net: remove two BUG() from skb_checksum_help()
[platform/kernel/linux-rpi.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "net-sysfs.h"
155
156 #define MAX_GRO_SKBS 8
157
158 /* This should be increased if a protocol with a bigger head is added. */
159 #define GRO_MAX_HEAD (MAX_HEADER + 128)
160
161 static DEFINE_SPINLOCK(ptype_lock);
162 static DEFINE_SPINLOCK(offload_lock);
163 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164 struct list_head ptype_all __read_mostly;       /* Taps */
165 static struct list_head offload_base __read_mostly;
166
167 static int netif_rx_internal(struct sk_buff *skb);
168 static int call_netdevice_notifiers_info(unsigned long val,
169                                          struct netdev_notifier_info *info);
170 static int call_netdevice_notifiers_extack(unsigned long val,
171                                            struct net_device *dev,
172                                            struct netlink_ext_ack *extack);
173 static struct napi_struct *napi_by_id(unsigned int napi_id);
174
175 /*
176  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177  * semaphore.
178  *
179  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
180  *
181  * Writers must hold the rtnl semaphore while they loop through the
182  * dev_base_head list, and hold dev_base_lock for writing when they do the
183  * actual updates.  This allows pure readers to access the list even
184  * while a writer is preparing to update it.
185  *
186  * To put it another way, dev_base_lock is held for writing only to
187  * protect against pure readers; the rtnl semaphore provides the
188  * protection against other writers.
189  *
190  * See, for example usages, register_netdevice() and
191  * unregister_netdevice(), which must be called with the rtnl
192  * semaphore held.
193  */
194 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
196
197 static DEFINE_MUTEX(ifalias_mutex);
198
199 /* protects napi_hash addition/deletion and napi_gen_id */
200 static DEFINE_SPINLOCK(napi_hash_lock);
201
202 static unsigned int napi_gen_id = NR_CPUS;
203 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
204
205 static DECLARE_RWSEM(devnet_rename_sem);
206
207 static inline void dev_base_seq_inc(struct net *net)
208 {
209         while (++net->dev_base_seq == 0)
210                 ;
211 }
212
213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214 {
215         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
216
217         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218 }
219
220 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221 {
222         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223 }
224
225 static inline void rps_lock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_lock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 static inline void rps_unlock(struct softnet_data *sd)
233 {
234 #ifdef CONFIG_RPS
235         spin_unlock(&sd->input_pkt_queue.lock);
236 #endif
237 }
238
239 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240                                                        const char *name)
241 {
242         struct netdev_name_node *name_node;
243
244         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245         if (!name_node)
246                 return NULL;
247         INIT_HLIST_NODE(&name_node->hlist);
248         name_node->dev = dev;
249         name_node->name = name;
250         return name_node;
251 }
252
253 static struct netdev_name_node *
254 netdev_name_node_head_alloc(struct net_device *dev)
255 {
256         struct netdev_name_node *name_node;
257
258         name_node = netdev_name_node_alloc(dev, dev->name);
259         if (!name_node)
260                 return NULL;
261         INIT_LIST_HEAD(&name_node->list);
262         return name_node;
263 }
264
265 static void netdev_name_node_free(struct netdev_name_node *name_node)
266 {
267         kfree(name_node);
268 }
269
270 static void netdev_name_node_add(struct net *net,
271                                  struct netdev_name_node *name_node)
272 {
273         hlist_add_head_rcu(&name_node->hlist,
274                            dev_name_hash(net, name_node->name));
275 }
276
277 static void netdev_name_node_del(struct netdev_name_node *name_node)
278 {
279         hlist_del_rcu(&name_node->hlist);
280 }
281
282 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283                                                         const char *name)
284 {
285         struct hlist_head *head = dev_name_hash(net, name);
286         struct netdev_name_node *name_node;
287
288         hlist_for_each_entry(name_node, head, hlist)
289                 if (!strcmp(name_node->name, name))
290                         return name_node;
291         return NULL;
292 }
293
294 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295                                                             const char *name)
296 {
297         struct hlist_head *head = dev_name_hash(net, name);
298         struct netdev_name_node *name_node;
299
300         hlist_for_each_entry_rcu(name_node, head, hlist)
301                 if (!strcmp(name_node->name, name))
302                         return name_node;
303         return NULL;
304 }
305
306 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
307 {
308         struct netdev_name_node *name_node;
309         struct net *net = dev_net(dev);
310
311         name_node = netdev_name_node_lookup(net, name);
312         if (name_node)
313                 return -EEXIST;
314         name_node = netdev_name_node_alloc(dev, name);
315         if (!name_node)
316                 return -ENOMEM;
317         netdev_name_node_add(net, name_node);
318         /* The node that holds dev->name acts as a head of per-device list. */
319         list_add_tail(&name_node->list, &dev->name_node->list);
320
321         return 0;
322 }
323 EXPORT_SYMBOL(netdev_name_node_alt_create);
324
325 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
326 {
327         list_del(&name_node->list);
328         netdev_name_node_del(name_node);
329         kfree(name_node->name);
330         netdev_name_node_free(name_node);
331 }
332
333 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
334 {
335         struct netdev_name_node *name_node;
336         struct net *net = dev_net(dev);
337
338         name_node = netdev_name_node_lookup(net, name);
339         if (!name_node)
340                 return -ENOENT;
341         /* lookup might have found our primary name or a name belonging
342          * to another device.
343          */
344         if (name_node == dev->name_node || name_node->dev != dev)
345                 return -EINVAL;
346
347         __netdev_name_node_alt_destroy(name_node);
348
349         return 0;
350 }
351 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
352
353 static void netdev_name_node_alt_flush(struct net_device *dev)
354 {
355         struct netdev_name_node *name_node, *tmp;
356
357         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
358                 __netdev_name_node_alt_destroy(name_node);
359 }
360
361 /* Device list insertion */
362 static void list_netdevice(struct net_device *dev)
363 {
364         struct net *net = dev_net(dev);
365
366         ASSERT_RTNL();
367
368         write_lock_bh(&dev_base_lock);
369         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
370         netdev_name_node_add(net, dev->name_node);
371         hlist_add_head_rcu(&dev->index_hlist,
372                            dev_index_hash(net, dev->ifindex));
373         write_unlock_bh(&dev_base_lock);
374
375         dev_base_seq_inc(net);
376 }
377
378 /* Device list removal
379  * caller must respect a RCU grace period before freeing/reusing dev
380  */
381 static void unlist_netdevice(struct net_device *dev)
382 {
383         ASSERT_RTNL();
384
385         /* Unlink dev from the device chain */
386         write_lock_bh(&dev_base_lock);
387         list_del_rcu(&dev->dev_list);
388         netdev_name_node_del(dev->name_node);
389         hlist_del_rcu(&dev->index_hlist);
390         write_unlock_bh(&dev_base_lock);
391
392         dev_base_seq_inc(dev_net(dev));
393 }
394
395 /*
396  *      Our notifier list
397  */
398
399 static RAW_NOTIFIER_HEAD(netdev_chain);
400
401 /*
402  *      Device drivers call our routines to queue packets here. We empty the
403  *      queue in the local softnet handler.
404  */
405
406 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
407 EXPORT_PER_CPU_SYMBOL(softnet_data);
408
409 #ifdef CONFIG_LOCKDEP
410 /*
411  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
412  * according to dev->type
413  */
414 static const unsigned short netdev_lock_type[] = {
415          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
416          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
417          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
418          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
419          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
420          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
421          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
422          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
423          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
424          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
425          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
426          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
427          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
428          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
429          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
430
431 static const char *const netdev_lock_name[] = {
432         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
433         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
434         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
435         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
436         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
437         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
438         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
439         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
440         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
441         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
442         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
443         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
444         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
445         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
446         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
447
448 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
449 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
450
451 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
452 {
453         int i;
454
455         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
456                 if (netdev_lock_type[i] == dev_type)
457                         return i;
458         /* the last key is used by default */
459         return ARRAY_SIZE(netdev_lock_type) - 1;
460 }
461
462 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
463                                                  unsigned short dev_type)
464 {
465         int i;
466
467         i = netdev_lock_pos(dev_type);
468         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
469                                    netdev_lock_name[i]);
470 }
471
472 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
473 {
474         int i;
475
476         i = netdev_lock_pos(dev->type);
477         lockdep_set_class_and_name(&dev->addr_list_lock,
478                                    &netdev_addr_lock_key[i],
479                                    netdev_lock_name[i]);
480 }
481 #else
482 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
483                                                  unsigned short dev_type)
484 {
485 }
486
487 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
488 {
489 }
490 #endif
491
492 /*******************************************************************************
493  *
494  *              Protocol management and registration routines
495  *
496  *******************************************************************************/
497
498
499 /*
500  *      Add a protocol ID to the list. Now that the input handler is
501  *      smarter we can dispense with all the messy stuff that used to be
502  *      here.
503  *
504  *      BEWARE!!! Protocol handlers, mangling input packets,
505  *      MUST BE last in hash buckets and checking protocol handlers
506  *      MUST start from promiscuous ptype_all chain in net_bh.
507  *      It is true now, do not change it.
508  *      Explanation follows: if protocol handler, mangling packet, will
509  *      be the first on list, it is not able to sense, that packet
510  *      is cloned and should be copied-on-write, so that it will
511  *      change it and subsequent readers will get broken packet.
512  *                                                      --ANK (980803)
513  */
514
515 static inline struct list_head *ptype_head(const struct packet_type *pt)
516 {
517         if (pt->type == htons(ETH_P_ALL))
518                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
519         else
520                 return pt->dev ? &pt->dev->ptype_specific :
521                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
522 }
523
524 /**
525  *      dev_add_pack - add packet handler
526  *      @pt: packet type declaration
527  *
528  *      Add a protocol handler to the networking stack. The passed &packet_type
529  *      is linked into kernel lists and may not be freed until it has been
530  *      removed from the kernel lists.
531  *
532  *      This call does not sleep therefore it can not
533  *      guarantee all CPU's that are in middle of receiving packets
534  *      will see the new packet type (until the next received packet).
535  */
536
537 void dev_add_pack(struct packet_type *pt)
538 {
539         struct list_head *head = ptype_head(pt);
540
541         spin_lock(&ptype_lock);
542         list_add_rcu(&pt->list, head);
543         spin_unlock(&ptype_lock);
544 }
545 EXPORT_SYMBOL(dev_add_pack);
546
547 /**
548  *      __dev_remove_pack        - remove packet handler
549  *      @pt: packet type declaration
550  *
551  *      Remove a protocol handler that was previously added to the kernel
552  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
553  *      from the kernel lists and can be freed or reused once this function
554  *      returns.
555  *
556  *      The packet type might still be in use by receivers
557  *      and must not be freed until after all the CPU's have gone
558  *      through a quiescent state.
559  */
560 void __dev_remove_pack(struct packet_type *pt)
561 {
562         struct list_head *head = ptype_head(pt);
563         struct packet_type *pt1;
564
565         spin_lock(&ptype_lock);
566
567         list_for_each_entry(pt1, head, list) {
568                 if (pt == pt1) {
569                         list_del_rcu(&pt->list);
570                         goto out;
571                 }
572         }
573
574         pr_warn("dev_remove_pack: %p not found\n", pt);
575 out:
576         spin_unlock(&ptype_lock);
577 }
578 EXPORT_SYMBOL(__dev_remove_pack);
579
580 /**
581  *      dev_remove_pack  - remove packet handler
582  *      @pt: packet type declaration
583  *
584  *      Remove a protocol handler that was previously added to the kernel
585  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
586  *      from the kernel lists and can be freed or reused once this function
587  *      returns.
588  *
589  *      This call sleeps to guarantee that no CPU is looking at the packet
590  *      type after return.
591  */
592 void dev_remove_pack(struct packet_type *pt)
593 {
594         __dev_remove_pack(pt);
595
596         synchronize_net();
597 }
598 EXPORT_SYMBOL(dev_remove_pack);
599
600
601 /**
602  *      dev_add_offload - register offload handlers
603  *      @po: protocol offload declaration
604  *
605  *      Add protocol offload handlers to the networking stack. The passed
606  *      &proto_offload is linked into kernel lists and may not be freed until
607  *      it has been removed from the kernel lists.
608  *
609  *      This call does not sleep therefore it can not
610  *      guarantee all CPU's that are in middle of receiving packets
611  *      will see the new offload handlers (until the next received packet).
612  */
613 void dev_add_offload(struct packet_offload *po)
614 {
615         struct packet_offload *elem;
616
617         spin_lock(&offload_lock);
618         list_for_each_entry(elem, &offload_base, list) {
619                 if (po->priority < elem->priority)
620                         break;
621         }
622         list_add_rcu(&po->list, elem->list.prev);
623         spin_unlock(&offload_lock);
624 }
625 EXPORT_SYMBOL(dev_add_offload);
626
627 /**
628  *      __dev_remove_offload     - remove offload handler
629  *      @po: packet offload declaration
630  *
631  *      Remove a protocol offload handler that was previously added to the
632  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
633  *      is removed from the kernel lists and can be freed or reused once this
634  *      function returns.
635  *
636  *      The packet type might still be in use by receivers
637  *      and must not be freed until after all the CPU's have gone
638  *      through a quiescent state.
639  */
640 static void __dev_remove_offload(struct packet_offload *po)
641 {
642         struct list_head *head = &offload_base;
643         struct packet_offload *po1;
644
645         spin_lock(&offload_lock);
646
647         list_for_each_entry(po1, head, list) {
648                 if (po == po1) {
649                         list_del_rcu(&po->list);
650                         goto out;
651                 }
652         }
653
654         pr_warn("dev_remove_offload: %p not found\n", po);
655 out:
656         spin_unlock(&offload_lock);
657 }
658
659 /**
660  *      dev_remove_offload       - remove packet offload handler
661  *      @po: packet offload declaration
662  *
663  *      Remove a packet offload handler that was previously added to the kernel
664  *      offload handlers by dev_add_offload(). The passed &offload_type is
665  *      removed from the kernel lists and can be freed or reused once this
666  *      function returns.
667  *
668  *      This call sleeps to guarantee that no CPU is looking at the packet
669  *      type after return.
670  */
671 void dev_remove_offload(struct packet_offload *po)
672 {
673         __dev_remove_offload(po);
674
675         synchronize_net();
676 }
677 EXPORT_SYMBOL(dev_remove_offload);
678
679 /*******************************************************************************
680  *
681  *                          Device Interface Subroutines
682  *
683  *******************************************************************************/
684
685 /**
686  *      dev_get_iflink  - get 'iflink' value of a interface
687  *      @dev: targeted interface
688  *
689  *      Indicates the ifindex the interface is linked to.
690  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
691  */
692
693 int dev_get_iflink(const struct net_device *dev)
694 {
695         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
696                 return dev->netdev_ops->ndo_get_iflink(dev);
697
698         return dev->ifindex;
699 }
700 EXPORT_SYMBOL(dev_get_iflink);
701
702 /**
703  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
704  *      @dev: targeted interface
705  *      @skb: The packet.
706  *
707  *      For better visibility of tunnel traffic OVS needs to retrieve
708  *      egress tunnel information for a packet. Following API allows
709  *      user to get this info.
710  */
711 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
712 {
713         struct ip_tunnel_info *info;
714
715         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
716                 return -EINVAL;
717
718         info = skb_tunnel_info_unclone(skb);
719         if (!info)
720                 return -ENOMEM;
721         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
722                 return -EINVAL;
723
724         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
725 }
726 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
727
728 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
729 {
730         int k = stack->num_paths++;
731
732         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
733                 return NULL;
734
735         return &stack->path[k];
736 }
737
738 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
739                           struct net_device_path_stack *stack)
740 {
741         const struct net_device *last_dev;
742         struct net_device_path_ctx ctx = {
743                 .dev    = dev,
744         };
745         struct net_device_path *path;
746         int ret = 0;
747
748         memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
749         stack->num_paths = 0;
750         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
751                 last_dev = ctx.dev;
752                 path = dev_fwd_path(stack);
753                 if (!path)
754                         return -1;
755
756                 memset(path, 0, sizeof(struct net_device_path));
757                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
758                 if (ret < 0)
759                         return -1;
760
761                 if (WARN_ON_ONCE(last_dev == ctx.dev))
762                         return -1;
763         }
764         path = dev_fwd_path(stack);
765         if (!path)
766                 return -1;
767         path->type = DEV_PATH_ETHERNET;
768         path->dev = ctx.dev;
769
770         return ret;
771 }
772 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
773
774 /**
775  *      __dev_get_by_name       - find a device by its name
776  *      @net: the applicable net namespace
777  *      @name: name to find
778  *
779  *      Find an interface by name. Must be called under RTNL semaphore
780  *      or @dev_base_lock. If the name is found a pointer to the device
781  *      is returned. If the name is not found then %NULL is returned. The
782  *      reference counters are not incremented so the caller must be
783  *      careful with locks.
784  */
785
786 struct net_device *__dev_get_by_name(struct net *net, const char *name)
787 {
788         struct netdev_name_node *node_name;
789
790         node_name = netdev_name_node_lookup(net, name);
791         return node_name ? node_name->dev : NULL;
792 }
793 EXPORT_SYMBOL(__dev_get_by_name);
794
795 /**
796  * dev_get_by_name_rcu  - find a device by its name
797  * @net: the applicable net namespace
798  * @name: name to find
799  *
800  * Find an interface by name.
801  * If the name is found a pointer to the device is returned.
802  * If the name is not found then %NULL is returned.
803  * The reference counters are not incremented so the caller must be
804  * careful with locks. The caller must hold RCU lock.
805  */
806
807 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
808 {
809         struct netdev_name_node *node_name;
810
811         node_name = netdev_name_node_lookup_rcu(net, name);
812         return node_name ? node_name->dev : NULL;
813 }
814 EXPORT_SYMBOL(dev_get_by_name_rcu);
815
816 /**
817  *      dev_get_by_name         - find a device by its name
818  *      @net: the applicable net namespace
819  *      @name: name to find
820  *
821  *      Find an interface by name. This can be called from any
822  *      context and does its own locking. The returned handle has
823  *      the usage count incremented and the caller must use dev_put() to
824  *      release it when it is no longer needed. %NULL is returned if no
825  *      matching device is found.
826  */
827
828 struct net_device *dev_get_by_name(struct net *net, const char *name)
829 {
830         struct net_device *dev;
831
832         rcu_read_lock();
833         dev = dev_get_by_name_rcu(net, name);
834         dev_hold(dev);
835         rcu_read_unlock();
836         return dev;
837 }
838 EXPORT_SYMBOL(dev_get_by_name);
839
840 /**
841  *      __dev_get_by_index - find a device by its ifindex
842  *      @net: the applicable net namespace
843  *      @ifindex: index of device
844  *
845  *      Search for an interface by index. Returns %NULL if the device
846  *      is not found or a pointer to the device. The device has not
847  *      had its reference counter increased so the caller must be careful
848  *      about locking. The caller must hold either the RTNL semaphore
849  *      or @dev_base_lock.
850  */
851
852 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
853 {
854         struct net_device *dev;
855         struct hlist_head *head = dev_index_hash(net, ifindex);
856
857         hlist_for_each_entry(dev, head, index_hlist)
858                 if (dev->ifindex == ifindex)
859                         return dev;
860
861         return NULL;
862 }
863 EXPORT_SYMBOL(__dev_get_by_index);
864
865 /**
866  *      dev_get_by_index_rcu - find a device by its ifindex
867  *      @net: the applicable net namespace
868  *      @ifindex: index of device
869  *
870  *      Search for an interface by index. Returns %NULL if the device
871  *      is not found or a pointer to the device. The device has not
872  *      had its reference counter increased so the caller must be careful
873  *      about locking. The caller must hold RCU lock.
874  */
875
876 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
877 {
878         struct net_device *dev;
879         struct hlist_head *head = dev_index_hash(net, ifindex);
880
881         hlist_for_each_entry_rcu(dev, head, index_hlist)
882                 if (dev->ifindex == ifindex)
883                         return dev;
884
885         return NULL;
886 }
887 EXPORT_SYMBOL(dev_get_by_index_rcu);
888
889
890 /**
891  *      dev_get_by_index - find a device by its ifindex
892  *      @net: the applicable net namespace
893  *      @ifindex: index of device
894  *
895  *      Search for an interface by index. Returns NULL if the device
896  *      is not found or a pointer to the device. The device returned has
897  *      had a reference added and the pointer is safe until the user calls
898  *      dev_put to indicate they have finished with it.
899  */
900
901 struct net_device *dev_get_by_index(struct net *net, int ifindex)
902 {
903         struct net_device *dev;
904
905         rcu_read_lock();
906         dev = dev_get_by_index_rcu(net, ifindex);
907         dev_hold(dev);
908         rcu_read_unlock();
909         return dev;
910 }
911 EXPORT_SYMBOL(dev_get_by_index);
912
913 /**
914  *      dev_get_by_napi_id - find a device by napi_id
915  *      @napi_id: ID of the NAPI struct
916  *
917  *      Search for an interface by NAPI ID. Returns %NULL if the device
918  *      is not found or a pointer to the device. The device has not had
919  *      its reference counter increased so the caller must be careful
920  *      about locking. The caller must hold RCU lock.
921  */
922
923 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
924 {
925         struct napi_struct *napi;
926
927         WARN_ON_ONCE(!rcu_read_lock_held());
928
929         if (napi_id < MIN_NAPI_ID)
930                 return NULL;
931
932         napi = napi_by_id(napi_id);
933
934         return napi ? napi->dev : NULL;
935 }
936 EXPORT_SYMBOL(dev_get_by_napi_id);
937
938 /**
939  *      netdev_get_name - get a netdevice name, knowing its ifindex.
940  *      @net: network namespace
941  *      @name: a pointer to the buffer where the name will be stored.
942  *      @ifindex: the ifindex of the interface to get the name from.
943  */
944 int netdev_get_name(struct net *net, char *name, int ifindex)
945 {
946         struct net_device *dev;
947         int ret;
948
949         down_read(&devnet_rename_sem);
950         rcu_read_lock();
951
952         dev = dev_get_by_index_rcu(net, ifindex);
953         if (!dev) {
954                 ret = -ENODEV;
955                 goto out;
956         }
957
958         strcpy(name, dev->name);
959
960         ret = 0;
961 out:
962         rcu_read_unlock();
963         up_read(&devnet_rename_sem);
964         return ret;
965 }
966
967 /**
968  *      dev_getbyhwaddr_rcu - find a device by its hardware address
969  *      @net: the applicable net namespace
970  *      @type: media type of device
971  *      @ha: hardware address
972  *
973  *      Search for an interface by MAC address. Returns NULL if the device
974  *      is not found or a pointer to the device.
975  *      The caller must hold RCU or RTNL.
976  *      The returned device has not had its ref count increased
977  *      and the caller must therefore be careful about locking
978  *
979  */
980
981 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
982                                        const char *ha)
983 {
984         struct net_device *dev;
985
986         for_each_netdev_rcu(net, dev)
987                 if (dev->type == type &&
988                     !memcmp(dev->dev_addr, ha, dev->addr_len))
989                         return dev;
990
991         return NULL;
992 }
993 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
994
995 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
996 {
997         struct net_device *dev, *ret = NULL;
998
999         rcu_read_lock();
1000         for_each_netdev_rcu(net, dev)
1001                 if (dev->type == type) {
1002                         dev_hold(dev);
1003                         ret = dev;
1004                         break;
1005                 }
1006         rcu_read_unlock();
1007         return ret;
1008 }
1009 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1010
1011 /**
1012  *      __dev_get_by_flags - find any device with given flags
1013  *      @net: the applicable net namespace
1014  *      @if_flags: IFF_* values
1015  *      @mask: bitmask of bits in if_flags to check
1016  *
1017  *      Search for any interface with the given flags. Returns NULL if a device
1018  *      is not found or a pointer to the device. Must be called inside
1019  *      rtnl_lock(), and result refcount is unchanged.
1020  */
1021
1022 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1023                                       unsigned short mask)
1024 {
1025         struct net_device *dev, *ret;
1026
1027         ASSERT_RTNL();
1028
1029         ret = NULL;
1030         for_each_netdev(net, dev) {
1031                 if (((dev->flags ^ if_flags) & mask) == 0) {
1032                         ret = dev;
1033                         break;
1034                 }
1035         }
1036         return ret;
1037 }
1038 EXPORT_SYMBOL(__dev_get_by_flags);
1039
1040 /**
1041  *      dev_valid_name - check if name is okay for network device
1042  *      @name: name string
1043  *
1044  *      Network device names need to be valid file names to
1045  *      allow sysfs to work.  We also disallow any kind of
1046  *      whitespace.
1047  */
1048 bool dev_valid_name(const char *name)
1049 {
1050         if (*name == '\0')
1051                 return false;
1052         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1053                 return false;
1054         if (!strcmp(name, ".") || !strcmp(name, ".."))
1055                 return false;
1056
1057         while (*name) {
1058                 if (*name == '/' || *name == ':' || isspace(*name))
1059                         return false;
1060                 name++;
1061         }
1062         return true;
1063 }
1064 EXPORT_SYMBOL(dev_valid_name);
1065
1066 /**
1067  *      __dev_alloc_name - allocate a name for a device
1068  *      @net: network namespace to allocate the device name in
1069  *      @name: name format string
1070  *      @buf:  scratch buffer and result name string
1071  *
1072  *      Passed a format string - eg "lt%d" it will try and find a suitable
1073  *      id. It scans list of devices to build up a free map, then chooses
1074  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1075  *      while allocating the name and adding the device in order to avoid
1076  *      duplicates.
1077  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1078  *      Returns the number of the unit assigned or a negative errno code.
1079  */
1080
1081 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1082 {
1083         int i = 0;
1084         const char *p;
1085         const int max_netdevices = 8*PAGE_SIZE;
1086         unsigned long *inuse;
1087         struct net_device *d;
1088
1089         if (!dev_valid_name(name))
1090                 return -EINVAL;
1091
1092         p = strchr(name, '%');
1093         if (p) {
1094                 /*
1095                  * Verify the string as this thing may have come from
1096                  * the user.  There must be either one "%d" and no other "%"
1097                  * characters.
1098                  */
1099                 if (p[1] != 'd' || strchr(p + 2, '%'))
1100                         return -EINVAL;
1101
1102                 /* Use one page as a bit array of possible slots */
1103                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1104                 if (!inuse)
1105                         return -ENOMEM;
1106
1107                 for_each_netdev(net, d) {
1108                         struct netdev_name_node *name_node;
1109                         list_for_each_entry(name_node, &d->name_node->list, list) {
1110                                 if (!sscanf(name_node->name, name, &i))
1111                                         continue;
1112                                 if (i < 0 || i >= max_netdevices)
1113                                         continue;
1114
1115                                 /*  avoid cases where sscanf is not exact inverse of printf */
1116                                 snprintf(buf, IFNAMSIZ, name, i);
1117                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1118                                         set_bit(i, inuse);
1119                         }
1120                         if (!sscanf(d->name, name, &i))
1121                                 continue;
1122                         if (i < 0 || i >= max_netdevices)
1123                                 continue;
1124
1125                         /*  avoid cases where sscanf is not exact inverse of printf */
1126                         snprintf(buf, IFNAMSIZ, name, i);
1127                         if (!strncmp(buf, d->name, IFNAMSIZ))
1128                                 set_bit(i, inuse);
1129                 }
1130
1131                 i = find_first_zero_bit(inuse, max_netdevices);
1132                 free_page((unsigned long) inuse);
1133         }
1134
1135         snprintf(buf, IFNAMSIZ, name, i);
1136         if (!__dev_get_by_name(net, buf))
1137                 return i;
1138
1139         /* It is possible to run out of possible slots
1140          * when the name is long and there isn't enough space left
1141          * for the digits, or if all bits are used.
1142          */
1143         return -ENFILE;
1144 }
1145
1146 static int dev_alloc_name_ns(struct net *net,
1147                              struct net_device *dev,
1148                              const char *name)
1149 {
1150         char buf[IFNAMSIZ];
1151         int ret;
1152
1153         BUG_ON(!net);
1154         ret = __dev_alloc_name(net, name, buf);
1155         if (ret >= 0)
1156                 strlcpy(dev->name, buf, IFNAMSIZ);
1157         return ret;
1158 }
1159
1160 /**
1161  *      dev_alloc_name - allocate a name for a device
1162  *      @dev: device
1163  *      @name: name format string
1164  *
1165  *      Passed a format string - eg "lt%d" it will try and find a suitable
1166  *      id. It scans list of devices to build up a free map, then chooses
1167  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1168  *      while allocating the name and adding the device in order to avoid
1169  *      duplicates.
1170  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1171  *      Returns the number of the unit assigned or a negative errno code.
1172  */
1173
1174 int dev_alloc_name(struct net_device *dev, const char *name)
1175 {
1176         return dev_alloc_name_ns(dev_net(dev), dev, name);
1177 }
1178 EXPORT_SYMBOL(dev_alloc_name);
1179
1180 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1181                               const char *name)
1182 {
1183         BUG_ON(!net);
1184
1185         if (!dev_valid_name(name))
1186                 return -EINVAL;
1187
1188         if (strchr(name, '%'))
1189                 return dev_alloc_name_ns(net, dev, name);
1190         else if (__dev_get_by_name(net, name))
1191                 return -EEXIST;
1192         else if (dev->name != name)
1193                 strlcpy(dev->name, name, IFNAMSIZ);
1194
1195         return 0;
1196 }
1197
1198 /**
1199  *      dev_change_name - change name of a device
1200  *      @dev: device
1201  *      @newname: name (or format string) must be at least IFNAMSIZ
1202  *
1203  *      Change name of a device, can pass format strings "eth%d".
1204  *      for wildcarding.
1205  */
1206 int dev_change_name(struct net_device *dev, const char *newname)
1207 {
1208         unsigned char old_assign_type;
1209         char oldname[IFNAMSIZ];
1210         int err = 0;
1211         int ret;
1212         struct net *net;
1213
1214         ASSERT_RTNL();
1215         BUG_ON(!dev_net(dev));
1216
1217         net = dev_net(dev);
1218
1219         /* Some auto-enslaved devices e.g. failover slaves are
1220          * special, as userspace might rename the device after
1221          * the interface had been brought up and running since
1222          * the point kernel initiated auto-enslavement. Allow
1223          * live name change even when these slave devices are
1224          * up and running.
1225          *
1226          * Typically, users of these auto-enslaving devices
1227          * don't actually care about slave name change, as
1228          * they are supposed to operate on master interface
1229          * directly.
1230          */
1231         if (dev->flags & IFF_UP &&
1232             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1233                 return -EBUSY;
1234
1235         down_write(&devnet_rename_sem);
1236
1237         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1238                 up_write(&devnet_rename_sem);
1239                 return 0;
1240         }
1241
1242         memcpy(oldname, dev->name, IFNAMSIZ);
1243
1244         err = dev_get_valid_name(net, dev, newname);
1245         if (err < 0) {
1246                 up_write(&devnet_rename_sem);
1247                 return err;
1248         }
1249
1250         if (oldname[0] && !strchr(oldname, '%'))
1251                 netdev_info(dev, "renamed from %s\n", oldname);
1252
1253         old_assign_type = dev->name_assign_type;
1254         dev->name_assign_type = NET_NAME_RENAMED;
1255
1256 rollback:
1257         ret = device_rename(&dev->dev, dev->name);
1258         if (ret) {
1259                 memcpy(dev->name, oldname, IFNAMSIZ);
1260                 dev->name_assign_type = old_assign_type;
1261                 up_write(&devnet_rename_sem);
1262                 return ret;
1263         }
1264
1265         up_write(&devnet_rename_sem);
1266
1267         netdev_adjacent_rename_links(dev, oldname);
1268
1269         write_lock_bh(&dev_base_lock);
1270         netdev_name_node_del(dev->name_node);
1271         write_unlock_bh(&dev_base_lock);
1272
1273         synchronize_rcu();
1274
1275         write_lock_bh(&dev_base_lock);
1276         netdev_name_node_add(net, dev->name_node);
1277         write_unlock_bh(&dev_base_lock);
1278
1279         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1280         ret = notifier_to_errno(ret);
1281
1282         if (ret) {
1283                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1284                 if (err >= 0) {
1285                         err = ret;
1286                         down_write(&devnet_rename_sem);
1287                         memcpy(dev->name, oldname, IFNAMSIZ);
1288                         memcpy(oldname, newname, IFNAMSIZ);
1289                         dev->name_assign_type = old_assign_type;
1290                         old_assign_type = NET_NAME_RENAMED;
1291                         goto rollback;
1292                 } else {
1293                         pr_err("%s: name change rollback failed: %d\n",
1294                                dev->name, ret);
1295                 }
1296         }
1297
1298         return err;
1299 }
1300
1301 /**
1302  *      dev_set_alias - change ifalias of a device
1303  *      @dev: device
1304  *      @alias: name up to IFALIASZ
1305  *      @len: limit of bytes to copy from info
1306  *
1307  *      Set ifalias for a device,
1308  */
1309 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1310 {
1311         struct dev_ifalias *new_alias = NULL;
1312
1313         if (len >= IFALIASZ)
1314                 return -EINVAL;
1315
1316         if (len) {
1317                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1318                 if (!new_alias)
1319                         return -ENOMEM;
1320
1321                 memcpy(new_alias->ifalias, alias, len);
1322                 new_alias->ifalias[len] = 0;
1323         }
1324
1325         mutex_lock(&ifalias_mutex);
1326         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1327                                         mutex_is_locked(&ifalias_mutex));
1328         mutex_unlock(&ifalias_mutex);
1329
1330         if (new_alias)
1331                 kfree_rcu(new_alias, rcuhead);
1332
1333         return len;
1334 }
1335 EXPORT_SYMBOL(dev_set_alias);
1336
1337 /**
1338  *      dev_get_alias - get ifalias of a device
1339  *      @dev: device
1340  *      @name: buffer to store name of ifalias
1341  *      @len: size of buffer
1342  *
1343  *      get ifalias for a device.  Caller must make sure dev cannot go
1344  *      away,  e.g. rcu read lock or own a reference count to device.
1345  */
1346 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1347 {
1348         const struct dev_ifalias *alias;
1349         int ret = 0;
1350
1351         rcu_read_lock();
1352         alias = rcu_dereference(dev->ifalias);
1353         if (alias)
1354                 ret = snprintf(name, len, "%s", alias->ifalias);
1355         rcu_read_unlock();
1356
1357         return ret;
1358 }
1359
1360 /**
1361  *      netdev_features_change - device changes features
1362  *      @dev: device to cause notification
1363  *
1364  *      Called to indicate a device has changed features.
1365  */
1366 void netdev_features_change(struct net_device *dev)
1367 {
1368         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1369 }
1370 EXPORT_SYMBOL(netdev_features_change);
1371
1372 /**
1373  *      netdev_state_change - device changes state
1374  *      @dev: device to cause notification
1375  *
1376  *      Called to indicate a device has changed state. This function calls
1377  *      the notifier chains for netdev_chain and sends a NEWLINK message
1378  *      to the routing socket.
1379  */
1380 void netdev_state_change(struct net_device *dev)
1381 {
1382         if (dev->flags & IFF_UP) {
1383                 struct netdev_notifier_change_info change_info = {
1384                         .info.dev = dev,
1385                 };
1386
1387                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1388                                               &change_info.info);
1389                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1390         }
1391 }
1392 EXPORT_SYMBOL(netdev_state_change);
1393
1394 /**
1395  * __netdev_notify_peers - notify network peers about existence of @dev,
1396  * to be called when rtnl lock is already held.
1397  * @dev: network device
1398  *
1399  * Generate traffic such that interested network peers are aware of
1400  * @dev, such as by generating a gratuitous ARP. This may be used when
1401  * a device wants to inform the rest of the network about some sort of
1402  * reconfiguration such as a failover event or virtual machine
1403  * migration.
1404  */
1405 void __netdev_notify_peers(struct net_device *dev)
1406 {
1407         ASSERT_RTNL();
1408         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1409         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1410 }
1411 EXPORT_SYMBOL(__netdev_notify_peers);
1412
1413 /**
1414  * netdev_notify_peers - notify network peers about existence of @dev
1415  * @dev: network device
1416  *
1417  * Generate traffic such that interested network peers are aware of
1418  * @dev, such as by generating a gratuitous ARP. This may be used when
1419  * a device wants to inform the rest of the network about some sort of
1420  * reconfiguration such as a failover event or virtual machine
1421  * migration.
1422  */
1423 void netdev_notify_peers(struct net_device *dev)
1424 {
1425         rtnl_lock();
1426         __netdev_notify_peers(dev);
1427         rtnl_unlock();
1428 }
1429 EXPORT_SYMBOL(netdev_notify_peers);
1430
1431 static int napi_threaded_poll(void *data);
1432
1433 static int napi_kthread_create(struct napi_struct *n)
1434 {
1435         int err = 0;
1436
1437         /* Create and wake up the kthread once to put it in
1438          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1439          * warning and work with loadavg.
1440          */
1441         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1442                                 n->dev->name, n->napi_id);
1443         if (IS_ERR(n->thread)) {
1444                 err = PTR_ERR(n->thread);
1445                 pr_err("kthread_run failed with err %d\n", err);
1446                 n->thread = NULL;
1447         }
1448
1449         return err;
1450 }
1451
1452 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1453 {
1454         const struct net_device_ops *ops = dev->netdev_ops;
1455         int ret;
1456
1457         ASSERT_RTNL();
1458
1459         if (!netif_device_present(dev)) {
1460                 /* may be detached because parent is runtime-suspended */
1461                 if (dev->dev.parent)
1462                         pm_runtime_resume(dev->dev.parent);
1463                 if (!netif_device_present(dev))
1464                         return -ENODEV;
1465         }
1466
1467         /* Block netpoll from trying to do any rx path servicing.
1468          * If we don't do this there is a chance ndo_poll_controller
1469          * or ndo_poll may be running while we open the device
1470          */
1471         netpoll_poll_disable(dev);
1472
1473         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1474         ret = notifier_to_errno(ret);
1475         if (ret)
1476                 return ret;
1477
1478         set_bit(__LINK_STATE_START, &dev->state);
1479
1480         if (ops->ndo_validate_addr)
1481                 ret = ops->ndo_validate_addr(dev);
1482
1483         if (!ret && ops->ndo_open)
1484                 ret = ops->ndo_open(dev);
1485
1486         netpoll_poll_enable(dev);
1487
1488         if (ret)
1489                 clear_bit(__LINK_STATE_START, &dev->state);
1490         else {
1491                 dev->flags |= IFF_UP;
1492                 dev_set_rx_mode(dev);
1493                 dev_activate(dev);
1494                 add_device_randomness(dev->dev_addr, dev->addr_len);
1495         }
1496
1497         return ret;
1498 }
1499
1500 /**
1501  *      dev_open        - prepare an interface for use.
1502  *      @dev: device to open
1503  *      @extack: netlink extended ack
1504  *
1505  *      Takes a device from down to up state. The device's private open
1506  *      function is invoked and then the multicast lists are loaded. Finally
1507  *      the device is moved into the up state and a %NETDEV_UP message is
1508  *      sent to the netdev notifier chain.
1509  *
1510  *      Calling this function on an active interface is a nop. On a failure
1511  *      a negative errno code is returned.
1512  */
1513 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1514 {
1515         int ret;
1516
1517         if (dev->flags & IFF_UP)
1518                 return 0;
1519
1520         ret = __dev_open(dev, extack);
1521         if (ret < 0)
1522                 return ret;
1523
1524         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1525         call_netdevice_notifiers(NETDEV_UP, dev);
1526
1527         return ret;
1528 }
1529 EXPORT_SYMBOL(dev_open);
1530
1531 static void __dev_close_many(struct list_head *head)
1532 {
1533         struct net_device *dev;
1534
1535         ASSERT_RTNL();
1536         might_sleep();
1537
1538         list_for_each_entry(dev, head, close_list) {
1539                 /* Temporarily disable netpoll until the interface is down */
1540                 netpoll_poll_disable(dev);
1541
1542                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1543
1544                 clear_bit(__LINK_STATE_START, &dev->state);
1545
1546                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1547                  * can be even on different cpu. So just clear netif_running().
1548                  *
1549                  * dev->stop() will invoke napi_disable() on all of it's
1550                  * napi_struct instances on this device.
1551                  */
1552                 smp_mb__after_atomic(); /* Commit netif_running(). */
1553         }
1554
1555         dev_deactivate_many(head);
1556
1557         list_for_each_entry(dev, head, close_list) {
1558                 const struct net_device_ops *ops = dev->netdev_ops;
1559
1560                 /*
1561                  *      Call the device specific close. This cannot fail.
1562                  *      Only if device is UP
1563                  *
1564                  *      We allow it to be called even after a DETACH hot-plug
1565                  *      event.
1566                  */
1567                 if (ops->ndo_stop)
1568                         ops->ndo_stop(dev);
1569
1570                 dev->flags &= ~IFF_UP;
1571                 netpoll_poll_enable(dev);
1572         }
1573 }
1574
1575 static void __dev_close(struct net_device *dev)
1576 {
1577         LIST_HEAD(single);
1578
1579         list_add(&dev->close_list, &single);
1580         __dev_close_many(&single);
1581         list_del(&single);
1582 }
1583
1584 void dev_close_many(struct list_head *head, bool unlink)
1585 {
1586         struct net_device *dev, *tmp;
1587
1588         /* Remove the devices that don't need to be closed */
1589         list_for_each_entry_safe(dev, tmp, head, close_list)
1590                 if (!(dev->flags & IFF_UP))
1591                         list_del_init(&dev->close_list);
1592
1593         __dev_close_many(head);
1594
1595         list_for_each_entry_safe(dev, tmp, head, close_list) {
1596                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1597                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1598                 if (unlink)
1599                         list_del_init(&dev->close_list);
1600         }
1601 }
1602 EXPORT_SYMBOL(dev_close_many);
1603
1604 /**
1605  *      dev_close - shutdown an interface.
1606  *      @dev: device to shutdown
1607  *
1608  *      This function moves an active device into down state. A
1609  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1610  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1611  *      chain.
