has a program */
9462         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9463                 if (dev_xdp_prog_count(upper) > 0) {
9464                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9465                         return -EEXIST;
9466                 }
9467         }
9468
9469         cur_prog = dev_xdp_prog(dev, mode);
9470         /* can't replace attached prog with link */
9471         if (link && cur_prog) {
9472                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9473                 return -EBUSY;
9474         }
9475         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9476                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9477                 return -EEXIST;
9478         }
9479
9480         /* put effective new program into new_prog */
9481         if (link)
9482                 new_prog = link->link.prog;
9483
9484         if (new_prog) {
9485                 bool offload = mode == XDP_MODE_HW;
9486                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9487                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9488
9489                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9490                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9491                         return -EBUSY;
9492                 }
9493                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9494                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9495                         return -EEXIST;
9496                 }
9497                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9498                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9499                         return -EINVAL;
9500                 }
9501                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9502                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9503                         return -EINVAL;
9504                 }
9505                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9506                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9507                         return -EINVAL;
9508                 }
9509         }
9510
9511         /* don't call drivers if the effective program didn't change */
9512         if (new_prog != cur_prog) {
9513                 bpf_op = dev_xdp_bpf_op(dev, mode);
9514                 if (!bpf_op) {
9515                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9516                         return -EOPNOTSUPP;
9517                 }
9518
9519                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9520                 if (err)
9521                         return err;
9522         }
9523
9524         if (link)
9525                 dev_xdp_set_link(dev, mode, link);
9526         else
9527                 dev_xdp_set_prog(dev, mode, new_prog);
9528         if (cur_prog)
9529                 bpf_prog_put(cur_prog);
9530
9531         return 0;
9532 }
9533
9534 static int dev_xdp_attach_link(struct net_device *dev,
9535                                struct netlink_ext_ack *extack,
9536                                struct bpf_xdp_link *link)
9537 {
9538         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9539 }
9540
9541 static int dev_xdp_detach_link(struct net_device *dev,
9542                                struct netlink_ext_ack *extack,
9543                                struct bpf_xdp_link *link)
9544 {
9545         enum bpf_xdp_mode mode;
9546         bpf_op_t bpf_op;
9547
9548         ASSERT_RTNL();
9549
9550         mode = dev_xdp_mode(dev, link->flags);
9551         if (dev_xdp_link(dev, mode) != link)
9552                 return -EINVAL;
9553
9554         bpf_op = dev_xdp_bpf_op(dev, mode);
9555         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9556         dev_xdp_set_link(dev, mode, NULL);
9557         return 0;
9558 }
9559
9560 static void bpf_xdp_link_release(struct bpf_link *link)
9561 {
9562         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9563
9564         rtnl_lock();
9565
9566         /* if racing with net_device's tear down, xdp_link->dev might be
9567          * already NULL, in which case link was already auto-detached
9568          */
9569         if (xdp_link->dev) {
9570                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9571                 xdp_link->dev = NULL;
9572         }
9573
9574         rtnl_unlock();
9575 }
9576
9577 static int bpf_xdp_link_detach(struct bpf_link *link)
9578 {
9579         bpf_xdp_link_release(link);
9580         return 0;
9581 }
9582
9583 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9584 {
9585         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9586
9587         kfree(xdp_link);
9588 }
9589
9590 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9591                                      struct seq_file *seq)
9592 {
9593         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9594         u32 ifindex = 0;
9595
9596         rtnl_lock();
9597         if (xdp_link->dev)
9598                 ifindex = xdp_link->dev->ifindex;
9599         rtnl_unlock();
9600
9601         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9602 }
9603
9604 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9605                                        struct bpf_link_info *info)
9606 {
9607         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9608         u32 ifindex = 0;
9609
9610         rtnl_lock();
9611         if (xdp_link->dev)
9612                 ifindex = xdp_link->dev->ifindex;
9613         rtnl_unlock();
9614
9615         info->xdp.ifindex = ifindex;
9616         return 0;
9617 }
9618
9619 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9620                                struct bpf_prog *old_prog)
9621 {
9622         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9623         enum bpf_xdp_mode mode;
9624         bpf_op_t bpf_op;
9625         int err = 0;
9626
9627         rtnl_lock();
9628
9629         /* link might have been auto-released already, so fail */
9630         if (!xdp_link->dev) {
9631                 err = -ENOLINK;
9632                 goto out_unlock;
9633         }
9634
9635         if (old_prog && link->prog != old_prog) {
9636                 err = -EPERM;
9637                 goto out_unlock;
9638         }
9639         old_prog = link->prog;
9640         if (old_prog == new_prog) {
9641                 /* no-op, don't disturb drivers */
9642                 bpf_prog_put(new_prog);
9643                 goto out_unlock;
9644         }
9645
9646         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9647         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9648         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9649                               xdp_link->flags, new_prog);
9650         if (err)
9651                 goto out_unlock;
9652
9653         old_prog = xchg(&link->prog, new_prog);
9654         bpf_prog_put(old_prog);
9655
9656 out_unlock:
9657         rtnl_unlock();
9658         return err;
9659 }
9660
9661 static const struct bpf_link_ops bpf_xdp_link_lops = {
9662         .release = bpf_xdp_link_release,
9663         .dealloc = bpf_xdp_link_dealloc,
9664         .detach = bpf_xdp_link_detach,
9665         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9666         .fill_link_info = bpf_xdp_link_fill_link_info,
9667         .update_prog = bpf_xdp_link_update,
9668 };
9669
9670 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9671 {
9672         struct net *net = current->nsproxy->net_ns;
9673         struct bpf_link_primer link_primer;
9674         struct bpf_xdp_link *link;
9675         struct net_device *dev;
9676         int err, fd;
9677
9678         rtnl_lock();
9679         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9680         if (!dev) {
9681                 rtnl_unlock();
9682                 return -EINVAL;
9683         }
9684
9685         link = kzalloc(sizeof(*link), GFP_USER);
9686         if (!link) {
9687                 err = -ENOMEM;
9688                 goto unlock;
9689         }
9690
9691         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9692         link->dev = dev;
9693         link->flags = attr->link_create.flags;
9694
9695         err = bpf_link_prime(&link->link, &link_primer);
9696         if (err) {
9697                 kfree(link);
9698                 goto unlock;
9699         }
9700
9701         err = dev_xdp_attach_link(dev, NULL, link);
9702         rtnl_unlock();
9703
9704         if (err) {
9705                 link->dev = NULL;
9706                 bpf_link_cleanup(&link_primer);
9707                 goto out_put_dev;
9708         }
9709
9710         fd = bpf_link_settle(&link_primer);
9711         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9712         dev_put(dev);
9713         return fd;
9714
9715 unlock:
9716         rtnl_unlock();
9717
9718 out_put_dev:
9719         dev_put(dev);
9720         return err;
9721 }
9722
9723 /**
9724  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9725  *      @dev: device
9726  *      @extack: netlink extended ack
9727  *      @fd: new program fd or negative value to clear
9728  *      @expected_fd: old program fd that userspace expects to replace or clear
9729  *      @flags: xdp-related flags
9730  *
9731  *      Set or clear a bpf program for a device
9732  */
9733 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9734                       int fd, int expected_fd, u32 flags)
9735 {
9736         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9737         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9738         int err;
9739
9740         ASSERT_RTNL();
9741
9742         if (fd >= 0) {
9743                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9744                                                  mode != XDP_MODE_SKB);
9745                 if (IS_ERR(new_prog))
9746                         return PTR_ERR(new_prog);
9747         }
9748
9749         if (expected_fd >= 0) {
9750                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9751                                                  mode != XDP_MODE_SKB);
9752                 if (IS_ERR(old_prog)) {
9753                         err = PTR_ERR(old_prog);
9754                         old_prog = NULL;
9755                         goto err_out;
9756                 }
9757         }
9758
9759         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9760
9761 err_out:
9762         if (err && new_prog)
9763                 bpf_prog_put(new_prog);
9764         if (old_prog)
9765                 bpf_prog_put(old_prog);
9766         return err;
9767 }
9768
9769 /**
9770  *      dev_new_index   -       allocate an ifindex
9771  *      @net: the applicable net namespace
9772  *
9773  *      Returns a suitable unique value for a new device interface
9774  *      number.  The caller must hold the rtnl semaphore or the
9775  *      dev_base_lock to be sure it remains unique.
