Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[platform/kernel/linux-rpi.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "net-sysfs.h"
155
156 #define MAX_GRO_SKBS 8
157
158 /* This should be increased if a protocol with a bigger head is added. */
159 #define GRO_MAX_HEAD (MAX_HEADER + 128)
160
161 static DEFINE_SPINLOCK(ptype_lock);
162 static DEFINE_SPINLOCK(offload_lock);
163 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164 struct list_head ptype_all __read_mostly;       /* Taps */
165 static struct list_head offload_base __read_mostly;
166
167 static int netif_rx_internal(struct sk_buff *skb);
168 static int call_netdevice_notifiers_info(unsigned long val,
169                                          struct netdev_notifier_info *info);
170 static int call_netdevice_notifiers_extack(unsigned long val,
171                                            struct net_device *dev,
172                                            struct netlink_ext_ack *extack);
173 static struct napi_struct *napi_by_id(unsigned int napi_id);
174
175 /*
176  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177  * semaphore.
178  *
179  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
180  *
181  * Writers must hold the rtnl semaphore while they loop through the
182  * dev_base_head list, and hold dev_base_lock for writing when they do the
183  * actual updates.  This allows pure readers to access the list even
184  * while a writer is preparing to update it.
185  *
186  * To put it another way, dev_base_lock is held for writing only to
187  * protect against pure readers; the rtnl semaphore provides the
188  * protection against other writers.
189  *
190  * See, for example usages, register_netdevice() and
191  * unregister_netdevice(), which must be called with the rtnl
192  * semaphore held.
193  */
194 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
196
197 static DEFINE_MUTEX(ifalias_mutex);
198
199 /* protects napi_hash addition/deletion and napi_gen_id */
200 static DEFINE_SPINLOCK(napi_hash_lock);
201
202 static unsigned int napi_gen_id = NR_CPUS;
203 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
204
205 static DECLARE_RWSEM(devnet_rename_sem);
206
207 static inline void dev_base_seq_inc(struct net *net)
208 {
209         while (++net->dev_base_seq == 0)
210                 ;
211 }
212
213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214 {
215         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
216
217         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218 }
219
220 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221 {
222         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223 }
224
225 static inline void rps_lock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_lock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 static inline void rps_unlock(struct softnet_data *sd)
233 {
234 #ifdef CONFIG_RPS
235         spin_unlock(&sd->input_pkt_queue.lock);
236 #endif
237 }
238
239 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240                                                        const char *name)
241 {
242         struct netdev_name_node *name_node;
243
244         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245         if (!name_node)
246                 return NULL;
247         INIT_HLIST_NODE(&name_node->hlist);
248         name_node->dev = dev;
249         name_node->name = name;
250         return name_node;
251 }
252
253 static struct netdev_name_node *
254 netdev_name_node_head_alloc(struct net_device *dev)
255 {
256         struct netdev_name_node *name_node;
257
258         name_node = netdev_name_node_alloc(dev, dev->name);
259         if (!name_node)
260                 return NULL;
261         INIT_LIST_HEAD(&name_node->list);
262         return name_node;
263 }
264
265 static void netdev_name_node_free(struct netdev_name_node *name_node)
266 {
267         kfree(name_node);
268 }
269
270 static void netdev_name_node_add(struct net *net,
271                                  struct netdev_name_node *name_node)
272 {
273         hlist_add_head_rcu(&name_node->hlist,
274                            dev_name_hash(net, name_node->name));
275 }
276
277 static void netdev_name_node_del(struct netdev_name_node *name_node)
278 {
279         hlist_del_rcu(&name_node->hlist);
280 }
281
282 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283                                                         const char *name)
284 {
285         struct hlist_head *head = dev_name_hash(net, name);
286         struct netdev_name_node *name_node;
287
288         hlist_for_each_entry(name_node, head, hlist)
289                 if (!strcmp(name_node->name, name))
290                         return name_node;
291         return NULL;
292 }
293
294 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295                                                             const char *name)
296 {
297         struct hlist_head *head = dev_name_hash(net, name);
298         struct netdev_name_node *name_node;
299
300         hlist_for_each_entry_rcu(name_node, head, hlist)
301                 if (!strcmp(name_node->name, name))
302                         return name_node;
303         return NULL;
304 }
305
306 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
307 {
308         struct netdev_name_node *name_node;
309         struct net *net = dev_net(dev);
310
311         name_node = netdev_name_node_lookup(net, name);
312         if (name_node)
313                 return -EEXIST;
314         name_node = netdev_name_node_alloc(dev, name);
315         if (!name_node)
316                 return -ENOMEM;
317         netdev_name_node_add(net, name_node);
318         /* The node that holds dev->name acts as a head of per-device list. */
319         list_add_tail(&name_node->list, &dev->name_node->list);
320
321         return 0;
322 }
323 EXPORT_SYMBOL(netdev_name_node_alt_create);
324
325 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
326 {
327         list_del(&name_node->list);
328         netdev_name_node_del(name_node);
329         kfree(name_node->name);
330         netdev_name_node_free(name_node);
331 }
332
333 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
334 {
335         struct netdev_name_node *name_node;
336         struct net *net = dev_net(dev);
337
338         name_node = netdev_name_node_lookup(net, name);
339         if (!name_node)
340                 return -ENOENT;
341         /* lookup might have found our primary name or a name belonging
342          * to another device.
343          */
344         if (name_node == dev->name_node || name_node->dev != dev)
345                 return -EINVAL;
346
347         __netdev_name_node_alt_destroy(name_node);
348
349         return 0;
350 }
351 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
352
353 static void netdev_name_node_alt_flush(struct net_device *dev)
354 {
355         struct netdev_name_node *name_node, *tmp;
356
357         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
358                 __netdev_name_node_alt_destroy(name_node);
359 }
360
361 /* Device list insertion */
362 static void list_netdevice(struct net_device *dev)
363 {
364         struct net *net = dev_net(dev);
365
366         ASSERT_RTNL();
367
368         write_lock_bh(&dev_base_lock);
369         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
370         netdev_name_node_add(net, dev->name_node);
371         hlist_add_head_rcu(&dev->index_hlist,
372                            dev_index_hash(net, dev->ifindex));
373         write_unlock_bh(&dev_base_lock);
374
375         dev_base_seq_inc(net);
376 }
377
378 /* Device list removal
379  * caller must respect a RCU grace period before freeing/reusing dev
380  */
381 static void unlist_netdevice(struct net_device *dev)
382 {
383         ASSERT_RTNL();
384
385         /* Unlink dev from the device chain */
386         write_lock_bh(&dev_base_lock);
387         list_del_rcu(&dev->dev_list);
388         netdev_name_node_del(dev->name_node);
389         hlist_del_rcu(&dev->index_hlist);
390         write_unlock_bh(&dev_base_lock);
391
392         dev_base_seq_inc(dev_net(dev));
393 }
394
395 /*
396  *      Our notifier list
397  */
398
399 static RAW_NOTIFIER_HEAD(netdev_chain);
400
401 /*
402  *      Device drivers call our routines to queue packets here. We empty the
403  *      queue in the local softnet handler.
404  */
405
406 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
407 EXPORT_PER_CPU_SYMBOL(softnet_data);
408
409 #ifdef CONFIG_LOCKDEP
410 /*
411  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
412  * according to dev->type
413  */
414 static const unsigned short netdev_lock_type[] = {
415          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
416          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
417          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
418          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
419          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
420          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
421          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
422          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
423          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
424          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
425          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
426          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
427          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
428          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
429          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
430
431 static const char *const netdev_lock_name[] = {
432         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
433         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
434         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
435         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
436         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
437         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
438         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
439         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
440         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
441         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
442         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
443         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
444         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
445         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
446         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
447
448 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
449 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
450
451 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
452 {
453         int i;
454
455         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
456                 if (netdev_lock_type[i] == dev_type)
457                         return i;
458         /* the last key is used by default */
459         return ARRAY_SIZE(netdev_lock_type) - 1;
460 }
461
462 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
463                                                  unsigned short dev_type)
464 {
465         int i;
466
467         i = netdev_lock_pos(dev_type);
468         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
469                                    netdev_lock_name[i]);
470 }
471
472 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
473 {
474         int i;
475
476         i = netdev_lock_pos(dev->type);
477         lockdep_set_class_and_name(&dev->addr_list_lock,
478                                    &netdev_addr_lock_key[i],
479                                    netdev_lock_name[i]);
480 }
481 #else
482 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
483                                                  unsigned short dev_type)
484 {
485 }
486
487 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
488 {
489 }
490 #endif
491
492 /*******************************************************************************
493  *
494  *              Protocol management and registration routines
495  *
496  *******************************************************************************/
497
498
499 /*
500  *      Add a protocol ID to the list. Now that the input handler is
501  *      smarter we can dispense with all the messy stuff that used to be
502  *      here.
503  *
504  *      BEWARE!!! Protocol handlers, mangling input packets,
505  *      MUST BE last in hash buckets and checking protocol handlers
506  *      MUST start from promiscuous ptype_all chain in net_bh.
507  *      It is true now, do not change it.
508  *      Explanation follows: if protocol handler, mangling packet, will
509  *      be the first on list, it is not able to sense, that packet
510  *      is cloned and should be copied-on-write, so that it will
511  *      change it and subsequent readers will get broken packet.
512  *                                                      --ANK (980803)
513  */
514
515 static inline struct list_head *ptype_head(const struct packet_type *pt)
516 {
517         if (pt->type == htons(ETH_P_ALL))
518                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
519         else
520                 return pt->dev ? &pt->dev->ptype_specific :
521                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
522 }
523
524 /**
525  *      dev_add_pack - add packet handler
526  *      @pt: packet type declaration
527  *
528  *      Add a protocol handler to the networking stack. The passed &packet_type
529  *      is linked into kernel lists and may not be freed until it has been
530  *      removed from the kernel lists.
531  *
532  *      This call does not sleep therefore it can not
533  *      guarantee all CPU's that are in middle of receiving packets
534  *      will see the new packet type (until the next received packet).
535  */
536
537 void dev_add_pack(struct packet_type *pt)
538 {
539         struct list_head *head = ptype_head(pt);
540
541         spin_lock(&ptype_lock);
542         list_add_rcu(&pt->list, head);
543         spin_unlock(&ptype_lock);
544 }
545 EXPORT_SYMBOL(dev_add_pack);
546
547 /**
548  *      __dev_remove_pack        - remove packet handler
549  *      @pt: packet type declaration
550  *
551  *      Remove a protocol handler that was previously added to the kernel
552  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
553  *      from the kernel lists and can be freed or reused once this function
554  *      returns.