1612  */
1613 void dev_close(struct net_device *dev)
1614 {
1615         if (dev->flags & IFF_UP) {
1616                 LIST_HEAD(single);
1617
1618                 list_add(&dev->close_list, &single);
1619                 dev_close_many(&single, true);
1620                 list_del(&single);
1621         }
1622 }
1623 EXPORT_SYMBOL(dev_close);
1624
1625
1626 /**
1627  *      dev_disable_lro - disable Large Receive Offload on a device
1628  *      @dev: device
1629  *
1630  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1631  *      called under RTNL.  This is needed if received packets may be
1632  *      forwarded to another interface.
1633  */
1634 void dev_disable_lro(struct net_device *dev)
1635 {
1636         struct net_device *lower_dev;
1637         struct list_head *iter;
1638
1639         dev->wanted_features &= ~NETIF_F_LRO;
1640         netdev_update_features(dev);
1641
1642         if (unlikely(dev->features & NETIF_F_LRO))
1643                 netdev_WARN(dev, "failed to disable LRO!\n");
1644
1645         netdev_for_each_lower_dev(dev, lower_dev, iter)
1646                 dev_disable_lro(lower_dev);
1647 }
1648 EXPORT_SYMBOL(dev_disable_lro);
1649
1650 /**
1651  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1652  *      @dev: device
1653  *
1654  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1655  *      called under RTNL.  This is needed if Generic XDP is installed on
1656  *      the device.
1657  */
1658 static void dev_disable_gro_hw(struct net_device *dev)
1659 {
1660         dev->wanted_features &= ~NETIF_F_GRO_HW;
1661         netdev_update_features(dev);
1662
1663         if (unlikely(dev->features & NETIF_F_GRO_HW))
1664                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1665 }
1666
1667 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1668 {
1669 #define N(val)                                          \
1670         case NETDEV_##val:                              \
1671                 return "NETDEV_" __stringify(val);
1672         switch (cmd) {
1673         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1674         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1675         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1676         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1677         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1678         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1679         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1680         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1681         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1682         N(PRE_CHANGEADDR)
1683         }
1684 #undef N
1685         return "UNKNOWN_NETDEV_EVENT";
1686 }
1687 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1688
1689 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1690                                    struct net_device *dev)
1691 {
1692         struct netdev_notifier_info info = {
1693                 .dev = dev,
1694         };
1695
1696         return nb->notifier_call(nb, val, &info);
1697 }
1698
1699 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1700                                              struct net_device *dev)
1701 {
1702         int err;
1703
1704         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1705         err = notifier_to_errno(err);
1706         if (err)
1707                 return err;
1708
1709         if (!(dev->flags & IFF_UP))
1710                 return 0;
1711
1712         call_netdevice_notifier(nb, NETDEV_UP, dev);
1713         return 0;
1714 }
1715
1716 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1717                                                 struct net_device *dev)
1718 {
1719         if (dev->flags & IFF_UP) {
1720                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1721                                         dev);
1722                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1723         }
1724         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1725 }
1726
1727 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1728                                                  struct net *net)
1729 {
1730         struct net_device *dev;
1731         int err;
1732
1733         for_each_netdev(net, dev) {
1734                 err = call_netdevice_register_notifiers(nb, dev);
1735                 if (err)
1736                         goto rollback;
1737         }
1738         return 0;
1739
1740 rollback:
1741         for_each_netdev_continue_reverse(net, dev)
1742                 call_netdevice_unregister_notifiers(nb, dev);
1743         return err;
1744 }
1745
1746 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1747                                                     struct net *net)
1748 {
1749         struct net_device *dev;
1750
1751         for_each_netdev(net, dev)
1752                 call_netdevice_unregister_notifiers(nb, dev);
1753 }
1754
1755 static int dev_boot_phase = 1;
1756
1757 /**
1758  * register_netdevice_notifier - register a network notifier block
1759  * @nb: notifier
1760  *
1761  * Register a notifier to be called when network device events occur.
1762  * The notifier passed is linked into the kernel structures and must
1763  * not be reused until it has been unregistered. A negative errno code
1764  * is returned on a failure.
1765  *
1766  * When registered all registration and up events are replayed
1767  * to the new notifier to allow device to have a race free
1768  * view of the network device list.
1769  */
1770
1771 int register_netdevice_notifier(struct notifier_block *nb)
1772 {
1773         struct net *net;
1774         int err;
1775
1776         /* Close race with setup_net() and cleanup_net() */
1777         down_write(&pernet_ops_rwsem);
1778         rtnl_lock();
1779         err = raw_notifier_chain_register(&netdev_chain, nb);
1780         if (err)
1781                 goto unlock;
1782         if (dev_boot_phase)
1783                 goto unlock;
1784         for_each_net(net) {
1785                 err = call_netdevice_register_net_notifiers(nb, net);
1786                 if (err)
1787                         goto rollback;
1788         }
1789
1790 unlock:
1791         rtnl_unlock();
1792         up_write(&pernet_ops_rwsem);
1793         return err;
1794
1795 rollback:
1796         for_each_net_continue_reverse(net)
1797                 call_netdevice_unregister_net_notifiers(nb, net);
1798
1799         raw_notifier_chain_unregister(&netdev_chain, nb);
1800         goto unlock;
1801 }
1802 EXPORT_SYMBOL(register_netdevice_notifier);
1803
1804 /**
1805  * unregister_netdevice_notifier - unregister a network notifier block
1806  * @nb: notifier
1807  *
1808  * Unregister a notifier previously registered by
1809  * register_netdevice_notifier(). The notifier is unlinked into the
1810  * kernel structures and may then be reused. A negative errno code
1811  * is returned on a failure.
1812  *
1813  * After unregistering unregister and down device events are synthesized
1814  * for all devices on the device list to the removed notifier to remove
1815  * the need for special case cleanup code.
1816  */
1817
1818 int unregister_netdevice_notifier(struct notifier_block *nb)
1819 {
1820         struct net *net;
1821         int err;
1822
1823         /* Close race with setup_net() and cleanup_net() */
1824         down_write(&pernet_ops_rwsem);
1825         rtnl_lock();
1826         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1827         if (err)
1828                 goto unlock;
1829
1830         for_each_net(net)
1831                 call_netdevice_unregister_net_notifiers(nb, net);
1832
1833 unlock:
1834         rtnl_unlock();
1835         up_write(&pernet_ops_rwsem);
1836         return err;
1837 }
1838 EXPORT_SYMBOL(unregister_netdevice_notifier);
1839
1840 static int __register_netdevice_notifier_net(struct net *net,
1841                                              struct notifier_block *nb,
1842                                              bool ignore_call_fail)
1843 {
1844         int err;
1845
1846         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1847         if (err)
1848                 return err;
1849         if (dev_boot_phase)
1850                 return 0;
1851
1852         err = call_netdevice_register_net_notifiers(nb, net);
1853         if (err && !ignore_call_fail)
1854                 goto chain_unregister;
1855
1856         return 0;
1857
1858 chain_unregister:
1859         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1860         return err;
1861 }
1862
1863 static int __unregister_netdevice_notifier_net(struct net *net,
1864                                                struct notifier_block *nb)
1865 {
1866         int err;
1867
1868         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1869         if (err)
1870                 return err;
1871
1872         call_netdevice_unregister_net_notifiers(nb, net);
1873         return 0;
1874 }
1875
1876 /**
1877  * register_netdevice_notifier_net - register a per-netns network notifier block
1878  * @net: network namespace
1879  * @nb: notifier
1880  *
1881  * Register a notifier to be called when network device events occur.
1882  * The notifier passed is linked into the kernel structures and must
1883  * not be reused until it has been unregistered. A negative errno code
1884  * is returned on a failure.
1885  *
1886  * When registered all registration and up events are replayed
1887  * to the new notifier to allow device to have a race free
1888  * view of the network device list.
1889  */
1890
1891 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1892 {
1893         int err;
1894
1895         rtnl_lock();
1896         err = __register_netdevice_notifier_net(net, nb, false);
1897         rtnl_unlock();
1898         return err;
1899 }
1900 EXPORT_SYMBOL(register_netdevice_notifier_net);
1901
1902 /**
1903  * unregister_netdevice_notifier_net - unregister a per-netns
1904  *                                     network notifier block
1905  * @net: network namespace
1906  * @nb: notifier
1907  *
1908  * Unregister a notifier previously registered by
1909  * register_netdevice_notifier(). The notifier is unlinked into the
1910  * kernel structures and may then be reused. A negative errno code
1911  * is returned on a failure.
1912  *
1913  * After unregistering unregister and down device events are synthesized
1914  * for all devices on the device list to the removed notifier to remove
1915  * the need for special case cleanup code.
1916  */
1917
1918 int unregister_netdevice_notifier_net(struct net *net,
1919                                       struct notifier_block *nb)
1920 {
1921         int err;
1922
1923         rtnl_lock();
1924         err = __unregister_netdevice_notifier_net(net, nb);
1925         rtnl_unlock();
1926         return err;
1927 }
1928 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1929
1930 int register_netdevice_notifier_dev_net(struct net_device *dev,
1931                                         struct notifier_block *nb,
1932                                         struct netdev_net_notifier *nn)
1933 {
1934         int err;
1935
1936         rtnl_lock();
1937         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1938         if (!err) {
1939                 nn->nb = nb;
1940                 list_add(&nn->list, &dev->net_notifier_list);
1941         }
1942         rtnl_unlock();
1943         return err;
1944 }
1945 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1946
1947 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1948                                           struct notifier_block *nb,
1949                                           struct netdev_net_notifier *nn)
1950 {
1951         int err;
1952
1953         rtnl_lock();
1954         list_del(&nn->list);
1955         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1956         rtnl_unlock();
1957         return err;
1958 }
1959 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1960
1961 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1962                                              struct net *net)
1963 {
1964         struct netdev_net_notifier *nn;
1965
1966         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1967                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1968                 __register_netdevice_notifier_net(net, nn->nb, true);
1969         }
1970 }
1971
1972 /**
1973  *      call_netdevice_notifiers_info - call all network notifier blocks
1974  *      @val: value passed unmodified to notifier function
1975  *      @info: notifier information data
1976  *
1977  *      Call all network notifier blocks.  Parameters and return value
1978  *      are as for raw_notifier_call_chain().
1979  */
1980
1981 static int call_netdevice_notifiers_info(unsigned long val,
1982                                          struct netdev_notifier_info *info)
1983 {
1984         struct net *net = dev_net(info->dev);
1985         int ret;
1986
1987         ASSERT_RTNL();
1988
1989         /* Run per-netns notifier block chain first, then run the global one.
1990          * Hopefully, one day, the global one is going to be removed after
1991          * all notifier block registrators get converted to be per-netns.
1992          */
1993         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1994         if (ret & NOTIFY_STOP_MASK)
1995                 return ret;
1996         return raw_notifier_call_chain(&netdev_chain, val, info);
1997 }
1998
1999 static int call_netdevice_notifiers_extack(unsigned long val,
2000                                            struct net_device *dev,
2001                                            struct netlink_ext_ack *extack)
2002 {
2003         struct netdev_notifier_info info = {
2004                 .dev = dev,
2005                 .extack = extack,
2006         };
2007
2008         return call_netdevice_notifiers_info(val, &info);
2009 }
2010
2011 /**
2012  *      call_netdevice_notifiers - call all network notifier blocks
2013  *      @val: value passed unmodified to notifier function
2014  *      @dev: net_device pointer passed unmodified to notifier function
2015  *
2016  *      Call all network notifier blocks.  Parameters and return value
2017  *      are as for raw_notifier_call_chain().
2018  */
2019
2020 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2021 {
2022         return call_netdevice_notifiers_extack(val, dev, NULL);
2023 }
2024 EXPORT_SYMBOL(call_netdevice_notifiers);
2025
2026 /**
2027  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2028  *      @val: value passed unmodified to notifier function
2029  *      @dev: net_device pointer passed unmodified to notifier function
2030  *      @arg: additional u32 argument passed to the notifier function
2031  *
2032  *      Call all network notifier blocks.  Parameters and return value
2033  *      are as for raw_notifier_call_chain().
2034  */
2035 static int call_netdevice_notifiers_mtu(unsigned long val,
2036                                         struct net_device *dev, u32 arg)
2037 {
2038         struct netdev_notifier_info_ext info = {
2039                 .info.dev = dev,
2040                 .ext.mtu = arg,
2041         };
2042
2043         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2044
2045         return call_netdevice_notifiers_info(val, &info.info);
2046 }
2047
2048 #ifdef CONFIG_NET_INGRESS
2049 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2050
2051 void net_inc_ingress_queue(void)
2052 {
2053         static_branch_inc(&ingress_needed_key);
2054 }
2055 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2056
2057 void net_dec_ingress_queue(void)
2058 {
2059         static_branch_dec(&ingress_needed_key);
2060 }
2061 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2062 #endif
2063
2064 #ifdef CONFIG_NET_EGRESS
2065 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2066
2067 void net_inc_egress_queue(void)
2068 {
2069         static_branch_inc(&egress_needed_key);
2070 }
2071 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2072
2073 void net_dec_egress_queue(void)
2074 {
2075         static_branch_dec(&egress_needed_key);
2076 }
2077 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2078 #endif
2079
2080 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2081 #ifdef CONFIG_JUMP_LABEL
2082 static atomic_t netstamp_needed_deferred;
2083 static atomic_t netstamp_wanted;
2084 static void netstamp_clear(struct work_struct *work)
2085 {
2086         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2087         int wanted;
2088
2089         wanted = atomic_add_return(deferred, &netstamp_wanted);
2090         if (wanted > 0)
2091                 static_branch_enable(&netstamp_needed_key);
2092         else
2093                 static_branch_disable(&netstamp_needed_key);
2094 }
2095 static DECLARE_WORK(netstamp_work, netstamp_clear);
2096 #endif
2097
2098 void net_enable_timestamp(void)
2099 {
2100 #ifdef CONFIG_JUMP_LABEL
2101         int wanted;
2102
2103         while (1) {
2104                 wanted = atomic_read(&netstamp_wanted);
2105                 if (wanted <= 0)
2106                         break;
2107                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2108                         return;
2109         }
2110         atomic_inc(&netstamp_needed_deferred);
2111         schedule_work(&netstamp_work);
2112 #else
2113         static_branch_inc(&netstamp_needed_key);
2114 #endif
2115 }
2116 EXPORT_SYMBOL(net_enable_timestamp);
2117
2118 void net_disable_timestamp(void)
2119 {
2120 #ifdef CONFIG_JUMP_LABEL
2121         int wanted;
2122
2123         while (1) {
2124                 wanted = atomic_read(&netstamp_wanted);
2125                 if (wanted <= 1)
2126                         break;
2127                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2128                         return;
2129         }
2130         atomic_dec(&netstamp_needed_deferred);
2131         schedule_work(&netstamp_work);
2132 #else
2133         static_branch_dec(&netstamp_needed_key);
2134 #endif
2135 }
2136 EXPORT_SYMBOL(net_disable_timestamp);
2137
2138 static inline void net_timestamp_set(struct sk_buff *skb)
2139 {
2140         skb->tstamp = 0;
2141         if (static_branch_unlikely(&netstamp_needed_key))
2142                 __net_timestamp(skb);
2143 }
2144
2145 #define net_timestamp_check(COND, SKB)                          \
2146         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2147                 if ((COND) && !(SKB)->tstamp)                   \
2148                         __net_timestamp(SKB);                   \
2149         }                                                       \
2150
2151 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2152 {
2153         return __is_skb_forwardable(dev, skb, true);
2154 }
2155 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2156
2157 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2158                               bool check_mtu)
2159 {
2160         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2161
2162         if (likely(!ret)) {
2163                 skb->protocol = eth_type_trans(skb, dev);
2164                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2165         }
2166
2167         return ret;
2168 }
2169
2170 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2171 {
2172         return __dev_forward_skb2(dev, skb, true);
2173 }
2174 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2175
2176 /**
2177  * dev_forward_skb - loopback an skb to another netif
2178  *
2179  * @dev: destination network device
2180  * @skb: buffer to forward
2181  *
2182  * return values:
2183  *      NET_RX_SUCCESS  (no congestion)
2184  *      NET_RX_DROP     (packet was dropped, but freed)
2185  *
2186  * dev_forward_skb can be used for injecting an skb from the
2187  * start_xmit function of one device into the receive queue
2188  * of another device.
2189  *
2190  * The receiving device may be in another namespace, so
2191  * we have to clear all information in the skb that could
2192  * impact namespace isolation.
2193  */
2194 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2195 {
2196         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2197 }
2198 EXPORT_SYMBOL_GPL(dev_forward_skb);
2199
2200 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2201 {
2202         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2203 }
2204
2205 static inline int deliver_skb(struct sk_buff *skb,
2206                               struct packet_type *pt_prev,
2207                               struct net_device *orig_dev)
2208 {
2209         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2210                 return -ENOMEM;
2211         refcount_inc(&skb->users);
2212         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2213 }
2214
2215 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2216                                           struct packet_type **pt,
2217                                           struct net_device *orig_dev,
2218                                           __be16 type,
2219                                           struct list_head *ptype_list)
2220 {
2221         struct packet_type *ptype, *pt_prev = *pt;
2222
2223         list_for_each_entry_rcu(ptype, ptype_list, list) {
2224                 if (ptype->type != type)
2225                         continue;
2226                 if (pt_prev)
2227                         deliver_skb(skb, pt_prev, orig_dev);
2228                 pt_prev = ptype;
2229         }
2230         *pt = pt_prev;
2231 }
2232
2233 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2234 {
2235         if (!ptype->af_packet_priv || !skb->sk)
2236                 return false;
2237
2238         if (ptype->id_match)
2239                 return ptype->id_match(ptype, skb->sk);
2240         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2241                 return true;
2242
2243         return false;
2244 }
2245
2246 /**
2247  * dev_nit_active - return true if any network interface taps are in use
2248  *
2249  * @dev: network device to check for the presence of taps
2250  */
2251 bool dev_nit_active(struct net_device *dev)
2252 {
2253         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2254 }
2255 EXPORT_SYMBOL_GPL(dev_nit_active);
2256
2257 /*
2258  *      Support routine. Sends outgoing frames to any network
2259  *      taps currently in use.
2260  */
2261
2262 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2263 {
2264         struct packet_type *ptype;
2265         struct sk_buff *skb2 = NULL;
2266         struct packet_type *pt_prev = NULL;
2267         struct list_head *ptype_list = &ptype_all;
2268
2269         rcu_read_lock();
2270 again:
2271         list_for_each_entry_rcu(ptype, ptype_list, list) {
2272                 if (ptype->ignore_outgoing)
2273                         continue;
2274
2275                 /* Never send packets back to the socket
2276                  * they originated from - MvS (miquels@drinkel.ow.org)
2277                  */
2278                 if (skb_loop_sk(ptype, skb))
2279                         continue;
2280
2281                 if (pt_prev) {
2282                         deliver_skb(skb2, pt_prev, skb->dev);
2283                         pt_prev = ptype;
2284                         continue;
2285                 }
2286
2287                 /* need to clone skb, done only once */
2288                 skb2 = skb_clone(skb, GFP_ATOMIC);
2289                 if (!skb2)
2290                         goto out_unlock;
2291
2292                 net_timestamp_set(skb2);
2293
2294                 /* skb->nh should be correctly
2295                  * set by sender, so that the second statement is
2296                  * just protection against buggy protocols.
2297                  */
2298                 skb_reset_mac_header(skb2);
2299
2300                 if (skb_network_header(skb2) < skb2->data ||
2301                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2302                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2303                                              ntohs(skb2->protocol),
2304                                              dev->name);
2305                         skb_reset_network_header(skb2);
2306                 }
2307
2308                 skb2->transport_header = skb2->network_header;
2309                 skb2->pkt_type = PACKET_OUTGOING;
2310                 pt_prev = ptype;
2311         }
2312
2313         if (ptype_list == &ptype_all) {
2314                 ptype_list = &dev->ptype_all;
2315                 goto again;
2316         }
2317 out_unlock:
2318         if (pt_prev) {
2319                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2320                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2321                 else
2322                         kfree_skb(skb2);
2323         }
2324         rcu_read_unlock();
2325 }
2326 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2327
2328 /**
2329  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2330  * @dev: Network device
2331  * @txq: number of queues available
2332  *
2333  * If real_num_tx_queues is changed the tc mappings may no longer be
2334  * valid. To resolve this verify the tc mapping remains valid and if
2335  * not NULL the mapping. With no priorities mapping to this
2336  * offset/count pair it will no longer be used. In the worst case TC0
2337  * is invalid nothing can be done so disable priority mappings. If is
2338  * expected that drivers will fix this mapping if they can before
2339  * calling netif_set_real_num_tx_queues.
2340  */
2341 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2342 {
2343         int i;
2344         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2345
2346         /* If TC0 is invalidated disable TC mapping */
2347         if (tc->offset + tc->count > txq) {
2348                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2349                 dev->num_tc = 0;
2350                 return;
2351         }
2352
2353         /* Invalidated prio to tc mappings set to TC0 */
2354         for (i = 1; i < TC_BITMASK + 1; i++) {
2355                 int q = netdev_get_prio_tc_map(dev, i);
2356
2357                 tc = &dev->tc_to_txq[q];
2358                 if (tc->offset + tc->count > txq) {
2359                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2360                                 i, q);
2361                         netdev_set_prio_tc_map(dev, i, 0);
2362                 }
2363         }
2364 }
2365
2366 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2367 {
2368         if (dev->num_tc) {
2369                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2370                 int i;
2371
2372                 /* walk through the TCs and see if it falls into any of them */
2373                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2374                         if ((txq - tc->offset) < tc->count)
2375                                 return i;
2376                 }
2377
2378                 /* didn't find it, just return -1 to indicate no match */
2379                 return -1;
2380         }
2381
2382         return 0;
2383 }
2384 EXPORT_SYMBOL(netdev_txq_to_tc);
2385
2386 #ifdef CONFIG_XPS
2387 static struct static_key xps_needed __read_mostly;
2388 static struct static_key xps_rxqs_needed __read_mostly;
2389 static DEFINE_MUTEX(xps_map_mutex);
2390 #define xmap_dereference(P)             \
2391         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2392
2393 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2394                              struct xps_dev_maps *old_maps, int tci, u16 index)
2395 {
2396         struct xps_map *map = NULL;
2397         int pos;
2398
2399         if (dev_maps)
2400                 map = xmap_dereference(dev_maps->attr_map[tci]);
2401         if (!map)
2402                 return false;
2403
2404         for (pos = map->len; pos--;) {
2405                 if (map->queues[pos] != index)
2406                         continue;
2407
2408                 if (map->len > 1) {
2409                         map->queues[pos] = map->queues[--map->len];
2410                         break;
2411                 }
2412
2413                 if (old_maps)
2414                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2415                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2416                 kfree_rcu(map, rcu);
2417                 return false;
2418         }
2419
2420         return true;
2421 }
2422
2423 static bool remove_xps_queue_cpu(struct net_device *dev,
2424                                  struct xps_dev_maps *dev_maps,
2425                                  int cpu, u16 offset, u16 count)
2426 {
2427         int num_tc = dev_maps->num_tc;
2428         bool active = false;
2429         int tci;
2430
2431         for (tci = cpu * num_tc; num_tc--; tci++) {
2432                 int i, j;
2433
2434                 for (i = count, j = offset; i--; j++) {
2435                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2436                                 break;
2437                 }
2438
2439                 active |= i < 0;
2440         }
2441
2442         return active;
2443 }
2444
2445 static void reset_xps_maps(struct net_device *dev,
2446                            struct xps_dev_maps *dev_maps,
2447                            enum xps_map_type type)
2448 {
2449         static_key_slow_dec_cpuslocked(&xps_needed);
2450         if (type == XPS_RXQS)
2451                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2452
2453         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2454
2455         kfree_rcu(dev_maps, rcu);
2456 }
2457
2458 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2459                            u16 offset, u16 count)
2460 {
2461         struct xps_dev_maps *dev_maps;
2462         bool active = false;
2463         int i, j;
2464
2465         dev_maps = xmap_dereference(dev->xps_maps[type]);
2466         if (!dev_maps)
2467                 return;
2468
2469         for (j = 0; j < dev_maps->nr_ids; j++)
2470                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2471         if (!active)
2472                 reset_xps_maps(dev, dev_maps, type);
2473
2474         if (type == XPS_CPUS) {
2475                 for (i = offset + (count - 1); count--; i--)
2476                         netdev_queue_numa_node_write(
2477                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2478         }
2479 }
2480
2481 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2482                                    u16 count)
2483 {
2484         if (!static_key_false(&xps_needed))
2485                 return;
2486
2487         cpus_read_lock();
2488         mutex_lock(&xps_map_mutex);
2489
2490         if (static_key_false(&xps_rxqs_needed))
2491                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2492
2493         clean_xps_maps(dev, XPS_CPUS, offset, count);
2494
2495         mutex_unlock(&xps_map_mutex);
2496         cpus_read_unlock();
2497 }
2498
2499 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2500 {
2501         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2502 }
2503
2504 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2505                                       u16 index, bool is_rxqs_map)
2506 {
2507         struct xps_map *new_map;
2508         int alloc_len = XPS_MIN_MAP_ALLOC;
2509         int i, pos;
2510
2511         for (pos = 0; map && pos < map->len; pos++) {
2512                 if (map->queues[pos] != index)
2513                         continue;
2514                 return map;
2515         }
2516
2517         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2518         if (map) {
2519                 if (pos < map->alloc_len)
2520                         return map;
2521
2522                 alloc_len = map->alloc_len * 2;
2523         }
2524
2525         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2526          *  map
2527          */
2528         if (is_rxqs_map)
2529                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2530         else
2531                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2532                                        cpu_to_node(attr_index));
2533         if (!new_map)
2534                 return NULL;
2535
2536         for (i = 0; i < pos; i++)
2537                 new_map->queues[i] = map->queues[i];
2538         new_map->alloc_len = alloc_len;
2539         new_map->len = pos;
2540
2541         return new_map;
2542 }
2543
2544 /* Copy xps maps at a given index */
2545 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2546                               struct xps_dev_maps *new_dev_maps, int index,
2547                               int tc, bool skip_tc)
2548 {
2549         int i, tci = index * dev_maps->num_tc;
2550         struct xps_map *map;
2551
2552         /* copy maps belonging to foreign traffic classes */
2553         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2554                 if (i == tc && skip_tc)
2555                         continue;
2556
2557                 /* fill in the new device map from the old device map */
2558                 map = xmap_dereference(dev_maps->attr_map[tci]);
2559                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2560         }
2561 }
2562
2563 /* Must be called under cpus_read_lock */
2564 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2565                           u16 index, enum xps_map_type type)
2566 {
2567         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2568         const unsigned long *online_mask = NULL;
2569         bool active = false, copy = false;
2570         int i, j, tci, numa_node_id = -2;
2571         int maps_sz, num_tc = 1, tc = 0;
2572         struct xps_map *map, *new_map;
2573         unsigned int nr_ids;
2574
2575         if (dev->num_tc) {
2576                 /* Do not allow XPS on subordinate device directly */
2577                 num_tc = dev->num_tc;
2578                 if (num_tc < 0)
2579                         return -EINVAL;
2580
2581                 /* If queue belongs to subordinate dev use its map */
2582                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2583
2584                 tc = netdev_txq_to_tc(dev, index);
2585                 if (tc < 0)
2586                         return -EINVAL;
2587         }
2588
2589         mutex_lock(&xps_map_mutex);
2590
2591         dev_maps = xmap_dereference(dev->xps_maps[type]);
2592         if (type == XPS_RXQS) {
2593                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2594                 nr_ids = dev->num_rx_queues;
2595         } else {
2596                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2597                 if (num_possible_cpus() > 1)
2598                         online_mask = cpumask_bits(cpu_online_mask);
2599                 nr_ids = nr_cpu_ids;
2600         }
2601
2602         if (maps_sz < L1_CACHE_BYTES)
2603                 maps_sz = L1_CACHE_BYTES;
2604
2605         /* The old dev_maps could be larger or smaller than the one we're
2606          * setting up now, as dev->num_tc or nr_ids could have been updated in
2607          * between. We could try to be smart, but let's be safe instead and only
2608          * copy foreign traffic classes if the two map sizes match.
2609          */
2610         if (dev_maps &&
2611             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2612                 copy = true;
2613
2614         /* allocate memory for queue storage */
2615         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2616              j < nr_ids;) {
2617                 if (!new_dev_maps) {
2618                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2619                         if (!new_dev_maps) {
2620                                 mutex_unlock(&xps_map_mutex);
2621                                 return -ENOMEM;
2622                         }
2623
2624                         new_dev_maps->nr_ids = nr_ids;
2625                         new_dev_maps->num_tc = num_tc;
2626                 }
2627
2628                 tci = j * num_tc + tc;
2629                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2630
2631                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2632                 if (!map)
2633                         goto error;
2634
2635                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2636         }
2637
2638         if (!new_dev_maps)
2639                 goto out_no_new_maps;
2640
2641         if (!dev_maps) {
2642                 /* Increment static keys at most once per type */
2643                 static_key_slow_inc_cpuslocked(&xps_needed);
2644                 if (type == XPS_RXQS)
2645                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2646         }
2647
2648         for (j = 0; j < nr_ids; j++) {
2649                 bool skip_tc = false;
2650
2651                 tci = j * num_tc + tc;
2652                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2653                     netif_attr_test_online(j, online_mask, nr_ids)) {
2654                         /* add tx-queue to CPU/rx-queue maps */
2655                         int pos = 0;
2656
2657                         skip_tc = true;
2658
2659                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2660                         while ((pos < map->len) && (map->queues[pos] != index))
2661                                 pos++;
2662
2663                         if (pos == map->len)
2664                                 map->queues[map->len++] = index;
2665 #ifdef CONFIG_NUMA
2666                         if (type == XPS_CPUS) {
2667                                 if (numa_node_id == -2)
2668                                         numa_node_id = cpu_to_node(j);
2669                                 else if (numa_node_id != cpu_to_node(j))
2670                                         numa_node_id = -1;
2671                         }
2672 #endif
2673                 }
2674
2675                 if (copy)
2676                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2677                                           skip_tc);
2678         }
2679
2680         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2681
2682         /* Cleanup old maps */
2683         if (!dev_maps)
2684                 goto out_no_old_maps;
2685
2686         for (j = 0; j < dev_maps->nr_ids; j++) {
2687                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2688                         map = xmap_dereference(dev_maps->attr_map[tci]);
2689                         if (!map)
2690                                 continue;
2691
2692                         if (copy) {
2693                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2694                                 if (map == new_map)
2695                                         continue;
2696                         }
2697
2698                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2699                         kfree_rcu(map, rcu);
2700                 }
2701         }
2702
2703         old_dev_maps = dev_maps;
2704
2705 out_no_old_maps:
2706         dev_maps = new_dev_maps;
2707         active = true;
2708
2709 out_no_new_maps:
2710         if (type == XPS_CPUS)
2711                 /* update Tx queue numa node */
2712                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2713                                              (numa_node_id >= 0) ?
2714                                              numa_node_id : NUMA_NO_NODE);
2715
2716         if (!dev_maps)
2717                 goto out_no_maps;
2718
2719         /* removes tx-queue from unused CPUs/rx-queues */
2720         for (j = 0; j < dev_maps->nr_ids; j++) {
2721                 tci = j * dev_maps->num_tc;
2722
2723                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2724                         if (i == tc &&
2725                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2726                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2727                                 continue;
2728
2729                         active |= remove_xps_queue(dev_maps,
2730                                                    copy ? old_dev_maps : NULL,
2731                                                    tci, index);
2732                 }
2733         }
2734
2735         if (old_dev_maps)
2736                 kfree_rcu(old_dev_maps, rcu);
2737
2738         /* free map if not active */
2739         if (!active)
2740                 reset_xps_maps(dev, dev_maps, type);
2741
2742 out_no_maps:
2743         mutex_unlock(&xps_map_mutex);
2744
2745         return 0;
2746 error:
2747         /* remove any maps that we added */
2748         for (j = 0; j < nr_ids; j++) {
2749                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2750                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2751                         map = copy ?
2752                               xmap_dereference(dev_maps->attr_map[tci]) :
2753                               NULL;
2754                         if (new_map && new_map != map)
2755                                 kfree(new_map);
2756                 }
2757         }
2758
2759         mutex_unlock(&xps_map_mutex);
2760
2761         kfree(new_dev_maps);
2762         return -ENOMEM;
2763 }
2764 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2765
2766 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2767                         u16 index)
2768 {
2769         int ret;
2770
2771         cpus_read_lock();
2772         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2773         cpus_read_unlock();
2774
2775         return ret;
2776 }
2777 EXPORT_SYMBOL(netif_set_xps_queue);
2778
2779 #endif
2780 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2781 {
2782         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2783
2784         /* Unbind any subordinate channels */
2785         while (txq-- != &dev->_tx[0]) {
2786                 if (txq->sb_dev)
2787                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2788         }
2789 }
2790
2791 void netdev_reset_tc(struct net_device *dev)
2792 {
2793 #ifdef CONFIG_XPS
2794         netif_reset_xps_queues_gt(dev, 0);
2795 #endif
2796         netdev_unbind_all_sb_channels(dev);
2797
2798         /* Reset TC configuration of device */
2799         dev->num_tc = 0;
2800         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2801         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2802 }
2803 EXPORT_SYMBOL(netdev_reset_tc);
2804
2805 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2806 {
2807         if (tc >= dev->num_tc)
2808                 return -EINVAL;
2809
2810 #ifdef CONFIG_XPS
2811         netif_reset_xps_queues(dev, offset, count);
2812 #endif
2813         dev->tc_to_txq[tc].count = count;
2814         dev->tc_to_txq[tc].offset = offset;
2815         return 0;
2816 }
2817 EXPORT_SYMBOL(netdev_set_tc_queue);
2818
2819 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2820 {
2821         if (num_tc > TC_MAX_QUEUE)
2822                 return -EINVAL;
2823
2824 #ifdef CONFIG_XPS
2825         netif_reset_xps_queues_gt(dev, 0);
2826 #endif
2827         netdev_unbind_all_sb_channels(dev);
2828
2829         dev->num_tc = num_tc;
2830         return 0;
2831 }
2832 EXPORT_SYMBOL(netdev_set_num_tc);
2833
2834 void netdev_unbind_sb_channel(struct net_device *dev,
2835                               struct net_device *sb_dev)
2836 {
2837         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2838
2839 #ifdef CONFIG_XPS
2840         netif_reset_xps_queues_gt(sb_dev, 0);
2841 #endif
2842         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2843         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2844
2845         while (txq-- != &dev->_tx[0]) {
2846                 if (txq->sb_dev == sb_dev)
2847                         txq->sb_dev = NULL;
2848         }
2849 }
2850 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2851
2852 int netdev_bind_sb_channel_queue(struct net_device *dev,
2853                                  struct net_device *sb_dev,
2854                                  u8 tc, u16 count, u16 offset)
2855 {
2856         /* Make certain the sb_dev and dev are already configured */
2857         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2858                 return -EINVAL;
2859
2860         /* We cannot hand out queues we don't have */
2861         if ((offset + count) > dev->real_num_tx_queues)
2862                 return -EINVAL;
2863
2864         /* Record the mapping */
2865         sb_dev->tc_to_txq[tc].count = count;
2866         sb_dev->tc_to_txq[tc].offset = offset;
2867
2868         /* Provide a way for Tx queue to find the tc_to_txq map or
2869          * XPS map for itself.
2870          */
2871         while (count--)
2872                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2873
2874         return 0;
2875 }
2876 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2877
2878 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2879 {
2880         /* Do not use a multiqueue device to represent a subordinate channel */
2881         if (netif_is_multiqueue(dev))
2882                 return -ENODEV;
2883
2884         /* We allow channels 1 - 32767 to be used for subordinate channels.
2885          * Channel 0 is meant to be "native" mode and used only to represent
2886          * the main root device. We allow writing 0 to reset the device back
2887          * to normal mode after being used as a subordinate channel.
2888          */
2889         if (channel > S16_MAX)
2890                 return -EINVAL;
2891
2892         dev->num_tc = -channel;
2893
2894         return 0;
2895 }
2896 EXPORT_SYMBOL(netdev_set_sb_channel);
2897
2898 /*
2899  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2900  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2901  */
2902 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2903 {
2904         bool disabling;
2905         int rc;
2906
2907         disabling = txq < dev->real_num_tx_queues;
2908
2909         if (txq < 1 || txq > dev->num_tx_queues)
2910                 return -EINVAL;
2911
2912         if (dev->reg_state == NETREG_REGISTERED ||
2913             dev->reg_state == NETREG_UNREGISTERING) {
2914                 ASSERT_RTNL();
2915
2916                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2917                                                   txq);
2918                 if (rc)
2919                         return rc;
2920
2921                 if (dev->num_tc)
2922                         netif_setup_tc(dev, txq);
2923
2924                 dev_qdisc_change_real_num_tx(dev, txq);
2925
2926                 dev->real_num_tx_queues = txq;
2927
2928                 if (disabling) {
2929                         synchronize_net();
2930                         qdisc_reset_all_tx_gt(dev, txq);
2931 #ifdef CONFIG_XPS
2932                         netif_reset_xps_queues_gt(dev, txq);
2933 #endif
2934                 }
2935         } else {
2936                 dev->real_num_tx_queues = txq;
2937         }
2938
2939         return 0;
2940 }
2941 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2942
2943 #ifdef CONFIG_SYSFS
2944 /**
2945  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2946  *      @dev: Network device
2947  *      @rxq: Actual number of RX queues
2948  *
2949  *      This must be called either with the rtnl_lock held or before
2950  *      registration of the net device.  Returns 0 on success, or a
2951  *      negative error code.  If called before registration, it always
2952  *      succeeds.
2953  */
2954 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2955 {
2956         int rc;
2957
2958         if (rxq < 1 || rxq > dev->num_rx_queues)
2959                 return -EINVAL;
2960
2961         if (dev->reg_state == NETREG_REGISTERED) {
2962                 ASSERT_RTNL();
2963
2964                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2965                                                   rxq);
2966                 if (rc)
2967                         return rc;
2968         }
2969
2970         dev->real_num_rx_queues = rxq;
2971         return 0;
2972 }
2973 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2974 #endif
2975
2976 /**
2977  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2978  *      @dev: Network device
2979  *      @txq: Actual number of TX queues
2980  *      @rxq: Actual number of RX queues
2981  *
2982  *      Set the real number of both TX and RX queues.
2983  *      Does nothing if the number of queues is already correct.
2984  */
2985 int netif_set_real_num_queues(struct net_device *dev,
2986                               unsigned int txq, unsigned int rxq)
2987 {
2988         unsigned int old_rxq = dev->real_num_rx_queues;
2989         int err;
2990
2991         if (txq < 1 || txq > dev->num_tx_queues ||
2992             rxq < 1 || rxq > dev->num_rx_queues)
2993                 return -EINVAL;
2994
2995         /* Start from increases, so the error path only does decreases -
2996          * decreases can't fail.
2997          */
2998         if (rxq > dev->real_num_rx_queues) {
2999                 err = netif_set_real_num_rx_queues(dev, rxq);
3000                 if (err)
3001                         return err;
3002         }
3003         if (txq > dev->real_num_tx_queues) {
3004                 err = netif_set_real_num_tx_queues(dev, txq);
3005                 if (err)
3006                         goto undo_rx;
3007         }
3008         if (rxq < dev->real_num_rx_queues)
3009                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3010         if (txq < dev->real_num_tx_queues)
3011                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3012
3013         return 0;
3014 undo_rx:
3015         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3016         return err;
3017 }
3018 EXPORT_SYMBOL(netif_set_real_num_queues);
3019
3020 /**
3021  * netif_get_num_default_rss_queues - default number of RSS queues
3022  *
3023  * This routine should set an upper limit on the number of RSS queues
3024  * used by default by multiqueue devices.
3025  */
3026 int netif_get_num_default_rss_queues(void)
3027 {
3028         return is_kdump_kernel() ?
3029                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3030 }
3031 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3032
3033 static void __netif_reschedule(struct Qdisc *q)
3034 {
3035         struct softnet_data *sd;
3036         unsigned long flags;
3037
3038         local_irq_save(flags);
3039         sd = this_cpu_ptr(&softnet_data);
3040         q->next_sched = NULL;
3041         *sd->output_queue_tailp = q;
3042         sd->output_queue_tailp = &q->next_sched;
3043         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3044         local_irq_restore(flags);
3045 }
3046
3047 void __netif_schedule(struct Qdisc *q)
3048 {
3049         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3050                 __netif_reschedule(q);
3051 }
3052 EXPORT_SYMBOL(__netif_schedule);
3053
3054 struct dev_kfree_skb_cb {
3055         enum skb_free_reason reason;
3056 };
3057
3058 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3059 {
3060         return (struct dev_kfree_skb_cb *)skb->cb;
3061 }
3062
3063 void netif_schedule_queue(struct netdev_queue *txq)
3064 {
3065         rcu_read_lock();
3066         if (!netif_xmit_stopped(txq)) {
3067                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3068
3069                 __netif_schedule(q);
3070         }
3071         rcu_read_unlock();
3072 }
3073 EXPORT_SYMBOL(netif_schedule_queue);
3074
3075 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3076 {
3077         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3078                 struct Qdisc *q;
3079
3080                 rcu_read_lock();
3081                 q = rcu_dereference(dev_queue->qdisc);
3082                 __netif_schedule(q);
3083                 rcu_read_unlock();
3084         }
3085 }
3086 EXPORT_SYMBOL(netif_tx_wake_queue);
3087
3088 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3089 {
3090         unsigned long flags;
3091
3092         if (unlikely(!skb))
3093                 return;
3094
3095         if (likely(refcount_read(&skb->users) == 1)) {
3096                 smp_rmb();
3097                 refcount_set(&skb->users, 0);
3098         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3099                 return;
3100         }
3101         get_kfree_skb_cb(skb)->reason = reason;
3102         local_irq_save(flags);
3103         skb->next = __this_cpu_read(softnet_data.completion_queue);
3104         __this_cpu_write(softnet_data.completion_queue, skb);
3105         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3106         local_irq_restore(flags);
3107 }
3108 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3109
3110 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3111 {
3112         if (in_hardirq() || irqs_disabled())
3113                 __dev_kfree_skb_irq(skb, reason);
3114         else
3115                 dev_kfree_skb(skb);
3116 }
3117 EXPORT_SYMBOL(__dev_kfree_skb_any);
3118
3119
3120 /**
3121  * netif_device_detach - mark device as removed
3122  * @dev: network device
3123  *
3124  * Mark device as removed from system and therefore no longer available.
