Merge tag 'platform-drivers-x86-v4.13-2' of git://git.infradead.org/linux-platform...
[platform/kernel/linux-rpi.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147
148 #include "net-sysfs.h"
149
150 /* Instead of increasing this, you should create a hash table. */
151 #define MAX_GRO_SKBS 8
152
153 /* This should be increased if a protocol with a bigger head is added. */
154 #define GRO_MAX_HEAD (MAX_HEADER + 128)
155
156 static DEFINE_SPINLOCK(ptype_lock);
157 static DEFINE_SPINLOCK(offload_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;       /* Taps */
160 static struct list_head offload_base __read_mostly;
161
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164                                          struct net_device *dev,
165                                          struct netdev_notifier_info *info);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189
190 /* protects napi_hash addition/deletion and napi_gen_id */
191 static DEFINE_SPINLOCK(napi_hash_lock);
192
193 static unsigned int napi_gen_id = NR_CPUS;
194 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
195
196 static seqcount_t devnet_rename_seq;
197
198 static inline void dev_base_seq_inc(struct net *net)
199 {
200         while (++net->dev_base_seq == 0)
201                 ;
202 }
203
204 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
205 {
206         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
207
208         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
209 }
210
211 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
212 {
213         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
214 }
215
216 static inline void rps_lock(struct softnet_data *sd)
217 {
218 #ifdef CONFIG_RPS
219         spin_lock(&sd->input_pkt_queue.lock);
220 #endif
221 }
222
223 static inline void rps_unlock(struct softnet_data *sd)
224 {
225 #ifdef CONFIG_RPS
226         spin_unlock(&sd->input_pkt_queue.lock);
227 #endif
228 }
229
230 /* Device list insertion */
231 static void list_netdevice(struct net_device *dev)
232 {
233         struct net *net = dev_net(dev);
234
235         ASSERT_RTNL();
236
237         write_lock_bh(&dev_base_lock);
238         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
239         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
240         hlist_add_head_rcu(&dev->index_hlist,
241                            dev_index_hash(net, dev->ifindex));
242         write_unlock_bh(&dev_base_lock);
243
244         dev_base_seq_inc(net);
245 }
246
247 /* Device list removal
248  * caller must respect a RCU grace period before freeing/reusing dev
249  */
250 static void unlist_netdevice(struct net_device *dev)
251 {
252         ASSERT_RTNL();
253
254         /* Unlink dev from the device chain */
255         write_lock_bh(&dev_base_lock);
256         list_del_rcu(&dev->dev_list);
257         hlist_del_rcu(&dev->name_hlist);
258         hlist_del_rcu(&dev->index_hlist);
259         write_unlock_bh(&dev_base_lock);
260
261         dev_base_seq_inc(dev_net(dev));
262 }
263
264 /*
265  *      Our notifier list
266  */
267
268 static RAW_NOTIFIER_HEAD(netdev_chain);
269
270 /*
271  *      Device drivers call our routines to queue packets here. We empty the
272  *      queue in the local softnet handler.
273  */
274
275 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
276 EXPORT_PER_CPU_SYMBOL(softnet_data);
277
278 #ifdef CONFIG_LOCKDEP
279 /*
280  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
281  * according to dev->type
282  */
283 static const unsigned short netdev_lock_type[] = {
284          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
285          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
286          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
287          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
288          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
289          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
290          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
291          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
292          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
293          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
294          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
295          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
296          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
297          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
298          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
299
300 static const char *const netdev_lock_name[] = {
301         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
302         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
303         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
304         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
305         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
306         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
307         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
308         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
309         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
310         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
311         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
312         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
313         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
314         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
315         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
316
317 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
318 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
319
320 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
321 {
322         int i;
323
324         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
325                 if (netdev_lock_type[i] == dev_type)
326                         return i;
327         /* the last key is used by default */
328         return ARRAY_SIZE(netdev_lock_type) - 1;
329 }
330
331 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
332                                                  unsigned short dev_type)
333 {
334         int i;
335
336         i = netdev_lock_pos(dev_type);
337         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
338                                    netdev_lock_name[i]);
339 }
340
341 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
342 {
343         int i;
344
345         i = netdev_lock_pos(dev->type);
346         lockdep_set_class_and_name(&dev->addr_list_lock,
347                                    &netdev_addr_lock_key[i],
348                                    netdev_lock_name[i]);
349 }
350 #else
351 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
352                                                  unsigned short dev_type)
353 {
354 }
355 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
356 {
357 }
358 #endif
359
360 /*******************************************************************************
361  *
362  *              Protocol management and registration routines
363  *
364  *******************************************************************************/
365
366
367 /*
368  *      Add a protocol ID to the list. Now that the input handler is
369  *      smarter we can dispense with all the messy stuff that used to be
370  *      here.
371  *
372  *      BEWARE!!! Protocol handlers, mangling input packets,
373  *      MUST BE last in hash buckets and checking protocol handlers
374  *      MUST start from promiscuous ptype_all chain in net_bh.
375  *      It is true now, do not change it.
376  *      Explanation follows: if protocol handler, mangling packet, will
377  *      be the first on list, it is not able to sense, that packet
378  *      is cloned and should be copied-on-write, so that it will
379  *      change it and subsequent readers will get broken packet.
380  *                                                      --ANK (980803)
381  */
382
383 static inline struct list_head *ptype_head(const struct packet_type *pt)
384 {
385         if (pt->type == htons(ETH_P_ALL))
386                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
387         else
388                 return pt->dev ? &pt->dev->ptype_specific :
389                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
390 }
391
392 /**
393  *      dev_add_pack - add packet handler
394  *      @pt: packet type declaration
395  *
396  *      Add a protocol handler to the networking stack. The passed &packet_type
397  *      is linked into kernel lists and may not be freed until it has been
398  *      removed from the kernel lists.
399  *
400  *      This call does not sleep therefore it can not
401  *      guarantee all CPU's that are in middle of receiving packets
402  *      will see the new packet type (until the next received packet).
403  */
404
405 void dev_add_pack(struct packet_type *pt)
406 {
407         struct list_head *head = ptype_head(pt);
408
409         spin_lock(&ptype_lock);
410         list_add_rcu(&pt->list, head);
411         spin_unlock(&ptype_lock);
412 }
413 EXPORT_SYMBOL(dev_add_pack);
414
415 /**
416  *      __dev_remove_pack        - remove packet handler
417  *      @pt: packet type declaration
418  *
419  *      Remove a protocol handler that was previously added to the kernel
420  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
421  *      from the kernel lists and can be freed or reused once this function
422  *      returns.
423  *
424  *      The packet type might still be in use by receivers
425  *      and must not be freed until after all the CPU's have gone
426  *      through a quiescent state.
427  */
428 void __dev_remove_pack(struct packet_type *pt)
429 {
430         struct list_head *head = ptype_head(pt);
431         struct packet_type *pt1;
432
433         spin_lock(&ptype_lock);
434
435         list_for_each_entry(pt1, head, list) {
436                 if (pt == pt1) {
437                         list_del_rcu(&pt->list);
438                         goto out;
439                 }
440         }
441
442         pr_warn("dev_remove_pack: %p not found\n", pt);
443 out:
444         spin_unlock(&ptype_lock);
445 }
446 EXPORT_SYMBOL(__dev_remove_pack);
447
448 /**
449  *      dev_remove_pack  - remove packet handler
450  *      @pt: packet type declaration
451  *
452  *      Remove a protocol handler that was previously added to the kernel
453  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
454  *      from the kernel lists and can be freed or reused once this function
455  *      returns.
456  *
457  *      This call sleeps to guarantee that no CPU is looking at the packet
458  *      type after return.
459  */
460 void dev_remove_pack(struct packet_type *pt)
461 {
462         __dev_remove_pack(pt);
463
464         synchronize_net();
465 }
466 EXPORT_SYMBOL(dev_remove_pack);
467
468
469 /**
470  *      dev_add_offload - register offload handlers
471  *      @po: protocol offload declaration
472  *
473  *      Add protocol offload handlers to the networking stack. The passed
474  *      &proto_offload is linked into kernel lists and may not be freed until
475  *      it has been removed from the kernel lists.
476  *
477  *      This call does not sleep therefore it can not
478  *      guarantee all CPU's that are in middle of receiving packets
479  *      will see the new offload handlers (until the next received packet).
480  */
481 void dev_add_offload(struct packet_offload *po)
482 {
483         struct packet_offload *elem;
484
485         spin_lock(&offload_lock);
486         list_for_each_entry(elem, &offload_base, list) {
487                 if (po->priority < elem->priority)
488                         break;
489         }
490         list_add_rcu(&po->list, elem->list.prev);
491         spin_unlock(&offload_lock);
492 }
493 EXPORT_SYMBOL(dev_add_offload);
494
495 /**
496  *      __dev_remove_offload     - remove offload handler
497  *      @po: packet offload declaration
498  *
499  *      Remove a protocol offload handler that was previously added to the
500  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
501  *      is removed from the kernel lists and can be freed or reused once this
502  *      function returns.
503  *
504  *      The packet type might still be in use by receivers
505  *      and must not be freed until after all the CPU's have gone
506  *      through a quiescent state.
507  */
508 static void __dev_remove_offload(struct packet_offload *po)
509 {
510         struct list_head *head = &offload_base;
511         struct packet_offload *po1;
512
513         spin_lock(&offload_lock);
514
515         list_for_each_entry(po1, head, list) {
516                 if (po == po1) {
517                         list_del_rcu(&po->list);
518                         goto out;
519                 }
520         }
521
522         pr_warn("dev_remove_offload: %p not found\n", po);
523 out:
524         spin_unlock(&offload_lock);
525 }
526
527 /**
528  *      dev_remove_offload       - remove packet offload handler
529  *      @po: packet offload declaration
530  *
531  *      Remove a packet offload handler that was previously added to the kernel
532  *      offload handlers by dev_add_offload(). The passed &offload_type is
533  *      removed from the kernel lists and can be freed or reused once this
534  *      function returns.
535  *
536  *      This call sleeps to guarantee that no CPU is looking at the packet
537  *      type after return.
538  */
539 void dev_remove_offload(struct packet_offload *po)
540 {
541         __dev_remove_offload(po);
542
543         synchronize_net();
544 }
545 EXPORT_SYMBOL(dev_remove_offload);
546
547 /******************************************************************************
548  *
549  *                    Device Boot-time Settings Routines
550  *
551  ******************************************************************************/
552
553 /* Boot time configuration table */
554 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
555
556 /**
557  *      netdev_boot_setup_add   - add new setup entry
558  *      @name: name of the device
559  *      @map: configured settings for the device
560  *
561  *      Adds new setup entry to the dev_boot_setup list.  The function
562  *      returns 0 on error and 1 on success.  This is a generic routine to
563  *      all netdevices.
564  */
565 static int netdev_boot_setup_add(char *name, struct ifmap *map)
566 {
567         struct netdev_boot_setup *s;
568         int i;
569
570         s = dev_boot_setup;
571         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
572                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
573                         memset(s[i].name, 0, sizeof(s[i].name));
574                         strlcpy(s[i].name, name, IFNAMSIZ);
575                         memcpy(&s[i].map, map, sizeof(s[i].map));
576                         break;
577                 }
578         }
579
580         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
581 }
582
583 /**
584  * netdev_boot_setup_check      - check boot time settings
585  * @dev: the netdevice
586  *
587  * Check boot time settings for the device.
588  * The found settings are set for the device to be used
589  * later in the device probing.
590  * Returns 0 if no settings found, 1 if they are.
591  */
592 int netdev_boot_setup_check(struct net_device *dev)
593 {
594         struct netdev_boot_setup *s = dev_boot_setup;
595         int i;
596
597         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
598                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
599                     !strcmp(dev->name, s[i].name)) {
600                         dev->irq = s[i].map.irq;
601                         dev->base_addr = s[i].map.base_addr;
602                         dev->mem_start = s[i].map.mem_start;
603                         dev->mem_end = s[i].map.mem_end;
604                         return 1;
605                 }
606         }
607         return 0;
608 }
609 EXPORT_SYMBOL(netdev_boot_setup_check);
610
611
612 /**
613  * netdev_boot_base     - get address from boot time settings
614  * @prefix: prefix for network device
615  * @unit: id for network device
616  *
617  * Check boot time settings for the base address of device.
618  * The found settings are set for the device to be used
619  * later in the device probing.
620  * Returns 0 if no settings found.
621  */
622 unsigned long netdev_boot_base(const char *prefix, int unit)
623 {
624         const struct netdev_boot_setup *s = dev_boot_setup;
625         char name[IFNAMSIZ];
626         int i;
627
628         sprintf(name, "%s%d", prefix, unit);
629
630         /*
631          * If device already registered then return base of 1
632          * to indicate not to probe for this interface
633          */
634         if (__dev_get_by_name(&init_net, name))
635                 return 1;
636
637         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
638                 if (!strcmp(name, s[i].name))
639                         return s[i].map.base_addr;
640         return 0;
641 }
642
643 /*
644  * Saves at boot time configured settings for any netdevice.
645  */
646 int __init netdev_boot_setup(char *str)
647 {
648         int ints[5];
649         struct ifmap map;
650
651         str = get_options(str, ARRAY_SIZE(ints), ints);
652         if (!str || !*str)
653                 return 0;
654
655         /* Save settings */
656         memset(&map, 0, sizeof(map));
657         if (ints[0] > 0)
658                 map.irq = ints[1];
659         if (ints[0] > 1)
660                 map.base_addr = ints[2];
661         if (ints[0] > 2)
662                 map.mem_start = ints[3];
663         if (ints[0] > 3)
664                 map.mem_end = ints[4];
665
666         /* Add new entry to the list */
667         return netdev_boot_setup_add(str, &map);
668 }
669
670 __setup("netdev=", netdev_boot_setup);
671
672 /*******************************************************************************
673  *
674  *                          Device Interface Subroutines
675  *
676  *******************************************************************************/
677
678 /**
679  *      dev_get_iflink  - get 'iflink' value of a interface
680  *      @dev: targeted interface
681  *
682  *      Indicates the ifindex the interface is linked to.
683  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
684  */
685
686 int dev_get_iflink(const struct net_device *dev)
687 {
688         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
689                 return dev->netdev_ops->ndo_get_iflink(dev);
690
691         return dev->ifindex;
692 }
693 EXPORT_SYMBOL(dev_get_iflink);
694
695 /**
696  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
697  *      @dev: targeted interface
698  *      @skb: The packet.
699  *
700  *      For better visibility of tunnel traffic OVS needs to retrieve
701  *      egress tunnel information for a packet. Following API allows
702  *      user to get this info.
703  */
704 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
705 {
706         struct ip_tunnel_info *info;
707
708         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
709                 return -EINVAL;
710
711         info = skb_tunnel_info_unclone(skb);
712         if (!info)
713                 return -ENOMEM;
714         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
715                 return -EINVAL;
716
717         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
718 }
719 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
720
721 /**
722  *      __dev_get_by_name       - find a device by its name
723  *      @net: the applicable net namespace
724  *      @name: name to find
725  *
726  *      Find an interface by name. Must be called under RTNL semaphore
727  *      or @dev_base_lock. If the name is found a pointer to the device
728  *      is returned. If the name is not found then %NULL is returned. The
729  *      reference counters are not incremented so the caller must be
730  *      careful with locks.
731  */
732
733 struct net_device *__dev_get_by_name(struct net *net, const char *name)
734 {
735         struct net_device *dev;
736         struct hlist_head *head = dev_name_hash(net, name);
737
738         hlist_for_each_entry(dev, head, name_hlist)
739                 if (!strncmp(dev->name, name, IFNAMSIZ))
740                         return dev;
741
742         return NULL;
743 }
744 EXPORT_SYMBOL(__dev_get_by_name);
745
746 /**
747  * dev_get_by_name_rcu  - find a device by its name
748  * @net: the applicable net namespace
749  * @name: name to find
750  *
751  * Find an interface by name.
752  * If the name is found a pointer to the device is returned.
753  * If the name is not found then %NULL is returned.
754  * The reference counters are not incremented so the caller must be
755  * careful with locks. The caller must hold RCU lock.
756  */
757
758 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
759 {
760         struct net_device *dev;
761         struct hlist_head *head = dev_name_hash(net, name);
762
763         hlist_for_each_entry_rcu(dev, head, name_hlist)
764                 if (!strncmp(dev->name, name, IFNAMSIZ))
765                         return dev;
766
767         return NULL;
768 }
769 EXPORT_SYMBOL(dev_get_by_name_rcu);
770
771 /**
772  *      dev_get_by_name         - find a device by its name
773  *      @net: the applicable net namespace
774  *      @name: name to find
775  *
776  *      Find an interface by name. This can be called from any
777  *      context and does its own locking. The returned handle has
778  *      the usage count incremented and the caller must use dev_put() to
779  *      release it when it is no longer needed. %NULL is returned if no
780  *      matching device is found.
781  */
782
783 struct net_device *dev_get_by_name(struct net *net, const char *name)
784 {
785         struct net_device *dev;
786
787         rcu_read_lock();
788         dev = dev_get_by_name_rcu(net, name);
789         if (dev)
790                 dev_hold(dev);
791         rcu_read_unlock();
792         return dev;
793 }
794 EXPORT_SYMBOL(dev_get_by_name);
795
796 /**
797  *      __dev_get_by_index - find a device by its ifindex
798  *      @net: the applicable net namespace
799  *      @ifindex: index of device
800  *
801  *      Search for an interface by index. Returns %NULL if the device
802  *      is not found or a pointer to the device. The device has not
803  *      had its reference counter increased so the caller must be careful
804  *      about locking. The caller must hold either the RTNL semaphore
805  *      or @dev_base_lock.
806  */
807
808 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
809 {
810         struct net_device *dev;
811         struct hlist_head *head = dev_index_hash(net, ifindex);
812
813         hlist_for_each_entry(dev, head, index_hlist)
814                 if (dev->ifindex == ifindex)
815                         return dev;
816
817         return NULL;
818 }
819 EXPORT_SYMBOL(__dev_get_by_index);
820
821 /**
822  *      dev_get_by_index_rcu - find a device by its ifindex
823  *      @net: the applicable net namespace
824  *      @ifindex: index of device
825  *
826  *      Search for an interface by index. Returns %NULL if the device
827  *      is not found or a pointer to the device. The device has not
828  *      had its reference counter increased so the caller must be careful
829  *      about locking. The caller must hold RCU lock.
830  */
831
832 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
833 {
834         struct net_device *dev;
835         struct hlist_head *head = dev_index_hash(net, ifindex);
836
837         hlist_for_each_entry_rcu(dev, head, index_hlist)
838                 if (dev->ifindex == ifindex)
839                         return dev;
840
841         return NULL;
842 }
843 EXPORT_SYMBOL(dev_get_by_index_rcu);
844
845
846 /**
847  *      dev_get_by_index - find a device by its ifindex
848  *      @net: the applicable net namespace
849  *      @ifindex: index of device
850  *
851  *      Search for an interface by index. Returns NULL if the device
852  *      is not found or a pointer to the device. The device returned has
853  *      had a reference added and the pointer is safe until the user calls
854  *      dev_put to indicate they have finished with it.
855  */
856
857 struct net_device *dev_get_by_index(struct net *net, int ifindex)
858 {
859         struct net_device *dev;
860
861         rcu_read_lock();
862         dev = dev_get_by_index_rcu(net, ifindex);
863         if (dev)
864                 dev_hold(dev);
865         rcu_read_unlock();
866         return dev;
867 }
868 EXPORT_SYMBOL(dev_get_by_index);
869
870 /**
871  *      dev_get_by_napi_id - find a device by napi_id
872  *      @napi_id: ID of the NAPI struct
873  *
874  *      Search for an interface by NAPI ID. Returns %NULL if the device
875  *      is not found or a pointer to the device. The device has not had
876  *      its reference counter increased so the caller must be careful
877  *      about locking. The caller must hold RCU lock.
878  */
879
880 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
881 {
882         struct napi_struct *napi;
883
884         WARN_ON_ONCE(!rcu_read_lock_held());
885
886         if (napi_id < MIN_NAPI_ID)
887                 return NULL;
888
889         napi = napi_by_id(napi_id);
890
891         return napi ? napi->dev : NULL;
892 }
893 EXPORT_SYMBOL(dev_get_by_napi_id);
894
895 /**
896  *      netdev_get_name - get a netdevice name, knowing its ifindex.
897  *      @net: network namespace
898  *      @name: a pointer to the buffer where the name will be stored.
899  *      @ifindex: the ifindex of the interface to get the name from.
900  *
901  *      The use of raw_seqcount_begin() and cond_resched() before
902  *      retrying is required as we want to give the writers a chance
903  *      to complete when CONFIG_PREEMPT is not set.
904  */
905 int netdev_get_name(struct net *net, char *name, int ifindex)
906 {
907         struct net_device *dev;
908         unsigned int seq;
909
910 retry:
911         seq = raw_seqcount_begin(&devnet_rename_seq);
912         rcu_read_lock();
913         dev = dev_get_by_index_rcu(net, ifindex);
914         if (!dev) {
915                 rcu_read_unlock();
916                 return -ENODEV;
917         }
918
919         strcpy(name, dev->name);
920         rcu_read_unlock();
921         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
922                 cond_resched();
923                 goto retry;
924         }
925
926         return 0;
927 }
928
929 /**
930  *      dev_getbyhwaddr_rcu - find a device by its hardware address
931  *      @net: the applicable net namespace
932  *      @type: media type of device
933  *      @ha: hardware address
934  *
935  *      Search for an interface by MAC address. Returns NULL if the device
936  *      is not found or a pointer to the device.
937  *      The caller must hold RCU or RTNL.
938  *      The returned device has not had its ref count increased
939  *      and the caller must therefore be careful about locking
940  *
941  */
942
943 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
944                                        const char *ha)
945 {
946         struct net_device *dev;
947
948         for_each_netdev_rcu(net, dev)
949                 if (dev->type == type &&
950                     !memcmp(dev->dev_addr, ha, dev->addr_len))
951                         return dev;
952
953         return NULL;
954 }
955 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
956
957 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
958 {
959         struct net_device *dev;
960
961         ASSERT_RTNL();
962         for_each_netdev(net, dev)
963                 if (dev->type == type)
964                         return dev;
965
966         return NULL;
967 }
968 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
969
970 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
971 {
972         struct net_device *dev, *ret = NULL;
973
974         rcu_read_lock();
975         for_each_netdev_rcu(net, dev)
976                 if (dev->type == type) {
977                         dev_hold(dev);
978                         ret = dev;
979                         break;
980                 }
981         rcu_read_unlock();
982         return ret;
983 }
984 EXPORT_SYMBOL(dev_getfirstbyhwtype);
985
986 /**
987  *      __dev_get_by_flags - find any device with given flags
988  *      @net: the applicable net namespace
989  *      @if_flags: IFF_* values
990  *      @mask: bitmask of bits in if_flags to check
991  *
992  *      Search for any interface with the given flags. Returns NULL if a device
993  *      is not found or a pointer to the device. Must be called inside
994  *      rtnl_lock(), and result refcount is unchanged.
995  */
996
997 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
998                                       unsigned short mask)
999 {
1000         struct net_device *dev, *ret;
1001
1002         ASSERT_RTNL();
1003
1004         ret = NULL;
1005         for_each_netdev(net, dev) {
1006                 if (((dev->flags ^ if_flags) & mask) == 0) {
1007                         ret = dev;
1008                         break;
1009                 }
1010         }
1011         return ret;
1012 }
1013 EXPORT_SYMBOL(__dev_get_by_flags);
1014
1015 /**
1016  *      dev_valid_name - check if name is okay for network device
1017  *      @name: name string
1018  *
1019  *      Network device names need to be valid file names to
1020  *      to allow sysfs to work.  We also disallow any kind of
1021  *      whitespace.
1022  */
1023 bool dev_valid_name(const char *name)
1024 {
1025         if (*name == '\0')
1026                 return false;
1027         if (strlen(name) >= IFNAMSIZ)
1028                 return false;
1029         if (!strcmp(name, ".") || !strcmp(name, ".."))
1030                 return false;
1031
1032         while (*name) {
1033                 if (*name == '/' || *name == ':' || isspace(*name))
1034                         return false;
1035                 name++;
1036         }
1037         return true;
1038 }
1039 EXPORT_SYMBOL(dev_valid_name);
1040
1041 /**
1042  *      __dev_alloc_name - allocate a name for a device
1043  *      @net: network namespace to allocate the device name in
1044  *      @name: name format string
1045  *      @buf:  scratch buffer and result name string
1046  *
1047  *      Passed a format string - eg "lt%d" it will try and find a suitable
1048  *      id. It scans list of devices to build up a free map, then chooses
1049  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1050  *      while allocating the name and adding the device in order to avoid
1051  *      duplicates.
1052  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1053  *      Returns the number of the unit assigned or a negative errno code.
1054  */
1055
1056 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1057 {
1058         int i = 0;
1059         const char *p;
1060         const int max_netdevices = 8*PAGE_SIZE;
1061         unsigned long *inuse;
1062         struct net_device *d;
1063
1064         p = strnchr(name, IFNAMSIZ-1, '%');
1065         if (p) {
1066                 /*
1067                  * Verify the string as this thing may have come from
1068                  * the user.  There must be either one "%d" and no other "%"
1069                  * characters.
1070                  */
1071                 if (p[1] != 'd' || strchr(p + 2, '%'))
1072                         return -EINVAL;
1073
1074                 /* Use one page as a bit array of possible slots */
1075                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1076                 if (!inuse)
1077                         return -ENOMEM;
1078
1079                 for_each_netdev(net, d) {
1080                         if (!sscanf(d->name, name, &i))
1081                                 continue;
1082                         if (i < 0 || i >= max_netdevices)
1083                                 continue;
1084
1085                         /*  avoid cases where sscanf is not exact inverse of printf */
1086                         snprintf(buf, IFNAMSIZ, name, i);
1087                         if (!strncmp(buf, d->name, IFNAMSIZ))
1088                                 set_bit(i, inuse);
1089                 }
1090
1091                 i = find_first_zero_bit(inuse, max_netdevices);
1092                 free_page((unsigned long) inuse);
1093         }
1094
1095         if (buf != name)
1096                 snprintf(buf, IFNAMSIZ, name, i);
1097         if (!__dev_get_by_name(net, buf))
1098                 return i;
1099
1100         /* It is possible to run out of possible slots
1101          * when the name is long and there isn't enough space left
1102          * for the digits, or if all bits are used.
1103          */
1104         return -ENFILE;
1105 }
1106
1107 /**
1108  *      dev_alloc_name - allocate a name for a device
1109  *      @dev: device
1110  *      @name: name format string
1111  *
1112  *      Passed a format string - eg "lt%d" it will try and find a suitable
1113  *      id. It scans list of devices to build up a free map, then chooses
1114  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1115  *      while allocating the name and adding the device in order to avoid
1116  *      duplicates.
1117  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118  *      Returns the number of the unit assigned or a negative errno code.
1119  */
1120
1121 int dev_alloc_name(struct net_device *dev, const char *name)
1122 {
1123         char buf[IFNAMSIZ];
1124         struct net *net;
1125         int ret;
1126
1127         BUG_ON(!dev_net(dev));
1128         net = dev_net(dev);
1129         ret = __dev_alloc_name(net, name, buf);
1130         if (ret >= 0)
1131                 strlcpy(dev->name, buf, IFNAMSIZ);
1132         return ret;
1133 }
1134 EXPORT_SYMBOL(dev_alloc_name);
1135
1136 static int dev_alloc_name_ns(struct net *net,
1137                              struct net_device *dev,
1138                              const char *name)
1139 {
1140         char buf[IFNAMSIZ];
1141         int ret;
1142
1143         ret = __dev_alloc_name(net, name, buf);
1144         if (ret >= 0)
1145                 strlcpy(dev->name, buf, IFNAMSIZ);
1146         return ret;
1147 }
1148
1149 static int dev_get_valid_name(struct net *net,
1150                               struct net_device *dev,
1151                               const char *name)
1152 {
1153         BUG_ON(!net);
1154
1155         if (!dev_valid_name(name))
1156                 return -EINVAL;
1157
1158         if (strchr(name, '%'))
1159                 return dev_alloc_name_ns(net, dev, name);
1160         else if (__dev_get_by_name(net, name))
1161                 return -EEXIST;
1162         else if (dev->name != name)
1163                 strlcpy(dev->name, name, IFNAMSIZ);
1164
1165         return 0;
1166 }
1167
1168 /**
1169  *      dev_change_name - change name of a device
1170  *      @dev: device
1171  *      @newname: name (or format string) must be at least IFNAMSIZ
1172  *
1173  *      Change name of a device, can pass format strings "eth%d".
1174  *      for wildcarding.
1175  */
1176 int dev_change_name(struct net_device *dev, const char *newname)
1177 {
1178         unsigned char old_assign_type;
1179         char oldname[IFNAMSIZ];
1180         int err = 0;
1181         int ret;
1182         struct net *net;
1183
1184         ASSERT_RTNL();
1185         BUG_ON(!dev_net(dev));
1186
1187         net = dev_net(dev);
1188         if (dev->flags & IFF_UP)
1189                 return -EBUSY;
1190
1191         write_seqcount_begin(&devnet_rename_seq);
1192
1193         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1194                 write_seqcount_end(&devnet_rename_seq);
1195                 return 0;
1196         }
1197
1198         memcpy(oldname, dev->name, IFNAMSIZ);
1199
1200         err = dev_get_valid_name(net, dev, newname);
1201         if (err < 0) {
1202                 write_seqcount_end(&devnet_rename_seq);
1203                 return err;
1204         }
1205
1206         if (oldname[0] && !strchr(oldname, '%'))
1207                 netdev_info(dev, "renamed from %s\n", oldname);
1208
1209         old_assign_type = dev->name_assign_type;
1210         dev->name_assign_type = NET_NAME_RENAMED;
1211
1212 rollback:
1213         ret = device_rename(&dev->dev, dev->name);
1214         if (ret) {
1215                 memcpy(dev->name, oldname, IFNAMSIZ);
1216                 dev->name_assign_type = old_assign_type;
1217                 write_seqcount_end(&devnet_rename_seq);
1218                 return ret;
1219         }
1220
1221         write_seqcount_end(&devnet_rename_seq);
1222
1223         netdev_adjacent_rename_links(dev, oldname);
1224
1225         write_lock_bh(&dev_base_lock);
1226         hlist_del_rcu(&dev->name_hlist);
1227         write_unlock_bh(&dev_base_lock);
1228
1229         synchronize_rcu();
1230
1231         write_lock_bh(&dev_base_lock);
1232         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1233         write_unlock_bh(&dev_base_lock);
1234
1235         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1236         ret = notifier_to_errno(ret);
1237
1238         if (ret) {
1239                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1240                 if (err >= 0) {
1241                         err = ret;
1242                         write_seqcount_begin(&devnet_rename_seq);
1243                         memcpy(dev->name, oldname, IFNAMSIZ);
1244                         memcpy(oldname, newname, IFNAMSIZ);
1245                         dev->name_assign_type = old_assign_type;
1246                         old_assign_type = NET_NAME_RENAMED;
1247                         goto rollback;
1248                 } else {
1249                         pr_err("%s: name change rollback failed: %d\n",
1250                                dev->name, ret);
1251                 }
1252         }
1253
1254         return err;
1255 }
1256
1257 /**
1258  *      dev_set_alias - change ifalias of a device
1259  *      @dev: device
1260  *      @alias: name up to IFALIASZ
1261  *      @len: limit of bytes to copy from info
1262  *
1263  *      Set ifalias for a device,
1264  */
1265 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1266 {
1267         char *new_ifalias;
1268
1269         ASSERT_RTNL();
1270
1271         if (len >= IFALIASZ)
1272                 return -EINVAL;
1273
1274         if (!len) {
1275                 kfree(dev->ifalias);
1276                 dev->ifalias = NULL;
1277                 return 0;
1278         }
1279
1280         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1281         if (!new_ifalias)
1282                 return -ENOMEM;
1283         dev->ifalias = new_ifalias;
1284         memcpy(dev->ifalias, alias, len);
1285         dev->ifalias[len] = 0;
1286
1287         return len;
1288 }
1289
1290
1291 /**
1292  *      netdev_features_change - device changes features
1293  *      @dev: device to cause notification
1294  *
1295  *      Called to indicate a device has changed features.