9776  */
9777 static int dev_new_index(struct net *net)
9778 {
9779         int ifindex = net->ifindex;
9780
9781         for (;;) {
9782                 if (++ifindex <= 0)
9783                         ifindex = 1;
9784                 if (!__dev_get_by_index(net, ifindex))
9785                         return net->ifindex = ifindex;
9786         }
9787 }
9788
9789 /* Delayed registration/unregisteration */
9790 static LIST_HEAD(net_todo_list);
9791 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9792
9793 static void net_set_todo(struct net_device *dev)
9794 {
9795         list_add_tail(&dev->todo_list, &net_todo_list);
9796         dev_net(dev)->dev_unreg_count++;
9797 }
9798
9799 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9800         struct net_device *upper, netdev_features_t features)
9801 {
9802         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9803         netdev_features_t feature;
9804         int feature_bit;
9805
9806         for_each_netdev_feature(upper_disables, feature_bit) {
9807                 feature = __NETIF_F_BIT(feature_bit);
9808                 if (!(upper->wanted_features & feature)
9809                     && (features & feature)) {
9810                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9811                                    &feature, upper->name);
9812                         features &= ~feature;
9813                 }
9814         }
9815
9816         return features;
9817 }
9818
9819 static void netdev_sync_lower_features(struct net_device *upper,
9820         struct net_device *lower, netdev_features_t features)
9821 {
9822         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9823         netdev_features_t feature;
9824         int feature_bit;
9825
9826         for_each_netdev_feature(upper_disables, feature_bit) {
9827                 feature = __NETIF_F_BIT(feature_bit);
9828                 if (!(features & feature) && (lower->features & feature)) {
9829                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9830                                    &feature, lower->name);
9831                         lower->wanted_features &= ~feature;
9832                         __netdev_update_features(lower);
9833
9834                         if (unlikely(lower->features & feature))
9835                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9836                                             &feature, lower->name);
9837                         else
9838                                 netdev_features_change(lower);
9839                 }
9840         }
9841 }
9842
9843 static netdev_features_t netdev_fix_features(struct net_device *dev,
9844         netdev_features_t features)
9845 {
9846         /* Fix illegal checksum combinations */
9847         if ((features & NETIF_F_HW_CSUM) &&
9848             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9849                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9850                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9851         }
9852
9853         /* TSO requires that SG is present as well. */
9854         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9855                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9856                 features &= ~NETIF_F_ALL_TSO;
9857         }
9858
9859         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9860                                         !(features & NETIF_F_IP_CSUM)) {
9861                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9862                 features &= ~NETIF_F_TSO;
9863                 features &= ~NETIF_F_TSO_ECN;
9864         }
9865
9866         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9867                                          !(features & NETIF_F_IPV6_CSUM)) {
9868                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9869                 features &= ~NETIF_F_TSO6;
9870         }
9871
9872         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9873         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9874                 features &= ~NETIF_F_TSO_MANGLEID;
9875
9876         /* TSO ECN requires that TSO is present as well. */
9877         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9878                 features &= ~NETIF_F_TSO_ECN;
9879
9880         /* Software GSO depends on SG. */
9881         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9882                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9883                 features &= ~NETIF_F_GSO;
9884         }
9885
9886         /* GSO partial features require GSO partial be set */
9887         if ((features & dev->gso_partial_features) &&
9888             !(features & NETIF_F_GSO_PARTIAL)) {
9889                 netdev_dbg(dev,
9890                            "Dropping partially supported GSO features since no GSO partial.\n");
9891                 features &= ~dev->gso_partial_features;
9892         }
9893
9894         if (!(features & NETIF_F_RXCSUM)) {
9895                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9896                  * successfully merged by hardware must also have the
9897                  * checksum verified by hardware.  If the user does not
9898                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9899                  */
9900                 if (features & NETIF_F_GRO_HW) {
9901                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9902                         features &= ~NETIF_F_GRO_HW;
9903                 }
9904         }
9905
9906         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9907         if (features & NETIF_F_RXFCS) {
9908                 if (features & NETIF_F_LRO) {
9909                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9910                         features &= ~NETIF_F_LRO;
9911                 }
9912
9913                 if (features & NETIF_F_GRO_HW) {
9914                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9915                         features &= ~NETIF_F_GRO_HW;
9916                 }
9917         }
9918
9919         if (features & NETIF_F_HW_TLS_TX) {
9920                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9921                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9922                 bool hw_csum = features & NETIF_F_HW_CSUM;
9923
9924                 if (!ip_csum && !hw_csum) {
9925                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9926                         features &= ~NETIF_F_HW_TLS_TX;
9927                 }
9928         }
9929
9930         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9931                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9932                 features &= ~NETIF_F_HW_TLS_RX;
9933         }
9934
9935         return features;
9936 }
9937
9938 int __netdev_update_features(struct net_device *dev)
9939 {
9940         struct net_device *upper, *lower;
9941         netdev_features_t features;
9942         struct list_head *iter;
9943         int err = -1;
9944
9945         ASSERT_RTNL();
9946
9947         features = netdev_get_wanted_features(dev);
9948
9949         if (dev->netdev_ops->ndo_fix_features)
9950                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9951
9952         /* driver might be less strict about feature dependencies */
9953         features = netdev_fix_features(dev, features);
9954
9955         /* some features can't be enabled if they're off on an upper device */
9956         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9957                 features = netdev_sync_upper_features(dev, upper, features);
9958
9959         if (dev->features == features)
9960                 goto sync_lower;
9961
9962         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9963                 &dev->features, &features);
9964
9965         if (dev->netdev_ops->ndo_set_features)
9966                 err = dev->netdev_ops->ndo_set_features(dev, features);
9967         else
9968                 err = 0;
9969
9970         if (unlikely(err < 0)) {
9971                 netdev_err(dev,
9972                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9973                         err, &features, &dev->features);
9974                 /* return non-0 since some features might have changed and
9975                  * it's better to fire a spurious notification than miss it
9976                  */
9977                 return -1;
9978         }
9979
9980 sync_lower:
9981         /* some features must be disabled on lower devices when disabled
9982          * on an upper device (think: bonding master or bridge)
9983          */
9984         netdev_for_each_lower_dev(dev, lower, iter)
9985                 netdev_sync_lower_features(dev, lower, features);
9986
9987         if (!err) {
9988                 netdev_features_t diff = features ^ dev->features;
9989
9990                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9991                         /* udp_tunnel_{get,drop}_rx_info both need
9992                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9993                          * device, or they won't do anything.
9994                          * Thus we need to update dev->features
9995                          * *before* calling udp_tunnel_get_rx_info,
9996                          * but *after* calling udp_tunnel_drop_rx_info.
9997                          */
9998                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9999                                 dev->features = features;
10000                                 udp_tunnel_get_rx_info(dev);
10001                         } else {
10002                                 udp_tunnel_drop_rx_info(dev);
10003                         }
10004                 }
10005
10006                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10007                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10008                                 dev->features = features;
10009                                 err |= vlan_get_rx_ctag_filter_info(dev);
10010                         } else {
10011                                 vlan_drop_rx_ctag_filter_info(dev);
10012                         }
10013                 }
10014
10015                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10016                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10017                                 dev->features = features;
10018                                 err |= vlan_get_rx_stag_filter_info(dev);
10019                         } else {
10020                                 vlan_drop_rx_stag_filter_info(dev);
10021                         }
10022                 }
10023
10024                 dev->features = features;
10025         }
10026
10027         return err < 0 ? 0 : 1;
10028 }
10029
10030 /**
10031  *      netdev_update_features - recalculate device features
10032  *      @dev: the device to check
10033  *
10034  *      Recalculate dev->features set and send notifications if it
10035  *      has changed. Should be called after driver or hardware dependent
10036  *      conditions might have changed that influence the features.
10037  */
10038 void netdev_update_features(struct net_device *dev)
10039 {
10040         if (__netdev_update_features(dev))
10041                 netdev_features_change(dev);
10042 }
10043 EXPORT_SYMBOL(netdev_update_features);
10044
10045 /**
10046  *      netdev_change_features - recalculate device features
10047  *      @dev: the device to check
10048  *
10049  *      Recalculate dev->features set and send notifications even
10050  *      if they have not changed. Should be called instead of
10051  *      netdev_update_features() if also dev->vlan_features might
10052  *      have changed to allow the changes to be propagated to stacked
10053  *      VLAN devices.
10054  */
10055 void netdev_change_features(struct net_device *dev)
10056 {
10057         __netdev_update_features(dev);
10058         netdev_features_change(dev);
10059 }
10060 EXPORT_SYMBOL(netdev_change_features);
10061
10062 /**
10063  *      netif_stacked_transfer_operstate -      transfer operstate
10064  *      @rootdev: the root or lower level device to transfer state from
10065  *      @dev: the device to transfer operstate to
10066  *
10067  *      Transfer operational state from root to device. This is normally
10068  *      called when a stacking relationship exists between the root
10069  *      device and the device(a leaf device).