555  *
556  *      The packet type might still be in use by receivers
557  *      and must not be freed until after all the CPU's have gone
558  *      through a quiescent state.
559  */
560 void __dev_remove_pack(struct packet_type *pt)
561 {
562         struct list_head *head = ptype_head(pt);
563         struct packet_type *pt1;
564
565         spin_lock(&ptype_lock);
566
567         list_for_each_entry(pt1, head, list) {
568                 if (pt == pt1) {
569                         list_del_rcu(&pt->list);
570                         goto out;
571                 }
572         }
573
574         pr_warn("dev_remove_pack: %p not found\n", pt);
575 out:
576         spin_unlock(&ptype_lock);
577 }
578 EXPORT_SYMBOL(__dev_remove_pack);
579
580 /**
581  *      dev_remove_pack  - remove packet handler
582  *      @pt: packet type declaration
583  *
584  *      Remove a protocol handler that was previously added to the kernel
585  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
586  *      from the kernel lists and can be freed or reused once this function
587  *      returns.
588  *
589  *      This call sleeps to guarantee that no CPU is looking at the packet
590  *      type after return.
591  */
592 void dev_remove_pack(struct packet_type *pt)
593 {
594         __dev_remove_pack(pt);
595
596         synchronize_net();
597 }
598 EXPORT_SYMBOL(dev_remove_pack);
599
600
601 /**
602  *      dev_add_offload - register offload handlers
603  *      @po: protocol offload declaration
604  *
605  *      Add protocol offload handlers to the networking stack. The passed
606  *      &proto_offload is linked into kernel lists and may not be freed until
607  *      it has been removed from the kernel lists.
608  *
609  *      This call does not sleep therefore it can not
610  *      guarantee all CPU's that are in middle of receiving packets
611  *      will see the new offload handlers (until the next received packet).
612  */
613 void dev_add_offload(struct packet_offload *po)
614 {
615         struct packet_offload *elem;
616
617         spin_lock(&offload_lock);
618         list_for_each_entry(elem, &offload_base, list) {
619                 if (po->priority < elem->priority)
620                         break;
621         }
622         list_add_rcu(&po->list, elem->list.prev);
623         spin_unlock(&offload_lock);
624 }
625 EXPORT_SYMBOL(dev_add_offload);
626
627 /**
628  *      __dev_remove_offload     - remove offload handler
629  *      @po: packet offload declaration
630  *
631  *      Remove a protocol offload handler that was previously added to the
632  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
633  *      is removed from the kernel lists and can be freed or reused once this
634  *      function returns.
635  *
636  *      The packet type might still be in use by receivers
637  *      and must not be freed until after all the CPU's have gone
638  *      through a quiescent state.
639  */
640 static void __dev_remove_offload(struct packet_offload *po)
641 {
642         struct list_head *head = &offload_base;
643         struct packet_offload *po1;
644
645         spin_lock(&offload_lock);
646
647         list_for_each_entry(po1, head, list) {
648                 if (po == po1) {
649                         list_del_rcu(&po->list);
650                         goto out;
651                 }
652         }
653
654         pr_warn("dev_remove_offload: %p not found\n", po);
655 out:
656         spin_unlock(&offload_lock);
657 }
658
659 /**
660  *      dev_remove_offload       - remove packet offload handler
661  *      @po: packet offload declaration
662  *
663  *      Remove a packet offload handler that was previously added to the kernel
664  *      offload handlers by dev_add_offload(). The passed &offload_type is
665  *      removed from the kernel lists and can be freed or reused once this
666  *      function returns.
667  *
668  *      This call sleeps to guarantee that no CPU is looking at the packet
669  *      type after return.
670  */
671 void dev_remove_offload(struct packet_offload *po)
672 {
673         __dev_remove_offload(po);
674
675         synchronize_net();
676 }
677 EXPORT_SYMBOL(dev_remove_offload);
678
679 /*******************************************************************************
680  *
681  *                          Device Interface Subroutines
682  *
683  *******************************************************************************/
684
685 /**
686  *      dev_get_iflink  - get 'iflink' value of a interface
687  *      @dev: targeted interface
688  *
689  *      Indicates the ifindex the interface is linked to.
690  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
691  */
692
693 int dev_get_iflink(const struct net_device *dev)
694 {
695         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
696                 return dev->netdev_ops->ndo_get_iflink(dev);
697
698         return dev->ifindex;
699 }
700 EXPORT_SYMBOL(dev_get_iflink);
701
702 /**
703  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
704  *      @dev: targeted interface
705  *      @skb: The packet.
706  *
707  *      For better visibility of tunnel traffic OVS needs to retrieve
708  *      egress tunnel information for a packet. Following API allows
709  *      user to get this info.
710  */
711 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
712 {
713         struct ip_tunnel_info *info;
714
715         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
716                 return -EINVAL;
717
718         info = skb_tunnel_info_unclone(skb);
719         if (!info)
720                 return -ENOMEM;
721         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
722                 return -EINVAL;
723
724         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
725 }
726 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
727
728 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
729 {
730         int k = stack->num_paths++;
731
732         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
733                 return NULL;
734
735         return &stack->path[k];
736 }
737
738 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
739                           struct net_device_path_stack *stack)
740 {
741         const struct net_device *last_dev;
742         struct net_device_path_ctx ctx = {
743                 .dev    = dev,
744                 .daddr  = daddr,
745         };
746         struct net_device_path *path;
747         int ret = 0;
748
749         stack->num_paths = 0;
750         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
751                 last_dev = ctx.dev;
752                 path = dev_fwd_path(stack);
753                 if (!path)
754                         return -1;
755
756                 memset(path, 0, sizeof(struct net_device_path));
757                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
758                 if (ret < 0)
759                         return -1;
760
761                 if (WARN_ON_ONCE(last_dev == ctx.dev))
762                         return -1;
763         }
764         path = dev_fwd_path(stack);
765         if (!path)
766                 return -1;
767         path->type = DEV_PATH_ETHERNET;
768         path->dev = ctx.dev;
769
770         return ret;
771 }
772 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
773
774 /**
775  *      __dev_get_by_name       - find a device by its name
776  *      @net: the applicable net namespace
777  *      @name: name to find
778  *
779  *      Find an interface by name. Must be called under RTNL semaphore
780  *      or @dev_base_lock. If the name is found a pointer to the device
781  *      is returned. If the name is not found then %NULL is returned. The
782  *      reference counters are not incremented so the caller must be
783  *      careful with locks.
784  */
785
786 struct net_device *__dev_get_by_name(struct net *net, const char *name)
787 {
788         struct netdev_name_node *node_name;
789
790         node_name = netdev_name_node_lookup(net, name);
791         return node_name ? node_name->dev : NULL;
792 }
793 EXPORT_SYMBOL(__dev_get_by_name);
794
795 /**
796  * dev_get_by_name_rcu  - find a device by its name
797  * @net: the applicable net namespace
798  * @name: name to find
799  *
800  * Find an interface by name.
801  * If the name is found a pointer to the device is returned.
802  * If the name is not found then %NULL is returned.
803  * The reference counters are not incremented so the caller must be
804  * careful with locks. The caller must hold RCU lock.
805  */
806
807 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
808 {
809         struct netdev_name_node *node_name;
810
811         node_name = netdev_name_node_lookup_rcu(net, name);
812         return node_name ? node_name->dev : NULL;
813 }
814 EXPORT_SYMBOL(dev_get_by_name_rcu);
815
816 /**
817  *      dev_get_by_name         - find a device by its name
818  *      @net: the applicable net namespace
819  *      @name: name to find
820  *
821  *      Find an interface by name. This can be called from any
822  *      context and does its own locking. The returned handle has
823  *      the usage count incremented and the caller must use dev_put() to
824  *      release it when it is no longer needed. %NULL is returned if no
825  *      matching device is found.
826  */
827
828 struct net_device *dev_get_by_name(struct net *net, const char *name)
829 {
830         struct net_device *dev;
831
832         rcu_read_lock();
833         dev = dev_get_by_name_rcu(net, name);
834         dev_hold(dev);
835         rcu_read_unlock();
836         return dev;
837 }
838 EXPORT_SYMBOL(dev_get_by_name);
839
840 /**
841  *      __dev_get_by_index - find a device by its ifindex
842  *      @net: the applicable net namespace
843  *      @ifindex: index of device
844  *
845  *      Search for an interface by index. Returns %NULL if the device
846  *      is not found or a pointer to the device. The device has not
847  *      had its reference counter increased so the caller must be careful
848  *      about locking. The caller must hold either the RTNL semaphore
849  *      or @dev_base_lock.
850  */
851
852 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
853 {
854         struct net_device *dev;
855         struct hlist_head *head = dev_index_hash(net, ifindex);
856
857         hlist_for_each_entry(dev, head, index_hlist)
858                 if (dev->ifindex == ifindex)
859                         return dev;
860
861         return NULL;
862 }
863 EXPORT_SYMBOL(__dev_get_by_index);
864
865 /**
866  *      dev_get_by_index_rcu - find a device by its ifindex
867  *      @net: the applicable net namespace
868  *      @ifindex: index of device
869  *
870  *      Search for an interface by index. Returns %NULL if the device
871  *      is not found or a pointer to the device. The device has not
872  *      had its reference counter increased so the caller must be careful
873  *      about locking. The caller must hold RCU lock.
874  */
875
876 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
877 {
878         struct net_device *dev;
879         struct hlist_head *head = dev_index_hash(net, ifindex);
880
881         hlist_for_each_entry_rcu(dev, head, index_hlist)
882                 if (dev->ifindex == ifindex)
883                         return dev;
884
885         return NULL;
886 }
887 EXPORT_SYMBOL(dev_get_by_index_rcu);
888
889
890 /**
891  *      dev_get_by_index - find a device by its ifindex
892  *      @net: the applicable net namespace
893  *      @ifindex: index of device
894  *
895  *      Search for an interface by index. Returns NULL if the device
896  *      is not found or a pointer to the device. The device returned has
897  *      had a reference added and the pointer is safe until the user calls
898  *      dev_put to indicate they have finished with it.
899  */
900
901 struct net_device *dev_get_by_index(struct net *net, int ifindex)
902 {
903         struct net_device *dev;
904
905         rcu_read_lock();
906         dev = dev_get_by_index_rcu(net, ifindex);
907         dev_hold(dev);
908         rcu_read_unlock();
909         return dev;
910 }
911 EXPORT_SYMBOL(dev_get_by_index);
912
913 /**
914  *      dev_get_by_napi_id - find a device by napi_id
915  *      @napi_id: ID of the NAPI struct
916  *
917  *      Search for an interface by NAPI ID. Returns %NULL if the device
918  *      is not found or a pointer to the device. The device has not had
919  *      its reference counter increased so the caller must be careful
920  *      about locking. The caller must hold RCU lock.