1296  */
1297 void netdev_features_change(struct net_device *dev)
1298 {
1299         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1300 }
1301 EXPORT_SYMBOL(netdev_features_change);
1302
1303 /**
1304  *      netdev_state_change - device changes state
1305  *      @dev: device to cause notification
1306  *
1307  *      Called to indicate a device has changed state. This function calls
1308  *      the notifier chains for netdev_chain and sends a NEWLINK message
1309  *      to the routing socket.
1310  */
1311 void netdev_state_change(struct net_device *dev)
1312 {
1313         if (dev->flags & IFF_UP) {
1314                 struct netdev_notifier_change_info change_info;
1315
1316                 change_info.flags_changed = 0;
1317                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1318                                               &change_info.info);
1319                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1320         }
1321 }
1322 EXPORT_SYMBOL(netdev_state_change);
1323
1324 /**
1325  * netdev_notify_peers - notify network peers about existence of @dev
1326  * @dev: network device
1327  *
1328  * Generate traffic such that interested network peers are aware of
1329  * @dev, such as by generating a gratuitous ARP. This may be used when
1330  * a device wants to inform the rest of the network about some sort of
1331  * reconfiguration such as a failover event or virtual machine
1332  * migration.
1333  */
1334 void netdev_notify_peers(struct net_device *dev)
1335 {
1336         rtnl_lock();
1337         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1338         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1339         rtnl_unlock();
1340 }
1341 EXPORT_SYMBOL(netdev_notify_peers);
1342
1343 static int __dev_open(struct net_device *dev)
1344 {
1345         const struct net_device_ops *ops = dev->netdev_ops;
1346         int ret;
1347
1348         ASSERT_RTNL();
1349
1350         if (!netif_device_present(dev))
1351                 return -ENODEV;
1352
1353         /* Block netpoll from trying to do any rx path servicing.
1354          * If we don't do this there is a chance ndo_poll_controller
1355          * or ndo_poll may be running while we open the device
1356          */
1357         netpoll_poll_disable(dev);
1358
1359         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1360         ret = notifier_to_errno(ret);
1361         if (ret)
1362                 return ret;
1363
1364         set_bit(__LINK_STATE_START, &dev->state);
1365
1366         if (ops->ndo_validate_addr)
1367                 ret = ops->ndo_validate_addr(dev);
1368
1369         if (!ret && ops->ndo_open)
1370                 ret = ops->ndo_open(dev);
1371
1372         netpoll_poll_enable(dev);
1373
1374         if (ret)
1375                 clear_bit(__LINK_STATE_START, &dev->state);
1376         else {
1377                 dev->flags |= IFF_UP;
1378                 dev_set_rx_mode(dev);
1379                 dev_activate(dev);
1380                 add_device_randomness(dev->dev_addr, dev->addr_len);
1381         }
1382
1383         return ret;
1384 }
1385
1386 /**
1387  *      dev_open        - prepare an interface for use.
1388  *      @dev:   device to open
1389  *
1390  *      Takes a device from down to up state. The device's private open
1391  *      function is invoked and then the multicast lists are loaded. Finally
1392  *      the device is moved into the up state and a %NETDEV_UP message is
1393  *      sent to the netdev notifier chain.
1394  *
1395  *      Calling this function on an active interface is a nop. On a failure
1396  *      a negative errno code is returned.
1397  */
1398 int dev_open(struct net_device *dev)
1399 {
1400         int ret;
1401
1402         if (dev->flags & IFF_UP)
1403                 return 0;
1404
1405         ret = __dev_open(dev);
1406         if (ret < 0)
1407                 return ret;
1408
1409         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1410         call_netdevice_notifiers(NETDEV_UP, dev);
1411
1412         return ret;
1413 }
1414 EXPORT_SYMBOL(dev_open);
1415
1416 static int __dev_close_many(struct list_head *head)
1417 {
1418         struct net_device *dev;
1419
1420         ASSERT_RTNL();
1421         might_sleep();
1422
1423         list_for_each_entry(dev, head, close_list) {
1424                 /* Temporarily disable netpoll until the interface is down */
1425                 netpoll_poll_disable(dev);
1426
1427                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1428
1429                 clear_bit(__LINK_STATE_START, &dev->state);
1430
1431                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1432                  * can be even on different cpu. So just clear netif_running().
1433                  *
1434                  * dev->stop() will invoke napi_disable() on all of it's
1435                  * napi_struct instances on this device.
1436                  */
1437                 smp_mb__after_atomic(); /* Commit netif_running(). */
1438         }
1439
1440         dev_deactivate_many(head);
1441
1442         list_for_each_entry(dev, head, close_list) {
1443                 const struct net_device_ops *ops = dev->netdev_ops;
1444
1445                 /*
1446                  *      Call the device specific close. This cannot fail.
1447                  *      Only if device is UP
1448                  *
1449                  *      We allow it to be called even after a DETACH hot-plug
1450                  *      event.
1451                  */
1452                 if (ops->ndo_stop)
1453                         ops->ndo_stop(dev);
1454
1455                 dev->flags &= ~IFF_UP;
1456                 netpoll_poll_enable(dev);
1457         }
1458
1459         return 0;
1460 }
1461
1462 static int __dev_close(struct net_device *dev)
1463 {
1464         int retval;
1465         LIST_HEAD(single);
1466
1467         list_add(&dev->close_list, &single);
1468         retval = __dev_close_many(&single);
1469         list_del(&single);
1470
1471         return retval;
1472 }
1473
1474 int dev_close_many(struct list_head *head, bool unlink)
1475 {
1476         struct net_device *dev, *tmp;
1477
1478         /* Remove the devices that don't need to be closed */
1479         list_for_each_entry_safe(dev, tmp, head, close_list)
1480                 if (!(dev->flags & IFF_UP))
1481                         list_del_init(&dev->close_list);
1482
1483         __dev_close_many(head);
1484
1485         list_for_each_entry_safe(dev, tmp, head, close_list) {
1486                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1487                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1488                 if (unlink)
1489                         list_del_init(&dev->close_list);
1490         }
1491
1492         return 0;
1493 }
1494 EXPORT_SYMBOL(dev_close_many);
1495
1496 /**
1497  *      dev_close - shutdown an interface.
1498  *      @dev: device to shutdown
1499  *
1500  *      This function moves an active device into down state. A
1501  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1502  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1503  *      chain.
1504  */
1505 int dev_close(struct net_device *dev)
1506 {
1507         if (dev->flags & IFF_UP) {
1508                 LIST_HEAD(single);
1509
1510                 list_add(&dev->close_list, &single);
1511                 dev_close_many(&single, true);
1512                 list_del(&single);
1513         }
1514         return 0;
1515 }
1516 EXPORT_SYMBOL(dev_close);
1517
1518
1519 /**
1520  *      dev_disable_lro - disable Large Receive Offload on a device
1521  *      @dev: device
1522  *
1523  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1524  *      called under RTNL.  This is needed if received packets may be
1525  *      forwarded to another interface.
1526  */
1527 void dev_disable_lro(struct net_device *dev)
1528 {
1529         struct net_device *lower_dev;
1530         struct list_head *iter;
1531
1532         dev->wanted_features &= ~NETIF_F_LRO;
1533         netdev_update_features(dev);
1534
1535         if (unlikely(dev->features & NETIF_F_LRO))
1536                 netdev_WARN(dev, "failed to disable LRO!\n");
1537
1538         netdev_for_each_lower_dev(dev, lower_dev, iter)
1539                 dev_disable_lro(lower_dev);
1540 }
1541 EXPORT_SYMBOL(dev_disable_lro);
1542
1543 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1544                                    struct net_device *dev)
1545 {
1546         struct netdev_notifier_info info;
1547
1548         netdev_notifier_info_init(&info, dev);
1549         return nb->notifier_call(nb, val, &info);
1550 }
1551
1552 static int dev_boot_phase = 1;
1553
1554 /**
1555  * register_netdevice_notifier - register a network notifier block
1556  * @nb: notifier
1557  *
1558  * Register a notifier to be called when network device events occur.
1559  * The notifier passed is linked into the kernel structures and must
1560  * not be reused until it has been unregistered. A negative errno code
1561  * is returned on a failure.
1562  *
1563  * When registered all registration and up events are replayed
1564  * to the new notifier to allow device to have a race free
1565  * view of the network device list.
1566  */
1567
1568 int register_netdevice_notifier(struct notifier_block *nb)
1569 {
1570         struct net_device *dev;
1571         struct net_device *last;
1572         struct net *net;
1573         int err;
1574
1575         rtnl_lock();
1576         err = raw_notifier_chain_register(&netdev_chain, nb);
1577         if (err)
1578                 goto unlock;
1579         if (dev_boot_phase)
1580                 goto unlock;
1581         for_each_net(net) {
1582                 for_each_netdev(net, dev) {
1583                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1584                         err = notifier_to_errno(err);
1585                         if (err)
1586                                 goto rollback;
1587
1588                         if (!(dev->flags & IFF_UP))
1589                                 continue;
1590
1591                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1592                 }
1593         }
1594
1595 unlock:
1596         rtnl_unlock();
1597         return err;
1598
1599 rollback:
1600         last = dev;
1601         for_each_net(net) {
1602                 for_each_netdev(net, dev) {
1603                         if (dev == last)
1604                                 goto outroll;
1605
1606                         if (dev->flags & IFF_UP) {
1607                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1608                                                         dev);
1609                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1610                         }
1611                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1612                 }
1613         }
1614
1615 outroll:
1616         raw_notifier_chain_unregister(&netdev_chain, nb);
1617         goto unlock;
1618 }
1619 EXPORT_SYMBOL(register_netdevice_notifier);
1620
1621 /**
1622  * unregister_netdevice_notifier - unregister a network notifier block
1623  * @nb: notifier
1624  *
1625  * Unregister a notifier previously registered by
1626  * register_netdevice_notifier(). The notifier is unlinked into the
1627  * kernel structures and may then be reused. A negative errno code
1628  * is returned on a failure.
1629  *
1630  * After unregistering unregister and down device events are synthesized
1631  * for all devices on the device list to the removed notifier to remove
1632  * the need for special case cleanup code.
1633  */
1634
1635 int unregister_netdevice_notifier(struct notifier_block *nb)
1636 {
1637         struct net_device *dev;
1638         struct net *net;
1639         int err;
1640
1641         rtnl_lock();
1642         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1643         if (err)
1644                 goto unlock;
1645
1646         for_each_net(net) {
1647                 for_each_netdev(net, dev) {
1648                         if (dev->flags & IFF_UP) {
1649                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1650                                                         dev);
1651                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1652                         }
1653                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1654                 }
1655         }
1656 unlock:
1657         rtnl_unlock();
1658         return err;
1659 }
1660 EXPORT_SYMBOL(unregister_netdevice_notifier);
1661
1662 /**
1663  *      call_netdevice_notifiers_info - call all network notifier blocks
1664  *      @val: value passed unmodified to notifier function
1665  *      @dev: net_device pointer passed unmodified to notifier function
1666  *      @info: notifier information data
1667  *
1668  *      Call all network notifier blocks.  Parameters and return value
1669  *      are as for raw_notifier_call_chain().
1670  */
1671
1672 static int call_netdevice_notifiers_info(unsigned long val,
1673                                          struct net_device *dev,
1674                                          struct netdev_notifier_info *info)
1675 {
1676         ASSERT_RTNL();
1677         netdev_notifier_info_init(info, dev);
1678         return raw_notifier_call_chain(&netdev_chain, val, info);
1679 }
1680
1681 /**
1682  *      call_netdevice_notifiers - call all network notifier blocks
1683  *      @val: value passed unmodified to notifier function
1684  *      @dev: net_device pointer passed unmodified to notifier function
1685  *
1686  *      Call all network notifier blocks.  Parameters and return value
1687  *      are as for raw_notifier_call_chain().
1688  */
1689
1690 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1691 {
1692         struct netdev_notifier_info info;
1693
1694         return call_netdevice_notifiers_info(val, dev, &info);
1695 }
1696 EXPORT_SYMBOL(call_netdevice_notifiers);
1697
1698 #ifdef CONFIG_NET_INGRESS
1699 static struct static_key ingress_needed __read_mostly;
1700
1701 void net_inc_ingress_queue(void)
1702 {
1703         static_key_slow_inc(&ingress_needed);
1704 }
1705 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1706
1707 void net_dec_ingress_queue(void)
1708 {
1709         static_key_slow_dec(&ingress_needed);
1710 }
1711 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1712 #endif
1713
1714 #ifdef CONFIG_NET_EGRESS
1715 static struct static_key egress_needed __read_mostly;
1716
1717 void net_inc_egress_queue(void)
1718 {
1719         static_key_slow_inc(&egress_needed);
1720 }
1721 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1722
1723 void net_dec_egress_queue(void)
1724 {
1725         static_key_slow_dec(&egress_needed);
1726 }
1727 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1728 #endif
1729
1730 static struct static_key netstamp_needed __read_mostly;
1731 #ifdef HAVE_JUMP_LABEL
1732 static atomic_t netstamp_needed_deferred;
1733 static atomic_t netstamp_wanted;
1734 static void netstamp_clear(struct work_struct *work)
1735 {
1736         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1737         int wanted;
1738
1739         wanted = atomic_add_return(deferred, &netstamp_wanted);
1740         if (wanted > 0)
1741                 static_key_enable(&netstamp_needed);
1742         else
1743                 static_key_disable(&netstamp_needed);
1744 }
1745 static DECLARE_WORK(netstamp_work, netstamp_clear);
1746 #endif
1747
1748 void net_enable_timestamp(void)
1749 {
1750 #ifdef HAVE_JUMP_LABEL
1751         int wanted;
1752
1753         while (1) {
1754                 wanted = atomic_read(&netstamp_wanted);
1755                 if (wanted <= 0)
1756                         break;
1757                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1758                         return;
1759         }
1760         atomic_inc(&netstamp_needed_deferred);
1761         schedule_work(&netstamp_work);
1762 #else
1763         static_key_slow_inc(&netstamp_needed);
1764 #endif
1765 }
1766 EXPORT_SYMBOL(net_enable_timestamp);
1767
1768 void net_disable_timestamp(void)
1769 {
1770 #ifdef HAVE_JUMP_LABEL
1771         int wanted;
1772
1773         while (1) {
1774                 wanted = atomic_read(&netstamp_wanted);
1775                 if (wanted <= 1)
1776                         break;
1777                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1778                         return;
1779         }
1780         atomic_dec(&netstamp_needed_deferred);
1781         schedule_work(&netstamp_work);
1782 #else
1783         static_key_slow_dec(&netstamp_needed);
1784 #endif
1785 }
1786 EXPORT_SYMBOL(net_disable_timestamp);
1787
1788 static inline void net_timestamp_set(struct sk_buff *skb)
1789 {
1790         skb->tstamp = 0;
1791         if (static_key_false(&netstamp_needed))
1792                 __net_timestamp(skb);
1793 }
1794
1795 #define net_timestamp_check(COND, SKB)                  \
1796         if (static_key_false(&netstamp_needed)) {               \
1797                 if ((COND) && !(SKB)->tstamp)   \
1798                         __net_timestamp(SKB);           \
1799         }                                               \
1800
1801 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1802 {
1803         unsigned int len;
1804
1805         if (!(dev->flags & IFF_UP))
1806                 return false;
1807
1808         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1809         if (skb->len <= len)
1810                 return true;
1811
1812         /* if TSO is enabled, we don't care about the length as the packet
1813          * could be forwarded without being segmented before
1814          */
1815         if (skb_is_gso(skb))
1816                 return true;
1817
1818         return false;
1819 }
1820 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1821
1822 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1823 {
1824         int ret = ____dev_forward_skb(dev, skb);
1825
1826         if (likely(!ret)) {
1827                 skb->protocol = eth_type_trans(skb, dev);
1828                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1829         }
1830
1831         return ret;
1832 }
1833 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1834
1835 /**
1836  * dev_forward_skb - loopback an skb to another netif
1837  *
1838  * @dev: destination network device
1839  * @skb: buffer to forward
1840  *
1841  * return values:
1842  *      NET_RX_SUCCESS  (no congestion)
1843  *      NET_RX_DROP     (packet was dropped, but freed)
1844  *
1845  * dev_forward_skb can be used for injecting an skb from the
1846  * start_xmit function of one device into the receive queue
1847  * of another device.
1848  *
1849  * The receiving device may be in another namespace, so
1850  * we have to clear all information in the skb that could
1851  * impact namespace isolation.
1852  */
1853 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1854 {
1855         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1856 }
1857 EXPORT_SYMBOL_GPL(dev_forward_skb);
1858
1859 static inline int deliver_skb(struct sk_buff *skb,
1860                               struct packet_type *pt_prev,
1861                               struct net_device *orig_dev)
1862 {
1863         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1864                 return -ENOMEM;
1865         refcount_inc(&skb->users);
1866         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1867 }
1868
1869 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1870                                           struct packet_type **pt,
1871                                           struct net_device *orig_dev,
1872                                           __be16 type,
1873                                           struct list_head *ptype_list)
1874 {
1875         struct packet_type *ptype, *pt_prev = *pt;
1876
1877         list_for_each_entry_rcu(ptype, ptype_list, list) {
1878                 if (ptype->type != type)
1879                         continue;
1880                 if (pt_prev)
1881                         deliver_skb(skb, pt_prev, orig_dev);
1882                 pt_prev = ptype;
1883         }
1884         *pt = pt_prev;
1885 }
1886
1887 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1888 {
1889         if (!ptype->af_packet_priv || !skb->sk)
1890                 return false;
1891
1892         if (ptype->id_match)
1893                 return ptype->id_match(ptype, skb->sk);
1894         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1895                 return true;
1896
1897         return false;
1898 }
1899
1900 /*
1901  *      Support routine. Sends outgoing frames to any network
1902  *      taps currently in use.
1903  */
1904
1905 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1906 {
1907         struct packet_type *ptype;
1908         struct sk_buff *skb2 = NULL;
1909         struct packet_type *pt_prev = NULL;
1910         struct list_head *ptype_list = &ptype_all;
1911
1912         rcu_read_lock();
1913 again:
1914         list_for_each_entry_rcu(ptype, ptype_list, list) {
1915                 /* Never send packets back to the socket
1916                  * they originated from - MvS (miquels@drinkel.ow.org)
1917                  */
1918                 if (skb_loop_sk(ptype, skb))
1919                         continue;
1920
1921                 if (pt_prev) {
1922                         deliver_skb(skb2, pt_prev, skb->dev);
1923                         pt_prev = ptype;
1924                         continue;
1925                 }
1926
1927                 /* need to clone skb, done only once */
1928                 skb2 = skb_clone(skb, GFP_ATOMIC);
1929                 if (!skb2)
1930                         goto out_unlock;
1931
1932                 net_timestamp_set(skb2);
1933
1934                 /* skb->nh should be correctly
1935                  * set by sender, so that the second statement is
1936                  * just protection against buggy protocols.
1937                  */
1938                 skb_reset_mac_header(skb2);
1939
1940                 if (skb_network_header(skb2) < skb2->data ||
1941                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1942                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1943                                              ntohs(skb2->protocol),
1944                                              dev->name);
1945                         skb_reset_network_header(skb2);
1946                 }
1947
1948                 skb2->transport_header = skb2->network_header;
1949                 skb2->pkt_type = PACKET_OUTGOING;
1950                 pt_prev = ptype;
1951         }
1952
1953         if (ptype_list == &ptype_all) {
1954                 ptype_list = &dev->ptype_all;
1955                 goto again;
1956         }
1957 out_unlock:
1958         if (pt_prev)
1959                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1960         rcu_read_unlock();
1961 }
1962 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1963
1964 /**
1965  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1966  * @dev: Network device
1967  * @txq: number of queues available
1968  *
1969  * If real_num_tx_queues is changed the tc mappings may no longer be
1970  * valid. To resolve this verify the tc mapping remains valid and if
1971  * not NULL the mapping. With no priorities mapping to this
1972  * offset/count pair it will no longer be used. In the worst case TC0
1973  * is invalid nothing can be done so disable priority mappings. If is
1974  * expected that drivers will fix this mapping if they can before
1975  * calling netif_set_real_num_tx_queues.
1976  */
1977 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1978 {
1979         int i;
1980         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1981
1982         /* If TC0 is invalidated disable TC mapping */
1983         if (tc->offset + tc->count > txq) {
1984                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1985                 dev->num_tc = 0;
1986                 return;
1987         }
1988
1989         /* Invalidated prio to tc mappings set to TC0 */
1990         for (i = 1; i < TC_BITMASK + 1; i++) {
1991                 int q = netdev_get_prio_tc_map(dev, i);
1992
1993                 tc = &dev->tc_to_txq[q];
1994                 if (tc->offset + tc->count > txq) {
1995                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1996                                 i, q);
1997                         netdev_set_prio_tc_map(dev, i, 0);
1998                 }
1999         }
2000 }
2001
2002 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2003 {
2004         if (dev->num_tc) {
2005                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2006                 int i;
2007
2008                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2009                         if ((txq - tc->offset) < tc->count)
2010                                 return i;
2011                 }
2012
2013                 return -1;
2014         }
2015
2016         return 0;
2017 }
2018
2019 #ifdef CONFIG_XPS
2020 static DEFINE_MUTEX(xps_map_mutex);
2021 #define xmap_dereference(P)             \
2022         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2023
2024 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2025                              int tci, u16 index)
2026 {
2027         struct xps_map *map = NULL;
2028         int pos;
2029
2030         if (dev_maps)
2031                 map = xmap_dereference(dev_maps->cpu_map[tci]);
2032         if (!map)
2033                 return false;
2034
2035         for (pos = map->len; pos--;) {
2036                 if (map->queues[pos] != index)
2037                         continue;
2038
2039                 if (map->len > 1) {
2040                         map->queues[pos] = map->queues[--map->len];
2041                         break;
2042                 }
2043
2044                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2045                 kfree_rcu(map, rcu);
2046                 return false;
2047         }
2048
2049         return true;
2050 }
2051
2052 static bool remove_xps_queue_cpu(struct net_device *dev,
2053                                  struct xps_dev_maps *dev_maps,
2054                                  int cpu, u16 offset, u16 count)
2055 {
2056         int num_tc = dev->num_tc ? : 1;
2057         bool active = false;
2058         int tci;
2059
2060         for (tci = cpu * num_tc; num_tc--; tci++) {
2061                 int i, j;
2062
2063                 for (i = count, j = offset; i--; j++) {
2064                         if (!remove_xps_queue(dev_maps, cpu, j))
2065                                 break;
2066                 }
2067
2068                 active |= i < 0;
2069         }
2070
2071         return active;
2072 }
2073
2074 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2075                                    u16 count)
2076 {
2077         struct xps_dev_maps *dev_maps;
2078         int cpu, i;
2079         bool active = false;
2080
2081         mutex_lock(&xps_map_mutex);
2082         dev_maps = xmap_dereference(dev->xps_maps);
2083
2084         if (!dev_maps)
2085                 goto out_no_maps;
2086
2087         for_each_possible_cpu(cpu)
2088                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2089                                                offset, count);
2090
2091         if (!active) {
2092                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2093                 kfree_rcu(dev_maps, rcu);
2094         }
2095
2096         for (i = offset + (count - 1); count--; i--)
2097                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2098                                              NUMA_NO_NODE);
2099
2100 out_no_maps:
2101         mutex_unlock(&xps_map_mutex);
2102 }
2103
2104 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2105 {
2106         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2107 }
2108
2109 static struct xps_map *expand_xps_map(struct xps_map *map,
2110                                       int cpu, u16 index)
2111 {
2112         struct xps_map *new_map;
2113         int alloc_len = XPS_MIN_MAP_ALLOC;
2114         int i, pos;
2115
2116         for (pos = 0; map && pos < map->len; pos++) {
2117                 if (map->queues[pos] != index)
2118                         continue;
2119                 return map;
2120         }
2121
2122         /* Need to add queue to this CPU's existing map */
2123         if (map) {
2124                 if (pos < map->alloc_len)
2125                         return map;
2126
2127                 alloc_len = map->alloc_len * 2;
2128         }
2129
2130         /* Need to allocate new map to store queue on this CPU's map */
2131         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2132                                cpu_to_node(cpu));
2133         if (!new_map)
2134                 return NULL;
2135
2136         for (i = 0; i < pos; i++)
2137                 new_map->queues[i] = map->queues[i];
2138         new_map->alloc_len = alloc_len;
2139         new_map->len = pos;
2140
2141         return new_map;
2142 }
2143
2144 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2145                         u16 index)
2146 {
2147         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2148         int i, cpu, tci, numa_node_id = -2;
2149         int maps_sz, num_tc = 1, tc = 0;
2150         struct xps_map *map, *new_map;
2151         bool active = false;
2152
2153         if (dev->num_tc) {
2154                 num_tc = dev->num_tc;
2155                 tc = netdev_txq_to_tc(dev, index);
2156                 if (tc < 0)
2157                         return -EINVAL;
2158         }
2159
2160         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2161         if (maps_sz < L1_CACHE_BYTES)
2162                 maps_sz = L1_CACHE_BYTES;
2163
2164         mutex_lock(&xps_map_mutex);
2165
2166         dev_maps = xmap_dereference(dev->xps_maps);
2167
2168         /* allocate memory for queue storage */
2169         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2170                 if (!new_dev_maps)
2171                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2172                 if (!new_dev_maps) {
2173                         mutex_unlock(&xps_map_mutex);
2174                         return -ENOMEM;
2175                 }
2176
2177                 tci = cpu * num_tc + tc;
2178                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2179                                  NULL;
2180
2181                 map = expand_xps_map(map, cpu, index);
2182                 if (!map)
2183                         goto error;
2184
2185                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2186         }
2187
2188         if (!new_dev_maps)
2189                 goto out_no_new_maps;
2190
2191         for_each_possible_cpu(cpu) {
2192                 /* copy maps belonging to foreign traffic classes */
2193                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2194                         /* fill in the new device map from the old device map */
2195                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2196                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2197                 }
2198
2199                 /* We need to explicitly update tci as prevous loop
2200                  * could break out early if dev_maps is NULL.
2201                  */
2202                 tci = cpu * num_tc + tc;
2203
2204                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2205                         /* add queue to CPU maps */
2206                         int pos = 0;
2207
2208                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2209                         while ((pos < map->len) && (map->queues[pos] != index))
2210                                 pos++;
2211
2212                         if (pos == map->len)
2213                                 map->queues[map->len++] = index;
2214 #ifdef CONFIG_NUMA
2215                         if (numa_node_id == -2)
2216                                 numa_node_id = cpu_to_node(cpu);
2217                         else if (numa_node_id != cpu_to_node(cpu))
2218                                 numa_node_id = -1;
2219 #endif
2220                 } else if (dev_maps) {
2221                         /* fill in the new device map from the old device map */
2222                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2223                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2224                 }
2225
2226                 /* copy maps belonging to foreign traffic classes */
2227                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2228                         /* fill in the new device map from the old device map */
2229                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2230                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2231                 }
2232         }
2233
2234         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2235
2236         /* Cleanup old maps */
2237         if (!dev_maps)
2238                 goto out_no_old_maps;
2239
2240         for_each_possible_cpu(cpu) {
2241                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2242                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2243                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2244                         if (map && map != new_map)
2245                                 kfree_rcu(map, rcu);
2246                 }
2247         }
2248
2249         kfree_rcu(dev_maps, rcu);
2250
2251 out_no_old_maps:
2252         dev_maps = new_dev_maps;
2253         active = true;
2254
2255 out_no_new_maps:
2256         /* update Tx queue numa node */
2257         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2258                                      (numa_node_id >= 0) ? numa_node_id :
2259                                      NUMA_NO_NODE);
2260
2261         if (!dev_maps)
2262                 goto out_no_maps;
2263
2264         /* removes queue from unused CPUs */
2265         for_each_possible_cpu(cpu) {
2266                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2267                         active |= remove_xps_queue(dev_maps, tci, index);
2268                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2269                         active |= remove_xps_queue(dev_maps, tci, index);
2270                 for (i = num_tc - tc, tci++; --i; tci++)
2271                         active |= remove_xps_queue(dev_maps, tci, index);
2272         }
2273
2274         /* free map if not active */
2275         if (!active) {
2276                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2277                 kfree_rcu(dev_maps, rcu);
2278         }
2279
2280 out_no_maps:
2281         mutex_unlock(&xps_map_mutex);
2282
2283         return 0;
2284 error:
2285         /* remove any maps that we added */
2286         for_each_possible_cpu(cpu) {
2287                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2288                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2289                         map = dev_maps ?
2290                               xmap_dereference(dev_maps->cpu_map[tci]) :
2291                               NULL;
2292                         if (new_map && new_map != map)
2293                                 kfree(new_map);
2294                 }
2295         }
2296
2297         mutex_unlock(&xps_map_mutex);
2298
2299         kfree(new_dev_maps);
2300         return -ENOMEM;
2301 }
2302 EXPORT_SYMBOL(netif_set_xps_queue);
2303
2304 #endif
2305 void netdev_reset_tc(struct net_device *dev)
2306 {
2307 #ifdef CONFIG_XPS
2308         netif_reset_xps_queues_gt(dev, 0);
2309 #endif
2310         dev->num_tc = 0;
2311         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2312         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2313 }
2314 EXPORT_SYMBOL(netdev_reset_tc);
2315
2316 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2317 {
2318         if (tc >= dev->num_tc)
2319                 return -EINVAL;
2320
2321 #ifdef CONFIG_XPS
2322         netif_reset_xps_queues(dev, offset, count);
2323 #endif
2324         dev->tc_to_txq[tc].count = count;
2325         dev->tc_to_txq[tc].offset = offset;
2326         return 0;
2327 }
2328 EXPORT_SYMBOL(netdev_set_tc_queue);
2329
2330 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2331 {
2332         if (num_tc > TC_MAX_QUEUE)
2333                 return -EINVAL;
2334
2335 #ifdef CONFIG_XPS
2336         netif_reset_xps_queues_gt(dev, 0);
2337 #endif
2338         dev->num_tc = num_tc;
2339         return 0;
2340 }
2341 EXPORT_SYMBOL(netdev_set_num_tc);
2342
2343 /*
2344  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2345  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2346  */
2347 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2348 {
2349         int rc;
2350
2351         if (txq < 1 || txq > dev->num_tx_queues)
2352                 return -EINVAL;
2353
2354         if (dev->reg_state == NETREG_REGISTERED ||
2355             dev->reg_state == NETREG_UNREGISTERING) {
2356                 ASSERT_RTNL();
2357
2358                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2359                                                   txq);
2360                 if (rc)
2361                         return rc;
2362
2363                 if (dev->num_tc)
2364                         netif_setup_tc(dev, txq);
2365
2366                 if (txq < dev->real_num_tx_queues) {
2367                         qdisc_reset_all_tx_gt(dev, txq);
2368 #ifdef CONFIG_XPS
2369                         netif_reset_xps_queues_gt(dev, txq);
2370 #endif
2371                 }
2372         }
2373
2374         dev->real_num_tx_queues = txq;
2375         return 0;
2376 }
2377 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2378
2379 #ifdef CONFIG_SYSFS
2380 /**
2381  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2382  *      @dev: Network device
2383  *      @rxq: Actual number of RX queues
2384  *
2385  *      This must be called either with the rtnl_lock held or before
2386  *      registration of the net device.  Returns 0 on success, or a
2387  *      negative error code.  If called before registration, it always
2388  *      succeeds.