10070  */
10071 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10072                                         struct net_device *dev)
10073 {
10074         if (rootdev->operstate == IF_OPER_DORMANT)
10075                 netif_dormant_on(dev);
10076         else
10077                 netif_dormant_off(dev);
10078
10079         if (rootdev->operstate == IF_OPER_TESTING)
10080                 netif_testing_on(dev);
10081         else
10082                 netif_testing_off(dev);
10083
10084         if (netif_carrier_ok(rootdev))
10085                 netif_carrier_on(dev);
10086         else
10087                 netif_carrier_off(dev);
10088 }
10089 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10090
10091 static int netif_alloc_rx_queues(struct net_device *dev)
10092 {
10093         unsigned int i, count = dev->num_rx_queues;
10094         struct netdev_rx_queue *rx;
10095         size_t sz = count * sizeof(*rx);
10096         int err = 0;
10097
10098         BUG_ON(count < 1);
10099
10100         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10101         if (!rx)
10102                 return -ENOMEM;
10103
10104         dev->_rx = rx;
10105
10106         for (i = 0; i < count; i++) {
10107                 rx[i].dev = dev;
10108
10109                 /* XDP RX-queue setup */
10110                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10111                 if (err < 0)
10112                         goto err_rxq_info;
10113         }
10114         return 0;
10115
10116 err_rxq_info:
10117         /* Rollback successful reg's and free other resources */
10118         while (i--)
10119                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10120         kvfree(dev->_rx);
10121         dev->_rx = NULL;
10122         return err;
10123 }
10124
10125 static void netif_free_rx_queues(struct net_device *dev)
10126 {
10127         unsigned int i, count = dev->num_rx_queues;
10128
10129         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10130         if (!dev->_rx)
10131                 return;
10132
10133         for (i = 0; i < count; i++)
10134                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10135
10136         kvfree(dev->_rx);
10137 }
10138
10139 static void netdev_init_one_queue(struct net_device *dev,
10140                                   struct netdev_queue *queue, void *_unused)
10141 {
10142         /* Initialize queue lock */
10143         spin_lock_init(&queue->_xmit_lock);
10144         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10145         queue->xmit_lock_owner = -1;
10146         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10147         queue->dev = dev;
10148 #ifdef CONFIG_BQL
10149         dql_init(&queue->dql, HZ);
10150 #endif
10151 }
10152
10153 static void netif_free_tx_queues(struct net_device *dev)
10154 {
10155         kvfree(dev->_tx);
10156 }
10157
10158 static int netif_alloc_netdev_queues(struct net_device *dev)
10159 {
10160         unsigned int count = dev->num_tx_queues;
10161         struct netdev_queue *tx;
10162         size_t sz = count * sizeof(*tx);
10163
10164         if (count < 1 || count > 0xffff)
10165                 return -EINVAL;
10166
10167         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10168         if (!tx)
10169                 return -ENOMEM;
10170
10171         dev->_tx = tx;
10172
10173         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10174         spin_lock_init(&dev->tx_global_lock);
10175
10176         return 0;
10177 }
10178
10179 void netif_tx_stop_all_queues(struct net_device *dev)
10180 {
10181         unsigned int i;
10182
10183         for (i = 0; i < dev->num_tx_queues; i++) {
10184                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10185
10186                 netif_tx_stop_queue(txq);
10187         }
10188 }
10189 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10190
10191 /**
10192  *      register_netdevice      - register a network device
10193  *      @dev: device to register
10194  *
10195  *      Take a completed network device structure and add it to the kernel
10196  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10197  *      chain. 0 is returned on success. A negative errno code is returned
10198  *      on a failure to set up the device, or if the name is a duplicate.
10199  *
10200  *      Callers must hold the rtnl semaphore. You may want
10201  *      register_netdev() instead of this.
10202  *
10203  *      BUGS:
10204  *      The locking appears insufficient to guarantee two parallel registers
10205  *      will not get the same name.
10206  */
10207
10208 int register_netdevice(struct net_device *dev)
10209 {
10210         int ret;
10211         struct net *net = dev_net(dev);
10212
10213         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10214                      NETDEV_FEATURE_COUNT);
10215         BUG_ON(dev_boot_phase);
10216         ASSERT_RTNL();
10217
10218         might_sleep();
10219
10220         /* When net_device's are persistent, this will be fatal. */
10221         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10222         BUG_ON(!net);
10223
10224         ret = ethtool_check_ops(dev->ethtool_ops);
10225         if (ret)
10226                 return ret;
10227
10228         spin_lock_init(&dev->addr_list_lock);
10229         netdev_set_addr_lockdep_class(dev);
10230
10231         ret = dev_get_valid_name(net, dev, dev->name);
10232         if (ret < 0)
10233                 goto out;
10234
10235         ret = -ENOMEM;
10236         dev->name_node = netdev_name_node_head_alloc(dev);
10237         if (!dev->name_node)
10238                 goto out;
10239
10240         /* Init, if this function is available */
10241         if (dev->netdev_ops->ndo_init) {
10242                 ret = dev->netdev_ops->ndo_init(dev);
10243                 if (ret) {
10244                         if (ret > 0)
10245                                 ret = -EIO;
10246                         goto err_free_name;
10247                 }
10248         }
10249
10250         if (((dev->hw_features | dev->features) &
10251              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10252             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10253              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10254                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10255                 ret = -EINVAL;
10256                 goto err_uninit;
10257         }
10258
10259         ret = -EBUSY;
10260         if (!dev->ifindex)
10261                 dev->ifindex = dev_new_index(net);
10262         else if (__dev_get_by_index(net, dev->ifindex))
10263                 goto err_uninit;
10264
10265         /* Transfer changeable features to wanted_features and enable
10266          * software offloads (GSO and GRO).
10267          */
10268         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10269         dev->features |= NETIF_F_SOFT_FEATURES;
10270
10271         if (dev->udp_tunnel_nic_info) {
10272                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10273                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10274         }
10275
10276         dev->wanted_features = dev->features & dev->hw_features;
10277
10278         if (!(dev->flags & IFF_LOOPBACK))
10279                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10280
10281         /* If IPv4 TCP segmentation offload is supported we should also
10282          * allow the device to enable segmenting the frame with the option
10283          * of ignoring a static IP ID value.  This doesn't enable the
10284          * feature itself but allows the user to enable it later.
10285          */
10286         if (dev->hw_features & NETIF_F_TSO)
10287                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10288         if (dev->vlan_features & NETIF_F_TSO)
10289                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10290         if (dev->mpls_features & NETIF_F_TSO)
10291                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10292         if (dev->hw_enc_features & NETIF_F_TSO)
10293                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10294
10295         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10296          */
10297         dev->vlan_features |= NETIF_F_HIGHDMA;
10298
10299         /* Make NETIF_F_SG inheritable to tunnel devices.
10300          */
10301         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10302
10303         /* Make NETIF_F_SG inheritable to MPLS.
10304          */
10305         dev->mpls_features |= NETIF_F_SG;
10306
10307         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10308         ret = notifier_to_errno(ret);
10309         if (ret)
10310                 goto err_uninit;
10311
10312         ret = netdev_register_kobject(dev);
10313         if (ret) {
10314                 dev->reg_state = NETREG_UNREGISTERED;
10315                 goto err_uninit;
10316         }
10317         dev->reg_state = NETREG_REGISTERED;
10318
10319         __netdev_update_features(dev);
10320
10321         /*
10322          *      Default initial state at registry is that the
10323          *      device is present.
10324          */
10325
10326         set_bit(__LINK_STATE_PRESENT, &dev->state);
10327
10328         linkwatch_init_dev(dev);
10329
10330         dev_init_scheduler(dev);
10331         dev_hold(dev);
10332         list_netdevice(dev);
10333         add_device_randomness(dev->dev_addr, dev->addr_len);
10334
10335         /* If the device has permanent device address, driver should
10336          * set dev_addr and also addr_assign_type should be set to
10337          * NET_ADDR_PERM (default value).
10338          */
10339         if (dev->addr_assign_type == NET_ADDR_PERM)
10340                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10341
10342         /* Notify protocols, that a new device appeared. */
10343         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10344         ret = notifier_to_errno(ret);
10345         if (ret) {
10346                 /* Expect explicit free_netdev() on failure */
10347                 dev->needs_free_netdev = false;
10348                 unregister_netdevice_queue(dev, NULL);
10349                 goto out;
10350         }
10351         /*
10352          *      Prevent userspace races by waiting until the network
10353          *      device is fully setup before sending notifications.