921  */
922
923 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
924 {
925         struct napi_struct *napi;
926
927         WARN_ON_ONCE(!rcu_read_lock_held());
928
929         if (napi_id < MIN_NAPI_ID)
930                 return NULL;
931
932         napi = napi_by_id(napi_id);
933
934         return napi ? napi->dev : NULL;
935 }
936 EXPORT_SYMBOL(dev_get_by_napi_id);
937
938 /**
939  *      netdev_get_name - get a netdevice name, knowing its ifindex.
940  *      @net: network namespace
941  *      @name: a pointer to the buffer where the name will be stored.
942  *      @ifindex: the ifindex of the interface to get the name from.
943  */
944 int netdev_get_name(struct net *net, char *name, int ifindex)
945 {
946         struct net_device *dev;
947         int ret;
948
949         down_read(&devnet_rename_sem);
950         rcu_read_lock();
951
952         dev = dev_get_by_index_rcu(net, ifindex);
953         if (!dev) {
954                 ret = -ENODEV;
955                 goto out;
956         }
957
958         strcpy(name, dev->name);
959
960         ret = 0;
961 out:
962         rcu_read_unlock();
963         up_read(&devnet_rename_sem);
964         return ret;
965 }
966
967 /**
968  *      dev_getbyhwaddr_rcu - find a device by its hardware address
969  *      @net: the applicable net namespace
970  *      @type: media type of device
971  *      @ha: hardware address
972  *
973  *      Search for an interface by MAC address. Returns NULL if the device
974  *      is not found or a pointer to the device.
975  *      The caller must hold RCU or RTNL.
976  *      The returned device has not had its ref count increased
977  *      and the caller must therefore be careful about locking
978  *
979  */
980
981 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
982                                        const char *ha)
983 {
984         struct net_device *dev;
985
986         for_each_netdev_rcu(net, dev)
987                 if (dev->type == type &&
988                     !memcmp(dev->dev_addr, ha, dev->addr_len))
989                         return dev;
990
991         return NULL;
992 }
993 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
994
995 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
996 {
997         struct net_device *dev, *ret = NULL;
998
999         rcu_read_lock();
1000         for_each_netdev_rcu(net, dev)
1001                 if (dev->type == type) {
1002                         dev_hold(dev);
1003                         ret = dev;
1004                         break;
1005                 }
1006         rcu_read_unlock();
1007         return ret;
1008 }
1009 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1010
1011 /**
1012  *      __dev_get_by_flags - find any device with given flags
1013  *      @net: the applicable net namespace
1014  *      @if_flags: IFF_* values
1015  *      @mask: bitmask of bits in if_flags to check
1016  *
1017  *      Search for any interface with the given flags. Returns NULL if a device
1018  *      is not found or a pointer to the device. Must be called inside
1019  *      rtnl_lock(), and result refcount is unchanged.
1020  */
1021
1022 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1023                                       unsigned short mask)
1024 {
1025         struct net_device *dev, *ret;
1026
1027         ASSERT_RTNL();
1028
1029         ret = NULL;
1030         for_each_netdev(net, dev) {
1031                 if (((dev->flags ^ if_flags) & mask) == 0) {
1032                         ret = dev;
1033                         break;
1034                 }
1035         }
1036         return ret;
1037 }
1038 EXPORT_SYMBOL(__dev_get_by_flags);
1039
1040 /**
1041  *      dev_valid_name - check if name is okay for network device
1042  *      @name: name string
1043  *
1044  *      Network device names need to be valid file names to
1045  *      allow sysfs to work.  We also disallow any kind of
1046  *      whitespace.
1047  */
1048 bool dev_valid_name(const char *name)
1049 {
1050         if (*name == '\0')
1051                 return false;
1052         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1053                 return false;
1054         if (!strcmp(name, ".") || !strcmp(name, ".."))
1055                 return false;
1056
1057         while (*name) {
1058                 if (*name == '/' || *name == ':' || isspace(*name))
1059                         return false;
1060                 name++;
1061         }
1062         return true;
1063 }
1064 EXPORT_SYMBOL(dev_valid_name);
1065
1066 /**
1067  *      __dev_alloc_name - allocate a name for a device
1068  *      @net: network namespace to allocate the device name in
1069  *      @name: name format string
1070  *      @buf:  scratch buffer and result name string
1071  *
1072  *      Passed a format string - eg "lt%d" it will try and find a suitable
1073  *      id. It scans list of devices to build up a free map, then chooses
1074  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1075  *      while allocating the name and adding the device in order to avoid
1076  *      duplicates.
1077  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1078  *      Returns the number of the unit assigned or a negative errno code.
1079  */
1080
1081 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1082 {
1083         int i = 0;
1084         const char *p;
1085         const int max_netdevices = 8*PAGE_SIZE;
1086         unsigned long *inuse;
1087         struct net_device *d;
1088
1089         if (!dev_valid_name(name))
1090                 return -EINVAL;
1091
1092         p = strchr(name, '%');
1093         if (p) {
1094                 /*
1095                  * Verify the string as this thing may have come from
1096                  * the user.  There must be either one "%d" and no other "%"
1097                  * characters.
1098                  */
1099                 if (p[1] != 'd' || strchr(p + 2, '%'))
1100                         return -EINVAL;
1101
1102                 /* Use one page as a bit array of possible slots */
1103                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1104                 if (!inuse)
1105                         return -ENOMEM;
1106
1107                 for_each_netdev(net, d) {
1108                         struct netdev_name_node *name_node;
1109                         list_for_each_entry(name_node, &d->name_node->list, list) {
1110                                 if (!sscanf(name_node->name, name, &i))
1111                                         continue;
1112                                 if (i < 0 || i >= max_netdevices)
1113                                         continue;
1114
1115                                 /*  avoid cases where sscanf is not exact inverse of printf */
1116                                 snprintf(buf, IFNAMSIZ, name, i);
1117                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1118                                         set_bit(i, inuse);
1119                         }
1120                         if (!sscanf(d->name, name, &i))
1121                                 continue;
1122                         if (i < 0 || i >= max_netdevices)
1123                                 continue;
1124
1125                         /*  avoid cases where sscanf is not exact inverse of printf */
1126                         snprintf(buf, IFNAMSIZ, name, i);
1127                         if (!strncmp(buf, d->name, IFNAMSIZ))
1128                                 set_bit(i, inuse);
1129                 }
1130
1131                 i = find_first_zero_bit(inuse, max_netdevices);
1132                 free_page((unsigned long) inuse);
1133         }
1134
1135         snprintf(buf, IFNAMSIZ, name, i);
1136         if (!__dev_get_by_name(net, buf))
1137                 return i;
1138
1139         /* It is possible to run out of possible slots
1140          * when the name is long and there isn't enough space left
1141          * for the digits, or if all bits are used.
1142          */
1143         return -ENFILE;
1144 }
1145
1146 static int dev_alloc_name_ns(struct net *net,
1147                              struct net_device *dev,
1148                              const char *name)
1149 {
1150         char buf[IFNAMSIZ];
1151         int ret;
1152
1153         BUG_ON(!net);
1154         ret = __dev_alloc_name(net, name, buf);
1155         if (ret >= 0)
1156                 strlcpy(dev->name, buf, IFNAMSIZ);
1157         return ret;
1158 }
1159
1160 /**
1161  *      dev_alloc_name - allocate a name for a device
1162  *      @dev: device
1163  *      @name: name format string
1164  *
1165  *      Passed a format string - eg "lt%d" it will try and find a suitable
1166  *      id. It scans list of devices to build up a free map, then chooses
1167  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1168  *      while allocating the name and adding the device in order to avoid
1169  *      duplicates.
1170  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1171  *      Returns the number of the unit assigned or a negative errno code.
1172  */
1173
1174 int dev_alloc_name(struct net_device *dev, const char *name)
1175 {
1176         return dev_alloc_name_ns(dev_net(dev), dev, name);
1177 }
1178 EXPORT_SYMBOL(dev_alloc_name);
1179
1180 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1181                               const char *name)
1182 {
1183         BUG_ON(!net);
1184
1185         if (!dev_valid_name(name))
1186                 return -EINVAL;
1187
1188         if (strchr(name, '%'))
1189                 return dev_alloc_name_ns(net, dev, name);
1190         else if (__dev_get_by_name(net, name))
1191                 return -EEXIST;
1192         else if (dev->name != name)
1193                 strlcpy(dev->name, name, IFNAMSIZ);
1194
1195         return 0;
1196 }
1197
1198 /**
1199  *      dev_change_name - change name of a device
1200  *      @dev: device
1201  *      @newname: name (or format string) must be at least IFNAMSIZ
1202  *
1203  *      Change name of a device, can pass format strings "eth%d".
1204  *      for wildcarding.
1205  */
1206 int dev_change_name(struct net_device *dev, const char *newname)
1207 {
1208         unsigned char old_assign_type;
1209         char oldname[IFNAMSIZ];
1210         int err = 0;
1211         int ret;
1212         struct net *net;
1213
1214         ASSERT_RTNL();
1215         BUG_ON(!dev_net(dev));
1216
1217         net = dev_net(dev);
1218
1219         /* Some auto-enslaved devices e.g. failover slaves are
1220          * special, as userspace might rename the device after
1221          * the interface had been brought up and running since
1222          * the point kernel initiated auto-enslavement. Allow
1223          * live name change even when these slave devices are
1224          * up and running.
1225          *
1226          * Typically, users of these auto-enslaving devices
1227          * don't actually care about slave name change, as
1228          * they are supposed to operate on master interface
1229          * directly.