2389  */
2390 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2391 {
2392         int rc;
2393
2394         if (rxq < 1 || rxq > dev->num_rx_queues)
2395                 return -EINVAL;
2396
2397         if (dev->reg_state == NETREG_REGISTERED) {
2398                 ASSERT_RTNL();
2399
2400                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2401                                                   rxq);
2402                 if (rc)
2403                         return rc;
2404         }
2405
2406         dev->real_num_rx_queues = rxq;
2407         return 0;
2408 }
2409 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2410 #endif
2411
2412 /**
2413  * netif_get_num_default_rss_queues - default number of RSS queues
2414  *
2415  * This routine should set an upper limit on the number of RSS queues
2416  * used by default by multiqueue devices.
2417  */
2418 int netif_get_num_default_rss_queues(void)
2419 {
2420         return is_kdump_kernel() ?
2421                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2422 }
2423 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2424
2425 static void __netif_reschedule(struct Qdisc *q)
2426 {
2427         struct softnet_data *sd;
2428         unsigned long flags;
2429
2430         local_irq_save(flags);
2431         sd = this_cpu_ptr(&softnet_data);
2432         q->next_sched = NULL;
2433         *sd->output_queue_tailp = q;
2434         sd->output_queue_tailp = &q->next_sched;
2435         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2436         local_irq_restore(flags);
2437 }
2438
2439 void __netif_schedule(struct Qdisc *q)
2440 {
2441         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2442                 __netif_reschedule(q);
2443 }
2444 EXPORT_SYMBOL(__netif_schedule);
2445
2446 struct dev_kfree_skb_cb {
2447         enum skb_free_reason reason;
2448 };
2449
2450 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2451 {
2452         return (struct dev_kfree_skb_cb *)skb->cb;
2453 }
2454
2455 void netif_schedule_queue(struct netdev_queue *txq)
2456 {
2457         rcu_read_lock();
2458         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2459                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2460
2461                 __netif_schedule(q);
2462         }
2463         rcu_read_unlock();
2464 }
2465 EXPORT_SYMBOL(netif_schedule_queue);
2466
2467 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2468 {
2469         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2470                 struct Qdisc *q;
2471
2472                 rcu_read_lock();
2473                 q = rcu_dereference(dev_queue->qdisc);
2474                 __netif_schedule(q);
2475                 rcu_read_unlock();
2476         }
2477 }
2478 EXPORT_SYMBOL(netif_tx_wake_queue);
2479
2480 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2481 {
2482         unsigned long flags;
2483
2484         if (unlikely(!skb))
2485                 return;
2486
2487         if (likely(refcount_read(&skb->users) == 1)) {
2488                 smp_rmb();
2489                 refcount_set(&skb->users, 0);
2490         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2491                 return;
2492         }
2493         get_kfree_skb_cb(skb)->reason = reason;
2494         local_irq_save(flags);
2495         skb->next = __this_cpu_read(softnet_data.completion_queue);
2496         __this_cpu_write(softnet_data.completion_queue, skb);
2497         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2498         local_irq_restore(flags);
2499 }
2500 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2501
2502 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2503 {
2504         if (in_irq() || irqs_disabled())
2505                 __dev_kfree_skb_irq(skb, reason);
2506         else
2507                 dev_kfree_skb(skb);
2508 }
2509 EXPORT_SYMBOL(__dev_kfree_skb_any);
2510
2511
2512 /**
2513  * netif_device_detach - mark device as removed
2514  * @dev: network device
2515  *
2516  * Mark device as removed from system and therefore no longer available.
2517  */
2518 void netif_device_detach(struct net_device *dev)
2519 {
2520         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2521             netif_running(dev)) {
2522                 netif_tx_stop_all_queues(dev);
2523         }
2524 }
2525 EXPORT_SYMBOL(netif_device_detach);
2526
2527 /**
2528  * netif_device_attach - mark device as attached
2529  * @dev: network device
2530  *
2531  * Mark device as attached from system and restart if needed.
2532  */
2533 void netif_device_attach(struct net_device *dev)
2534 {
2535         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2536             netif_running(dev)) {
2537                 netif_tx_wake_all_queues(dev);
2538                 __netdev_watchdog_up(dev);
2539         }
2540 }
2541 EXPORT_SYMBOL(netif_device_attach);
2542
2543 /*
2544  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2545  * to be used as a distribution range.
2546  */
2547 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2548                   unsigned int num_tx_queues)
2549 {
2550         u32 hash;
2551         u16 qoffset = 0;
2552         u16 qcount = num_tx_queues;
2553
2554         if (skb_rx_queue_recorded(skb)) {
2555                 hash = skb_get_rx_queue(skb);
2556                 while (unlikely(hash >= num_tx_queues))
2557                         hash -= num_tx_queues;
2558                 return hash;
2559         }
2560
2561         if (dev->num_tc) {
2562                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2563
2564                 qoffset = dev->tc_to_txq[tc].offset;
2565                 qcount = dev->tc_to_txq[tc].count;
2566         }
2567
2568         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2569 }
2570 EXPORT_SYMBOL(__skb_tx_hash);
2571
2572 static void skb_warn_bad_offload(const struct sk_buff *skb)
2573 {
2574         static const netdev_features_t null_features;
2575         struct net_device *dev = skb->dev;
2576         const char *name = "";
2577
2578         if (!net_ratelimit())
2579                 return;
2580
2581         if (dev) {
2582                 if (dev->dev.parent)
2583                         name = dev_driver_string(dev->dev.parent);
2584                 else
2585                         name = netdev_name(dev);
2586         }
2587         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2588              "gso_type=%d ip_summed=%d\n",
2589              name, dev ? &dev->features : &null_features,
2590              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2591              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2592              skb_shinfo(skb)->gso_type, skb->ip_summed);
2593 }
2594
2595 /*
2596  * Invalidate hardware checksum when packet is to be mangled, and
2597  * complete checksum manually on outgoing path.
2598  */
2599 int skb_checksum_help(struct sk_buff *skb)
2600 {
2601         __wsum csum;
2602         int ret = 0, offset;
2603
2604         if (skb->ip_summed == CHECKSUM_COMPLETE)
2605                 goto out_set_summed;
2606
2607         if (unlikely(skb_shinfo(skb)->gso_size)) {
2608                 skb_warn_bad_offload(skb);
2609                 return -EINVAL;
2610         }
2611
2612         /* Before computing a checksum, we should make sure no frag could
2613          * be modified by an external entity : checksum could be wrong.
2614          */
2615         if (skb_has_shared_frag(skb)) {
2616                 ret = __skb_linearize(skb);
2617                 if (ret)
2618                         goto out;
2619         }
2620
2621         offset = skb_checksum_start_offset(skb);
2622         BUG_ON(offset >= skb_headlen(skb));
2623         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2624
2625         offset += skb->csum_offset;
2626         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2627
2628         if (skb_cloned(skb) &&
2629             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2630                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2631                 if (ret)
2632                         goto out;
2633         }
2634
2635         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2636 out_set_summed:
2637         skb->ip_summed = CHECKSUM_NONE;
2638 out:
2639         return ret;
2640 }
2641 EXPORT_SYMBOL(skb_checksum_help);
2642
2643 int skb_crc32c_csum_help(struct sk_buff *skb)
2644 {
2645         __le32 crc32c_csum;
2646         int ret = 0, offset, start;
2647
2648         if (skb->ip_summed != CHECKSUM_PARTIAL)
2649                 goto out;
2650
2651         if (unlikely(skb_is_gso(skb)))
2652                 goto out;
2653
2654         /* Before computing a checksum, we should make sure no frag could
2655          * be modified by an external entity : checksum could be wrong.
2656          */
2657         if (unlikely(skb_has_shared_frag(skb))) {
2658                 ret = __skb_linearize(skb);
2659                 if (ret)
2660                         goto out;
2661         }
2662         start = skb_checksum_start_offset(skb);
2663         offset = start + offsetof(struct sctphdr, checksum);
2664         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2665                 ret = -EINVAL;
2666                 goto out;
2667         }
2668         if (skb_cloned(skb) &&
2669             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2670                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2671                 if (ret)
2672                         goto out;
2673         }
2674         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2675                                                   skb->len - start, ~(__u32)0,
2676                                                   crc32c_csum_stub));
2677         *(__le32 *)(skb->data + offset) = crc32c_csum;
2678         skb->ip_summed = CHECKSUM_NONE;
2679         skb->csum_not_inet = 0;
2680 out:
2681         return ret;
2682 }
2683
2684 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2685 {
2686         __be16 type = skb->protocol;
2687
2688         /* Tunnel gso handlers can set protocol to ethernet. */
2689         if (type == htons(ETH_P_TEB)) {
2690                 struct ethhdr *eth;
2691
2692                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2693                         return 0;
2694
2695                 eth = (struct ethhdr *)skb_mac_header(skb);
2696                 type = eth->h_proto;
2697         }
2698
2699         return __vlan_get_protocol(skb, type, depth);
2700 }
2701
2702 /**
2703  *      skb_mac_gso_segment - mac layer segmentation handler.
2704  *      @skb: buffer to segment
2705  *      @features: features for the output path (see dev->features)
2706  */
2707 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2708                                     netdev_features_t features)
2709 {
2710         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2711         struct packet_offload *ptype;
2712         int vlan_depth = skb->mac_len;
2713         __be16 type = skb_network_protocol(skb, &vlan_depth);
2714
2715         if (unlikely(!type))
2716                 return ERR_PTR(-EINVAL);
2717
2718         __skb_pull(skb, vlan_depth);
2719
2720         rcu_read_lock();
2721         list_for_each_entry_rcu(ptype, &offload_base, list) {
2722                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2723                         segs = ptype->callbacks.gso_segment(skb, features);
2724                         break;
2725                 }
2726         }
2727         rcu_read_unlock();
2728
2729         __skb_push(skb, skb->data - skb_mac_header(skb));
2730
2731         return segs;
2732 }
2733 EXPORT_SYMBOL(skb_mac_gso_segment);
2734
2735
2736 /* openvswitch calls this on rx path, so we need a different check.
2737  */
2738 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2739 {
2740         if (tx_path)
2741                 return skb->ip_summed != CHECKSUM_PARTIAL &&
2742                        skb->ip_summed != CHECKSUM_NONE;
2743
2744         return skb->ip_summed == CHECKSUM_NONE;
2745 }
2746
2747 /**
2748  *      __skb_gso_segment - Perform segmentation on skb.
2749  *      @skb: buffer to segment
2750  *      @features: features for the output path (see dev->features)
2751  *      @tx_path: whether it is called in TX path
2752  *
2753  *      This function segments the given skb and returns a list of segments.
2754  *
2755  *      It may return NULL if the skb requires no segmentation.  This is
2756  *      only possible when GSO is used for verifying header integrity.
2757  *
2758  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2759  */
2760 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2761                                   netdev_features_t features, bool tx_path)
2762 {
2763         struct sk_buff *segs;
2764
2765         if (unlikely(skb_needs_check(skb, tx_path))) {
2766                 int err;
2767
2768                 /* We're going to init ->check field in TCP or UDP header */
2769                 err = skb_cow_head(skb, 0);
2770                 if (err < 0)
2771                         return ERR_PTR(err);
2772         }
2773
2774         /* Only report GSO partial support if it will enable us to
2775          * support segmentation on this frame without needing additional
2776          * work.
2777          */
2778         if (features & NETIF_F_GSO_PARTIAL) {
2779                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2780                 struct net_device *dev = skb->dev;
2781
2782                 partial_features |= dev->features & dev->gso_partial_features;
2783                 if (!skb_gso_ok(skb, features | partial_features))
2784                         features &= ~NETIF_F_GSO_PARTIAL;
2785         }
2786
2787         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2788                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2789
2790         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2791         SKB_GSO_CB(skb)->encap_level = 0;
2792
2793         skb_reset_mac_header(skb);
2794         skb_reset_mac_len(skb);
2795
2796         segs = skb_mac_gso_segment(skb, features);
2797
2798         if (unlikely(skb_needs_check(skb, tx_path)))
2799                 skb_warn_bad_offload(skb);
2800
2801         return segs;
2802 }
2803 EXPORT_SYMBOL(__skb_gso_segment);
2804
2805 /* Take action when hardware reception checksum errors are detected. */
2806 #ifdef CONFIG_BUG
2807 void netdev_rx_csum_fault(struct net_device *dev)
2808 {
2809         if (net_ratelimit()) {
2810                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2811                 dump_stack();
2812         }
2813 }
2814 EXPORT_SYMBOL(netdev_rx_csum_fault);
2815 #endif
2816
2817 /* Actually, we should eliminate this check as soon as we know, that:
2818  * 1. IOMMU is present and allows to map all the memory.
2819  * 2. No high memory really exists on this machine.
2820  */
2821
2822 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2823 {
2824 #ifdef CONFIG_HIGHMEM
2825         int i;
2826
2827         if (!(dev->features & NETIF_F_HIGHDMA)) {
2828                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2829                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2830
2831                         if (PageHighMem(skb_frag_page(frag)))
2832                                 return 1;
2833                 }
2834         }
2835
2836         if (PCI_DMA_BUS_IS_PHYS) {
2837                 struct device *pdev = dev->dev.parent;
2838
2839                 if (!pdev)
2840                         return 0;
2841                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2842                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2843                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2844
2845                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2846                                 return 1;
2847                 }
2848         }
2849 #endif
2850         return 0;
2851 }
2852
2853 /* If MPLS offload request, verify we are testing hardware MPLS features
2854  * instead of standard features for the netdev.
2855  */
2856 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2857 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2858                                            netdev_features_t features,
2859                                            __be16 type)
2860 {
2861         if (eth_p_mpls(type))
2862                 features &= skb->dev->mpls_features;
2863
2864         return features;
2865 }
2866 #else
2867 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2868                                            netdev_features_t features,
2869                                            __be16 type)
2870 {
2871         return features;
2872 }
2873 #endif
2874
2875 static netdev_features_t harmonize_features(struct sk_buff *skb,
2876         netdev_features_t features)
2877 {
2878         int tmp;
2879         __be16 type;
2880
2881         type = skb_network_protocol(skb, &tmp);
2882         features = net_mpls_features(skb, features, type);
2883
2884         if (skb->ip_summed != CHECKSUM_NONE &&
2885             !can_checksum_protocol(features, type)) {
2886                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2887         }
2888         if (illegal_highdma(skb->dev, skb))
2889                 features &= ~NETIF_F_SG;
2890
2891         return features;
2892 }
2893
2894 netdev_features_t passthru_features_check(struct sk_buff *skb,
2895                                           struct net_device *dev,
2896                                           netdev_features_t features)
2897 {
2898         return features;
2899 }
2900 EXPORT_SYMBOL(passthru_features_check);
2901
2902 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2903                                              struct net_device *dev,
2904                                              netdev_features_t features)
2905 {
2906         return vlan_features_check(skb, features);
2907 }
2908
2909 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2910                                             struct net_device *dev,
2911                                             netdev_features_t features)
2912 {
2913         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2914
2915         if (gso_segs > dev->gso_max_segs)
2916                 return features & ~NETIF_F_GSO_MASK;
2917
2918         /* Support for GSO partial features requires software
2919          * intervention before we can actually process the packets
2920          * so we need to strip support for any partial features now
2921          * and we can pull them back in after we have partially
2922          * segmented the frame.
2923          */
2924         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2925                 features &= ~dev->gso_partial_features;
2926
2927         /* Make sure to clear the IPv4 ID mangling feature if the
2928          * IPv4 header has the potential to be fragmented.
2929          */
2930         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2931                 struct iphdr *iph = skb->encapsulation ?
2932                                     inner_ip_hdr(skb) : ip_hdr(skb);
2933
2934                 if (!(iph->frag_off & htons(IP_DF)))
2935                         features &= ~NETIF_F_TSO_MANGLEID;
2936         }
2937
2938         return features;
2939 }
2940
2941 netdev_features_t netif_skb_features(struct sk_buff *skb)
2942 {
2943         struct net_device *dev = skb->dev;
2944         netdev_features_t features = dev->features;
2945
2946         if (skb_is_gso(skb))
2947                 features = gso_features_check(skb, dev, features);
2948
2949         /* If encapsulation offload request, verify we are testing
2950          * hardware encapsulation features instead of standard
2951          * features for the netdev
2952          */
2953         if (skb->encapsulation)
2954                 features &= dev->hw_enc_features;
2955
2956         if (skb_vlan_tagged(skb))
2957                 features = netdev_intersect_features(features,
2958                                                      dev->vlan_features |
2959                                                      NETIF_F_HW_VLAN_CTAG_TX |
2960                                                      NETIF_F_HW_VLAN_STAG_TX);
2961
2962         if (dev->netdev_ops->ndo_features_check)
2963                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2964                                                                 features);
2965         else
2966                 features &= dflt_features_check(skb, dev, features);
2967
2968         return harmonize_features(skb, features);
2969 }
2970 EXPORT_SYMBOL(netif_skb_features);
2971
2972 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2973                     struct netdev_queue *txq, bool more)
2974 {
2975         unsigned int len;
2976         int rc;
2977
2978         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2979                 dev_queue_xmit_nit(skb, dev);
2980
2981         len = skb->len;
2982         trace_net_dev_start_xmit(skb, dev);
2983         rc = netdev_start_xmit(skb, dev, txq, more);
2984         trace_net_dev_xmit(skb, rc, dev, len);
2985
2986         return rc;
2987 }
2988
2989 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2990                                     struct netdev_queue *txq, int *ret)
2991 {
2992         struct sk_buff *skb = first;
2993         int rc = NETDEV_TX_OK;
2994
2995         while (skb) {
2996                 struct sk_buff *next = skb->next;
2997
2998                 skb->next = NULL;
2999                 rc = xmit_one(skb, dev, txq, next != NULL);
3000                 if (unlikely(!dev_xmit_complete(rc))) {
3001                         skb->next = next;
3002                         goto out;
3003                 }
3004
3005                 skb = next;
3006                 if (netif_xmit_stopped(txq) && skb) {
3007                         rc = NETDEV_TX_BUSY;
3008                         break;
3009                 }
3010         }
3011
3012 out:
3013         *ret = rc;
3014         return skb;
3015 }
3016
3017 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3018                                           netdev_features_t features)
3019 {
3020         if (skb_vlan_tag_present(skb) &&
3021             !vlan_hw_offload_capable(features, skb->vlan_proto))
3022                 skb = __vlan_hwaccel_push_inside(skb);
3023         return skb;
3024 }
3025
3026 int skb_csum_hwoffload_help(struct sk_buff *skb,
3027                             const netdev_features_t features)
3028 {
3029         if (unlikely(skb->csum_not_inet))
3030                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3031                         skb_crc32c_csum_help(skb);
3032
3033         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3034 }
3035 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3036
3037 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3038 {
3039         netdev_features_t features;
3040
3041         features = netif_skb_features(skb);
3042         skb = validate_xmit_vlan(skb, features);
3043         if (unlikely(!skb))
3044                 goto out_null;
3045
3046         if (netif_needs_gso(skb, features)) {
3047                 struct sk_buff *segs;
3048
3049                 segs = skb_gso_segment(skb, features);
3050                 if (IS_ERR(segs)) {
3051                         goto out_kfree_skb;
3052                 } else if (segs) {
3053                         consume_skb(skb);
3054                         skb = segs;
3055                 }
3056         } else {
3057                 if (skb_needs_linearize(skb, features) &&
3058                     __skb_linearize(skb))
3059                         goto out_kfree_skb;
3060
3061                 if (validate_xmit_xfrm(skb, features))
3062                         goto out_kfree_skb;
3063
3064                 /* If packet is not checksummed and device does not
3065                  * support checksumming for this protocol, complete
3066                  * checksumming here.
3067                  */
3068                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3069                         if (skb->encapsulation)
3070                                 skb_set_inner_transport_header(skb,
3071                                                                skb_checksum_start_offset(skb));
3072                         else
3073                                 skb_set_transport_header(skb,
3074                                                          skb_checksum_start_offset(skb));
3075                         if (skb_csum_hwoffload_help(skb, features))
3076                                 goto out_kfree_skb;
3077                 }
3078         }
3079
3080         return skb;
3081
3082 out_kfree_skb:
3083         kfree_skb(skb);
3084 out_null:
3085         atomic_long_inc(&dev->tx_dropped);
3086         return NULL;
3087 }
3088
3089 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3090 {
3091         struct sk_buff *next, *head = NULL, *tail;
3092
3093         for (; skb != NULL; skb = next) {
3094                 next = skb->next;
3095                 skb->next = NULL;
3096
3097                 /* in case skb wont be segmented, point to itself */
3098                 skb->prev = skb;
3099
3100                 skb = validate_xmit_skb(skb, dev);
3101                 if (!skb)
3102                         continue;
3103
3104                 if (!head)
3105                         head = skb;
3106                 else
3107                         tail->next = skb;
3108                 /* If skb was segmented, skb->prev points to
3109                  * the last segment. If not, it still contains skb.
3110                  */
3111                 tail = skb->prev;
3112         }
3113         return head;
3114 }
3115 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3116
3117 static void qdisc_pkt_len_init(struct sk_buff *skb)
3118 {
3119         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3120
3121         qdisc_skb_cb(skb)->pkt_len = skb->len;
3122
3123         /* To get more precise estimation of bytes sent on wire,
3124          * we add to pkt_len the headers size of all segments
3125          */
3126         if (shinfo->gso_size)  {
3127                 unsigned int hdr_len;
3128                 u16 gso_segs = shinfo->gso_segs;
3129
3130                 /* mac layer + network layer */
3131                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3132
3133                 /* + transport layer */
3134                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3135                         hdr_len += tcp_hdrlen(skb);
3136                 else
3137                         hdr_len += sizeof(struct udphdr);
3138
3139                 if (shinfo->gso_type & SKB_GSO_DODGY)
3140                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3141                                                 shinfo->gso_size);
3142
3143                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3144         }
3145 }
3146
3147 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3148                                  struct net_device *dev,
3149                                  struct netdev_queue *txq)
3150 {
3151         spinlock_t *root_lock = qdisc_lock(q);
3152         struct sk_buff *to_free = NULL;
3153         bool contended;
3154         int rc;
3155
3156         qdisc_calculate_pkt_len(skb, q);
3157         /*
3158          * Heuristic to force contended enqueues to serialize on a
3159          * separate lock before trying to get qdisc main lock.
3160          * This permits qdisc->running owner to get the lock more
3161          * often and dequeue packets faster.
3162          */
3163         contended = qdisc_is_running(q);
3164         if (unlikely(contended))
3165                 spin_lock(&q->busylock);
3166
3167         spin_lock(root_lock);
3168         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3169                 __qdisc_drop(skb, &to_free);
3170                 rc = NET_XMIT_DROP;
3171         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3172                    qdisc_run_begin(q)) {
3173                 /*
3174                  * This is a work-conserving queue; there are no old skbs
3175                  * waiting to be sent out; and the qdisc is not running -
3176                  * xmit the skb directly.
3177                  */
3178
3179                 qdisc_bstats_update(q, skb);
3180
3181                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3182                         if (unlikely(contended)) {
3183                                 spin_unlock(&q->busylock);
3184                                 contended = false;
3185                         }
3186                         __qdisc_run(q);
3187                 } else
3188                         qdisc_run_end(q);
3189
3190                 rc = NET_XMIT_SUCCESS;
3191         } else {
3192                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3193                 if (qdisc_run_begin(q)) {
3194                         if (unlikely(contended)) {
3195                                 spin_unlock(&q->busylock);
3196                                 contended = false;
3197                         }
3198                         __qdisc_run(q);
3199                 }
3200         }
3201         spin_unlock(root_lock);
3202         if (unlikely(to_free))
3203                 kfree_skb_list(to_free);
3204         if (unlikely(contended))
3205                 spin_unlock(&q->busylock);
3206         return rc;
3207 }
3208
3209 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3210 static void skb_update_prio(struct sk_buff *skb)
3211 {
3212         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3213
3214         if (!skb->priority && skb->sk && map) {
3215                 unsigned int prioidx =
3216                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3217
3218                 if (prioidx < map->priomap_len)
3219                         skb->priority = map->priomap[prioidx];
3220         }
3221 }
3222 #else
3223 #define skb_update_prio(skb)
3224 #endif
3225
3226 DEFINE_PER_CPU(int, xmit_recursion);
3227 EXPORT_SYMBOL(xmit_recursion);
3228
3229 /**
3230  *      dev_loopback_xmit - loop back @skb
3231  *      @net: network namespace this loopback is happening in
3232  *      @sk:  sk needed to be a netfilter okfn
3233  *      @skb: buffer to transmit
3234  */
3235 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3236 {
3237         skb_reset_mac_header(skb);
3238         __skb_pull(skb, skb_network_offset(skb));
3239         skb->pkt_type = PACKET_LOOPBACK;
3240         skb->ip_summed = CHECKSUM_UNNECESSARY;
3241         WARN_ON(!skb_dst(skb));
3242         skb_dst_force(skb);
3243         netif_rx_ni(skb);
3244         return 0;
3245 }
3246 EXPORT_SYMBOL(dev_loopback_xmit);
3247
3248 #ifdef CONFIG_NET_EGRESS
3249 static struct sk_buff *
3250 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3251 {
3252         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3253         struct tcf_result cl_res;
3254
3255         if (!cl)
3256                 return skb;
3257
3258         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3259         qdisc_bstats_cpu_update(cl->q, skb);
3260
3261         switch (tcf_classify(skb, cl, &cl_res, false)) {
3262         case TC_ACT_OK:
3263         case TC_ACT_RECLASSIFY:
3264                 skb->tc_index = TC_H_MIN(cl_res.classid);
3265                 break;
3266         case TC_ACT_SHOT:
3267                 qdisc_qstats_cpu_drop(cl->q);
3268                 *ret = NET_XMIT_DROP;
3269                 kfree_skb(skb);
3270                 return NULL;
3271         case TC_ACT_STOLEN:
3272         case TC_ACT_QUEUED:
3273         case TC_ACT_TRAP:
3274                 *ret = NET_XMIT_SUCCESS;
3275                 consume_skb(skb);
3276                 return NULL;
3277         case TC_ACT_REDIRECT:
3278                 /* No need to push/pop skb's mac_header here on egress! */
3279                 skb_do_redirect(skb);
3280                 *ret = NET_XMIT_SUCCESS;
3281                 return NULL;
3282         default:
3283                 break;
3284         }
3285
3286         return skb;
3287 }
3288 #endif /* CONFIG_NET_EGRESS */
3289
3290 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3291 {
3292 #ifdef CONFIG_XPS
3293         struct xps_dev_maps *dev_maps;
3294         struct xps_map *map;
3295         int queue_index = -1;
3296
3297         rcu_read_lock();
3298         dev_maps = rcu_dereference(dev->xps_maps);
3299         if (dev_maps) {
3300                 unsigned int tci = skb->sender_cpu - 1;
3301
3302                 if (dev->num_tc) {
3303                         tci *= dev->num_tc;
3304                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3305                 }
3306
3307                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3308                 if (map) {
3309                         if (map->len == 1)
3310                                 queue_index = map->queues[0];
3311                         else
3312                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3313                                                                            map->len)];
3314                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3315                                 queue_index = -1;
3316                 }
3317         }
3318         rcu_read_unlock();
3319
3320         return queue_index;
3321 #else
3322         return -1;
3323 #endif
3324 }
3325
3326 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3327 {
3328         struct sock *sk = skb->sk;
3329         int queue_index = sk_tx_queue_get(sk);
3330
3331         if (queue_index < 0 || skb->ooo_okay ||
3332             queue_index >= dev->real_num_tx_queues) {
3333                 int new_index = get_xps_queue(dev, skb);
3334
3335                 if (new_index < 0)
3336                         new_index = skb_tx_hash(dev, skb);
3337
3338                 if (queue_index != new_index && sk &&
3339                     sk_fullsock(sk) &&
3340                     rcu_access_pointer(sk->sk_dst_cache))
3341                         sk_tx_queue_set(sk, new_index);
3342
3343                 queue_index = new_index;
3344         }
3345
3346         return queue_index;
3347 }
3348
3349 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3350                                     struct sk_buff *skb,
3351                                     void *accel_priv)
3352 {
3353         int queue_index = 0;
3354
3355 #ifdef CONFIG_XPS
3356         u32 sender_cpu = skb->sender_cpu - 1;
3357
3358         if (sender_cpu >= (u32)NR_CPUS)
3359                 skb->sender_cpu = raw_smp_processor_id() + 1;
3360 #endif
3361
3362         if (dev->real_num_tx_queues != 1) {
3363                 const struct net_device_ops *ops = dev->netdev_ops;
3364
3365                 if (ops->ndo_select_queue)
3366                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3367                                                             __netdev_pick_tx);
3368                 else
3369                         queue_index = __netdev_pick_tx(dev, skb);
3370
3371                 if (!accel_priv)
3372                         queue_index = netdev_cap_txqueue(dev, queue_index);
3373         }
3374
3375         skb_set_queue_mapping(skb, queue_index);
3376         return netdev_get_tx_queue(dev, queue_index);
3377 }
3378
3379 /**
3380  *      __dev_queue_xmit - transmit a buffer
3381  *      @skb: buffer to transmit
3382  *      @accel_priv: private data used for L2 forwarding offload
3383  *
3384  *      Queue a buffer for transmission to a network device. The caller must
3385  *      have set the device and priority and built the buffer before calling
3386  *      this function. The function can be called from an interrupt.
3387  *
3388  *      A negative errno code is returned on a failure. A success does not
3389  *      guarantee the frame will be transmitted as it may be dropped due
3390  *      to congestion or traffic shaping.
3391  *
3392  * -----------------------------------------------------------------------------------
3393  *      I notice this method can also return errors from the queue disciplines,
3394  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3395  *      be positive.
3396  *
3397  *      Regardless of the return value, the skb is consumed, so it is currently
3398  *      difficult to retry a send to this method.  (You can bump the ref count
3399  *      before sending to hold a reference for retry if you are careful.)
3400  *
3401  *      When calling this method, interrupts MUST be enabled.  This is because
3402  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3403  *          --BLG
3404  */
3405 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3406 {
3407         struct net_device *dev = skb->dev;
3408         struct netdev_queue *txq;
3409         struct Qdisc *q;
3410         int rc = -ENOMEM;
3411
3412         skb_reset_mac_header(skb);
3413
3414         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3415                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3416
3417         /* Disable soft irqs for various locks below. Also
3418          * stops preemption for RCU.
3419          */
3420         rcu_read_lock_bh();
3421
3422         skb_update_prio(skb);
3423
3424         qdisc_pkt_len_init(skb);
3425 #ifdef CONFIG_NET_CLS_ACT
3426         skb->tc_at_ingress = 0;
3427 # ifdef CONFIG_NET_EGRESS
3428         if (static_key_false(&egress_needed)) {
3429                 skb = sch_handle_egress(skb, &rc, dev);
3430                 if (!skb)
3431                         goto out;
3432         }
3433 # endif
3434 #endif
3435         /* If device/qdisc don't need skb->dst, release it right now while
3436          * its hot in this cpu cache.