10354          */
10355         if (!dev->rtnl_link_ops ||
10356             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10357                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10358
10359 out:
10360         return ret;
10361
10362 err_uninit:
10363         if (dev->netdev_ops->ndo_uninit)
10364                 dev->netdev_ops->ndo_uninit(dev);
10365         if (dev->priv_destructor)
10366                 dev->priv_destructor(dev);
10367 err_free_name:
10368         netdev_name_node_free(dev->name_node);
10369         goto out;
10370 }
10371 EXPORT_SYMBOL(register_netdevice);
10372
10373 /**
10374  *      init_dummy_netdev       - init a dummy network device for NAPI
10375  *      @dev: device to init
10376  *
10377  *      This takes a network device structure and initialize the minimum
10378  *      amount of fields so it can be used to schedule NAPI polls without
10379  *      registering a full blown interface. This is to be used by drivers
10380  *      that need to tie several hardware interfaces to a single NAPI
10381  *      poll scheduler due to HW limitations.
10382  */
10383 int init_dummy_netdev(struct net_device *dev)
10384 {
10385         /* Clear everything. Note we don't initialize spinlocks
10386          * are they aren't supposed to be taken by any of the
10387          * NAPI code and this dummy netdev is supposed to be
10388          * only ever used for NAPI polls
10389          */
10390         memset(dev, 0, sizeof(struct net_device));
10391
10392         /* make sure we BUG if trying to hit standard
10393          * register/unregister code path
10394          */
10395         dev->reg_state = NETREG_DUMMY;
10396
10397         /* NAPI wants this */
10398         INIT_LIST_HEAD(&dev->napi_list);
10399
10400         /* a dummy interface is started by default */
10401         set_bit(__LINK_STATE_PRESENT, &dev->state);
10402         set_bit(__LINK_STATE_START, &dev->state);
10403
10404         /* napi_busy_loop stats accounting wants this */
10405         dev_net_set(dev, &init_net);
10406
10407         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10408          * because users of this 'device' dont need to change
10409          * its refcount.
10410          */
10411
10412         return 0;
10413 }
10414 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10415
10416
10417 /**
10418  *      register_netdev - register a network device
10419  *      @dev: device to register
10420  *
10421  *      Take a completed network device structure and add it to the kernel
10422  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10423  *      chain. 0 is returned on success. A negative errno code is returned
10424  *      on a failure to set up the device, or if the name is a duplicate.
10425  *
10426  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10427  *      and expands the device name if you passed a format string to
10428  *      alloc_netdev.
10429  */
10430 int register_netdev(struct net_device *dev)
10431 {
10432         int err;
10433
10434         if (rtnl_lock_killable())
10435                 return -EINTR;
10436         err = register_netdevice(dev);
10437         rtnl_unlock();
10438         return err;
10439 }
10440 EXPORT_SYMBOL(register_netdev);
10441
10442 int netdev_refcnt_read(const struct net_device *dev)
10443 {
10444 #ifdef CONFIG_PCPU_DEV_REFCNT
10445         int i, refcnt = 0;
10446
10447         for_each_possible_cpu(i)
10448                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10449         return refcnt;
10450 #else
10451         return refcount_read(&dev->dev_refcnt);
10452 #endif
10453 }
10454 EXPORT_SYMBOL(netdev_refcnt_read);
10455
10456 int netdev_unregister_timeout_secs __read_mostly = 10;
10457
10458 #define WAIT_REFS_MIN_MSECS 1
10459 #define WAIT_REFS_MAX_MSECS 250
10460 /**
10461  * netdev_wait_allrefs - wait until all references are gone.
10462  * @dev: target net_device
10463  *
10464  * This is called when unregistering network devices.
10465  *
10466  * Any protocol or device that holds a reference should register
10467  * for netdevice notification, and cleanup and put back the
10468  * reference if they receive an UNREGISTER event.
10469  * We can get stuck here if buggy protocols don't correctly
10470  * call dev_put.
10471  */
10472 static void netdev_wait_allrefs(struct net_device *dev)
10473 {
10474         unsigned long rebroadcast_time, warning_time;
10475         int wait = 0, refcnt;
10476
10477         linkwatch_forget_dev(dev);
10478
10479         rebroadcast_time = warning_time = jiffies;
10480         refcnt = netdev_refcnt_read(dev);
10481
10482         while (refcnt != 1) {
10483                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10484                         rtnl_lock();
10485
10486                         /* Rebroadcast unregister notification */
10487                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10488
10489                         __rtnl_unlock();
10490                         rcu_barrier();
10491                         rtnl_lock();
10492
10493                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10494                                      &dev->state)) {
10495                                 /* We must not have linkwatch events
10496                                  * pending on unregister. If this
10497                                  * happens, we simply run the queue
10498                                  * unscheduled, resulting in a noop
10499                                  * for this device.
10500                                  */
10501                                 linkwatch_run_queue();
10502                         }
10503
10504                         __rtnl_unlock();
10505
10506                         rebroadcast_time = jiffies;
10507                 }
10508
10509                 if (!wait) {
10510                         rcu_barrier();
10511                         wait = WAIT_REFS_MIN_MSECS;
10512                 } else {
10513                         msleep(wait);
10514                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10515                 }
10516
10517                 refcnt = netdev_refcnt_read(dev);
10518
10519                 if (refcnt != 1 &&
10520                     time_after(jiffies, warning_time +
10521                                netdev_unregister_timeout_secs * HZ)) {
10522                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10523                                  dev->name, refcnt);
10524                         warning_time = jiffies;
10525                 }
10526         }
10527 }
10528
10529 /* The sequence is:
10530  *
10531  *      rtnl_lock();
10532  *      ...
10533  *      register_netdevice(x1);
10534  *      register_netdevice(x2);
10535  *      ...
10536  *      unregister_netdevice(y1);
10537  *      unregister_netdevice(y2);
10538  *      ...
10539  *      rtnl_unlock();
10540  *      free_netdev(y1);
10541  *      free_netdev(y2);
10542  *
10543  * We are invoked by rtnl_unlock().
10544  * This allows us to deal with problems:
10545  * 1) We can delete sysfs objects which invoke hotplug
10546  *    without deadlocking with linkwatch via keventd.
10547  * 2) Since we run with the RTNL semaphore not held, we can sleep
10548  *    safely in order to wait for the netdev refcnt to drop to zero.
10549  *
10550  * We must not return until all unregister events added during
10551  * the interval the lock was held have been completed.
10552  */
10553 void netdev_run_todo(void)
10554 {
10555         struct list_head list;
10556 #ifdef CONFIG_LOCKDEP
10557         struct list_head unlink_list;
10558
10559         list_replace_init(&net_unlink_list, &unlink_list);
10560
10561         while (!list_empty(&unlink_list)) {
10562                 struct net_device *dev = list_first_entry(&unlink_list,
10563                                                           struct net_device,
10564                                                           unlink_list);
10565                 list_del_init(&dev->unlink_list);
10566                 dev->nested_level = dev->lower_level - 1;
10567         }
10568 #endif
10569
10570         /* Snapshot list, allow later requests */
10571         list_replace_init(&net_todo_list, &list);
10572
10573         __rtnl_unlock();
10574
10575
10576         /* Wait for rcu callbacks to finish before next phase */
10577         if (!list_empty(&list))
10578                 rcu_barrier();
10579
10580         while (!list_empty(&list)) {
10581                 struct net_device *dev
10582                         = list_first_entry(&list, struct net_device, todo_list);
10583                 list_del(&dev->todo_list);
10584
10585                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10586                         pr_err("network todo '%s' but state %d\n",
10587                                dev->name, dev->reg_state);
10588                         dump_stack();
10589                         continue;
10590                 }
10591
10592                 dev->reg_state = NETREG_UNREGISTERED;
10593
10594                 netdev_wait_allrefs(dev);
10595
10596                 /* paranoia */
10597                 BUG_ON(netdev_refcnt_read(dev) != 1);
10598                 BUG_ON(!list_empty(&dev->ptype_all));
10599                 BUG_ON(!list_empty(&dev->ptype_specific));
10600                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10601                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10602 #if IS_ENABLED(CONFIG_DECNET)
10603                 WARN_ON(dev->dn_ptr);
10604 #endif
10605                 if (dev->priv_destructor)
10606                         dev->priv_destructor(dev);
10607                 if (dev->needs_free_netdev)
10608                         free_netdev(dev);
10609
10610                 /* Report a network device has been unregistered */
10611                 rtnl_lock();
10612                 dev_net(dev)->dev_unreg_count--;
10613                 __rtnl_unlock();
10614                 wake_up(&netdev_unregistering_wq);
10615
10616                 /* Free network device */
10617                 kobject_put(&dev->dev.kobj);
10618         }
10619 }
10620
10621 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10622  * all the same fields in the same order as net_device_stats, with only
10623  * the type differing, but rtnl_link_stats64 may have additional fields
10624  * at the end for newer counters.