1230          */
1231         if (dev->flags & IFF_UP &&
1232             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1233                 return -EBUSY;
1234
1235         down_write(&devnet_rename_sem);
1236
1237         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1238                 up_write(&devnet_rename_sem);
1239                 return 0;
1240         }
1241
1242         memcpy(oldname, dev->name, IFNAMSIZ);
1243
1244         err = dev_get_valid_name(net, dev, newname);
1245         if (err < 0) {
1246                 up_write(&devnet_rename_sem);
1247                 return err;
1248         }
1249
1250         if (oldname[0] && !strchr(oldname, '%'))
1251                 netdev_info(dev, "renamed from %s\n", oldname);
1252
1253         old_assign_type = dev->name_assign_type;
1254         dev->name_assign_type = NET_NAME_RENAMED;
1255
1256 rollback:
1257         ret = device_rename(&dev->dev, dev->name);
1258         if (ret) {
1259                 memcpy(dev->name, oldname, IFNAMSIZ);
1260                 dev->name_assign_type = old_assign_type;
1261                 up_write(&devnet_rename_sem);
1262                 return ret;
1263         }
1264
1265         up_write(&devnet_rename_sem);
1266
1267         netdev_adjacent_rename_links(dev, oldname);
1268
1269         write_lock_bh(&dev_base_lock);
1270         netdev_name_node_del(dev->name_node);
1271         write_unlock_bh(&dev_base_lock);
1272
1273         synchronize_rcu();
1274
1275         write_lock_bh(&dev_base_lock);
1276         netdev_name_node_add(net, dev->name_node);
1277         write_unlock_bh(&dev_base_lock);
1278
1279         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1280         ret = notifier_to_errno(ret);
1281
1282         if (ret) {
1283                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1284                 if (err >= 0) {
1285                         err = ret;
1286                         down_write(&devnet_rename_sem);
1287                         memcpy(dev->name, oldname, IFNAMSIZ);
1288                         memcpy(oldname, newname, IFNAMSIZ);
1289                         dev->name_assign_type = old_assign_type;
1290                         old_assign_type = NET_NAME_RENAMED;
1291                         goto rollback;
1292                 } else {
1293                         pr_err("%s: name change rollback failed: %d\n",
1294                                dev->name, ret);
1295                 }
1296         }
1297
1298         return err;
1299 }
1300
1301 /**
1302  *      dev_set_alias - change ifalias of a device
1303  *      @dev: device
1304  *      @alias: name up to IFALIASZ
1305  *      @len: limit of bytes to copy from info
1306  *
1307  *      Set ifalias for a device,
1308  */
1309 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1310 {
1311         struct dev_ifalias *new_alias = NULL;
1312
1313         if (len >= IFALIASZ)
1314                 return -EINVAL;
1315
1316         if (len) {
1317                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1318                 if (!new_alias)
1319                         return -ENOMEM;
1320
1321                 memcpy(new_alias->ifalias, alias, len);
1322                 new_alias->ifalias[len] = 0;
1323         }
1324
1325         mutex_lock(&ifalias_mutex);
1326         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1327                                         mutex_is_locked(&ifalias_mutex));
1328         mutex_unlock(&ifalias_mutex);
1329
1330         if (new_alias)
1331                 kfree_rcu(new_alias, rcuhead);
1332
1333         return len;
1334 }
1335 EXPORT_SYMBOL(dev_set_alias);
1336
1337 /**
1338  *      dev_get_alias - get ifalias of a device
1339  *      @dev: device
1340  *      @name: buffer to store name of ifalias
1341  *      @len: size of buffer
1342  *
1343  *      get ifalias for a device.  Caller must make sure dev cannot go
1344  *      away,  e.g. rcu read lock or own a reference count to device.
1345  */
1346 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1347 {
1348         const struct dev_ifalias *alias;
1349         int ret = 0;
1350
1351         rcu_read_lock();
1352         alias = rcu_dereference(dev->ifalias);
1353         if (alias)
1354                 ret = snprintf(name, len, "%s", alias->ifalias);
1355         rcu_read_unlock();
1356
1357         return ret;
1358 }
1359
1360 /**
1361  *      netdev_features_change - device changes features
1362  *      @dev: device to cause notification
1363  *
1364  *      Called to indicate a device has changed features.
1365  */
1366 void netdev_features_change(struct net_device *dev)
1367 {
1368         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1369 }
1370 EXPORT_SYMBOL(netdev_features_change);
1371
1372 /**
1373  *      netdev_state_change - device changes state
1374  *      @dev: device to cause notification
1375  *
1376  *      Called to indicate a device has changed state. This function calls
1377  *      the notifier chains for netdev_chain and sends a NEWLINK message
1378  *      to the routing socket.
1379  */
1380 void netdev_state_change(struct net_device *dev)
1381 {
1382         if (dev->flags & IFF_UP) {
1383                 struct netdev_notifier_change_info change_info = {
1384                         .info.dev = dev,
1385                 };
1386
1387                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1388                                               &change_info.info);
1389                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1390         }
1391 }
1392 EXPORT_SYMBOL(netdev_state_change);
1393
1394 /**
1395  * __netdev_notify_peers - notify network peers about existence of @dev,
1396  * to be called when rtnl lock is already held.
1397  * @dev: network device
1398  *
1399  * Generate traffic such that interested network peers are aware of
1400  * @dev, such as by generating a gratuitous ARP. This may be used when
1401  * a device wants to inform the rest of the network about some sort of
1402  * reconfiguration such as a failover event or virtual machine
1403  * migration.
1404  */
1405 void __netdev_notify_peers(struct net_device *dev)
1406 {
1407         ASSERT_RTNL();
1408         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1409         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1410 }
1411 EXPORT_SYMBOL(__netdev_notify_peers);
1412
1413 /**
1414  * netdev_notify_peers - notify network peers about existence of @dev
1415  * @dev: network device
1416  *
1417  * Generate traffic such that interested network peers are aware of
1418  * @dev, such as by generating a gratuitous ARP. This may be used when
1419  * a device wants to inform the rest of the network about some sort of
1420  * reconfiguration such as a failover event or virtual machine
1421  * migration.
1422  */
1423 void netdev_notify_peers(struct net_device *dev)
1424 {
1425         rtnl_lock();
1426         __netdev_notify_peers(dev);
1427         rtnl_unlock();
1428 }
1429 EXPORT_SYMBOL(netdev_notify_peers);
1430
1431 static int napi_threaded_poll(void *data);
1432
1433 static int napi_kthread_create(struct napi_struct *n)
1434 {
1435         int err = 0;
1436
1437         /* Create and wake up the kthread once to put it in
1438          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1439          * warning and work with loadavg.
1440          */
1441         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1442                                 n->dev->name, n->napi_id);
1443         if (IS_ERR(n->thread)) {
1444                 err = PTR_ERR(n->thread);
1445                 pr_err("kthread_run failed with err %d\n", err);
1446                 n->thread = NULL;
1447         }
1448
1449         return err;
1450 }
1451
1452 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1453 {
1454         const struct net_device_ops *ops = dev->netdev_ops;
1455         int ret;
1456
1457         ASSERT_RTNL();
1458
1459         if (!netif_device_present(dev)) {
1460                 /* may be detached because parent is runtime-suspended */
1461                 if (dev->dev.parent)
1462                         pm_runtime_resume(dev->dev.parent);
1463                 if (!netif_device_present(dev))
1464                         return -ENODEV;
1465         }
1466
1467         /* Block netpoll from trying to do any rx path servicing.
1468          * If we don't do this there is a chance ndo_poll_controller
1469          * or ndo_poll may be running while we open the device
1470          */
1471         netpoll_poll_disable(dev);
1472
1473         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1474         ret = notifier_to_errno(ret);
1475         if (ret)
1476                 return ret;
1477
1478         set_bit(__LINK_STATE_START, &dev->state);
1479
1480         if (ops->ndo_validate_addr)
1481                 ret = ops->ndo_validate_addr(dev);
1482
1483         if (!ret && ops->ndo_open)
1484                 ret = ops->ndo_open(dev);
1485
1486         netpoll_poll_enable(dev);
1487
1488         if (ret)
1489                 clear_bit(__LINK_STATE_START, &dev->state);
1490         else {
1491                 dev->flags |= IFF_UP;
1492                 dev_set_rx_mode(dev);
1493                 dev_activate(dev);
1494                 add_device_randomness(dev->dev_addr, dev->addr_len);
1495         }
1496
1497         return ret;
1498 }
1499
1500 /**
1501  *      dev_open        - prepare an interface for use.
1502  *      @dev: device to open
1503  *      @extack: netlink extended ack
1504  *
1505  *      Takes a device from down to up state. The device's private open
1506  *      function is invoked and then the multicast lists are loaded. Finally
1507  *      the device is moved into the up state and a %NETDEV_UP message is
1508  *      sent to the netdev notifier chain.
1509  *
1510  *      Calling this function on an active interface is a nop. On a failure
1511  *      a negative errno code is returned.
1512  */
1513 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1514 {
1515         int ret;
1516
1517         if (dev->flags & IFF_UP)
1518                 return 0;
1519
1520         ret = __dev_open(dev, extack);
1521         if (ret < 0)
1522                 return ret;
1523
1524         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1525         call_netdevice_notifiers(NETDEV_UP, dev);
1526
1527         return ret;
1528 }
1529 EXPORT_SYMBOL(dev_open);
1530
1531 static void __dev_close_many(struct list_head *head)
1532 {
1533         struct net_device *dev;
1534
1535         ASSERT_RTNL();
1536         might_sleep();
1537
1538         list_for_each_entry(dev, head, close_list) {
1539                 /* Temporarily disable netpoll until the interface is down */
1540                 netpoll_poll_disable(dev);
1541
1542                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1543
1544                 clear_bit(__LINK_STATE_START, &dev->state);
1545
1546                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1547                  * can be even on different cpu. So just clear netif_running().
1548                  *
1549                  * dev->stop() will invoke napi_disable() on all of it's
1550                  * napi_struct instances on this device.
1551                  */
1552                 smp_mb__after_atomic(); /* Commit netif_running(). */
1553         }
1554
1555         dev_deactivate_many(head);
1556
1557         list_for_each_entry(dev, head, close_list) {
1558                 const struct net_device_ops *ops = dev->netdev_ops;
1559
1560                 /*
1561                  *      Call the device specific close. This cannot fail.
1562                  *      Only if device is UP
1563                  *
1564                  *      We allow it to be called even after a DETACH hot-plug
1565                  *      event.
1566                  */
1567                 if (ops->ndo_stop)
1568                         ops->ndo_stop(dev);
1569
1570                 dev->flags &= ~IFF_UP;
1571                 netpoll_poll_enable(dev);
1572         }
1573 }
1574
1575 static void __dev_close(struct net_device *dev)
1576 {
1577         LIST_HEAD(single);
1578
1579         list_add(&dev->close_list, &single);
1580         __dev_close_many(&single);
1581         list_del(&single);
1582 }
1583
1584 void dev_close_many(struct list_head *head, bool unlink)
1585 {
1586         struct net_device *dev, *tmp;
1587
1588         /* Remove the devices that don't need to be closed */
1589         list_for_each_entry_safe(dev, tmp, head, close_list)
1590                 if (!(dev->flags & IFF_UP))
1591                         list_del_init(&dev->close_list);
1592
1593         __dev_close_many(head);
1594
1595         list_for_each_entry_safe(dev, tmp, head, close_list) {
1596                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1597                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1598                 if (unlink)
1599                         list_del_init(&dev->close_list);
1600         }
1601 }
1602 EXPORT_SYMBOL(dev_close_many);
1603
1604 /**
1605  *      dev_close - shutdown an interface.