3437          */
3438         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3439                 skb_dst_drop(skb);
3440         else
3441                 skb_dst_force(skb);
3442
3443         txq = netdev_pick_tx(dev, skb, accel_priv);
3444         q = rcu_dereference_bh(txq->qdisc);
3445
3446         trace_net_dev_queue(skb);
3447         if (q->enqueue) {
3448                 rc = __dev_xmit_skb(skb, q, dev, txq);
3449                 goto out;
3450         }
3451
3452         /* The device has no queue. Common case for software devices:
3453          * loopback, all the sorts of tunnels...
3454
3455          * Really, it is unlikely that netif_tx_lock protection is necessary
3456          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3457          * counters.)
3458          * However, it is possible, that they rely on protection
3459          * made by us here.
3460
3461          * Check this and shot the lock. It is not prone from deadlocks.
3462          *Either shot noqueue qdisc, it is even simpler 8)
3463          */
3464         if (dev->flags & IFF_UP) {
3465                 int cpu = smp_processor_id(); /* ok because BHs are off */
3466
3467                 if (txq->xmit_lock_owner != cpu) {
3468                         if (unlikely(__this_cpu_read(xmit_recursion) >
3469                                      XMIT_RECURSION_LIMIT))
3470                                 goto recursion_alert;
3471
3472                         skb = validate_xmit_skb(skb, dev);
3473                         if (!skb)
3474                                 goto out;
3475
3476                         HARD_TX_LOCK(dev, txq, cpu);
3477
3478                         if (!netif_xmit_stopped(txq)) {
3479                                 __this_cpu_inc(xmit_recursion);
3480                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3481                                 __this_cpu_dec(xmit_recursion);
3482                                 if (dev_xmit_complete(rc)) {
3483                                         HARD_TX_UNLOCK(dev, txq);
3484                                         goto out;
3485                                 }
3486                         }
3487                         HARD_TX_UNLOCK(dev, txq);
3488                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3489                                              dev->name);
3490                 } else {
3491                         /* Recursion is detected! It is possible,
3492                          * unfortunately
3493                          */
3494 recursion_alert:
3495                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3496                                              dev->name);
3497                 }
3498         }
3499
3500         rc = -ENETDOWN;
3501         rcu_read_unlock_bh();
3502
3503         atomic_long_inc(&dev->tx_dropped);
3504         kfree_skb_list(skb);
3505         return rc;
3506 out:
3507         rcu_read_unlock_bh();
3508         return rc;
3509 }
3510
3511 int dev_queue_xmit(struct sk_buff *skb)
3512 {
3513         return __dev_queue_xmit(skb, NULL);
3514 }
3515 EXPORT_SYMBOL(dev_queue_xmit);
3516
3517 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3518 {
3519         return __dev_queue_xmit(skb, accel_priv);
3520 }
3521 EXPORT_SYMBOL(dev_queue_xmit_accel);
3522
3523
3524 /*************************************************************************
3525  *                      Receiver routines
3526  *************************************************************************/
3527
3528 int netdev_max_backlog __read_mostly = 1000;
3529 EXPORT_SYMBOL(netdev_max_backlog);
3530
3531 int netdev_tstamp_prequeue __read_mostly = 1;
3532 int netdev_budget __read_mostly = 300;
3533 unsigned int __read_mostly netdev_budget_usecs = 2000;
3534 int weight_p __read_mostly = 64;           /* old backlog weight */
3535 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3536 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3537 int dev_rx_weight __read_mostly = 64;
3538 int dev_tx_weight __read_mostly = 64;
3539
3540 /* Called with irq disabled */
3541 static inline void ____napi_schedule(struct softnet_data *sd,
3542                                      struct napi_struct *napi)
3543 {
3544         list_add_tail(&napi->poll_list, &sd->poll_list);
3545         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3546 }
3547
3548 #ifdef CONFIG_RPS
3549
3550 /* One global table that all flow-based protocols share. */
3551 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3552 EXPORT_SYMBOL(rps_sock_flow_table);
3553 u32 rps_cpu_mask __read_mostly;
3554 EXPORT_SYMBOL(rps_cpu_mask);
3555
3556 struct static_key rps_needed __read_mostly;
3557 EXPORT_SYMBOL(rps_needed);
3558 struct static_key rfs_needed __read_mostly;
3559 EXPORT_SYMBOL(rfs_needed);
3560
3561 static struct rps_dev_flow *
3562 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3563             struct rps_dev_flow *rflow, u16 next_cpu)
3564 {
3565         if (next_cpu < nr_cpu_ids) {
3566 #ifdef CONFIG_RFS_ACCEL
3567                 struct netdev_rx_queue *rxqueue;
3568                 struct rps_dev_flow_table *flow_table;
3569                 struct rps_dev_flow *old_rflow;
3570                 u32 flow_id;
3571                 u16 rxq_index;
3572                 int rc;
3573
3574                 /* Should we steer this flow to a different hardware queue? */
3575                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3576                     !(dev->features & NETIF_F_NTUPLE))
3577                         goto out;
3578                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3579                 if (rxq_index == skb_get_rx_queue(skb))
3580                         goto out;
3581
3582                 rxqueue = dev->_rx + rxq_index;
3583                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3584                 if (!flow_table)
3585                         goto out;
3586                 flow_id = skb_get_hash(skb) & flow_table->mask;
3587                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3588                                                         rxq_index, flow_id);
3589                 if (rc < 0)
3590                         goto out;
3591                 old_rflow = rflow;
3592                 rflow = &flow_table->flows[flow_id];
3593                 rflow->filter = rc;
3594                 if (old_rflow->filter == rflow->filter)
3595                         old_rflow->filter = RPS_NO_FILTER;
3596         out:
3597 #endif
3598                 rflow->last_qtail =
3599                         per_cpu(softnet_data, next_cpu).input_queue_head;
3600         }
3601
3602         rflow->cpu = next_cpu;
3603         return rflow;
3604 }
3605
3606 /*
3607  * get_rps_cpu is called from netif_receive_skb and returns the target
3608  * CPU from the RPS map of the receiving queue for a given skb.
3609  * rcu_read_lock must be held on entry.
3610  */
3611 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3612                        struct rps_dev_flow **rflowp)
3613 {
3614         const struct rps_sock_flow_table *sock_flow_table;
3615         struct netdev_rx_queue *rxqueue = dev->_rx;
3616         struct rps_dev_flow_table *flow_table;
3617         struct rps_map *map;
3618         int cpu = -1;
3619         u32 tcpu;
3620         u32 hash;
3621
3622         if (skb_rx_queue_recorded(skb)) {
3623                 u16 index = skb_get_rx_queue(skb);
3624
3625                 if (unlikely(index >= dev->real_num_rx_queues)) {
3626                         WARN_ONCE(dev->real_num_rx_queues > 1,
3627                                   "%s received packet on queue %u, but number "
3628                                   "of RX queues is %u\n",
3629                                   dev->name, index, dev->real_num_rx_queues);
3630                         goto done;
3631                 }
3632                 rxqueue += index;
3633         }
3634
3635         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3636
3637         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3638         map = rcu_dereference(rxqueue->rps_map);
3639         if (!flow_table && !map)
3640                 goto done;
3641
3642         skb_reset_network_header(skb);
3643         hash = skb_get_hash(skb);
3644         if (!hash)
3645                 goto done;
3646
3647         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3648         if (flow_table && sock_flow_table) {
3649                 struct rps_dev_flow *rflow;
3650                 u32 next_cpu;
3651                 u32 ident;
3652
3653                 /* First check into global flow table if there is a match */
3654                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3655                 if ((ident ^ hash) & ~rps_cpu_mask)
3656                         goto try_rps;
3657
3658                 next_cpu = ident & rps_cpu_mask;
3659
3660                 /* OK, now we know there is a match,
3661                  * we can look at the local (per receive queue) flow table
3662                  */
3663                 rflow = &flow_table->flows[hash & flow_table->mask];
3664                 tcpu = rflow->cpu;
3665
3666                 /*
3667                  * If the desired CPU (where last recvmsg was done) is
3668                  * different from current CPU (one in the rx-queue flow
3669                  * table entry), switch if one of the following holds:
3670                  *   - Current CPU is unset (>= nr_cpu_ids).
3671                  *   - Current CPU is offline.
3672                  *   - The current CPU's queue tail has advanced beyond the
3673                  *     last packet that was enqueued using this table entry.
3674                  *     This guarantees that all previous packets for the flow
3675                  *     have been dequeued, thus preserving in order delivery.
3676                  */
3677                 if (unlikely(tcpu != next_cpu) &&
3678                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3679                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3680                       rflow->last_qtail)) >= 0)) {
3681                         tcpu = next_cpu;
3682                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3683                 }
3684
3685                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3686                         *rflowp = rflow;
3687                         cpu = tcpu;
3688                         goto done;
3689                 }
3690         }
3691
3692 try_rps:
3693
3694         if (map) {
3695                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3696                 if (cpu_online(tcpu)) {
3697                         cpu = tcpu;
3698                         goto done;
3699                 }
3700         }
3701
3702 done:
3703         return cpu;
3704 }
3705
3706 #ifdef CONFIG_RFS_ACCEL
3707
3708 /**
3709  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3710  * @dev: Device on which the filter was set
3711  * @rxq_index: RX queue index
3712  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3713  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3714  *
3715  * Drivers that implement ndo_rx_flow_steer() should periodically call
3716  * this function for each installed filter and remove the filters for
3717  * which it returns %true.
3718  */
3719 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3720                          u32 flow_id, u16 filter_id)
3721 {
3722         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3723         struct rps_dev_flow_table *flow_table;
3724         struct rps_dev_flow *rflow;
3725         bool expire = true;
3726         unsigned int cpu;
3727
3728         rcu_read_lock();
3729         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3730         if (flow_table && flow_id <= flow_table->mask) {
3731                 rflow = &flow_table->flows[flow_id];
3732                 cpu = ACCESS_ONCE(rflow->cpu);
3733                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3734                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3735                            rflow->last_qtail) <
3736                      (int)(10 * flow_table->mask)))
3737                         expire = false;
3738         }
3739         rcu_read_unlock();
3740         return expire;
3741 }
3742 EXPORT_SYMBOL(rps_may_expire_flow);
3743
3744 #endif /* CONFIG_RFS_ACCEL */
3745
3746 /* Called from hardirq (IPI) context */
3747 static void rps_trigger_softirq(void *data)
3748 {
3749         struct softnet_data *sd = data;
3750
3751         ____napi_schedule(sd, &sd->backlog);
3752         sd->received_rps++;
3753 }
3754
3755 #endif /* CONFIG_RPS */
3756
3757 /*
3758  * Check if this softnet_data structure is another cpu one
3759  * If yes, queue it to our IPI list and return 1
3760  * If no, return 0
3761  */
3762 static int rps_ipi_queued(struct softnet_data *sd)
3763 {
3764 #ifdef CONFIG_RPS
3765         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3766
3767         if (sd != mysd) {
3768                 sd->rps_ipi_next = mysd->rps_ipi_list;
3769                 mysd->rps_ipi_list = sd;
3770
3771                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3772                 return 1;
3773         }
3774 #endif /* CONFIG_RPS */
3775         return 0;
3776 }
3777
3778 #ifdef CONFIG_NET_FLOW_LIMIT
3779 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3780 #endif
3781
3782 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3783 {
3784 #ifdef CONFIG_NET_FLOW_LIMIT
3785         struct sd_flow_limit *fl;
3786         struct softnet_data *sd;
3787         unsigned int old_flow, new_flow;
3788
3789         if (qlen < (netdev_max_backlog >> 1))
3790                 return false;
3791
3792         sd = this_cpu_ptr(&softnet_data);
3793
3794         rcu_read_lock();
3795         fl = rcu_dereference(sd->flow_limit);
3796         if (fl) {
3797                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3798                 old_flow = fl->history[fl->history_head];
3799                 fl->history[fl->history_head] = new_flow;
3800
3801                 fl->history_head++;
3802                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3803
3804                 if (likely(fl->buckets[old_flow]))
3805                         fl->buckets[old_flow]--;
3806
3807                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3808                         fl->count++;
3809                         rcu_read_unlock();
3810                         return true;
3811                 }
3812         }
3813         rcu_read_unlock();
3814 #endif
3815         return false;
3816 }
3817
3818 /*
3819  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3820  * queue (may be a remote CPU queue).
3821  */
3822 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3823                               unsigned int *qtail)
3824 {
3825         struct softnet_data *sd;
3826         unsigned long flags;
3827         unsigned int qlen;
3828
3829         sd = &per_cpu(softnet_data, cpu);
3830
3831         local_irq_save(flags);
3832
3833         rps_lock(sd);
3834         if (!netif_running(skb->dev))
3835                 goto drop;
3836         qlen = skb_queue_len(&sd->input_pkt_queue);
3837         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3838                 if (qlen) {
3839 enqueue:
3840                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3841                         input_queue_tail_incr_save(sd, qtail);
3842                         rps_unlock(sd);
3843                         local_irq_restore(flags);
3844                         return NET_RX_SUCCESS;
3845                 }
3846
3847                 /* Schedule NAPI for backlog device
3848                  * We can use non atomic operation since we own the queue lock
3849                  */
3850                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3851                         if (!rps_ipi_queued(sd))
3852                                 ____napi_schedule(sd, &sd->backlog);
3853                 }
3854                 goto enqueue;
3855         }
3856
3857 drop:
3858         sd->dropped++;
3859         rps_unlock(sd);
3860
3861         local_irq_restore(flags);
3862
3863         atomic_long_inc(&skb->dev->rx_dropped);
3864         kfree_skb(skb);
3865         return NET_RX_DROP;
3866 }
3867
3868 static int netif_rx_internal(struct sk_buff *skb)
3869 {
3870         int ret;
3871
3872         net_timestamp_check(netdev_tstamp_prequeue, skb);
3873
3874         trace_netif_rx(skb);
3875 #ifdef CONFIG_RPS
3876         if (static_key_false(&rps_needed)) {
3877                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3878                 int cpu;
3879
3880                 preempt_disable();
3881                 rcu_read_lock();
3882
3883                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3884                 if (cpu < 0)
3885                         cpu = smp_processor_id();
3886
3887                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3888
3889                 rcu_read_unlock();
3890                 preempt_enable();
3891         } else
3892 #endif
3893         {
3894                 unsigned int qtail;
3895
3896                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3897                 put_cpu();
3898         }
3899         return ret;
3900 }
3901
3902 /**
3903  *      netif_rx        -       post buffer to the network code
3904  *      @skb: buffer to post
3905  *
3906  *      This function receives a packet from a device driver and queues it for
3907  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3908  *      may be dropped during processing for congestion control or by the
3909  *      protocol layers.
3910  *
3911  *      return values:
3912  *      NET_RX_SUCCESS  (no congestion)
3913  *      NET_RX_DROP     (packet was dropped)
3914  *
3915  */
3916
3917 int netif_rx(struct sk_buff *skb)
3918 {
3919         trace_netif_rx_entry(skb);
3920
3921         return netif_rx_internal(skb);
3922 }
3923 EXPORT_SYMBOL(netif_rx);
3924
3925 int netif_rx_ni(struct sk_buff *skb)
3926 {
3927         int err;
3928
3929         trace_netif_rx_ni_entry(skb);
3930
3931         preempt_disable();
3932         err = netif_rx_internal(skb);
3933         if (local_softirq_pending())
3934                 do_softirq();
3935         preempt_enable();
3936
3937         return err;
3938 }
3939 EXPORT_SYMBOL(netif_rx_ni);
3940
3941 static __latent_entropy void net_tx_action(struct softirq_action *h)
3942 {
3943         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3944
3945         if (sd->completion_queue) {
3946                 struct sk_buff *clist;
3947
3948                 local_irq_disable();
3949                 clist = sd->completion_queue;
3950                 sd->completion_queue = NULL;
3951                 local_irq_enable();
3952
3953                 while (clist) {
3954                         struct sk_buff *skb = clist;
3955
3956                         clist = clist->next;
3957
3958                         WARN_ON(refcount_read(&skb->users));
3959                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3960                                 trace_consume_skb(skb);
3961                         else
3962                                 trace_kfree_skb(skb, net_tx_action);
3963
3964                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3965                                 __kfree_skb(skb);
3966                         else
3967                                 __kfree_skb_defer(skb);
3968                 }
3969
3970                 __kfree_skb_flush();
3971         }
3972
3973         if (sd->output_queue) {
3974                 struct Qdisc *head;
3975
3976                 local_irq_disable();
3977                 head = sd->output_queue;
3978                 sd->output_queue = NULL;
3979                 sd->output_queue_tailp = &sd->output_queue;
3980                 local_irq_enable();
3981
3982                 while (head) {
3983                         struct Qdisc *q = head;
3984                         spinlock_t *root_lock;
3985
3986                         head = head->next_sched;
3987
3988                         root_lock = qdisc_lock(q);
3989                         spin_lock(root_lock);
3990                         /* We need to make sure head->next_sched is read
3991                          * before clearing __QDISC_STATE_SCHED
3992                          */
3993                         smp_mb__before_atomic();
3994                         clear_bit(__QDISC_STATE_SCHED, &q->state);
3995                         qdisc_run(q);
3996                         spin_unlock(root_lock);
3997                 }
3998         }
3999 }
4000
4001 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4002 /* This hook is defined here for ATM LANE */
4003 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4004                              unsigned char *addr) __read_mostly;
4005 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4006 #endif
4007
4008 static inline struct sk_buff *
4009 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4010                    struct net_device *orig_dev)
4011 {
4012 #ifdef CONFIG_NET_CLS_ACT
4013         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
4014         struct tcf_result cl_res;
4015
4016         /* If there's at least one ingress present somewhere (so
4017          * we get here via enabled static key), remaining devices
4018          * that are not configured with an ingress qdisc will bail
4019          * out here.
4020          */
4021         if (!cl)
4022                 return skb;
4023         if (*pt_prev) {
4024                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4025                 *pt_prev = NULL;
4026         }
4027
4028         qdisc_skb_cb(skb)->pkt_len = skb->len;
4029         skb->tc_at_ingress = 1;
4030         qdisc_bstats_cpu_update(cl->q, skb);
4031
4032         switch (tcf_classify(skb, cl, &cl_res, false)) {
4033         case TC_ACT_OK:
4034         case TC_ACT_RECLASSIFY:
4035                 skb->tc_index = TC_H_MIN(cl_res.classid);
4036                 break;
4037         case TC_ACT_SHOT:
4038                 qdisc_qstats_cpu_drop(cl->q);
4039                 kfree_skb(skb);
4040                 return NULL;
4041         case TC_ACT_STOLEN:
4042         case TC_ACT_QUEUED:
4043         case TC_ACT_TRAP:
4044                 consume_skb(skb);
4045                 return NULL;
4046         case TC_ACT_REDIRECT:
4047                 /* skb_mac_header check was done by cls/act_bpf, so
4048                  * we can safely push the L2 header back before
4049                  * redirecting to another netdev
4050                  */
4051                 __skb_push(skb, skb->mac_len);
4052                 skb_do_redirect(skb);
4053                 return NULL;
4054         default:
4055                 break;
4056         }
4057 #endif /* CONFIG_NET_CLS_ACT */
4058         return skb;
4059 }
4060
4061 /**
4062  *      netdev_is_rx_handler_busy - check if receive handler is registered
4063  *      @dev: device to check
4064  *
4065  *      Check if a receive handler is already registered for a given device.
4066  *      Return true if there one.
4067  *
4068  *      The caller must hold the rtnl_mutex.
4069  */
4070 bool netdev_is_rx_handler_busy(struct net_device *dev)
4071 {
4072         ASSERT_RTNL();
4073         return dev && rtnl_dereference(dev->rx_handler);
4074 }
4075 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4076
4077 /**
4078  *      netdev_rx_handler_register - register receive handler
4079  *      @dev: device to register a handler for
4080  *      @rx_handler: receive handler to register
4081  *      @rx_handler_data: data pointer that is used by rx handler
4082  *
4083  *      Register a receive handler for a device. This handler will then be
4084  *      called from __netif_receive_skb. A negative errno code is returned
4085  *      on a failure.
4086  *
4087  *      The caller must hold the rtnl_mutex.
4088  *
4089  *      For a general description of rx_handler, see enum rx_handler_result.
4090  */
4091 int netdev_rx_handler_register(struct net_device *dev,
4092                                rx_handler_func_t *rx_handler,
4093                                void *rx_handler_data)
4094 {
4095         if (netdev_is_rx_handler_busy(dev))
4096                 return -EBUSY;
4097
4098         /* Note: rx_handler_data must be set before rx_handler */
4099         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4100         rcu_assign_pointer(dev->rx_handler, rx_handler);
4101
4102         return 0;
4103 }
4104 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4105
4106 /**
4107  *      netdev_rx_handler_unregister - unregister receive handler
4108  *      @dev: device to unregister a handler from
4109  *
4110  *      Unregister a receive handler from a device.
4111  *
4112  *      The caller must hold the rtnl_mutex.
4113  */
4114 void netdev_rx_handler_unregister(struct net_device *dev)
4115 {
4116
4117         ASSERT_RTNL();
4118         RCU_INIT_POINTER(dev->rx_handler, NULL);
4119         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4120          * section has a guarantee to see a non NULL rx_handler_data
4121          * as well.
4122          */
4123         synchronize_net();
4124         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4125 }
4126 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4127
4128 /*
4129  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4130  * the special handling of PFMEMALLOC skbs.
4131  */
4132 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4133 {
4134         switch (skb->protocol) {
4135         case htons(ETH_P_ARP):
4136         case htons(ETH_P_IP):
4137         case htons(ETH_P_IPV6):
4138         case htons(ETH_P_8021Q):
4139         case htons(ETH_P_8021AD):
4140                 return true;
4141         default:
4142                 return false;
4143         }
4144 }
4145
4146 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4147                              int *ret, struct net_device *orig_dev)
4148 {
4149 #ifdef CONFIG_NETFILTER_INGRESS
4150         if (nf_hook_ingress_active(skb)) {
4151                 int ingress_retval;
4152
4153                 if (*pt_prev) {
4154                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4155                         *pt_prev = NULL;
4156                 }
4157
4158                 rcu_read_lock();
4159                 ingress_retval = nf_hook_ingress(skb);
4160                 rcu_read_unlock();
4161                 return ingress_retval;
4162         }
4163 #endif /* CONFIG_NETFILTER_INGRESS */
4164         return 0;
4165 }
4166
4167 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4168 {
4169         struct packet_type *ptype, *pt_prev;
4170         rx_handler_func_t *rx_handler;
4171         struct net_device *orig_dev;
4172         bool deliver_exact = false;
4173         int ret = NET_RX_DROP;
4174         __be16 type;
4175
4176         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4177
4178         trace_netif_receive_skb(skb);
4179
4180         orig_dev = skb->dev;
4181
4182         skb_reset_network_header(skb);
4183         if (!skb_transport_header_was_set(skb))
4184                 skb_reset_transport_header(skb);
4185         skb_reset_mac_len(skb);
4186
4187         pt_prev = NULL;
4188
4189 another_round:
4190         skb->skb_iif = skb->dev->ifindex;
4191
4192         __this_cpu_inc(softnet_data.processed);
4193
4194         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4195             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4196                 skb = skb_vlan_untag(skb);
4197                 if (unlikely(!skb))
4198                         goto out;
4199         }
4200
4201         if (skb_skip_tc_classify(skb))
4202                 goto skip_classify;
4203
4204         if (pfmemalloc)
4205                 goto skip_taps;
4206
4207         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4208                 if (pt_prev)
4209                         ret = deliver_skb(skb, pt_prev, orig_dev);
4210                 pt_prev = ptype;
4211         }
4212
4213         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4214                 if (pt_prev)
4215                         ret = deliver_skb(skb, pt_prev, orig_dev);
4216                 pt_prev = ptype;
4217         }
4218
4219 skip_taps:
4220 #ifdef CONFIG_NET_INGRESS
4221         if (static_key_false(&ingress_needed)) {
4222                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4223                 if (!skb)
4224                         goto out;
4225
4226                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4227                         goto out;
4228         }
4229 #endif
4230         skb_reset_tc(skb);
4231 skip_classify:
4232         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4233                 goto drop;
4234
4235         if (skb_vlan_tag_present(skb)) {
4236                 if (pt_prev) {
4237                         ret = deliver_skb(skb, pt_prev, orig_dev);
4238                         pt_prev = NULL;
4239                 }
4240                 if (vlan_do_receive(&skb))
4241                         goto another_round;
4242                 else if (unlikely(!skb))
4243                         goto out;
4244         }
4245
4246         rx_handler = rcu_dereference(skb->dev->rx_handler);
4247         if (rx_handler) {
4248                 if (pt_prev) {
4249                         ret = deliver_skb(skb, pt_prev, orig_dev);
4250                         pt_prev = NULL;
4251                 }
4252                 switch (rx_handler(&skb)) {
4253                 case RX_HANDLER_CONSUMED:
4254                         ret = NET_RX_SUCCESS;
4255                         goto out;
4256                 case RX_HANDLER_ANOTHER:
4257                         goto another_round;
4258                 case RX_HANDLER_EXACT:
4259                         deliver_exact = true;
4260                 case RX_HANDLER_PASS:
4261                         break;
4262                 default:
4263                         BUG();
4264                 }
4265         }
4266
4267         if (unlikely(skb_vlan_tag_present(skb))) {
4268                 if (skb_vlan_tag_get_id(skb))
4269                         skb->pkt_type = PACKET_OTHERHOST;
4270                 /* Note: we might in the future use prio bits
4271                  * and set skb->priority like in vlan_do_receive()
4272                  * For the time being, just ignore Priority Code Point
4273                  */
4274                 skb->vlan_tci = 0;
4275         }
4276
4277         type = skb->protocol;
4278
4279         /* deliver only exact match when indicated */
4280         if (likely(!deliver_exact)) {
4281                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4282                                        &ptype_base[ntohs(type) &
4283                                                    PTYPE_HASH_MASK]);
4284         }
4285
4286         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4287                                &orig_dev->ptype_specific);
4288
4289         if (unlikely(skb->dev != orig_dev)) {
4290                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4291                                        &skb->dev->ptype_specific);
4292         }
4293
4294         if (pt_prev) {
4295                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4296                         goto drop;
4297                 else
4298                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4299         } else {
4300 drop:
4301                 if (!deliver_exact)
4302                         atomic_long_inc(&skb->dev->rx_dropped);
4303                 else
4304                         atomic_long_inc(&skb->dev->rx_nohandler);
4305                 kfree_skb(skb);
4306                 /* Jamal, now you will not able to escape explaining
4307                  * me how you were going to use this. :-)
4308                  */
4309                 ret = NET_RX_DROP;
4310         }
4311
4312 out:
4313         return ret;
4314 }
4315
4316 static int __netif_receive_skb(struct sk_buff *skb)
4317 {
4318         int ret;
4319
4320         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4321                 unsigned int noreclaim_flag;
4322
4323                 /*
4324                  * PFMEMALLOC skbs are special, they should
4325                  * - be delivered to SOCK_MEMALLOC sockets only
4326                  * - stay away from userspace
4327                  * - have bounded memory usage
4328                  *
4329                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4330                  * context down to all allocation sites.
4331                  */
4332                 noreclaim_flag = memalloc_noreclaim_save();
4333                 ret = __netif_receive_skb_core(skb, true);
4334                 memalloc_noreclaim_restore(noreclaim_flag);
4335         } else
4336                 ret = __netif_receive_skb_core(skb, false);
4337
4338         return ret;
4339 }
4340
4341 static struct static_key generic_xdp_needed __read_mostly;
4342
4343 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4344 {
4345         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4346         struct bpf_prog *new = xdp->prog;
4347         int ret = 0;
4348
4349         switch (xdp->command) {
4350         case XDP_SETUP_PROG:
4351                 rcu_assign_pointer(dev->xdp_prog, new);
4352                 if (old)
4353                         bpf_prog_put(old);
4354
4355                 if (old && !new) {
4356                         static_key_slow_dec(&generic_xdp_needed);
4357                 } else if (new && !old) {
4358                         static_key_slow_inc(&generic_xdp_needed);
4359                         dev_disable_lro(dev);
4360                 }
4361                 break;
4362
4363         case XDP_QUERY_PROG:
4364                 xdp->prog_attached = !!old;
4365                 xdp->prog_id = old ? old->aux->id : 0;
4366                 break;
4367
4368         default:
4369                 ret = -EINVAL;
4370                 break;
4371         }
4372
4373         return ret;
4374 }
4375
4376 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4377                                      struct bpf_prog *xdp_prog)
4378 {
4379         struct xdp_buff xdp;
4380         u32 act = XDP_DROP;
4381         void *orig_data;
4382         int hlen, off;
4383         u32 mac_len;
4384
4385         /* Reinjected packets coming from act_mirred or similar should
4386          * not get XDP generic processing.
4387          */
4388         if (skb_cloned(skb))
4389                 return XDP_PASS;
4390
4391         if (skb_linearize(skb))
4392                 goto do_drop;
4393
4394         /* The XDP program wants to see the packet starting at the MAC
4395          * header.
4396          */
4397         mac_len = skb->data - skb_mac_header(skb);
4398         hlen = skb_headlen(skb) + mac_len;
4399         xdp.data = skb->data - mac_len;
4400         xdp.data_end = xdp.data + hlen;
4401         xdp.data_hard_start = skb->data - skb_headroom(skb);
4402         orig_data = xdp.data;
4403
4404         act = bpf_prog_run_xdp(xdp_prog, &xdp);
4405
4406         off = xdp.data - orig_data;
4407         if (off > 0)
4408                 __skb_pull(skb, off);
4409         else if (off < 0)
4410                 __skb_push(skb, -off);
4411
4412         switch (act) {
4413         case XDP_TX:
4414                 __skb_push(skb, mac_len);
4415                 /* fall through */
4416         case XDP_PASS:
4417                 break;
4418
4419         default:
4420                 bpf_warn_invalid_xdp_action(act);
4421                 /* fall through */
4422         case XDP_ABORTED:
4423                 trace_xdp_exception(skb->dev, xdp_prog, act);
4424                 /* fall through */
4425         case XDP_DROP:
4426         do_drop:
4427                 kfree_skb(skb);
4428                 break;
4429         }
4430
4431         return act;
4432 }
4433
4434 /* When doing generic XDP we have to bypass the qdisc layer and the
4435  * network taps in order to match in-driver-XDP behavior.
4436  */
4437 static void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4438 {
4439         struct net_device *dev = skb->dev;
4440         struct netdev_queue *txq;
4441         bool free_skb = true;
4442         int cpu, rc;
4443
4444         txq = netdev_pick_tx(dev, skb, NULL);
4445         cpu = smp_processor_id();
4446         HARD_TX_LOCK(dev, txq, cpu);
4447         if (!netif_xmit_stopped(txq)) {
4448                 rc = netdev_start_xmit(skb, dev, txq, 0);
4449                 if (dev_xmit_complete(rc))
4450                         free_skb = false;
4451         }
4452         HARD_TX_UNLOCK(dev, txq);
4453         if (free_skb) {
4454                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4455                 kfree_skb(skb);
4456         }
4457 }
4458
4459 static int netif_receive_skb_internal(struct sk_buff *skb)
4460 {
4461         int ret;
4462
4463         net_timestamp_check(netdev_tstamp_prequeue, skb);
4464
4465         if (skb_defer_rx_timestamp(skb))
4466                 return NET_RX_SUCCESS;
4467
4468         rcu_read_lock();
4469
4470         if (static_key_false(&generic_xdp_needed)) {
4471                 struct bpf_prog *xdp_prog = rcu_dereference(skb->dev->xdp_prog);
4472
4473                 if (xdp_prog) {
4474                         u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4475
4476                         if (act != XDP_PASS) {
4477                                 rcu_read_unlock();
4478                                 if (act == XDP_TX)
4479                                         generic_xdp_tx(skb, xdp_prog);
4480                                 return NET_RX_DROP;
4481                         }
4482                 }
4483         }
4484
4485 #ifdef CONFIG_RPS
4486         if (static_key_false(&rps_needed)) {
4487                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4488                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4489
4490                 if (cpu >= 0) {
4491                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4492                         rcu_read_unlock();
4493                         return ret;
4494                 }
4495         }
4496 #endif
4497         ret = __netif_receive_skb(skb);
4498         rcu_read_unlock();
4499         return ret;
4500 }
4501
4502 /**
4503  *      netif_receive_skb - process receive buffer from network
4504  *      @skb: buffer to process
4505  *
4506  *      netif_receive_skb() is the main receive data processing function.