10625  */
10626 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10627                              const struct net_device_stats *netdev_stats)
10628 {
10629 #if BITS_PER_LONG == 64
10630         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10631         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10632         /* zero out counters that only exist in rtnl_link_stats64 */
10633         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10634                sizeof(*stats64) - sizeof(*netdev_stats));
10635 #else
10636         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10637         const unsigned long *src = (const unsigned long *)netdev_stats;
10638         u64 *dst = (u64 *)stats64;
10639
10640         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10641         for (i = 0; i < n; i++)
10642                 dst[i] = src[i];
10643         /* zero out counters that only exist in rtnl_link_stats64 */
10644         memset((char *)stats64 + n * sizeof(u64), 0,
10645                sizeof(*stats64) - n * sizeof(u64));
10646 #endif
10647 }
10648 EXPORT_SYMBOL(netdev_stats_to_stats64);
10649
10650 /**
10651  *      dev_get_stats   - get network device statistics
10652  *      @dev: device to get statistics from
10653  *      @storage: place to store stats
10654  *
10655  *      Get network statistics from device. Return @storage.
10656  *      The device driver may provide its own method by setting
10657  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10658  *      otherwise the internal statistics structure is used.
10659  */
10660 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10661                                         struct rtnl_link_stats64 *storage)
10662 {
10663         const struct net_device_ops *ops = dev->netdev_ops;
10664
10665         if (ops->ndo_get_stats64) {
10666                 memset(storage, 0, sizeof(*storage));
10667                 ops->ndo_get_stats64(dev, storage);
10668         } else if (ops->ndo_get_stats) {
10669                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10670         } else {
10671                 netdev_stats_to_stats64(storage, &dev->stats);
10672         }
10673         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10674         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10675         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10676         return storage;
10677 }
10678 EXPORT_SYMBOL(dev_get_stats);
10679
10680 /**
10681  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10682  *      @s: place to store stats
10683  *      @netstats: per-cpu network stats to read from
10684  *
10685  *      Read per-cpu network statistics and populate the related fields in @s.
10686  */
10687 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10688                            const struct pcpu_sw_netstats __percpu *netstats)
10689 {
10690         int cpu;
10691
10692         for_each_possible_cpu(cpu) {
10693                 const struct pcpu_sw_netstats *stats;
10694                 struct pcpu_sw_netstats tmp;
10695                 unsigned int start;
10696
10697                 stats = per_cpu_ptr(netstats, cpu);
10698                 do {
10699                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10700                         tmp.rx_packets = stats->rx_packets;
10701                         tmp.rx_bytes   = stats->rx_bytes;
10702                         tmp.tx_packets = stats->tx_packets;
10703                         tmp.tx_bytes   = stats->tx_bytes;
10704                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10705
10706                 s->rx_packets += tmp.rx_packets;
10707                 s->rx_bytes   += tmp.rx_bytes;
10708                 s->tx_packets += tmp.tx_packets;
10709                 s->tx_bytes   += tmp.tx_bytes;
10710         }
10711 }
10712 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10713
10714 /**
10715  *      dev_get_tstats64 - ndo_get_stats64 implementation
10716  *      @dev: device to get statistics from
10717  *      @s: place to store stats
10718  *
10719  *      Populate @s from dev->stats and dev->tstats. Can be used as
10720  *      ndo_get_stats64() callback.
10721  */
10722 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10723 {
10724         netdev_stats_to_stats64(s, &dev->stats);
10725         dev_fetch_sw_netstats(s, dev->tstats);
10726 }
10727 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10728
10729 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10730 {
10731         struct netdev_queue *queue = dev_ingress_queue(dev);
10732
10733 #ifdef CONFIG_NET_CLS_ACT
10734         if (queue)
10735                 return queue;
10736         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10737         if (!queue)
10738                 return NULL;
10739         netdev_init_one_queue(dev, queue, NULL);
10740         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10741         queue->qdisc_sleeping = &noop_qdisc;
10742         rcu_assign_pointer(dev->ingress_queue, queue);
10743 #endif
10744         return queue;
10745 }
10746
10747 static const struct ethtool_ops default_ethtool_ops;
10748
10749 void netdev_set_default_ethtool_ops(struct net_device *dev,
10750                                     const struct ethtool_ops *ops)
10751 {
10752         if (dev->ethtool_ops == &default_ethtool_ops)
10753                 dev->ethtool_ops = ops;
10754 }
10755 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10756
10757 void netdev_freemem(struct net_device *dev)
10758 {
10759         char *addr = (char *)dev - dev->padded;
10760
10761         kvfree(addr);
10762 }
10763
10764 /**
10765  * alloc_netdev_mqs - allocate network device
10766  * @sizeof_priv: size of private data to allocate space for
10767  * @name: device name format string
10768  * @name_assign_type: origin of device name
10769  * @setup: callback to initialize device
10770  * @txqs: the number of TX subqueues to allocate
10771  * @rxqs: the number of RX subqueues to allocate
10772  *
10773  * Allocates a struct net_device with private data area for driver use
10774  * and performs basic initialization.  Also allocates subqueue structs
10775  * for each queue on the device.
10776  */
10777 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10778                 unsigned char name_assign_type,
10779                 void (*setup)(struct net_device *),
10780                 unsigned int txqs, unsigned int rxqs)
10781 {
10782         struct net_device *dev;
10783         unsigned int alloc_size;
10784         struct net_device *p;
10785
10786         BUG_ON(strlen(name) >= sizeof(dev->name));
10787
10788         if (txqs < 1) {
10789                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10790                 return NULL;
10791         }
10792
10793         if (rxqs < 1) {
10794                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10795                 return NULL;
10796         }
10797
10798         alloc_size = sizeof(struct net_device);
10799         if (sizeof_priv) {
10800                 /* ensure 32-byte alignment of private area */
10801                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10802                 alloc_size += sizeof_priv;
10803         }
10804         /* ensure 32-byte alignment of whole construct */
10805         alloc_size += NETDEV_ALIGN - 1;
10806
10807         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10808         if (!p)
10809                 return NULL;
10810
10811         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10812         dev->padded = (char *)dev - (char *)p;
10813
10814 #ifdef CONFIG_PCPU_DEV_REFCNT
10815         dev->pcpu_refcnt = alloc_percpu(int);
10816         if (!dev->pcpu_refcnt)
10817                 goto free_dev;
10818         dev_hold(dev);
10819 #else
10820         refcount_set(&dev->dev_refcnt, 1);
10821 #endif
10822
10823         if (dev_addr_init(dev))
10824                 goto free_pcpu;
10825
10826         dev_mc_init(dev);
10827         dev_uc_init(dev);
10828
10829         dev_net_set(dev, &init_net);
10830
10831         dev->gso_max_size = GSO_MAX_SIZE;
10832         dev->gso_max_segs = GSO_MAX_SEGS;
10833         dev->upper_level = 1;
10834         dev->lower_level = 1;
10835 #ifdef CONFIG_LOCKDEP
10836         dev->nested_level = 0;
10837         INIT_LIST_HEAD(&dev->unlink_list);
10838 #endif
10839
10840         INIT_LIST_HEAD(&dev->napi_list);
10841         INIT_LIST_HEAD(&dev->unreg_list);
10842         INIT_LIST_HEAD(&dev->close_list);
10843         INIT_LIST_HEAD(&dev->link_watch_list);
10844         INIT_LIST_HEAD(&dev->adj_list.upper);
10845         INIT_LIST_HEAD(&dev->adj_list.lower);
10846         INIT_LIST_HEAD(&dev->ptype_all);
10847         INIT_LIST_HEAD(&dev->ptype_specific);
10848         INIT_LIST_HEAD(&dev->net_notifier_list);
10849 #ifdef CONFIG_NET_SCHED
10850         hash_init(dev->qdisc_hash);
10851 #endif
10852         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10853         setup(dev);
10854
10855         if (!dev->tx_queue_len) {
10856                 dev->priv_flags |= IFF_NO_QUEUE;
10857                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10858         }
10859
10860         dev->num_tx_queues = txqs;
10861         dev->real_num_tx_queues = txqs;
10862         if (netif_alloc_netdev_queues(dev))
10863                 goto free_all;
10864
10865         dev->num_rx_queues = rxqs;
10866         dev->real_num_rx_queues = rxqs;
10867         if (netif_alloc_rx_queues(dev))
10868                 goto free_all;
10869
10870         strcpy(dev->name, name);
10871         dev->name_assign_type = name_assign_type;
10872         dev->group = INIT_NETDEV_GROUP;
10873         if (!dev->ethtool_ops)
10874                 dev->ethtool_ops = &default_ethtool_ops;
10875
10876         nf_hook_ingress_init(dev);
10877
10878         return dev;
10879
10880 free_all:
10881         free_netdev(dev);
10882         return NULL;
10883
10884 free_pcpu:
10885 #ifdef CONFIG_PCPU_DEV_REFCNT
10886         free_percpu(dev->pcpu_refcnt);
10887 free_dev:
10888 #endif
10889         netdev_freemem(dev);
10890         return NULL;
10891 }
10892 EXPORT_SYMBOL(alloc_netdev_mqs);
10893
10894 /**
10895  * free_netdev - free network device
10896  * @dev: device
10897  *
10898  * This function does the last stage of destroying an allocated device
10899  * interface. The reference to the device object is released. If this
10900  * is the last reference then it will be freed.Must be called in process
10901  * context.