1606  *      @dev: device to shutdown
1607  *
1608  *      This function moves an active device into down state. A
1609  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1610  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1611  *      chain.
1612  */
1613 void dev_close(struct net_device *dev)
1614 {
1615         if (dev->flags & IFF_UP) {
1616                 LIST_HEAD(single);
1617
1618                 list_add(&dev->close_list, &single);
1619                 dev_close_many(&single, true);
1620                 list_del(&single);
1621         }
1622 }
1623 EXPORT_SYMBOL(dev_close);
1624
1625
1626 /**
1627  *      dev_disable_lro - disable Large Receive Offload on a device
1628  *      @dev: device
1629  *
1630  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1631  *      called under RTNL.  This is needed if received packets may be
1632  *      forwarded to another interface.
1633  */
1634 void dev_disable_lro(struct net_device *dev)
1635 {
1636         struct net_device *lower_dev;
1637         struct list_head *iter;
1638
1639         dev->wanted_features &= ~NETIF_F_LRO;
1640         netdev_update_features(dev);
1641
1642         if (unlikely(dev->features & NETIF_F_LRO))
1643                 netdev_WARN(dev, "failed to disable LRO!\n");
1644
1645         netdev_for_each_lower_dev(dev, lower_dev, iter)
1646                 dev_disable_lro(lower_dev);
1647 }
1648 EXPORT_SYMBOL(dev_disable_lro);
1649
1650 /**
1651  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1652  *      @dev: device
1653  *
1654  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1655  *      called under RTNL.  This is needed if Generic XDP is installed on
1656  *      the device.
1657  */
1658 static void dev_disable_gro_hw(struct net_device *dev)
1659 {
1660         dev->wanted_features &= ~NETIF_F_GRO_HW;
1661         netdev_update_features(dev);
1662
1663         if (unlikely(dev->features & NETIF_F_GRO_HW))
1664                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1665 }
1666
1667 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1668 {
1669 #define N(val)                                          \
1670         case NETDEV_##val:                              \
1671                 return "NETDEV_" __stringify(val);
1672         switch (cmd) {
1673         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1674         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1675         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1676         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1677         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1678         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1679         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1680         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1681         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1682         N(PRE_CHANGEADDR)
1683         }
1684 #undef N
1685         return "UNKNOWN_NETDEV_EVENT";
1686 }
1687 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1688
1689 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1690                                    struct net_device *dev)
1691 {
1692         struct netdev_notifier_info info = {
1693                 .dev = dev,
1694         };
1695
1696         return nb->notifier_call(nb, val, &info);
1697 }
1698
1699 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1700                                              struct net_device *dev)
1701 {
1702         int err;
1703
1704         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1705         err = notifier_to_errno(err);
1706         if (err)
1707                 return err;
1708
1709         if (!(dev->flags & IFF_UP))
1710                 return 0;
1711
1712         call_netdevice_notifier(nb, NETDEV_UP, dev);
1713         return 0;
1714 }
1715
1716 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1717                                                 struct net_device *dev)
1718 {
1719         if (dev->flags & IFF_UP) {
1720                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1721                                         dev);
1722                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1723         }
1724         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1725 }
1726
1727 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1728                                                  struct net *net)
1729 {
1730         struct net_device *dev;
1731         int err;
1732
1733         for_each_netdev(net, dev) {
1734                 err = call_netdevice_register_notifiers(nb, dev);
1735                 if (err)
1736                         goto rollback;
1737         }
1738         return 0;
1739
1740 rollback:
1741         for_each_netdev_continue_reverse(net, dev)
1742                 call_netdevice_unregister_notifiers(nb, dev);
1743         return err;
1744 }
1745
1746 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1747                                                     struct net *net)
1748 {
1749         struct net_device *dev;
1750
1751         for_each_netdev(net, dev)
1752                 call_netdevice_unregister_notifiers(nb, dev);
1753 }
1754
1755 static int dev_boot_phase = 1;
1756
1757 /**
1758  * register_netdevice_notifier - register a network notifier block
1759  * @nb: notifier
1760  *
1761  * Register a notifier to be called when network device events occur.
1762  * The notifier passed is linked into the kernel structures and must
1763  * not be reused until it has been unregistered. A negative errno code
1764  * is returned on a failure.
1765  *
1766  * When registered all registration and up events are replayed
1767  * to the new notifier to allow device to have a race free
1768  * view of the network device list.
1769  */
1770
1771 int register_netdevice_notifier(struct notifier_block *nb)
1772 {
1773         struct net *net;
1774         int err;
1775
1776         /* Close race with setup_net() and cleanup_net() */
1777         down_write(&pernet_ops_rwsem);
1778         rtnl_lock();
1779         err = raw_notifier_chain_register(&netdev_chain, nb);
1780         if (err)
1781                 goto unlock;
1782         if (dev_boot_phase)
1783                 goto unlock;
1784         for_each_net(net) {
1785                 err = call_netdevice_register_net_notifiers(nb, net);
1786                 if (err)
1787                         goto rollback;
1788         }
1789
1790 unlock:
1791         rtnl_unlock();
1792         up_write(&pernet_ops_rwsem);
1793         return err;
1794
1795 rollback:
1796         for_each_net_continue_reverse(net)
1797                 call_netdevice_unregister_net_notifiers(nb, net);
1798
1799         raw_notifier_chain_unregister(&netdev_chain, nb);
1800         goto unlock;
1801 }
1802 EXPORT_SYMBOL(register_netdevice_notifier);
1803
1804 /**
1805  * unregister_netdevice_notifier - unregister a network notifier block
1806  * @nb: notifier
1807  *
1808  * Unregister a notifier previously registered by
1809  * register_netdevice_notifier(). The notifier is unlinked into the
1810  * kernel structures and may then be reused. A negative errno code
1811  * is returned on a failure.
1812  *
1813  * After unregistering unregister and down device events are synthesized
1814  * for all devices on the device list to the removed notifier to remove
1815  * the need for special case cleanup code.
1816  */
1817
1818 int unregister_netdevice_notifier(struct notifier_block *nb)
1819 {
1820         struct net *net;
1821         int err;
1822
1823         /* Close race with setup_net() and cleanup_net() */
1824         down_write(&pernet_ops_rwsem);
1825         rtnl_lock();
1826         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1827         if (err)
1828                 goto unlock;
1829
1830         for_each_net(net)
1831                 call_netdevice_unregister_net_notifiers(nb, net);
1832
1833 unlock:
1834         rtnl_unlock();
1835         up_write(&pernet_ops_rwsem);
1836         return err;
1837 }
1838 EXPORT_SYMBOL(unregister_netdevice_notifier);
1839
1840 static int __register_netdevice_notifier_net(struct net *net,
1841                                              struct notifier_block *nb,
1842                                              bool ignore_call_fail)
1843 {
1844         int err;
1845
1846         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1847         if (err)
1848                 return err;
1849         if (dev_boot_phase)
1850                 return 0;
1851
1852         err = call_netdevice_register_net_notifiers(nb, net);
1853         if (err && !ignore_call_fail)
1854                 goto chain_unregister;
1855
1856         return 0;
1857
1858 chain_unregister:
1859         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1860         return err;
1861 }
1862
1863 static int __unregister_netdevice_notifier_net(struct net *net,
1864                                                struct notifier_block *nb)
1865 {
1866         int err;
1867
1868         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1869         if (err)
1870                 return err;
1871
1872         call_netdevice_unregister_net_notifiers(nb, net);
1873         return 0;
1874 }
1875
1876 /**
1877  * register_netdevice_notifier_net - register a per-netns network notifier block
1878  * @net: network namespace
1879  * @nb: notifier
1880  *
1881  * Register a notifier to be called when network device events occur.
1882  * The notifier passed is linked into the kernel structures and must
1883  * not be reused until it has been unregistered. A negative errno code
1884  * is returned on a failure.
1885  *
1886  * When registered all registration and up events are replayed
1887  * to the new notifier to allow device to have a race free
1888  * view of the network device list.
1889  */
1890
1891 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1892 {
1893         int err;
1894
1895         rtnl_lock();
1896         err = __register_netdevice_notifier_net(net, nb, false);
1897         rtnl_unlock();
1898         return err;
1899 }
1900 EXPORT_SYMBOL(register_netdevice_notifier_net);
1901
1902 /**
1903  * unregister_netdevice_notifier_net - unregister a per-netns
1904  *                                     network notifier block
1905  * @net: network namespace
1906  * @nb: notifier
1907  *
1908  * Unregister a notifier previously registered by
1909  * register_netdevice_notifier(). The notifier is unlinked into the
1910  * kernel structures and may then be reused. A negative errno code
1911  * is returned on a failure.
1912  *
1913  * After unregistering unregister and down device events are synthesized
1914  * for all devices on the device list to the removed notifier to remove
1915  * the need for special case cleanup code.
1916  */
1917
1918 int unregister_netdevice_notifier_net(struct net *net,
1919                                       struct notifier_block *nb)
1920 {
1921         int err;
1922
1923         rtnl_lock();
1924         err = __unregister_netdevice_notifier_net(net, nb);
1925         rtnl_unlock();
1926         return err;
1927 }
1928 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1929
1930 int register_netdevice_notifier_dev_net(struct net_device *dev,
1931                                         struct notifier_block *nb,
1932                                         struct netdev_net_notifier *nn)
1933 {
1934         int err;
1935
1936         rtnl_lock();
1937         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1938         if (!err) {
1939                 nn->nb = nb;
1940                 list_add(&nn->list, &dev->net_notifier_list);
1941         }
1942         rtnl_unlock();
1943         return err;
1944 }
1945 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1946
1947 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1948                                           struct notifier_block *nb,
1949                                           struct netdev_net_notifier *nn)
1950 {
1951         int err;
1952
1953         rtnl_lock();
1954         list_del(&nn->list);
1955         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1956         rtnl_unlock();
1957         return err;
1958 }
1959 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1960
1961 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1962                                              struct net *net)
1963 {
1964         struct netdev_net_notifier *nn;
1965
1966         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1967                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1968                 __register_netdevice_notifier_net(net, nn->nb, true);
1969         }
1970 }
1971
1972 /**
1973  *      call_netdevice_notifiers_info - call all network notifier blocks
1974  *      @val: value passed unmodified to notifier function
1975  *      @info: notifier information data
1976  *
1977  *      Call all network notifier blocks.  Parameters and return value
1978  *      are as for raw_notifier_call_chain().