4507  *      It always succeeds. The buffer may be dropped during processing
4508  *      for congestion control or by the protocol layers.
4509  *
4510  *      This function may only be called from softirq context and interrupts
4511  *      should be enabled.
4512  *
4513  *      Return values (usually ignored):
4514  *      NET_RX_SUCCESS: no congestion
4515  *      NET_RX_DROP: packet was dropped
4516  */
4517 int netif_receive_skb(struct sk_buff *skb)
4518 {
4519         trace_netif_receive_skb_entry(skb);
4520
4521         return netif_receive_skb_internal(skb);
4522 }
4523 EXPORT_SYMBOL(netif_receive_skb);
4524
4525 DEFINE_PER_CPU(struct work_struct, flush_works);
4526
4527 /* Network device is going away, flush any packets still pending */
4528 static void flush_backlog(struct work_struct *work)
4529 {
4530         struct sk_buff *skb, *tmp;
4531         struct softnet_data *sd;
4532
4533         local_bh_disable();
4534         sd = this_cpu_ptr(&softnet_data);
4535
4536         local_irq_disable();
4537         rps_lock(sd);
4538         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4539                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4540                         __skb_unlink(skb, &sd->input_pkt_queue);
4541                         kfree_skb(skb);
4542                         input_queue_head_incr(sd);
4543                 }
4544         }
4545         rps_unlock(sd);
4546         local_irq_enable();
4547
4548         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4549                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4550                         __skb_unlink(skb, &sd->process_queue);
4551                         kfree_skb(skb);
4552                         input_queue_head_incr(sd);
4553                 }
4554         }
4555         local_bh_enable();
4556 }
4557
4558 static void flush_all_backlogs(void)
4559 {
4560         unsigned int cpu;
4561
4562         get_online_cpus();
4563
4564         for_each_online_cpu(cpu)
4565                 queue_work_on(cpu, system_highpri_wq,
4566                               per_cpu_ptr(&flush_works, cpu));
4567
4568         for_each_online_cpu(cpu)
4569                 flush_work(per_cpu_ptr(&flush_works, cpu));
4570
4571         put_online_cpus();
4572 }
4573
4574 static int napi_gro_complete(struct sk_buff *skb)
4575 {
4576         struct packet_offload *ptype;
4577         __be16 type = skb->protocol;
4578         struct list_head *head = &offload_base;
4579         int err = -ENOENT;
4580
4581         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4582
4583         if (NAPI_GRO_CB(skb)->count == 1) {
4584                 skb_shinfo(skb)->gso_size = 0;
4585                 goto out;
4586         }
4587
4588         rcu_read_lock();
4589         list_for_each_entry_rcu(ptype, head, list) {
4590                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4591                         continue;
4592
4593                 err = ptype->callbacks.gro_complete(skb, 0);
4594                 break;
4595         }
4596         rcu_read_unlock();
4597
4598         if (err) {
4599                 WARN_ON(&ptype->list == head);
4600                 kfree_skb(skb);
4601                 return NET_RX_SUCCESS;
4602         }
4603
4604 out:
4605         return netif_receive_skb_internal(skb);
4606 }
4607
4608 /* napi->gro_list contains packets ordered by age.
4609  * youngest packets at the head of it.
4610  * Complete skbs in reverse order to reduce latencies.
4611  */
4612 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4613 {
4614         struct sk_buff *skb, *prev = NULL;
4615
4616         /* scan list and build reverse chain */
4617         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4618                 skb->prev = prev;
4619                 prev = skb;
4620         }
4621
4622         for (skb = prev; skb; skb = prev) {
4623                 skb->next = NULL;
4624
4625                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4626                         return;
4627
4628                 prev = skb->prev;
4629                 napi_gro_complete(skb);
4630                 napi->gro_count--;
4631         }
4632
4633         napi->gro_list = NULL;
4634 }
4635 EXPORT_SYMBOL(napi_gro_flush);
4636
4637 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4638 {
4639         struct sk_buff *p;
4640         unsigned int maclen = skb->dev->hard_header_len;
4641         u32 hash = skb_get_hash_raw(skb);
4642
4643         for (p = napi->gro_list; p; p = p->next) {
4644                 unsigned long diffs;
4645
4646                 NAPI_GRO_CB(p)->flush = 0;
4647
4648                 if (hash != skb_get_hash_raw(p)) {
4649                         NAPI_GRO_CB(p)->same_flow = 0;
4650                         continue;
4651                 }
4652
4653                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4654                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4655                 diffs |= skb_metadata_dst_cmp(p, skb);
4656                 if (maclen == ETH_HLEN)
4657                         diffs |= compare_ether_header(skb_mac_header(p),
4658                                                       skb_mac_header(skb));
4659                 else if (!diffs)
4660                         diffs = memcmp(skb_mac_header(p),
4661                                        skb_mac_header(skb),
4662                                        maclen);
4663                 NAPI_GRO_CB(p)->same_flow = !diffs;
4664         }
4665 }
4666
4667 static void skb_gro_reset_offset(struct sk_buff *skb)
4668 {
4669         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4670         const skb_frag_t *frag0 = &pinfo->frags[0];
4671
4672         NAPI_GRO_CB(skb)->data_offset = 0;
4673         NAPI_GRO_CB(skb)->frag0 = NULL;
4674         NAPI_GRO_CB(skb)->frag0_len = 0;
4675
4676         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4677             pinfo->nr_frags &&
4678             !PageHighMem(skb_frag_page(frag0))) {
4679                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4680                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4681                                                     skb_frag_size(frag0),
4682                                                     skb->end - skb->tail);
4683         }
4684 }
4685
4686 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4687 {
4688         struct skb_shared_info *pinfo = skb_shinfo(skb);
4689
4690         BUG_ON(skb->end - skb->tail < grow);
4691
4692         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4693
4694         skb->data_len -= grow;
4695         skb->tail += grow;
4696
4697         pinfo->frags[0].page_offset += grow;
4698         skb_frag_size_sub(&pinfo->frags[0], grow);
4699
4700         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4701                 skb_frag_unref(skb, 0);
4702                 memmove(pinfo->frags, pinfo->frags + 1,
4703                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4704         }
4705 }
4706
4707 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4708 {
4709         struct sk_buff **pp = NULL;
4710         struct packet_offload *ptype;
4711         __be16 type = skb->protocol;
4712         struct list_head *head = &offload_base;
4713         int same_flow;
4714         enum gro_result ret;
4715         int grow;
4716
4717         if (netif_elide_gro(skb->dev))
4718                 goto normal;
4719
4720         gro_list_prepare(napi, skb);
4721
4722         rcu_read_lock();
4723         list_for_each_entry_rcu(ptype, head, list) {
4724                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4725                         continue;
4726
4727                 skb_set_network_header(skb, skb_gro_offset(skb));
4728                 skb_reset_mac_len(skb);
4729                 NAPI_GRO_CB(skb)->same_flow = 0;
4730                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4731                 NAPI_GRO_CB(skb)->free = 0;
4732                 NAPI_GRO_CB(skb)->encap_mark = 0;
4733                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4734                 NAPI_GRO_CB(skb)->is_fou = 0;
4735                 NAPI_GRO_CB(skb)->is_atomic = 1;
4736                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4737
4738                 /* Setup for GRO checksum validation */
4739                 switch (skb->ip_summed) {
4740                 case CHECKSUM_COMPLETE:
4741                         NAPI_GRO_CB(skb)->csum = skb->csum;
4742                         NAPI_GRO_CB(skb)->csum_valid = 1;
4743                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4744                         break;
4745                 case CHECKSUM_UNNECESSARY:
4746                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4747                         NAPI_GRO_CB(skb)->csum_valid = 0;
4748                         break;
4749                 default:
4750                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4751                         NAPI_GRO_CB(skb)->csum_valid = 0;
4752                 }
4753
4754                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4755                 break;
4756         }
4757         rcu_read_unlock();
4758
4759         if (&ptype->list == head)
4760                 goto normal;
4761
4762         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4763                 ret = GRO_CONSUMED;
4764                 goto ok;
4765         }
4766
4767         same_flow = NAPI_GRO_CB(skb)->same_flow;
4768         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4769
4770         if (pp) {
4771                 struct sk_buff *nskb = *pp;
4772
4773                 *pp = nskb->next;
4774                 nskb->next = NULL;
4775                 napi_gro_complete(nskb);
4776                 napi->gro_count--;
4777         }
4778
4779         if (same_flow)
4780                 goto ok;
4781
4782         if (NAPI_GRO_CB(skb)->flush)
4783                 goto normal;
4784
4785         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4786                 struct sk_buff *nskb = napi->gro_list;
4787
4788                 /* locate the end of the list to select the 'oldest' flow */
4789                 while (nskb->next) {
4790                         pp = &nskb->next;
4791                         nskb = *pp;
4792                 }
4793                 *pp = NULL;
4794                 nskb->next = NULL;
4795                 napi_gro_complete(nskb);
4796         } else {
4797                 napi->gro_count++;
4798         }
4799         NAPI_GRO_CB(skb)->count = 1;
4800         NAPI_GRO_CB(skb)->age = jiffies;
4801         NAPI_GRO_CB(skb)->last = skb;
4802         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4803         skb->next = napi->gro_list;
4804         napi->gro_list = skb;
4805         ret = GRO_HELD;
4806
4807 pull:
4808         grow = skb_gro_offset(skb) - skb_headlen(skb);
4809         if (grow > 0)
4810                 gro_pull_from_frag0(skb, grow);
4811 ok:
4812         return ret;
4813
4814 normal:
4815         ret = GRO_NORMAL;
4816         goto pull;
4817 }
4818
4819 struct packet_offload *gro_find_receive_by_type(__be16 type)
4820 {
4821         struct list_head *offload_head = &offload_base;
4822         struct packet_offload *ptype;
4823
4824         list_for_each_entry_rcu(ptype, offload_head, list) {
4825                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4826                         continue;
4827                 return ptype;
4828         }
4829         return NULL;
4830 }
4831 EXPORT_SYMBOL(gro_find_receive_by_type);
4832
4833 struct packet_offload *gro_find_complete_by_type(__be16 type)
4834 {
4835         struct list_head *offload_head = &offload_base;
4836         struct packet_offload *ptype;
4837
4838         list_for_each_entry_rcu(ptype, offload_head, list) {
4839                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4840                         continue;
4841                 return ptype;
4842         }
4843         return NULL;
4844 }
4845 EXPORT_SYMBOL(gro_find_complete_by_type);
4846
4847 static void napi_skb_free_stolen_head(struct sk_buff *skb)
4848 {
4849         skb_dst_drop(skb);
4850         secpath_reset(skb);
4851         kmem_cache_free(skbuff_head_cache, skb);
4852 }
4853
4854 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4855 {
4856         switch (ret) {
4857         case GRO_NORMAL:
4858                 if (netif_receive_skb_internal(skb))
4859                         ret = GRO_DROP;
4860                 break;
4861
4862         case GRO_DROP:
4863                 kfree_skb(skb);
4864                 break;
4865
4866         case GRO_MERGED_FREE:
4867                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4868                         napi_skb_free_stolen_head(skb);
4869                 else
4870                         __kfree_skb(skb);
4871                 break;
4872
4873         case GRO_HELD:
4874         case GRO_MERGED:
4875         case GRO_CONSUMED:
4876                 break;
4877         }
4878
4879         return ret;
4880 }
4881
4882 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4883 {
4884         skb_mark_napi_id(skb, napi);
4885         trace_napi_gro_receive_entry(skb);
4886
4887         skb_gro_reset_offset(skb);
4888
4889         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4890 }
4891 EXPORT_SYMBOL(napi_gro_receive);
4892
4893 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4894 {
4895         if (unlikely(skb->pfmemalloc)) {
4896                 consume_skb(skb);
4897                 return;
4898         }
4899         __skb_pull(skb, skb_headlen(skb));
4900         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4901         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4902         skb->vlan_tci = 0;
4903         skb->dev = napi->dev;
4904         skb->skb_iif = 0;
4905         skb->encapsulation = 0;
4906         skb_shinfo(skb)->gso_type = 0;
4907         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4908         secpath_reset(skb);
4909
4910         napi->skb = skb;
4911 }
4912
4913 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4914 {
4915         struct sk_buff *skb = napi->skb;
4916
4917         if (!skb) {
4918                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4919                 if (skb) {
4920                         napi->skb = skb;
4921                         skb_mark_napi_id(skb, napi);
4922                 }
4923         }
4924         return skb;
4925 }
4926 EXPORT_SYMBOL(napi_get_frags);
4927
4928 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4929                                       struct sk_buff *skb,
4930                                       gro_result_t ret)
4931 {
4932         switch (ret) {
4933         case GRO_NORMAL:
4934         case GRO_HELD:
4935                 __skb_push(skb, ETH_HLEN);
4936                 skb->protocol = eth_type_trans(skb, skb->dev);
4937                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4938                         ret = GRO_DROP;
4939                 break;
4940
4941         case GRO_DROP:
4942                 napi_reuse_skb(napi, skb);
4943                 break;
4944
4945         case GRO_MERGED_FREE:
4946                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4947                         napi_skb_free_stolen_head(skb);
4948                 else
4949                         napi_reuse_skb(napi, skb);
4950                 break;
4951
4952         case GRO_MERGED:
4953         case GRO_CONSUMED:
4954                 break;
4955         }
4956
4957         return ret;
4958 }
4959
4960 /* Upper GRO stack assumes network header starts at gro_offset=0
4961  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4962  * We copy ethernet header into skb->data to have a common layout.
4963  */
4964 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4965 {
4966         struct sk_buff *skb = napi->skb;
4967         const struct ethhdr *eth;
4968         unsigned int hlen = sizeof(*eth);
4969
4970         napi->skb = NULL;
4971
4972         skb_reset_mac_header(skb);
4973         skb_gro_reset_offset(skb);
4974
4975         eth = skb_gro_header_fast(skb, 0);
4976         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4977                 eth = skb_gro_header_slow(skb, hlen, 0);
4978                 if (unlikely(!eth)) {
4979                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4980                                              __func__, napi->dev->name);
4981                         napi_reuse_skb(napi, skb);
4982                         return NULL;
4983                 }
4984         } else {
4985                 gro_pull_from_frag0(skb, hlen);
4986                 NAPI_GRO_CB(skb)->frag0 += hlen;
4987                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4988         }
4989         __skb_pull(skb, hlen);
4990
4991         /*
4992          * This works because the only protocols we care about don't require
4993          * special handling.
4994          * We'll fix it up properly in napi_frags_finish()
4995          */
4996         skb->protocol = eth->h_proto;
4997
4998         return skb;
4999 }
5000
5001 gro_result_t napi_gro_frags(struct napi_struct *napi)
5002 {
5003         struct sk_buff *skb = napi_frags_skb(napi);
5004
5005         if (!skb)
5006                 return GRO_DROP;
5007
5008         trace_napi_gro_frags_entry(skb);
5009
5010         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5011 }
5012 EXPORT_SYMBOL(napi_gro_frags);
5013
5014 /* Compute the checksum from gro_offset and return the folded value
5015  * after adding in any pseudo checksum.
5016  */
5017 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5018 {
5019         __wsum wsum;
5020         __sum16 sum;
5021
5022         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5023
5024         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5025         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5026         if (likely(!sum)) {
5027                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5028                     !skb->csum_complete_sw)
5029                         netdev_rx_csum_fault(skb->dev);
5030         }
5031
5032         NAPI_GRO_CB(skb)->csum = wsum;
5033         NAPI_GRO_CB(skb)->csum_valid = 1;
5034
5035         return sum;
5036 }
5037 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5038
5039 static void net_rps_send_ipi(struct softnet_data *remsd)
5040 {
5041 #ifdef CONFIG_RPS
5042         while (remsd) {
5043                 struct softnet_data *next = remsd->rps_ipi_next;
5044
5045                 if (cpu_online(remsd->cpu))
5046                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5047                 remsd = next;
5048         }
5049 #endif
5050 }
5051
5052 /*
5053  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5054  * Note: called with local irq disabled, but exits with local irq enabled.
5055  */
5056 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5057 {
5058 #ifdef CONFIG_RPS
5059         struct softnet_data *remsd = sd->rps_ipi_list;
5060
5061         if (remsd) {
5062                 sd->rps_ipi_list = NULL;
5063
5064                 local_irq_enable();
5065
5066                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5067                 net_rps_send_ipi(remsd);
5068         } else
5069 #endif
5070                 local_irq_enable();
5071 }
5072
5073 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5074 {
5075 #ifdef CONFIG_RPS
5076         return sd->rps_ipi_list != NULL;
5077 #else
5078         return false;
5079 #endif
5080 }
5081
5082 static int process_backlog(struct napi_struct *napi, int quota)
5083 {
5084         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5085         bool again = true;
5086         int work = 0;
5087
5088         /* Check if we have pending ipi, its better to send them now,
5089          * not waiting net_rx_action() end.
5090          */
5091         if (sd_has_rps_ipi_waiting(sd)) {
5092                 local_irq_disable();
5093                 net_rps_action_and_irq_enable(sd);
5094         }
5095
5096         napi->weight = dev_rx_weight;
5097         while (again) {
5098                 struct sk_buff *skb;
5099
5100                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5101                         rcu_read_lock();
5102                         __netif_receive_skb(skb);
5103                         rcu_read_unlock();
5104                         input_queue_head_incr(sd);
5105                         if (++work >= quota)
5106                                 return work;
5107
5108                 }
5109
5110                 local_irq_disable();
5111                 rps_lock(sd);
5112                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5113                         /*
5114                          * Inline a custom version of __napi_complete().
5115                          * only current cpu owns and manipulates this napi,
5116                          * and NAPI_STATE_SCHED is the only possible flag set
5117                          * on backlog.
5118                          * We can use a plain write instead of clear_bit(),
5119                          * and we dont need an smp_mb() memory barrier.
5120                          */
5121                         napi->state = 0;
5122                         again = false;
5123                 } else {
5124                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5125                                                    &sd->process_queue);
5126                 }
5127                 rps_unlock(sd);
5128                 local_irq_enable();
5129         }
5130
5131         return work;
5132 }
5133
5134 /**
5135  * __napi_schedule - schedule for receive
5136  * @n: entry to schedule
5137  *
5138  * The entry's receive function will be scheduled to run.
5139  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5140  */
5141 void __napi_schedule(struct napi_struct *n)
5142 {
5143         unsigned long flags;
5144
5145         local_irq_save(flags);
5146         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5147         local_irq_restore(flags);
5148 }
5149 EXPORT_SYMBOL(__napi_schedule);
5150
5151 /**
5152  *      napi_schedule_prep - check if napi can be scheduled
5153  *      @n: napi context
5154  *
5155  * Test if NAPI routine is already running, and if not mark
5156  * it as running.  This is used as a condition variable
5157  * insure only one NAPI poll instance runs.  We also make
5158  * sure there is no pending NAPI disable.
5159  */
5160 bool napi_schedule_prep(struct napi_struct *n)
5161 {
5162         unsigned long val, new;
5163
5164         do {
5165                 val = READ_ONCE(n->state);
5166                 if (unlikely(val & NAPIF_STATE_DISABLE))
5167                         return false;
5168                 new = val | NAPIF_STATE_SCHED;
5169
5170                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5171                  * This was suggested by Alexander Duyck, as compiler
5172                  * emits better code than :
5173                  * if (val & NAPIF_STATE_SCHED)
5174                  *     new |= NAPIF_STATE_MISSED;
5175                  */
5176                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5177                                                    NAPIF_STATE_MISSED;
5178         } while (cmpxchg(&n->state, val, new) != val);
5179
5180         return !(val & NAPIF_STATE_SCHED);
5181 }
5182 EXPORT_SYMBOL(napi_schedule_prep);
5183
5184 /**
5185  * __napi_schedule_irqoff - schedule for receive
5186  * @n: entry to schedule
5187  *
5188  * Variant of __napi_schedule() assuming hard irqs are masked
5189  */
5190 void __napi_schedule_irqoff(struct napi_struct *n)
5191 {
5192         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5193 }
5194 EXPORT_SYMBOL(__napi_schedule_irqoff);
5195
5196 bool napi_complete_done(struct napi_struct *n, int work_done)
5197 {
5198         unsigned long flags, val, new;
5199
5200         /*
5201          * 1) Don't let napi dequeue from the cpu poll list
5202          *    just in case its running on a different cpu.
5203          * 2) If we are busy polling, do nothing here, we have
5204          *    the guarantee we will be called later.
5205          */
5206         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5207                                  NAPIF_STATE_IN_BUSY_POLL)))
5208                 return false;
5209
5210         if (n->gro_list) {
5211                 unsigned long timeout = 0;
5212
5213                 if (work_done)
5214                         timeout = n->dev->gro_flush_timeout;
5215
5216                 if (timeout)
5217                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5218                                       HRTIMER_MODE_REL_PINNED);
5219                 else
5220                         napi_gro_flush(n, false);
5221         }
5222         if (unlikely(!list_empty(&n->poll_list))) {
5223                 /* If n->poll_list is not empty, we need to mask irqs */
5224                 local_irq_save(flags);
5225                 list_del_init(&n->poll_list);
5226                 local_irq_restore(flags);
5227         }
5228
5229         do {
5230                 val = READ_ONCE(n->state);
5231
5232                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5233
5234                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5235
5236                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5237                  * because we will call napi->poll() one more time.
5238                  * This C code was suggested by Alexander Duyck to help gcc.
5239                  */
5240                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5241                                                     NAPIF_STATE_SCHED;
5242         } while (cmpxchg(&n->state, val, new) != val);
5243
5244         if (unlikely(val & NAPIF_STATE_MISSED)) {
5245                 __napi_schedule(n);
5246                 return false;
5247         }
5248
5249         return true;
5250 }
5251 EXPORT_SYMBOL(napi_complete_done);
5252
5253 /* must be called under rcu_read_lock(), as we dont take a reference */
5254 static struct napi_struct *napi_by_id(unsigned int napi_id)
5255 {
5256         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5257         struct napi_struct *napi;
5258
5259         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5260                 if (napi->napi_id == napi_id)
5261                         return napi;
5262
5263         return NULL;
5264 }
5265
5266 #if defined(CONFIG_NET_RX_BUSY_POLL)
5267
5268 #define BUSY_POLL_BUDGET 8
5269
5270 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5271 {
5272         int rc;
5273
5274         /* Busy polling means there is a high chance device driver hard irq
5275          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5276          * set in napi_schedule_prep().
5277          * Since we are about to call napi->poll() once more, we can safely
5278          * clear NAPI_STATE_MISSED.
5279          *
5280          * Note: x86 could use a single "lock and ..." instruction
5281          * to perform these two clear_bit()
5282          */
5283         clear_bit(NAPI_STATE_MISSED, &napi->state);
5284         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5285
5286         local_bh_disable();
5287
5288         /* All we really want here is to re-enable device interrupts.
5289          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5290          */
5291         rc = napi->poll(napi, BUSY_POLL_BUDGET);
5292         netpoll_poll_unlock(have_poll_lock);
5293         if (rc == BUSY_POLL_BUDGET)
5294                 __napi_schedule(napi);
5295         local_bh_enable();
5296 }
5297
5298 void napi_busy_loop(unsigned int napi_id,
5299                     bool (*loop_end)(void *, unsigned long),
5300                     void *loop_end_arg)
5301 {
5302         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5303         int (*napi_poll)(struct napi_struct *napi, int budget);
5304         void *have_poll_lock = NULL;
5305         struct napi_struct *napi;
5306
5307 restart:
5308         napi_poll = NULL;
5309
5310         rcu_read_lock();
5311
5312         napi = napi_by_id(napi_id);
5313         if (!napi)
5314                 goto out;
5315
5316         preempt_disable();
5317         for (;;) {
5318                 int work = 0;
5319
5320                 local_bh_disable();
5321                 if (!napi_poll) {
5322                         unsigned long val = READ_ONCE(napi->state);
5323
5324                         /* If multiple threads are competing for this napi,
5325                          * we avoid dirtying napi->state as much as we can.
5326                          */
5327                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5328                                    NAPIF_STATE_IN_BUSY_POLL))
5329                                 goto count;
5330                         if (cmpxchg(&napi->state, val,
5331                                     val | NAPIF_STATE_IN_BUSY_POLL |
5332                                           NAPIF_STATE_SCHED) != val)
5333                                 goto count;
5334                         have_poll_lock = netpoll_poll_lock(napi);
5335                         napi_poll = napi->poll;
5336                 }
5337                 work = napi_poll(napi, BUSY_POLL_BUDGET);
5338                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5339 count:
5340                 if (work > 0)
5341                         __NET_ADD_STATS(dev_net(napi->dev),
5342                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
5343                 local_bh_enable();
5344
5345                 if (!loop_end || loop_end(loop_end_arg, start_time))
5346                         break;
5347
5348                 if (unlikely(need_resched())) {
5349                         if (napi_poll)
5350                                 busy_poll_stop(napi, have_poll_lock);
5351                         preempt_enable();
5352                         rcu_read_unlock();
5353                         cond_resched();
5354                         if (loop_end(loop_end_arg, start_time))
5355                                 return;
5356                         goto restart;
5357                 }
5358                 cpu_relax();
5359         }
5360         if (napi_poll)
5361                 busy_poll_stop(napi, have_poll_lock);
5362         preempt_enable();
5363 out:
5364         rcu_read_unlock();
5365 }
5366 EXPORT_SYMBOL(napi_busy_loop);
5367
5368 #endif /* CONFIG_NET_RX_BUSY_POLL */
5369
5370 static void napi_hash_add(struct napi_struct *napi)
5371 {
5372         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5373             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5374                 return;
5375
5376         spin_lock(&napi_hash_lock);
5377
5378         /* 0..NR_CPUS range is reserved for sender_cpu use */
5379         do {
5380                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5381                         napi_gen_id = MIN_NAPI_ID;
5382         } while (napi_by_id(napi_gen_id));
5383         napi->napi_id = napi_gen_id;
5384
5385         hlist_add_head_rcu(&napi->napi_hash_node,
5386                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5387
5388         spin_unlock(&napi_hash_lock);
5389 }
5390
5391 /* Warning : caller is responsible to make sure rcu grace period
5392  * is respected before freeing memory containing @napi
5393  */
5394 bool napi_hash_del(struct napi_struct *napi)
5395 {
5396         bool rcu_sync_needed = false;
5397
5398         spin_lock(&napi_hash_lock);
5399
5400         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5401                 rcu_sync_needed = true;
5402                 hlist_del_rcu(&napi->napi_hash_node);
5403         }
5404         spin_unlock(&napi_hash_lock);
5405         return rcu_sync_needed;
5406 }
5407 EXPORT_SYMBOL_GPL(napi_hash_del);
5408
5409 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5410 {
5411         struct napi_struct *napi;
5412
5413         napi = container_of(timer, struct napi_struct, timer);
5414
5415         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5416          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5417          */
5418         if (napi->gro_list && !napi_disable_pending(napi) &&
5419             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5420                 __napi_schedule_irqoff(napi);
5421
5422         return HRTIMER_NORESTART;
5423 }
5424
5425 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5426                     int (*poll)(struct napi_struct *, int), int weight)
5427 {
5428         INIT_LIST_HEAD(&napi->poll_list);
5429         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5430         napi->timer.function = napi_watchdog;
5431         napi->gro_count = 0;
5432         napi->gro_list = NULL;
5433         napi->skb = NULL;
5434         napi->poll = poll;
5435         if (weight > NAPI_POLL_WEIGHT)
5436                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5437                             weight, dev->name);
5438         napi->weight = weight;
5439         list_add(&napi->dev_list, &dev->napi_list);
5440         napi->dev = dev;
5441 #ifdef CONFIG_NETPOLL
5442         napi->poll_owner = -1;
5443 #endif
5444         set_bit(NAPI_STATE_SCHED, &napi->state);
5445         napi_hash_add(napi);
5446 }
5447 EXPORT_SYMBOL(netif_napi_add);
5448
5449 void napi_disable(struct napi_struct *n)
5450 {
5451         might_sleep();
5452         set_bit(NAPI_STATE_DISABLE, &n->state);
5453
5454         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5455                 msleep(1);
5456         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5457                 msleep(1);
5458
5459         hrtimer_cancel(&n->timer);
5460
5461         clear_bit(NAPI_STATE_DISABLE, &n->state);
5462 }
5463 EXPORT_SYMBOL(napi_disable);
5464
5465 /* Must be called in process context */
5466 void netif_napi_del(struct napi_struct *napi)
5467 {
5468         might_sleep();
5469         if (napi_hash_del(napi))
5470                 synchronize_net();
5471         list_del_init(&napi->dev_list);
5472         napi_free_frags(napi);
5473
5474         kfree_skb_list(napi->gro_list);
5475         napi->gro_list = NULL;
5476         napi->gro_count = 0;
5477 }
5478 EXPORT_SYMBOL(netif_napi_del);
5479
5480 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5481 {
5482         void *have;
5483         int work, weight;
5484
5485         list_del_init(&n->poll_list);
5486
5487         have = netpoll_poll_lock(n);
5488
5489         weight = n->weight;
5490
5491         /* This NAPI_STATE_SCHED test is for avoiding a race
5492          * with netpoll's poll_napi().  Only the entity which
5493          * obtains the lock and sees NAPI_STATE_SCHED set will
5494          * actually make the ->poll() call.  Therefore we avoid
5495          * accidentally calling ->poll() when NAPI is not scheduled.
5496          */
5497         work = 0;
5498         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5499                 work = n->poll(n, weight);
5500                 trace_napi_poll(n, work, weight);
5501         }
5502
5503         WARN_ON_ONCE(work > weight);
5504
5505         if (likely(work < weight))
5506                 goto out_unlock;
5507
5508         /* Drivers must not modify the NAPI state if they
5509          * consume the entire weight.  In such cases this code
5510          * still "owns" the NAPI instance and therefore can
5511          * move the instance around on the list at-will.
5512          */
5513         if (unlikely(napi_disable_pending(n))) {
5514                 napi_complete(n);
5515                 goto out_unlock;
5516         }
5517
5518         if (n->gro_list) {
5519                 /* flush too old packets
5520                  * If HZ < 1000, flush all packets.
5521                  */
5522                 napi_gro_flush(n, HZ >= 1000);
5523         }
5524
5525         /* Some drivers may have called napi_schedule
5526          * prior to exhausting their budget.