10902  */
10903 void free_netdev(struct net_device *dev)
10904 {
10905         struct napi_struct *p, *n;
10906
10907         might_sleep();
10908
10909         /* When called immediately after register_netdevice() failed the unwind
10910          * handling may still be dismantling the device. Handle that case by
10911          * deferring the free.
10912          */
10913         if (dev->reg_state == NETREG_UNREGISTERING) {
10914                 ASSERT_RTNL();
10915                 dev->needs_free_netdev = true;
10916                 return;
10917         }
10918
10919         netif_free_tx_queues(dev);
10920         netif_free_rx_queues(dev);
10921
10922         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10923
10924         /* Flush device addresses */
10925         dev_addr_flush(dev);
10926
10927         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10928                 netif_napi_del(p);
10929
10930 #ifdef CONFIG_PCPU_DEV_REFCNT
10931         free_percpu(dev->pcpu_refcnt);
10932         dev->pcpu_refcnt = NULL;
10933 #endif
10934         free_percpu(dev->xdp_bulkq);
10935         dev->xdp_bulkq = NULL;
10936
10937         /*  Compatibility with error handling in drivers */
10938         if (dev->reg_state == NETREG_UNINITIALIZED) {
10939                 netdev_freemem(dev);
10940                 return;
10941         }
10942
10943         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10944         dev->reg_state = NETREG_RELEASED;
10945
10946         /* will free via device release */
10947         put_device(&dev->dev);
10948 }
10949 EXPORT_SYMBOL(free_netdev);
10950
10951 /**
10952  *      synchronize_net -  Synchronize with packet receive processing
10953  *
10954  *      Wait for packets currently being received to be done.
10955  *      Does not block later packets from starting.
10956  */
10957 void synchronize_net(void)
10958 {
10959         might_sleep();
10960         if (rtnl_is_locked())
10961                 synchronize_rcu_expedited();
10962         else
10963                 synchronize_rcu();
10964 }
10965 EXPORT_SYMBOL(synchronize_net);
10966
10967 /**
10968  *      unregister_netdevice_queue - remove device from the kernel
10969  *      @dev: device
10970  *      @head: list
10971  *
10972  *      This function shuts down a device interface and removes it
10973  *      from the kernel tables.
10974  *      If head not NULL, device is queued to be unregistered later.
10975  *
10976  *      Callers must hold the rtnl semaphore.  You may want
10977  *      unregister_netdev() instead of this.
10978  */
10979
10980 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10981 {
10982         ASSERT_RTNL();
10983
10984         if (head) {
10985                 list_move_tail(&dev->unreg_list, head);
10986         } else {
10987                 LIST_HEAD(single);
10988
10989                 list_add(&dev->unreg_list, &single);
10990                 unregister_netdevice_many(&single);
10991         }
10992 }
10993 EXPORT_SYMBOL(unregister_netdevice_queue);
10994
10995 /**
10996  *      unregister_netdevice_many - unregister many devices
10997  *      @head: list of devices
10998  *
10999  *  Note: As most callers use a stack allocated list_head,
11000  *  we force a list_del() to make sure stack wont be corrupted later.
11001  */
11002 void unregister_netdevice_many(struct list_head *head)
11003 {
11004         struct net_device *dev, *tmp;
11005         LIST_HEAD(close_head);
11006
11007         BUG_ON(dev_boot_phase);
11008         ASSERT_RTNL();
11009
11010         if (list_empty(head))
11011                 return;
11012
11013         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11014                 /* Some devices call without registering
11015                  * for initialization unwind. Remove those
11016                  * devices and proceed with the remaining.
11017                  */
11018                 if (dev->reg_state == NETREG_UNINITIALIZED) {
11019                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11020                                  dev->name, dev);
11021
11022                         WARN_ON(1);
11023                         list_del(&dev->unreg_list);
11024                         continue;
11025                 }
11026                 dev->dismantle = true;
11027                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11028         }
11029
11030         /* If device is running, close it first. */
11031         list_for_each_entry(dev, head, unreg_list)
11032                 list_add_tail(&dev->close_list, &close_head);
11033         dev_close_many(&close_head, true);
11034
11035         list_for_each_entry(dev, head, unreg_list) {
11036                 /* And unlink it from device chain. */
11037                 unlist_netdevice(dev);
11038
11039                 dev->reg_state = NETREG_UNREGISTERING;
11040         }
11041         flush_all_backlogs();
11042
11043         synchronize_net();
11044
11045         list_for_each_entry(dev, head, unreg_list) {
11046                 struct sk_buff *skb = NULL;
11047
11048                 /* Shutdown queueing discipline. */
11049                 dev_shutdown(dev);
11050
11051                 dev_xdp_uninstall(dev);
11052
11053                 /* Notify protocols, that we are about to destroy
11054                  * this device. They should clean all the things.
11055                  */
11056                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11057
11058                 if (!dev->rtnl_link_ops ||
11059                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11060                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11061                                                      GFP_KERNEL, NULL, 0);
11062
11063                 /*
11064                  *      Flush the unicast and multicast chains
11065                  */
11066                 dev_uc_flush(dev);
11067                 dev_mc_flush(dev);
11068
11069                 netdev_name_node_alt_flush(dev);
11070                 netdev_name_node_free(dev->name_node);
11071
11072                 if (dev->netdev_ops->ndo_uninit)
11073                         dev->netdev_ops->ndo_uninit(dev);
11074
11075                 if (skb)
11076                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11077
11078                 /* Notifier chain MUST detach us all upper devices. */
11079                 WARN_ON(netdev_has_any_upper_dev(dev));
11080                 WARN_ON(netdev_has_any_lower_dev(dev));
11081
11082                 /* Remove entries from kobject tree */
11083                 netdev_unregister_kobject(dev);
11084 #ifdef CONFIG_XPS
11085                 /* Remove XPS queueing entries */
11086                 netif_reset_xps_queues_gt(dev, 0);
11087 #endif
11088         }
11089
11090         synchronize_net();
11091
11092         list_for_each_entry(dev, head, unreg_list) {
11093                 dev_put(dev);
11094                 net_set_todo(dev);
11095         }
11096
11097         list_del(head);
11098 }
11099 EXPORT_SYMBOL(unregister_netdevice_many);
11100
11101 /**
11102  *      unregister_netdev - remove device from the kernel
11103  *      @dev: device
11104  *
11105  *      This function shuts down a device interface and removes it
11106  *      from the kernel tables.
11107  *
11108  *      This is just a wrapper for unregister_netdevice that takes
11109  *      the rtnl semaphore.  In general you want to use this and not
11110  *      unregister_netdevice.
11111  */
11112 void unregister_netdev(struct net_device *dev)
11113 {
11114         rtnl_lock();
11115         unregister_netdevice(dev);
11116         rtnl_unlock();
11117 }
11118 EXPORT_SYMBOL(unregister_netdev);
11119
11120 /**
11121  *      __dev_change_net_namespace - move device to different nethost namespace
11122  *      @dev: device
11123  *      @net: network namespace
11124  *      @pat: If not NULL name pattern to try if the current device name
11125  *            is already taken in the destination network namespace.
11126  *      @new_ifindex: If not zero, specifies device index in the target
11127  *                    namespace.
11128  *
11129  *      This function shuts down a device interface and moves it
11130  *      to a new network namespace. On success 0 is returned, on
11131  *      a failure a netagive errno code is returned.