3125  */
3126 void netif_device_detach(struct net_device *dev)
3127 {
3128         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3129             netif_running(dev)) {
3130                 netif_tx_stop_all_queues(dev);
3131         }
3132 }
3133 EXPORT_SYMBOL(netif_device_detach);
3134
3135 /**
3136  * netif_device_attach - mark device as attached
3137  * @dev: network device
3138  *
3139  * Mark device as attached from system and restart if needed.
3140  */
3141 void netif_device_attach(struct net_device *dev)
3142 {
3143         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3144             netif_running(dev)) {
3145                 netif_tx_wake_all_queues(dev);
3146                 __netdev_watchdog_up(dev);
3147         }
3148 }
3149 EXPORT_SYMBOL(netif_device_attach);
3150
3151 /*
3152  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3153  * to be used as a distribution range.
3154  */
3155 static u16 skb_tx_hash(const struct net_device *dev,
3156                        const struct net_device *sb_dev,
3157                        struct sk_buff *skb)
3158 {
3159         u32 hash;
3160         u16 qoffset = 0;
3161         u16 qcount = dev->real_num_tx_queues;
3162
3163         if (dev->num_tc) {
3164                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3165
3166                 qoffset = sb_dev->tc_to_txq[tc].offset;
3167                 qcount = sb_dev->tc_to_txq[tc].count;
3168                 if (unlikely(!qcount)) {
3169                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3170                                              sb_dev->name, qoffset, tc);
3171                         qoffset = 0;
3172                         qcount = dev->real_num_tx_queues;
3173                 }
3174         }
3175
3176         if (skb_rx_queue_recorded(skb)) {
3177                 hash = skb_get_rx_queue(skb);
3178                 if (hash >= qoffset)
3179                         hash -= qoffset;
3180                 while (unlikely(hash >= qcount))
3181                         hash -= qcount;
3182                 return hash + qoffset;
3183         }
3184
3185         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3186 }
3187
3188 static void skb_warn_bad_offload(const struct sk_buff *skb)
3189 {
3190         static const netdev_features_t null_features;
3191         struct net_device *dev = skb->dev;
3192         const char *name = "";
3193
3194         if (!net_ratelimit())
3195                 return;
3196
3197         if (dev) {
3198                 if (dev->dev.parent)
3199                         name = dev_driver_string(dev->dev.parent);
3200                 else
3201                         name = netdev_name(dev);
3202         }
3203         skb_dump(KERN_WARNING, skb, false);
3204         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3205              name, dev ? &dev->features : &null_features,
3206              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3207 }
3208
3209 /*
3210  * Invalidate hardware checksum when packet is to be mangled, and
3211  * complete checksum manually on outgoing path.
3212  */
3213 int skb_checksum_help(struct sk_buff *skb)
3214 {
3215         __wsum csum;
3216         int ret = 0, offset;
3217
3218         if (skb->ip_summed == CHECKSUM_COMPLETE)
3219                 goto out_set_summed;
3220
3221         if (unlikely(skb_is_gso(skb))) {
3222                 skb_warn_bad_offload(skb);
3223                 return -EINVAL;
3224         }
3225
3226         /* Before computing a checksum, we should make sure no frag could
3227          * be modified by an external entity : checksum could be wrong.
3228          */
3229         if (skb_has_shared_frag(skb)) {
3230                 ret = __skb_linearize(skb);
3231                 if (ret)
3232                         goto out;
3233         }
3234
3235         offset = skb_checksum_start_offset(skb);
3236         ret = -EINVAL;
3237         if (WARN_ON_ONCE(offset >= skb_headlen(skb)))
3238                 goto out;
3239
3240         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3241
3242         offset += skb->csum_offset;
3243         if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb)))
3244                 goto out;
3245
3246         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3247         if (ret)
3248                 goto out;
3249
3250         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3251 out_set_summed:
3252         skb->ip_summed = CHECKSUM_NONE;
3253 out:
3254         return ret;
3255 }
3256 EXPORT_SYMBOL(skb_checksum_help);
3257
3258 int skb_crc32c_csum_help(struct sk_buff *skb)
3259 {
3260         __le32 crc32c_csum;
3261         int ret = 0, offset, start;
3262
3263         if (skb->ip_summed != CHECKSUM_PARTIAL)
3264                 goto out;
3265
3266         if (unlikely(skb_is_gso(skb)))
3267                 goto out;
3268
3269         /* Before computing a checksum, we should make sure no frag could
3270          * be modified by an external entity : checksum could be wrong.
3271          */
3272         if (unlikely(skb_has_shared_frag(skb))) {
3273                 ret = __skb_linearize(skb);
3274                 if (ret)
3275                         goto out;
3276         }
3277         start = skb_checksum_start_offset(skb);
3278         offset = start + offsetof(struct sctphdr, checksum);
3279         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3280                 ret = -EINVAL;
3281                 goto out;
3282         }
3283
3284         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3285         if (ret)
3286                 goto out;
3287
3288         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3289                                                   skb->len - start, ~(__u32)0,
3290                                                   crc32c_csum_stub));
3291         *(__le32 *)(skb->data + offset) = crc32c_csum;
3292         skb->ip_summed = CHECKSUM_NONE;
3293         skb->csum_not_inet = 0;
3294 out:
3295         return ret;
3296 }
3297
3298 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3299 {
3300         __be16 type = skb->protocol;
3301
3302         /* Tunnel gso handlers can set protocol to ethernet. */
3303         if (type == htons(ETH_P_TEB)) {
3304                 struct ethhdr *eth;
3305
3306                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3307                         return 0;
3308
3309                 eth = (struct ethhdr *)skb->data;
3310                 type = eth->h_proto;
3311         }
3312
3313         return __vlan_get_protocol(skb, type, depth);
3314 }
3315
3316 /**
3317  *      skb_mac_gso_segment - mac layer segmentation handler.
3318  *      @skb: buffer to segment
3319  *      @features: features for the output path (see dev->features)
3320  */
3321 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3322                                     netdev_features_t features)
3323 {
3324         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3325         struct packet_offload *ptype;
3326         int vlan_depth = skb->mac_len;
3327         __be16 type = skb_network_protocol(skb, &vlan_depth);
3328
3329         if (unlikely(!type))
3330                 return ERR_PTR(-EINVAL);
3331
3332         __skb_pull(skb, vlan_depth);
3333
3334         rcu_read_lock();
3335         list_for_each_entry_rcu(ptype, &offload_base, list) {
3336                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3337                         segs = ptype->callbacks.gso_segment(skb, features);
3338                         break;
3339                 }
3340         }
3341         rcu_read_unlock();
3342
3343         __skb_push(skb, skb->data - skb_mac_header(skb));
3344
3345         return segs;
3346 }
3347 EXPORT_SYMBOL(skb_mac_gso_segment);
3348
3349
3350 /* openvswitch calls this on rx path, so we need a different check.
3351  */
3352 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3353 {
3354         if (tx_path)
3355                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3356                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3357
3358         return skb->ip_summed == CHECKSUM_NONE;
3359 }
3360
3361 /**
3362  *      __skb_gso_segment - Perform segmentation on skb.
3363  *      @skb: buffer to segment
3364  *      @features: features for the output path (see dev->features)
3365  *      @tx_path: whether it is called in TX path
3366  *
3367  *      This function segments the given skb and returns a list of segments.
3368  *
3369  *      It may return NULL if the skb requires no segmentation.  This is
3370  *      only possible when GSO is used for verifying header integrity.
3371  *
3372  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3373  */
3374 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3375                                   netdev_features_t features, bool tx_path)
3376 {
3377         struct sk_buff *segs;
3378
3379         if (unlikely(skb_needs_check(skb, tx_path))) {
3380                 int err;
3381
3382                 /* We're going to init ->check field in TCP or UDP header */
3383                 err = skb_cow_head(skb, 0);
3384                 if (err < 0)
3385                         return ERR_PTR(err);
3386         }
3387
3388         /* Only report GSO partial support if it will enable us to
3389          * support segmentation on this frame without needing additional
3390          * work.
3391          */
3392         if (features & NETIF_F_GSO_PARTIAL) {
3393                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3394                 struct net_device *dev = skb->dev;
3395
3396                 partial_features |= dev->features & dev->gso_partial_features;
3397                 if (!skb_gso_ok(skb, features | partial_features))
3398                         features &= ~NETIF_F_GSO_PARTIAL;
3399         }
3400
3401         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3402                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3403
3404         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3405         SKB_GSO_CB(skb)->encap_level = 0;
3406
3407         skb_reset_mac_header(skb);
3408         skb_reset_mac_len(skb);
3409
3410         segs = skb_mac_gso_segment(skb, features);
3411
3412         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3413                 skb_warn_bad_offload(skb);
3414
3415         return segs;
3416 }
3417 EXPORT_SYMBOL(__skb_gso_segment);
3418
3419 /* Take action when hardware reception checksum errors are detected. */
3420 #ifdef CONFIG_BUG
3421 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3422 {
3423         pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3424         skb_dump(KERN_ERR, skb, true);
3425         dump_stack();
3426 }
3427
3428 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3429 {
3430         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3431 }
3432 EXPORT_SYMBOL(netdev_rx_csum_fault);
3433 #endif
3434
3435 /* XXX: check that highmem exists at all on the given machine. */
3436 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3437 {
3438 #ifdef CONFIG_HIGHMEM
3439         int i;
3440
3441         if (!(dev->features & NETIF_F_HIGHDMA)) {
3442                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3443                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3444
3445                         if (PageHighMem(skb_frag_page(frag)))
3446                                 return 1;
3447                 }
3448         }
3449 #endif
3450         return 0;
3451 }
3452
3453 /* If MPLS offload request, verify we are testing hardware MPLS features
3454  * instead of standard features for the netdev.
3455  */
3456 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3457 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3458                                            netdev_features_t features,
3459                                            __be16 type)
3460 {
3461         if (eth_p_mpls(type))
3462                 features &= skb->dev->mpls_features;
3463
3464         return features;
3465 }
3466 #else
3467 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3468                                            netdev_features_t features,
3469                                            __be16 type)
3470 {
3471         return features;
3472 }
3473 #endif
3474
3475 static netdev_features_t harmonize_features(struct sk_buff *skb,
3476         netdev_features_t features)
3477 {
3478         __be16 type;
3479
3480         type = skb_network_protocol(skb, NULL);
3481         features = net_mpls_features(skb, features, type);
3482
3483         if (skb->ip_summed != CHECKSUM_NONE &&
3484             !can_checksum_protocol(features, type)) {
3485                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3486         }
3487         if (illegal_highdma(skb->dev, skb))
3488                 features &= ~NETIF_F_SG;
3489
3490         return features;
3491 }
3492
3493 netdev_features_t passthru_features_check(struct sk_buff *skb,
3494                                           struct net_device *dev,
3495                                           netdev_features_t features)
3496 {
3497         return features;
3498 }
3499 EXPORT_SYMBOL(passthru_features_check);
3500
3501 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3502                                              struct net_device *dev,
3503                                              netdev_features_t features)
3504 {
3505         return vlan_features_check(skb, features);
3506 }
3507
3508 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3509                                             struct net_device *dev,
3510                                             netdev_features_t features)
3511 {
3512         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3513
3514         if (gso_segs > dev->gso_max_segs)
3515                 return features & ~NETIF_F_GSO_MASK;
3516
3517         if (!skb_shinfo(skb)->gso_type) {
3518                 skb_warn_bad_offload(skb);
3519                 return features & ~NETIF_F_GSO_MASK;
3520         }
3521
3522         /* Support for GSO partial features requires software
3523          * intervention before we can actually process the packets
3524          * so we need to strip support for any partial features now
3525          * and we can pull them back in after we have partially
3526          * segmented the frame.
3527          */
3528         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3529                 features &= ~dev->gso_partial_features;
3530
3531         /* Make sure to clear the IPv4 ID mangling feature if the
3532          * IPv4 header has the potential to be fragmented.
3533          */
3534         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3535                 struct iphdr *iph = skb->encapsulation ?
3536                                     inner_ip_hdr(skb) : ip_hdr(skb);
3537
3538                 if (!(iph->frag_off & htons(IP_DF)))
3539                         features &= ~NETIF_F_TSO_MANGLEID;
3540         }
3541
3542         return features;
3543 }
3544
3545 netdev_features_t netif_skb_features(struct sk_buff *skb)
3546 {
3547         struct net_device *dev = skb->dev;
3548         netdev_features_t features = dev->features;
3549
3550         if (skb_is_gso(skb))
3551                 features = gso_features_check(skb, dev, features);
3552
3553         /* If encapsulation offload request, verify we are testing
3554          * hardware encapsulation features instead of standard
3555          * features for the netdev
3556          */
3557         if (skb->encapsulation)
3558                 features &= dev->hw_enc_features;
3559
3560         if (skb_vlan_tagged(skb))
3561                 features = netdev_intersect_features(features,
3562                                                      dev->vlan_features |
3563                                                      NETIF_F_HW_VLAN_CTAG_TX |
3564                                                      NETIF_F_HW_VLAN_STAG_TX);
3565
3566         if (dev->netdev_ops->ndo_features_check)
3567                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3568                                                                 features);
3569         else
3570                 features &= dflt_features_check(skb, dev, features);
3571
3572         return harmonize_features(skb, features);
3573 }
3574 EXPORT_SYMBOL(netif_skb_features);
3575
3576 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3577                     struct netdev_queue *txq, bool more)
3578 {
3579         unsigned int len;
3580         int rc;
3581
3582         if (dev_nit_active(dev))
3583                 dev_queue_xmit_nit(skb, dev);
3584
3585         len = skb->len;
3586         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3587         trace_net_dev_start_xmit(skb, dev);
3588         rc = netdev_start_xmit(skb, dev, txq, more);
3589         trace_net_dev_xmit(skb, rc, dev, len);
3590
3591         return rc;
3592 }
3593
3594 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3595                                     struct netdev_queue *txq, int *ret)
3596 {
3597         struct sk_buff *skb = first;
3598         int rc = NETDEV_TX_OK;
3599
3600         while (skb) {
3601                 struct sk_buff *next = skb->next;
3602
3603                 skb_mark_not_on_list(skb);
3604                 rc = xmit_one(skb, dev, txq, next != NULL);
3605                 if (unlikely(!dev_xmit_complete(rc))) {
3606                         skb->next = next;
3607                         goto out;
3608                 }
3609
3610                 skb = next;
3611                 if (netif_tx_queue_stopped(txq) && skb) {
3612                         rc = NETDEV_TX_BUSY;
3613                         break;
3614                 }
3615         }
3616
3617 out:
3618         *ret = rc;
3619         return skb;
3620 }
3621
3622 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3623                                           netdev_features_t features)
3624 {
3625         if (skb_vlan_tag_present(skb) &&
3626             !vlan_hw_offload_capable(features, skb->vlan_proto))
3627                 skb = __vlan_hwaccel_push_inside(skb);
3628         return skb;
3629 }
3630
3631 int skb_csum_hwoffload_help(struct sk_buff *skb,
3632                             const netdev_features_t features)
3633 {
3634         if (unlikely(skb_csum_is_sctp(skb)))
3635                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3636                         skb_crc32c_csum_help(skb);
3637
3638         if (features & NETIF_F_HW_CSUM)
3639                 return 0;
3640
3641         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3642                 switch (skb->csum_offset) {
3643                 case offsetof(struct tcphdr, check):
3644                 case offsetof(struct udphdr, check):
3645                         return 0;
3646                 }
3647         }
3648
3649         return skb_checksum_help(skb);
3650 }
3651 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3652
3653 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3654 {
3655         netdev_features_t features;
3656
3657         features = netif_skb_features(skb);
3658         skb = validate_xmit_vlan(skb, features);
3659         if (unlikely(!skb))
3660                 goto out_null;
3661
3662         skb = sk_validate_xmit_skb(skb, dev);
3663         if (unlikely(!skb))
3664                 goto out_null;
3665
3666         if (netif_needs_gso(skb, features)) {
3667                 struct sk_buff *segs;
3668
3669                 segs = skb_gso_segment(skb, features);
3670                 if (IS_ERR(segs)) {
3671                         goto out_kfree_skb;
3672                 } else if (segs) {
3673                         consume_skb(skb);
3674                         skb = segs;
3675                 }
3676         } else {
3677                 if (skb_needs_linearize(skb, features) &&
3678                     __skb_linearize(skb))
3679                         goto out_kfree_skb;
3680
3681                 /* If packet is not checksummed and device does not
3682                  * support checksumming for this protocol, complete
3683                  * checksumming here.
3684                  */
3685                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3686                         if (skb->encapsulation)
3687                                 skb_set_inner_transport_header(skb,
3688                                                                skb_checksum_start_offset(skb));
3689                         else
3690                                 skb_set_transport_header(skb,
3691                                                          skb_checksum_start_offset(skb));
3692                         if (skb_csum_hwoffload_help(skb, features))
3693                                 goto out_kfree_skb;
3694                 }
3695         }
3696
3697         skb = validate_xmit_xfrm(skb, features, again);
3698
3699         return skb;
3700
3701 out_kfree_skb:
3702         kfree_skb(skb);
3703 out_null:
3704         atomic_long_inc(&dev->tx_dropped);
3705         return NULL;
3706 }
3707
3708 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3709 {
3710         struct sk_buff *next, *head = NULL, *tail;
3711
3712         for (; skb != NULL; skb = next) {
3713                 next = skb->next;
3714                 skb_mark_not_on_list(skb);
3715
3716                 /* in case skb wont be segmented, point to itself */
3717                 skb->prev = skb;
3718
3719                 skb = validate_xmit_skb(skb, dev, again);
3720                 if (!skb)
3721                         continue;
3722
3723                 if (!head)
3724                         head = skb;
3725                 else
3726                         tail->next = skb;
3727                 /* If skb was segmented, skb->prev points to
3728                  * the last segment. If not, it still contains skb.
3729                  */
3730                 tail = skb->prev;
3731         }
3732         return head;
3733 }
3734 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3735
3736 static void qdisc_pkt_len_init(struct sk_buff *skb)
3737 {
3738         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3739
3740         qdisc_skb_cb(skb)->pkt_len = skb->len;
3741
3742         /* To get more precise estimation of bytes sent on wire,
3743          * we add to pkt_len the headers size of all segments
3744          */
3745         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3746                 unsigned int hdr_len;
3747                 u16 gso_segs = shinfo->gso_segs;
3748
3749                 /* mac layer + network layer */
3750                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3751
3752                 /* + transport layer */
3753                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3754                         const struct tcphdr *th;
3755                         struct tcphdr _tcphdr;
3756
3757                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3758                                                 sizeof(_tcphdr), &_tcphdr);
3759                         if (likely(th))
3760                                 hdr_len += __tcp_hdrlen(th);
3761                 } else {
3762                         struct udphdr _udphdr;
3763
3764                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3765                                                sizeof(_udphdr), &_udphdr))
3766                                 hdr_len += sizeof(struct udphdr);
3767                 }
3768
3769                 if (shinfo->gso_type & SKB_GSO_DODGY)
3770                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3771                                                 shinfo->gso_size);
3772
3773                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3774         }
3775 }
3776
3777 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3778                              struct sk_buff **to_free,
3779                              struct netdev_queue *txq)
3780 {
3781         int rc;
3782
3783         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3784         if (rc == NET_XMIT_SUCCESS)
3785                 trace_qdisc_enqueue(q, txq, skb);
3786         return rc;
3787 }
3788
3789 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3790                                  struct net_device *dev,
3791                                  struct netdev_queue *txq)
3792 {
3793         spinlock_t *root_lock = qdisc_lock(q);
3794         struct sk_buff *to_free = NULL;
3795         bool contended;
3796         int rc;
3797
3798         qdisc_calculate_pkt_len(skb, q);
3799
3800         if (q->flags & TCQ_F_NOLOCK) {
3801                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3802                     qdisc_run_begin(q)) {
3803                         /* Retest nolock_qdisc_is_empty() within the protection
3804                          * of q->seqlock to protect from racing with requeuing.
3805                          */
3806                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3807                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3808                                 __qdisc_run(q);
3809                                 qdisc_run_end(q);
3810
3811                                 goto no_lock_out;
3812                         }
3813
3814                         qdisc_bstats_cpu_update(q, skb);
3815                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3816                             !nolock_qdisc_is_empty(q))
3817                                 __qdisc_run(q);
3818
3819                         qdisc_run_end(q);
3820                         return NET_XMIT_SUCCESS;
3821                 }
3822
3823                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3824                 qdisc_run(q);
3825
3826 no_lock_out:
3827                 if (unlikely(to_free))
3828                         kfree_skb_list(to_free);
3829                 return rc;
3830         }
3831
3832         /*
3833          * Heuristic to force contended enqueues to serialize on a
3834          * separate lock before trying to get qdisc main lock.
3835          * This permits qdisc->running owner to get the lock more
3836          * often and dequeue packets faster.
3837          */
3838         contended = qdisc_is_running(q);
3839         if (unlikely(contended))
3840                 spin_lock(&q->busylock);
3841
3842         spin_lock(root_lock);
3843         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3844                 __qdisc_drop(skb, &to_free);
3845                 rc = NET_XMIT_DROP;
3846         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3847                    qdisc_run_begin(q)) {
3848                 /*
3849                  * This is a work-conserving queue; there are no old skbs
3850                  * waiting to be sent out; and the qdisc is not running -
3851                  * xmit the skb directly.
3852                  */
3853
3854                 qdisc_bstats_update(q, skb);
3855
3856                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3857                         if (unlikely(contended)) {
3858                                 spin_unlock(&q->busylock);
3859                                 contended = false;
3860                         }
3861                         __qdisc_run(q);
3862                 }
3863
3864                 qdisc_run_end(q);
3865                 rc = NET_XMIT_SUCCESS;
3866         } else {
3867                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3868                 if (qdisc_run_begin(q)) {
3869                         if (unlikely(contended)) {
3870                                 spin_unlock(&q->busylock);
3871                                 contended = false;
3872                         }
3873                         __qdisc_run(q);
3874                         qdisc_run_end(q);
3875                 }
3876         }
3877         spin_unlock(root_lock);
3878         if (unlikely(to_free))
3879                 kfree_skb_list(to_free);
3880         if (unlikely(contended))
3881                 spin_unlock(&q->busylock);
3882         return rc;
3883 }
3884
3885 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3886 static void skb_update_prio(struct sk_buff *skb)
3887 {
3888         const struct netprio_map *map;
3889         const struct sock *sk;
3890         unsigned int prioidx;
3891
3892         if (skb->priority)
3893                 return;
3894         map = rcu_dereference_bh(skb->dev->priomap);
3895         if (!map)
3896                 return;
3897         sk = skb_to_full_sk(skb);
3898         if (!sk)
3899                 return;
3900
3901         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3902
3903         if (prioidx < map->priomap_len)
3904                 skb->priority = map->priomap[prioidx];
3905 }
3906 #else
3907 #define skb_update_prio(skb)
3908 #endif
3909
3910 /**
3911  *      dev_loopback_xmit - loop back @skb
3912  *      @net: network namespace this loopback is happening in
3913  *      @sk:  sk needed to be a netfilter okfn
3914  *      @skb: buffer to transmit
3915  */
3916 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3917 {
3918         skb_reset_mac_header(skb);
3919         __skb_pull(skb, skb_network_offset(skb));
3920         skb->pkt_type = PACKET_LOOPBACK;
3921         if (skb->ip_summed == CHECKSUM_NONE)
3922                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3923         WARN_ON(!skb_dst(skb));
3924         skb_dst_force(skb);
3925         netif_rx_ni(skb);
3926         return 0;
3927 }
3928 EXPORT_SYMBOL(dev_loopback_xmit);
3929
3930 #ifdef CONFIG_NET_EGRESS
3931 static struct sk_buff *
3932 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3933 {
3934         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3935         struct tcf_result cl_res;
3936
3937         if (!miniq)
3938                 return skb;
3939
3940         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3941         tc_skb_cb(skb)->mru = 0;
3942         tc_skb_cb(skb)->post_ct = false;
3943         mini_qdisc_bstats_cpu_update(miniq, skb);
3944
3945         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3946         case TC_ACT_OK:
3947         case TC_ACT_RECLASSIFY:
3948                 skb->tc_index = TC_H_MIN(cl_res.classid);
3949                 break;
3950         case TC_ACT_SHOT:
3951                 mini_qdisc_qstats_cpu_drop(miniq);
3952                 *ret = NET_XMIT_DROP;
3953                 kfree_skb(skb);
3954                 return NULL;
3955         case TC_ACT_STOLEN:
3956         case TC_ACT_QUEUED:
3957         case TC_ACT_TRAP:
3958                 *ret = NET_XMIT_SUCCESS;
3959                 consume_skb(skb);
3960                 return NULL;
3961         case TC_ACT_REDIRECT:
3962                 /* No need to push/pop skb's mac_header here on egress! */
3963                 skb_do_redirect(skb);
3964                 *ret = NET_XMIT_SUCCESS;
3965                 return NULL;
3966         default:
3967                 break;
3968         }
3969
3970         return skb;
3971 }
3972 #endif /* CONFIG_NET_EGRESS */
3973
3974 #ifdef CONFIG_XPS
3975 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3976                                struct xps_dev_maps *dev_maps, unsigned int tci)
3977 {
3978         int tc = netdev_get_prio_tc_map(dev, skb->priority);
3979         struct xps_map *map;
3980         int queue_index = -1;
3981
3982         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3983                 return queue_index;
3984
3985         tci *= dev_maps->num_tc;
3986         tci += tc;
3987
3988         map = rcu_dereference(dev_maps->attr_map[tci]);
3989         if (map) {
3990                 if (map->len == 1)
3991                         queue_index = map->queues[0];
3992                 else
3993                         queue_index = map->queues[reciprocal_scale(
3994                                                 skb_get_hash(skb), map->len)];
3995                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3996                         queue_index = -1;
3997         }
3998         return queue_index;
3999 }
4000 #endif
4001
4002 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4003                          struct sk_buff *skb)
4004 {
4005 #ifdef CONFIG_XPS
4006         struct xps_dev_maps *dev_maps;
4007         struct sock *sk = skb->sk;
4008         int queue_index = -1;
4009
4010         if (!static_key_false(&xps_needed))
4011                 return -1;
4012
4013         rcu_read_lock();
4014         if (!static_key_false(&xps_rxqs_needed))
4015                 goto get_cpus_map;
4016
4017         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4018         if (dev_maps) {
4019                 int tci = sk_rx_queue_get(sk);
4020
4021                 if (tci >= 0)
4022                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4023                                                           tci);
4024         }
4025
4026 get_cpus_map:
4027         if (queue_index < 0) {
4028                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4029                 if (dev_maps) {
4030                         unsigned int tci = skb->sender_cpu - 1;
4031
4032                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4033                                                           tci);
4034                 }
4035         }
4036         rcu_read_unlock();
4037
4038         return queue_index;
4039 #else
4040         return -1;
4041 #endif
4042 }
4043
4044 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4045                      struct net_device *sb_dev)
4046 {
4047         return 0;
4048 }
4049 EXPORT_SYMBOL(dev_pick_tx_zero);
4050
4051 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4052                        struct net_device *sb_dev)
4053 {
4054         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4055 }
4056 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4057
4058 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4059                      struct net_device *sb_dev)
4060 {
4061         struct sock *sk = skb->sk;
4062         int queue_index = sk_tx_queue_get(sk);
4063
4064         sb_dev = sb_dev ? : dev;
4065
4066         if (queue_index < 0 || skb->ooo_okay ||
4067             queue_index >= dev->real_num_tx_queues) {
4068                 int new_index = get_xps_queue(dev, sb_dev, skb);
4069
4070                 if (new_index < 0)
4071                         new_index = skb_tx_hash(dev, sb_dev, skb);
4072
4073                 if (queue_index != new_index && sk &&
4074                     sk_fullsock(sk) &&
4075                     rcu_access_pointer(sk->sk_dst_cache))
4076                         sk_tx_queue_set(sk, new_index);
4077
4078                 queue_index = new_index;
4079         }
4080
4081         return queue_index;
4082 }
4083 EXPORT_SYMBOL(netdev_pick_tx);
4084
4085 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4086                                          struct sk_buff *skb,
4087                                          struct net_device *sb_dev)
4088 {
4089         int queue_index = 0;
4090
4091 #ifdef CONFIG_XPS
4092         u32 sender_cpu = skb->sender_cpu - 1;
4093
4094         if (sender_cpu >= (u32)NR_CPUS)
4095                 skb->sender_cpu = raw_smp_processor_id() + 1;
4096 #endif
4097
4098         if (dev->real_num_tx_queues != 1) {
4099                 const struct net_device_ops *ops = dev->netdev_ops;
4100
4101                 if (ops->ndo_select_queue)
4102                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4103                 else
4104                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4105
4106                 queue_index = netdev_cap_txqueue(dev, queue_index);
4107         }
4108
4109         skb_set_queue_mapping(skb, queue_index);
4110         return netdev_get_tx_queue(dev, queue_index);
4111 }
4112
4113 /**
4114  *      __dev_queue_xmit - transmit a buffer
4115  *      @skb: buffer to transmit
4116  *      @sb_dev: suboordinate device used for L2 forwarding offload
4117  *
4118  *      Queue a buffer for transmission to a network device. The caller must
4119  *      have set the device and priority and built the buffer before calling
4120  *      this function. The function can be called from an interrupt.
4121  *
4122  *      A negative errno code is returned on a failure. A success does not
4123  *      guarantee the frame will be transmitted as it may be dropped due
4124  *      to congestion or traffic shaping.
4125  *
4126  * -----------------------------------------------------------------------------------
4127  *      I notice this method can also return errors from the queue disciplines,
4128  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4129  *      be positive.
4130  *
4131  *      Regardless of the return value, the skb is consumed, so it is currently
4132  *      difficult to retry a send to this method.  (You can bump the ref count
4133  *      before sending to hold a reference for retry if you are careful.)
4134  *
4135  *      When calling this method, interrupts MUST be enabled.  This is because
4136  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4137  *          --BLG
4138  */
4139 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4140 {
4141         struct net_device *dev = skb->dev;
4142         struct netdev_queue *txq;
4143         struct Qdisc *q;
4144         int rc = -ENOMEM;
4145         bool again = false;
4146
4147         skb_reset_mac_header(skb);
4148
4149         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4150                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4151
4152         /* Disable soft irqs for various locks below. Also
4153          * stops preemption for RCU.
4154          */
4155         rcu_read_lock_bh();
4156
4157         skb_update_prio(skb);
4158
4159         qdisc_pkt_len_init(skb);
4160 #ifdef CONFIG_NET_CLS_ACT
4161         skb->tc_at_ingress = 0;
4162 # ifdef CONFIG_NET_EGRESS
4163         if (static_branch_unlikely(&egress_needed_key)) {
4164                 skb = sch_handle_egress(skb, &rc, dev);
4165                 if (!skb)
4166                         goto out;
4167         }
4168 # endif
4169 #endif
4170         /* If device/qdisc don't need skb->dst, release it right now while
4171          * its hot in this cpu cache.
4172          */
4173         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4174                 skb_dst_drop(skb);
4175         else
4176                 skb_dst_force(skb);
4177
4178         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4179         q = rcu_dereference_bh(txq->qdisc);
4180
4181         trace_net_dev_queue(skb);
4182         if (q->enqueue) {
4183                 rc = __dev_xmit_skb(skb, q, dev, txq);
4184                 goto out;
4185         }
4186
4187         /* The device has no queue. Common case for software devices:
4188          * loopback, all the sorts of tunnels...
4189
4190          * Really, it is unlikely that netif_tx_lock protection is necessary
4191          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4192          * counters.)
4193          * However, it is possible, that they rely on protection
4194          * made by us here.
4195
4196          * Check this and shot the lock. It is not prone from deadlocks.
4197          *Either shot noqueue qdisc, it is even simpler 8)
4198          */
4199         if (dev->flags & IFF_UP) {
4200                 int cpu = smp_processor_id(); /* ok because BHs are off */
4201
4202                 /* Other cpus might concurrently change txq->xmit_lock_owner
4203                  * to -1 or to their cpu id, but not to our id.
4204                  */
4205                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4206                         if (dev_xmit_recursion())
4207                                 goto recursion_alert;
4208
4209                         skb = validate_xmit_skb(skb, dev, &again);
4210                         if (!skb)
4211                                 goto out;
4212
4213                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4214                         HARD_TX_LOCK(dev, txq, cpu);
4215
4216                         if (!netif_xmit_stopped(txq)) {
4217                                 dev_xmit_recursion_inc();
4218                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4219                                 dev_xmit_recursion_dec();
4220                                 if (dev_xmit_complete(rc)) {
4221                                         HARD_TX_UNLOCK(dev, txq);
4222                                         goto out;
4223                                 }
4224                         }
4225                         HARD_TX_UNLOCK(dev, txq);
4226                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4227                                              dev->name);
4228                 } else {
4229                         /* Recursion is detected! It is possible,
4230                          * unfortunately
4231                          */
4232 recursion_alert:
4233                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4234                                              dev->name);
4235                 }
4236         }
4237
4238         rc = -ENETDOWN;
4239         rcu_read_unlock_bh();
4240
4241         atomic_long_inc(&dev->tx_dropped);
4242         kfree_skb_list(skb);
4243         return rc;
4244 out:
4245         rcu_read_unlock_bh();
4246         return rc;
4247 }
4248
4249 int dev_queue_xmit(struct sk_buff *skb)
4250 {
4251         return __dev_queue_xmit(skb, NULL);
4252 }
4253 EXPORT_SYMBOL(dev_queue_xmit);
4254
4255 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4256 {
4257         return __dev_queue_xmit(skb, sb_dev);
4258 }
4259 EXPORT_SYMBOL(dev_queue_xmit_accel);
4260
4261 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4262 {
4263         struct net_device *dev = skb->dev;
4264         struct sk_buff *orig_skb = skb;
4265         struct netdev_queue *txq;
4266         int ret = NETDEV_TX_BUSY;
4267         bool again = false;
4268
4269         if (unlikely(!netif_running(dev) ||
4270                      !netif_carrier_ok(dev)))
4271                 goto drop;
4272
4273         skb = validate_xmit_skb_list(skb, dev, &again);
4274         if (skb != orig_skb)
4275                 goto drop;
4276
4277         skb_set_queue_mapping(skb, queue_id);
4278         txq = skb_get_tx_queue(dev, skb);
4279         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4280
4281         local_bh_disable();
4282
4283         dev_xmit_recursion_inc();
4284         HARD_TX_LOCK(dev, txq, smp_processor_id());
4285         if (!netif_xmit_frozen_or_drv_stopped(txq))
4286                 ret = netdev_start_xmit(skb, dev, txq, false);
4287         HARD_TX_UNLOCK(dev, txq);
4288         dev_xmit_recursion_dec();
4289
4290         local_bh_enable();
4291         return ret;
4292 drop:
4293         atomic_long_inc(&dev->tx_dropped);
4294         kfree_skb_list(skb);
4295         return NET_XMIT_DROP;
4296 }
4297 EXPORT_SYMBOL(__dev_direct_xmit);
4298
4299 /*************************************************************************
4300  *                      Receiver routines
4301  *************************************************************************/
4302
4303 int netdev_max_backlog __read_mostly = 1000;
4304 EXPORT_SYMBOL(netdev_max_backlog);
4305
4306 int netdev_tstamp_prequeue __read_mostly = 1;
4307 int netdev_budget __read_mostly = 300;
4308 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4309 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4310 int weight_p __read_mostly = 64;           /* old backlog weight */
4311 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4312 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4313 int dev_rx_weight __read_mostly = 64;
4314 int dev_tx_weight __read_mostly = 64;
4315 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4316 int gro_normal_batch __read_mostly = 8;
4317
4318 /* Called with irq disabled */
4319 static inline void ____napi_schedule(struct softnet_data *sd,
4320                                      struct napi_struct *napi)
4321 {
4322         struct task_struct *thread;
4323
4324         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4325                 /* Paired with smp_mb__before_atomic() in
4326                  * napi_enable()/dev_set_threaded().
4327                  * Use READ_ONCE() to guarantee a complete
4328                  * read on napi->thread. Only call
4329                  * wake_up_process() when it's not NULL.
4330                  */
4331                 thread = READ_ONCE(napi->thread);
4332                 if (thread) {
4333                         /* Avoid doing set_bit() if the thread is in
4334                          * INTERRUPTIBLE state, cause napi_thread_wait()
4335                          * makes sure to proceed with napi polling
4336                          * if the thread is explicitly woken from here.
4337                          */
4338                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4339                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4340                         wake_up_process(thread);
4341                         return;
4342                 }
4343         }
4344
4345         list_add_tail(&napi->poll_list, &sd->poll_list);
4346         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4347 }
4348
4349 #ifdef CONFIG_RPS
4350
4351 /* One global table that all flow-based protocols share. */
4352 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4353 EXPORT_SYMBOL(rps_sock_flow_table);
4354 u32 rps_cpu_mask __read_mostly;
4355 EXPORT_SYMBOL(rps_cpu_mask);
4356
4357 struct static_key_false rps_needed __read_mostly;
4358 EXPORT_SYMBOL(rps_needed);
4359 struct static_key_false rfs_needed __read_mostly;
4360 EXPORT_SYMBOL(rfs_needed);
4361
4362 static struct rps_dev_flow *
4363 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4364             struct rps_dev_flow *rflow, u16 next_cpu)
4365 {
4366         if (next_cpu < nr_cpu_ids) {
4367 #ifdef CONFIG_RFS_ACCEL
4368                 struct netdev_rx_queue *rxqueue;
4369                 struct rps_dev_flow_table *flow_table;
4370                 struct rps_dev_flow *old_rflow;
4371                 u32 flow_id;
4372                 u16 rxq_index;
4373                 int rc;
4374
4375                 /* Should we steer this flow to a different hardware queue? */
4376                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4377                     !(dev->features & NETIF_F_NTUPLE))
4378                         goto out;
4379                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4380                 if (rxq_index == skb_get_rx_queue(skb))
4381                         goto out;
4382
4383                 rxqueue = dev->_rx + rxq_index;
4384                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4385                 if (!flow_table)
4386                         goto out;
4387                 flow_id = skb_get_hash(skb) & flow_table->mask;
4388                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4389                                                         rxq_index, flow_id);
4390                 if (rc < 0)
4391                         goto out;
4392                 old_rflow = rflow;
4393                 rflow = &flow_table->flows[flow_id];
4394                 rflow->filter = rc;
4395                 if (old_rflow->filter == rflow->filter)
4396                         old_rflow->filter = RPS_NO_FILTER;
4397         out:
4398 #endif
4399                 rflow->last_qtail =
4400                         per_cpu(softnet_data, next_cpu).input_queue_head;
4401         }
4402
4403         rflow->cpu = next_cpu;
4404         return rflow;
4405 }
4406
4407 /*
4408  * get_rps_cpu is called from netif_receive_skb and returns the target
4409  * CPU from the RPS map of the receiving queue for a given skb.
4410  * rcu_read_lock must be held on entry.
4411  */
4412 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4413                        struct rps_dev_flow **rflowp)
4414 {
4415         const struct rps_sock_flow_table *sock_flow_table;
4416         struct netdev_rx_queue *rxqueue = dev->_rx;
4417         struct rps_dev_flow_table *flow_table;
4418         struct rps_map *map;
4419         int cpu = -1;
4420         u32 tcpu;
4421         u32 hash;
4422
4423         if (skb_rx_queue_recorded(skb)) {
4424                 u16 index = skb_get_rx_queue(skb);
4425
4426                 if (unlikely(index >= dev->real_num_rx_queues)) {
4427                         WARN_ONCE(dev->real_num_rx_queues > 1,
4428                                   "%s received packet on queue %u, but number "
4429                                   "of RX queues is %u\n",
4430                                   dev->name, index, dev->real_num_rx_queues);
4431                         goto done;
4432                 }
4433                 rxqueue += index;
4434         }
4435
4436         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4437
4438         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4439         map = rcu_dereference(rxqueue->rps_map);
4440         if (!flow_table && !map)
4441                 goto done;
4442
4443         skb_reset_network_header(skb);
4444         hash = skb_get_hash(skb);
4445         if (!hash)
4446                 goto done;
4447
4448         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4449         if (flow_table && sock_flow_table) {
4450                 struct rps_dev_flow *rflow;
4451                 u32 next_cpu;
4452                 u32 ident;
4453
4454                 /* First check into global flow table if there is a match */
4455                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4456                 if ((ident ^ hash) & ~rps_cpu_mask)
4457                         goto try_rps;
4458
4459                 next_cpu = ident & rps_cpu_mask;
4460
4461                 /* OK, now we know there is a match,
4462                  * we can look at the local (per receive queue) flow table
4463                  */
4464                 rflow = &flow_table->flows[hash & flow_table->mask];
4465                 tcpu = rflow->cpu;
4466
4467                 /*
4468                  * If the desired CPU (where last recvmsg was done) is
4469                  * different from current CPU (one in the rx-queue flow
4470                  * table entry), switch if one of the following holds:
4471                  *   - Current CPU is unset (>= nr_cpu_ids).
4472                  *   - Current CPU is offline.
4473                  *   - The current CPU's queue tail has advanced beyond the
4474                  *     last packet that was enqueued using this table entry.
4475                  *     This guarantees that all previous packets for the flow
4476                  *     have been dequeued, thus preserving in order delivery.