5527          */
5528         if (unlikely(!list_empty(&n->poll_list))) {
5529                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5530                              n->dev ? n->dev->name : "backlog");
5531                 goto out_unlock;
5532         }
5533
5534         list_add_tail(&n->poll_list, repoll);
5535
5536 out_unlock:
5537         netpoll_poll_unlock(have);
5538
5539         return work;
5540 }
5541
5542 static __latent_entropy void net_rx_action(struct softirq_action *h)
5543 {
5544         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5545         unsigned long time_limit = jiffies +
5546                 usecs_to_jiffies(netdev_budget_usecs);
5547         int budget = netdev_budget;
5548         LIST_HEAD(list);
5549         LIST_HEAD(repoll);
5550
5551         local_irq_disable();
5552         list_splice_init(&sd->poll_list, &list);
5553         local_irq_enable();
5554
5555         for (;;) {
5556                 struct napi_struct *n;
5557
5558                 if (list_empty(&list)) {
5559                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5560                                 goto out;
5561                         break;
5562                 }
5563
5564                 n = list_first_entry(&list, struct napi_struct, poll_list);
5565                 budget -= napi_poll(n, &repoll);
5566
5567                 /* If softirq window is exhausted then punt.
5568                  * Allow this to run for 2 jiffies since which will allow
5569                  * an average latency of 1.5/HZ.
5570                  */
5571                 if (unlikely(budget <= 0 ||
5572                              time_after_eq(jiffies, time_limit))) {
5573                         sd->time_squeeze++;
5574                         break;
5575                 }
5576         }
5577
5578         local_irq_disable();
5579
5580         list_splice_tail_init(&sd->poll_list, &list);
5581         list_splice_tail(&repoll, &list);
5582         list_splice(&list, &sd->poll_list);
5583         if (!list_empty(&sd->poll_list))
5584                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5585
5586         net_rps_action_and_irq_enable(sd);
5587 out:
5588         __kfree_skb_flush();
5589 }
5590
5591 struct netdev_adjacent {
5592         struct net_device *dev;
5593
5594         /* upper master flag, there can only be one master device per list */
5595         bool master;
5596
5597         /* counter for the number of times this device was added to us */
5598         u16 ref_nr;
5599
5600         /* private field for the users */
5601         void *private;
5602
5603         struct list_head list;
5604         struct rcu_head rcu;
5605 };
5606
5607 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5608                                                  struct list_head *adj_list)
5609 {
5610         struct netdev_adjacent *adj;
5611
5612         list_for_each_entry(adj, adj_list, list) {
5613                 if (adj->dev == adj_dev)
5614                         return adj;
5615         }
5616         return NULL;
5617 }
5618
5619 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5620 {
5621         struct net_device *dev = data;
5622
5623         return upper_dev == dev;
5624 }
5625
5626 /**
5627  * netdev_has_upper_dev - Check if device is linked to an upper device
5628  * @dev: device
5629  * @upper_dev: upper device to check
5630  *
5631  * Find out if a device is linked to specified upper device and return true
5632  * in case it is. Note that this checks only immediate upper device,
5633  * not through a complete stack of devices. The caller must hold the RTNL lock.
5634  */
5635 bool netdev_has_upper_dev(struct net_device *dev,
5636                           struct net_device *upper_dev)
5637 {
5638         ASSERT_RTNL();
5639
5640         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5641                                              upper_dev);
5642 }
5643 EXPORT_SYMBOL(netdev_has_upper_dev);
5644
5645 /**
5646  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5647  * @dev: device
5648  * @upper_dev: upper device to check
5649  *
5650  * Find out if a device is linked to specified upper device and return true
5651  * in case it is. Note that this checks the entire upper device chain.
5652  * The caller must hold rcu lock.
5653  */
5654
5655 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5656                                   struct net_device *upper_dev)
5657 {
5658         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5659                                                upper_dev);
5660 }
5661 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5662
5663 /**
5664  * netdev_has_any_upper_dev - Check if device is linked to some device
5665  * @dev: device
5666  *
5667  * Find out if a device is linked to an upper device and return true in case
5668  * it is. The caller must hold the RTNL lock.
5669  */
5670 static bool netdev_has_any_upper_dev(struct net_device *dev)
5671 {
5672         ASSERT_RTNL();
5673
5674         return !list_empty(&dev->adj_list.upper);
5675 }
5676
5677 /**
5678  * netdev_master_upper_dev_get - Get master upper device
5679  * @dev: device
5680  *
5681  * Find a master upper device and return pointer to it or NULL in case
5682  * it's not there. The caller must hold the RTNL lock.
5683  */
5684 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5685 {
5686         struct netdev_adjacent *upper;
5687
5688         ASSERT_RTNL();
5689
5690         if (list_empty(&dev->adj_list.upper))
5691                 return NULL;
5692
5693         upper = list_first_entry(&dev->adj_list.upper,
5694                                  struct netdev_adjacent, list);
5695         if (likely(upper->master))
5696                 return upper->dev;
5697         return NULL;
5698 }
5699 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5700
5701 /**
5702  * netdev_has_any_lower_dev - Check if device is linked to some device
5703  * @dev: device
5704  *
5705  * Find out if a device is linked to a lower device and return true in case
5706  * it is. The caller must hold the RTNL lock.
5707  */
5708 static bool netdev_has_any_lower_dev(struct net_device *dev)
5709 {
5710         ASSERT_RTNL();
5711
5712         return !list_empty(&dev->adj_list.lower);
5713 }
5714
5715 void *netdev_adjacent_get_private(struct list_head *adj_list)
5716 {
5717         struct netdev_adjacent *adj;
5718
5719         adj = list_entry(adj_list, struct netdev_adjacent, list);
5720
5721         return adj->private;
5722 }
5723 EXPORT_SYMBOL(netdev_adjacent_get_private);
5724
5725 /**
5726  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5727  * @dev: device
5728  * @iter: list_head ** of the current position
5729  *
5730  * Gets the next device from the dev's upper list, starting from iter
5731  * position. The caller must hold RCU read lock.
5732  */
5733 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5734                                                  struct list_head **iter)
5735 {
5736         struct netdev_adjacent *upper;
5737
5738         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5739
5740         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5741
5742         if (&upper->list == &dev->adj_list.upper)
5743                 return NULL;
5744
5745         *iter = &upper->list;
5746
5747         return upper->dev;
5748 }
5749 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5750
5751 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5752                                                     struct list_head **iter)
5753 {
5754         struct netdev_adjacent *upper;
5755
5756         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5757
5758         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5759
5760         if (&upper->list == &dev->adj_list.upper)
5761                 return NULL;
5762
5763         *iter = &upper->list;
5764
5765         return upper->dev;
5766 }
5767
5768 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5769                                   int (*fn)(struct net_device *dev,
5770                                             void *data),
5771                                   void *data)
5772 {
5773         struct net_device *udev;
5774         struct list_head *iter;
5775         int ret;
5776
5777         for (iter = &dev->adj_list.upper,
5778              udev = netdev_next_upper_dev_rcu(dev, &iter);
5779              udev;
5780              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5781                 /* first is the upper device itself */
5782                 ret = fn(udev, data);
5783                 if (ret)
5784                         return ret;
5785
5786                 /* then look at all of its upper devices */
5787                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5788                 if (ret)
5789                         return ret;
5790         }
5791
5792         return 0;
5793 }
5794 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5795
5796 /**
5797  * netdev_lower_get_next_private - Get the next ->private from the
5798  *                                 lower neighbour list
5799  * @dev: device
5800  * @iter: list_head ** of the current position
5801  *
5802  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5803  * list, starting from iter position. The caller must hold either hold the
5804  * RTNL lock or its own locking that guarantees that the neighbour lower
5805  * list will remain unchanged.
5806  */
5807 void *netdev_lower_get_next_private(struct net_device *dev,
5808                                     struct list_head **iter)
5809 {
5810         struct netdev_adjacent *lower;
5811
5812         lower = list_entry(*iter, struct netdev_adjacent, list);
5813
5814         if (&lower->list == &dev->adj_list.lower)
5815                 return NULL;
5816
5817         *iter = lower->list.next;
5818
5819         return lower->private;
5820 }
5821 EXPORT_SYMBOL(netdev_lower_get_next_private);
5822
5823 /**
5824  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5825  *                                     lower neighbour list, RCU
5826  *                                     variant
5827  * @dev: device
5828  * @iter: list_head ** of the current position
5829  *
5830  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5831  * list, starting from iter position. The caller must hold RCU read lock.
5832  */
5833 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5834                                         struct list_head **iter)
5835 {
5836         struct netdev_adjacent *lower;
5837
5838         WARN_ON_ONCE(!rcu_read_lock_held());
5839
5840         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5841
5842         if (&lower->list == &dev->adj_list.lower)
5843                 return NULL;
5844
5845         *iter = &lower->list;
5846
5847         return lower->private;
5848 }
5849 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5850
5851 /**
5852  * netdev_lower_get_next - Get the next device from the lower neighbour
5853  *                         list
5854  * @dev: device
5855  * @iter: list_head ** of the current position
5856  *
5857  * Gets the next netdev_adjacent from the dev's lower neighbour
5858  * list, starting from iter position. The caller must hold RTNL lock or
5859  * its own locking that guarantees that the neighbour lower
5860  * list will remain unchanged.
5861  */
5862 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5863 {
5864         struct netdev_adjacent *lower;
5865
5866         lower = list_entry(*iter, struct netdev_adjacent, list);
5867
5868         if (&lower->list == &dev->adj_list.lower)
5869                 return NULL;
5870
5871         *iter = lower->list.next;
5872
5873         return lower->dev;
5874 }
5875 EXPORT_SYMBOL(netdev_lower_get_next);
5876
5877 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5878                                                 struct list_head **iter)
5879 {
5880         struct netdev_adjacent *lower;
5881
5882         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5883
5884         if (&lower->list == &dev->adj_list.lower)
5885                 return NULL;
5886
5887         *iter = &lower->list;
5888
5889         return lower->dev;
5890 }
5891
5892 int netdev_walk_all_lower_dev(struct net_device *dev,
5893                               int (*fn)(struct net_device *dev,
5894                                         void *data),
5895                               void *data)
5896 {
5897         struct net_device *ldev;
5898         struct list_head *iter;
5899         int ret;
5900
5901         for (iter = &dev->adj_list.lower,
5902              ldev = netdev_next_lower_dev(dev, &iter);
5903              ldev;
5904              ldev = netdev_next_lower_dev(dev, &iter)) {
5905                 /* first is the lower device itself */
5906                 ret = fn(ldev, data);
5907                 if (ret)
5908                         return ret;
5909
5910                 /* then look at all of its lower devices */
5911                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5912                 if (ret)
5913                         return ret;
5914         }
5915
5916         return 0;
5917 }
5918 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5919
5920 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5921                                                     struct list_head **iter)
5922 {
5923         struct netdev_adjacent *lower;
5924
5925         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5926         if (&lower->list == &dev->adj_list.lower)
5927                 return NULL;
5928
5929         *iter = &lower->list;
5930
5931         return lower->dev;
5932 }
5933
5934 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5935                                   int (*fn)(struct net_device *dev,
5936                                             void *data),
5937                                   void *data)
5938 {
5939         struct net_device *ldev;
5940         struct list_head *iter;
5941         int ret;
5942
5943         for (iter = &dev->adj_list.lower,
5944              ldev = netdev_next_lower_dev_rcu(dev, &iter);
5945              ldev;
5946              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5947                 /* first is the lower device itself */
5948                 ret = fn(ldev, data);
5949                 if (ret)
5950                         return ret;
5951
5952                 /* then look at all of its lower devices */
5953                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5954                 if (ret)
5955                         return ret;
5956         }
5957
5958         return 0;
5959 }
5960 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5961
5962 /**
5963  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5964  *                                     lower neighbour list, RCU
5965  *                                     variant
5966  * @dev: device
5967  *
5968  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5969  * list. The caller must hold RCU read lock.
5970  */
5971 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5972 {
5973         struct netdev_adjacent *lower;
5974
5975         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5976                         struct netdev_adjacent, list);
5977         if (lower)
5978                 return lower->private;
5979         return NULL;
5980 }
5981 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5982
5983 /**
5984  * netdev_master_upper_dev_get_rcu - Get master upper device
5985  * @dev: device
5986  *
5987  * Find a master upper device and return pointer to it or NULL in case
5988  * it's not there. The caller must hold the RCU read lock.
5989  */
5990 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5991 {
5992         struct netdev_adjacent *upper;
5993
5994         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5995                                        struct netdev_adjacent, list);
5996         if (upper && likely(upper->master))
5997                 return upper->dev;
5998         return NULL;
5999 }
6000 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6001
6002 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6003                               struct net_device *adj_dev,
6004                               struct list_head *dev_list)
6005 {
6006         char linkname[IFNAMSIZ+7];
6007
6008         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6009                 "upper_%s" : "lower_%s", adj_dev->name);
6010         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6011                                  linkname);
6012 }
6013 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6014                                char *name,
6015                                struct list_head *dev_list)
6016 {
6017         char linkname[IFNAMSIZ+7];
6018
6019         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6020                 "upper_%s" : "lower_%s", name);
6021         sysfs_remove_link(&(dev->dev.kobj), linkname);
6022 }
6023
6024 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6025                                                  struct net_device *adj_dev,
6026                                                  struct list_head *dev_list)
6027 {
6028         return (dev_list == &dev->adj_list.upper ||
6029                 dev_list == &dev->adj_list.lower) &&
6030                 net_eq(dev_net(dev), dev_net(adj_dev));
6031 }
6032
6033 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6034                                         struct net_device *adj_dev,
6035                                         struct list_head *dev_list,
6036                                         void *private, bool master)
6037 {
6038         struct netdev_adjacent *adj;
6039         int ret;
6040
6041         adj = __netdev_find_adj(adj_dev, dev_list);
6042
6043         if (adj) {
6044                 adj->ref_nr += 1;
6045                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6046                          dev->name, adj_dev->name, adj->ref_nr);
6047
6048                 return 0;
6049         }
6050
6051         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6052         if (!adj)
6053                 return -ENOMEM;
6054
6055         adj->dev = adj_dev;
6056         adj->master = master;
6057         adj->ref_nr = 1;
6058         adj->private = private;
6059         dev_hold(adj_dev);
6060
6061         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6062                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6063
6064         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6065                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6066                 if (ret)
6067                         goto free_adj;
6068         }
6069
6070         /* Ensure that master link is always the first item in list. */
6071         if (master) {
6072                 ret = sysfs_create_link(&(dev->dev.kobj),
6073                                         &(adj_dev->dev.kobj), "master");
6074                 if (ret)
6075                         goto remove_symlinks;
6076
6077                 list_add_rcu(&adj->list, dev_list);
6078         } else {
6079                 list_add_tail_rcu(&adj->list, dev_list);
6080         }
6081
6082         return 0;
6083
6084 remove_symlinks:
6085         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6086                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6087 free_adj:
6088         kfree(adj);
6089         dev_put(adj_dev);
6090
6091         return ret;
6092 }
6093
6094 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6095                                          struct net_device *adj_dev,
6096                                          u16 ref_nr,
6097                                          struct list_head *dev_list)
6098 {
6099         struct netdev_adjacent *adj;
6100
6101         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6102                  dev->name, adj_dev->name, ref_nr);
6103
6104         adj = __netdev_find_adj(adj_dev, dev_list);
6105
6106         if (!adj) {
6107                 pr_err("Adjacency does not exist for device %s from %s\n",
6108                        dev->name, adj_dev->name);
6109                 WARN_ON(1);
6110                 return;
6111         }
6112
6113         if (adj->ref_nr > ref_nr) {
6114                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6115                          dev->name, adj_dev->name, ref_nr,
6116                          adj->ref_nr - ref_nr);
6117                 adj->ref_nr -= ref_nr;
6118                 return;
6119         }
6120
6121         if (adj->master)
6122                 sysfs_remove_link(&(dev->dev.kobj), "master");
6123
6124         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6125                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6126
6127         list_del_rcu(&adj->list);
6128         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6129                  adj_dev->name, dev->name, adj_dev->name);
6130         dev_put(adj_dev);
6131         kfree_rcu(adj, rcu);
6132 }
6133
6134 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6135                                             struct net_device *upper_dev,
6136                                             struct list_head *up_list,
6137                                             struct list_head *down_list,
6138                                             void *private, bool master)
6139 {
6140         int ret;
6141
6142         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6143                                            private, master);
6144         if (ret)
6145                 return ret;
6146
6147         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6148                                            private, false);
6149         if (ret) {
6150                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6151                 return ret;
6152         }
6153
6154         return 0;
6155 }
6156
6157 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6158                                                struct net_device *upper_dev,
6159                                                u16 ref_nr,
6160                                                struct list_head *up_list,
6161                                                struct list_head *down_list)
6162 {
6163         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6164         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6165 }
6166
6167 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6168                                                 struct net_device *upper_dev,
6169                                                 void *private, bool master)
6170 {
6171         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6172                                                 &dev->adj_list.upper,
6173                                                 &upper_dev->adj_list.lower,
6174                                                 private, master);
6175 }
6176
6177 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6178                                                    struct net_device *upper_dev)
6179 {
6180         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6181                                            &dev->adj_list.upper,
6182                                            &upper_dev->adj_list.lower);
6183 }
6184
6185 static int __netdev_upper_dev_link(struct net_device *dev,
6186                                    struct net_device *upper_dev, bool master,
6187                                    void *upper_priv, void *upper_info)
6188 {
6189         struct netdev_notifier_changeupper_info changeupper_info;
6190         int ret = 0;
6191
6192         ASSERT_RTNL();
6193
6194         if (dev == upper_dev)
6195                 return -EBUSY;
6196
6197         /* To prevent loops, check if dev is not upper device to upper_dev. */
6198         if (netdev_has_upper_dev(upper_dev, dev))
6199                 return -EBUSY;
6200
6201         if (netdev_has_upper_dev(dev, upper_dev))
6202                 return -EEXIST;
6203
6204         if (master && netdev_master_upper_dev_get(dev))
6205                 return -EBUSY;
6206
6207         changeupper_info.upper_dev = upper_dev;
6208         changeupper_info.master = master;
6209         changeupper_info.linking = true;
6210         changeupper_info.upper_info = upper_info;
6211
6212         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6213                                             &changeupper_info.info);
6214         ret = notifier_to_errno(ret);
6215         if (ret)
6216                 return ret;
6217
6218         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6219                                                    master);
6220         if (ret)
6221                 return ret;
6222
6223         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6224                                             &changeupper_info.info);
6225         ret = notifier_to_errno(ret);
6226         if (ret)
6227                 goto rollback;
6228
6229         return 0;
6230
6231 rollback:
6232         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6233
6234         return ret;
6235 }
6236
6237 /**
6238  * netdev_upper_dev_link - Add a link to the upper device
6239  * @dev: device
6240  * @upper_dev: new upper device
6241  *
6242  * Adds a link to device which is upper to this one. The caller must hold
6243  * the RTNL lock. On a failure a negative errno code is returned.
6244  * On success the reference counts are adjusted and the function
6245  * returns zero.
6246  */
6247 int netdev_upper_dev_link(struct net_device *dev,
6248                           struct net_device *upper_dev)
6249 {
6250         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6251 }
6252 EXPORT_SYMBOL(netdev_upper_dev_link);
6253
6254 /**
6255  * netdev_master_upper_dev_link - Add a master link to the upper device
6256  * @dev: device
6257  * @upper_dev: new upper device
6258  * @upper_priv: upper device private
6259  * @upper_info: upper info to be passed down via notifier
6260  *
6261  * Adds a link to device which is upper to this one. In this case, only
6262  * one master upper device can be linked, although other non-master devices
6263  * might be linked as well. The caller must hold the RTNL lock.
6264  * On a failure a negative errno code is returned. On success the reference
6265  * counts are adjusted and the function returns zero.
6266  */
6267 int netdev_master_upper_dev_link(struct net_device *dev,
6268                                  struct net_device *upper_dev,
6269                                  void *upper_priv, void *upper_info)
6270 {
6271         return __netdev_upper_dev_link(dev, upper_dev, true,
6272                                        upper_priv, upper_info);
6273 }
6274 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6275
6276 /**
6277  * netdev_upper_dev_unlink - Removes a link to upper device
6278  * @dev: device
6279  * @upper_dev: new upper device
6280  *
6281  * Removes a link to device which is upper to this one. The caller must hold
6282  * the RTNL lock.
6283  */
6284 void netdev_upper_dev_unlink(struct net_device *dev,
6285                              struct net_device *upper_dev)
6286 {
6287         struct netdev_notifier_changeupper_info changeupper_info;
6288
6289         ASSERT_RTNL();
6290
6291         changeupper_info.upper_dev = upper_dev;
6292         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6293         changeupper_info.linking = false;
6294
6295         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6296                                       &changeupper_info.info);
6297
6298         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6299
6300         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6301                                       &changeupper_info.info);
6302 }
6303 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6304
6305 /**
6306  * netdev_bonding_info_change - Dispatch event about slave change
6307  * @dev: device
6308  * @bonding_info: info to dispatch
6309  *
6310  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6311  * The caller must hold the RTNL lock.
6312  */
6313 void netdev_bonding_info_change(struct net_device *dev,
6314                                 struct netdev_bonding_info *bonding_info)
6315 {
6316         struct netdev_notifier_bonding_info     info;
6317
6318         memcpy(&info.bonding_info, bonding_info,
6319                sizeof(struct netdev_bonding_info));
6320         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6321                                       &info.info);
6322 }
6323 EXPORT_SYMBOL(netdev_bonding_info_change);
6324
6325 static void netdev_adjacent_add_links(struct net_device *dev)
6326 {
6327         struct netdev_adjacent *iter;
6328
6329         struct net *net = dev_net(dev);
6330
6331         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6332                 if (!net_eq(net, dev_net(iter->dev)))
6333                         continue;
6334                 netdev_adjacent_sysfs_add(iter->dev, dev,
6335                                           &iter->dev->adj_list.lower);
6336                 netdev_adjacent_sysfs_add(dev, iter->dev,
6337                                           &dev->adj_list.upper);
6338         }
6339
6340         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6341                 if (!net_eq(net, dev_net(iter->dev)))
6342                         continue;
6343                 netdev_adjacent_sysfs_add(iter->dev, dev,
6344                                           &iter->dev->adj_list.upper);
6345                 netdev_adjacent_sysfs_add(dev, iter->dev,
6346                                           &dev->adj_list.lower);
6347         }
6348 }
6349
6350 static void netdev_adjacent_del_links(struct net_device *dev)
6351 {
6352         struct netdev_adjacent *iter;
6353
6354         struct net *net = dev_net(dev);
6355
6356         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6357                 if (!net_eq(net, dev_net(iter->dev)))
6358                         continue;
6359                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6360                                           &iter->dev->adj_list.lower);
6361                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6362                                           &dev->adj_list.upper);
6363         }
6364
6365         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6366                 if (!net_eq(net, dev_net(iter->dev)))
6367                         continue;
6368                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6369                                           &iter->dev->adj_list.upper);
6370                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6371                                           &dev->adj_list.lower);
6372         }
6373 }
6374
6375 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6376 {
6377         struct netdev_adjacent *iter;
6378
6379         struct net *net = dev_net(dev);
6380
6381         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6382                 if (!net_eq(net, dev_net(iter->dev)))
6383                         continue;
6384                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6385                                           &iter->dev->adj_list.lower);
6386                 netdev_adjacent_sysfs_add(iter->dev, dev,
6387                                           &iter->dev->adj_list.lower);
6388         }
6389
6390         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6391                 if (!net_eq(net, dev_net(iter->dev)))
6392                         continue;
6393                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6394                                           &iter->dev->adj_list.upper);
6395                 netdev_adjacent_sysfs_add(iter->dev, dev,
6396                                           &iter->dev->adj_list.upper);
6397         }
6398 }
6399
6400 void *netdev_lower_dev_get_private(struct net_device *dev,
6401                                    struct net_device *lower_dev)
6402 {
6403         struct netdev_adjacent *lower;
6404
6405         if (!lower_dev)
6406                 return NULL;
6407         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6408         if (!lower)
6409                 return NULL;
6410
6411         return lower->private;
6412 }
6413 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6414
6415
6416 int dev_get_nest_level(struct net_device *dev)
6417 {
6418         struct net_device *lower = NULL;
6419         struct list_head *iter;
6420         int max_nest = -1;
6421         int nest;
6422
6423         ASSERT_RTNL();
6424
6425         netdev_for_each_lower_dev(dev, lower, iter) {
6426                 nest = dev_get_nest_level(lower);
6427                 if (max_nest < nest)
6428                         max_nest = nest;
6429         }
6430
6431         return max_nest + 1;
6432 }
6433 EXPORT_SYMBOL(dev_get_nest_level);
6434
6435 /**
6436  * netdev_lower_change - Dispatch event about lower device state change
6437  * @lower_dev: device
6438  * @lower_state_info: state to dispatch
6439  *
6440  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6441  * The caller must hold the RTNL lock.
6442  */
6443 void netdev_lower_state_changed(struct net_device *lower_dev,
6444                                 void *lower_state_info)
6445 {
6446         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6447
6448         ASSERT_RTNL();
6449         changelowerstate_info.lower_state_info = lower_state_info;
6450         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6451                                       &changelowerstate_info.info);
6452 }
6453 EXPORT_SYMBOL(netdev_lower_state_changed);
6454
6455 static void dev_change_rx_flags(struct net_device *dev, int flags)
6456 {
6457         const struct net_device_ops *ops = dev->netdev_ops;
6458
6459         if (ops->ndo_change_rx_flags)
6460                 ops->ndo_change_rx_flags(dev, flags);
6461 }
6462
6463 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6464 {
6465         unsigned int old_flags = dev->flags;
6466         kuid_t uid;
6467         kgid_t gid;
6468
6469         ASSERT_RTNL();
6470
6471         dev->flags |= IFF_PROMISC;
6472         dev->promiscuity += inc;
6473         if (dev->promiscuity == 0) {
6474                 /*
6475                  * Avoid overflow.
6476                  * If inc causes overflow, untouch promisc and return error.
6477                  */
6478                 if (inc < 0)
6479                         dev->flags &= ~IFF_PROMISC;
6480                 else {
6481                         dev->promiscuity -= inc;
6482                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6483                                 dev->name);
6484                         return -EOVERFLOW;
6485                 }
6486         }
6487         if (dev->flags != old_flags) {
6488                 pr_info("device %s %s promiscuous mode\n",
6489                         dev->name,
6490                         dev->flags & IFF_PROMISC ? "entered" : "left");
6491                 if (audit_enabled) {
6492                         current_uid_gid(&uid, &gid);
6493                         audit_log(current->audit_context, GFP_ATOMIC,
6494                                 AUDIT_ANOM_PROMISCUOUS,
6495                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6496                                 dev->name, (dev->flags & IFF_PROMISC),
6497                                 (old_flags & IFF_PROMISC),
6498                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6499                                 from_kuid(&init_user_ns, uid),
6500                                 from_kgid(&init_user_ns, gid),
6501                                 audit_get_sessionid(current));
6502                 }
6503
6504                 dev_change_rx_flags(dev, IFF_PROMISC);
6505         }
6506         if (notify)
6507                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6508         return 0;
6509 }
6510
6511 /**
6512  *      dev_set_promiscuity     - update promiscuity count on a device
6513  *      @dev: device
6514  *      @inc: modifier
6515  *
6516  *      Add or remove promiscuity from a device. While the count in the device
6517  *      remains above zero the interface remains promiscuous. Once it hits zero
6518  *      the device reverts back to normal filtering operation. A negative inc
6519  *      value is used to drop promiscuity on the device.
6520  *      Return 0 if successful or a negative errno code on error.
6521  */
6522 int dev_set_promiscuity(struct net_device *dev, int inc)
6523 {
6524         unsigned int old_flags = dev->flags;
6525         int err;
6526
6527         err = __dev_set_promiscuity(dev, inc, true);
6528         if (err < 0)
6529                 return err;
6530         if (dev->flags != old_flags)
6531                 dev_set_rx_mode(dev);
6532         return err;
6533 }
6534 EXPORT_SYMBOL(dev_set_promiscuity);
6535
6536 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6537 {
6538         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6539
6540         ASSERT_RTNL();
6541
6542         dev->flags |= IFF_ALLMULTI;
6543         dev->allmulti += inc;
6544         if (dev->allmulti == 0) {
6545                 /*
6546                  * Avoid overflow.
6547                  * If inc causes overflow, untouch allmulti and return error.
6548                  */
6549                 if (inc < 0)
6550                         dev->flags &= ~IFF_ALLMULTI;
6551                 else {
6552                         dev->allmulti -= inc;
6553                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6554                                 dev->name);
6555                         return -EOVERFLOW;
6556                 }
6557         }
6558         if (dev->flags ^ old_flags) {
6559                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6560                 dev_set_rx_mode(dev);
6561                 if (notify)
6562                         __dev_notify_flags(dev, old_flags,
6563                                            dev->gflags ^ old_gflags);
6564         }
6565         return 0;
6566 }
6567
6568 /**
6569  *      dev_set_allmulti        - update allmulti count on a device
6570  *      @dev: device
6571  *      @inc: modifier
6572  *
6573  *      Add or remove reception of all multicast frames to a device. While the
6574  *      count in the device remains above zero the interface remains listening
6575  *      to all interfaces. Once it hits zero the device reverts back to normal
6576  *      filtering operation. A negative @inc value is used to drop the counter
6577  *      when releasing a resource needing all multicasts.
6578  *      Return 0 if successful or a negative errno code on error.
6579  */
6580
6581 int dev_set_allmulti(struct net_device *dev, int inc)
6582 {
6583         return __dev_set_allmulti(dev, inc, true);
6584 }
6585 EXPORT_SYMBOL(dev_set_allmulti);
6586
6587 /*
6588  *      Upload unicast and multicast address lists to device and
6589  *      configure RX filtering. When the device doesn't support unicast
6590  *      filtering it is put in promiscuous mode while unicast addresses
6591  *      are present.
6592  */
6593 void __dev_set_rx_mode(struct net_device *dev)
6594 {
6595         const struct net_device_ops *ops = dev->netdev_ops;
6596
6597         /* dev_open will call this function so the list will stay sane. */
6598         if (!(dev->flags&IFF_UP))
6599                 return;
6600
6601         if (!netif_device_present(dev))
6602                 return;
6603
6604         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6605                 /* Unicast addresses changes may only happen under the rtnl,
6606                  * therefore calling __dev_set_promiscuity here is safe.
6607                  */
6608                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6609                         __dev_set_promiscuity(dev, 1, false);
6610                         dev->uc_promisc = true;
6611                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6612                         __dev_set_promiscuity(dev, -1, false);
6613                         dev->uc_promisc = false;
6614                 }
6615         }
6616
6617         if (ops->ndo_set_rx_mode)
6618                 ops->ndo_set_rx_mode(dev);
6619 }
6620
6621 void dev_set_rx_mode(struct net_device *dev)
6622 {
6623         netif_addr_lock_bh(dev);
6624         __dev_set_rx_mode(dev);
6625         netif_addr_unlock_bh(dev);
6626 }
6627
6628 /**
6629  *      dev_get_flags - get flags reported to userspace
6630  *      @dev: device
6631  *
6632  *      Get the combination of flag bits exported through APIs to userspace.