11132  *
11133  *      Callers must hold the rtnl semaphore.
11134  */
11135
11136 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11137                                const char *pat, int new_ifindex)
11138 {
11139         struct net *net_old = dev_net(dev);
11140         int err, new_nsid;
11141
11142         ASSERT_RTNL();
11143
11144         /* Don't allow namespace local devices to be moved. */
11145         err = -EINVAL;
11146         if (dev->features & NETIF_F_NETNS_LOCAL)
11147                 goto out;
11148
11149         /* Ensure the device has been registrered */
11150         if (dev->reg_state != NETREG_REGISTERED)
11151                 goto out;
11152
11153         /* Get out if there is nothing todo */
11154         err = 0;
11155         if (net_eq(net_old, net))
11156                 goto out;
11157
11158         /* Pick the destination device name, and ensure
11159          * we can use it in the destination network namespace.
11160          */
11161         err = -EEXIST;
11162         if (netdev_name_in_use(net, dev->name)) {
11163                 /* We get here if we can't use the current device name */
11164                 if (!pat)
11165                         goto out;
11166                 err = dev_get_valid_name(net, dev, pat);
11167                 if (err < 0)
11168                         goto out;
11169         }
11170
11171         /* Check that new_ifindex isn't used yet. */
11172         err = -EBUSY;
11173         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11174                 goto out;
11175
11176         /*
11177          * And now a mini version of register_netdevice unregister_netdevice.
11178          */
11179
11180         /* If device is running close it first. */
11181         dev_close(dev);
11182
11183         /* And unlink it from device chain */
11184         unlist_netdevice(dev);
11185
11186         synchronize_net();
11187
11188         /* Shutdown queueing discipline. */
11189         dev_shutdown(dev);
11190
11191         /* Notify protocols, that we are about to destroy
11192          * this device. They should clean all the things.
11193          *
11194          * Note that dev->reg_state stays at NETREG_REGISTERED.
11195          * This is wanted because this way 8021q and macvlan know
11196          * the device is just moving and can keep their slaves up.
11197          */
11198         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11199         rcu_barrier();
11200
11201         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11202         /* If there is an ifindex conflict assign a new one */
11203         if (!new_ifindex) {
11204                 if (__dev_get_by_index(net, dev->ifindex))
11205                         new_ifindex = dev_new_index(net);
11206                 else
11207                         new_ifindex = dev->ifindex;
11208         }
11209
11210         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11211                             new_ifindex);
11212
11213         /*
11214          *      Flush the unicast and multicast chains
11215          */
11216         dev_uc_flush(dev);
11217         dev_mc_flush(dev);
11218
11219         /* Send a netdev-removed uevent to the old namespace */
11220         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11221         netdev_adjacent_del_links(dev);
11222
11223         /* Move per-net netdevice notifiers that are following the netdevice */
11224         move_netdevice_notifiers_dev_net(dev, net);
11225
11226         /* Actually switch the network namespace */
11227         dev_net_set(dev, net);
11228         dev->ifindex = new_ifindex;
11229
11230         /* Send a netdev-add uevent to the new namespace */
11231         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11232         netdev_adjacent_add_links(dev);
11233
11234         /* Fixup kobjects */
11235         err = device_rename(&dev->dev, dev->name);
11236         WARN_ON(err);
11237
11238         /* Adapt owner in case owning user namespace of target network
11239          * namespace is different from the original one.
11240          */
11241         err = netdev_change_owner(dev, net_old, net);
11242         WARN_ON(err);
11243
11244         /* Add the device back in the hashes */
11245         list_netdevice(dev);
11246
11247         /* Notify protocols, that a new device appeared. */
11248         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11249
11250         /*
11251          *      Prevent userspace races by waiting until the network
11252          *      device is fully setup before sending notifications.
11253          */
11254         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11255
11256         synchronize_net();
11257         err = 0;
11258 out:
11259         return err;
11260 }
11261 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11262
11263 static int dev_cpu_dead(unsigned int oldcpu)
11264 {
11265         struct sk_buff **list_skb;
11266         struct sk_buff *skb;
11267         unsigned int cpu;
11268         struct softnet_data *sd, *oldsd, *remsd = NULL;
11269
11270         local_irq_disable();
11271         cpu = smp_processor_id();
11272         sd = &per_cpu(softnet_data, cpu);
11273         oldsd = &per_cpu(softnet_data, oldcpu);
11274
11275         /* Find end of our completion_queue. */
11276         list_skb = &sd->completion_queue;
11277         while (*list_skb)
11278                 list_skb = &(*list_skb)->next;
11279         /* Append completion queue from offline CPU. */
11280         *list_skb = oldsd->completion_queue;
11281         oldsd->completion_queue = NULL;
11282
11283         /* Append output queue from offline CPU. */
11284         if (oldsd->output_queue) {
11285                 *sd->output_queue_tailp = oldsd->output_queue;
11286                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11287                 oldsd->output_queue = NULL;
11288                 oldsd->output_queue_tailp = &oldsd->output_queue;
11289         }
11290         /* Append NAPI poll list from offline CPU, with one exception :
11291          * process_backlog() must be called by cpu owning percpu backlog.
11292          * We properly handle process_queue & input_pkt_queue later.
11293          */
11294         while (!list_empty(&oldsd->poll_list)) {
11295                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11296                                                             struct napi_struct,
11297                                                             poll_list);
11298
11299                 list_del_init(&napi->poll_list);
11300                 if (napi->poll == process_backlog)
11301                         napi->state = 0;
11302                 else
11303                         ____napi_schedule(sd, napi);
11304         }
11305
11306         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11307         local_irq_enable();
11308
11309 #ifdef CONFIG_RPS
11310         remsd = oldsd->rps_ipi_list;
11311         oldsd->rps_ipi_list = NULL;
11312 #endif
11313         /* send out pending IPI's on offline CPU */
11314         net_rps_send_ipi(remsd);
11315
11316         /* Process offline CPU's input_pkt_queue */
11317         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11318                 netif_rx_ni(skb);
11319                 input_queue_head_incr(oldsd);
11320         }
11321         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11322                 netif_rx_ni(skb);
11323                 input_queue_head_incr(oldsd);
11324         }
11325
11326         return 0;
11327 }
11328
11329 /**
11330  *      netdev_increment_features - increment feature set by one
11331  *      @all: current feature set
11332  *      @one: new feature set
11333  *      @mask: mask feature set
11334  *
11335  *      Computes a new feature set after adding a device with feature set
11336  *      @one to the master device with current feature set @all.  Will not
11337  *      enable anything that is off in @mask. Returns the new feature set.
11338  */
11339 netdev_features_t netdev_increment_features(netdev_features_t all,
11340         netdev_features_t one, netdev_features_t mask)
11341 {
11342         if (mask & NETIF_F_HW_CSUM)
11343                 mask |= NETIF_F_CSUM_MASK;
11344         mask |= NETIF_F_VLAN_CHALLENGED;
11345
11346         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11347         all &= one | ~NETIF_F_ALL_FOR_ALL;
11348
11349         /* If one device supports hw checksumming, set for all. */
11350         if (all & NETIF_F_HW_CSUM)
11351                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11352
11353         return all;
11354 }
11355 EXPORT_SYMBOL(netdev_increment_features);
11356
11357 static struct hlist_head * __net_init netdev_create_hash(void)
11358 {
11359         int i;
11360         struct hlist_head *hash;
11361
11362         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11363         if (hash != NULL)
11364                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11365                         INIT_HLIST_HEAD(&hash[i]);
11366
11367         return hash;
11368 }
11369
11370 /* Initialize per network namespace state */
11371 static int __net_init netdev_init(struct net *net)
11372 {
11373         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11374                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11375
11376         if (net != &init_net)
11377                 INIT_LIST_HEAD(&net->dev_base_head);
11378
11379         net->dev_name_head = netdev_create_hash();
11380         if (net->dev_name_head == NULL)
11381                 goto err_name;
11382
11383         net->dev_index_head = netdev_create_hash();
11384         if (net->dev_index_head == NULL)
11385                 goto err_idx;
11386
11387         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11388
11389         return 0;
11390
11391 err_idx:
11392         kfree(net->dev_name_head);
11393 err_name:
11394         return -ENOMEM;
11395 }
11396
11397 /**
11398  *      netdev_drivername - network driver for the device
11399  *      @dev: network device
11400  *
11401  *      Determine network driver for device.