1979  */
1980
1981 static int call_netdevice_notifiers_info(unsigned long val,
1982                                          struct netdev_notifier_info *info)
1983 {
1984         struct net *net = dev_net(info->dev);
1985         int ret;
1986
1987         ASSERT_RTNL();
1988
1989         /* Run per-netns notifier block chain first, then run the global one.
1990          * Hopefully, one day, the global one is going to be removed after
1991          * all notifier block registrators get converted to be per-netns.
1992          */
1993         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1994         if (ret & NOTIFY_STOP_MASK)
1995                 return ret;
1996         return raw_notifier_call_chain(&netdev_chain, val, info);
1997 }
1998
1999 static int call_netdevice_notifiers_extack(unsigned long val,
2000                                            struct net_device *dev,
2001                                            struct netlink_ext_ack *extack)
2002 {
2003         struct netdev_notifier_info info = {
2004                 .dev = dev,
2005                 .extack = extack,
2006         };
2007
2008         return call_netdevice_notifiers_info(val, &info);
2009 }
2010
2011 /**
2012  *      call_netdevice_notifiers - call all network notifier blocks
2013  *      @val: value passed unmodified to notifier function
2014  *      @dev: net_device pointer passed unmodified to notifier function
2015  *
2016  *      Call all network notifier blocks.  Parameters and return value
2017  *      are as for raw_notifier_call_chain().
2018  */
2019
2020 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2021 {
2022         return call_netdevice_notifiers_extack(val, dev, NULL);
2023 }
2024 EXPORT_SYMBOL(call_netdevice_notifiers);
2025
2026 /**
2027  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2028  *      @val: value passed unmodified to notifier function
2029  *      @dev: net_device pointer passed unmodified to notifier function
2030  *      @arg: additional u32 argument passed to the notifier function
2031  *
2032  *      Call all network notifier blocks.  Parameters and return value
2033  *      are as for raw_notifier_call_chain().
2034  */
2035 static int call_netdevice_notifiers_mtu(unsigned long val,
2036                                         struct net_device *dev, u32 arg)
2037 {
2038         struct netdev_notifier_info_ext info = {
2039                 .info.dev = dev,
2040                 .ext.mtu = arg,
2041         };
2042
2043         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2044
2045         return call_netdevice_notifiers_info(val, &info.info);
2046 }
2047
2048 #ifdef CONFIG_NET_INGRESS
2049 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2050
2051 void net_inc_ingress_queue(void)
2052 {
2053         static_branch_inc(&ingress_needed_key);
2054 }
2055 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2056
2057 void net_dec_ingress_queue(void)
2058 {
2059         static_branch_dec(&ingress_needed_key);
2060 }
2061 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2062 #endif
2063
2064 #ifdef CONFIG_NET_EGRESS
2065 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2066
2067 void net_inc_egress_queue(void)
2068 {
2069         static_branch_inc(&egress_needed_key);
2070 }
2071 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2072
2073 void net_dec_egress_queue(void)
2074 {
2075         static_branch_dec(&egress_needed_key);
2076 }
2077 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2078 #endif
2079
2080 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2081 #ifdef CONFIG_JUMP_LABEL
2082 static atomic_t netstamp_needed_deferred;
2083 static atomic_t netstamp_wanted;
2084 static void netstamp_clear(struct work_struct *work)
2085 {
2086         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2087         int wanted;
2088
2089         wanted = atomic_add_return(deferred, &netstamp_wanted);
2090         if (wanted > 0)
2091                 static_branch_enable(&netstamp_needed_key);
2092         else
2093                 static_branch_disable(&netstamp_needed_key);
2094 }
2095 static DECLARE_WORK(netstamp_work, netstamp_clear);
2096 #endif
2097
2098 void net_enable_timestamp(void)
2099 {
2100 #ifdef CONFIG_JUMP_LABEL
2101         int wanted;
2102
2103         while (1) {
2104                 wanted = atomic_read(&netstamp_wanted);
2105                 if (wanted <= 0)
2106                         break;
2107                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2108                         return;
2109         }
2110         atomic_inc(&netstamp_needed_deferred);
2111         schedule_work(&netstamp_work);
2112 #else
2113         static_branch_inc(&netstamp_needed_key);
2114 #endif
2115 }
2116 EXPORT_SYMBOL(net_enable_timestamp);
2117
2118 void net_disable_timestamp(void)
2119 {
2120 #ifdef CONFIG_JUMP_LABEL
2121         int wanted;
2122
2123         while (1) {
2124                 wanted = atomic_read(&netstamp_wanted);
2125                 if (wanted <= 1)
2126                         break;
2127                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2128                         return;
2129         }
2130         atomic_dec(&netstamp_needed_deferred);
2131         schedule_work(&netstamp_work);
2132 #else
2133         static_branch_dec(&netstamp_needed_key);
2134 #endif
2135 }
2136 EXPORT_SYMBOL(net_disable_timestamp);
2137
2138 static inline void net_timestamp_set(struct sk_buff *skb)
2139 {
2140         skb->tstamp = 0;
2141         if (static_branch_unlikely(&netstamp_needed_key))
2142                 __net_timestamp(skb);
2143 }
2144
2145 #define net_timestamp_check(COND, SKB)                          \
2146         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2147                 if ((COND) && !(SKB)->tstamp)                   \
2148                         __net_timestamp(SKB);                   \
2149         }                                                       \
2150
2151 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2152 {
2153         return __is_skb_forwardable(dev, skb, true);
2154 }
2155 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2156
2157 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2158                               bool check_mtu)
2159 {
2160         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2161
2162         if (likely(!ret)) {
2163                 skb->protocol = eth_type_trans(skb, dev);
2164                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2165         }
2166
2167         return ret;
2168 }
2169
2170 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2171 {
2172         return __dev_forward_skb2(dev, skb, true);
2173 }
2174 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2175
2176 /**
2177  * dev_forward_skb - loopback an skb to another netif
2178  *
2179  * @dev: destination network device
2180  * @skb: buffer to forward
2181  *
2182  * return values:
2183  *      NET_RX_SUCCESS  (no congestion)
2184  *      NET_RX_DROP     (packet was dropped, but freed)
2185  *
2186  * dev_forward_skb can be used for injecting an skb from the
2187  * start_xmit function of one device into the receive queue
2188  * of another device.
2189  *
2190  * The receiving device may be in another namespace, so
2191  * we have to clear all information in the skb that could
2192  * impact namespace isolation.
2193  */
2194 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2195 {
2196         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2197 }
2198 EXPORT_SYMBOL_GPL(dev_forward_skb);
2199
2200 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2201 {
2202         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2203 }
2204
2205 static inline int deliver_skb(struct sk_buff *skb,
2206                               struct packet_type *pt_prev,
2207                               struct net_device *orig_dev)
2208 {
2209         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2210                 return -ENOMEM;
2211         refcount_inc(&skb->users);
2212         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2213 }
2214
2215 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2216                                           struct packet_type **pt,
2217                                           struct net_device *orig_dev,
2218                                           __be16 type,
2219                                           struct list_head *ptype_list)
2220 {
2221         struct packet_type *ptype, *pt_prev = *pt;
2222
2223         list_for_each_entry_rcu(ptype, ptype_list, list) {
2224                 if (ptype->type != type)
2225                         continue;
2226                 if (pt_prev)
2227                         deliver_skb(skb, pt_prev, orig_dev);
2228                 pt_prev = ptype;
2229         }
2230         *pt = pt_prev;
2231 }
2232
2233 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2234 {
2235         if (!ptype->af_packet_priv || !skb->sk)
2236                 return false;
2237
2238         if (ptype->id_match)
2239                 return ptype->id_match(ptype, skb->sk);
2240         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2241                 return true;
2242
2243         return false;
2244 }
2245
2246 /**
2247  * dev_nit_active - return true if any network interface taps are in use
2248  *
2249  * @dev: network device to check for the presence of taps
2250  */
2251 bool dev_nit_active(struct net_device *dev)
2252 {
2253         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2254 }
2255 EXPORT_SYMBOL_GPL(dev_nit_active);
2256
2257 /*
2258  *      Support routine. Sends outgoing frames to any network
2259  *      taps currently in use.
2260  */
2261
2262 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2263 {
2264         struct packet_type *ptype;
2265         struct sk_buff *skb2 = NULL;
2266         struct packet_type *pt_prev = NULL;
2267         struct list_head *ptype_list = &ptype_all;
2268
2269         rcu_read_lock();
2270 again:
2271         list_for_each_entry_rcu(ptype, ptype_list, list) {
2272                 if (ptype->ignore_outgoing)
2273                         continue;
2274
2275                 /* Never send packets back to the socket
2276                  * they originated from - MvS (miquels@drinkel.ow.org)
2277                  */
2278                 if (skb_loop_sk(ptype, skb))
2279                         continue;
2280
2281                 if (pt_prev) {
2282                         deliver_skb(skb2, pt_prev, skb->dev);
2283                         pt_prev = ptype;
2284                         continue;
2285                 }
2286
2287                 /* need to clone skb, done only once */
2288                 skb2 = skb_clone(skb, GFP_ATOMIC);
2289                 if (!skb2)
2290                         goto out_unlock;
2291
2292                 net_timestamp_set(skb2);
2293
2294                 /* skb->nh should be correctly
2295                  * set by sender, so that the second statement is
2296                  * just protection against buggy protocols.
2297                  */
2298                 skb_reset_mac_header(skb2);
2299
2300                 if (skb_network_header(skb2) < skb2->data ||
2301                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2302                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2303                                              ntohs(skb2->protocol),
2304                                              dev->name);
2305                         skb_reset_network_header(skb2);
2306                 }
2307
2308                 skb2->transport_header = skb2->network_header;
2309                 skb2->pkt_type = PACKET_OUTGOING;
2310                 pt_prev = ptype;
2311         }
2312
2313         if (ptype_list == &ptype_all) {
2314                 ptype_list = &dev->ptype_all;
2315                 goto again;
2316         }
2317 out_unlock:
2318         if (pt_prev) {
2319                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2320                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2321                 else
2322                         kfree_skb(skb2);
2323         }
2324         rcu_read_unlock();
2325 }
2326 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2327
2328 /**
2329  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2330  * @dev: Network device
2331  * @txq: number of queues available
2332  *
2333  * If real_num_tx_queues is changed the tc mappings may no longer be
2334  * valid. To resolve this verify the tc mapping remains valid and if
2335  * not NULL the mapping. With no priorities mapping to this
2336  * offset/count pair it will no longer be used. In the worst case TC0
2337  * is invalid nothing can be done so disable priority mappings. If is
2338  * expected that drivers will fix this mapping if they can before
2339  * calling netif_set_real_num_tx_queues.