4477                  */
4478                 if (unlikely(tcpu != next_cpu) &&
4479                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4480                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4481                       rflow->last_qtail)) >= 0)) {
4482                         tcpu = next_cpu;
4483                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4484                 }
4485
4486                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4487                         *rflowp = rflow;
4488                         cpu = tcpu;
4489                         goto done;
4490                 }
4491         }
4492
4493 try_rps:
4494
4495         if (map) {
4496                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4497                 if (cpu_online(tcpu)) {
4498                         cpu = tcpu;
4499                         goto done;
4500                 }
4501         }
4502
4503 done:
4504         return cpu;
4505 }
4506
4507 #ifdef CONFIG_RFS_ACCEL
4508
4509 /**
4510  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4511  * @dev: Device on which the filter was set
4512  * @rxq_index: RX queue index
4513  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4514  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4515  *
4516  * Drivers that implement ndo_rx_flow_steer() should periodically call
4517  * this function for each installed filter and remove the filters for
4518  * which it returns %true.
4519  */
4520 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4521                          u32 flow_id, u16 filter_id)
4522 {
4523         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4524         struct rps_dev_flow_table *flow_table;
4525         struct rps_dev_flow *rflow;
4526         bool expire = true;
4527         unsigned int cpu;
4528
4529         rcu_read_lock();
4530         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4531         if (flow_table && flow_id <= flow_table->mask) {
4532                 rflow = &flow_table->flows[flow_id];
4533                 cpu = READ_ONCE(rflow->cpu);
4534                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4535                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4536                            rflow->last_qtail) <
4537                      (int)(10 * flow_table->mask)))
4538                         expire = false;
4539         }
4540         rcu_read_unlock();
4541         return expire;
4542 }
4543 EXPORT_SYMBOL(rps_may_expire_flow);
4544
4545 #endif /* CONFIG_RFS_ACCEL */
4546
4547 /* Called from hardirq (IPI) context */
4548 static void rps_trigger_softirq(void *data)
4549 {
4550         struct softnet_data *sd = data;
4551
4552         ____napi_schedule(sd, &sd->backlog);
4553         sd->received_rps++;
4554 }
4555
4556 #endif /* CONFIG_RPS */
4557
4558 /*
4559  * Check if this softnet_data structure is another cpu one
4560  * If yes, queue it to our IPI list and return 1
4561  * If no, return 0
4562  */
4563 static int rps_ipi_queued(struct softnet_data *sd)
4564 {
4565 #ifdef CONFIG_RPS
4566         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4567
4568         if (sd != mysd) {
4569                 sd->rps_ipi_next = mysd->rps_ipi_list;
4570                 mysd->rps_ipi_list = sd;
4571
4572                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4573                 return 1;
4574         }
4575 #endif /* CONFIG_RPS */
4576         return 0;
4577 }
4578
4579 #ifdef CONFIG_NET_FLOW_LIMIT
4580 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4581 #endif
4582
4583 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4584 {
4585 #ifdef CONFIG_NET_FLOW_LIMIT
4586         struct sd_flow_limit *fl;
4587         struct softnet_data *sd;
4588         unsigned int old_flow, new_flow;
4589
4590         if (qlen < (netdev_max_backlog >> 1))
4591                 return false;
4592
4593         sd = this_cpu_ptr(&softnet_data);
4594
4595         rcu_read_lock();
4596         fl = rcu_dereference(sd->flow_limit);
4597         if (fl) {
4598                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4599                 old_flow = fl->history[fl->history_head];
4600                 fl->history[fl->history_head] = new_flow;
4601
4602                 fl->history_head++;
4603                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4604
4605                 if (likely(fl->buckets[old_flow]))
4606                         fl->buckets[old_flow]--;
4607
4608                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4609                         fl->count++;
4610                         rcu_read_unlock();
4611                         return true;
4612                 }
4613         }
4614         rcu_read_unlock();
4615 #endif
4616         return false;
4617 }
4618
4619 /*
4620  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4621  * queue (may be a remote CPU queue).
4622  */
4623 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4624                               unsigned int *qtail)
4625 {
4626         struct softnet_data *sd;
4627         unsigned long flags;
4628         unsigned int qlen;
4629
4630         sd = &per_cpu(softnet_data, cpu);
4631
4632         local_irq_save(flags);
4633
4634         rps_lock(sd);
4635         if (!netif_running(skb->dev))
4636                 goto drop;
4637         qlen = skb_queue_len(&sd->input_pkt_queue);
4638         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4639                 if (qlen) {
4640 enqueue:
4641                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4642                         input_queue_tail_incr_save(sd, qtail);
4643                         rps_unlock(sd);
4644                         local_irq_restore(flags);
4645                         return NET_RX_SUCCESS;
4646                 }
4647
4648                 /* Schedule NAPI for backlog device
4649                  * We can use non atomic operation since we own the queue lock
4650                  */
4651                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4652                         if (!rps_ipi_queued(sd))
4653                                 ____napi_schedule(sd, &sd->backlog);
4654                 }
4655                 goto enqueue;
4656         }
4657
4658 drop:
4659         sd->dropped++;
4660         rps_unlock(sd);
4661
4662         local_irq_restore(flags);
4663
4664         atomic_long_inc(&skb->dev->rx_dropped);
4665         kfree_skb(skb);
4666         return NET_RX_DROP;
4667 }
4668
4669 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4670 {
4671         struct net_device *dev = skb->dev;
4672         struct netdev_rx_queue *rxqueue;
4673
4674         rxqueue = dev->_rx;
4675
4676         if (skb_rx_queue_recorded(skb)) {
4677                 u16 index = skb_get_rx_queue(skb);
4678
4679                 if (unlikely(index >= dev->real_num_rx_queues)) {
4680                         WARN_ONCE(dev->real_num_rx_queues > 1,
4681                                   "%s received packet on queue %u, but number "
4682                                   "of RX queues is %u\n",
4683                                   dev->name, index, dev->real_num_rx_queues);
4684
4685                         return rxqueue; /* Return first rxqueue */
4686                 }
4687                 rxqueue += index;
4688         }
4689         return rxqueue;
4690 }
4691
4692 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4693                              struct bpf_prog *xdp_prog)
4694 {
4695         void *orig_data, *orig_data_end, *hard_start;
4696         struct netdev_rx_queue *rxqueue;
4697         bool orig_bcast, orig_host;
4698         u32 mac_len, frame_sz;
4699         __be16 orig_eth_type;
4700         struct ethhdr *eth;
4701         u32 metalen, act;
4702         int off;
4703
4704         /* The XDP program wants to see the packet starting at the MAC
4705          * header.
4706          */
4707         mac_len = skb->data - skb_mac_header(skb);
4708         hard_start = skb->data - skb_headroom(skb);
4709
4710         /* SKB "head" area always have tailroom for skb_shared_info */
4711         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4712         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4713
4714         rxqueue = netif_get_rxqueue(skb);
4715         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4716         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4717                          skb_headlen(skb) + mac_len, true);
4718
4719         orig_data_end = xdp->data_end;
4720         orig_data = xdp->data;
4721         eth = (struct ethhdr *)xdp->data;
4722         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4723         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4724         orig_eth_type = eth->h_proto;
4725
4726         act = bpf_prog_run_xdp(xdp_prog, xdp);
4727
4728         /* check if bpf_xdp_adjust_head was used */
4729         off = xdp->data - orig_data;
4730         if (off) {
4731                 if (off > 0)
4732                         __skb_pull(skb, off);
4733                 else if (off < 0)
4734                         __skb_push(skb, -off);
4735
4736                 skb->mac_header += off;
4737                 skb_reset_network_header(skb);
4738         }
4739
4740         /* check if bpf_xdp_adjust_tail was used */
4741         off = xdp->data_end - orig_data_end;
4742         if (off != 0) {
4743                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4744                 skb->len += off; /* positive on grow, negative on shrink */
4745         }
4746
4747         /* check if XDP changed eth hdr such SKB needs update */
4748         eth = (struct ethhdr *)xdp->data;
4749         if ((orig_eth_type != eth->h_proto) ||
4750             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4751                                                   skb->dev->dev_addr)) ||
4752             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4753                 __skb_push(skb, ETH_HLEN);
4754                 skb->pkt_type = PACKET_HOST;
4755                 skb->protocol = eth_type_trans(skb, skb->dev);
4756         }
4757
4758         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4759          * before calling us again on redirect path. We do not call do_redirect
4760          * as we leave that up to the caller.
4761          *
4762          * Caller is responsible for managing lifetime of skb (i.e. calling
4763          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4764          */
4765         switch (act) {
4766         case XDP_REDIRECT:
4767         case XDP_TX:
4768                 __skb_push(skb, mac_len);
4769                 break;
4770         case XDP_PASS:
4771                 metalen = xdp->data - xdp->data_meta;
4772                 if (metalen)
4773                         skb_metadata_set(skb, metalen);
4774                 break;
4775         }
4776
4777         return act;
4778 }
4779
4780 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4781                                      struct xdp_buff *xdp,
4782                                      struct bpf_prog *xdp_prog)
4783 {
4784         u32 act = XDP_DROP;
4785
4786         /* Reinjected packets coming from act_mirred or similar should
4787          * not get XDP generic processing.
4788          */
4789         if (skb_is_redirected(skb))
4790                 return XDP_PASS;
4791
4792         /* XDP packets must be linear and must have sufficient headroom
4793          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4794          * native XDP provides, thus we need to do it here as well.
4795          */
4796         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4797             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4798                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4799                 int troom = skb->tail + skb->data_len - skb->end;
4800
4801                 /* In case we have to go down the path and also linearize,
4802                  * then lets do the pskb_expand_head() work just once here.
4803                  */
4804                 if (pskb_expand_head(skb,
4805                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4806                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4807                         goto do_drop;
4808                 if (skb_linearize(skb))
4809                         goto do_drop;
4810         }
4811
4812         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4813         switch (act) {
4814         case XDP_REDIRECT:
4815         case XDP_TX:
4816         case XDP_PASS:
4817                 break;
4818         default:
4819                 bpf_warn_invalid_xdp_action(act);
4820                 fallthrough;
4821         case XDP_ABORTED:
4822                 trace_xdp_exception(skb->dev, xdp_prog, act);
4823                 fallthrough;
4824         case XDP_DROP:
4825         do_drop:
4826                 kfree_skb(skb);
4827                 break;
4828         }
4829
4830         return act;
4831 }
4832
4833 /* When doing generic XDP we have to bypass the qdisc layer and the
4834  * network taps in order to match in-driver-XDP behavior.
4835  */
4836 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4837 {
4838         struct net_device *dev = skb->dev;
4839         struct netdev_queue *txq;
4840         bool free_skb = true;
4841         int cpu, rc;
4842
4843         txq = netdev_core_pick_tx(dev, skb, NULL);
4844         cpu = smp_processor_id();
4845         HARD_TX_LOCK(dev, txq, cpu);
4846         if (!netif_xmit_stopped(txq)) {
4847                 rc = netdev_start_xmit(skb, dev, txq, 0);
4848                 if (dev_xmit_complete(rc))
4849                         free_skb = false;
4850         }
4851         HARD_TX_UNLOCK(dev, txq);
4852         if (free_skb) {
4853                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4854                 kfree_skb(skb);
4855         }
4856 }
4857
4858 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4859
4860 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4861 {
4862         if (xdp_prog) {
4863                 struct xdp_buff xdp;
4864                 u32 act;
4865                 int err;
4866
4867                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4868                 if (act != XDP_PASS) {
4869                         switch (act) {
4870                         case XDP_REDIRECT:
4871                                 err = xdp_do_generic_redirect(skb->dev, skb,
4872                                                               &xdp, xdp_prog);
4873                                 if (err)
4874                                         goto out_redir;
4875                                 break;
4876                         case XDP_TX:
4877                                 generic_xdp_tx(skb, xdp_prog);
4878                                 break;
4879                         }
4880                         return XDP_DROP;
4881                 }
4882         }
4883         return XDP_PASS;
4884 out_redir:
4885         kfree_skb(skb);
4886         return XDP_DROP;
4887 }
4888 EXPORT_SYMBOL_GPL(do_xdp_generic);
4889
4890 static int netif_rx_internal(struct sk_buff *skb)
4891 {
4892         int ret;
4893
4894         net_timestamp_check(netdev_tstamp_prequeue, skb);
4895
4896         trace_netif_rx(skb);
4897
4898 #ifdef CONFIG_RPS
4899         if (static_branch_unlikely(&rps_needed)) {
4900                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4901                 int cpu;
4902
4903                 preempt_disable();
4904                 rcu_read_lock();
4905
4906                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4907                 if (cpu < 0)
4908                         cpu = smp_processor_id();
4909
4910                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4911
4912                 rcu_read_unlock();
4913                 preempt_enable();
4914         } else
4915 #endif
4916         {
4917                 unsigned int qtail;
4918
4919                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4920                 put_cpu();
4921         }
4922         return ret;
4923 }
4924
4925 /**
4926  *      netif_rx        -       post buffer to the network code
4927  *      @skb: buffer to post
4928  *
4929  *      This function receives a packet from a device driver and queues it for
4930  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4931  *      may be dropped during processing for congestion control or by the
4932  *      protocol layers.
4933  *
4934  *      return values:
4935  *      NET_RX_SUCCESS  (no congestion)
4936  *      NET_RX_DROP     (packet was dropped)
4937  *
4938  */
4939
4940 int netif_rx(struct sk_buff *skb)
4941 {
4942         int ret;
4943
4944         trace_netif_rx_entry(skb);
4945
4946         ret = netif_rx_internal(skb);
4947         trace_netif_rx_exit(ret);
4948
4949         return ret;
4950 }
4951 EXPORT_SYMBOL(netif_rx);
4952
4953 int netif_rx_ni(struct sk_buff *skb)
4954 {
4955         int err;
4956
4957         trace_netif_rx_ni_entry(skb);
4958
4959         preempt_disable();
4960         err = netif_rx_internal(skb);
4961         if (local_softirq_pending())
4962                 do_softirq();
4963         preempt_enable();
4964         trace_netif_rx_ni_exit(err);
4965
4966         return err;
4967 }
4968 EXPORT_SYMBOL(netif_rx_ni);
4969
4970 int netif_rx_any_context(struct sk_buff *skb)
4971 {
4972         /*
4973          * If invoked from contexts which do not invoke bottom half
4974          * processing either at return from interrupt or when softrqs are
4975          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4976          * directly.
4977          */
4978         if (in_interrupt())
4979                 return netif_rx(skb);
4980         else
4981                 return netif_rx_ni(skb);
4982 }
4983 EXPORT_SYMBOL(netif_rx_any_context);
4984
4985 static __latent_entropy void net_tx_action(struct softirq_action *h)
4986 {
4987         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4988
4989         if (sd->completion_queue) {
4990                 struct sk_buff *clist;
4991
4992                 local_irq_disable();
4993                 clist = sd->completion_queue;
4994                 sd->completion_queue = NULL;
4995                 local_irq_enable();
4996
4997                 while (clist) {
4998                         struct sk_buff *skb = clist;
4999
5000                         clist = clist->next;
5001
5002                         WARN_ON(refcount_read(&skb->users));
5003                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5004                                 trace_consume_skb(skb);
5005                         else
5006                                 trace_kfree_skb(skb, net_tx_action);
5007
5008                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5009                                 __kfree_skb(skb);
5010                         else
5011                                 __kfree_skb_defer(skb);
5012                 }
5013         }
5014
5015         if (sd->output_queue) {
5016                 struct Qdisc *head;
5017
5018                 local_irq_disable();
5019                 head = sd->output_queue;
5020                 sd->output_queue = NULL;
5021                 sd->output_queue_tailp = &sd->output_queue;
5022                 local_irq_enable();
5023
5024                 rcu_read_lock();
5025
5026                 while (head) {
5027                         struct Qdisc *q = head;
5028                         spinlock_t *root_lock = NULL;
5029
5030                         head = head->next_sched;
5031
5032                         /* We need to make sure head->next_sched is read
5033                          * before clearing __QDISC_STATE_SCHED
5034                          */
5035                         smp_mb__before_atomic();
5036
5037                         if (!(q->flags & TCQ_F_NOLOCK)) {
5038                                 root_lock = qdisc_lock(q);
5039                                 spin_lock(root_lock);
5040                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5041                                                      &q->state))) {
5042                                 /* There is a synchronize_net() between
5043                                  * STATE_DEACTIVATED flag being set and
5044                                  * qdisc_reset()/some_qdisc_is_busy() in
5045                                  * dev_deactivate(), so we can safely bail out
5046                                  * early here to avoid data race between
5047                                  * qdisc_deactivate() and some_qdisc_is_busy()
5048                                  * for lockless qdisc.
5049                                  */
5050                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5051                                 continue;
5052                         }
5053
5054                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5055                         qdisc_run(q);
5056                         if (root_lock)
5057                                 spin_unlock(root_lock);
5058                 }
5059
5060                 rcu_read_unlock();
5061         }
5062
5063         xfrm_dev_backlog(sd);
5064 }
5065
5066 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5067 /* This hook is defined here for ATM LANE */
5068 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5069                              unsigned char *addr) __read_mostly;
5070 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5071 #endif
5072
5073 static inline struct sk_buff *
5074 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5075                    struct net_device *orig_dev, bool *another)
5076 {
5077 #ifdef CONFIG_NET_CLS_ACT
5078         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5079         struct tcf_result cl_res;
5080
5081         /* If there's at least one ingress present somewhere (so
5082          * we get here via enabled static key), remaining devices
5083          * that are not configured with an ingress qdisc will bail
5084          * out here.
5085          */
5086         if (!miniq)
5087                 return skb;
5088
5089         if (*pt_prev) {
5090                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5091                 *pt_prev = NULL;
5092         }
5093
5094         qdisc_skb_cb(skb)->pkt_len = skb->len;
5095         tc_skb_cb(skb)->mru = 0;
5096         tc_skb_cb(skb)->post_ct = false;
5097         skb->tc_at_ingress = 1;
5098         mini_qdisc_bstats_cpu_update(miniq, skb);
5099
5100         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5101         case TC_ACT_OK:
5102         case TC_ACT_RECLASSIFY:
5103                 skb->tc_index = TC_H_MIN(cl_res.classid);
5104                 break;
5105         case TC_ACT_SHOT:
5106                 mini_qdisc_qstats_cpu_drop(miniq);
5107                 kfree_skb(skb);
5108                 return NULL;
5109         case TC_ACT_STOLEN:
5110         case TC_ACT_QUEUED:
5111         case TC_ACT_TRAP:
5112                 consume_skb(skb);
5113                 return NULL;
5114         case TC_ACT_REDIRECT:
5115                 /* skb_mac_header check was done by cls/act_bpf, so
5116                  * we can safely push the L2 header back before
5117                  * redirecting to another netdev
5118                  */
5119                 __skb_push(skb, skb->mac_len);
5120                 if (skb_do_redirect(skb) == -EAGAIN) {
5121                         __skb_pull(skb, skb->mac_len);
5122                         *another = true;
5123                         break;
5124                 }
5125                 return NULL;
5126         case TC_ACT_CONSUMED:
5127                 return NULL;
5128         default:
5129                 break;
5130         }
5131 #endif /* CONFIG_NET_CLS_ACT */
5132         return skb;
5133 }
5134
5135 /**
5136  *      netdev_is_rx_handler_busy - check if receive handler is registered
5137  *      @dev: device to check
5138  *
5139  *      Check if a receive handler is already registered for a given device.
5140  *      Return true if there one.
5141  *
5142  *      The caller must hold the rtnl_mutex.
5143  */
5144 bool netdev_is_rx_handler_busy(struct net_device *dev)
5145 {
5146         ASSERT_RTNL();
5147         return dev && rtnl_dereference(dev->rx_handler);
5148 }
5149 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5150
5151 /**
5152  *      netdev_rx_handler_register - register receive handler
5153  *      @dev: device to register a handler for
5154  *      @rx_handler: receive handler to register
5155  *      @rx_handler_data: data pointer that is used by rx handler
5156  *
5157  *      Register a receive handler for a device. This handler will then be
5158  *      called from __netif_receive_skb. A negative errno code is returned
5159  *      on a failure.
5160  *
5161  *      The caller must hold the rtnl_mutex.
5162  *
5163  *      For a general description of rx_handler, see enum rx_handler_result.
5164  */
5165 int netdev_rx_handler_register(struct net_device *dev,
5166                                rx_handler_func_t *rx_handler,
5167                                void *rx_handler_data)
5168 {
5169         if (netdev_is_rx_handler_busy(dev))
5170                 return -EBUSY;
5171
5172         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5173                 return -EINVAL;
5174
5175         /* Note: rx_handler_data must be set before rx_handler */
5176         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5177         rcu_assign_pointer(dev->rx_handler, rx_handler);
5178
5179         return 0;
5180 }
5181 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5182
5183 /**
5184  *      netdev_rx_handler_unregister - unregister receive handler
5185  *      @dev: device to unregister a handler from
5186  *
5187  *      Unregister a receive handler from a device.
5188  *
5189  *      The caller must hold the rtnl_mutex.
5190  */
5191 void netdev_rx_handler_unregister(struct net_device *dev)
5192 {
5193
5194         ASSERT_RTNL();
5195         RCU_INIT_POINTER(dev->rx_handler, NULL);
5196         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5197          * section has a guarantee to see a non NULL rx_handler_data
5198          * as well.
5199          */
5200         synchronize_net();
5201         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5202 }
5203 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5204
5205 /*
5206  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5207  * the special handling of PFMEMALLOC skbs.
5208  */
5209 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5210 {
5211         switch (skb->protocol) {
5212         case htons(ETH_P_ARP):
5213         case htons(ETH_P_IP):
5214         case htons(ETH_P_IPV6):
5215         case htons(ETH_P_8021Q):
5216         case htons(ETH_P_8021AD):
5217                 return true;
5218         default:
5219                 return false;
5220         }
5221 }
5222
5223 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5224                              int *ret, struct net_device *orig_dev)
5225 {
5226         if (nf_hook_ingress_active(skb)) {
5227                 int ingress_retval;
5228
5229                 if (*pt_prev) {
5230                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5231                         *pt_prev = NULL;
5232                 }
5233
5234                 rcu_read_lock();
5235                 ingress_retval = nf_hook_ingress(skb);
5236                 rcu_read_unlock();
5237                 return ingress_retval;
5238         }
5239         return 0;
5240 }
5241
5242 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5243                                     struct packet_type **ppt_prev)
5244 {
5245         struct packet_type *ptype, *pt_prev;
5246         rx_handler_func_t *rx_handler;
5247         struct sk_buff *skb = *pskb;
5248         struct net_device *orig_dev;
5249         bool deliver_exact = false;
5250         int ret = NET_RX_DROP;
5251         __be16 type;
5252
5253         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5254
5255         trace_netif_receive_skb(skb);
5256
5257         orig_dev = skb->dev;
5258
5259         skb_reset_network_header(skb);
5260         if (!skb_transport_header_was_set(skb))
5261                 skb_reset_transport_header(skb);
5262         skb_reset_mac_len(skb);
5263
5264         pt_prev = NULL;
5265
5266 another_round:
5267         skb->skb_iif = skb->dev->ifindex;
5268
5269         __this_cpu_inc(softnet_data.processed);
5270
5271         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5272                 int ret2;
5273
5274                 migrate_disable();
5275                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5276                 migrate_enable();
5277
5278                 if (ret2 != XDP_PASS) {
5279                         ret = NET_RX_DROP;
5280                         goto out;
5281                 }
5282         }
5283
5284         if (eth_type_vlan(skb->protocol)) {
5285                 skb = skb_vlan_untag(skb);
5286                 if (unlikely(!skb))
5287                         goto out;
5288         }
5289
5290         if (skb_skip_tc_classify(skb))
5291                 goto skip_classify;
5292
5293         if (pfmemalloc)
5294                 goto skip_taps;
5295
5296         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5297                 if (pt_prev)
5298                         ret = deliver_skb(skb, pt_prev, orig_dev);
5299                 pt_prev = ptype;
5300         }
5301
5302         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5303                 if (pt_prev)
5304                         ret = deliver_skb(skb, pt_prev, orig_dev);
5305                 pt_prev = ptype;
5306         }
5307
5308 skip_taps:
5309 #ifdef CONFIG_NET_INGRESS
5310         if (static_branch_unlikely(&ingress_needed_key)) {
5311                 bool another = false;
5312
5313                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5314                                          &another);
5315                 if (another)
5316                         goto another_round;
5317                 if (!skb)
5318                         goto out;
5319
5320                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5321                         goto out;
5322         }
5323 #endif
5324         skb_reset_redirect(skb);
5325 skip_classify:
5326         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5327                 goto drop;
5328
5329         if (skb_vlan_tag_present(skb)) {
5330                 if (pt_prev) {
5331                         ret = deliver_skb(skb, pt_prev, orig_dev);
5332                         pt_prev = NULL;
5333                 }
5334                 if (vlan_do_receive(&skb))
5335                         goto another_round;
5336                 else if (unlikely(!skb))
5337                         goto out;
5338         }
5339
5340         rx_handler = rcu_dereference(skb->dev->rx_handler);
5341         if (rx_handler) {
5342                 if (pt_prev) {
5343                         ret = deliver_skb(skb, pt_prev, orig_dev);
5344                         pt_prev = NULL;
5345                 }
5346                 switch (rx_handler(&skb)) {
5347                 case RX_HANDLER_CONSUMED:
5348                         ret = NET_RX_SUCCESS;
5349                         goto out;
5350                 case RX_HANDLER_ANOTHER:
5351                         goto another_round;
5352                 case RX_HANDLER_EXACT:
5353                         deliver_exact = true;
5354                         break;
5355                 case RX_HANDLER_PASS:
5356                         break;
5357                 default:
5358                         BUG();
5359                 }
5360         }
5361
5362         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5363 check_vlan_id:
5364                 if (skb_vlan_tag_get_id(skb)) {
5365                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5366                          * find vlan device.
5367                          */
5368                         skb->pkt_type = PACKET_OTHERHOST;
5369                 } else if (eth_type_vlan(skb->protocol)) {
5370                         /* Outer header is 802.1P with vlan 0, inner header is
5371                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5372                          * not find vlan dev for vlan id 0.
5373                          */
5374                         __vlan_hwaccel_clear_tag(skb);
5375                         skb = skb_vlan_untag(skb);
5376                         if (unlikely(!skb))
5377                                 goto out;
5378                         if (vlan_do_receive(&skb))
5379                                 /* After stripping off 802.1P header with vlan 0
5380                                  * vlan dev is found for inner header.
5381                                  */
5382                                 goto another_round;
5383                         else if (unlikely(!skb))
5384                                 goto out;
5385                         else
5386                                 /* We have stripped outer 802.1P vlan 0 header.
5387                                  * But could not find vlan dev.
5388                                  * check again for vlan id to set OTHERHOST.
5389                                  */
5390                                 goto check_vlan_id;
5391                 }
5392                 /* Note: we might in the future use prio bits
5393                  * and set skb->priority like in vlan_do_receive()
5394                  * For the time being, just ignore Priority Code Point
5395                  */
5396                 __vlan_hwaccel_clear_tag(skb);
5397         }
5398
5399         type = skb->protocol;
5400
5401         /* deliver only exact match when indicated */
5402         if (likely(!deliver_exact)) {
5403                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5404                                        &ptype_base[ntohs(type) &
5405                                                    PTYPE_HASH_MASK]);
5406         }
5407
5408         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5409                                &orig_dev->ptype_specific);
5410
5411         if (unlikely(skb->dev != orig_dev)) {
5412                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5413                                        &skb->dev->ptype_specific);
5414         }
5415
5416         if (pt_prev) {
5417                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5418                         goto drop;
5419                 *ppt_prev = pt_prev;
5420         } else {
5421 drop:
5422                 if (!deliver_exact)
5423                         atomic_long_inc(&skb->dev->rx_dropped);
5424                 else
5425                         atomic_long_inc(&skb->dev->rx_nohandler);
5426                 kfree_skb(skb);
5427                 /* Jamal, now you will not able to escape explaining
5428                  * me how you were going to use this. :-)
5429                  */
5430                 ret = NET_RX_DROP;
5431         }
5432
5433 out:
5434         /* The invariant here is that if *ppt_prev is not NULL
5435          * then skb should also be non-NULL.
5436          *
5437          * Apparently *ppt_prev assignment above holds this invariant due to
5438          * skb dereferencing near it.
5439          */
5440         *pskb = skb;
5441         return ret;
5442 }
5443
5444 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5445 {
5446         struct net_device *orig_dev = skb->dev;
5447         struct packet_type *pt_prev = NULL;
5448         int ret;
5449
5450         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5451         if (pt_prev)
5452                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5453                                          skb->dev, pt_prev, orig_dev);
5454         return ret;
5455 }
5456
5457 /**
5458  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5459  *      @skb: buffer to process
5460  *
5461  *      More direct receive version of netif_receive_skb().  It should
5462  *      only be used by callers that have a need to skip RPS and Generic XDP.
5463  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5464  *
5465  *      This function may only be called from softirq context and interrupts
5466  *      should be enabled.
5467  *
5468  *      Return values (usually ignored):
5469  *      NET_RX_SUCCESS: no congestion
5470  *      NET_RX_DROP: packet was dropped
5471  */
5472 int netif_receive_skb_core(struct sk_buff *skb)
5473 {
5474         int ret;
5475
5476         rcu_read_lock();
5477         ret = __netif_receive_skb_one_core(skb, false);
5478         rcu_read_unlock();
5479
5480         return ret;
5481 }
5482 EXPORT_SYMBOL(netif_receive_skb_core);
5483
5484 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5485                                                   struct packet_type *pt_prev,
5486                                                   struct net_device *orig_dev)
5487 {
5488         struct sk_buff *skb, *next;
5489
5490         if (!pt_prev)
5491                 return;
5492         if (list_empty(head))
5493                 return;
5494         if (pt_prev->list_func != NULL)
5495                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5496                                    ip_list_rcv, head, pt_prev, orig_dev);
5497         else
5498                 list_for_each_entry_safe(skb, next, head, list) {
5499                         skb_list_del_init(skb);
5500                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5501                 }
5502 }
5503
5504 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5505 {
5506         /* Fast-path assumptions:
5507          * - There is no RX handler.
5508          * - Only one packet_type matches.
5509          * If either of these fails, we will end up doing some per-packet
5510          * processing in-line, then handling the 'last ptype' for the whole
5511          * sublist.  This can't cause out-of-order delivery to any single ptype,
5512          * because the 'last ptype' must be constant across the sublist, and all
5513          * other ptypes are handled per-packet.
5514          */
5515         /* Current (common) ptype of sublist */
5516         struct packet_type *pt_curr = NULL;
5517         /* Current (common) orig_dev of sublist */
5518         struct net_device *od_curr = NULL;
5519         struct list_head sublist;
5520         struct sk_buff *skb, *next;
5521
5522         INIT_LIST_HEAD(&sublist);
5523         list_for_each_entry_safe(skb, next, head, list) {
5524                 struct net_device *orig_dev = skb->dev;
5525                 struct packet_type *pt_prev = NULL;
5526
5527                 skb_list_del_init(skb);
5528                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5529                 if (!pt_prev)
5530                         continue;
5531                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5532                         /* dispatch old sublist */
5533                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5534                         /* start new sublist */
5535                         INIT_LIST_HEAD(&sublist);
5536                         pt_curr = pt_prev;
5537                         od_curr = orig_dev;
5538                 }
5539                 list_add_tail(&skb->list, &sublist);
5540         }
5541
5542         /* dispatch final sublist */
5543         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5544 }
5545
5546 static int __netif_receive_skb(struct sk_buff *skb)
5547 {
5548         int ret;
5549
5550         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5551                 unsigned int noreclaim_flag;
5552
5553                 /*
5554                  * PFMEMALLOC skbs are special, they should
5555                  * - be delivered to SOCK_MEMALLOC sockets only
5556                  * - stay away from userspace
5557                  * - have bounded memory usage
5558                  *
5559                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5560                  * context down to all allocation sites.
5561                  */
5562                 noreclaim_flag = memalloc_noreclaim_save();
5563                 ret = __netif_receive_skb_one_core(skb, true);
5564                 memalloc_noreclaim_restore(noreclaim_flag);
5565         } else
5566                 ret = __netif_receive_skb_one_core(skb, false);
5567
5568         return ret;
5569 }
5570
5571 static void __netif_receive_skb_list(struct list_head *head)
5572 {
5573         unsigned long noreclaim_flag = 0;
5574         struct sk_buff *skb, *next;
5575         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5576
5577         list_for_each_entry_safe(skb, next, head, list) {
5578                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5579                         struct list_head sublist;
5580
5581                         /* Handle the previous sublist */
5582                         list_cut_before(&sublist, head, &skb->list);
5583                         if (!list_empty(&sublist))
5584                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5585                         pfmemalloc = !pfmemalloc;
5586                         /* See comments in __netif_receive_skb */
5587                         if (pfmemalloc)
5588                                 noreclaim_flag = memalloc_noreclaim_save();
5589                         else
5590                                 memalloc_noreclaim_restore(noreclaim_flag);
5591                 }
5592         }
5593         /* Handle the remaining sublist */
5594         if (!list_empty(head))
5595                 __netif_receive_skb_list_core(head, pfmemalloc);
5596         /* Restore pflags */
5597         if (pfmemalloc)
5598                 memalloc_noreclaim_restore(noreclaim_flag);
5599 }
5600
5601 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5602 {
5603         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5604         struct bpf_prog *new = xdp->prog;
5605         int ret = 0;
5606
5607         switch (xdp->command) {
5608         case XDP_SETUP_PROG:
5609                 rcu_assign_pointer(dev->xdp_prog, new);
5610                 if (old)
5611                         bpf_prog_put(old);
5612
5613                 if (old && !new) {
5614                         static_branch_dec(&generic_xdp_needed_key);
5615                 } else if (new && !old) {
5616                         static_branch_inc(&generic_xdp_needed_key);
5617                         dev_disable_lro(dev);
5618                         dev_disable_gro_hw(dev);
5619                 }
5620                 break;
5621
5622         default:
5623                 ret = -EINVAL;
5624                 break;
5625         }
5626
5627         return ret;
5628 }
5629
5630 static int netif_receive_skb_internal(struct sk_buff *skb)
5631 {
5632         int ret;
5633
5634         net_timestamp_check(netdev_tstamp_prequeue, skb);
5635
5636         if (skb_defer_rx_timestamp(skb))
5637                 return NET_RX_SUCCESS;
5638
5639         rcu_read_lock();
5640 #ifdef CONFIG_RPS
5641         if (static_branch_unlikely(&rps_needed)) {
5642                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5643                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5644
5645                 if (cpu >= 0) {
5646                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5647                         rcu_read_unlock();
5648                         return ret;
5649                 }
5650         }
5651 #endif
5652         ret = __netif_receive_skb(skb);
5653         rcu_read_unlock();
5654         return ret;
5655 }
5656
5657 static void netif_receive_skb_list_internal(struct list_head *head)
5658 {
5659         struct sk_buff *skb, *next;
5660         struct list_head sublist;
5661
5662         INIT_LIST_HEAD(&sublist);
5663         list_for_each_entry_safe(skb, next, head, list) {
5664                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5665                 skb_list_del_init(skb);
5666                 if (!skb_defer_rx_timestamp(skb))
5667                         list_add_tail(&skb->list, &sublist);
5668         }
5669         list_splice_init(&sublist, head);
5670
5671         rcu_read_lock();
5672 #ifdef CONFIG_RPS
5673         if (static_branch_unlikely(&rps_needed)) {
5674                 list_for_each_entry_safe(skb, next, head, list) {
5675                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5676                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5677
5678                         if (cpu >= 0) {
5679                                 /* Will be handled, remove from list */
5680                                 skb_list_del_init(skb);
5681                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5682                         }
5683                 }
5684         }
5685 #endif
5686         __netif_receive_skb_list(head);
5687         rcu_read_unlock();
5688 }
5689
5690 /**
5691  *      netif_receive_skb - process receive buffer from network
5692  *      @skb: buffer to process
5693  *
5694  *      netif_receive_skb() is the main receive data processing function.
5695  *      It always succeeds. The buffer may be dropped during processing
5696  *      for congestion control or by the protocol layers.
5697  *
5698  *      This function may only be called from softirq context and interrupts
5699  *      should be enabled.
5700  *
5701  *      Return values (usually ignored):
5702  *      NET_RX_SUCCESS: no congestion
5703  *      NET_RX_DROP: packet was dropped
5704  */
5705 int netif_receive_skb(struct sk_buff *skb)
5706 {
5707         int ret;
5708
5709         trace_netif_receive_skb_entry(skb);
5710
5711         ret = netif_receive_skb_internal(skb);
5712         trace_netif_receive_skb_exit(ret);
5713
5714         return ret;
5715 }
5716 EXPORT_SYMBOL(netif_receive_skb);
5717
5718 /**
5719  *      netif_receive_skb_list - process many receive buffers from network
5720  *      @head: list of skbs to process.
5721  *
5722  *      Since return value of netif_receive_skb() is normally ignored, and
5723  *      wouldn't be meaningful for a list, this function returns void.
5724  *
5725  *      This function may only be called from softirq context and interrupts
5726  *      should be enabled.
5727  */
5728 void netif_receive_skb_list(struct list_head *head)
5729 {
5730         struct sk_buff *skb;
5731
5732         if (list_empty(head))
5733                 return;
5734         if (trace_netif_receive_skb_list_entry_enabled()) {
5735                 list_for_each_entry(skb, head, list)
5736                         trace_netif_receive_skb_list_entry(skb);
5737         }
5738         netif_receive_skb_list_internal(head);
5739         trace_netif_receive_skb_list_exit(0);
5740 }
5741 EXPORT_SYMBOL(netif_receive_skb_list);
5742
5743 static DEFINE_PER_CPU(struct work_struct, flush_works);
5744
5745 /* Network device is going away, flush any packets still pending */
5746 static void flush_backlog(struct work_struct *work)
5747 {
5748         struct sk_buff *skb, *tmp;
5749         struct softnet_data *sd;
5750
5751         local_bh_disable();
5752         sd = this_cpu_ptr(&softnet_data);
5753
5754         local_irq_disable();
5755         rps_lock(sd);
5756         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5757                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5758                         __skb_unlink(skb, &sd->input_pkt_queue);
5759                         dev_kfree_skb_irq(skb);
5760                         input_queue_head_incr(sd);
5761                 }
5762         }
5763         rps_unlock(sd);
5764         local_irq_enable();
5765
5766         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5767                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5768                         __skb_unlink(skb, &sd->process_queue);
5769                         kfree_skb(skb);
5770                         input_queue_head_incr(sd);
5771                 }
5772         }
5773         local_bh_enable();
5774 }
5775
5776 static bool flush_required(int cpu)
5777 {
5778 #if IS_ENABLED(CONFIG_RPS)
5779         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5780         bool do_flush;
5781
5782         local_irq_disable();
5783         rps_lock(sd);
5784
5785         /* as insertion into process_queue happens with the rps lock held,
5786          * process_queue access may race only with dequeue
5787          */
5788         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5789                    !skb_queue_empty_lockless(&sd->process_queue);
5790         rps_unlock(sd);
5791         local_irq_enable();
5792
5793         return do_flush;
5794 #endif
5795         /* without RPS we can't safely check input_pkt_queue: during a
5796          * concurrent remote skb_queue_splice() we can detect as empty both
5797          * input_pkt_queue and process_queue even if the latter could end-up
5798          * containing a lot of packets.
5799          */
5800         return true;
5801 }
5802
5803 static void flush_all_backlogs(void)
5804 {
5805         static cpumask_t flush_cpus;
5806         unsigned int cpu;
5807
5808         /* since we are under rtnl lock protection we can use static data
5809          * for the cpumask and avoid allocating on stack the possibly
5810          * large mask
5811          */
5812         ASSERT_RTNL();
5813
5814         cpus_read_lock();
5815
5816         cpumask_clear(&flush_cpus);
5817         for_each_online_cpu(cpu) {
5818                 if (flush_required(cpu)) {
5819                         queue_work_on(cpu, system_highpri_wq,
5820                                       per_cpu_ptr(&flush_works, cpu));
5821                         cpumask_set_cpu(cpu, &flush_cpus);
5822                 }
5823         }
5824
5825         /* we can have in flight packet[s] on the cpus we are not flushing,
5826          * synchronize_net() in unregister_netdevice_many() will take care of
5827          * them
5828          */
5829         for_each_cpu(cpu, &flush_cpus)
5830                 flush_work(per_cpu_ptr(&flush_works, cpu));
5831
5832         cpus_read_unlock();
5833 }
5834
5835 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5836 static void gro_normal_list(struct napi_struct *napi)
5837 {
5838         if (!napi->rx_count)
5839                 return;
5840         netif_receive_skb_list_internal(&napi->rx_list);
5841         INIT_LIST_HEAD(&napi->rx_list);
5842         napi->rx_count = 0;
5843 }
5844
5845 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5846  * pass the whole batch up to the stack.
5847  */
5848 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5849 {
5850         list_add_tail(&skb->list, &napi->rx_list);
5851         napi->rx_count += segs;
5852         if (napi->rx_count >= gro_normal_batch)
5853                 gro_normal_list(napi);
5854 }
5855
5856 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5857 {
5858         struct packet_offload *ptype;
5859         __be16 type = skb->protocol;
5860         struct list_head *head = &offload_base;
5861         int err = -ENOENT;
5862
5863         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5864
5865         if (NAPI_GRO_CB(skb)->count == 1) {
5866                 skb_shinfo(skb)->gso_size = 0;
5867                 goto out;
5868         }
5869
5870         rcu_read_lock();
5871         list_for_each_entry_rcu(ptype, head, list) {
5872                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5873                         continue;
5874
5875                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5876                                          ipv6_gro_complete, inet_gro_complete,
5877                                          skb, 0);
5878                 break;
5879         }
5880         rcu_read_unlock();
5881
5882         if (err) {
5883                 WARN_ON(&ptype->list == head);
5884                 kfree_skb(skb);
5885                 return NET_RX_SUCCESS;
5886         }
5887
5888 out:
5889         gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5890         return NET_RX_SUCCESS;
5891 }
5892
5893 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5894                                    bool flush_old)
5895 {
5896         struct list_head *head = &napi->gro_hash[index].list;
5897         struct sk_buff *skb, *p;
5898
5899         list_for_each_entry_safe_reverse(skb, p, head, list) {
5900                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5901                         return;
5902                 skb_list_del_init(skb);
5903                 napi_gro_complete(napi, skb);
5904                 napi->gro_hash[index].count--;
5905         }
5906
5907         if (!napi->gro_hash[index].count)
5908                 __clear_bit(index, &napi->gro_bitmask);
5909 }
5910
5911 /* napi->gro_hash[].list contains packets ordered by age.