6633  */
6634 unsigned int dev_get_flags(const struct net_device *dev)
6635 {
6636         unsigned int flags;
6637
6638         flags = (dev->flags & ~(IFF_PROMISC |
6639                                 IFF_ALLMULTI |
6640                                 IFF_RUNNING |
6641                                 IFF_LOWER_UP |
6642                                 IFF_DORMANT)) |
6643                 (dev->gflags & (IFF_PROMISC |
6644                                 IFF_ALLMULTI));
6645
6646         if (netif_running(dev)) {
6647                 if (netif_oper_up(dev))
6648                         flags |= IFF_RUNNING;
6649                 if (netif_carrier_ok(dev))
6650                         flags |= IFF_LOWER_UP;
6651                 if (netif_dormant(dev))
6652                         flags |= IFF_DORMANT;
6653         }
6654
6655         return flags;
6656 }
6657 EXPORT_SYMBOL(dev_get_flags);
6658
6659 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6660 {
6661         unsigned int old_flags = dev->flags;
6662         int ret;
6663
6664         ASSERT_RTNL();
6665
6666         /*
6667          *      Set the flags on our device.
6668          */
6669
6670         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6671                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6672                                IFF_AUTOMEDIA)) |
6673                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6674                                     IFF_ALLMULTI));
6675
6676         /*
6677          *      Load in the correct multicast list now the flags have changed.
6678          */
6679
6680         if ((old_flags ^ flags) & IFF_MULTICAST)
6681                 dev_change_rx_flags(dev, IFF_MULTICAST);
6682
6683         dev_set_rx_mode(dev);
6684
6685         /*
6686          *      Have we downed the interface. We handle IFF_UP ourselves
6687          *      according to user attempts to set it, rather than blindly
6688          *      setting it.
6689          */
6690
6691         ret = 0;
6692         if ((old_flags ^ flags) & IFF_UP)
6693                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6694
6695         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6696                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6697                 unsigned int old_flags = dev->flags;
6698
6699                 dev->gflags ^= IFF_PROMISC;
6700
6701                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6702                         if (dev->flags != old_flags)
6703                                 dev_set_rx_mode(dev);
6704         }
6705
6706         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6707          * is important. Some (broken) drivers set IFF_PROMISC, when
6708          * IFF_ALLMULTI is requested not asking us and not reporting.
6709          */
6710         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6711                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6712
6713                 dev->gflags ^= IFF_ALLMULTI;
6714                 __dev_set_allmulti(dev, inc, false);
6715         }
6716
6717         return ret;
6718 }
6719
6720 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6721                         unsigned int gchanges)
6722 {
6723         unsigned int changes = dev->flags ^ old_flags;
6724
6725         if (gchanges)
6726                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6727
6728         if (changes & IFF_UP) {
6729                 if (dev->flags & IFF_UP)
6730                         call_netdevice_notifiers(NETDEV_UP, dev);
6731                 else
6732                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6733         }
6734
6735         if (dev->flags & IFF_UP &&
6736             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6737                 struct netdev_notifier_change_info change_info;
6738
6739                 change_info.flags_changed = changes;
6740                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6741                                               &change_info.info);
6742         }
6743 }
6744
6745 /**
6746  *      dev_change_flags - change device settings
6747  *      @dev: device
6748  *      @flags: device state flags
6749  *
6750  *      Change settings on device based state flags. The flags are
6751  *      in the userspace exported format.
6752  */
6753 int dev_change_flags(struct net_device *dev, unsigned int flags)
6754 {
6755         int ret;
6756         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6757
6758         ret = __dev_change_flags(dev, flags);
6759         if (ret < 0)
6760                 return ret;
6761
6762         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6763         __dev_notify_flags(dev, old_flags, changes);
6764         return ret;
6765 }
6766 EXPORT_SYMBOL(dev_change_flags);
6767
6768 int __dev_set_mtu(struct net_device *dev, int new_mtu)
6769 {
6770         const struct net_device_ops *ops = dev->netdev_ops;
6771
6772         if (ops->ndo_change_mtu)
6773                 return ops->ndo_change_mtu(dev, new_mtu);
6774
6775         dev->mtu = new_mtu;
6776         return 0;
6777 }
6778 EXPORT_SYMBOL(__dev_set_mtu);
6779
6780 /**
6781  *      dev_set_mtu - Change maximum transfer unit
6782  *      @dev: device
6783  *      @new_mtu: new transfer unit
6784  *
6785  *      Change the maximum transfer size of the network device.
6786  */
6787 int dev_set_mtu(struct net_device *dev, int new_mtu)
6788 {
6789         int err, orig_mtu;
6790
6791         if (new_mtu == dev->mtu)
6792                 return 0;
6793
6794         /* MTU must be positive, and in range */
6795         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6796                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6797                                     dev->name, new_mtu, dev->min_mtu);
6798                 return -EINVAL;
6799         }
6800
6801         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6802                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6803                                     dev->name, new_mtu, dev->max_mtu);
6804                 return -EINVAL;
6805         }
6806
6807         if (!netif_device_present(dev))
6808                 return -ENODEV;
6809
6810         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6811         err = notifier_to_errno(err);
6812         if (err)
6813                 return err;
6814
6815         orig_mtu = dev->mtu;
6816         err = __dev_set_mtu(dev, new_mtu);
6817
6818         if (!err) {
6819                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6820                 err = notifier_to_errno(err);
6821                 if (err) {
6822                         /* setting mtu back and notifying everyone again,
6823                          * so that they have a chance to revert changes.
6824                          */
6825                         __dev_set_mtu(dev, orig_mtu);
6826                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6827                 }
6828         }
6829         return err;
6830 }
6831 EXPORT_SYMBOL(dev_set_mtu);
6832
6833 /**
6834  *      dev_set_group - Change group this device belongs to
6835  *      @dev: device
6836  *      @new_group: group this device should belong to
6837  */
6838 void dev_set_group(struct net_device *dev, int new_group)
6839 {
6840         dev->group = new_group;
6841 }
6842 EXPORT_SYMBOL(dev_set_group);
6843
6844 /**
6845  *      dev_set_mac_address - Change Media Access Control Address
6846  *      @dev: device
6847  *      @sa: new address
6848  *
6849  *      Change the hardware (MAC) address of the device
6850  */
6851 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6852 {
6853         const struct net_device_ops *ops = dev->netdev_ops;
6854         int err;
6855
6856         if (!ops->ndo_set_mac_address)
6857                 return -EOPNOTSUPP;
6858         if (sa->sa_family != dev->type)
6859                 return -EINVAL;
6860         if (!netif_device_present(dev))
6861                 return -ENODEV;
6862         err = ops->ndo_set_mac_address(dev, sa);
6863         if (err)
6864                 return err;
6865         dev->addr_assign_type = NET_ADDR_SET;
6866         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6867         add_device_randomness(dev->dev_addr, dev->addr_len);
6868         return 0;
6869 }
6870 EXPORT_SYMBOL(dev_set_mac_address);
6871
6872 /**
6873  *      dev_change_carrier - Change device carrier
6874  *      @dev: device
6875  *      @new_carrier: new value
6876  *
6877  *      Change device carrier
6878  */
6879 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6880 {
6881         const struct net_device_ops *ops = dev->netdev_ops;
6882
6883         if (!ops->ndo_change_carrier)
6884                 return -EOPNOTSUPP;
6885         if (!netif_device_present(dev))
6886                 return -ENODEV;
6887         return ops->ndo_change_carrier(dev, new_carrier);
6888 }
6889 EXPORT_SYMBOL(dev_change_carrier);
6890
6891 /**
6892  *      dev_get_phys_port_id - Get device physical port ID
6893  *      @dev: device
6894  *      @ppid: port ID
6895  *
6896  *      Get device physical port ID
6897  */
6898 int dev_get_phys_port_id(struct net_device *dev,
6899                          struct netdev_phys_item_id *ppid)
6900 {
6901         const struct net_device_ops *ops = dev->netdev_ops;
6902
6903         if (!ops->ndo_get_phys_port_id)
6904                 return -EOPNOTSUPP;
6905         return ops->ndo_get_phys_port_id(dev, ppid);
6906 }
6907 EXPORT_SYMBOL(dev_get_phys_port_id);
6908
6909 /**
6910  *      dev_get_phys_port_name - Get device physical port name
6911  *      @dev: device
6912  *      @name: port name
6913  *      @len: limit of bytes to copy to name
6914  *
6915  *      Get device physical port name
6916  */
6917 int dev_get_phys_port_name(struct net_device *dev,
6918                            char *name, size_t len)
6919 {
6920         const struct net_device_ops *ops = dev->netdev_ops;
6921
6922         if (!ops->ndo_get_phys_port_name)
6923                 return -EOPNOTSUPP;
6924         return ops->ndo_get_phys_port_name(dev, name, len);
6925 }
6926 EXPORT_SYMBOL(dev_get_phys_port_name);
6927
6928 /**
6929  *      dev_change_proto_down - update protocol port state information
6930  *      @dev: device
6931  *      @proto_down: new value
6932  *
6933  *      This info can be used by switch drivers to set the phys state of the
6934  *      port.
6935  */
6936 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6937 {
6938         const struct net_device_ops *ops = dev->netdev_ops;
6939
6940         if (!ops->ndo_change_proto_down)
6941                 return -EOPNOTSUPP;
6942         if (!netif_device_present(dev))
6943                 return -ENODEV;
6944         return ops->ndo_change_proto_down(dev, proto_down);
6945 }
6946 EXPORT_SYMBOL(dev_change_proto_down);
6947
6948 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id)
6949 {
6950         struct netdev_xdp xdp;
6951
6952         memset(&xdp, 0, sizeof(xdp));
6953         xdp.command = XDP_QUERY_PROG;
6954
6955         /* Query must always succeed. */
6956         WARN_ON(xdp_op(dev, &xdp) < 0);
6957         if (prog_id)
6958                 *prog_id = xdp.prog_id;
6959
6960         return xdp.prog_attached;
6961 }
6962
6963 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
6964                            struct netlink_ext_ack *extack, u32 flags,
6965                            struct bpf_prog *prog)
6966 {
6967         struct netdev_xdp xdp;
6968
6969         memset(&xdp, 0, sizeof(xdp));
6970         if (flags & XDP_FLAGS_HW_MODE)
6971                 xdp.command = XDP_SETUP_PROG_HW;
6972         else
6973                 xdp.command = XDP_SETUP_PROG;
6974         xdp.extack = extack;
6975         xdp.flags = flags;
6976         xdp.prog = prog;
6977
6978         return xdp_op(dev, &xdp);
6979 }
6980
6981 /**
6982  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
6983  *      @dev: device
6984  *      @extack: netlink extended ack
6985  *      @fd: new program fd or negative value to clear
6986  *      @flags: xdp-related flags
6987  *
6988  *      Set or clear a bpf program for a device
6989  */
6990 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
6991                       int fd, u32 flags)
6992 {
6993         const struct net_device_ops *ops = dev->netdev_ops;
6994         struct bpf_prog *prog = NULL;
6995         xdp_op_t xdp_op, xdp_chk;
6996         int err;
6997
6998         ASSERT_RTNL();
6999
7000         xdp_op = xdp_chk = ops->ndo_xdp;
7001         if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7002                 return -EOPNOTSUPP;
7003         if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
7004                 xdp_op = generic_xdp_install;
7005         if (xdp_op == xdp_chk)
7006                 xdp_chk = generic_xdp_install;
7007
7008         if (fd >= 0) {
7009                 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL))
7010                         return -EEXIST;
7011                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7012                     __dev_xdp_attached(dev, xdp_op, NULL))
7013                         return -EBUSY;
7014
7015                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
7016                 if (IS_ERR(prog))
7017                         return PTR_ERR(prog);
7018         }
7019
7020         err = dev_xdp_install(dev, xdp_op, extack, flags, prog);
7021         if (err < 0 && prog)
7022                 bpf_prog_put(prog);
7023
7024         return err;
7025 }
7026
7027 /**
7028  *      dev_new_index   -       allocate an ifindex
7029  *      @net: the applicable net namespace
7030  *
7031  *      Returns a suitable unique value for a new device interface
7032  *      number.  The caller must hold the rtnl semaphore or the
7033  *      dev_base_lock to be sure it remains unique.
7034  */
7035 static int dev_new_index(struct net *net)
7036 {
7037         int ifindex = net->ifindex;
7038
7039         for (;;) {
7040                 if (++ifindex <= 0)
7041                         ifindex = 1;
7042                 if (!__dev_get_by_index(net, ifindex))
7043                         return net->ifindex = ifindex;
7044         }
7045 }
7046
7047 /* Delayed registration/unregisteration */
7048 static LIST_HEAD(net_todo_list);
7049 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7050
7051 static void net_set_todo(struct net_device *dev)
7052 {
7053         list_add_tail(&dev->todo_list, &net_todo_list);
7054         dev_net(dev)->dev_unreg_count++;
7055 }
7056
7057 static void rollback_registered_many(struct list_head *head)
7058 {
7059         struct net_device *dev, *tmp;
7060         LIST_HEAD(close_head);
7061
7062         BUG_ON(dev_boot_phase);
7063         ASSERT_RTNL();
7064
7065         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7066                 /* Some devices call without registering
7067                  * for initialization unwind. Remove those
7068                  * devices and proceed with the remaining.
7069                  */
7070                 if (dev->reg_state == NETREG_UNINITIALIZED) {
7071                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7072                                  dev->name, dev);
7073
7074                         WARN_ON(1);
7075                         list_del(&dev->unreg_list);
7076                         continue;
7077                 }
7078                 dev->dismantle = true;
7079                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7080         }
7081
7082         /* If device is running, close it first. */
7083         list_for_each_entry(dev, head, unreg_list)
7084                 list_add_tail(&dev->close_list, &close_head);
7085         dev_close_many(&close_head, true);
7086
7087         list_for_each_entry(dev, head, unreg_list) {
7088                 /* And unlink it from device chain. */
7089                 unlist_netdevice(dev);
7090
7091                 dev->reg_state = NETREG_UNREGISTERING;
7092         }
7093         flush_all_backlogs();
7094
7095         synchronize_net();
7096
7097         list_for_each_entry(dev, head, unreg_list) {
7098                 struct sk_buff *skb = NULL;
7099
7100                 /* Shutdown queueing discipline. */
7101                 dev_shutdown(dev);
7102
7103
7104                 /* Notify protocols, that we are about to destroy
7105                  * this device. They should clean all the things.
7106                  */
7107                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7108
7109                 if (!dev->rtnl_link_ops ||
7110                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7111                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7112                                                      GFP_KERNEL);
7113
7114                 /*
7115                  *      Flush the unicast and multicast chains
7116                  */
7117                 dev_uc_flush(dev);
7118                 dev_mc_flush(dev);
7119
7120                 if (dev->netdev_ops->ndo_uninit)
7121                         dev->netdev_ops->ndo_uninit(dev);
7122
7123                 if (skb)
7124                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7125
7126                 /* Notifier chain MUST detach us all upper devices. */
7127                 WARN_ON(netdev_has_any_upper_dev(dev));
7128                 WARN_ON(netdev_has_any_lower_dev(dev));
7129
7130                 /* Remove entries from kobject tree */
7131                 netdev_unregister_kobject(dev);
7132 #ifdef CONFIG_XPS
7133                 /* Remove XPS queueing entries */
7134                 netif_reset_xps_queues_gt(dev, 0);
7135 #endif
7136         }
7137
7138         synchronize_net();
7139
7140         list_for_each_entry(dev, head, unreg_list)
7141                 dev_put(dev);
7142 }
7143
7144 static void rollback_registered(struct net_device *dev)
7145 {
7146         LIST_HEAD(single);
7147
7148         list_add(&dev->unreg_list, &single);
7149         rollback_registered_many(&single);
7150         list_del(&single);
7151 }
7152
7153 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7154         struct net_device *upper, netdev_features_t features)
7155 {
7156         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7157         netdev_features_t feature;
7158         int feature_bit;
7159
7160         for_each_netdev_feature(&upper_disables, feature_bit) {
7161                 feature = __NETIF_F_BIT(feature_bit);
7162                 if (!(upper->wanted_features & feature)
7163                     && (features & feature)) {
7164                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7165                                    &feature, upper->name);
7166                         features &= ~feature;
7167                 }
7168         }
7169
7170         return features;
7171 }
7172
7173 static void netdev_sync_lower_features(struct net_device *upper,
7174         struct net_device *lower, netdev_features_t features)
7175 {
7176         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7177         netdev_features_t feature;
7178         int feature_bit;
7179
7180         for_each_netdev_feature(&upper_disables, feature_bit) {
7181                 feature = __NETIF_F_BIT(feature_bit);
7182                 if (!(features & feature) && (lower->features & feature)) {
7183                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7184                                    &feature, lower->name);
7185                         lower->wanted_features &= ~feature;
7186                         netdev_update_features(lower);
7187
7188                         if (unlikely(lower->features & feature))
7189                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7190                                             &feature, lower->name);
7191                 }
7192         }
7193 }
7194
7195 static netdev_features_t netdev_fix_features(struct net_device *dev,
7196         netdev_features_t features)
7197 {
7198         /* Fix illegal checksum combinations */
7199         if ((features & NETIF_F_HW_CSUM) &&
7200             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7201                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7202                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7203         }
7204
7205         /* TSO requires that SG is present as well. */
7206         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7207                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7208                 features &= ~NETIF_F_ALL_TSO;
7209         }
7210
7211         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7212                                         !(features & NETIF_F_IP_CSUM)) {
7213                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7214                 features &= ~NETIF_F_TSO;
7215                 features &= ~NETIF_F_TSO_ECN;
7216         }
7217
7218         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7219                                          !(features & NETIF_F_IPV6_CSUM)) {
7220                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7221                 features &= ~NETIF_F_TSO6;
7222         }
7223
7224         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7225         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7226                 features &= ~NETIF_F_TSO_MANGLEID;
7227
7228         /* TSO ECN requires that TSO is present as well. */
7229         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7230                 features &= ~NETIF_F_TSO_ECN;
7231
7232         /* Software GSO depends on SG. */
7233         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7234                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7235                 features &= ~NETIF_F_GSO;
7236         }
7237
7238         /* UFO needs SG and checksumming */
7239         if (features & NETIF_F_UFO) {
7240                 /* maybe split UFO into V4 and V6? */
7241                 if (!(features & NETIF_F_HW_CSUM) &&
7242                     ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
7243                      (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
7244                         netdev_dbg(dev,
7245                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
7246                         features &= ~NETIF_F_UFO;
7247                 }
7248
7249                 if (!(features & NETIF_F_SG)) {
7250                         netdev_dbg(dev,
7251                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
7252                         features &= ~NETIF_F_UFO;
7253                 }
7254         }
7255
7256         /* GSO partial features require GSO partial be set */
7257         if ((features & dev->gso_partial_features) &&
7258             !(features & NETIF_F_GSO_PARTIAL)) {
7259                 netdev_dbg(dev,
7260                            "Dropping partially supported GSO features since no GSO partial.\n");
7261                 features &= ~dev->gso_partial_features;
7262         }
7263
7264         return features;
7265 }
7266
7267 int __netdev_update_features(struct net_device *dev)
7268 {
7269         struct net_device *upper, *lower;
7270         netdev_features_t features;
7271         struct list_head *iter;
7272         int err = -1;
7273
7274         ASSERT_RTNL();
7275
7276         features = netdev_get_wanted_features(dev);
7277
7278         if (dev->netdev_ops->ndo_fix_features)
7279                 features = dev->netdev_ops->ndo_fix_features(dev, features);
7280
7281         /* driver might be less strict about feature dependencies */
7282         features = netdev_fix_features(dev, features);
7283
7284         /* some features can't be enabled if they're off an an upper device */
7285         netdev_for_each_upper_dev_rcu(dev, upper, iter)
7286                 features = netdev_sync_upper_features(dev, upper, features);
7287
7288         if (dev->features == features)
7289                 goto sync_lower;
7290
7291         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7292                 &dev->features, &features);
7293
7294         if (dev->netdev_ops->ndo_set_features)
7295                 err = dev->netdev_ops->ndo_set_features(dev, features);
7296         else
7297                 err = 0;
7298
7299         if (unlikely(err < 0)) {
7300                 netdev_err(dev,
7301                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7302                         err, &features, &dev->features);
7303                 /* return non-0 since some features might have changed and
7304                  * it's better to fire a spurious notification than miss it
7305                  */
7306                 return -1;
7307         }
7308
7309 sync_lower:
7310         /* some features must be disabled on lower devices when disabled
7311          * on an upper device (think: bonding master or bridge)
7312          */
7313         netdev_for_each_lower_dev(dev, lower, iter)
7314                 netdev_sync_lower_features(dev, lower, features);
7315
7316         if (!err)
7317                 dev->features = features;
7318
7319         return err < 0 ? 0 : 1;
7320 }
7321
7322 /**
7323  *      netdev_update_features - recalculate device features
7324  *      @dev: the device to check
7325  *
7326  *      Recalculate dev->features set and send notifications if it
7327  *      has changed. Should be called after driver or hardware dependent
7328  *      conditions might have changed that influence the features.
7329  */
7330 void netdev_update_features(struct net_device *dev)
7331 {
7332         if (__netdev_update_features(dev))
7333                 netdev_features_change(dev);
7334 }
7335 EXPORT_SYMBOL(netdev_update_features);
7336
7337 /**
7338  *      netdev_change_features - recalculate device features
7339  *      @dev: the device to check
7340  *
7341  *      Recalculate dev->features set and send notifications even
7342  *      if they have not changed. Should be called instead of
7343  *      netdev_update_features() if also dev->vlan_features might
7344  *      have changed to allow the changes to be propagated to stacked
7345  *      VLAN devices.
7346  */
7347 void netdev_change_features(struct net_device *dev)
7348 {
7349         __netdev_update_features(dev);
7350         netdev_features_change(dev);
7351 }
7352 EXPORT_SYMBOL(netdev_change_features);
7353
7354 /**
7355  *      netif_stacked_transfer_operstate -      transfer operstate
7356  *      @rootdev: the root or lower level device to transfer state from
7357  *      @dev: the device to transfer operstate to
7358  *
7359  *      Transfer operational state from root to device. This is normally
7360  *      called when a stacking relationship exists between the root
7361  *      device and the device(a leaf device).
7362  */
7363 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7364                                         struct net_device *dev)
7365 {
7366         if (rootdev->operstate == IF_OPER_DORMANT)
7367                 netif_dormant_on(dev);
7368         else
7369                 netif_dormant_off(dev);
7370
7371         if (netif_carrier_ok(rootdev))
7372                 netif_carrier_on(dev);
7373         else
7374                 netif_carrier_off(dev);
7375 }
7376 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7377
7378 #ifdef CONFIG_SYSFS
7379 static int netif_alloc_rx_queues(struct net_device *dev)
7380 {
7381         unsigned int i, count = dev->num_rx_queues;
7382         struct netdev_rx_queue *rx;
7383         size_t sz = count * sizeof(*rx);
7384
7385         BUG_ON(count < 1);
7386
7387         rx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7388         if (!rx)
7389                 return -ENOMEM;
7390
7391         dev->_rx = rx;
7392
7393         for (i = 0; i < count; i++)
7394                 rx[i].dev = dev;
7395         return 0;
7396 }
7397 #endif
7398
7399 static void netdev_init_one_queue(struct net_device *dev,
7400                                   struct netdev_queue *queue, void *_unused)
7401 {
7402         /* Initialize queue lock */
7403         spin_lock_init(&queue->_xmit_lock);
7404         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7405         queue->xmit_lock_owner = -1;
7406         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7407         queue->dev = dev;
7408 #ifdef CONFIG_BQL
7409         dql_init(&queue->dql, HZ);
7410 #endif
7411 }
7412
7413 static void netif_free_tx_queues(struct net_device *dev)
7414 {
7415         kvfree(dev->_tx);
7416 }
7417
7418 static int netif_alloc_netdev_queues(struct net_device *dev)
7419 {
7420         unsigned int count = dev->num_tx_queues;
7421         struct netdev_queue *tx;
7422         size_t sz = count * sizeof(*tx);
7423
7424         if (count < 1 || count > 0xffff)
7425                 return -EINVAL;
7426
7427         tx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7428         if (!tx)
7429                 return -ENOMEM;
7430
7431         dev->_tx = tx;
7432
7433         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7434         spin_lock_init(&dev->tx_global_lock);
7435
7436         return 0;
7437 }
7438
7439 void netif_tx_stop_all_queues(struct net_device *dev)
7440 {
7441         unsigned int i;
7442
7443         for (i = 0; i < dev->num_tx_queues; i++) {
7444                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7445
7446                 netif_tx_stop_queue(txq);
7447         }
7448 }
7449 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7450
7451 /**
7452  *      register_netdevice      - register a network device
7453  *      @dev: device to register
7454  *
7455  *      Take a completed network device structure and add it to the kernel
7456  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7457  *      chain. 0 is returned on success. A negative errno code is returned
7458  *      on a failure to set up the device, or if the name is a duplicate.
7459  *
7460  *      Callers must hold the rtnl semaphore. You may want
7461  *      register_netdev() instead of this.
7462  *
7463  *      BUGS:
7464  *      The locking appears insufficient to guarantee two parallel registers
7465  *      will not get the same name.
7466  */
7467
7468 int register_netdevice(struct net_device *dev)
7469 {
7470         int ret;
7471         struct net *net = dev_net(dev);
7472
7473         BUG_ON(dev_boot_phase);
7474         ASSERT_RTNL();
7475
7476         might_sleep();
7477
7478         /* When net_device's are persistent, this will be fatal. */
7479         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7480         BUG_ON(!net);
7481
7482         spin_lock_init(&dev->addr_list_lock);
7483         netdev_set_addr_lockdep_class(dev);
7484
7485         ret = dev_get_valid_name(net, dev, dev->name);
7486         if (ret < 0)
7487                 goto out;
7488
7489         /* Init, if this function is available */
7490         if (dev->netdev_ops->ndo_init) {
7491                 ret = dev->netdev_ops->ndo_init(dev);
7492                 if (ret) {
7493                         if (ret > 0)
7494                                 ret = -EIO;
7495                         goto out;
7496                 }
7497         }
7498
7499         if (((dev->hw_features | dev->features) &
7500              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7501             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7502              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7503                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7504                 ret = -EINVAL;
7505                 goto err_uninit;
7506         }
7507
7508         ret = -EBUSY;
7509         if (!dev->ifindex)
7510                 dev->ifindex = dev_new_index(net);
7511         else if (__dev_get_by_index(net, dev->ifindex))
7512                 goto err_uninit;
7513
7514         /* Transfer changeable features to wanted_features and enable
7515          * software offloads (GSO and GRO).
7516          */
7517         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7518         dev->features |= NETIF_F_SOFT_FEATURES;
7519         dev->wanted_features = dev->features & dev->hw_features;
7520
7521         if (!(dev->flags & IFF_LOOPBACK))
7522                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7523
7524         /* If IPv4 TCP segmentation offload is supported we should also
7525          * allow the device to enable segmenting the frame with the option
7526          * of ignoring a static IP ID value.  This doesn't enable the
7527          * feature itself but allows the user to enable it later.
7528          */
7529         if (dev->hw_features & NETIF_F_TSO)
7530                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7531         if (dev->vlan_features & NETIF_F_TSO)
7532                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7533         if (dev->mpls_features & NETIF_F_TSO)
7534                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7535         if (dev->hw_enc_features & NETIF_F_TSO)
7536                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7537
7538         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7539          */
7540         dev->vlan_features |= NETIF_F_HIGHDMA;
7541
7542         /* Make NETIF_F_SG inheritable to tunnel devices.
7543          */
7544         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7545
7546         /* Make NETIF_F_SG inheritable to MPLS.
7547          */
7548         dev->mpls_features |= NETIF_F_SG;
7549
7550         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7551         ret = notifier_to_errno(ret);
7552         if (ret)
7553                 goto err_uninit;
7554
7555         ret = netdev_register_kobject(dev);
7556         if (ret)
7557                 goto err_uninit;
7558         dev->reg_state = NETREG_REGISTERED;
7559
7560         __netdev_update_features(dev);
7561
7562         /*
7563          *      Default initial state at registry is that the
7564          *      device is present.
7565          */
7566
7567         set_bit(__LINK_STATE_PRESENT, &dev->state);
7568
7569         linkwatch_init_dev(dev);
7570
7571         dev_init_scheduler(dev);
7572         dev_hold(dev);
7573         list_netdevice(dev);
7574         add_device_randomness(dev->dev_addr, dev->addr_len);
7575
7576         /* If the device has permanent device address, driver should
7577          * set dev_addr and also addr_assign_type should be set to
7578          * NET_ADDR_PERM (default value).
7579          */
7580         if (dev->addr_assign_type == NET_ADDR_PERM)
7581                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7582
7583         /* Notify protocols, that a new device appeared. */
7584         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7585         ret = notifier_to_errno(ret);
7586         if (ret) {
7587                 rollback_registered(dev);
7588                 dev->reg_state = NETREG_UNREGISTERED;
7589         }
7590         /*
7591          *      Prevent userspace races by waiting until the network
7592          *      device is fully setup before sending notifications.
7593          */
7594         if (!dev->rtnl_link_ops ||
7595             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7596                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7597
7598 out:
7599         return ret;
7600
7601 err_uninit:
7602         if (dev->netdev_ops->ndo_uninit)
7603                 dev->netdev_ops->ndo_uninit(dev);
7604         if (dev->priv_destructor)
7605                 dev->priv_destructor(dev);
7606         goto out;
7607 }
7608 EXPORT_SYMBOL(register_netdevice);
7609
7610 /**
7611  *      init_dummy_netdev       - init a dummy network device for NAPI
7612  *      @dev: device to init
7613  *
7614  *      This takes a network device structure and initialize the minimum
7615  *      amount of fields so it can be used to schedule NAPI polls without
7616  *      registering a full blown interface. This is to be used by drivers
7617  *      that need to tie several hardware interfaces to a single NAPI
7618  *      poll scheduler due to HW limitations.
7619  */
7620 int init_dummy_netdev(struct net_device *dev)
7621 {
7622         /* Clear everything. Note we don't initialize spinlocks
7623          * are they aren't supposed to be taken by any of the
7624          * NAPI code and this dummy netdev is supposed to be
7625          * only ever used for NAPI polls
7626          */
7627         memset(dev, 0, sizeof(struct net_device));
7628
7629         /* make sure we BUG if trying to hit standard
7630          * register/unregister code path
7631          */
7632         dev->reg_state = NETREG_DUMMY;
7633
7634         /* NAPI wants this */
7635         INIT_LIST_HEAD(&dev->napi_list);
7636
7637         /* a dummy interface is started by default */
7638         set_bit(__LINK_STATE_PRESENT, &dev->state);
7639         set_bit(__LINK_STATE_START, &dev->state);
7640
7641         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7642          * because users of this 'device' dont need to change
7643          * its refcount.
7644          */
7645
7646         return 0;
7647 }
7648 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7649
7650
7651 /**
7652  *      register_netdev - register a network device
7653  *      @dev: device to register
7654  *
7655  *      Take a completed network device structure and add it to the kernel
7656  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7657  *      chain. 0 is returned on success. A negative errno code is returned
7658  *      on a failure to set up the device, or if the name is a duplicate.
7659  *
7660  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7661  *      and expands the device name if you passed a format string to
7662  *      alloc_netdev.
7663  */
7664 int register_netdev(struct net_device *dev)
7665 {
7666         int err;
7667
7668         rtnl_lock();
7669         err = register_netdevice(dev);
7670         rtnl_unlock();
7671         return err;
7672 }
7673 EXPORT_SYMBOL(register_netdev);
7674
7675 int netdev_refcnt_read(const struct net_device *dev)
7676 {
7677         int i, refcnt = 0;
7678
7679         for_each_possible_cpu(i)
7680                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7681         return refcnt;
7682 }
7683 EXPORT_SYMBOL(netdev_refcnt_read);
7684
7685 /**
7686  * netdev_wait_allrefs - wait until all references are gone.
7687  * @dev: target net_device
7688  *
7689  * This is called when unregistering network devices.