2340  */
2341 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2342 {
2343         int i;
2344         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2345
2346         /* If TC0 is invalidated disable TC mapping */
2347         if (tc->offset + tc->count > txq) {
2348                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2349                 dev->num_tc = 0;
2350                 return;
2351         }
2352
2353         /* Invalidated prio to tc mappings set to TC0 */
2354         for (i = 1; i < TC_BITMASK + 1; i++) {
2355                 int q = netdev_get_prio_tc_map(dev, i);
2356
2357                 tc = &dev->tc_to_txq[q];
2358                 if (tc->offset + tc->count > txq) {
2359                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2360                                 i, q);
2361                         netdev_set_prio_tc_map(dev, i, 0);
2362                 }
2363         }
2364 }
2365
2366 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2367 {
2368         if (dev->num_tc) {
2369                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2370                 int i;
2371
2372                 /* walk through the TCs and see if it falls into any of them */
2373                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2374                         if ((txq - tc->offset) < tc->count)
2375                                 return i;
2376                 }
2377
2378                 /* didn't find it, just return -1 to indicate no match */
2379                 return -1;
2380         }
2381
2382         return 0;
2383 }
2384 EXPORT_SYMBOL(netdev_txq_to_tc);
2385
2386 #ifdef CONFIG_XPS
2387 static struct static_key xps_needed __read_mostly;
2388 static struct static_key xps_rxqs_needed __read_mostly;
2389 static DEFINE_MUTEX(xps_map_mutex);
2390 #define xmap_dereference(P)             \
2391         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2392
2393 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2394                              struct xps_dev_maps *old_maps, int tci, u16 index)
2395 {
2396         struct xps_map *map = NULL;
2397         int pos;
2398
2399         if (dev_maps)
2400                 map = xmap_dereference(dev_maps->attr_map[tci]);
2401         if (!map)
2402                 return false;
2403
2404         for (pos = map->len; pos--;) {
2405                 if (map->queues[pos] != index)
2406                         continue;
2407
2408                 if (map->len > 1) {
2409                         map->queues[pos] = map->queues[--map->len];
2410                         break;
2411                 }
2412
2413                 if (old_maps)
2414                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2415                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2416                 kfree_rcu(map, rcu);
2417                 return false;
2418         }
2419
2420         return true;
2421 }
2422
2423 static bool remove_xps_queue_cpu(struct net_device *dev,
2424                                  struct xps_dev_maps *dev_maps,
2425                                  int cpu, u16 offset, u16 count)
2426 {
2427         int num_tc = dev_maps->num_tc;
2428         bool active = false;
2429         int tci;
2430
2431         for (tci = cpu * num_tc; num_tc--; tci++) {
2432                 int i, j;
2433
2434                 for (i = count, j = offset; i--; j++) {
2435                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2436                                 break;
2437                 }
2438
2439                 active |= i < 0;
2440         }
2441
2442         return active;
2443 }
2444
2445 static void reset_xps_maps(struct net_device *dev,
2446                            struct xps_dev_maps *dev_maps,
2447                            enum xps_map_type type)
2448 {
2449         static_key_slow_dec_cpuslocked(&xps_needed);
2450         if (type == XPS_RXQS)
2451                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2452
2453         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2454
2455         kfree_rcu(dev_maps, rcu);
2456 }
2457
2458 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2459                            u16 offset, u16 count)
2460 {
2461         struct xps_dev_maps *dev_maps;
2462         bool active = false;
2463         int i, j;
2464
2465         dev_maps = xmap_dereference(dev->xps_maps[type]);
2466         if (!dev_maps)
2467                 return;
2468
2469         for (j = 0; j < dev_maps->nr_ids; j++)
2470                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2471         if (!active)
2472                 reset_xps_maps(dev, dev_maps, type);
2473
2474         if (type == XPS_CPUS) {
2475                 for (i = offset + (count - 1); count--; i--)
2476                         netdev_queue_numa_node_write(
2477                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2478         }
2479 }
2480
2481 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2482                                    u16 count)
2483 {
2484         if (!static_key_false(&xps_needed))
2485                 return;
2486
2487         cpus_read_lock();
2488         mutex_lock(&xps_map_mutex);
2489
2490         if (static_key_false(&xps_rxqs_needed))
2491                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2492
2493         clean_xps_maps(dev, XPS_CPUS, offset, count);
2494
2495         mutex_unlock(&xps_map_mutex);
2496         cpus_read_unlock();
2497 }
2498
2499 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2500 {
2501         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2502 }
2503
2504 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2505                                       u16 index, bool is_rxqs_map)
2506 {
2507         struct xps_map *new_map;
2508         int alloc_len = XPS_MIN_MAP_ALLOC;
2509         int i, pos;
2510
2511         for (pos = 0; map && pos < map->len; pos++) {
2512                 if (map->queues[pos] != index)
2513                         continue;
2514                 return map;
2515         }
2516
2517         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2518         if (map) {
2519                 if (pos < map->alloc_len)
2520                         return map;
2521
2522                 alloc_len = map->alloc_len * 2;
2523         }
2524
2525         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2526          *  map
2527          */
2528         if (is_rxqs_map)
2529                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2530         else
2531                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2532                                        cpu_to_node(attr_index));
2533         if (!new_map)
2534                 return NULL;
2535
2536         for (i = 0; i < pos; i++)
2537                 new_map->queues[i] = map->queues[i];
2538         new_map->alloc_len = alloc_len;
2539         new_map->len = pos;
2540
2541         return new_map;
2542 }
2543
2544 /* Copy xps maps at a given index */
2545 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2546                               struct xps_dev_maps *new_dev_maps, int index,
2547                               int tc, bool skip_tc)
2548 {
2549         int i, tci = index * dev_maps->num_tc;
2550         struct xps_map *map;
2551
2552         /* copy maps belonging to foreign traffic classes */
2553         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2554                 if (i == tc && skip_tc)
2555                         continue;
2556
2557                 /* fill in the new device map from the old device map */
2558                 map = xmap_dereference(dev_maps->attr_map[tci]);
2559                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2560         }
2561 }
2562
2563 /* Must be called under cpus_read_lock */
2564 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2565                           u16 index, enum xps_map_type type)
2566 {
2567         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2568         const unsigned long *online_mask = NULL;
2569         bool active = false, copy = false;
2570         int i, j, tci, numa_node_id = -2;
2571         int maps_sz, num_tc = 1, tc = 0;
2572         struct xps_map *map, *new_map;
2573         unsigned int nr_ids;
2574
2575         if (dev->num_tc) {
2576                 /* Do not allow XPS on subordinate device directly */
2577                 num_tc = dev->num_tc;
2578                 if (num_tc < 0)
2579                         return -EINVAL;
2580
2581                 /* If queue belongs to subordinate dev use its map */
2582                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2583
2584                 tc = netdev_txq_to_tc(dev, index);
2585                 if (tc < 0)
2586                         return -EINVAL;
2587         }
2588
2589         mutex_lock(&xps_map_mutex);
2590
2591         dev_maps = xmap_dereference(dev->xps_maps[type]);
2592         if (type == XPS_RXQS) {
2593                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2594                 nr_ids = dev->num_rx_queues;
2595         } else {
2596                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2597                 if (num_possible_cpus() > 1)
2598                         online_mask = cpumask_bits(cpu_online_mask);
2599                 nr_ids = nr_cpu_ids;
2600         }
2601
2602         if (maps_sz < L1_CACHE_BYTES)
2603                 maps_sz = L1_CACHE_BYTES;
2604
2605         /* The old dev_maps could be larger or smaller than the one we're
2606          * setting up now, as dev->num_tc or nr_ids could have been updated in
2607          * between. We could try to be smart, but let's be safe instead and only
2608          * copy foreign traffic classes if the two map sizes match.
2609          */
2610         if (dev_maps &&
2611             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2612                 copy = true;
2613
2614         /* allocate memory for queue storage */
2615         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2616              j < nr_ids;) {
2617                 if (!new_dev_maps) {
2618                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2619                         if (!new_dev_maps) {
2620                                 mutex_unlock(&xps_map_mutex);
2621                                 return -ENOMEM;
2622                         }
2623
2624                         new_dev_maps->nr_ids = nr_ids;
2625                         new_dev_maps->num_tc = num_tc;
2626                 }
2627
2628                 tci = j * num_tc + tc;
2629                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2630
2631                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2632                 if (!map)
2633                         goto error;
2634
2635                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2636         }
2637
2638         if (!new_dev_maps)
2639                 goto out_no_new_maps;
2640
2641         if (!dev_maps) {
2642                 /* Increment static keys at most once per type */
2643                 static_key_slow_inc_cpuslocked(&xps_needed);
2644                 if (type == XPS_RXQS)
2645                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2646         }
2647
2648         for (j = 0; j < nr_ids; j++) {
2649                 bool skip_tc = false;
2650
2651                 tci = j * num_tc + tc;
2652                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2653                     netif_attr_test_online(j, online_mask, nr_ids)) {
2654                         /* add tx-queue to CPU/rx-queue maps */
2655                         int pos = 0;
2656
2657                         skip_tc = true;
2658
2659                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2660                         while ((pos < map->len) && (map->queues[pos] != index))
2661                                 pos++;
2662
2663                         if (pos == map->len)
2664                                 map->queues[map->len++] = index;
2665 #ifdef CONFIG_NUMA
2666                         if (type == XPS_CPUS) {
2667                                 if (numa_node_id == -2)
2668                                         numa_node_id = cpu_to_node(j);
2669                                 else if (numa_node_id != cpu_to_node(j))
2670                                         numa_node_id = -1;
2671                         }
2672 #endif
2673                 }
2674
2675                 if (copy)
2676                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2677                                           skip_tc);
2678         }
2679
2680         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2681
2682         /* Cleanup old maps */
2683         if (!dev_maps)
2684                 goto out_no_old_maps;
2685
2686         for (j = 0; j < dev_maps->nr_ids; j++) {
2687                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2688                         map = xmap_dereference(dev_maps->attr_map[tci]);
2689                         if (!map)
2690                                 continue;
2691
2692                         if (copy) {
2693                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2694                                 if (map == new_map)
2695                                         continue;
2696                         }
2697
2698                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2699                         kfree_rcu(map, rcu);
2700                 }
2701         }
2702
2703         old_dev_maps = dev_maps;
2704
2705 out_no_old_maps:
2706         dev_maps = new_dev_maps;
2707         active = true;
2708
2709 out_no_new_maps:
2710         if (type == XPS_CPUS)
2711                 /* update Tx queue numa node */
2712                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2713                                              (numa_node_id >= 0) ?