5912  * youngest packets at the head of it.
5913  * Complete skbs in reverse order to reduce latencies.
5914  */
5915 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5916 {
5917         unsigned long bitmask = napi->gro_bitmask;
5918         unsigned int i, base = ~0U;
5919
5920         while ((i = ffs(bitmask)) != 0) {
5921                 bitmask >>= i;
5922                 base += i;
5923                 __napi_gro_flush_chain(napi, base, flush_old);
5924         }
5925 }
5926 EXPORT_SYMBOL(napi_gro_flush);
5927
5928 static void gro_list_prepare(const struct list_head *head,
5929                              const struct sk_buff *skb)
5930 {
5931         unsigned int maclen = skb->dev->hard_header_len;
5932         u32 hash = skb_get_hash_raw(skb);
5933         struct sk_buff *p;
5934
5935         list_for_each_entry(p, head, list) {
5936                 unsigned long diffs;
5937
5938                 NAPI_GRO_CB(p)->flush = 0;
5939
5940                 if (hash != skb_get_hash_raw(p)) {
5941                         NAPI_GRO_CB(p)->same_flow = 0;
5942                         continue;
5943                 }
5944
5945                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5946                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5947                 if (skb_vlan_tag_present(p))
5948                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5949                 diffs |= skb_metadata_differs(p, skb);
5950                 if (maclen == ETH_HLEN)
5951                         diffs |= compare_ether_header(skb_mac_header(p),
5952                                                       skb_mac_header(skb));
5953                 else if (!diffs)
5954                         diffs = memcmp(skb_mac_header(p),
5955                                        skb_mac_header(skb),
5956                                        maclen);
5957
5958                 /* in most common scenarions 'slow_gro' is 0
5959                  * otherwise we are already on some slower paths
5960                  * either skip all the infrequent tests altogether or
5961                  * avoid trying too hard to skip each of them individually
5962                  */
5963                 if (!diffs && unlikely(skb->slow_gro | p->slow_gro)) {
5964 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5965                         struct tc_skb_ext *skb_ext;
5966                         struct tc_skb_ext *p_ext;
5967 #endif
5968
5969                         diffs |= p->sk != skb->sk;
5970                         diffs |= skb_metadata_dst_cmp(p, skb);
5971                         diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5972
5973 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5974                         skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5975                         p_ext = skb_ext_find(p, TC_SKB_EXT);
5976
5977                         diffs |= (!!p_ext) ^ (!!skb_ext);
5978                         if (!diffs && unlikely(skb_ext))
5979                                 diffs |= p_ext->chain ^ skb_ext->chain;
5980 #endif
5981                 }
5982
5983                 NAPI_GRO_CB(p)->same_flow = !diffs;
5984         }
5985 }
5986
5987 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5988 {
5989         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5990         const skb_frag_t *frag0 = &pinfo->frags[0];
5991
5992         NAPI_GRO_CB(skb)->data_offset = 0;
5993         NAPI_GRO_CB(skb)->frag0 = NULL;
5994         NAPI_GRO_CB(skb)->frag0_len = 0;
5995
5996         if (!skb_headlen(skb) && pinfo->nr_frags &&
5997             !PageHighMem(skb_frag_page(frag0)) &&
5998             (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
5999                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6000                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6001                                                     skb_frag_size(frag0),
6002                                                     skb->end - skb->tail);
6003         }
6004 }
6005
6006 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6007 {
6008         struct skb_shared_info *pinfo = skb_shinfo(skb);
6009
6010         BUG_ON(skb->end - skb->tail < grow);
6011
6012         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6013
6014         skb->data_len -= grow;
6015         skb->tail += grow;
6016
6017         skb_frag_off_add(&pinfo->frags[0], grow);
6018         skb_frag_size_sub(&pinfo->frags[0], grow);
6019
6020         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6021                 skb_frag_unref(skb, 0);
6022                 memmove(pinfo->frags, pinfo->frags + 1,
6023                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6024         }
6025 }
6026
6027 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6028 {
6029         struct sk_buff *oldest;
6030
6031         oldest = list_last_entry(head, struct sk_buff, list);
6032
6033         /* We are called with head length >= MAX_GRO_SKBS, so this is
6034          * impossible.
6035          */
6036         if (WARN_ON_ONCE(!oldest))
6037                 return;
6038
6039         /* Do not adjust napi->gro_hash[].count, caller is adding a new
6040          * SKB to the chain.
6041          */
6042         skb_list_del_init(oldest);
6043         napi_gro_complete(napi, oldest);
6044 }
6045
6046 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6047 {
6048         u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6049         struct gro_list *gro_list = &napi->gro_hash[bucket];
6050         struct list_head *head = &offload_base;
6051         struct packet_offload *ptype;
6052         __be16 type = skb->protocol;
6053         struct sk_buff *pp = NULL;
6054         enum gro_result ret;
6055         int same_flow;
6056         int grow;
6057
6058         if (netif_elide_gro(skb->dev))
6059                 goto normal;
6060
6061         gro_list_prepare(&gro_list->list, skb);
6062
6063         rcu_read_lock();
6064         list_for_each_entry_rcu(ptype, head, list) {
6065                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6066                         continue;
6067
6068                 skb_set_network_header(skb, skb_gro_offset(skb));
6069                 skb_reset_mac_len(skb);
6070                 NAPI_GRO_CB(skb)->same_flow = 0;
6071                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6072                 NAPI_GRO_CB(skb)->free = 0;
6073                 NAPI_GRO_CB(skb)->encap_mark = 0;
6074                 NAPI_GRO_CB(skb)->recursion_counter = 0;
6075                 NAPI_GRO_CB(skb)->is_fou = 0;
6076                 NAPI_GRO_CB(skb)->is_atomic = 1;
6077                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6078
6079                 /* Setup for GRO checksum validation */
6080                 switch (skb->ip_summed) {
6081                 case CHECKSUM_COMPLETE:
6082                         NAPI_GRO_CB(skb)->csum = skb->csum;
6083                         NAPI_GRO_CB(skb)->csum_valid = 1;
6084                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6085                         break;
6086                 case CHECKSUM_UNNECESSARY:
6087                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6088                         NAPI_GRO_CB(skb)->csum_valid = 0;
6089                         break;
6090                 default:
6091                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6092                         NAPI_GRO_CB(skb)->csum_valid = 0;
6093                 }
6094
6095                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6096                                         ipv6_gro_receive, inet_gro_receive,
6097                                         &gro_list->list, skb);
6098                 break;
6099         }
6100         rcu_read_unlock();
6101
6102         if (&ptype->list == head)
6103                 goto normal;
6104
6105         if (PTR_ERR(pp) == -EINPROGRESS) {
6106                 ret = GRO_CONSUMED;
6107                 goto ok;
6108         }
6109
6110         same_flow = NAPI_GRO_CB(skb)->same_flow;
6111         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6112
6113         if (pp) {
6114                 skb_list_del_init(pp);
6115                 napi_gro_complete(napi, pp);
6116                 gro_list->count--;
6117         }
6118
6119         if (same_flow)
6120                 goto ok;
6121
6122         if (NAPI_GRO_CB(skb)->flush)
6123                 goto normal;
6124
6125         if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6126                 gro_flush_oldest(napi, &gro_list->list);
6127         else
6128                 gro_list->count++;
6129
6130         NAPI_GRO_CB(skb)->count = 1;
6131         NAPI_GRO_CB(skb)->age = jiffies;
6132         NAPI_GRO_CB(skb)->last = skb;
6133         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6134         list_add(&skb->list, &gro_list->list);
6135         ret = GRO_HELD;
6136
6137 pull:
6138         grow = skb_gro_offset(skb) - skb_headlen(skb);
6139         if (grow > 0)
6140                 gro_pull_from_frag0(skb, grow);
6141 ok:
6142         if (gro_list->count) {
6143                 if (!test_bit(bucket, &napi->gro_bitmask))
6144                         __set_bit(bucket, &napi->gro_bitmask);
6145         } else if (test_bit(bucket, &napi->gro_bitmask)) {
6146                 __clear_bit(bucket, &napi->gro_bitmask);
6147         }
6148
6149         return ret;
6150
6151 normal:
6152         ret = GRO_NORMAL;
6153         goto pull;
6154 }
6155
6156 struct packet_offload *gro_find_receive_by_type(__be16 type)
6157 {
6158         struct list_head *offload_head = &offload_base;
6159         struct packet_offload *ptype;
6160
6161         list_for_each_entry_rcu(ptype, offload_head, list) {
6162                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6163                         continue;
6164                 return ptype;
6165         }
6166         return NULL;
6167 }
6168 EXPORT_SYMBOL(gro_find_receive_by_type);
6169
6170 struct packet_offload *gro_find_complete_by_type(__be16 type)
6171 {
6172         struct list_head *offload_head = &offload_base;
6173         struct packet_offload *ptype;
6174
6175         list_for_each_entry_rcu(ptype, offload_head, list) {
6176                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6177                         continue;
6178                 return ptype;
6179         }
6180         return NULL;
6181 }
6182 EXPORT_SYMBOL(gro_find_complete_by_type);
6183
6184 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6185                                     struct sk_buff *skb,
6186                                     gro_result_t ret)
6187 {
6188         switch (ret) {
6189         case GRO_NORMAL:
6190                 gro_normal_one(napi, skb, 1);
6191                 break;
6192
6193         case GRO_MERGED_FREE:
6194                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6195                         napi_skb_free_stolen_head(skb);
6196                 else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6197                         __kfree_skb(skb);
6198                 else
6199                         __kfree_skb_defer(skb);
6200                 break;
6201
6202         case GRO_HELD:
6203         case GRO_MERGED:
6204         case GRO_CONSUMED:
6205                 break;
6206         }
6207
6208         return ret;
6209 }
6210
6211 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6212 {
6213         gro_result_t ret;
6214
6215         skb_mark_napi_id(skb, napi);
6216         trace_napi_gro_receive_entry(skb);
6217
6218         skb_gro_reset_offset(skb, 0);
6219
6220         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6221         trace_napi_gro_receive_exit(ret);
6222
6223         return ret;
6224 }
6225 EXPORT_SYMBOL(napi_gro_receive);
6226
6227 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6228 {
6229         if (unlikely(skb->pfmemalloc)) {
6230                 consume_skb(skb);
6231                 return;
6232         }
6233         __skb_pull(skb, skb_headlen(skb));
6234         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6235         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6236         __vlan_hwaccel_clear_tag(skb);
6237         skb->dev = napi->dev;
6238         skb->skb_iif = 0;
6239
6240         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6241         skb->pkt_type = PACKET_HOST;
6242
6243         skb->encapsulation = 0;
6244         skb_shinfo(skb)->gso_type = 0;
6245         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6246         if (unlikely(skb->slow_gro)) {
6247                 skb_orphan(skb);
6248                 skb_ext_reset(skb);
6249                 nf_reset_ct(skb);
6250                 skb->slow_gro = 0;
6251         }
6252
6253         napi->skb = skb;
6254 }
6255
6256 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6257 {
6258         struct sk_buff *skb = napi->skb;
6259
6260         if (!skb) {
6261                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6262                 if (skb) {
6263                         napi->skb = skb;
6264                         skb_mark_napi_id(skb, napi);
6265                 }
6266         }
6267         return skb;
6268 }
6269 EXPORT_SYMBOL(napi_get_frags);
6270
6271 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6272                                       struct sk_buff *skb,
6273                                       gro_result_t ret)
6274 {
6275         switch (ret) {
6276         case GRO_NORMAL:
6277         case GRO_HELD:
6278                 __skb_push(skb, ETH_HLEN);
6279                 skb->protocol = eth_type_trans(skb, skb->dev);
6280                 if (ret == GRO_NORMAL)
6281                         gro_normal_one(napi, skb, 1);
6282                 break;
6283
6284         case GRO_MERGED_FREE:
6285                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6286                         napi_skb_free_stolen_head(skb);
6287                 else
6288                         napi_reuse_skb(napi, skb);
6289                 break;
6290
6291         case GRO_MERGED:
6292         case GRO_CONSUMED:
6293                 break;
6294         }
6295
6296         return ret;
6297 }
6298
6299 /* Upper GRO stack assumes network header starts at gro_offset=0
6300  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6301  * We copy ethernet header into skb->data to have a common layout.
6302  */
6303 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6304 {
6305         struct sk_buff *skb = napi->skb;
6306         const struct ethhdr *eth;
6307         unsigned int hlen = sizeof(*eth);
6308
6309         napi->skb = NULL;
6310
6311         skb_reset_mac_header(skb);
6312         skb_gro_reset_offset(skb, hlen);
6313
6314         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6315                 eth = skb_gro_header_slow(skb, hlen, 0);
6316                 if (unlikely(!eth)) {
6317                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6318                                              __func__, napi->dev->name);
6319                         napi_reuse_skb(napi, skb);
6320                         return NULL;
6321                 }
6322         } else {
6323                 eth = (const struct ethhdr *)skb->data;
6324                 gro_pull_from_frag0(skb, hlen);
6325                 NAPI_GRO_CB(skb)->frag0 += hlen;
6326                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6327         }
6328         __skb_pull(skb, hlen);
6329
6330         /*
6331          * This works because the only protocols we care about don't require
6332          * special handling.
6333          * We'll fix it up properly in napi_frags_finish()
6334          */
6335         skb->protocol = eth->h_proto;
6336
6337         return skb;
6338 }
6339
6340 gro_result_t napi_gro_frags(struct napi_struct *napi)
6341 {
6342         gro_result_t ret;
6343         struct sk_buff *skb = napi_frags_skb(napi);
6344
6345         trace_napi_gro_frags_entry(skb);
6346
6347         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6348         trace_napi_gro_frags_exit(ret);
6349
6350         return ret;
6351 }
6352 EXPORT_SYMBOL(napi_gro_frags);
6353
6354 /* Compute the checksum from gro_offset and return the folded value
6355  * after adding in any pseudo checksum.
6356  */
6357 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6358 {
6359         __wsum wsum;
6360         __sum16 sum;
6361
6362         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6363
6364         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6365         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6366         /* See comments in __skb_checksum_complete(). */
6367         if (likely(!sum)) {
6368                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6369                     !skb->csum_complete_sw)
6370                         netdev_rx_csum_fault(skb->dev, skb);
6371         }
6372
6373         NAPI_GRO_CB(skb)->csum = wsum;
6374         NAPI_GRO_CB(skb)->csum_valid = 1;
6375
6376         return sum;
6377 }
6378 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6379
6380 static void net_rps_send_ipi(struct softnet_data *remsd)
6381 {
6382 #ifdef CONFIG_RPS
6383         while (remsd) {
6384                 struct softnet_data *next = remsd->rps_ipi_next;
6385
6386                 if (cpu_online(remsd->cpu))
6387                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6388                 remsd = next;
6389         }
6390 #endif
6391 }
6392
6393 /*
6394  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6395  * Note: called with local irq disabled, but exits with local irq enabled.
6396  */
6397 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6398 {
6399 #ifdef CONFIG_RPS
6400         struct softnet_data *remsd = sd->rps_ipi_list;
6401
6402         if (remsd) {
6403                 sd->rps_ipi_list = NULL;
6404
6405                 local_irq_enable();
6406
6407                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6408                 net_rps_send_ipi(remsd);
6409         } else
6410 #endif
6411                 local_irq_enable();
6412 }
6413
6414 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6415 {
6416 #ifdef CONFIG_RPS
6417         return sd->rps_ipi_list != NULL;
6418 #else
6419         return false;
6420 #endif
6421 }
6422
6423 static int process_backlog(struct napi_struct *napi, int quota)
6424 {
6425         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6426         bool again = true;
6427         int work = 0;
6428
6429         /* Check if we have pending ipi, its better to send them now,
6430          * not waiting net_rx_action() end.
6431          */
6432         if (sd_has_rps_ipi_waiting(sd)) {
6433                 local_irq_disable();
6434                 net_rps_action_and_irq_enable(sd);
6435         }
6436
6437         napi->weight = dev_rx_weight;
6438         while (again) {
6439                 struct sk_buff *skb;
6440
6441                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6442                         rcu_read_lock();
6443                         __netif_receive_skb(skb);
6444                         rcu_read_unlock();
6445                         input_queue_head_incr(sd);
6446                         if (++work >= quota)
6447                                 return work;
6448
6449                 }
6450
6451                 local_irq_disable();
6452                 rps_lock(sd);
6453                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6454                         /*
6455                          * Inline a custom version of __napi_complete().
6456                          * only current cpu owns and manipulates this napi,
6457                          * and NAPI_STATE_SCHED is the only possible flag set
6458                          * on backlog.
6459                          * We can use a plain write instead of clear_bit(),
6460                          * and we dont need an smp_mb() memory barrier.
6461                          */
6462                         napi->state = 0;
6463                         again = false;
6464                 } else {
6465                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6466                                                    &sd->process_queue);
6467                 }
6468                 rps_unlock(sd);
6469                 local_irq_enable();
6470         }
6471
6472         return work;
6473 }
6474
6475 /**
6476  * __napi_schedule - schedule for receive
6477  * @n: entry to schedule
6478  *
6479  * The entry's receive function will be scheduled to run.
6480  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6481  */
6482 void __napi_schedule(struct napi_struct *n)
6483 {
6484         unsigned long flags;
6485
6486         local_irq_save(flags);
6487         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6488         local_irq_restore(flags);
6489 }
6490 EXPORT_SYMBOL(__napi_schedule);
6491
6492 /**
6493  *      napi_schedule_prep - check if napi can be scheduled
6494  *      @n: napi context
6495  *
6496  * Test if NAPI routine is already running, and if not mark
6497  * it as running.  This is used as a condition variable to
6498  * insure only one NAPI poll instance runs.  We also make
6499  * sure there is no pending NAPI disable.
6500  */
6501 bool napi_schedule_prep(struct napi_struct *n)
6502 {
6503         unsigned long val, new;
6504
6505         do {
6506                 val = READ_ONCE(n->state);
6507                 if (unlikely(val & NAPIF_STATE_DISABLE))
6508                         return false;
6509                 new = val | NAPIF_STATE_SCHED;
6510
6511                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6512                  * This was suggested by Alexander Duyck, as compiler
6513                  * emits better code than :
6514                  * if (val & NAPIF_STATE_SCHED)
6515                  *     new |= NAPIF_STATE_MISSED;
6516                  */
6517                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6518                                                    NAPIF_STATE_MISSED;
6519         } while (cmpxchg(&n->state, val, new) != val);
6520
6521         return !(val & NAPIF_STATE_SCHED);
6522 }
6523 EXPORT_SYMBOL(napi_schedule_prep);
6524
6525 /**
6526  * __napi_schedule_irqoff - schedule for receive
6527  * @n: entry to schedule
6528  *
6529  * Variant of __napi_schedule() assuming hard irqs are masked.
6530  *
6531  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6532  * because the interrupt disabled assumption might not be true
6533  * due to force-threaded interrupts and spinlock substitution.
6534  */
6535 void __napi_schedule_irqoff(struct napi_struct *n)
6536 {
6537         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6538                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6539         else
6540                 __napi_schedule(n);
6541 }
6542 EXPORT_SYMBOL(__napi_schedule_irqoff);
6543
6544 bool napi_complete_done(struct napi_struct *n, int work_done)
6545 {
6546         unsigned long flags, val, new, timeout = 0;
6547         bool ret = true;
6548
6549         /*
6550          * 1) Don't let napi dequeue from the cpu poll list
6551          *    just in case its running on a different cpu.
6552          * 2) If we are busy polling, do nothing here, we have
6553          *    the guarantee we will be called later.
6554          */
6555         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6556                                  NAPIF_STATE_IN_BUSY_POLL)))
6557                 return false;
6558
6559         if (work_done) {
6560                 if (n->gro_bitmask)
6561                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6562                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6563         }
6564         if (n->defer_hard_irqs_count > 0) {
6565                 n->defer_hard_irqs_count--;
6566                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6567                 if (timeout)
6568                         ret = false;
6569         }
6570         if (n->gro_bitmask) {
6571                 /* When the NAPI instance uses a timeout and keeps postponing
6572                  * it, we need to bound somehow the time packets are kept in
6573                  * the GRO layer
6574                  */
6575                 napi_gro_flush(n, !!timeout);
6576         }
6577
6578         gro_normal_list(n);
6579
6580         if (unlikely(!list_empty(&n->poll_list))) {
6581                 /* If n->poll_list is not empty, we need to mask irqs */
6582                 local_irq_save(flags);
6583                 list_del_init(&n->poll_list);
6584                 local_irq_restore(flags);
6585         }
6586
6587         do {
6588                 val = READ_ONCE(n->state);
6589
6590                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6591
6592                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6593                               NAPIF_STATE_SCHED_THREADED |
6594                               NAPIF_STATE_PREFER_BUSY_POLL);
6595
6596                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6597                  * because we will call napi->poll() one more time.
6598                  * This C code was suggested by Alexander Duyck to help gcc.
6599                  */
6600                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6601                                                     NAPIF_STATE_SCHED;
6602         } while (cmpxchg(&n->state, val, new) != val);
6603
6604         if (unlikely(val & NAPIF_STATE_MISSED)) {
6605                 __napi_schedule(n);
6606                 return false;
6607         }
6608
6609         if (timeout)
6610                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6611                               HRTIMER_MODE_REL_PINNED);
6612         return ret;
6613 }
6614 EXPORT_SYMBOL(napi_complete_done);
6615
6616 /* must be called under rcu_read_lock(), as we dont take a reference */
6617 static struct napi_struct *napi_by_id(unsigned int napi_id)
6618 {
6619         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6620         struct napi_struct *napi;
6621
6622         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6623                 if (napi->napi_id == napi_id)
6624                         return napi;
6625
6626         return NULL;
6627 }
6628
6629 #if defined(CONFIG_NET_RX_BUSY_POLL)
6630
6631 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6632 {
6633         if (!skip_schedule) {
6634                 gro_normal_list(napi);
6635                 __napi_schedule(napi);
6636                 return;
6637         }
6638
6639         if (napi->gro_bitmask) {
6640                 /* flush too old packets
6641                  * If HZ < 1000, flush all packets.
6642                  */
6643                 napi_gro_flush(napi, HZ >= 1000);
6644         }
6645
6646         gro_normal_list(napi);
6647         clear_bit(NAPI_STATE_SCHED, &napi->state);
6648 }
6649
6650 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6651                            u16 budget)
6652 {
6653         bool skip_schedule = false;
6654         unsigned long timeout;
6655         int rc;
6656
6657         /* Busy polling means there is a high chance device driver hard irq
6658          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6659          * set in napi_schedule_prep().
6660          * Since we are about to call napi->poll() once more, we can safely
6661          * clear NAPI_STATE_MISSED.
6662          *
6663          * Note: x86 could use a single "lock and ..." instruction
6664          * to perform these two clear_bit()
6665          */
6666         clear_bit(NAPI_STATE_MISSED, &napi->state);
6667         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6668
6669         local_bh_disable();
6670
6671         if (prefer_busy_poll) {
6672                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6673                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6674                 if (napi->defer_hard_irqs_count && timeout) {
6675                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6676                         skip_schedule = true;
6677                 }
6678         }
6679
6680         /* All we really want here is to re-enable device interrupts.
6681          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6682          */
6683         rc = napi->poll(napi, budget);
6684         /* We can't gro_normal_list() here, because napi->poll() might have
6685          * rearmed the napi (napi_complete_done()) in which case it could
6686          * already be running on another CPU.
6687          */
6688         trace_napi_poll(napi, rc, budget);
6689         netpoll_poll_unlock(have_poll_lock);
6690         if (rc == budget)
6691                 __busy_poll_stop(napi, skip_schedule);
6692         local_bh_enable();
6693 }
6694
6695 void napi_busy_loop(unsigned int napi_id,
6696                     bool (*loop_end)(void *, unsigned long),
6697                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6698 {
6699         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6700         int (*napi_poll)(struct napi_struct *napi, int budget);
6701         void *have_poll_lock = NULL;
6702         struct napi_struct *napi;
6703
6704 restart:
6705         napi_poll = NULL;
6706
6707         rcu_read_lock();
6708
6709         napi = napi_by_id(napi_id);
6710         if (!napi)
6711                 goto out;
6712
6713         preempt_disable();
6714         for (;;) {
6715                 int work = 0;
6716
6717                 local_bh_disable();
6718                 if (!napi_poll) {
6719                         unsigned long val = READ_ONCE(napi->state);
6720
6721                         /* If multiple threads are competing for this napi,
6722                          * we avoid dirtying napi->state as much as we can.
6723                          */
6724                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6725                                    NAPIF_STATE_IN_BUSY_POLL)) {
6726                                 if (prefer_busy_poll)
6727                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6728                                 goto count;
6729                         }
6730                         if (cmpxchg(&napi->state, val,
6731                                     val | NAPIF_STATE_IN_BUSY_POLL |
6732                                           NAPIF_STATE_SCHED) != val) {
6733                                 if (prefer_busy_poll)
6734                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6735                                 goto count;
6736                         }
6737                         have_poll_lock = netpoll_poll_lock(napi);
6738                         napi_poll = napi->poll;
6739                 }
6740                 work = napi_poll(napi, budget);
6741                 trace_napi_poll(napi, work, budget);
6742                 gro_normal_list(napi);
6743 count:
6744                 if (work > 0)
6745                         __NET_ADD_STATS(dev_net(napi->dev),
6746                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6747                 local_bh_enable();
6748
6749                 if (!loop_end || loop_end(loop_end_arg, start_time))
6750                         break;
6751
6752                 if (unlikely(need_resched())) {
6753                         if (napi_poll)
6754                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6755                         preempt_enable();
6756                         rcu_read_unlock();
6757                         cond_resched();
6758                         if (loop_end(loop_end_arg, start_time))
6759                                 return;
6760                         goto restart;
6761                 }
6762                 cpu_relax();
6763         }
6764         if (napi_poll)
6765                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6766         preempt_enable();
6767 out:
6768         rcu_read_unlock();
6769 }
6770 EXPORT_SYMBOL(napi_busy_loop);
6771
6772 #endif /* CONFIG_NET_RX_BUSY_POLL */
6773
6774 static void napi_hash_add(struct napi_struct *napi)
6775 {
6776         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6777                 return;
6778
6779         spin_lock(&napi_hash_lock);
6780
6781         /* 0..NR_CPUS range is reserved for sender_cpu use */
6782         do {
6783                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6784                         napi_gen_id = MIN_NAPI_ID;
6785         } while (napi_by_id(napi_gen_id));
6786         napi->napi_id = napi_gen_id;
6787
6788         hlist_add_head_rcu(&napi->napi_hash_node,
6789                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6790
6791         spin_unlock(&napi_hash_lock);
6792 }
6793
6794 /* Warning : caller is responsible to make sure rcu grace period
6795  * is respected before freeing memory containing @napi
6796  */
6797 static void napi_hash_del(struct napi_struct *napi)
6798 {
6799         spin_lock(&napi_hash_lock);
6800
6801         hlist_del_init_rcu(&napi->napi_hash_node);
6802
6803         spin_unlock(&napi_hash_lock);
6804 }
6805
6806 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6807 {
6808         struct napi_struct *napi;
6809
6810         napi = container_of(timer, struct napi_struct, timer);
6811
6812         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6813          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6814          */
6815         if (!napi_disable_pending(napi) &&
6816             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6817                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6818                 __napi_schedule_irqoff(napi);
6819         }
6820
6821         return HRTIMER_NORESTART;
6822 }
6823
6824 static void init_gro_hash(struct napi_struct *napi)
6825 {
6826         int i;
6827
6828         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6829                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6830                 napi->gro_hash[i].count = 0;
6831         }
6832         napi->gro_bitmask = 0;
6833 }
6834
6835 int dev_set_threaded(struct net_device *dev, bool threaded)
6836 {
6837         struct napi_struct *napi;
6838         int err = 0;
6839
6840         if (dev->threaded == threaded)
6841                 return 0;
6842
6843         if (threaded) {
6844                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6845                         if (!napi->thread) {
6846                                 err = napi_kthread_create(napi);
6847                                 if (err) {
6848                                         threaded = false;
6849                                         break;
6850                                 }
6851                         }
6852                 }
6853         }
6854
6855         dev->threaded = threaded;
6856
6857         /* Make sure kthread is created before THREADED bit
6858          * is set.
6859          */
6860         smp_mb__before_atomic();
6861
6862         /* Setting/unsetting threaded mode on a napi might not immediately
6863          * take effect, if the current napi instance is actively being
6864          * polled. In this case, the switch between threaded mode and
6865          * softirq mode will happen in the next round of napi_schedule().
6866          * This should not cause hiccups/stalls to the live traffic.
6867          */
6868         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6869                 if (threaded)
6870                         set_bit(NAPI_STATE_THREADED, &napi->state);
6871                 else
6872                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6873         }
6874
6875         return err;
6876 }
6877 EXPORT_SYMBOL(dev_set_threaded);
6878
6879 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6880                     int (*poll)(struct napi_struct *, int), int weight)
6881 {
6882         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6883                 return;
6884
6885         INIT_LIST_HEAD(&napi->poll_list);
6886         INIT_HLIST_NODE(&napi->napi_hash_node);
6887         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6888         napi->timer.function = napi_watchdog;
6889         init_gro_hash(napi);
6890         napi->skb = NULL;
6891         INIT_LIST_HEAD(&napi->rx_list);
6892         napi->rx_count = 0;
6893         napi->poll = poll;
6894         if (weight > NAPI_POLL_WEIGHT)
6895                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6896                                 weight);
6897         napi->weight = weight;
6898         napi->dev = dev;
6899 #ifdef CONFIG_NETPOLL
6900         napi->poll_owner = -1;
6901 #endif
6902         set_bit(NAPI_STATE_SCHED, &napi->state);
6903         set_bit(NAPI_STATE_NPSVC, &napi->state);
6904         list_add_rcu(&napi->dev_list, &dev->napi_list);
6905         napi_hash_add(napi);
6906         /* Create kthread for this napi if dev->threaded is set.
6907          * Clear dev->threaded if kthread creation failed so that
6908          * threaded mode will not be enabled in napi_enable().
6909          */
6910         if (dev->threaded && napi_kthread_create(napi))
6911                 dev->threaded = 0;
6912 }
6913 EXPORT_SYMBOL(netif_napi_add);
6914
6915 void napi_disable(struct napi_struct *n)
6916 {
6917         might_sleep();
6918         set_bit(NAPI_STATE_DISABLE, &n->state);
6919
6920         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6921                 msleep(1);
6922         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6923                 msleep(1);
6924
6925         hrtimer_cancel(&n->timer);
6926
6927         clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6928         clear_bit(NAPI_STATE_DISABLE, &n->state);
6929         clear_bit(NAPI_STATE_THREADED, &n->state);
6930 }
6931 EXPORT_SYMBOL(napi_disable);
6932
6933 /**
6934  *      napi_enable - enable NAPI scheduling
6935  *      @n: NAPI context
6936  *
6937  * Resume NAPI from being scheduled on this context.
6938  * Must be paired with napi_disable.
6939  */
6940 void napi_enable(struct napi_struct *n)
6941 {
6942         unsigned long val, new;
6943
6944         do {
6945                 val = READ_ONCE(n->state);
6946                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6947
6948                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6949                 if (n->dev->threaded && n->thread)
6950                         new |= NAPIF_STATE_THREADED;
6951         } while (cmpxchg(&n->state, val, new) != val);
6952 }
6953 EXPORT_SYMBOL(napi_enable);
6954
6955 static void flush_gro_hash(struct napi_struct *napi)
6956 {
6957         int i;
6958
6959         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6960                 struct sk_buff *skb, *n;
6961
6962                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6963                         kfree_skb(skb);
6964                 napi->gro_hash[i].count = 0;
6965         }
6966 }
6967
6968 /* Must be called in process context */
6969 void __netif_napi_del(struct napi_struct *napi)
6970 {
6971         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6972                 return;
6973
6974         napi_hash_del(napi);
6975         list_del_rcu(&napi->dev_list);
6976         napi_free_frags(napi);
6977
6978         flush_gro_hash(napi);
6979         napi->gro_bitmask = 0;
6980
6981         if (napi->thread) {
6982                 kthread_stop(napi->thread);
6983                 napi->thread = NULL;
6984         }
6985 }
6986 EXPORT_SYMBOL(__netif_napi_del);
6987
6988 static int __napi_poll(struct napi_struct *n, bool *repoll)
6989 {
6990         int work, weight;
6991
6992         weight = n->weight;
6993
6994         /* This NAPI_STATE_SCHED test is for avoiding a race
6995          * with netpoll's poll_napi().  Only the entity which
6996          * obtains the lock and sees NAPI_STATE_SCHED set will
6997          * actually make the ->poll() call.  Therefore we avoid
6998          * accidentally calling ->poll() when NAPI is not scheduled.
6999          */
7000         work = 0;
7001         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
7002                 work = n->poll(n, weight);
7003                 trace_napi_poll(n, work, weight);
7004         }
7005
7006         if (unlikely(work > weight))
7007                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7008                             n->poll, work, weight);
7009
7010         if (likely(work < weight))
7011                 return work;
7012
7013         /* Drivers must not modify the NAPI state if they
7014          * consume the entire weight.  In such cases this code
7015          * still "owns" the NAPI instance and therefore can
7016          * move the instance around on the list at-will.
7017          */
7018         if (unlikely(napi_disable_pending(n))) {
7019                 napi_complete(n);
7020                 return work;
7021         }
7022
7023         /* The NAPI context has more processing work, but busy-polling
7024          * is preferred. Exit early.
7025          */
7026         if (napi_prefer_busy_poll(n)) {
7027                 if (napi_complete_done(n, work)) {
7028                         /* If timeout is not set, we need to make sure
7029                          * that the NAPI is re-scheduled.
7030                          */
7031                         napi_schedule(n);
7032                 }
7033                 return work;
7034         }
7035
7036         if (n->gro_bitmask) {
7037                 /* flush too old packets
7038                  * If HZ < 1000, flush all packets.
7039                  */
7040                 napi_gro_flush(n, HZ >= 1000);
7041         }
7042
7043         gro_normal_list(n);
7044
7045         /* Some drivers may have called napi_schedule
7046          * prior to exhausting their budget.
7047          */
7048         if (unlikely(!list_empty(&n->poll_list))) {
7049                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7050                              n->dev ? n->dev->name : "backlog");
7051                 return work;
7052         }
7053
7054         *repoll = true;
7055
7056         return work;
7057 }
7058
7059 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7060 {
7061         bool do_repoll = false;
7062         void *have;
7063         int work;
7064
7065         list_del_init(&n->poll_list);
7066
7067         have = netpoll_poll_lock(n);
7068
7069         work = __napi_poll(n, &do_repoll);
7070
7071         if (do_repoll)
7072                 list_add_tail(&n->poll_list, repoll);
7073
7074         netpoll_poll_unlock(have);
7075
7076         return work;
7077 }
7078
7079 static int napi_thread_wait(struct napi_struct *napi)
7080 {
7081         bool woken = false;
7082
7083         set_current_state(TASK_INTERRUPTIBLE);
7084
7085         while (!kthread_should_stop()) {
7086                 /* Testing SCHED_THREADED bit here to make sure the current
7087                  * kthread owns this napi and could poll on this napi.
7088                  * Testing SCHED bit is not enough because SCHED bit might be
7089                  * set by some other busy poll thread or by napi_disable().
7090                  */
7091                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7092                         WARN_ON(!list_empty(&napi->poll_list));
7093                         __set_current_state(TASK_RUNNING);
7094                         return 0;
7095                 }
7096
7097                 schedule();
7098                 /* woken being true indicates this thread owns this napi. */
7099                 woken = true;
7100                 set_current_state(TASK_INTERRUPTIBLE);
7101         }
7102         __set_current_state(TASK_RUNNING);
7103
7104         return -1;
7105 }
7106
7107 static int napi_threaded_poll(void *data)
7108 {
7109         struct napi_struct *napi = data;
7110         void *have;
7111
7112         while (!napi_thread_wait(napi)) {
7113                 for (;;) {
7114                         bool repoll = false;
7115
7116                         local_bh_disable();
7117
7118                         have = netpoll_poll_lock(napi);
7119                         __napi_poll(napi, &repoll);
7120                         netpoll_poll_unlock(have);
7121
7122                         local_bh_enable();
7123
7124                         if (!repoll)
7125                                 break;
7126
7127                         cond_resched();
7128                 }
7129         }
7130         return 0;
7131 }
7132
7133 static __latent_entropy void net_rx_action(struct softirq_action *h)
7134 {
7135         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7136         unsigned long time_limit = jiffies +
7137                 usecs_to_jiffies(netdev_budget_usecs);
7138         int budget = netdev_budget;
7139         LIST_HEAD(list);
7140         LIST_HEAD(repoll);
7141
7142         local_irq_disable();
7143         list_splice_init(&sd->poll_list, &list);
7144         local_irq_enable();
7145
7146         for (;;) {
7147                 struct napi_struct *n;
7148
7149                 if (list_empty(&list)) {
7150                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7151                                 return;
7152                         break;
7153                 }
7154
7155                 n = list_first_entry(&list, struct napi_struct, poll_list);
7156                 budget -= napi_poll(n, &repoll);
7157
7158                 /* If softirq window is exhausted then punt.
7159                  * Allow this to run for 2 jiffies since which will allow
7160                  * an average latency of 1.5/HZ.
7161                  */
7162                 if (unlikely(budget <= 0 ||
7163                              time_after_eq(jiffies, time_limit))) {
7164                         sd->time_squeeze++;
7165                         break;
7166                 }
7167         }
7168
7169         local_irq_disable();
7170
7171         list_splice_tail_init(&sd->poll_list, &list);
7172         list_splice_tail(&repoll, &list);
7173         list_splice(&list, &sd->poll_list);
7174         if (!list_empty(&sd->poll_list))
7175                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7176
7177         net_rps_action_and_irq_enable(sd);
7178 }
7179
7180 struct netdev_adjacent {
7181         struct net_device *dev;
7182
7183         /* upper master flag, there can only be one master device per list */
7184         bool master;
7185
7186         /* lookup ignore flag */
7187         bool ignore;
7188
7189         /* counter for the number of times this device was added to us */
7190         u16 ref_nr;
7191
7192         /* private field for the users */
7193         void *private;
7194
7195         struct list_head list;
7196         struct rcu_head rcu;
7197 };
7198
7199 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7200                                                  struct list_head *adj_list)
7201 {
7202         struct netdev_adjacent *adj;
7203
7204         list_for_each_entry(adj, adj_list, list) {
7205                 if (adj->dev == adj_dev)
7206                         return adj;
7207         }
7208         return NULL;
7209 }
7210
7211 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7212                                     struct netdev_nested_priv *priv)
7213 {
7214         struct net_device *dev = (struct net_device *)priv->data;
7215
7216         return upper_dev == dev;
7217 }
7218
7219 /**
7220  * netdev_has_upper_dev - Check if device is linked to an upper device
7221  * @dev: device
7222  * @upper_dev: upper device to check
7223  *
7224  * Find out if a device is linked to specified upper device and return true
7225  * in case it is. Note that this checks only immediate upper device,
7226  * not through a complete stack of devices. The caller must hold the RTNL lock.
7227  */
7228 bool netdev_has_upper_dev(struct net_device *dev,
7229                           struct net_device *upper_dev)
7230 {
7231         struct netdev_nested_priv priv = {
7232                 .data = (void *)upper_dev,
7233         };
7234
7235         ASSERT_RTNL();
7236
7237         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7238                                              &priv);
7239 }
7240 EXPORT_SYMBOL(netdev_has_upper_dev);
7241
7242 /**
7243  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7244  * @dev: device
7245  * @upper_dev: upper device to check
7246  *
7247  * Find out if a device is linked to specified upper device and return true
7248  * in case it is. Note that this checks the entire upper device chain.
7249  * The caller must hold rcu lock.
7250  */
7251
7252 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7253                                   struct net_device *upper_dev)
7254 {
7255         struct netdev_nested_priv priv = {
7256                 .data = (void *)upper_dev,
7257         };
7258
7259         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7260                                                &priv);
7261 }
7262 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7263
7264 /**
7265  * netdev_has_any_upper_dev - Check if device is linked to some device
7266  * @dev: device
7267  *
7268  * Find out if a device is linked to an upper device and return true in case
7269  * it is. The caller must hold the RTNL lock.
7270  */
7271 bool netdev_has_any_upper_dev(struct net_device *dev)
7272 {
7273         ASSERT_RTNL();
7274
7275         return !list_empty(&dev->adj_list.upper);
7276 }
7277 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7278
7279 /**
7280  * netdev_master_upper_dev_get - Get master upper device
7281  * @dev: device
7282  *
7283  * Find a master upper device and return pointer to it or NULL in case
7284  * it's not there. The caller must hold the RTNL lock.
7285  */
7286 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7287 {
7288         struct netdev_adjacent *upper;
7289
7290         ASSERT_RTNL();
7291
7292         if (list_empty(&dev->adj_list.upper))
7293                 return NULL;
7294
7295         upper = list_first_entry(&dev->adj_list.upper,
7296                                  struct netdev_adjacent, list);
7297         if (likely(upper->master))
7298                 return upper->dev;
7299         return NULL;
7300 }
7301 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7302
7303 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7304 {
7305         struct netdev_adjacent *upper;
7306
7307         ASSERT_RTNL();
7308
7309         if (list_empty(&dev->adj_list.upper))
7310                 return NULL;
7311
7312         upper = list_first_entry(&dev->adj_list.upper,
7313                                  struct netdev_adjacent, list);
7314         if (likely(upper->master) && !upper->ignore)
7315                 return upper->dev;
7316         return NULL;
7317 }
7318
7319 /**
7320  * netdev_has_any_lower_dev - Check if device is linked to some device
7321  * @dev: device
7322  *
7323  * Find out if a device is linked to a lower device and return true in case
7324  * it is. The caller must hold the RTNL lock.