11402  */
11403 const char *netdev_drivername(const struct net_device *dev)
11404 {
11405         const struct device_driver *driver;
11406         const struct device *parent;
11407         const char *empty = "";
11408
11409         parent = dev->dev.parent;
11410         if (!parent)
11411                 return empty;
11412
11413         driver = parent->driver;
11414         if (driver && driver->name)
11415                 return driver->name;
11416         return empty;
11417 }
11418
11419 static void __netdev_printk(const char *level, const struct net_device *dev,
11420                             struct va_format *vaf)
11421 {
11422         if (dev && dev->dev.parent) {
11423                 dev_printk_emit(level[1] - '0',
11424                                 dev->dev.parent,
11425                                 "%s %s %s%s: %pV",
11426                                 dev_driver_string(dev->dev.parent),
11427                                 dev_name(dev->dev.parent),
11428                                 netdev_name(dev), netdev_reg_state(dev),
11429                                 vaf);
11430         } else if (dev) {
11431                 printk("%s%s%s: %pV",
11432                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11433         } else {
11434                 printk("%s(NULL net_device): %pV", level, vaf);
11435         }
11436 }
11437
11438 void netdev_printk(const char *level, const struct net_device *dev,
11439                    const char *format, ...)
11440 {
11441         struct va_format vaf;
11442         va_list args;
11443
11444         va_start(args, format);
11445
11446         vaf.fmt = format;
11447         vaf.va = &args;
11448
11449         __netdev_printk(level, dev, &vaf);
11450
11451         va_end(args);
11452 }
11453 EXPORT_SYMBOL(netdev_printk);
11454
11455 #define define_netdev_printk_level(func, level)                 \
11456 void func(const struct net_device *dev, const char *fmt, ...)   \
11457 {                                                               \
11458         struct va_format vaf;                                   \
11459         va_list args;                                           \
11460                                                                 \
11461         va_start(args, fmt);                                    \
11462                                                                 \
11463         vaf.fmt = fmt;                                          \
11464         vaf.va = &args;                                         \
11465                                                                 \
11466         __netdev_printk(level, dev, &vaf);                      \
11467                                                                 \
11468         va_end(args);                                           \
11469 }                                                               \
11470 EXPORT_SYMBOL(func);
11471
11472 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11473 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11474 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11475 define_netdev_printk_level(netdev_err, KERN_ERR);
11476 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11477 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11478 define_netdev_printk_level(netdev_info, KERN_INFO);
11479
11480 static void __net_exit netdev_exit(struct net *net)
11481 {
11482         kfree(net->dev_name_head);
11483         kfree(net->dev_index_head);
11484         if (net != &init_net)
11485                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11486 }
11487
11488 static struct pernet_operations __net_initdata netdev_net_ops = {
11489         .init = netdev_init,
11490         .exit = netdev_exit,
11491 };
11492
11493 static void __net_exit default_device_exit(struct net *net)
11494 {
11495         struct net_device *dev, *aux;
11496         /*
11497          * Push all migratable network devices back to the
11498          * initial network namespace
11499          */
11500         rtnl_lock();
11501         for_each_netdev_safe(net, dev, aux) {
11502                 int err;
11503                 char fb_name[IFNAMSIZ];
11504
11505                 /* Ignore unmoveable devices (i.e. loopback) */
11506                 if (dev->features & NETIF_F_NETNS_LOCAL)
11507                         continue;
11508
11509                 /* Leave virtual devices for the generic cleanup */
11510                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11511                         continue;
11512
11513                 /* Push remaining network devices to init_net */
11514                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11515                 if (netdev_name_in_use(&init_net, fb_name))
11516                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11517                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11518                 if (err) {
11519                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11520                                  __func__, dev->name, err);
11521                         BUG();
11522                 }
11523         }
11524         rtnl_unlock();
11525 }
11526
11527 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11528 {
11529         /* Return with the rtnl_lock held when there are no network
11530          * devices unregistering in any network namespace in net_list.
11531          */
11532         struct net *net;
11533         bool unregistering;
11534         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11535
11536         add_wait_queue(&netdev_unregistering_wq, &wait);
11537         for (;;) {
11538                 unregistering = false;
11539                 rtnl_lock();
11540                 list_for_each_entry(net, net_list, exit_list) {
11541                         if (net->dev_unreg_count > 0) {
11542                                 unregistering = true;
11543                                 break;
11544                         }
11545                 }
11546                 if (!unregistering)
11547                         break;
11548                 __rtnl_unlock();
11549
11550                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11551         }
11552         remove_wait_queue(&netdev_unregistering_wq, &wait);
11553 }
11554
11555 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11556 {
11557         /* At exit all network devices most be removed from a network
11558          * namespace.  Do this in the reverse order of registration.
11559          * Do this across as many network namespaces as possible to
11560          * improve batching efficiency.
11561          */
11562         struct net_device *dev;
11563         struct net *net;
11564         LIST_HEAD(dev_kill_list);
11565
11566         /* To prevent network device cleanup code from dereferencing
11567          * loopback devices or network devices that have been freed
11568          * wait here for all pending unregistrations to complete,
11569          * before unregistring the loopback device and allowing the
11570          * network namespace be freed.
11571          *
11572          * The netdev todo list containing all network devices
11573          * unregistrations that happen in default_device_exit_batch
11574          * will run in the rtnl_unlock() at the end of
11575          * default_device_exit_batch.
11576          */
11577         rtnl_lock_unregistering(net_list);
11578         list_for_each_entry(net, net_list, exit_list) {
11579                 for_each_netdev_reverse(net, dev) {
11580                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11581                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11582                         else
11583                                 unregister_netdevice_queue(dev, &dev_kill_list);
11584                 }
11585         }
11586         unregister_netdevice_many(&dev_kill_list);
11587         rtnl_unlock();
11588 }
11589
11590 static struct pernet_operations __net_initdata default_device_ops = {
11591         .exit = default_device_exit,
11592         .exit_batch = default_device_exit_batch,
11593 };
11594
11595 /*
11596  *      Initialize the DEV module. At boot time this walks the device list and
11597  *      unhooks any devices that fail to initialise (normally hardware not
11598  *      present) and leaves us with a valid list of present and active devices.
11599  *
11600  */
11601
11602 /*
11603  *       This is called single threaded during boot, so no need
11604  *       to take the rtnl semaphore.
11605  */
11606 static int __init net_dev_init(void)
11607 {
11608         int i, rc = -ENOMEM;
11609
11610         BUG_ON(!dev_boot_phase);
11611
11612         if (dev_proc_init())
11613                 goto out;
11614
11615         if (netdev_kobject_init())
11616                 goto out;
11617
11618         INIT_LIST_HEAD(&ptype_all);
11619         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11620                 INIT_LIST_HEAD(&ptype_base[i]);
11621
11622         INIT_LIST_HEAD(&offload_base);
11623
11624         if (register_pernet_subsys(&netdev_net_ops))
11625                 goto out;
11626
11627         /*
11628          *      Initialise the packet receive queues.
11629          */
11630
11631         for_each_possible_cpu(i) {
11632                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11633                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11634
11635                 INIT_WORK(flush, flush_backlog);
11636
11637                 skb_queue_head_init(&sd->input_pkt_queue);
11638                 skb_queue_head_init(&sd->process_queue);
11639 #ifdef CONFIG_XFRM_OFFLOAD
11640                 skb_queue_head_init(&sd->xfrm_backlog);
11641 #endif
11642                 INIT_LIST_HEAD(&sd->poll_list);
11643                 sd->output_queue_tailp = &sd->output_queue;
11644 #ifdef CONFIG_RPS
11645                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11646                 sd->cpu = i;
11647 #endif
11648
11649                 init_gro_hash(&sd->backlog);
11650                 sd->backlog.poll = process_backlog;
11651                 sd->backlog.weight = weight_p;
11652         }
11653
11654         dev_boot_phase = 0;
11655
11656         /* The loopback device is special if any other network devices
11657          * is present in a network namespace the loopback device must
11658          * be present. Since we now dynamically allocate and free the
11659          * loopback device ensure this invariant is maintained by
11660          * keeping the loopback device as the first device on the
11661          * list of network devices.  Ensuring the loopback devices
11662          * is the first device that appears and the last network device
11663          * that disappears.
11664          */
11665         if (register_pernet_device(&loopback_net_ops))
11666                 goto out;
11667
11668         if (register_pernet_device(&default_device_ops))
11669                 goto out;
11670
11671         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11672         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11673
11674         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11675                                        NULL, dev_cpu_dead);
11676         WARN_ON(rc < 0);
11677         rc = 0;
11678 out:
11679         return rc;
11680 }
11681
11682 subsys_initcall(net_dev_init);