7690  *
7691  * Any protocol or device that holds a reference should register
7692  * for netdevice notification, and cleanup and put back the
7693  * reference if they receive an UNREGISTER event.
7694  * We can get stuck here if buggy protocols don't correctly
7695  * call dev_put.
7696  */
7697 static void netdev_wait_allrefs(struct net_device *dev)
7698 {
7699         unsigned long rebroadcast_time, warning_time;
7700         int refcnt;
7701
7702         linkwatch_forget_dev(dev);
7703
7704         rebroadcast_time = warning_time = jiffies;
7705         refcnt = netdev_refcnt_read(dev);
7706
7707         while (refcnt != 0) {
7708                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7709                         rtnl_lock();
7710
7711                         /* Rebroadcast unregister notification */
7712                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7713
7714                         __rtnl_unlock();
7715                         rcu_barrier();
7716                         rtnl_lock();
7717
7718                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7719                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7720                                      &dev->state)) {
7721                                 /* We must not have linkwatch events
7722                                  * pending on unregister. If this
7723                                  * happens, we simply run the queue
7724                                  * unscheduled, resulting in a noop
7725                                  * for this device.
7726                                  */
7727                                 linkwatch_run_queue();
7728                         }
7729
7730                         __rtnl_unlock();
7731
7732                         rebroadcast_time = jiffies;
7733                 }
7734
7735                 msleep(250);
7736
7737                 refcnt = netdev_refcnt_read(dev);
7738
7739                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7740                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7741                                  dev->name, refcnt);
7742                         warning_time = jiffies;
7743                 }
7744         }
7745 }
7746
7747 /* The sequence is:
7748  *
7749  *      rtnl_lock();
7750  *      ...
7751  *      register_netdevice(x1);
7752  *      register_netdevice(x2);
7753  *      ...
7754  *      unregister_netdevice(y1);
7755  *      unregister_netdevice(y2);
7756  *      ...
7757  *      rtnl_unlock();
7758  *      free_netdev(y1);
7759  *      free_netdev(y2);
7760  *
7761  * We are invoked by rtnl_unlock().
7762  * This allows us to deal with problems:
7763  * 1) We can delete sysfs objects which invoke hotplug
7764  *    without deadlocking with linkwatch via keventd.
7765  * 2) Since we run with the RTNL semaphore not held, we can sleep
7766  *    safely in order to wait for the netdev refcnt to drop to zero.
7767  *
7768  * We must not return until all unregister events added during
7769  * the interval the lock was held have been completed.
7770  */
7771 void netdev_run_todo(void)
7772 {
7773         struct list_head list;
7774
7775         /* Snapshot list, allow later requests */
7776         list_replace_init(&net_todo_list, &list);
7777
7778         __rtnl_unlock();
7779
7780
7781         /* Wait for rcu callbacks to finish before next phase */
7782         if (!list_empty(&list))
7783                 rcu_barrier();
7784
7785         while (!list_empty(&list)) {
7786                 struct net_device *dev
7787                         = list_first_entry(&list, struct net_device, todo_list);
7788                 list_del(&dev->todo_list);
7789
7790                 rtnl_lock();
7791                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7792                 __rtnl_unlock();
7793
7794                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7795                         pr_err("network todo '%s' but state %d\n",
7796                                dev->name, dev->reg_state);
7797                         dump_stack();
7798                         continue;
7799                 }
7800
7801                 dev->reg_state = NETREG_UNREGISTERED;
7802
7803                 netdev_wait_allrefs(dev);
7804
7805                 /* paranoia */
7806                 BUG_ON(netdev_refcnt_read(dev));
7807                 BUG_ON(!list_empty(&dev->ptype_all));
7808                 BUG_ON(!list_empty(&dev->ptype_specific));
7809                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7810                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7811                 WARN_ON(dev->dn_ptr);
7812
7813                 if (dev->priv_destructor)
7814                         dev->priv_destructor(dev);
7815                 if (dev->needs_free_netdev)
7816                         free_netdev(dev);
7817
7818                 /* Report a network device has been unregistered */
7819                 rtnl_lock();
7820                 dev_net(dev)->dev_unreg_count--;
7821                 __rtnl_unlock();
7822                 wake_up(&netdev_unregistering_wq);
7823
7824                 /* Free network device */
7825                 kobject_put(&dev->dev.kobj);
7826         }
7827 }
7828
7829 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7830  * all the same fields in the same order as net_device_stats, with only
7831  * the type differing, but rtnl_link_stats64 may have additional fields
7832  * at the end for newer counters.
7833  */
7834 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7835                              const struct net_device_stats *netdev_stats)
7836 {
7837 #if BITS_PER_LONG == 64
7838         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7839         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
7840         /* zero out counters that only exist in rtnl_link_stats64 */
7841         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7842                sizeof(*stats64) - sizeof(*netdev_stats));
7843 #else
7844         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7845         const unsigned long *src = (const unsigned long *)netdev_stats;
7846         u64 *dst = (u64 *)stats64;
7847
7848         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7849         for (i = 0; i < n; i++)
7850                 dst[i] = src[i];
7851         /* zero out counters that only exist in rtnl_link_stats64 */
7852         memset((char *)stats64 + n * sizeof(u64), 0,
7853                sizeof(*stats64) - n * sizeof(u64));
7854 #endif
7855 }
7856 EXPORT_SYMBOL(netdev_stats_to_stats64);
7857
7858 /**
7859  *      dev_get_stats   - get network device statistics
7860  *      @dev: device to get statistics from
7861  *      @storage: place to store stats
7862  *
7863  *      Get network statistics from device. Return @storage.
7864  *      The device driver may provide its own method by setting
7865  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7866  *      otherwise the internal statistics structure is used.
7867  */
7868 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7869                                         struct rtnl_link_stats64 *storage)
7870 {
7871         const struct net_device_ops *ops = dev->netdev_ops;
7872
7873         if (ops->ndo_get_stats64) {
7874                 memset(storage, 0, sizeof(*storage));
7875                 ops->ndo_get_stats64(dev, storage);
7876         } else if (ops->ndo_get_stats) {
7877                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7878         } else {
7879                 netdev_stats_to_stats64(storage, &dev->stats);
7880         }
7881         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
7882         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
7883         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
7884         return storage;
7885 }
7886 EXPORT_SYMBOL(dev_get_stats);
7887
7888 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7889 {
7890         struct netdev_queue *queue = dev_ingress_queue(dev);
7891
7892 #ifdef CONFIG_NET_CLS_ACT
7893         if (queue)
7894                 return queue;
7895         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7896         if (!queue)
7897                 return NULL;
7898         netdev_init_one_queue(dev, queue, NULL);
7899         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7900         queue->qdisc_sleeping = &noop_qdisc;
7901         rcu_assign_pointer(dev->ingress_queue, queue);
7902 #endif
7903         return queue;
7904 }
7905
7906 static const struct ethtool_ops default_ethtool_ops;
7907
7908 void netdev_set_default_ethtool_ops(struct net_device *dev,
7909                                     const struct ethtool_ops *ops)
7910 {
7911         if (dev->ethtool_ops == &default_ethtool_ops)
7912                 dev->ethtool_ops = ops;
7913 }
7914 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7915
7916 void netdev_freemem(struct net_device *dev)
7917 {
7918         char *addr = (char *)dev - dev->padded;
7919
7920         kvfree(addr);
7921 }
7922
7923 /**
7924  * alloc_netdev_mqs - allocate network device
7925  * @sizeof_priv: size of private data to allocate space for
7926  * @name: device name format string
7927  * @name_assign_type: origin of device name
7928  * @setup: callback to initialize device
7929  * @txqs: the number of TX subqueues to allocate
7930  * @rxqs: the number of RX subqueues to allocate
7931  *
7932  * Allocates a struct net_device with private data area for driver use
7933  * and performs basic initialization.  Also allocates subqueue structs
7934  * for each queue on the device.
7935  */
7936 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7937                 unsigned char name_assign_type,
7938                 void (*setup)(struct net_device *),
7939                 unsigned int txqs, unsigned int rxqs)
7940 {
7941         struct net_device *dev;
7942         size_t alloc_size;
7943         struct net_device *p;
7944
7945         BUG_ON(strlen(name) >= sizeof(dev->name));
7946
7947         if (txqs < 1) {
7948                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7949                 return NULL;
7950         }
7951
7952 #ifdef CONFIG_SYSFS
7953         if (rxqs < 1) {
7954                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7955                 return NULL;
7956         }
7957 #endif
7958
7959         alloc_size = sizeof(struct net_device);
7960         if (sizeof_priv) {
7961                 /* ensure 32-byte alignment of private area */
7962                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7963                 alloc_size += sizeof_priv;
7964         }
7965         /* ensure 32-byte alignment of whole construct */
7966         alloc_size += NETDEV_ALIGN - 1;
7967
7968         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_REPEAT);
7969         if (!p)
7970                 return NULL;
7971
7972         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7973         dev->padded = (char *)dev - (char *)p;
7974
7975         dev->pcpu_refcnt = alloc_percpu(int);
7976         if (!dev->pcpu_refcnt)
7977                 goto free_dev;
7978
7979         if (dev_addr_init(dev))
7980                 goto free_pcpu;
7981
7982         dev_mc_init(dev);
7983         dev_uc_init(dev);
7984
7985         dev_net_set(dev, &init_net);
7986
7987         dev->gso_max_size = GSO_MAX_SIZE;
7988         dev->gso_max_segs = GSO_MAX_SEGS;
7989
7990         INIT_LIST_HEAD(&dev->napi_list);
7991         INIT_LIST_HEAD(&dev->unreg_list);
7992         INIT_LIST_HEAD(&dev->close_list);
7993         INIT_LIST_HEAD(&dev->link_watch_list);
7994         INIT_LIST_HEAD(&dev->adj_list.upper);
7995         INIT_LIST_HEAD(&dev->adj_list.lower);
7996         INIT_LIST_HEAD(&dev->ptype_all);
7997         INIT_LIST_HEAD(&dev->ptype_specific);
7998 #ifdef CONFIG_NET_SCHED
7999         hash_init(dev->qdisc_hash);
8000 #endif
8001         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8002         setup(dev);
8003
8004         if (!dev->tx_queue_len) {
8005                 dev->priv_flags |= IFF_NO_QUEUE;
8006                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8007         }
8008
8009         dev->num_tx_queues = txqs;
8010         dev->real_num_tx_queues = txqs;
8011         if (netif_alloc_netdev_queues(dev))
8012                 goto free_all;
8013
8014 #ifdef CONFIG_SYSFS
8015         dev->num_rx_queues = rxqs;
8016         dev->real_num_rx_queues = rxqs;
8017         if (netif_alloc_rx_queues(dev))
8018                 goto free_all;
8019 #endif
8020
8021         strcpy(dev->name, name);
8022         dev->name_assign_type = name_assign_type;
8023         dev->group = INIT_NETDEV_GROUP;
8024         if (!dev->ethtool_ops)
8025                 dev->ethtool_ops = &default_ethtool_ops;
8026
8027         nf_hook_ingress_init(dev);
8028
8029         return dev;
8030
8031 free_all:
8032         free_netdev(dev);
8033         return NULL;
8034
8035 free_pcpu:
8036         free_percpu(dev->pcpu_refcnt);
8037 free_dev:
8038         netdev_freemem(dev);
8039         return NULL;
8040 }
8041 EXPORT_SYMBOL(alloc_netdev_mqs);
8042
8043 /**
8044  * free_netdev - free network device
8045  * @dev: device
8046  *
8047  * This function does the last stage of destroying an allocated device
8048  * interface. The reference to the device object is released. If this
8049  * is the last reference then it will be freed.Must be called in process
8050  * context.
8051  */
8052 void free_netdev(struct net_device *dev)
8053 {
8054         struct napi_struct *p, *n;
8055         struct bpf_prog *prog;
8056
8057         might_sleep();
8058         netif_free_tx_queues(dev);
8059 #ifdef CONFIG_SYSFS
8060         kvfree(dev->_rx);
8061 #endif
8062
8063         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8064
8065         /* Flush device addresses */
8066         dev_addr_flush(dev);
8067
8068         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8069                 netif_napi_del(p);
8070
8071         free_percpu(dev->pcpu_refcnt);
8072         dev->pcpu_refcnt = NULL;
8073
8074         prog = rcu_dereference_protected(dev->xdp_prog, 1);
8075         if (prog) {
8076                 bpf_prog_put(prog);
8077                 static_key_slow_dec(&generic_xdp_needed);
8078         }
8079
8080         /*  Compatibility with error handling in drivers */
8081         if (dev->reg_state == NETREG_UNINITIALIZED) {
8082                 netdev_freemem(dev);
8083                 return;
8084         }
8085
8086         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8087         dev->reg_state = NETREG_RELEASED;
8088
8089         /* will free via device release */
8090         put_device(&dev->dev);
8091 }
8092 EXPORT_SYMBOL(free_netdev);
8093
8094 /**
8095  *      synchronize_net -  Synchronize with packet receive processing
8096  *
8097  *      Wait for packets currently being received to be done.
8098  *      Does not block later packets from starting.
8099  */
8100 void synchronize_net(void)
8101 {
8102         might_sleep();
8103         if (rtnl_is_locked())
8104                 synchronize_rcu_expedited();
8105         else
8106                 synchronize_rcu();
8107 }
8108 EXPORT_SYMBOL(synchronize_net);
8109
8110 /**
8111  *      unregister_netdevice_queue - remove device from the kernel
8112  *      @dev: device
8113  *      @head: list
8114  *
8115  *      This function shuts down a device interface and removes it
8116  *      from the kernel tables.
8117  *      If head not NULL, device is queued to be unregistered later.
8118  *
8119  *      Callers must hold the rtnl semaphore.  You may want
8120  *      unregister_netdev() instead of this.
8121  */
8122
8123 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8124 {
8125         ASSERT_RTNL();
8126
8127         if (head) {
8128                 list_move_tail(&dev->unreg_list, head);
8129         } else {
8130                 rollback_registered(dev);
8131                 /* Finish processing unregister after unlock */
8132                 net_set_todo(dev);
8133         }
8134 }
8135 EXPORT_SYMBOL(unregister_netdevice_queue);
8136
8137 /**
8138  *      unregister_netdevice_many - unregister many devices
8139  *      @head: list of devices
8140  *
8141  *  Note: As most callers use a stack allocated list_head,
8142  *  we force a list_del() to make sure stack wont be corrupted later.
8143  */
8144 void unregister_netdevice_many(struct list_head *head)
8145 {
8146         struct net_device *dev;
8147
8148         if (!list_empty(head)) {
8149                 rollback_registered_many(head);
8150                 list_for_each_entry(dev, head, unreg_list)
8151                         net_set_todo(dev);
8152                 list_del(head);
8153         }
8154 }
8155 EXPORT_SYMBOL(unregister_netdevice_many);
8156
8157 /**
8158  *      unregister_netdev - remove device from the kernel
8159  *      @dev: device
8160  *
8161  *      This function shuts down a device interface and removes it
8162  *      from the kernel tables.
8163  *
8164  *      This is just a wrapper for unregister_netdevice that takes
8165  *      the rtnl semaphore.  In general you want to use this and not
8166  *      unregister_netdevice.
8167  */
8168 void unregister_netdev(struct net_device *dev)
8169 {
8170         rtnl_lock();
8171         unregister_netdevice(dev);
8172         rtnl_unlock();
8173 }
8174 EXPORT_SYMBOL(unregister_netdev);
8175
8176 /**
8177  *      dev_change_net_namespace - move device to different nethost namespace
8178  *      @dev: device
8179  *      @net: network namespace
8180  *      @pat: If not NULL name pattern to try if the current device name
8181  *            is already taken in the destination network namespace.
8182  *
8183  *      This function shuts down a device interface and moves it
8184  *      to a new network namespace. On success 0 is returned, on
8185  *      a failure a netagive errno code is returned.
8186  *
8187  *      Callers must hold the rtnl semaphore.
8188  */
8189
8190 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8191 {
8192         int err;
8193
8194         ASSERT_RTNL();
8195
8196         /* Don't allow namespace local devices to be moved. */
8197         err = -EINVAL;
8198         if (dev->features & NETIF_F_NETNS_LOCAL)
8199                 goto out;
8200
8201         /* Ensure the device has been registrered */
8202         if (dev->reg_state != NETREG_REGISTERED)
8203                 goto out;
8204
8205         /* Get out if there is nothing todo */
8206         err = 0;
8207         if (net_eq(dev_net(dev), net))
8208                 goto out;
8209
8210         /* Pick the destination device name, and ensure
8211          * we can use it in the destination network namespace.
8212          */
8213         err = -EEXIST;
8214         if (__dev_get_by_name(net, dev->name)) {
8215                 /* We get here if we can't use the current device name */
8216                 if (!pat)
8217                         goto out;
8218                 if (dev_get_valid_name(net, dev, pat) < 0)
8219                         goto out;
8220         }
8221
8222         /*
8223          * And now a mini version of register_netdevice unregister_netdevice.
8224          */
8225
8226         /* If device is running close it first. */
8227         dev_close(dev);
8228
8229         /* And unlink it from device chain */
8230         err = -ENODEV;
8231         unlist_netdevice(dev);
8232
8233         synchronize_net();
8234
8235         /* Shutdown queueing discipline. */
8236         dev_shutdown(dev);
8237
8238         /* Notify protocols, that we are about to destroy
8239          * this device. They should clean all the things.
8240          *
8241          * Note that dev->reg_state stays at NETREG_REGISTERED.
8242          * This is wanted because this way 8021q and macvlan know
8243          * the device is just moving and can keep their slaves up.
8244          */
8245         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8246         rcu_barrier();
8247         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8248         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
8249
8250         /*
8251          *      Flush the unicast and multicast chains
8252          */
8253         dev_uc_flush(dev);
8254         dev_mc_flush(dev);
8255
8256         /* Send a netdev-removed uevent to the old namespace */
8257         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8258         netdev_adjacent_del_links(dev);
8259
8260         /* Actually switch the network namespace */
8261         dev_net_set(dev, net);
8262
8263         /* If there is an ifindex conflict assign a new one */
8264         if (__dev_get_by_index(net, dev->ifindex))
8265                 dev->ifindex = dev_new_index(net);
8266
8267         /* Send a netdev-add uevent to the new namespace */
8268         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8269         netdev_adjacent_add_links(dev);
8270
8271         /* Fixup kobjects */
8272         err = device_rename(&dev->dev, dev->name);
8273         WARN_ON(err);
8274
8275         /* Add the device back in the hashes */
8276         list_netdevice(dev);
8277
8278         /* Notify protocols, that a new device appeared. */
8279         call_netdevice_notifiers(NETDEV_REGISTER, dev);
8280
8281         /*
8282          *      Prevent userspace races by waiting until the network
8283          *      device is fully setup before sending notifications.
8284          */
8285         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8286
8287         synchronize_net();
8288         err = 0;
8289 out:
8290         return err;
8291 }
8292 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8293
8294 static int dev_cpu_dead(unsigned int oldcpu)
8295 {
8296         struct sk_buff **list_skb;
8297         struct sk_buff *skb;
8298         unsigned int cpu;
8299         struct softnet_data *sd, *oldsd, *remsd = NULL;
8300
8301         local_irq_disable();
8302         cpu = smp_processor_id();
8303         sd = &per_cpu(softnet_data, cpu);
8304         oldsd = &per_cpu(softnet_data, oldcpu);
8305
8306         /* Find end of our completion_queue. */
8307         list_skb = &sd->completion_queue;
8308         while (*list_skb)
8309                 list_skb = &(*list_skb)->next;
8310         /* Append completion queue from offline CPU. */
8311         *list_skb = oldsd->completion_queue;
8312         oldsd->completion_queue = NULL;
8313
8314         /* Append output queue from offline CPU. */
8315         if (oldsd->output_queue) {
8316                 *sd->output_queue_tailp = oldsd->output_queue;
8317                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8318                 oldsd->output_queue = NULL;
8319                 oldsd->output_queue_tailp = &oldsd->output_queue;
8320         }
8321         /* Append NAPI poll list from offline CPU, with one exception :
8322          * process_backlog() must be called by cpu owning percpu backlog.
8323          * We properly handle process_queue & input_pkt_queue later.
8324          */
8325         while (!list_empty(&oldsd->poll_list)) {
8326                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8327                                                             struct napi_struct,
8328                                                             poll_list);
8329
8330                 list_del_init(&napi->poll_list);
8331                 if (napi->poll == process_backlog)
8332                         napi->state = 0;
8333                 else
8334                         ____napi_schedule(sd, napi);
8335         }
8336
8337         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8338         local_irq_enable();
8339
8340 #ifdef CONFIG_RPS
8341         remsd = oldsd->rps_ipi_list;
8342         oldsd->rps_ipi_list = NULL;
8343 #endif
8344         /* send out pending IPI's on offline CPU */
8345         net_rps_send_ipi(remsd);
8346
8347         /* Process offline CPU's input_pkt_queue */
8348         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8349                 netif_rx_ni(skb);
8350                 input_queue_head_incr(oldsd);
8351         }
8352         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8353                 netif_rx_ni(skb);
8354                 input_queue_head_incr(oldsd);
8355         }
8356
8357         return 0;
8358 }
8359
8360 /**
8361  *      netdev_increment_features - increment feature set by one
8362  *      @all: current feature set
8363  *      @one: new feature set
8364  *      @mask: mask feature set
8365  *
8366  *      Computes a new feature set after adding a device with feature set
8367  *      @one to the master device with current feature set @all.  Will not
8368  *      enable anything that is off in @mask. Returns the new feature set.
8369  */
8370 netdev_features_t netdev_increment_features(netdev_features_t all,
8371         netdev_features_t one, netdev_features_t mask)
8372 {
8373         if (mask & NETIF_F_HW_CSUM)
8374                 mask |= NETIF_F_CSUM_MASK;
8375         mask |= NETIF_F_VLAN_CHALLENGED;
8376
8377         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8378         all &= one | ~NETIF_F_ALL_FOR_ALL;
8379
8380         /* If one device supports hw checksumming, set for all. */
8381         if (all & NETIF_F_HW_CSUM)
8382                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8383
8384         return all;
8385 }
8386 EXPORT_SYMBOL(netdev_increment_features);
8387
8388 static struct hlist_head * __net_init netdev_create_hash(void)
8389 {
8390         int i;
8391         struct hlist_head *hash;
8392
8393         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8394         if (hash != NULL)
8395                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8396                         INIT_HLIST_HEAD(&hash[i]);
8397
8398         return hash;
8399 }
8400
8401 /* Initialize per network namespace state */
8402 static int __net_init netdev_init(struct net *net)
8403 {
8404         if (net != &init_net)
8405                 INIT_LIST_HEAD(&net->dev_base_head);
8406
8407         net->dev_name_head = netdev_create_hash();
8408         if (net->dev_name_head == NULL)
8409                 goto err_name;
8410
8411         net->dev_index_head = netdev_create_hash();
8412         if (net->dev_index_head == NULL)
8413                 goto err_idx;
8414
8415         return 0;
8416
8417 err_idx:
8418         kfree(net->dev_name_head);
8419 err_name:
8420         return -ENOMEM;
8421 }
8422
8423 /**
8424  *      netdev_drivername - network driver for the device
8425  *      @dev: network device
8426  *
8427  *      Determine network driver for device.
8428  */
8429 const char *netdev_drivername(const struct net_device *dev)
8430 {
8431         const struct device_driver *driver;
8432         const struct device *parent;
8433         const char *empty = "";
8434
8435         parent = dev->dev.parent;
8436         if (!parent)
8437                 return empty;
8438
8439         driver = parent->driver;
8440         if (driver && driver->name)
8441                 return driver->name;
8442         return empty;
8443 }
8444
8445 static void __netdev_printk(const char *level, const struct net_device *dev,
8446                             struct va_format *vaf)
8447 {
8448         if (dev && dev->dev.parent) {
8449                 dev_printk_emit(level[1] - '0',
8450                                 dev->dev.parent,
8451                                 "%s %s %s%s: %pV",
8452                                 dev_driver_string(dev->dev.parent),
8453                                 dev_name(dev->dev.parent),
8454                                 netdev_name(dev), netdev_reg_state(dev),
8455                                 vaf);
8456         } else if (dev) {
8457                 printk("%s%s%s: %pV",
8458                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8459         } else {
8460                 printk("%s(NULL net_device): %pV", level, vaf);
8461         }
8462 }
8463
8464 void netdev_printk(const char *level, const struct net_device *dev,
8465                    const char *format, ...)
8466 {
8467         struct va_format vaf;
8468         va_list args;
8469
8470         va_start(args, format);
8471
8472         vaf.fmt = format;
8473         vaf.va = &args;
8474
8475         __netdev_printk(level, dev, &vaf);
8476
8477         va_end(args);
8478 }
8479 EXPORT_SYMBOL(netdev_printk);
8480
8481 #define define_netdev_printk_level(func, level)                 \
8482 void func(const struct net_device *dev, const char *fmt, ...)   \
8483 {                                                               \
8484         struct va_format vaf;                                   \
8485         va_list args;                                           \
8486                                                                 \
8487         va_start(args, fmt);                                    \
8488                                                                 \
8489         vaf.fmt = fmt;                                          \
8490         vaf.va = &args;                                         \
8491                                                                 \
8492         __netdev_printk(level, dev, &vaf);                      \
8493                                                                 \
8494         va_end(args);                                           \
8495 }                                                               \
8496 EXPORT_SYMBOL(func);
8497
8498 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8499 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8500 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8501 define_netdev_printk_level(netdev_err, KERN_ERR);
8502 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8503 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8504 define_netdev_printk_level(netdev_info, KERN_INFO);
8505
8506 static void __net_exit netdev_exit(struct net *net)
8507 {
8508         kfree(net->dev_name_head);
8509         kfree(net->dev_index_head);
8510 }
8511
8512 static struct pernet_operations __net_initdata netdev_net_ops = {
8513         .init = netdev_init,
8514         .exit = netdev_exit,
8515 };
8516
8517 static void __net_exit default_device_exit(struct net *net)
8518 {
8519         struct net_device *dev, *aux;
8520         /*
8521          * Push all migratable network devices back to the
8522          * initial network namespace
8523          */
8524         rtnl_lock();
8525         for_each_netdev_safe(net, dev, aux) {
8526                 int err;
8527                 char fb_name[IFNAMSIZ];
8528
8529                 /* Ignore unmoveable devices (i.e. loopback) */
8530                 if (dev->features & NETIF_F_NETNS_LOCAL)
8531                         continue;
8532
8533                 /* Leave virtual devices for the generic cleanup */
8534                 if (dev->rtnl_link_ops)
8535                         continue;
8536
8537                 /* Push remaining network devices to init_net */
8538                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8539                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8540                 if (err) {
8541                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8542                                  __func__, dev->name, err);
8543                         BUG();
8544                 }
8545         }
8546         rtnl_unlock();
8547 }
8548
8549 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8550 {
8551         /* Return with the rtnl_lock held when there are no network
8552          * devices unregistering in any network namespace in net_list.
8553          */
8554         struct net *net;
8555         bool unregistering;
8556         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8557
8558         add_wait_queue(&netdev_unregistering_wq, &wait);
8559         for (;;) {
8560                 unregistering = false;
8561                 rtnl_lock();
8562                 list_for_each_entry(net, net_list, exit_list) {
8563                         if (net->dev_unreg_count > 0) {
8564                                 unregistering = true;
8565                                 break;
8566                         }
8567                 }
8568                 if (!unregistering)
8569                         break;
8570                 __rtnl_unlock();
8571
8572                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8573         }
8574         remove_wait_queue(&netdev_unregistering_wq, &wait);
8575 }
8576
8577 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8578 {
8579         /* At exit all network devices most be removed from a network
8580          * namespace.  Do this in the reverse order of registration.
8581          * Do this across as many network namespaces as possible to
8582          * improve batching efficiency.
8583          */
8584         struct net_device *dev;
8585         struct net *net;
8586         LIST_HEAD(dev_kill_list);
8587
8588         /* To prevent network device cleanup code from dereferencing
8589          * loopback devices or network devices that have been freed
8590          * wait here for all pending unregistrations to complete,
8591          * before unregistring the loopback device and allowing the
8592          * network namespace be freed.
8593          *
8594          * The netdev todo list containing all network devices
8595          * unregistrations that happen in default_device_exit_batch
8596          * will run in the rtnl_unlock() at the end of
8597          * default_device_exit_batch.
8598          */
8599         rtnl_lock_unregistering(net_list);
8600         list_for_each_entry(net, net_list, exit_list) {
8601                 for_each_netdev_reverse(net, dev) {
8602                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8603                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8604                         else
8605                                 unregister_netdevice_queue(dev, &dev_kill_list);
8606                 }
8607         }
8608         unregister_netdevice_many(&dev_kill_list);
8609         rtnl_unlock();
8610 }
8611
8612 static struct pernet_operations __net_initdata default_device_ops = {
8613         .exit = default_device_exit,
8614         .exit_batch = default_device_exit_batch,
8615 };
8616
8617 /*
8618  *      Initialize the DEV module. At boot time this walks the device list and
8619  *      unhooks any devices that fail to initialise (normally hardware not
8620  *      present) and leaves us with a valid list of present and active devices.
8621  *
8622  */
8623
8624 /*
8625  *       This is called single threaded during boot, so no need
8626  *       to take the rtnl semaphore.
8627  */
8628 static int __init net_dev_init(void)
8629 {
8630         int i, rc = -ENOMEM;
8631
8632         BUG_ON(!dev_boot_phase);
8633
8634         if (dev_proc_init())
8635                 goto out;
8636
8637         if (netdev_kobject_init())
8638                 goto out;
8639
8640         INIT_LIST_HEAD(&ptype_all);
8641         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8642                 INIT_LIST_HEAD(&ptype_base[i]);
8643
8644         INIT_LIST_HEAD(&offload_base);
8645
8646         if (register_pernet_subsys(&netdev_net_ops))
8647                 goto out;
8648
8649         /*
8650          *      Initialise the packet receive queues.
8651          */
8652
8653         for_each_possible_cpu(i) {
8654                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8655                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8656
8657                 INIT_WORK(flush, flush_backlog);
8658
8659                 skb_queue_head_init(&sd->input_pkt_queue);
8660                 skb_queue_head_init(&sd->process_queue);
8661                 INIT_LIST_HEAD(&sd->poll_list);
8662                 sd->output_queue_tailp = &sd->output_queue;
8663 #ifdef CONFIG_RPS
8664                 sd->csd.func = rps_trigger_softirq;
8665                 sd->csd.info = sd;
8666                 sd->cpu = i;
8667 #endif
8668
8669                 sd->backlog.poll = process_backlog;
8670                 sd->backlog.weight = weight_p;
8671         }
8672
8673         dev_boot_phase = 0;
8674
8675         /* The loopback device is special if any other network devices
8676          * is present in a network namespace the loopback device must
8677          * be present. Since we now dynamically allocate and free the
8678          * loopback device ensure this invariant is maintained by
8679          * keeping the loopback device as the first device on the
8680          * list of network devices.  Ensuring the loopback devices
8681          * is the first device that appears and the last network device
8682          * that disappears.
8683          */
8684         if (register_pernet_device(&loopback_net_ops))
8685                 goto out;
8686
8687         if (register_pernet_device(&default_device_ops))
8688                 goto out;
8689
8690         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8691         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8692
8693         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8694                                        NULL, dev_cpu_dead);
8695         WARN_ON(rc < 0);
8696         rc = 0;
8697 out:
8698         return rc;
8699 }
8700
8701 subsys_initcall(net_dev_init);