7325  */
7326 static bool netdev_has_any_lower_dev(struct net_device *dev)
7327 {
7328         ASSERT_RTNL();
7329
7330         return !list_empty(&dev->adj_list.lower);
7331 }
7332
7333 void *netdev_adjacent_get_private(struct list_head *adj_list)
7334 {
7335         struct netdev_adjacent *adj;
7336
7337         adj = list_entry(adj_list, struct netdev_adjacent, list);
7338
7339         return adj->private;
7340 }
7341 EXPORT_SYMBOL(netdev_adjacent_get_private);
7342
7343 /**
7344  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7345  * @dev: device
7346  * @iter: list_head ** of the current position
7347  *
7348  * Gets the next device from the dev's upper list, starting from iter
7349  * position. The caller must hold RCU read lock.
7350  */
7351 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7352                                                  struct list_head **iter)
7353 {
7354         struct netdev_adjacent *upper;
7355
7356         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7357
7358         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7359
7360         if (&upper->list == &dev->adj_list.upper)
7361                 return NULL;
7362
7363         *iter = &upper->list;
7364
7365         return upper->dev;
7366 }
7367 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7368
7369 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7370                                                   struct list_head **iter,
7371                                                   bool *ignore)
7372 {
7373         struct netdev_adjacent *upper;
7374
7375         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7376
7377         if (&upper->list == &dev->adj_list.upper)
7378                 return NULL;
7379
7380         *iter = &upper->list;
7381         *ignore = upper->ignore;
7382
7383         return upper->dev;
7384 }
7385
7386 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7387                                                     struct list_head **iter)
7388 {
7389         struct netdev_adjacent *upper;
7390
7391         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7392
7393         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7394
7395         if (&upper->list == &dev->adj_list.upper)
7396                 return NULL;
7397
7398         *iter = &upper->list;
7399
7400         return upper->dev;
7401 }
7402
7403 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7404                                        int (*fn)(struct net_device *dev,
7405                                          struct netdev_nested_priv *priv),
7406                                        struct netdev_nested_priv *priv)
7407 {
7408         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7409         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7410         int ret, cur = 0;
7411         bool ignore;
7412
7413         now = dev;
7414         iter = &dev->adj_list.upper;
7415
7416         while (1) {
7417                 if (now != dev) {
7418                         ret = fn(now, priv);
7419                         if (ret)
7420                                 return ret;
7421                 }
7422
7423                 next = NULL;
7424                 while (1) {
7425                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7426                         if (!udev)
7427                                 break;
7428                         if (ignore)
7429                                 continue;
7430
7431                         next = udev;
7432                         niter = &udev->adj_list.upper;
7433                         dev_stack[cur] = now;
7434                         iter_stack[cur++] = iter;
7435                         break;
7436                 }
7437
7438                 if (!next) {
7439                         if (!cur)
7440                                 return 0;
7441                         next = dev_stack[--cur];
7442                         niter = iter_stack[cur];
7443                 }
7444
7445                 now = next;
7446                 iter = niter;
7447         }
7448
7449         return 0;
7450 }
7451
7452 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7453                                   int (*fn)(struct net_device *dev,
7454                                             struct netdev_nested_priv *priv),
7455                                   struct netdev_nested_priv *priv)
7456 {
7457         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7458         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7459         int ret, cur = 0;
7460
7461         now = dev;
7462         iter = &dev->adj_list.upper;
7463
7464         while (1) {
7465                 if (now != dev) {
7466                         ret = fn(now, priv);
7467                         if (ret)
7468                                 return ret;
7469                 }
7470
7471                 next = NULL;
7472                 while (1) {
7473                         udev = netdev_next_upper_dev_rcu(now, &iter);
7474                         if (!udev)
7475                                 break;
7476
7477                         next = udev;
7478                         niter = &udev->adj_list.upper;
7479                         dev_stack[cur] = now;
7480                         iter_stack[cur++] = iter;
7481                         break;
7482                 }
7483
7484                 if (!next) {
7485                         if (!cur)
7486                                 return 0;
7487                         next = dev_stack[--cur];
7488                         niter = iter_stack[cur];
7489                 }
7490
7491                 now = next;
7492                 iter = niter;
7493         }
7494
7495         return 0;
7496 }
7497 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7498
7499 static bool __netdev_has_upper_dev(struct net_device *dev,
7500                                    struct net_device *upper_dev)
7501 {
7502         struct netdev_nested_priv priv = {
7503                 .flags = 0,
7504                 .data = (void *)upper_dev,
7505         };
7506
7507         ASSERT_RTNL();
7508
7509         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7510                                            &priv);
7511 }
7512
7513 /**
7514  * netdev_lower_get_next_private - Get the next ->private from the
7515  *                                 lower neighbour list
7516  * @dev: device
7517  * @iter: list_head ** of the current position
7518  *
7519  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7520  * list, starting from iter position. The caller must hold either hold the
7521  * RTNL lock or its own locking that guarantees that the neighbour lower
7522  * list will remain unchanged.
7523  */
7524 void *netdev_lower_get_next_private(struct net_device *dev,
7525                                     struct list_head **iter)
7526 {
7527         struct netdev_adjacent *lower;
7528
7529         lower = list_entry(*iter, struct netdev_adjacent, list);
7530
7531         if (&lower->list == &dev->adj_list.lower)
7532                 return NULL;
7533
7534         *iter = lower->list.next;
7535
7536         return lower->private;
7537 }
7538 EXPORT_SYMBOL(netdev_lower_get_next_private);
7539
7540 /**
7541  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7542  *                                     lower neighbour list, RCU
7543  *                                     variant
7544  * @dev: device
7545  * @iter: list_head ** of the current position
7546  *
7547  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7548  * list, starting from iter position. The caller must hold RCU read lock.
7549  */
7550 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7551                                         struct list_head **iter)
7552 {
7553         struct netdev_adjacent *lower;
7554
7555         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7556
7557         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7558
7559         if (&lower->list == &dev->adj_list.lower)
7560                 return NULL;
7561
7562         *iter = &lower->list;
7563
7564         return lower->private;
7565 }
7566 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7567
7568 /**
7569  * netdev_lower_get_next - Get the next device from the lower neighbour
7570  *                         list
7571  * @dev: device
7572  * @iter: list_head ** of the current position
7573  *
7574  * Gets the next netdev_adjacent from the dev's lower neighbour
7575  * list, starting from iter position. The caller must hold RTNL lock or
7576  * its own locking that guarantees that the neighbour lower
7577  * list will remain unchanged.
7578  */
7579 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7580 {
7581         struct netdev_adjacent *lower;
7582
7583         lower = list_entry(*iter, struct netdev_adjacent, list);
7584
7585         if (&lower->list == &dev->adj_list.lower)
7586                 return NULL;
7587
7588         *iter = lower->list.next;
7589
7590         return lower->dev;
7591 }
7592 EXPORT_SYMBOL(netdev_lower_get_next);
7593
7594 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7595                                                 struct list_head **iter)
7596 {
7597         struct netdev_adjacent *lower;
7598
7599         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7600
7601         if (&lower->list == &dev->adj_list.lower)
7602                 return NULL;
7603
7604         *iter = &lower->list;
7605
7606         return lower->dev;
7607 }
7608
7609 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7610                                                   struct list_head **iter,
7611                                                   bool *ignore)
7612 {
7613         struct netdev_adjacent *lower;
7614
7615         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7616
7617         if (&lower->list == &dev->adj_list.lower)
7618                 return NULL;
7619
7620         *iter = &lower->list;
7621         *ignore = lower->ignore;
7622
7623         return lower->dev;
7624 }
7625
7626 int netdev_walk_all_lower_dev(struct net_device *dev,
7627                               int (*fn)(struct net_device *dev,
7628                                         struct netdev_nested_priv *priv),
7629                               struct netdev_nested_priv *priv)
7630 {
7631         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7632         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7633         int ret, cur = 0;
7634
7635         now = dev;
7636         iter = &dev->adj_list.lower;
7637
7638         while (1) {
7639                 if (now != dev) {
7640                         ret = fn(now, priv);
7641                         if (ret)
7642                                 return ret;
7643                 }
7644
7645                 next = NULL;
7646                 while (1) {
7647                         ldev = netdev_next_lower_dev(now, &iter);
7648                         if (!ldev)
7649                                 break;
7650
7651                         next = ldev;
7652                         niter = &ldev->adj_list.lower;
7653                         dev_stack[cur] = now;
7654                         iter_stack[cur++] = iter;
7655                         break;
7656                 }
7657
7658                 if (!next) {
7659                         if (!cur)
7660                                 return 0;
7661                         next = dev_stack[--cur];
7662                         niter = iter_stack[cur];
7663                 }
7664
7665                 now = next;
7666                 iter = niter;
7667         }
7668
7669         return 0;
7670 }
7671 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7672
7673 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7674                                        int (*fn)(struct net_device *dev,
7675                                          struct netdev_nested_priv *priv),
7676                                        struct netdev_nested_priv *priv)
7677 {
7678         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7679         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7680         int ret, cur = 0;
7681         bool ignore;
7682
7683         now = dev;
7684         iter = &dev->adj_list.lower;
7685
7686         while (1) {
7687                 if (now != dev) {
7688                         ret = fn(now, priv);
7689                         if (ret)
7690                                 return ret;
7691                 }
7692
7693                 next = NULL;
7694                 while (1) {
7695                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7696                         if (!ldev)
7697                                 break;
7698                         if (ignore)
7699                                 continue;
7700
7701                         next = ldev;
7702                         niter = &ldev->adj_list.lower;
7703                         dev_stack[cur] = now;
7704                         iter_stack[cur++] = iter;
7705                         break;
7706                 }
7707
7708                 if (!next) {
7709                         if (!cur)
7710                                 return 0;
7711                         next = dev_stack[--cur];
7712                         niter = iter_stack[cur];
7713                 }
7714
7715                 now = next;
7716                 iter = niter;
7717         }
7718
7719         return 0;
7720 }
7721
7722 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7723                                              struct list_head **iter)
7724 {
7725         struct netdev_adjacent *lower;
7726
7727         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7728         if (&lower->list == &dev->adj_list.lower)
7729                 return NULL;
7730
7731         *iter = &lower->list;
7732
7733         return lower->dev;
7734 }
7735 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7736
7737 static u8 __netdev_upper_depth(struct net_device *dev)
7738 {
7739         struct net_device *udev;
7740         struct list_head *iter;
7741         u8 max_depth = 0;
7742         bool ignore;
7743
7744         for (iter = &dev->adj_list.upper,
7745              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7746              udev;
7747              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7748                 if (ignore)
7749                         continue;
7750                 if (max_depth < udev->upper_level)
7751                         max_depth = udev->upper_level;
7752         }
7753
7754         return max_depth;
7755 }
7756
7757 static u8 __netdev_lower_depth(struct net_device *dev)
7758 {
7759         struct net_device *ldev;
7760         struct list_head *iter;
7761         u8 max_depth = 0;
7762         bool ignore;
7763
7764         for (iter = &dev->adj_list.lower,
7765              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7766              ldev;
7767              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7768                 if (ignore)
7769                         continue;
7770                 if (max_depth < ldev->lower_level)
7771                         max_depth = ldev->lower_level;
7772         }
7773
7774         return max_depth;
7775 }
7776
7777 static int __netdev_update_upper_level(struct net_device *dev,
7778                                        struct netdev_nested_priv *__unused)
7779 {
7780         dev->upper_level = __netdev_upper_depth(dev) + 1;
7781         return 0;
7782 }
7783
7784 static int __netdev_update_lower_level(struct net_device *dev,
7785                                        struct netdev_nested_priv *priv)
7786 {
7787         dev->lower_level = __netdev_lower_depth(dev) + 1;
7788
7789 #ifdef CONFIG_LOCKDEP
7790         if (!priv)
7791                 return 0;
7792
7793         if (priv->flags & NESTED_SYNC_IMM)
7794                 dev->nested_level = dev->lower_level - 1;
7795         if (priv->flags & NESTED_SYNC_TODO)
7796                 net_unlink_todo(dev);
7797 #endif
7798         return 0;
7799 }
7800
7801 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7802                                   int (*fn)(struct net_device *dev,
7803                                             struct netdev_nested_priv *priv),
7804                                   struct netdev_nested_priv *priv)
7805 {
7806         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7807         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7808         int ret, cur = 0;
7809
7810         now = dev;
7811         iter = &dev->adj_list.lower;
7812
7813         while (1) {
7814                 if (now != dev) {
7815                         ret = fn(now, priv);
7816                         if (ret)
7817                                 return ret;
7818                 }
7819
7820                 next = NULL;
7821                 while (1) {
7822                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7823                         if (!ldev)
7824                                 break;
7825
7826                         next = ldev;
7827                         niter = &ldev->adj_list.lower;
7828                         dev_stack[cur] = now;
7829                         iter_stack[cur++] = iter;
7830                         break;
7831                 }
7832
7833                 if (!next) {
7834                         if (!cur)
7835                                 return 0;
7836                         next = dev_stack[--cur];
7837                         niter = iter_stack[cur];
7838                 }
7839
7840                 now = next;
7841                 iter = niter;
7842         }
7843
7844         return 0;
7845 }
7846 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7847
7848 /**
7849  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7850  *                                     lower neighbour list, RCU
7851  *                                     variant
7852  * @dev: device
7853  *
7854  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7855  * list. The caller must hold RCU read lock.
7856  */
7857 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7858 {
7859         struct netdev_adjacent *lower;
7860
7861         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7862                         struct netdev_adjacent, list);
7863         if (lower)
7864                 return lower->private;
7865         return NULL;
7866 }
7867 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7868
7869 /**
7870  * netdev_master_upper_dev_get_rcu - Get master upper device
7871  * @dev: device
7872  *
7873  * Find a master upper device and return pointer to it or NULL in case
7874  * it's not there. The caller must hold the RCU read lock.
7875  */
7876 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7877 {
7878         struct netdev_adjacent *upper;
7879
7880         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7881                                        struct netdev_adjacent, list);
7882         if (upper && likely(upper->master))
7883                 return upper->dev;
7884         return NULL;
7885 }
7886 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7887
7888 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7889                               struct net_device *adj_dev,
7890                               struct list_head *dev_list)
7891 {
7892         char linkname[IFNAMSIZ+7];
7893
7894         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7895                 "upper_%s" : "lower_%s", adj_dev->name);
7896         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7897                                  linkname);
7898 }
7899 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7900                                char *name,
7901                                struct list_head *dev_list)
7902 {
7903         char linkname[IFNAMSIZ+7];
7904
7905         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7906                 "upper_%s" : "lower_%s", name);
7907         sysfs_remove_link(&(dev->dev.kobj), linkname);
7908 }
7909
7910 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7911                                                  struct net_device *adj_dev,
7912                                                  struct list_head *dev_list)
7913 {
7914         return (dev_list == &dev->adj_list.upper ||
7915                 dev_list == &dev->adj_list.lower) &&
7916                 net_eq(dev_net(dev), dev_net(adj_dev));
7917 }
7918
7919 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7920                                         struct net_device *adj_dev,
7921                                         struct list_head *dev_list,
7922                                         void *private, bool master)
7923 {
7924         struct netdev_adjacent *adj;
7925         int ret;
7926
7927         adj = __netdev_find_adj(adj_dev, dev_list);
7928
7929         if (adj) {
7930                 adj->ref_nr += 1;
7931                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7932                          dev->name, adj_dev->name, adj->ref_nr);
7933
7934                 return 0;
7935         }
7936
7937         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7938         if (!adj)
7939                 return -ENOMEM;
7940
7941         adj->dev = adj_dev;
7942         adj->master = master;
7943         adj->ref_nr = 1;
7944         adj->private = private;
7945         adj->ignore = false;
7946         dev_hold(adj_dev);
7947
7948         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7949                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7950
7951         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7952                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7953                 if (ret)
7954                         goto free_adj;
7955         }
7956
7957         /* Ensure that master link is always the first item in list. */
7958         if (master) {
7959                 ret = sysfs_create_link(&(dev->dev.kobj),
7960                                         &(adj_dev->dev.kobj), "master");
7961                 if (ret)
7962                         goto remove_symlinks;
7963
7964                 list_add_rcu(&adj->list, dev_list);
7965         } else {
7966                 list_add_tail_rcu(&adj->list, dev_list);
7967         }
7968
7969         return 0;
7970
7971 remove_symlinks:
7972         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7973                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7974 free_adj:
7975         kfree(adj);
7976         dev_put(adj_dev);
7977
7978         return ret;
7979 }
7980
7981 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7982                                          struct net_device *adj_dev,
7983                                          u16 ref_nr,
7984                                          struct list_head *dev_list)
7985 {
7986         struct netdev_adjacent *adj;
7987
7988         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7989                  dev->name, adj_dev->name, ref_nr);
7990
7991         adj = __netdev_find_adj(adj_dev, dev_list);
7992
7993         if (!adj) {
7994                 pr_err("Adjacency does not exist for device %s from %s\n",
7995                        dev->name, adj_dev->name);
7996                 WARN_ON(1);
7997                 return;
7998         }
7999
8000         if (adj->ref_nr > ref_nr) {
8001                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8002                          dev->name, adj_dev->name, ref_nr,
8003                          adj->ref_nr - ref_nr);
8004                 adj->ref_nr -= ref_nr;
8005                 return;
8006         }
8007
8008         if (adj->master)
8009                 sysfs_remove_link(&(dev->dev.kobj), "master");
8010
8011         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8012                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8013
8014         list_del_rcu(&adj->list);
8015         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8016                  adj_dev->name, dev->name, adj_dev->name);
8017         dev_put(adj_dev);
8018         kfree_rcu(adj, rcu);
8019 }
8020
8021 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8022                                             struct net_device *upper_dev,
8023                                             struct list_head *up_list,
8024                                             struct list_head *down_list,
8025                                             void *private, bool master)
8026 {
8027         int ret;
8028
8029         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8030                                            private, master);
8031         if (ret)
8032                 return ret;
8033
8034         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8035                                            private, false);
8036         if (ret) {
8037                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8038                 return ret;
8039         }
8040
8041         return 0;
8042 }
8043
8044 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8045                                                struct net_device *upper_dev,
8046                                                u16 ref_nr,
8047                                                struct list_head *up_list,
8048                                                struct list_head *down_list)
8049 {
8050         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8051         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8052 }
8053
8054 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8055                                                 struct net_device *upper_dev,
8056                                                 void *private, bool master)
8057 {
8058         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8059                                                 &dev->adj_list.upper,
8060                                                 &upper_dev->adj_list.lower,
8061                                                 private, master);
8062 }
8063
8064 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8065                                                    struct net_device *upper_dev)
8066 {
8067         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8068                                            &dev->adj_list.upper,
8069                                            &upper_dev->adj_list.lower);
8070 }
8071
8072 static int __netdev_upper_dev_link(struct net_device *dev,
8073                                    struct net_device *upper_dev, bool master,
8074                                    void *upper_priv, void *upper_info,
8075                                    struct netdev_nested_priv *priv,
8076                                    struct netlink_ext_ack *extack)
8077 {
8078         struct netdev_notifier_changeupper_info changeupper_info = {
8079                 .info = {
8080                         .dev = dev,
8081                         .extack = extack,
8082                 },
8083                 .upper_dev = upper_dev,
8084                 .master = master,
8085                 .linking = true,
8086                 .upper_info = upper_info,
8087         };
8088         struct net_device *master_dev;
8089         int ret = 0;
8090
8091         ASSERT_RTNL();
8092
8093         if (dev == upper_dev)
8094                 return -EBUSY;
8095
8096         /* To prevent loops, check if dev is not upper device to upper_dev. */
8097         if (__netdev_has_upper_dev(upper_dev, dev))
8098                 return -EBUSY;
8099
8100         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8101                 return -EMLINK;
8102
8103         if (!master) {
8104                 if (__netdev_has_upper_dev(dev, upper_dev))
8105                         return -EEXIST;
8106         } else {
8107                 master_dev = __netdev_master_upper_dev_get(dev);
8108                 if (master_dev)
8109                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
8110         }
8111
8112         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8113                                             &changeupper_info.info);
8114         ret = notifier_to_errno(ret);
8115         if (ret)
8116                 return ret;
8117
8118         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8119                                                    master);
8120         if (ret)
8121                 return ret;
8122
8123         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8124                                             &changeupper_info.info);
8125         ret = notifier_to_errno(ret);
8126         if (ret)
8127                 goto rollback;
8128
8129         __netdev_update_upper_level(dev, NULL);
8130         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8131
8132         __netdev_update_lower_level(upper_dev, priv);
8133         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8134                                     priv);
8135
8136         return 0;
8137
8138 rollback:
8139         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8140
8141         return ret;
8142 }
8143
8144 /**
8145  * netdev_upper_dev_link - Add a link to the upper device
8146  * @dev: device
8147  * @upper_dev: new upper device
8148  * @extack: netlink extended ack
8149  *
8150  * Adds a link to device which is upper to this one. The caller must hold
8151  * the RTNL lock. On a failure a negative errno code is returned.
8152  * On success the reference counts are adjusted and the function
8153  * returns zero.
8154  */
8155 int netdev_upper_dev_link(struct net_device *dev,
8156                           struct net_device *upper_dev,
8157                           struct netlink_ext_ack *extack)
8158 {
8159         struct netdev_nested_priv priv = {
8160                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8161                 .data = NULL,
8162         };
8163
8164         return __netdev_upper_dev_link(dev, upper_dev, false,
8165                                        NULL, NULL, &priv, extack);
8166 }
8167 EXPORT_SYMBOL(netdev_upper_dev_link);
8168
8169 /**
8170  * netdev_master_upper_dev_link - Add a master link to the upper device
8171  * @dev: device
8172  * @upper_dev: new upper device
8173  * @upper_priv: upper device private
8174  * @upper_info: upper info to be passed down via notifier
8175  * @extack: netlink extended ack
8176  *
8177  * Adds a link to device which is upper to this one. In this case, only
8178  * one master upper device can be linked, although other non-master devices
8179  * might be linked as well. The caller must hold the RTNL lock.
8180  * On a failure a negative errno code is returned. On success the reference
8181  * counts are adjusted and the function returns zero.
8182  */
8183 int netdev_master_upper_dev_link(struct net_device *dev,
8184                                  struct net_device *upper_dev,
8185                                  void *upper_priv, void *upper_info,
8186                                  struct netlink_ext_ack *extack)
8187 {
8188         struct netdev_nested_priv priv = {
8189                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8190                 .data = NULL,
8191         };
8192
8193         return __netdev_upper_dev_link(dev, upper_dev, true,
8194                                        upper_priv, upper_info, &priv, extack);
8195 }
8196 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8197
8198 static void __netdev_upper_dev_unlink(struct net_device *dev,
8199                                       struct net_device *upper_dev,
8200                                       struct netdev_nested_priv *priv)
8201 {
8202         struct netdev_notifier_changeupper_info changeupper_info = {
8203                 .info = {
8204                         .dev = dev,
8205                 },
8206                 .upper_dev = upper_dev,
8207                 .linking = false,
8208         };
8209
8210         ASSERT_RTNL();
8211
8212         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8213
8214         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8215                                       &changeupper_info.info);
8216
8217         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8218
8219         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8220                                       &changeupper_info.info);
8221
8222         __netdev_update_upper_level(dev, NULL);
8223         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8224
8225         __netdev_update_lower_level(upper_dev, priv);
8226         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8227                                     priv);
8228 }
8229
8230 /**
8231  * netdev_upper_dev_unlink - Removes a link to upper device
8232  * @dev: device
8233  * @upper_dev: new upper device
8234  *
8235  * Removes a link to device which is upper to this one. The caller must hold
8236  * the RTNL lock.
8237  */
8238 void netdev_upper_dev_unlink(struct net_device *dev,
8239                              struct net_device *upper_dev)
8240 {
8241         struct netdev_nested_priv priv = {
8242                 .flags = NESTED_SYNC_TODO,
8243                 .data = NULL,
8244         };
8245
8246         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8247 }
8248 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8249
8250 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8251                                       struct net_device *lower_dev,
8252                                       bool val)
8253 {
8254         struct netdev_adjacent *adj;
8255
8256         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8257         if (adj)
8258                 adj->ignore = val;
8259
8260         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8261         if (adj)
8262                 adj->ignore = val;
8263 }
8264
8265 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8266                                         struct net_device *lower_dev)
8267 {
8268         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8269 }
8270
8271 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8272                                        struct net_device *lower_dev)
8273 {
8274         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8275 }
8276
8277 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8278                                    struct net_device *new_dev,
8279                                    struct net_device *dev,
8280                                    struct netlink_ext_ack *extack)
8281 {
8282         struct netdev_nested_priv priv = {
8283                 .flags = 0,
8284                 .data = NULL,
8285         };
8286         int err;
8287
8288         if (!new_dev)
8289                 return 0;
8290
8291         if (old_dev && new_dev != old_dev)
8292                 netdev_adjacent_dev_disable(dev, old_dev);
8293         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8294                                       extack);
8295         if (err) {
8296                 if (old_dev && new_dev != old_dev)
8297                         netdev_adjacent_dev_enable(dev, old_dev);
8298                 return err;
8299         }
8300
8301         return 0;
8302 }
8303 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8304
8305 void netdev_adjacent_change_commit(struct net_device *old_dev,
8306                                    struct net_device *new_dev,
8307                                    struct net_device *dev)
8308 {
8309         struct netdev_nested_priv priv = {
8310                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8311                 .data = NULL,
8312         };
8313
8314         if (!new_dev || !old_dev)
8315                 return;
8316
8317         if (new_dev == old_dev)
8318                 return;
8319
8320         netdev_adjacent_dev_enable(dev, old_dev);
8321         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8322 }
8323 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8324
8325 void netdev_adjacent_change_abort(struct net_device *old_dev,
8326                                   struct net_device *new_dev,
8327                                   struct net_device *dev)
8328 {
8329         struct netdev_nested_priv priv = {
8330                 .flags = 0,
8331                 .data = NULL,
8332         };
8333
8334         if (!new_dev)
8335                 return;
8336
8337         if (old_dev && new_dev != old_dev)
8338                 netdev_adjacent_dev_enable(dev, old_dev);
8339
8340         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8341 }
8342 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8343
8344 /**
8345  * netdev_bonding_info_change - Dispatch event about slave change
8346  * @dev: device
8347  * @bonding_info: info to dispatch
8348  *
8349  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8350  * The caller must hold the RTNL lock.
8351  */
8352 void netdev_bonding_info_change(struct net_device *dev,
8353                                 struct netdev_bonding_info *bonding_info)
8354 {
8355         struct netdev_notifier_bonding_info info = {
8356                 .info.dev = dev,
8357         };
8358
8359         memcpy(&info.bonding_info, bonding_info,
8360                sizeof(struct netdev_bonding_info));
8361         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8362                                       &info.info);
8363 }
8364 EXPORT_SYMBOL(netdev_bonding_info_change);
8365
8366 /**
8367  * netdev_get_xmit_slave - Get the xmit slave of master device
8368  * @dev: device
8369  * @skb: The packet
8370  * @all_slaves: assume all the slaves are active
8371  *
8372  * The reference counters are not incremented so the caller must be
8373  * careful with locks. The caller must hold RCU lock.
8374  * %NULL is returned if no slave is found.
8375  */
8376
8377 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8378                                          struct sk_buff *skb,
8379                                          bool all_slaves)
8380 {
8381         const struct net_device_ops *ops = dev->netdev_ops;
8382
8383         if (!ops->ndo_get_xmit_slave)
8384                 return NULL;
8385         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8386 }
8387 EXPORT_SYMBOL(netdev_get_xmit_slave);
8388
8389 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8390                                                   struct sock *sk)
8391 {
8392         const struct net_device_ops *ops = dev->netdev_ops;
8393
8394         if (!ops->ndo_sk_get_lower_dev)
8395                 return NULL;
8396         return ops->ndo_sk_get_lower_dev(dev, sk);
8397 }
8398
8399 /**
8400  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8401  * @dev: device
8402  * @sk: the socket
8403  *
8404  * %NULL is returned if no lower device is found.
8405  */
8406
8407 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8408                                             struct sock *sk)
8409 {
8410         struct net_device *lower;
8411
8412         lower = netdev_sk_get_lower_dev(dev, sk);
8413         while (lower) {
8414                 dev = lower;
8415                 lower = netdev_sk_get_lower_dev(dev, sk);
8416         }
8417
8418         return dev;
8419 }
8420 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8421
8422 static void netdev_adjacent_add_links(struct net_device *dev)
8423 {
8424         struct netdev_adjacent *iter;
8425
8426         struct net *net = dev_net(dev);
8427
8428         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8429                 if (!net_eq(net, dev_net(iter->dev)))
8430                         continue;
8431                 netdev_adjacent_sysfs_add(iter->dev, dev,
8432                                           &iter->dev->adj_list.lower);
8433                 netdev_adjacent_sysfs_add(dev, iter->dev,
8434                                           &dev->adj_list.upper);
8435         }
8436
8437         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8438                 if (!net_eq(net, dev_net(iter->dev)))
8439                         continue;
8440                 netdev_adjacent_sysfs_add(iter->dev, dev,
8441                                           &iter->dev->adj_list.upper);
8442                 netdev_adjacent_sysfs_add(dev, iter->dev,
8443                                           &dev->adj_list.lower);
8444         }
8445 }
8446
8447 static void netdev_adjacent_del_links(struct net_device *dev)
8448 {
8449         struct netdev_adjacent *iter;
8450
8451         struct net *net = dev_net(dev);
8452
8453         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8454                 if (!net_eq(net, dev_net(iter->dev)))
8455                         continue;
8456                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8457                                           &iter->dev->adj_list.lower);
8458                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8459                                           &dev->adj_list.upper);
8460         }
8461
8462         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8463                 if (!net_eq(net, dev_net(iter->dev)))
8464                         continue;
8465                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8466                                           &iter->dev->adj_list.upper);
8467                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8468                                           &dev->adj_list.lower);
8469         }
8470 }
8471
8472 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8473 {
8474         struct netdev_adjacent *iter;
8475
8476         struct net *net = dev_net(dev);
8477
8478         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8479                 if (!net_eq(net, dev_net(iter->dev)))
8480                         continue;
8481                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8482                                           &iter->dev->adj_list.lower);
8483                 netdev_adjacent_sysfs_add(iter->dev, dev,
8484                                           &iter->dev->adj_list.lower);
8485         }
8486
8487         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8488                 if (!net_eq(net, dev_net(iter->dev)))
8489                         continue;
8490                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8491                                           &iter->dev->adj_list.upper);
8492                 netdev_adjacent_sysfs_add(iter->dev, dev,
8493                                           &iter->dev->adj_list.upper);
8494         }
8495 }
8496
8497 void *netdev_lower_dev_get_private(struct net_device *dev,
8498                                    struct net_device *lower_dev)
8499 {
8500         struct netdev_adjacent *lower;
8501
8502         if (!lower_dev)
8503                 return NULL;
8504         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8505         if (!lower)
8506                 return NULL;
8507
8508         return lower->private;
8509 }
8510 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8511
8512
8513 /**
8514  * netdev_lower_state_changed - Dispatch event about lower device state change
8515  * @lower_dev: device
8516  * @lower_state_info: state to dispatch
8517  *
8518  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8519  * The caller must hold the RTNL lock.
8520  */
8521 void netdev_lower_state_changed(struct net_device *lower_dev,
8522                                 void *lower_state_info)
8523 {
8524         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8525                 .info.dev = lower_dev,
8526         };
8527
8528         ASSERT_RTNL();
8529         changelowerstate_info.lower_state_info = lower_state_info;
8530         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8531                                       &changelowerstate_info.info);
8532 }
8533 EXPORT_SYMBOL(netdev_lower_state_changed);
8534
8535 static void dev_change_rx_flags(struct net_device *dev, int flags)
8536 {
8537         const struct net_device_ops *ops = dev->netdev_ops;
8538
8539         if (ops->ndo_change_rx_flags)
8540                 ops->ndo_change_rx_flags(dev, flags);
8541 }
8542
8543 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8544 {
8545         unsigned int old_flags = dev->flags;
8546         kuid_t uid;
8547         kgid_t gid;
8548
8549         ASSERT_RTNL();
8550
8551         dev->flags |= IFF_PROMISC;
8552         dev->promiscuity += inc;
8553         if (dev->promiscuity == 0) {
8554                 /*
8555                  * Avoid overflow.
8556                  * If inc causes overflow, untouch promisc and return error.
8557                  */
8558                 if (inc < 0)
8559                         dev->flags &= ~IFF_PROMISC;
8560                 else {
8561                         dev->promiscuity -= inc;
8562                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8563                                 dev->name);
8564                         return -EOVERFLOW;
8565                 }
8566         }
8567         if (dev->flags != old_flags) {
8568                 pr_info("device %s %s promiscuous mode\n",
8569                         dev->name,
8570                         dev->flags & IFF_PROMISC ? "entered" : "left");
8571                 if (audit_enabled) {
8572                         current_uid_gid(&uid, &gid);
8573                         audit_log(audit_context(), GFP_ATOMIC,
8574                                   AUDIT_ANOM_PROMISCUOUS,
8575                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8576                                   dev->name, (dev->flags & IFF_PROMISC),
8577                                   (old_flags & IFF_PROMISC),
8578                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8579                                   from_kuid(&init_user_ns, uid),
8580                                   from_kgid(&init_user_ns, gid),
8581                                   audit_get_sessionid(current));
8582                 }
8583
8584                 dev_change_rx_flags(dev, IFF_PROMISC);
8585         }
8586         if (notify)
8587                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8588         return 0;
8589 }
8590
8591 /**
8592  *      dev_set_promiscuity     - update promiscuity count on a device
8593  *      @dev: device
8594  *      @inc: modifier
8595  *
8596  *      Add or remove promiscuity from a device. While the count in the device
8597  *      remains above zero the interface remains promiscuous. Once it hits zero
8598  *      the device reverts back to normal filtering operation. A negative inc
8599  *      value is used to drop promiscuity on the device.
8600  *      Return 0 if successful or a negative errno code on error.
8601  */
8602 int dev_set_promiscuity(struct net_device *dev, int inc)
8603 {
8604         unsigned int old_flags = dev->flags;
8605         int err;
8606
8607         err = __dev_set_promiscuity(dev, inc, true);
8608         if (err < 0)
8609                 return err;
8610         if (dev->flags != old_flags)
8611                 dev_set_rx_mode(dev);
8612         return err;
8613 }
8614 EXPORT_SYMBOL(dev_set_promiscuity);
8615
8616 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8617 {
8618         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8619
8620         ASSERT_RTNL();
8621
8622         dev->flags |= IFF_ALLMULTI;
8623         dev->allmulti += inc;
8624         if (dev->allmulti == 0) {
8625                 /*
8626                  * Avoid overflow.
8627                  * If inc causes overflow, untouch allmulti and return error.
8628                  */
8629                 if (inc < 0)
8630                         dev->flags &= ~IFF_ALLMULTI;
8631                 else {
8632                         dev->allmulti -= inc;
8633                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8634                                 dev->name);
8635                         return -EOVERFLOW;
8636                 }
8637         }
8638         if (dev->flags ^ old_flags) {
8639                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8640                 dev_set_rx_mode(dev);
8641                 if (notify)
8642                         __dev_notify_flags(dev, old_flags,
8643                                            dev->gflags ^ old_gflags);
8644         }
8645         return 0;
8646 }
8647
8648 /**
8649  *      dev_set_allmulti        - update allmulti count on a device
8650  *      @dev: device
8651  *      @inc: modifier
8652  *
8653  *      Add or remove reception of all multicast frames to a device. While the
8654  *      count in the device remains above zero the interface remains listening
8655  *      to all interfaces. Once it hits zero the device reverts back to normal
8656  *      filtering operation. A negative @inc value is used to drop the counter
8657  *      when releasing a resource needing all multicasts.
8658  *      Return 0 if successful or a negative errno code on error.
8659  */
8660
8661 int dev_set_allmulti(struct net_device *dev, int inc)
8662 {
8663         return __dev_set_allmulti(dev, inc, true);
8664 }
8665 EXPORT_SYMBOL(dev_set_allmulti);
8666
8667 /*
8668  *      Upload unicast and multicast address lists to device and
8669  *      configure RX filtering. When the device doesn't support unicast
8670  *      filtering it is put in promiscuous mode while unicast addresses
8671  *      are present.
8672  */
8673 void __dev_set_rx_mode(struct net_device *dev)
8674 {
8675         const struct net_device_ops *ops = dev->netdev_ops;
8676
8677         /* dev_open will call this function so the list will stay sane. */
8678         if (!(dev->flags&IFF_UP))
8679                 return;
8680
8681         if (!netif_device_present(dev))
8682                 return;
8683
8684         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8685                 /* Unicast addresses changes may only happen under the rtnl,
8686                  * therefore calling __dev_set_promiscuity here is safe.
8687                  */
8688                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8689                         __dev_set_promiscuity(dev, 1, false);
8690                         dev->uc_promisc = true;
8691                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8692                         __dev_set_promiscuity(dev, -1, false);
8693                         dev->uc_promisc = false;
8694                 }
8695         }
8696
8697         if (ops->ndo_set_rx_mode)
8698                 ops->ndo_set_rx_mode(dev);
8699 }
8700
8701 void dev_set_rx_mode(struct net_device *dev)
8702 {
8703         netif_addr_lock_bh(dev);
8704         __dev_set_rx_mode(dev);
8705         netif_addr_unlock_bh(dev);
8706 }
8707
8708 /**
8709  *      dev_get_flags - get flags reported to userspace
8710  *      @dev: device
8711  *
8712  *      Get the combination of flag bits exported through APIs to userspace.
8713  */
8714 unsigned int dev_get_flags(const struct net_device *dev)
8715 {
8716         unsigned int flags;
8717
8718         flags = (dev->flags & ~(IFF_PROMISC |
8719                                 IFF_ALLMULTI |
8720                                 IFF_RUNNING |
8721                                 IFF_LOWER_UP |
8722                                 IFF_DORMANT)) |
8723                 (dev->gflags & (IFF_PROMISC |
8724                                 IFF_ALLMULTI));
8725
8726         if (netif_running(dev)) {
8727                 if (netif_oper_up(dev))
8728                         flags |= IFF_RUNNING;
8729                 if (netif_carrier_ok(dev))
8730                         flags |= IFF_LOWER_UP;
8731                 if (netif_dormant(dev))
8732                         flags |= IFF_DORMANT;
8733         }
8734
8735         return flags;
8736 }
8737 EXPORT_SYMBOL(dev_get_flags);
8738
8739 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8740                        struct netlink_ext_ack *extack)
8741 {
8742         unsigned int old_flags = dev->flags;
8743         int ret;
8744
8745         ASSERT_RTNL();
8746
8747         /*
8748          *      Set the flags on our device.
8749          */
8750
8751         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8752                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8753                                IFF_AUTOMEDIA)) |
8754                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8755                                     IFF_ALLMULTI));
8756
8757         /*
8758          *      Load in the correct multicast list now the flags have changed.
8759          */
8760
8761         if ((old_flags ^ flags) & IFF_MULTICAST)
8762                 dev_change_rx_flags(dev, IFF_MULTICAST);
8763
8764         dev_set_rx_mode(dev);
8765
8766         /*
8767          *      Have we downed the interface. We handle IFF_UP ourselves
8768          *      according to user attempts to set it, rather than blindly
8769          *      setting it.
8770          */
8771
8772         ret = 0;
8773         if ((old_flags ^ flags) & IFF_UP) {
8774                 if (old_flags & IFF_UP)
8775                         __dev_close(dev);
8776                 else
8777                         ret = __dev_open(dev, extack);
8778         }
8779
8780         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8781                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8782                 unsigned int old_flags = dev->flags;
8783
8784                 dev->gflags ^= IFF_PROMISC;
8785
8786                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8787                         if (dev->flags != old_flags)
8788                                 dev_set_rx_mode(dev);
8789         }
8790
8791         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8792          * is important. Some (broken) drivers set IFF_PROMISC, when
8793          * IFF_ALLMULTI is requested not asking us and not reporting.
8794          */
8795         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8796                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8797
8798                 dev->gflags ^= IFF_ALLMULTI;
8799                 __dev_set_allmulti(dev, inc, false);
8800         }
8801
8802         return ret;
8803 }
8804
8805 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8806                         unsigned int gchanges)
8807 {
8808         unsigned int changes = dev->flags ^ old_flags;
8809
8810         if (gchanges)
8811                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8812
8813         if (changes & IFF_UP) {
8814                 if (dev->flags & IFF_UP)
8815                         call_netdevice_notifiers(NETDEV_UP, dev);
8816                 else
8817                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8818         }
8819
8820         if (dev->flags & IFF_UP &&
8821             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8822                 struct netdev_notifier_change_info change_info = {
8823                         .info = {
8824                                 .dev = dev,
8825                         },
8826                         .flags_changed = changes,
8827                 };
8828
8829                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8830         }
8831 }
8832
8833 /**
8834  *      dev_change_flags - change device settings
8835  *      @dev: device
8836  *      @flags: device state flags
8837  *      @extack: netlink extended ack
8838  *
8839  *      Change settings on device based state flags. The flags are
8840  *      in the userspace exported format.
8841  */
8842 int dev_change_flags(struct net_device *dev, unsigned int flags,
8843                      struct netlink_ext_ack *extack)
8844 {
8845         int ret;
8846         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8847
8848         ret = __dev_change_flags(dev, flags, extack);
8849         if (ret < 0)
8850                 return ret;
8851
8852         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8853         __dev_notify_flags(dev, old_flags, changes);
8854         return ret;
8855 }
8856 EXPORT_SYMBOL(dev_change_flags);
8857
8858 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8859 {
8860         const struct net_device_ops *ops = dev->netdev_ops;
8861
8862         if (ops->ndo_change_mtu)
8863                 return ops->ndo_change_mtu(dev, new_mtu);
8864
8865         /* Pairs with all the lockless reads of dev->mtu in the stack */
8866         WRITE_ONCE(dev->mtu, new_mtu);
8867         return 0;
8868 }
8869 EXPORT_SYMBOL(__dev_set_mtu);
8870
8871 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8872                      struct netlink_ext_ack *extack)
8873 {
8874         /* MTU must be positive, and in range */
8875         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8876                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8877                 return -EINVAL;
8878         }
8879
8880         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8881                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8882                 return -EINVAL;
8883         }
8884         return 0;
8885 }
8886
8887 /**
8888  *      dev_set_mtu_ext - Change maximum transfer unit
8889  *      @dev: device
8890  *      @new_mtu: new transfer unit
8891  *      @extack: netlink extended ack
8892  *
8893  *      Change the maximum transfer size of the network device.
8894  */
8895 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8896                     struct netlink_ext_ack *extack)
8897 {
8898         int err, orig_mtu;
8899
8900         if (new_mtu == dev->mtu)
8901                 return 0;
8902
8903         err = dev_validate_mtu(dev, new_mtu, extack);
8904         if (err)
8905                 return err;
8906
8907         if (!netif_device_present(dev))
8908                 return -ENODEV;
8909
8910         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8911         err = notifier_to_errno(err);
8912         if (err)
8913                 return err;
8914
8915         orig_mtu = dev->mtu;
8916         err = __dev_set_mtu(dev, new_mtu);
8917
8918         if (!err) {
8919                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8920                                                    orig_mtu);
8921                 err = notifier_to_errno(err);
8922                 if (err) {
8923                         /* setting mtu back and notifying everyone again,
8924                          * so that they have a chance to revert changes.
8925                          */
8926                         __dev_set_mtu(dev, orig_mtu);
8927                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8928                                                      new_mtu);
8929                 }
8930         }
8931         return err;
8932 }
8933
8934 int dev_set_mtu(struct net_device *dev, int new_mtu)
8935 {
8936         struct netlink_ext_ack extack;
8937         int err;
8938
8939         memset(&extack, 0, sizeof(extack));
8940         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8941         if (err && extack._msg)
8942                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8943         return err;
8944 }
8945 EXPORT_SYMBOL(dev_set_mtu);
8946
8947 /**
8948  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8949  *      @dev: device
8950  *      @new_len: new tx queue length
8951  */
8952 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8953 {
8954         unsigned int orig_len = dev->tx_queue_len;
8955         int res;
8956
8957         if (new_len != (unsigned int)new_len)
8958                 return -ERANGE;
8959
8960         if (new_len != orig_len) {
8961                 dev->tx_queue_len = new_len;
8962                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8963                 res = notifier_to_errno(res);
8964                 if (res)
8965                         goto err_rollback;
8966                 res = dev_qdisc_change_tx_queue_len(dev);
8967                 if (res)
8968                         goto err_rollback;
8969         }
8970
8971         return 0;
8972
8973 err_rollback:
8974         netdev_err(dev, "refused to change device tx_queue_len\n");
8975         dev->tx_queue_len = orig_len;
8976         return res;
8977 }
8978
8979 /**
8980  *      dev_set_group - Change group this device belongs to
8981  *      @dev: device
8982  *      @new_group: group this device should belong to
8983  */
8984 void dev_set_group(struct net_device *dev, int new_group)
8985 {
8986         dev->group = new_group;
8987 }
8988 EXPORT_SYMBOL(dev_set_group);
8989
8990 /**
8991  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8992  *      @dev: device
8993  *      @addr: new address
8994  *      @extack: netlink extended ack
8995  */
8996 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8997                               struct netlink_ext_ack *extack)
8998 {
8999         struct netdev_notifier_pre_changeaddr_info info = {
9000                 .info.dev = dev,
9001                 .info.extack = extack,
9002                 .dev_addr = addr,
9003         };
9004         int rc;
9005
9006         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9007         return notifier_to_errno(rc);
9008 }
9009 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9010
9011 /**
9012  *      dev_set_mac_address - Change Media Access Control Address
9013  *      @dev: device
9014  *      @sa: new address
9015  *      @extack: netlink extended ack
9016  *
9017  *      Change the hardware (MAC) address of the device
9018  */
9019 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9020                         struct netlink_ext_ack *extack)
9021 {
9022         const struct net_device_ops *ops = dev->netdev_ops;
9023         int err;
9024
9025         if (!ops->ndo_set_mac_address)
9026                 return -EOPNOTSUPP;
9027         if (sa->sa_family != dev->type)
9028                 return -EINVAL;
9029         if (!netif_device_present(dev))
9030                 return -ENODEV;
9031         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9032         if (err)
9033                 return err;
9034         err = ops->ndo_set_mac_address(dev, sa);
9035         if (err)
9036                 return err;
9037         dev->addr_assign_type = NET_ADDR_SET;
9038         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9039         add_device_randomness(dev->dev_addr, dev->addr_len);
9040         return 0;
9041 }
9042 EXPORT_SYMBOL(dev_set_mac_address);
9043
9044 static DECLARE_RWSEM(dev_addr_sem);
9045
9046 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9047                              struct netlink_ext_ack *extack)
9048 {
9049         int ret;
9050
9051         down_write(&dev_addr_sem);
9052         ret = dev_set_mac_address(dev, sa, extack);
9053         up_write(&dev_addr_sem);
9054         return ret;
9055 }
9056 EXPORT_SYMBOL(dev_set_mac_address_user);
9057
9058 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9059 {
9060         size_t size = sizeof(sa->sa_data);
9061         struct net_device *dev;
9062         int ret = 0;
9063
9064         down_read(&dev_addr_sem);
9065         rcu_read_lock();
9066
9067         dev = dev_get_by_name_rcu(net, dev_name);
9068         if (!dev) {
9069                 ret = -ENODEV;
9070                 goto unlock;
9071         }
9072         if (!dev->addr_len)
9073                 memset(sa->sa_data, 0, size);
9074         else
9075                 memcpy(sa->sa_data, dev->dev_addr,
9076                        min_t(size_t, size, dev->addr_len));
9077         sa->sa_family = dev->type;
9078
9079 unlock:
9080         rcu_read_unlock();
9081         up_read(&dev_addr_sem);
9082         return ret;
9083 }
9084 EXPORT_SYMBOL(dev_get_mac_address);
9085
9086 /**
9087  *      dev_change_carrier - Change device carrier
9088  *      @dev: device
9089  *      @new_carrier: new value
9090  *
9091  *      Change device carrier
9092  */
9093 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9094 {
9095         const struct net_device_ops *ops = dev->netdev_ops;
9096
9097         if (!ops->ndo_change_carrier)
9098                 return -EOPNOTSUPP;
9099         if (!netif_device_present(dev))
9100                 return -ENODEV;
9101         return ops->ndo_change_carrier(dev, new_carrier);
9102 }
9103 EXPORT_SYMBOL(dev_change_carrier);
9104
9105 /**
9106  *      dev_get_phys_port_id - Get device physical port ID
9107  *      @dev: device
9108  *      @ppid: port ID
9109  *
9110  *      Get device physical port ID
9111  */
9112 int dev_get_phys_port_id(struct net_device *dev,
9113                          struct netdev_phys_item_id *ppid)
9114 {
9115         const struct net_device_ops *ops = dev->netdev_ops;
9116
9117         if (!ops->ndo_get_phys_port_id)
9118                 return -EOPNOTSUPP;
9119         return ops->ndo_get_phys_port_id(dev, ppid);
9120 }
9121 EXPORT_SYMBOL(dev_get_phys_port_id);
9122
9123 /**
9124  *      dev_get_phys_port_name - Get device physical port name
9125  *      @dev: device
9126  *      @name: port name
9127  *      @len: limit of bytes to copy to name
9128  *
9129  *      Get device physical port name
9130  */
9131 int dev_get_phys_port_name(struct net_device *dev,
9132                            char *name, size_t len)
9133 {
9134         const struct net_device_ops *ops = dev->netdev_ops;
9135         int err;
9136
9137         if (ops->ndo_get_phys_port_name) {
9138                 err = ops->ndo_get_phys_port_name(dev, name, len);
9139                 if (err != -EOPNOTSUPP)
9140                         return err;
9141         }
9142         return devlink_compat_phys_port_name_get(dev, name, len);
9143 }
9144 EXPORT_SYMBOL(dev_get_phys_port_name);
9145
9146 /**
9147  *      dev_get_port_parent_id - Get the device's port parent identifier
9148  *      @dev: network device
9149  *      @ppid: pointer to a storage for the port's parent identifier
9150  *      @recurse: allow/disallow recursion to lower devices
9151  *
9152  *      Get the devices's port parent identifier
9153  */
9154 int dev_get_port_parent_id(struct net_device *dev,
9155                            struct netdev_phys_item_id *ppid,
9156                            bool recurse)
9157 {
9158         const struct net_device_ops *ops = dev->netdev_ops;
9159         struct netdev_phys_item_id first = { };
9160         struct net_device *lower_dev;
9161         struct list_head *iter;
9162         int err;
9163
9164         if (ops->ndo_get_port_parent_id) {
9165                 err = ops->ndo_get_port_parent_id(dev, ppid);
9166                 if (err != -EOPNOTSUPP)
9167                         return err;
9168         }
9169
9170         err = devlink_compat_switch_id_get(dev, ppid);
9171         if (!err || err != -EOPNOTSUPP)
9172                 return err;
9173
9174         if (!recurse)
9175                 return -EOPNOTSUPP;
9176
9177         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9178                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9179                 if (err)
9180                         break;
9181                 if (!first.id_len)
9182                         first = *ppid;
9183                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9184                         return -EOPNOTSUPP;
9185         }
9186
9187         return err;
9188 }
9189 EXPORT_SYMBOL(dev_get_port_parent_id);
9190
9191 /**
9192  *      netdev_port_same_parent_id - Indicate if two network devices have
9193  *      the same port parent identifier
9194  *      @a: first network device
9195  *      @b: second network device
9196  */
9197 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9198 {
9199         struct netdev_phys_item_id a_id = { };
9200         struct netdev_phys_item_id b_id = { };
9201
9202         if (dev_get_port_parent_id(a, &a_id, true) ||
9203             dev_get_port_parent_id(b, &b_id, true))
9204                 return false;
9205
9206         return netdev_phys_item_id_same(&a_id, &b_id);
9207 }
9208 EXPORT_SYMBOL(netdev_port_same_parent_id);
9209
9210 /**
9211  *      dev_change_proto_down - update protocol port state information
9212  *      @dev: device
9213  *      @proto_down: new value
9214  *
9215  *      This info can be used by switch drivers to set the phys state of the
9216  *      port.
9217  */
9218 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9219 {
9220         const struct net_device_ops *ops = dev->netdev_ops;
9221
9222         if (!ops->ndo_change_proto_down)
9223                 return -EOPNOTSUPP;
9224         if (!netif_device_present(dev))
9225                 return -ENODEV;
9226         return ops->ndo_change_proto_down(dev, proto_down);
9227 }
9228 EXPORT_SYMBOL(dev_change_proto_down);
9229
9230 /**
9231  *      dev_change_proto_down_generic - generic implementation for
9232  *      ndo_change_proto_down that sets carrier according to
9233  *      proto_down.
9234  *
9235  *      @dev: device
9236  *      @proto_down: new value
9237  */
9238 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9239 {
9240         if (proto_down)
9241                 netif_carrier_off(dev);
9242         else
9243                 netif_carrier_on(dev);
9244         dev->proto_down = proto_down;
9245         return 0;
9246 }
9247 EXPORT_SYMBOL(dev_change_proto_down_generic);
9248
9249 /**
9250  *      dev_change_proto_down_reason - proto down reason
9251  *
9252  *      @dev: device
9253  *      @mask: proto down mask
9254  *      @value: proto down value
9255  */
9256 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9257                                   u32 value)
9258 {
9259         int b;
9260
9261         if (!mask) {
9262                 dev->proto_down_reason = value;
9263         } else {
9264                 for_each_set_bit(b, &mask, 32) {
9265                         if (value & (1 << b))
9266                                 dev->proto_down_reason |= BIT(b);
9267                         else
9268                                 dev->proto_down_reason &= ~BIT(b);
9269                 }
9270         }
9271 }
9272 EXPORT_SYMBOL(dev_change_proto_down_reason);
9273
9274 struct bpf_xdp_link {
9275         struct bpf_link link;
9276         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9277         int flags;
9278 };
9279
9280 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9281 {
9282         if (flags & XDP_FLAGS_HW_MODE)
9283                 return XDP_MODE_HW;
9284         if (flags & XDP_FLAGS_DRV_MODE)
9285                 return XDP_MODE_DRV;
9286         if (flags & XDP_FLAGS_SKB_MODE)
9287                 return XDP_MODE_SKB;
9288         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9289 }
9290
9291 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9292 {
9293         switch (mode) {
9294         case XDP_MODE_SKB:
9295                 return generic_xdp_install;
9296         case XDP_MODE_DRV:
9297         case XDP_MODE_HW:
9298                 return dev->netdev_ops->ndo_bpf;
9299         default:
9300                 return NULL;
9301         }
9302 }
9303
9304 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9305                                          enum bpf_xdp_mode mode)
9306 {
9307         return dev->xdp_state[mode].link;
9308 }
9309
9310 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9311                                      enum bpf_xdp_mode mode)
9312 {
9313         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9314
9315         if (link)
9316                 return link->link.prog;
9317         return dev->xdp_state[mode].prog;
9318 }
9319
9320 u8 dev_xdp_prog_count(struct net_device *dev)
9321 {
9322         u8 count = 0;
9323         int i;
9324
9325         for (i = 0; i < __MAX_XDP_MODE; i++)
9326                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9327                         count++;
9328         return count;
9329 }
9330 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9331
9332 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9333 {
9334         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9335
9336         return prog ? prog->aux->id : 0;
9337 }
9338
9339 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9340                              struct bpf_xdp_link *link)
9341 {
9342         dev->xdp_state[mode].link = link;
9343         dev->xdp_state[mode].prog = NULL;
9344 }
9345
9346 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9347                              struct bpf_prog *prog)
9348 {
9349         dev->xdp_state[mode].link = NULL;
9350         dev->xdp_state[mode].prog = prog;
9351 }
9352
9353 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9354                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9355                            u32 flags, struct bpf_prog *prog)
9356 {
9357         struct netdev_bpf xdp;
9358         int err;
9359
9360         memset(&xdp, 0, sizeof(xdp));
9361         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9362         xdp.extack = extack;
9363         xdp.flags = flags;
9364         xdp.prog = prog;
9365
9366         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9367          * "moved" into driver), so they don't increment it on their own, but
9368          * they do decrement refcnt when program is detached or replaced.
9369          * Given net_device also owns link/prog, we need to bump refcnt here
9370          * to prevent drivers from underflowing it.
9371          */
9372         if (prog)
9373                 bpf_prog_inc(prog);
9374         err = bpf_op(dev, &xdp);
9375         if (err) {
9376                 if (prog)
9377                         bpf_prog_put(prog);
9378                 return err;
9379         }
9380
9381         if (mode != XDP_MODE_HW)
9382                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9383
9384         return 0;
9385 }
9386
9387 static void dev_xdp_uninstall(struct net_device *dev)
9388 {
9389         struct bpf_xdp_link *link;
9390         struct bpf_prog *prog;
9391         enum bpf_xdp_mode mode;
9392         bpf_op_t bpf_op;
9393
9394         ASSERT_RTNL();
9395
9396         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9397                 prog = dev_xdp_prog(dev, mode);
9398                 if (!prog)
9399                         continue;
9400
9401                 bpf_op = dev_xdp_bpf_op(dev, mode);
9402                 if (!bpf_op)
9403                         continue;
9404
9405                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9406
9407                 /* auto-detach link from net device */
9408                 link = dev_xdp_link(dev, mode);
9409                 if (link)
9410                         link->dev = NULL;
9411                 else
9412                         bpf_prog_put(prog);
9413
9414                 dev_xdp_set_link(dev, mode, NULL);
9415         }
9416 }
9417
9418 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9419                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9420                           struct bpf_prog *old_prog, u32 flags)
9421 {
9422         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9423         struct bpf_prog *cur_prog;
9424         struct net_device *upper;
9425         struct list_head *iter;
9426         enum bpf_xdp_mode mode;
9427         bpf_op_t bpf_op;
9428         int err;
9429
9430         ASSERT_RTNL();
9431
9432         /* either link or prog attachment, never both */
9433         if (link && (new_prog || old_prog))
9434                 return -EINVAL;
9435         /* link supports only XDP mode flags */
9436         if (link && (flags & ~XDP_FLAGS_MODES)) {
9437                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9438                 return -EINVAL;
9439         }
9440         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9441         if (num_modes > 1) {
9442                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9443                 return -EINVAL;
9444         }
9445         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9446         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9447                 NL_SET_ERR_MSG(extack,
9448                                "More than one program loaded, unset mode is ambiguous");
9449                 return -EINVAL;
9450         }
9451         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9452         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9453                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9454                 return -EINVAL;
9455         }
9456
9457         mode = dev_xdp_mode(dev, flags);
9458         /* can't replace attached link */
9459         if (dev_xdp_link(dev, mode)) {
9460                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9461                 return -EBUSY;
9462         }
9463
9464         /* don't allow if an upper device already has a program */
9465         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9466                 if (dev_xdp_prog_count(upper) > 0) {
9467                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9468                         return -EEXIST;
9469                 }
9470         }
9471
9472         cur_prog = dev_xdp_prog(dev, mode);
9473         /* can't replace attached prog with link */
9474         if (link && cur_prog) {
9475                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9476                 return -EBUSY;
9477         }
9478         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9479                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9480                 return -EEXIST;
9481         }
9482
9483         /* put effective new program into new_prog */
9484         if (link)
9485                 new_prog = link->link.prog;
9486
9487         if (new_prog) {
9488                 bool offload = mode == XDP_MODE_HW;
9489                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9490                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9491
9492                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9493                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9494                         return -EBUSY;
9495                 }
9496                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9497                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9498                         return -EEXIST;
9499                 }
9500                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9501                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9502                         return -EINVAL;
9503                 }
9504                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9505                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9506                         return -EINVAL;
9507                 }
9508                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9509                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9510                         return -EINVAL;
9511                 }
9512         }
9513
9514         /* don't call drivers if the effective program didn't change */
9515         if (new_prog != cur_prog) {
9516                 bpf_op = dev_xdp_bpf_op(dev, mode);
9517                 if (!bpf_op) {
9518                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9519                         return -EOPNOTSUPP;
9520                 }
9521
9522                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9523                 if (err)
9524                         return err;
9525         }
9526
9527         if (link)
9528                 dev_xdp_set_link(dev, mode, link);
9529         else
9530                 dev_xdp_set_prog(dev, mode, new_prog);
9531         if (cur_prog)
9532                 bpf_prog_put(cur_prog);
9533
9534         return 0;
9535 }
9536
9537 static int dev_xdp_attach_link(struct net_device *dev,
9538                                struct netlink_ext_ack *extack,
9539                                struct bpf_xdp_link *link)
9540 {
9541         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9542 }
9543
9544 static int dev_xdp_detach_link(struct net_device *dev,
9545                                struct netlink_ext_ack *extack,
9546                                struct bpf_xdp_link *link)
9547 {
9548         enum bpf_xdp_mode mode;
9549         bpf_op_t bpf_op;
9550
9551         ASSERT_RTNL();
9552
9553         mode = dev_xdp_mode(dev, link->flags);
9554         if (dev_xdp_link(dev, mode) != link)
9555                 return -EINVAL;
9556
9557         bpf_op = dev_xdp_bpf_op(dev, mode);
9558         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9559         dev_xdp_set_link(dev, mode, NULL);
9560         return 0;
9561 }
9562
9563 static void bpf_xdp_link_release(struct bpf_link *link)
9564 {
9565         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9566
9567         rtnl_lock();
9568
9569         /* if racing with net_device's tear down, xdp_link->dev might be
9570          * already NULL, in which case link was already auto-detached
9571          */
9572         if (xdp_link->dev) {
9573                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9574                 xdp_link->dev = NULL;
9575         }
9576
9577         rtnl_unlock();
9578 }
9579
9580 static int bpf_xdp_link_detach(struct bpf_link *link)
9581 {
9582         bpf_xdp_link_release(link);
9583         return 0;
9584 }
9585
9586 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9587 {
9588         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9589
9590         kfree(xdp_link);
9591 }
9592
9593 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9594                                      struct seq_file *seq)
9595 {
9596         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9597         u32 ifindex = 0;
9598
9599         rtnl_lock();
9600         if (xdp_link->dev)
9601                 ifindex = xdp_link->dev->ifindex;
9602         rtnl_unlock();
9603
9604         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9605 }
9606
9607 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9608                                        struct bpf_link_info *info)
9609 {
9610         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9611         u32 ifindex = 0;
9612
9613         rtnl_lock();
9614         if (xdp_link->dev)
9615                 ifindex = xdp_link->dev->ifindex;
9616         rtnl_unlock();
9617
9618         info->xdp.ifindex = ifindex;
9619         return 0;
9620 }
9621
9622 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9623                                struct bpf_prog *old_prog)
9624 {
9625         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9626         enum bpf_xdp_mode mode;
9627         bpf_op_t bpf_op;
9628         int err = 0;
9629
9630         rtnl_lock();
9631
9632         /* link might have been auto-released already, so fail */
9633         if (!xdp_link->dev) {
9634                 err = -ENOLINK;
9635                 goto out_unlock;
9636         }
9637
9638         if (old_prog && link->prog != old_prog) {
9639                 err = -EPERM;
9640                 goto out_unlock;
9641         }
9642         old_prog = link->prog;
9643         if (old_prog->type != new_prog->type ||
9644             old_prog->expected_attach_type != new_prog->expected_attach_type) {
9645                 err = -EINVAL;
9646                 goto out_unlock;
9647         }
9648
9649         if (old_prog == new_prog) {
9650                 /* no-op, don't disturb drivers */
9651                 bpf_prog_put(new_prog);
9652                 goto out_unlock;
9653         }
9654
9655         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9656         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9657         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9658                               xdp_link->flags, new_prog);
9659         if (err)
9660                 goto out_unlock;
9661
9662         old_prog = xchg(&link->prog, new_prog);
9663         bpf_prog_put(old_prog);
9664
9665 out_unlock:
9666         rtnl_unlock();
9667         return err;
9668 }
9669
9670 static const struct bpf_link_ops bpf_xdp_link_lops = {
9671         .release = bpf_xdp_link_release,
9672         .dealloc = bpf_xdp_link_dealloc,
9673         .detach = bpf_xdp_link_detach,
9674         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9675         .fill_link_info = bpf_xdp_link_fill_link_info,
9676         .update_prog = bpf_xdp_link_update,
9677 };
9678
9679 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9680 {
9681         struct net *net = current->nsproxy->net_ns;
9682         struct bpf_link_primer link_primer;
9683         struct bpf_xdp_link *link;
9684         struct net_device *dev;
9685         int err, fd;
9686
9687         rtnl_lock();
9688         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9689         if (!dev) {
9690                 rtnl_unlock();
9691                 return -EINVAL;
9692         }
9693
9694         link = kzalloc(sizeof(*link), GFP_USER);
9695         if (!link) {
9696                 err = -ENOMEM;
9697                 goto unlock;
9698         }
9699
9700         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9701         link->dev = dev;
9702         link->flags = attr->link_create.flags;
9703
9704         err = bpf_link_prime(&link->link, &link_primer);
9705         if (err) {
9706                 kfree(link);
9707                 goto unlock;
9708         }
9709
9710         err = dev_xdp_attach_link(dev, NULL, link);
9711         rtnl_unlock();
9712
9713         if (err) {
9714                 link->dev = NULL;
9715                 bpf_link_cleanup(&link_primer);
9716                 goto out_put_dev;
9717         }
9718
9719         fd = bpf_link_settle(&link_primer);
9720         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9721         dev_put(dev);
9722         return fd;
9723
9724 unlock:
9725         rtnl_unlock();
9726
9727 out_put_dev:
9728         dev_put(dev);
9729         return err;
9730 }
9731
9732 /**
9733  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9734  *      @dev: device
9735  *      @extack: netlink extended ack
9736  *      @fd: new program fd or negative value to clear
9737  *      @expected_fd: old program fd that userspace expects to replace or clear
9738  *      @flags: xdp-related flags
9739  *
9740  *      Set or clear a bpf program for a device
9741  */
9742 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9743                       int fd, int expected_fd, u32 flags)
9744 {
9745         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9746         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9747         int err;
9748
9749         ASSERT_RTNL();
9750
9751         if (fd >= 0) {
9752                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9753                                                  mode != XDP_MODE_SKB);
9754                 if (IS_ERR(new_prog))
9755                         return PTR_ERR(new_prog);
9756         }
9757
9758         if (expected_fd >= 0) {
9759                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9760                                                  mode != XDP_MODE_SKB);
9761                 if (IS_ERR(old_prog)) {
9762                         err = PTR_ERR(old_prog);
9763                         old_prog = NULL;
9764                         goto err_out;
9765                 }
9766         }
9767
9768         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9769
9770 err_out:
9771         if (err && new_prog)
9772                 bpf_prog_put(new_prog);
9773         if (old_prog)
9774                 bpf_prog_put(old_prog);
9775         return err;
9776 }
9777
9778 /**
9779  *      dev_new_index   -       allocate an ifindex
9780  *      @net: the applicable net namespace
9781  *
9782  *      Returns a suitable unique value for a new device interface
9783  *      number.  The caller must hold the rtnl semaphore or the
9784  *      dev_base_lock to be sure it remains unique.
9785  */
9786 static int dev_new_index(struct net *net)
9787 {
9788         int ifindex = net->ifindex;
9789
9790         for (;;) {
9791                 if (++ifindex <= 0)
9792                         ifindex = 1;
9793                 if (!__dev_get_by_index(net, ifindex))
9794                         return net->ifindex = ifindex;
9795         }
9796 }
9797
9798 /* Delayed registration/unregisteration */
9799 static LIST_HEAD(net_todo_list);
9800 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9801
9802 static void net_set_todo(struct net_device *dev)
9803 {
9804         list_add_tail(&dev->todo_list, &net_todo_list);
9805         dev_net(dev)->dev_unreg_count++;
9806 }
9807
9808 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9809         struct net_device *upper, netdev_features_t features)
9810 {
9811         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9812         netdev_features_t feature;
9813         int feature_bit;
9814
9815         for_each_netdev_feature(upper_disables, feature_bit) {
9816                 feature = __NETIF_F_BIT(feature_bit);
9817                 if (!(upper->wanted_features & feature)
9818                     && (features & feature)) {
9819                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9820                                    &feature, upper->name);
9821                         features &= ~feature;
9822                 }
9823         }
9824
9825         return features;
9826 }
9827
9828 static void netdev_sync_lower_features(struct net_device *upper,
9829         struct net_device *lower, netdev_features_t features)
9830 {
9831         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9832         netdev_features_t feature;
9833         int feature_bit;
9834
9835         for_each_netdev_feature(upper_disables, feature_bit) {
9836                 feature = __NETIF_F_BIT(feature_bit);
9837                 if (!(features & feature) && (lower->features & feature)) {
9838                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9839                                    &feature, lower->name);
9840                         lower->wanted_features &= ~feature;
9841                         __netdev_update_features(lower);
9842
9843                         if (unlikely(lower->features & feature))
9844                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9845                                             &feature, lower->name);
9846                         else
9847                                 netdev_features_change(lower);
9848                 }
9849         }
9850 }
9851
9852 static netdev_features_t netdev_fix_features(struct net_device *dev,
9853         netdev_features_t features)
9854 {
9855         /* Fix illegal checksum combinations */
9856         if ((features & NETIF_F_HW_CSUM) &&
9857             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9858                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9859                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9860         }
9861
9862         /* TSO requires that SG is present as well. */
9863         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9864                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9865                 features &= ~NETIF_F_ALL_TSO;
9866         }
9867
9868         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9869                                         !(features & NETIF_F_IP_CSUM)) {
9870                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9871                 features &= ~NETIF_F_TSO;
9872                 features &= ~NETIF_F_TSO_ECN;
9873         }
9874
9875         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9876                                          !(features & NETIF_F_IPV6_CSUM)) {
9877                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9878                 features &= ~NETIF_F_TSO6;
9879         }
9880
9881         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9882         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9883                 features &= ~NETIF_F_TSO_MANGLEID;
9884
9885         /* TSO ECN requires that TSO is present as well. */
9886         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9887                 features &= ~NETIF_F_TSO_ECN;
9888
9889         /* Software GSO depends on SG. */
9890         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9891                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9892                 features &= ~NETIF_F_GSO;
9893         }
9894
9895         /* GSO partial features require GSO partial be set */
9896         if ((features & dev->gso_partial_features) &&
9897             !(features & NETIF_F_GSO_PARTIAL)) {
9898                 netdev_dbg(dev,
9899                            "Dropping partially supported GSO features since no GSO partial.\n");
9900                 features &= ~dev->gso_partial_features;
9901         }
9902
9903         if (!(features & NETIF_F_RXCSUM)) {
9904                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9905                  * successfully merged by hardware must also have the
9906                  * checksum verified by hardware.  If the user does not
9907                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9908                  */
9909                 if (features & NETIF_F_GRO_HW) {
9910                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9911                         features &= ~NETIF_F_GRO_HW;
9912                 }
9913         }
9914
9915         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9916         if (features & NETIF_F_RXFCS) {
9917                 if (features & NETIF_F_LRO) {
9918                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9919                         features &= ~NETIF_F_LRO;
9920                 }
9921
9922                 if (features & NETIF_F_GRO_HW) {
9923                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9924                         features &= ~NETIF_F_GRO_HW;
9925                 }
9926         }
9927
9928         if (features & NETIF_F_HW_TLS_TX) {
9929                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9930                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9931                 bool hw_csum = features & NETIF_F_HW_CSUM;
9932
9933                 if (!ip_csum && !hw_csum) {
9934                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9935                         features &= ~NETIF_F_HW_TLS_TX;
9936                 }
9937         }
9938
9939         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9940                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9941                 features &= ~NETIF_F_HW_TLS_RX;
9942         }
9943
9944         return features;
9945 }
9946
9947 int __netdev_update_features(struct net_device *dev)
9948 {
9949         struct net_device *upper, *lower;
9950         netdev_features_t features;
9951         struct list_head *iter;
9952         int err = -1;
9953
9954         ASSERT_RTNL();
9955
9956         features = netdev_get_wanted_features(dev);
9957
9958         if (dev->netdev_ops->ndo_fix_features)
9959                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9960
9961         /* driver might be less strict about feature dependencies */
9962         features = netdev_fix_features(dev, features);
9963
9964         /* some features can't be enabled if they're off on an upper device */
9965         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9966                 features = netdev_sync_upper_features(dev, upper, features);
9967
9968         if (dev->features == features)
9969                 goto sync_lower;
9970
9971         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9972                 &dev->features, &features);
9973
9974         if (dev->netdev_ops->ndo_set_features)
9975                 err = dev->netdev_ops->ndo_set_features(dev, features);
9976         else
9977                 err = 0;
9978
9979         if (unlikely(err < 0)) {
9980                 netdev_err(dev,
9981                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9982                         err, &features, &dev->features);
9983                 /* return non-0 since some features might have changed and
9984                  * it's better to fire a spurious notification than miss it
9985                  */
9986                 return -1;
9987         }
9988
9989 sync_lower:
9990         /* some features must be disabled on lower devices when disabled
9991          * on an upper device (think: bonding master or bridge)
9992          */
9993         netdev_for_each_lower_dev(dev, lower, iter)
9994                 netdev_sync_lower_features(dev, lower, features);
9995
9996         if (!err) {
9997                 netdev_features_t diff = features ^ dev->features;
9998
9999                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10000                         /* udp_tunnel_{get,drop}_rx_info both need
10001                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10002                          * device, or they won't do anything.
10003                          * Thus we need to update dev->features
10004                          * *before* calling udp_tunnel_get_rx_info,
10005                          * but *after* calling udp_tunnel_drop_rx_info.
10006                          */
10007                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10008                                 dev->features = features;
10009                                 udp_tunnel_get_rx_info(dev);
10010                         } else {
10011                                 udp_tunnel_drop_rx_info(dev);
10012                         }
10013                 }
10014
10015                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10016                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10017                                 dev->features = features;
10018                                 err |= vlan_get_rx_ctag_filter_info(dev);
10019                         } else {
10020                                 vlan_drop_rx_ctag_filter_info(dev);
10021                         }
10022                 }
10023
10024                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10025                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10026                                 dev->features = features;
10027                                 err |= vlan_get_rx_stag_filter_info(dev);
10028                         } else {
10029                                 vlan_drop_rx_stag_filter_info(dev);
10030                         }
10031                 }
10032
10033                 dev->features = features;
10034         }
10035
10036         return err < 0 ? 0 : 1;
10037 }
10038
10039 /**
10040  *      netdev_update_features - recalculate device features
10041  *      @dev: the device to check
10042  *
10043  *      Recalculate dev->features set and send notifications if it
10044  *      has changed. Should be called after driver or hardware dependent
10045  *      conditions might have changed that influence the features.
10046  */
10047 void netdev_update_features(struct net_device *dev)
10048 {
10049         if (__netdev_update_features(dev))
10050                 netdev_features_change(dev);
10051 }
10052 EXPORT_SYMBOL(netdev_update_features);
10053
10054 /**
10055  *      netdev_change_features - recalculate device features
10056  *      @dev: the device to check
10057  *
10058  *      Recalculate dev->features set and send notifications even
10059  *      if they have not changed. Should be called instead of
10060  *      netdev_update_features() if also dev->vlan_features might
10061  *      have changed to allow the changes to be propagated to stacked
10062  *      VLAN devices.
10063  */
10064 void netdev_change_features(struct net_device *dev)
10065 {
10066         __netdev_update_features(dev);
10067         netdev_features_change(dev);
10068 }
10069 EXPORT_SYMBOL(netdev_change_features);
10070
10071 /**
10072  *      netif_stacked_transfer_operstate -      transfer operstate
10073  *      @rootdev: the root or lower level device to transfer state from
10074  *      @dev: the device to transfer operstate to
10075  *
10076  *      Transfer operational state from root to device. This is normally
10077  *      called when a stacking relationship exists between the root
10078  *      device and the device(a leaf device).
10079  */
10080 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10081                                         struct net_device *dev)
10082 {
10083         if (rootdev->operstate == IF_OPER_DORMANT)
10084                 netif_dormant_on(dev);
10085         else
10086                 netif_dormant_off(dev);
10087
10088         if (rootdev->operstate == IF_OPER_TESTING)
10089                 netif_testing_on(dev);
10090         else
10091                 netif_testing_off(dev);
10092
10093         if (netif_carrier_ok(rootdev))
10094                 netif_carrier_on(dev);
10095         else
10096                 netif_carrier_off(dev);
10097 }
10098 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10099
10100 static int netif_alloc_rx_queues(struct net_device *dev)
10101 {
10102         unsigned int i, count = dev->num_rx_queues;
10103         struct netdev_rx_queue *rx;
10104         size_t sz = count * sizeof(*rx);
10105         int err = 0;
10106
10107         BUG_ON(count < 1);
10108
10109         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10110         if (!rx)
10111                 return -ENOMEM;
10112
10113         dev->_rx = rx;
10114
10115         for (i = 0; i < count; i++) {
10116                 rx[i].dev = dev;
10117
10118                 /* XDP RX-queue setup */
10119                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10120                 if (err < 0)
10121                         goto err_rxq_info;
10122         }
10123         return 0;
10124
10125 err_rxq_info:
10126         /* Rollback successful reg's and free other resources */
10127         while (i--)
10128                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10129         kvfree(dev->_rx);
10130         dev->_rx = NULL;
10131         return err;
10132 }
10133
10134 static void netif_free_rx_queues(struct net_device *dev)
10135 {
10136         unsigned int i, count = dev->num_rx_queues;
10137
10138         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10139         if (!dev->_rx)
10140                 return;
10141
10142         for (i = 0; i < count; i++)
10143                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10144
10145         kvfree(dev->_rx);
10146 }
10147
10148 static void netdev_init_one_queue(struct net_device *dev,
10149                                   struct netdev_queue *queue, void *_unused)
10150 {
10151         /* Initialize queue lock */
10152         spin_lock_init(&queue->_xmit_lock);
10153         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10154         queue->xmit_lock_owner = -1;
10155         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10156         queue->dev = dev;
10157 #ifdef CONFIG_BQL
10158         dql_init(&queue->dql, HZ);
10159 #endif
10160 }
10161
10162 static void netif_free_tx_queues(struct net_device *dev)
10163 {
10164         kvfree(dev->_tx);
10165 }
10166
10167 static int netif_alloc_netdev_queues(struct net_device *dev)
10168 {
10169         unsigned int count = dev->num_tx_queues;
10170         struct netdev_queue *tx;
10171         size_t sz = count * sizeof(*tx);
10172
10173         if (count < 1 || count > 0xffff)
10174                 return -EINVAL;
10175
10176         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10177         if (!tx)
10178                 return -ENOMEM;
10179
10180         dev->_tx = tx;
10181
10182         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10183         spin_lock_init(&dev->tx_global_lock);
10184
10185         return 0;
10186 }
10187
10188 void netif_tx_stop_all_queues(struct net_device *dev)
10189 {
10190         unsigned int i;
10191
10192         for (i = 0; i < dev->num_tx_queues; i++) {
10193                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10194
10195                 netif_tx_stop_queue(txq);
10196         }
10197 }
10198 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10199
10200 /**
10201  *      register_netdevice      - register a network device
10202  *      @dev: device to register
10203  *
10204  *      Take a completed network device structure and add it to the kernel
10205  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10206  *      chain. 0 is returned on success. A negative errno code is returned
10207  *      on a failure to set up the device, or if the name is a duplicate.
10208  *
10209  *      Callers must hold the rtnl semaphore. You may want
10210  *      register_netdev() instead of this.
10211  *
10212  *      BUGS:
10213  *      The locking appears insufficient to guarantee two parallel registers
10214  *      will not get the same name.
10215  */
10216
10217 int register_netdevice(struct net_device *dev)
10218 {
10219         int ret;
10220         struct net *net = dev_net(dev);
10221
10222         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10223                      NETDEV_FEATURE_COUNT);
10224         BUG_ON(dev_boot_phase);
10225         ASSERT_RTNL();
10226
10227         might_sleep();
10228
10229         /* When net_device's are persistent, this will be fatal. */
10230         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10231         BUG_ON(!net);
10232
10233         ret = ethtool_check_ops(dev->ethtool_ops);
10234         if (ret)
10235                 return ret;
10236
10237         spin_lock_init(&dev->addr_list_lock);
10238         netdev_set_addr_lockdep_class(dev);
10239
10240         ret = dev_get_valid_name(net, dev, dev->name);
10241         if (ret < 0)
10242                 goto out;
10243
10244         ret = -ENOMEM;
10245         dev->name_node = netdev_name_node_head_alloc(dev);
10246         if (!dev->name_node)
10247                 goto out;
10248
10249         /* Init, if this function is available */
10250         if (dev->netdev_ops->ndo_init) {
10251                 ret = dev->netdev_ops->ndo_init(dev);
10252                 if (ret) {
10253                         if (ret > 0)
10254                                 ret = -EIO;
10255                         goto err_free_name;
10256                 }
10257         }
10258
10259         if (((dev->hw_features | dev->features) &
10260              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10261             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10262              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10263                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10264                 ret = -EINVAL;
10265                 goto err_uninit;
10266         }
10267
10268         ret = -EBUSY;
10269         if (!dev->ifindex)
10270                 dev->ifindex = dev_new_index(net);
10271         else if (__dev_get_by_index(net, dev->ifindex))
10272                 goto err_uninit;
10273
10274         /* Transfer changeable features to wanted_features and enable
10275          * software offloads (GSO and GRO).
10276          */
10277         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10278         dev->features |= NETIF_F_SOFT_FEATURES;
10279
10280         if (dev->udp_tunnel_nic_info) {
10281                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10282                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10283         }
10284
10285         dev->wanted_features = dev->features & dev->hw_features;
10286
10287         if (!(dev->flags & IFF_LOOPBACK))
10288                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10289
10290         /* If IPv4 TCP segmentation offload is supported we should also
10291          * allow the device to enable segmenting the frame with the option
10292          * of ignoring a static IP ID value.  This doesn't enable the
10293          * feature itself but allows the user to enable it later.
10294          */
10295         if (dev->hw_features & NETIF_F_TSO)
10296                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10297         if (dev->vlan_features & NETIF_F_TSO)
10298                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10299         if (dev->mpls_features & NETIF_F_TSO)
10300                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10301         if (dev->hw_enc_features & NETIF_F_TSO)
10302                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10303
10304         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10305          */
10306         dev->vlan_features |= NETIF_F_HIGHDMA;
10307
10308         /* Make NETIF_F_SG inheritable to tunnel devices.
10309          */
10310         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10311
10312         /* Make NETIF_F_SG inheritable to MPLS.
10313          */
10314         dev->mpls_features |= NETIF_F_SG;
10315
10316         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10317         ret = notifier_to_errno(ret);
10318         if (ret)
10319                 goto err_uninit;
10320
10321         ret = netdev_register_kobject(dev);
10322         if (ret) {
10323                 dev->reg_state = NETREG_UNREGISTERED;
10324                 goto err_uninit;
10325         }
10326         dev->reg_state = NETREG_REGISTERED;
10327
10328         __netdev_update_features(dev);
10329
10330         /*
10331          *      Default initial state at registry is that the
10332          *      device is present.
10333          */
10334
10335         set_bit(__LINK_STATE_PRESENT, &dev->state);
10336
10337         linkwatch_init_dev(dev);
10338
10339         dev_init_scheduler(dev);
10340         dev_hold(dev);
10341         list_netdevice(dev);
10342         add_device_randomness(dev->dev_addr, dev->addr_len);
10343
10344         /* If the device has permanent device address, driver should
10345          * set dev_addr and also addr_assign_type should be set to
10346          * NET_ADDR_PERM (default value).
10347          */
10348         if (dev->addr_assign_type == NET_ADDR_PERM)
10349                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10350
10351         /* Notify protocols, that a new device appeared. */
10352         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10353         ret = notifier_to_errno(ret);
10354         if (ret) {
10355                 /* Expect explicit free_netdev() on failure */
10356                 dev->needs_free_netdev = false;
10357                 unregister_netdevice_queue(dev, NULL);
10358                 goto out;
10359         }
10360         /*
10361          *      Prevent userspace races by waiting until the network
10362          *      device is fully setup before sending notifications.
10363          */
10364         if (!dev->rtnl_link_ops ||
10365             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10366                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10367
10368 out:
10369         return ret;
10370
10371 err_uninit:
10372         if (dev->netdev_ops->ndo_uninit)
10373                 dev->netdev_ops->ndo_uninit(dev);
10374         if (dev->priv_destructor)
10375                 dev->priv_destructor(dev);
10376 err_free_name:
10377         netdev_name_node_free(dev->name_node);
10378         goto out;
10379 }
10380 EXPORT_SYMBOL(register_netdevice);
10381
10382 /**
10383  *      init_dummy_netdev       - init a dummy network device for NAPI
10384  *      @dev: device to init
10385  *
10386  *      This takes a network device structure and initialize the minimum
10387  *      amount of fields so it can be used to schedule NAPI polls without
10388  *      registering a full blown interface. This is to be used by drivers
10389  *      that need to tie several hardware interfaces to a single NAPI
10390  *      poll scheduler due to HW limitations.
10391  */
10392 int init_dummy_netdev(struct net_device *dev)
10393 {
10394         /* Clear everything. Note we don't initialize spinlocks
10395          * are they aren't supposed to be taken by any of the
10396          * NAPI code and this dummy netdev is supposed to be
10397          * only ever used for NAPI polls
10398          */
10399         memset(dev, 0, sizeof(struct net_device));
10400
10401         /* make sure we BUG if trying to hit standard
10402          * register/unregister code path
10403          */
10404         dev->reg_state = NETREG_DUMMY;
10405
10406         /* NAPI wants this */
10407         INIT_LIST_HEAD(&dev->napi_list);
10408
10409         /* a dummy interface is started by default */
10410         set_bit(__LINK_STATE_PRESENT, &dev->state);
10411         set_bit(__LINK_STATE_START, &dev->state);
10412
10413         /* napi_busy_loop stats accounting wants this */
10414         dev_net_set(dev, &init_net);
10415
10416         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10417          * because users of this 'device' dont need to change
10418          * its refcount.
10419          */
10420
10421         return 0;
10422 }
10423 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10424
10425
10426 /**
10427  *      register_netdev - register a network device
10428  *      @dev: device to register
10429  *
10430  *      Take a completed network device structure and add it to the kernel
10431  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10432  *      chain. 0 is returned on success. A negative errno code is returned
10433  *      on a failure to set up the device, or if the name is a duplicate.
10434  *
10435  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10436  *      and expands the device name if you passed a format string to
10437  *      alloc_netdev.
10438  */
10439 int register_netdev(struct net_device *dev)
10440 {
10441         int err;
10442
10443         if (rtnl_lock_killable())
10444                 return -EINTR;
10445         err = register_netdevice(dev);
10446         rtnl_unlock();
10447         return err;
10448 }
10449 EXPORT_SYMBOL(register_netdev);
10450
10451 int netdev_refcnt_read(const struct net_device *dev)
10452 {
10453 #ifdef CONFIG_PCPU_DEV_REFCNT
10454         int i, refcnt = 0;
10455
10456         for_each_possible_cpu(i)
10457                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10458         return refcnt;
10459 #else
10460         return refcount_read(&dev->dev_refcnt);
10461 #endif
10462 }
10463 EXPORT_SYMBOL(netdev_refcnt_read);
10464
10465 int netdev_unregister_timeout_secs __read_mostly = 10;
10466
10467 #define WAIT_REFS_MIN_MSECS 1
10468 #define WAIT_REFS_MAX_MSECS 250
10469 /**
10470  * netdev_wait_allrefs - wait until all references are gone.
10471  * @dev: target net_device
10472  *
10473  * This is called when unregistering network devices.
10474  *
10475  * Any protocol or device that holds a reference should register
10476  * for netdevice notification, and cleanup and put back the
10477  * reference if they receive an UNREGISTER event.
10478  * We can get stuck here if buggy protocols don't correctly
10479  * call dev_put.
10480  */
10481 static void netdev_wait_allrefs(struct net_device *dev)
10482 {
10483         unsigned long rebroadcast_time, warning_time;
10484         int wait = 0, refcnt;
10485
10486         linkwatch_forget_dev(dev);
10487
10488         rebroadcast_time = warning_time = jiffies;
10489         refcnt = netdev_refcnt_read(dev);
10490
10491         while (refcnt != 1) {
10492                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10493                         rtnl_lock();
10494
10495                         /* Rebroadcast unregister notification */
10496                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10497
10498                         __rtnl_unlock();
10499                         rcu_barrier();
10500                         rtnl_lock();
10501
10502                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10503                                      &dev->state)) {
10504                                 /* We must not have linkwatch events
10505                                  * pending on unregister. If this
10506                                  * happens, we simply run the queue
10507                                  * unscheduled, resulting in a noop
10508                                  * for this device.
10509                                  */
10510                                 linkwatch_run_queue();
10511                         }
10512
10513                         __rtnl_unlock();
10514
10515                         rebroadcast_time = jiffies;
10516                 }
10517
10518                 if (!wait) {
10519                         rcu_barrier();
10520                         wait = WAIT_REFS_MIN_MSECS;
10521                 } else {
10522                         msleep(wait);
10523                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10524                 }
10525
10526                 refcnt = netdev_refcnt_read(dev);
10527
10528                 if (refcnt != 1 &&
10529                     time_after(jiffies, warning_time +
10530                                netdev_unregister_timeout_secs * HZ)) {
10531                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10532                                  dev->name, refcnt);
10533                         warning_time = jiffies;
10534                 }
10535         }
10536 }
10537
10538 /* The sequence is:
10539  *
10540  *      rtnl_lock();
10541  *      ...
10542  *      register_netdevice(x1);
10543  *      register_netdevice(x2);
10544  *      ...
10545  *      unregister_netdevice(y1);
10546  *      unregister_netdevice(y2);
10547  *      ...
10548  *      rtnl_unlock();
10549  *      free_netdev(y1);
10550  *      free_netdev(y2);
10551  *
10552  * We are invoked by rtnl_unlock().
10553  * This allows us to deal with problems:
10554  * 1) We can delete sysfs objects which invoke hotplug
10555  *    without deadlocking with linkwatch via keventd.
10556  * 2) Since we run with the RTNL semaphore not held, we can sleep
10557  *    safely in order to wait for the netdev refcnt to drop to zero.
10558  *
10559  * We must not return until all unregister events added during
10560  * the interval the lock was held have been completed.
10561  */
10562 void netdev_run_todo(void)
10563 {
10564         struct list_head list;
10565 #ifdef CONFIG_LOCKDEP
10566         struct list_head unlink_list;
10567
10568         list_replace_init(&net_unlink_list, &unlink_list);
10569
10570         while (!list_empty(&unlink_list)) {
10571                 struct net_device *dev = list_first_entry(&unlink_list,
10572                                                           struct net_device,
10573                                                           unlink_list);
10574                 list_del_init(&dev->unlink_list);
10575                 dev->nested_level = dev->lower_level - 1;
10576         }
10577 #endif
10578
10579         /* Snapshot list, allow later requests */
10580         list_replace_init(&net_todo_list, &list);
10581
10582         __rtnl_unlock();
10583
10584
10585         /* Wait for rcu callbacks to finish before next phase */
10586         if (!list_empty(&list))
10587                 rcu_barrier();
10588
10589         while (!list_empty(&list)) {
10590                 struct net_device *dev
10591                         = list_first_entry(&list, struct net_device, todo_list);
10592                 list_del(&dev->todo_list);
10593
10594                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10595                         pr_err("network todo '%s' but state %d\n",
10596                                dev->name, dev->reg_state);
10597                         dump_stack();
10598                         continue;
10599                 }
10600
10601                 dev->reg_state = NETREG_UNREGISTERED;
10602
10603                 netdev_wait_allrefs(dev);
10604
10605                 /* paranoia */
10606                 BUG_ON(netdev_refcnt_read(dev) != 1);
10607                 BUG_ON(!list_empty(&dev->ptype_all));
10608                 BUG_ON(!list_empty(&dev->ptype_specific));
10609                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10610                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10611 #if IS_ENABLED(CONFIG_DECNET)
10612                 WARN_ON(dev->dn_ptr);
10613 #endif
10614                 if (dev->priv_destructor)
10615                         dev->priv_destructor(dev);
10616                 if (dev->needs_free_netdev)
10617                         free_netdev(dev);
10618
10619                 /* Report a network device has been unregistered */
10620                 rtnl_lock();
10621                 dev_net(dev)->dev_unreg_count--;
10622                 __rtnl_unlock();
10623                 wake_up(&netdev_unregistering_wq);
10624
10625                 /* Free network device */
10626                 kobject_put(&dev->dev.kobj);
10627         }
10628 }
10629
10630 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10631  * all the same fields in the same order as net_device_stats, with only
10632  * the type differing, but rtnl_link_stats64 may have additional fields
10633  * at the end for newer counters.
10634  */
10635 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10636                              const struct net_device_stats *netdev_stats)
10637 {
10638 #if BITS_PER_LONG == 64
10639         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10640         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10641         /* zero out counters that only exist in rtnl_link_stats64 */
10642         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10643                sizeof(*stats64) - sizeof(*netdev_stats));
10644 #else
10645         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10646         const unsigned long *src = (const unsigned long *)netdev_stats;
10647         u64 *dst = (u64 *)stats64;
10648
10649         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10650         for (i = 0; i < n; i++)
10651                 dst[i] = src[i];
10652         /* zero out counters that only exist in rtnl_link_stats64 */
10653         memset((char *)stats64 + n * sizeof(u64), 0,
10654                sizeof(*stats64) - n * sizeof(u64));
10655 #endif
10656 }
10657 EXPORT_SYMBOL(netdev_stats_to_stats64);
10658
10659 /**
10660  *      dev_get_stats   - get network device statistics
10661  *      @dev: device to get statistics from
10662  *      @storage: place to store stats
10663  *
10664  *      Get network statistics from device. Return @storage.
10665  *      The device driver may provide its own method by setting
10666  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10667  *      otherwise the internal statistics structure is used.
10668  */
10669 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10670                                         struct rtnl_link_stats64 *storage)
10671 {
10672         const struct net_device_ops *ops = dev->netdev_ops;
10673
10674         if (ops->ndo_get_stats64) {
10675                 memset(storage, 0, sizeof(*storage));
10676                 ops->ndo_get_stats64(dev, storage);
10677         } else if (ops->ndo_get_stats) {
10678                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10679         } else {
10680                 netdev_stats_to_stats64(storage, &dev->stats);
10681         }
10682         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10683         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10684         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10685         return storage;
10686 }
10687 EXPORT_SYMBOL(dev_get_stats);
10688
10689 /**
10690  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10691  *      @s: place to store stats
10692  *      @netstats: per-cpu network stats to read from
10693  *
10694  *      Read per-cpu network statistics and populate the related fields in @s.
10695  */
10696 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10697                            const struct pcpu_sw_netstats __percpu *netstats)
10698 {
10699         int cpu;
10700
10701         for_each_possible_cpu(cpu) {
10702                 const struct pcpu_sw_netstats *stats;
10703                 struct pcpu_sw_netstats tmp;
10704                 unsigned int start;
10705
10706                 stats = per_cpu_ptr(netstats, cpu);
10707                 do {
10708                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10709                         tmp.rx_packets = stats->rx_packets;
10710                         tmp.rx_bytes   = stats->rx_bytes;
10711                         tmp.tx_packets = stats->tx_packets;
10712                         tmp.tx_bytes   = stats->tx_bytes;
10713                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10714
10715                 s->rx_packets += tmp.rx_packets;
10716                 s->rx_bytes   += tmp.rx_bytes;
10717                 s->tx_packets += tmp.tx_packets;
10718                 s->tx_bytes   += tmp.tx_bytes;
10719         }
10720 }
10721 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10722
10723 /**
10724  *      dev_get_tstats64 - ndo_get_stats64 implementation
10725  *      @dev: device to get statistics from
10726  *      @s: place to store stats
10727  *
10728  *      Populate @s from dev->stats and dev->tstats. Can be used as
10729  *      ndo_get_stats64() callback.
10730  */
10731 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10732 {
10733         netdev_stats_to_stats64(s, &dev->stats);
10734         dev_fetch_sw_netstats(s, dev->tstats);
10735 }
10736 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10737
10738 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10739 {
10740         struct netdev_queue *queue = dev_ingress_queue(dev);
10741
10742 #ifdef CONFIG_NET_CLS_ACT
10743         if (queue)
10744                 return queue;
10745         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10746         if (!queue)
10747                 return NULL;
10748         netdev_init_one_queue(dev, queue, NULL);
10749         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10750         queue->qdisc_sleeping = &noop_qdisc;
10751         rcu_assign_pointer(dev->ingress_queue, queue);
10752 #endif
10753         return queue;
10754 }
10755
10756 static const struct ethtool_ops default_ethtool_ops;
10757
10758 void netdev_set_default_ethtool_ops(struct net_device *dev,
10759                                     const struct ethtool_ops *ops)
10760 {
10761         if (dev->ethtool_ops == &default_ethtool_ops)
10762                 dev->ethtool_ops = ops;
10763 }
10764 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10765
10766 void netdev_freemem(struct net_device *dev)
10767 {
10768         char *addr = (char *)dev - dev->padded;
10769
10770         kvfree(addr);
10771 }
10772
10773 /**
10774  * alloc_netdev_mqs - allocate network device
10775  * @sizeof_priv: size of private data to allocate space for
10776  * @name: device name format string
10777  * @name_assign_type: origin of device name
10778  * @setup: callback to initialize device
10779  * @txqs: the number of TX subqueues to allocate
10780  * @rxqs: the number of RX subqueues to allocate
10781  *
10782  * Allocates a struct net_device with private data area for driver use
10783  * and performs basic initialization.  Also allocates subqueue structs
10784  * for each queue on the device.
10785  */
10786 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10787                 unsigned char name_assign_type,
10788                 void (*setup)(struct net_device *),
10789                 unsigned int txqs, unsigned int rxqs)
10790 {
10791         struct net_device *dev;
10792         unsigned int alloc_size;
10793         struct net_device *p;
10794
10795         BUG_ON(strlen(name) >= sizeof(dev->name));
10796
10797         if (txqs < 1) {
10798                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10799                 return NULL;
10800         }
10801
10802         if (rxqs < 1) {
10803                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10804                 return NULL;
10805         }
10806
10807         alloc_size = sizeof(struct net_device);
10808         if (sizeof_priv) {
10809                 /* ensure 32-byte alignment of private area */
10810                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10811                 alloc_size += sizeof_priv;
10812         }
10813         /* ensure 32-byte alignment of whole construct */
10814         alloc_size += NETDEV_ALIGN - 1;
10815
10816         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10817         if (!p)
10818                 return NULL;
10819
10820         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10821         dev->padded = (char *)dev - (char *)p;
10822
10823 #ifdef CONFIG_PCPU_DEV_REFCNT
10824         dev->pcpu_refcnt = alloc_percpu(int);
10825         if (!dev->pcpu_refcnt)
10826                 goto free_dev;
10827         dev_hold(dev);
10828 #else
10829         refcount_set(&dev->dev_refcnt, 1);
10830 #endif
10831
10832         if (dev_addr_init(dev))
10833                 goto free_pcpu;
10834
10835         dev_mc_init(dev);
10836         dev_uc_init(dev);
10837
10838         dev_net_set(dev, &init_net);
10839
10840         dev->gso_max_size = GSO_MAX_SIZE;
10841         dev->gso_max_segs = GSO_MAX_SEGS;
10842         dev->upper_level = 1;
10843         dev->lower_level = 1;
10844 #ifdef CONFIG_LOCKDEP
10845         dev->nested_level = 0;
10846         INIT_LIST_HEAD(&dev->unlink_list);
10847 #endif
10848
10849         INIT_LIST_HEAD(&dev->napi_list);
10850         INIT_LIST_HEAD(&dev->unreg_list);
10851         INIT_LIST_HEAD(&dev->close_list);
10852         INIT_LIST_HEAD(&dev->link_watch_list);
10853         INIT_LIST_HEAD(&dev->adj_list.upper);
10854         INIT_LIST_HEAD(&dev->adj_list.lower);
10855         INIT_LIST_HEAD(&dev->ptype_all);
10856         INIT_LIST_HEAD(&dev->ptype_specific);
10857         INIT_LIST_HEAD(&dev->net_notifier_list);
10858 #ifdef CONFIG_NET_SCHED
10859         hash_init(dev->qdisc_hash);
10860 #endif
10861         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10862         setup(dev);
10863
10864         if (!dev->tx_queue_len) {
10865                 dev->priv_flags |= IFF_NO_QUEUE;
10866                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10867         }
10868
10869         dev->num_tx_queues = txqs;
10870         dev->real_num_tx_queues = txqs;
10871         if (netif_alloc_netdev_queues(dev))
10872                 goto free_all;
10873
10874         dev->num_rx_queues = rxqs;
10875         dev->real_num_rx_queues = rxqs;
10876         if (netif_alloc_rx_queues(dev))
10877                 goto free_all;
10878
10879         strcpy(dev->name, name);
10880         dev->name_assign_type = name_assign_type;
10881         dev->group = INIT_NETDEV_GROUP;
10882         if (!dev->ethtool_ops)
10883                 dev->ethtool_ops = &default_ethtool_ops;
10884
10885         nf_hook_ingress_init(dev);
10886
10887         return dev;
10888
10889 free_all:
10890         free_netdev(dev);
10891         return NULL;
10892
10893 free_pcpu:
10894 #ifdef CONFIG_PCPU_DEV_REFCNT
10895         free_percpu(dev->pcpu_refcnt);
10896 free_dev:
10897 #endif
10898         netdev_freemem(dev);
10899         return NULL;
10900 }
10901 EXPORT_SYMBOL(alloc_netdev_mqs);
10902
10903 /**
10904  * free_netdev - free network device
10905  * @dev: device
10906  *
10907  * This function does the last stage of destroying an allocated device
10908  * interface. The reference to the device object is released. If this
10909  * is the last reference then it will be freed.Must be called in process
10910  * context.
10911  */
10912 void free_netdev(struct net_device *dev)
10913 {
10914         struct napi_struct *p, *n;
10915
10916         might_sleep();
10917
10918         /* When called immediately after register_netdevice() failed the unwind
10919          * handling may still be dismantling the device. Handle that case by
10920          * deferring the free.
10921          */
10922         if (dev->reg_state == NETREG_UNREGISTERING) {
10923                 ASSERT_RTNL();
10924                 dev->needs_free_netdev = true;
10925                 return;
10926         }
10927
10928         netif_free_tx_queues(dev);
10929         netif_free_rx_queues(dev);
10930
10931         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10932
10933         /* Flush device addresses */
10934         dev_addr_flush(dev);
10935
10936         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10937                 netif_napi_del(p);
10938
10939 #ifdef CONFIG_PCPU_DEV_REFCNT
10940         free_percpu(dev->pcpu_refcnt);
10941         dev->pcpu_refcnt = NULL;
10942 #endif
10943         free_percpu(dev->xdp_bulkq);
10944         dev->xdp_bulkq = NULL;
10945
10946         /*  Compatibility with error handling in drivers */
10947         if (dev->reg_state == NETREG_UNINITIALIZED) {
10948                 netdev_freemem(dev);
10949                 return;
10950         }
10951
10952         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10953         dev->reg_state = NETREG_RELEASED;
10954
10955         /* will free via device release */
10956         put_device(&dev->dev);
10957 }
10958 EXPORT_SYMBOL(free_netdev);
10959
10960 /**
10961  *      synchronize_net -  Synchronize with packet receive processing
10962  *
10963  *      Wait for packets currently being received to be done.
10964  *      Does not block later packets from starting.
10965  */
10966 void synchronize_net(void)
10967 {
10968         might_sleep();
10969         if (rtnl_is_locked())
10970                 synchronize_rcu_expedited();
10971         else
10972                 synchronize_rcu();
10973 }
10974 EXPORT_SYMBOL(synchronize_net);
10975
10976 /**
10977  *      unregister_netdevice_queue - remove device from the kernel
10978  *      @dev: device
10979  *      @head: list
10980  *
10981  *      This function shuts down a device interface and removes it
10982  *      from the kernel tables.
10983  *      If head not NULL, device is queued to be unregistered later.
10984  *
10985  *      Callers must hold the rtnl semaphore.  You may want
10986  *      unregister_netdev() instead of this.
10987  */
10988
10989 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10990 {
10991         ASSERT_RTNL();
10992
10993         if (head) {
10994                 list_move_tail(&dev->unreg_list, head);
10995         } else {
10996                 LIST_HEAD(single);
10997
10998                 list_add(&dev->unreg_list, &single);
10999                 unregister_netdevice_many(&single);
11000         }
11001 }
11002 EXPORT_SYMBOL(unregister_netdevice_queue);
11003
11004 /**
11005  *      unregister_netdevice_many - unregister many devices
11006  *      @head: list of devices
11007  *
11008  *  Note: As most callers use a stack allocated list_head,
11009  *  we force a list_del() to make sure stack wont be corrupted later.
11010  */
11011 void unregister_netdevice_many(struct list_head *head)
11012 {
11013         struct net_device *dev, *tmp;
11014         LIST_HEAD(close_head);
11015
11016         BUG_ON(dev_boot_phase);
11017         ASSERT_RTNL();
11018
11019         if (list_empty(head))
11020                 return;
11021
11022         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11023                 /* Some devices call without registering
11024                  * for initialization unwind. Remove those
11025                  * devices and proceed with the remaining.
11026                  */
11027                 if (dev->reg_state == NETREG_UNINITIALIZED) {
11028                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11029                                  dev->name, dev);
11030
11031                         WARN_ON(1);
11032                         list_del(&dev->unreg_list);
11033                         continue;
11034                 }
11035                 dev->dismantle = true;
11036                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11037         }
11038
11039         /* If device is running, close it first. */
11040         list_for_each_entry(dev, head, unreg_list)
11041                 list_add_tail(&dev->close_list, &close_head);
11042         dev_close_many(&close_head, true);
11043
11044         list_for_each_entry(dev, head, unreg_list) {
11045                 /* And unlink it from device chain. */
11046                 unlist_netdevice(dev);
11047
11048                 dev->reg_state = NETREG_UNREGISTERING;
11049         }
11050         flush_all_backlogs();
11051
11052         synchronize_net();
11053
11054         list_for_each_entry(dev, head, unreg_list) {
11055                 struct sk_buff *skb = NULL;
11056
11057                 /* Shutdown queueing discipline. */
11058                 dev_shutdown(dev);
11059
11060                 dev_xdp_uninstall(dev);
11061
11062                 /* Notify protocols, that we are about to destroy
11063                  * this device. They should clean all the things.
11064                  */
11065                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11066
11067                 if (!dev->rtnl_link_ops ||
11068                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11069                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11070                                                      GFP_KERNEL, NULL, 0);
11071
11072                 /*
11073                  *      Flush the unicast and multicast chains
11074                  */
11075                 dev_uc_flush(dev);
11076                 dev_mc_flush(dev);
11077
11078                 netdev_name_node_alt_flush(dev);
11079                 netdev_name_node_free(dev->name_node);
11080
11081                 if (dev->netdev_ops->ndo_uninit)
11082                         dev->netdev_ops->ndo_uninit(dev);
11083
11084                 if (skb)
11085                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11086
11087                 /* Notifier chain MUST detach us all upper devices. */
11088                 WARN_ON(netdev_has_any_upper_dev(dev));
11089                 WARN_ON(netdev_has_any_lower_dev(dev));
11090
11091                 /* Remove entries from kobject tree */
11092                 netdev_unregister_kobject(dev);
11093 #ifdef CONFIG_XPS
11094                 /* Remove XPS queueing entries */
11095                 netif_reset_xps_queues_gt(dev, 0);
11096 #endif
11097         }
11098
11099         synchronize_net();
11100
11101         list_for_each_entry(dev, head, unreg_list) {
11102                 dev_put(dev);
11103                 net_set_todo(dev);
11104         }
11105
11106         list_del(head);
11107 }
11108 EXPORT_SYMBOL(unregister_netdevice_many);
11109
11110 /**
11111  *      unregister_netdev - remove device from the kernel
11112  *      @dev: device
11113  *
11114  *      This function shuts down a device interface and removes it
11115  *      from the kernel tables.
11116  *
11117  *      This is just a wrapper for unregister_netdevice that takes
11118  *      the rtnl semaphore.  In general you want to use this and not
11119  *      unregister_netdevice.
11120  */
11121 void unregister_netdev(struct net_device *dev)
11122 {
11123         rtnl_lock();
11124         unregister_netdevice(dev);
11125         rtnl_unlock();
11126 }
11127 EXPORT_SYMBOL(unregister_netdev);
11128
11129 /**
11130  *      __dev_change_net_namespace - move device to different nethost namespace
11131  *      @dev: device
11132  *      @net: network namespace
11133  *      @pat: If not NULL name pattern to try if the current device name
11134  *            is already taken in the destination network namespace.
11135  *      @new_ifindex: If not zero, specifies device index in the target
11136  *                    namespace.
11137  *
11138  *      This function shuts down a device interface and moves it
11139  *      to a new network namespace. On success 0 is returned, on
11140  *      a failure a netagive errno code is returned.
11141  *
11142  *      Callers must hold the rtnl semaphore.
11143  */
11144
11145 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11146                                const char *pat, int new_ifindex)
11147 {
11148         struct net *net_old = dev_net(dev);
11149         int err, new_nsid;
11150
11151         ASSERT_RTNL();
11152
11153         /* Don't allow namespace local devices to be moved. */
11154         err = -EINVAL;
11155         if (dev->features & NETIF_F_NETNS_LOCAL)
11156                 goto out;
11157
11158         /* Ensure the device has been registrered */
11159         if (dev->reg_state != NETREG_REGISTERED)
11160                 goto out;
11161
11162         /* Get out if there is nothing todo */
11163         err = 0;
11164         if (net_eq(net_old, net))
11165                 goto out;
11166
11167         /* Pick the destination device name, and ensure
11168          * we can use it in the destination network namespace.
11169          */
11170         err = -EEXIST;
11171         if (__dev_get_by_name(net, dev->name)) {
11172                 /* We get here if we can't use the current device name */
11173                 if (!pat)
11174                         goto out;
11175                 err = dev_get_valid_name(net, dev, pat);
11176                 if (err < 0)
11177                         goto out;
11178         }
11179
11180         /* Check that new_ifindex isn't used yet. */
11181         err = -EBUSY;
11182         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11183                 goto out;
11184
11185         /*
11186          * And now a mini version of register_netdevice unregister_netdevice.
11187          */
11188
11189         /* If device is running close it first. */
11190         dev_close(dev);
11191
11192         /* And unlink it from device chain */
11193         unlist_netdevice(dev);
11194
11195         synchronize_net();
11196
11197         /* Shutdown queueing discipline. */
11198         dev_shutdown(dev);
11199
11200         /* Notify protocols, that we are about to destroy
11201          * this device. They should clean all the things.
11202          *
11203          * Note that dev->reg_state stays at NETREG_REGISTERED.
11204          * This is wanted because this way 8021q and macvlan know
11205          * the device is just moving and can keep their slaves up.
11206          */
11207         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11208         rcu_barrier();
11209
11210         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11211         /* If there is an ifindex conflict assign a new one */
11212         if (!new_ifindex) {
11213                 if (__dev_get_by_index(net, dev->ifindex))
11214                         new_ifindex = dev_new_index(net);
11215                 else
11216                         new_ifindex = dev->ifindex;
11217         }
11218
11219         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11220                             new_ifindex);
11221
11222         /*
11223          *      Flush the unicast and multicast chains
11224          */
11225         dev_uc_flush(dev);
11226         dev_mc_flush(dev);
11227
11228         /* Send a netdev-removed uevent to the old namespace */
11229         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11230         netdev_adjacent_del_links(dev);
11231
11232         /* Move per-net netdevice notifiers that are following the netdevice */
11233         move_netdevice_notifiers_dev_net(dev, net);
11234
11235         /* Actually switch the network namespace */
11236         dev_net_set(dev, net);
11237         dev->ifindex = new_ifindex;
11238
11239         /* Send a netdev-add uevent to the new namespace */
11240         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11241         netdev_adjacent_add_links(dev);
11242
11243         /* Fixup kobjects */
11244         err = device_rename(&dev->dev, dev->name);
11245         WARN_ON(err);
11246
11247         /* Adapt owner in case owning user namespace of target network
11248          * namespace is different from the original one.
11249          */
11250         err = netdev_change_owner(dev, net_old, net);
11251         WARN_ON(err);
11252
11253         /* Add the device back in the hashes */
11254         list_netdevice(dev);
11255
11256         /* Notify protocols, that a new device appeared. */
11257         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11258
11259         /*
11260          *      Prevent userspace races by waiting until the network
11261          *      device is fully setup before sending notifications.
11262          */
11263         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11264
11265         synchronize_net();
11266         err = 0;
11267 out:
11268         return err;
11269 }
11270 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11271
11272 static int dev_cpu_dead(unsigned int oldcpu)
11273 {
11274         struct sk_buff **list_skb;
11275         struct sk_buff *skb;
11276         unsigned int cpu;
11277         struct softnet_data *sd, *oldsd, *remsd = NULL;
11278
11279         local_irq_disable();
11280         cpu = smp_processor_id();
11281         sd = &per_cpu(softnet_data, cpu);
11282         oldsd = &per_cpu(softnet_data, oldcpu);
11283
11284         /* Find end of our completion_queue. */
11285         list_skb = &sd->completion_queue;
11286         while (*list_skb)
11287                 list_skb = &(*list_skb)->next;
11288         /* Append completion queue from offline CPU. */
11289         *list_skb = oldsd->completion_queue;
11290         oldsd->completion_queue = NULL;
11291
11292         /* Append output queue from offline CPU. */
11293         if (oldsd->output_queue) {
11294                 *sd->output_queue_tailp = oldsd->output_queue;
11295                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11296                 oldsd->output_queue = NULL;
11297                 oldsd->output_queue_tailp = &oldsd->output_queue;
11298         }
11299         /* Append NAPI poll list from offline CPU, with one exception :
11300          * process_backlog() must be called by cpu owning percpu backlog.
11301          * We properly handle process_queue & input_pkt_queue later.
11302          */
11303         while (!list_empty(&oldsd->poll_list)) {
11304                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11305                                                             struct napi_struct,
11306                                                             poll_list);
11307
11308                 list_del_init(&napi->poll_list);
11309                 if (napi->poll == process_backlog)
11310                         napi->state = 0;
11311                 else
11312                         ____napi_schedule(sd, napi);
11313         }
11314
11315         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11316         local_irq_enable();
11317
11318 #ifdef CONFIG_RPS
11319         remsd = oldsd->rps_ipi_list;
11320         oldsd->rps_ipi_list = NULL;
11321 #endif
11322         /* send out pending IPI's on offline CPU */
11323         net_rps_send_ipi(remsd);
11324
11325         /* Process offline CPU's input_pkt_queue */
11326         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11327                 netif_rx_ni(skb);
11328                 input_queue_head_incr(oldsd);
11329         }
11330         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11331                 netif_rx_ni(skb);
11332                 input_queue_head_incr(oldsd);
11333         }
11334
11335         return 0;
11336 }
11337
11338 /**
11339  *      netdev_increment_features - increment feature set by one
11340  *      @all: current feature set
11341  *      @one: new feature set
11342  *      @mask: mask feature set
11343  *
11344  *      Computes a new feature set after adding a device with feature set
11345  *      @one to the master device with current feature set @all.  Will not
11346  *      enable anything that is off in @mask. Returns the new feature set.
11347  */
11348 netdev_features_t netdev_increment_features(netdev_features_t all,
11349         netdev_features_t one, netdev_features_t mask)
11350 {
11351         if (mask & NETIF_F_HW_CSUM)
11352                 mask |= NETIF_F_CSUM_MASK;
11353         mask |= NETIF_F_VLAN_CHALLENGED;
11354
11355         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11356         all &= one | ~NETIF_F_ALL_FOR_ALL;
11357
11358         /* If one device supports hw checksumming, set for all. */
11359         if (all & NETIF_F_HW_CSUM)
11360                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11361
11362         return all;
11363 }
11364 EXPORT_SYMBOL(netdev_increment_features);
11365
11366 static struct hlist_head * __net_init netdev_create_hash(void)
11367 {
11368         int i;
11369         struct hlist_head *hash;
11370
11371         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11372         if (hash != NULL)
11373                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11374                         INIT_HLIST_HEAD(&hash[i]);
11375
11376         return hash;
11377 }
11378
11379 /* Initialize per network namespace state */
11380 static int __net_init netdev_init(struct net *net)
11381 {
11382         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11383                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11384
11385         INIT_LIST_HEAD(&net->dev_base_head);
11386
11387         net->dev_name_head = netdev_create_hash();
11388         if (net->dev_name_head == NULL)
11389                 goto err_name;
11390
11391         net->dev_index_head = netdev_create_hash();
11392         if (net->dev_index_head == NULL)
11393                 goto err_idx;
11394
11395         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11396
11397         return 0;
11398
11399 err_idx:
11400         kfree(net->dev_name_head);
11401 err_name:
11402         return -ENOMEM;
11403 }
11404
11405 /**
11406  *      netdev_drivername - network driver for the device
11407  *      @dev: network device
11408  *
11409  *      Determine network driver for device.
11410  */
11411 const char *netdev_drivername(const struct net_device *dev)
11412 {
11413         const struct device_driver *driver;
11414         const struct device *parent;
11415         const char *empty = "";
11416
11417         parent = dev->dev.parent;
11418         if (!parent)
11419                 return empty;
11420
11421         driver = parent->driver;
11422         if (driver && driver->name)
11423                 return driver->name;
11424         return empty;
11425 }
11426
11427 static void __netdev_printk(const char *level, const struct net_device *dev,
11428                             struct va_format *vaf)
11429 {
11430         if (dev && dev->dev.parent) {
11431                 dev_printk_emit(level[1] - '0',
11432                                 dev->dev.parent,
11433                                 "%s %s %s%s: %pV",
11434                                 dev_driver_string(dev->dev.parent),
11435                                 dev_name(dev->dev.parent),
11436                                 netdev_name(dev), netdev_reg_state(dev),
11437                                 vaf);
11438         } else if (dev) {
11439                 printk("%s%s%s: %pV",
11440                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11441         } else {
11442                 printk("%s(NULL net_device): %pV", level, vaf);
11443         }
11444 }
11445
11446 void netdev_printk(const char *level, const struct net_device *dev,
11447                    const char *format, ...)
11448 {
11449         struct va_format vaf;
11450         va_list args;
11451
11452         va_start(args, format);
11453
11454         vaf.fmt = format;
11455         vaf.va = &args;
11456
11457         __netdev_printk(level, dev, &vaf);
11458
11459         va_end(args);
11460 }
11461 EXPORT_SYMBOL(netdev_printk);
11462
11463 #define define_netdev_printk_level(func, level)                 \
11464 void func(const struct net_device *dev, const char *fmt, ...)   \
11465 {                                                               \
11466         struct va_format vaf;                                   \
11467         va_list args;                                           \
11468                                                                 \
11469         va_start(args, fmt);                                    \
11470                                                                 \
11471         vaf.fmt = fmt;                                          \
11472         vaf.va = &args;                                         \
11473                                                                 \
11474         __netdev_printk(level, dev, &vaf);                      \
11475                                                                 \
11476         va_end(args);                                           \
11477 }                                                               \
11478 EXPORT_SYMBOL(func);
11479
11480 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11481 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11482 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11483 define_netdev_printk_level(netdev_err, KERN_ERR);
11484 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11485 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11486 define_netdev_printk_level(netdev_info, KERN_INFO);
11487
11488 static void __net_exit netdev_exit(struct net *net)
11489 {
11490         kfree(net->dev_name_head);
11491         kfree(net->dev_index_head);
11492         if (net != &init_net)
11493                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11494 }
11495
11496 static struct pernet_operations __net_initdata netdev_net_ops = {
11497         .init = netdev_init,
11498         .exit = netdev_exit,
11499 };
11500
11501 static void __net_exit default_device_exit(struct net *net)
11502 {
11503         struct net_device *dev, *aux;
11504         /*
11505          * Push all migratable network devices back to the
11506          * initial network namespace
11507          */
11508         rtnl_lock();
11509         for_each_netdev_safe(net, dev, aux) {
11510                 int err;
11511                 char fb_name[IFNAMSIZ];
11512
11513                 /* Ignore unmoveable devices (i.e. loopback) */
11514                 if (dev->features & NETIF_F_NETNS_LOCAL)
11515                         continue;
11516
11517                 /* Leave virtual devices for the generic cleanup */
11518                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11519                         continue;
11520
11521                 /* Push remaining network devices to init_net */
11522                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11523                 if (__dev_get_by_name(&init_net, fb_name))
11524                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11525                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11526                 if (err) {
11527                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11528                                  __func__, dev->name, err);
11529                         BUG();
11530                 }
11531         }
11532         rtnl_unlock();
11533 }
11534
11535 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11536 {
11537         /* Return with the rtnl_lock held when there are no network
11538          * devices unregistering in any network namespace in net_list.
11539          */
11540         struct net *net;
11541         bool unregistering;
11542         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11543
11544         add_wait_queue(&netdev_unregistering_wq, &wait);
11545         for (;;) {
11546                 unregistering = false;
11547                 rtnl_lock();
11548                 list_for_each_entry(net, net_list, exit_list) {
11549                         if (net->dev_unreg_count > 0) {
11550                                 unregistering = true;
11551                                 break;
11552                         }
11553                 }
11554                 if (!unregistering)
11555                         break;
11556                 __rtnl_unlock();
11557
11558                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11559         }
11560         remove_wait_queue(&netdev_unregistering_wq, &wait);
11561 }
11562
11563 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11564 {
11565         /* At exit all network devices most be removed from a network
11566          * namespace.  Do this in the reverse order of registration.
11567          * Do this across as many network namespaces as possible to
11568          * improve batching efficiency.
11569          */
11570         struct net_device *dev;
11571         struct net *net;
11572         LIST_HEAD(dev_kill_list);
11573
11574         /* To prevent network device cleanup code from dereferencing
11575          * loopback devices or network devices that have been freed
11576          * wait here for all pending unregistrations to complete,
11577          * before unregistring the loopback device and allowing the
11578          * network namespace be freed.
11579          *
11580          * The netdev todo list containing all network devices
11581          * unregistrations that happen in default_device_exit_batch
11582          * will run in the rtnl_unlock() at the end of
11583          * default_device_exit_batch.
11584          */
11585         rtnl_lock_unregistering(net_list);
11586         list_for_each_entry(net, net_list, exit_list) {
11587                 for_each_netdev_reverse(net, dev) {
11588                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11589                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11590                         else
11591                                 unregister_netdevice_queue(dev, &dev_kill_list);
11592                 }
11593         }
11594         unregister_netdevice_many(&dev_kill_list);
11595         rtnl_unlock();
11596 }
11597
11598 static struct pernet_operations __net_initdata default_device_ops = {
11599         .exit = default_device_exit,
11600         .exit_batch = default_device_exit_batch,
11601 };
11602
11603 /*
11604  *      Initialize the DEV module. At boot time this walks the device list and
11605  *      unhooks any devices that fail to initialise (normally hardware not
11606  *      present) and leaves us with a valid list of present and active devices.
11607  *
11608  */
11609
11610 /*
11611  *       This is called single threaded during boot, so no need
11612  *       to take the rtnl semaphore.
11613  */
11614 static int __init net_dev_init(void)
11615 {
11616         int i, rc = -ENOMEM;
11617
11618         BUG_ON(!dev_boot_phase);
11619
11620         if (dev_proc_init())
11621                 goto out;
11622
11623         if (netdev_kobject_init())
11624                 goto out;
11625
11626         INIT_LIST_HEAD(&ptype_all);
11627         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11628                 INIT_LIST_HEAD(&ptype_base[i]);
11629
11630         INIT_LIST_HEAD(&offload_base);
11631
11632         if (register_pernet_subsys(&netdev_net_ops))
11633                 goto out;
11634
11635         /*
11636          *      Initialise the packet receive queues.
11637          */
11638
11639         for_each_possible_cpu(i) {
11640                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11641                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11642
11643                 INIT_WORK(flush, flush_backlog);
11644
11645                 skb_queue_head_init(&sd->input_pkt_queue);
11646                 skb_queue_head_init(&sd->process_queue);
11647 #ifdef CONFIG_XFRM_OFFLOAD
11648                 skb_queue_head_init(&sd->xfrm_backlog);
11649 #endif
11650                 INIT_LIST_HEAD(&sd->poll_list);
11651                 sd->output_queue_tailp = &sd->output_queue;
11652 #ifdef CONFIG_RPS
11653                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11654                 sd->cpu = i;
11655 #endif
11656
11657                 init_gro_hash(&sd->backlog);
11658                 sd->backlog.poll = process_backlog;
11659                 sd->backlog.weight = weight_p;
11660         }
11661
11662         dev_boot_phase = 0;
11663
11664         /* The loopback device is special if any other network devices
11665          * is present in a network namespace the loopback device must
11666          * be present. Since we now dynamically allocate and free the
11667          * loopback device ensure this invariant is maintained by
11668          * keeping the loopback device as the first device on the
11669          * list of network devices.  Ensuring the loopback devices
11670          * is the first device that appears and the last network device
11671          * that disappears.
11672          */
11673         if (register_pernet_device(&loopback_net_ops))
11674                 goto out;
11675
11676         if (register_pernet_device(&default_device_ops))
11677                 goto out;
11678
11679         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11680         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11681
11682         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11683                                        NULL, dev_cpu_dead);
11684         WARN_ON(rc < 0);
11685         rc = 0;
11686 out:
11687         return rc;
11688 }
11689
11690 subsys_initcall(net_dev_init);