2714                                              numa_node_id : NUMA_NO_NODE);
2715
2716         if (!dev_maps)
2717                 goto out_no_maps;
2718
2719         /* removes tx-queue from unused CPUs/rx-queues */
2720         for (j = 0; j < dev_maps->nr_ids; j++) {
2721                 tci = j * dev_maps->num_tc;
2722
2723                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2724                         if (i == tc &&
2725                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2726                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2727                                 continue;
2728
2729                         active |= remove_xps_queue(dev_maps,
2730                                                    copy ? old_dev_maps : NULL,
2731                                                    tci, index);
2732                 }
2733         }
2734
2735         if (old_dev_maps)
2736                 kfree_rcu(old_dev_maps, rcu);
2737
2738         /* free map if not active */
2739         if (!active)
2740                 reset_xps_maps(dev, dev_maps, type);
2741
2742 out_no_maps:
2743         mutex_unlock(&xps_map_mutex);
2744
2745         return 0;
2746 error:
2747         /* remove any maps that we added */
2748         for (j = 0; j < nr_ids; j++) {
2749                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2750                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2751                         map = copy ?
2752                               xmap_dereference(dev_maps->attr_map[tci]) :
2753                               NULL;
2754                         if (new_map && new_map != map)
2755                                 kfree(new_map);
2756                 }
2757         }
2758
2759         mutex_unlock(&xps_map_mutex);
2760
2761         kfree(new_dev_maps);
2762         return -ENOMEM;
2763 }
2764 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2765
2766 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2767                         u16 index)
2768 {
2769         int ret;
2770
2771         cpus_read_lock();
2772         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2773         cpus_read_unlock();
2774
2775         return ret;
2776 }
2777 EXPORT_SYMBOL(netif_set_xps_queue);
2778
2779 #endif
2780 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2781 {
2782         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2783
2784         /* Unbind any subordinate channels */
2785         while (txq-- != &dev->_tx[0]) {
2786                 if (txq->sb_dev)
2787                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2788         }
2789 }
2790
2791 void netdev_reset_tc(struct net_device *dev)
2792 {
2793 #ifdef CONFIG_XPS
2794         netif_reset_xps_queues_gt(dev, 0);
2795 #endif
2796         netdev_unbind_all_sb_channels(dev);
2797
2798         /* Reset TC configuration of device */
2799         dev->num_tc = 0;
2800         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2801         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2802 }
2803 EXPORT_SYMBOL(netdev_reset_tc);
2804
2805 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2806 {
2807         if (tc >= dev->num_tc)
2808                 return -EINVAL;
2809
2810 #ifdef CONFIG_XPS
2811         netif_reset_xps_queues(dev, offset, count);
2812 #endif
2813         dev->tc_to_txq[tc].count = count;
2814         dev->tc_to_txq[tc].offset = offset;
2815         return 0;
2816 }
2817 EXPORT_SYMBOL(netdev_set_tc_queue);
2818
2819 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2820 {
2821         if (num_tc > TC_MAX_QUEUE)
2822                 return -EINVAL;
2823
2824 #ifdef CONFIG_XPS
2825         netif_reset_xps_queues_gt(dev, 0);
2826 #endif
2827         netdev_unbind_all_sb_channels(dev);
2828
2829         dev->num_tc = num_tc;
2830         return 0;
2831 }
2832 EXPORT_SYMBOL(netdev_set_num_tc);
2833
2834 void netdev_unbind_sb_channel(struct net_device *dev,
2835                               struct net_device *sb_dev)
2836 {
2837         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2838
2839 #ifdef CONFIG_XPS
2840         netif_reset_xps_queues_gt(sb_dev, 0);
2841 #endif
2842         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2843         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2844
2845         while (txq-- != &dev->_tx[0]) {
2846                 if (txq->sb_dev == sb_dev)
2847                         txq->sb_dev = NULL;
2848         }
2849 }
2850 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2851
2852 int netdev_bind_sb_channel_queue(struct net_device *dev,
2853                                  struct net_device *sb_dev,
2854                                  u8 tc, u16 count, u16 offset)
2855 {
2856         /* Make certain the sb_dev and dev are already configured */
2857         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2858                 return -EINVAL;
2859
2860         /* We cannot hand out queues we don't have */
2861         if ((offset + count) > dev->real_num_tx_queues)
2862                 return -EINVAL;
2863
2864         /* Record the mapping */
2865         sb_dev->tc_to_txq[tc].count = count;
2866         sb_dev->tc_to_txq[tc].offset = offset;
2867
2868         /* Provide a way for Tx queue to find the tc_to_txq map or
2869          * XPS map for itself.
2870          */
2871         while (count--)
2872                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2873
2874         return 0;
2875 }
2876 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2877
2878 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2879 {
2880         /* Do not use a multiqueue device to represent a subordinate channel */
2881         if (netif_is_multiqueue(dev))
2882                 return -ENODEV;
2883
2884         /* We allow channels 1 - 32767 to be used for subordinate channels.
2885          * Channel 0 is meant to be "native" mode and used only to represent
2886          * the main root device. We allow writing 0 to reset the device back
2887          * to normal mode after being used as a subordinate channel.
2888          */
2889         if (channel > S16_MAX)
2890                 return -EINVAL;
2891
2892         dev->num_tc = -channel;
2893
2894         return 0;
2895 }
2896 EXPORT_SYMBOL(netdev_set_sb_channel);
2897
2898 /*
2899  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2900  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2901  */
2902 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2903 {
2904         bool disabling;
2905         int rc;
2906
2907         disabling = txq < dev->real_num_tx_queues;
2908
2909         if (txq < 1 || txq > dev->num_tx_queues)
2910                 return -EINVAL;
2911
2912         if (dev->reg_state == NETREG_REGISTERED ||
2913             dev->reg_state == NETREG_UNREGISTERING) {
2914                 ASSERT_RTNL();
2915
2916                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2917                                                   txq);
2918                 if (rc)
2919                         return rc;
2920
2921                 if (dev->num_tc)
2922                         netif_setup_tc(dev, txq);
2923
2924                 dev->real_num_tx_queues = txq;
2925
2926                 if (disabling) {
2927                         synchronize_net();
2928                         qdisc_reset_all_tx_gt(dev, txq);
2929 #ifdef CONFIG_XPS
2930                         netif_reset_xps_queues_gt(dev, txq);
2931 #endif
2932                 }
2933         } else {
2934                 dev->real_num_tx_queues = txq;
2935         }
2936
2937         return 0;
2938 }
2939 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2940
2941 #ifdef CONFIG_SYSFS
2942 /**
2943  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2944  *      @dev: Network device
2945  *      @rxq: Actual number of RX queues
2946  *
2947  *      This must be called either with the rtnl_lock held or before
2948  *      registration of the net device.  Returns 0 on success, or a
2949  *      negative error code.  If called before registration, it always
2950  *      succeeds.
2951  */
2952 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2953 {
2954         int rc;
2955
2956         if (rxq < 1 || rxq > dev->num_rx_queues)
2957                 return -EINVAL;
2958
2959         if (dev->reg_state == NETREG_REGISTERED) {
2960                 ASSERT_RTNL();
2961
2962                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2963                                                   rxq);
2964                 if (rc)
2965                         return rc;
2966         }
2967
2968         dev->real_num_rx_queues = rxq;
2969         return 0;
2970 }
2971 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2972 #endif
2973
2974 /**
2975  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2976  *      @dev: Network device
2977  *      @txq: Actual number of TX queues
2978  *      @rxq: Actual number of RX queues
2979  *
2980  *      Set the real number of both TX and RX queues.
2981  *      Does nothing if the number of queues is already correct.
2982  */
2983 int netif_set_real_num_queues(struct net_device *dev,
2984                               unsigned int txq, unsigned int rxq)
2985 {
2986         unsigned int old_rxq = dev->real_num_rx_queues;
2987         int err;
2988
2989         if (txq < 1 || txq > dev->num_tx_queues ||
2990             rxq < 1 || rxq > dev->num_rx_queues)
2991                 return -EINVAL;
2992
2993         /* Start from increases, so the error path only does decreases -
2994          * decreases can't fail.
2995          */
2996         if (rxq > dev->real_num_rx_queues) {
2997                 err = netif_set_real_num_rx_queues(dev, rxq);
2998                 if (err)
2999                         return err;
3000         }
3001         if (txq > dev->real_num_tx_queues) {
3002                 err = netif_set_real_num_tx_queues(dev, txq);
3003                 if (err)
3004                         goto undo_rx;
3005         }
3006         if (rxq < dev->real_num_rx_queues)
3007                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3008         if (txq < dev->real_num_tx_queues)
3009                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3010
3011         return 0;
3012 undo_rx:
3013         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3014         return err;
3015 }
3016 EXPORT_SYMBOL(netif_set_real_num_queues);
3017
3018 /**
3019  * netif_get_num_default_rss_queues - default number of RSS queues
3020  *
3021  * This routine should set an upper limit on the number of RSS queues
3022  * used by default by multiqueue devices.
3023  */
3024 int netif_get_num_default_rss_queues(void)
3025 {
3026         return is_kdump_kernel() ?
3027                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3028 }
3029 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3030
3031 static void __netif_reschedule(struct Qdisc *q)
3032 {
3033         struct softnet_data *sd;
3034         unsigned long flags;
3035
3036         local_irq_save(flags);
3037         sd = this_cpu_ptr(&softnet_data);
3038         q->next_sched = NULL;
3039         *sd->output_queue_tailp = q;
3040         sd->output_queue_tailp = &q->next_sched;
3041         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3042         local_irq_restore(flags);
3043 }
3044
3045 void __netif_schedule(struct Qdisc *q)
3046 {
3047         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3048                 __netif_reschedule(q);
3049 }
3050 EXPORT_SYMBOL(__netif_schedule);
3051
3052 struct dev_kfree_skb_cb {
3053         enum skb_free_reason reason;
3054 };
3055
3056 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3057 {
3058         return (struct dev_kfree_skb_cb *)skb->cb;
3059 }
3060
3061 void netif_schedule_queue(struct netdev_queue *txq)
3062 {
3063         rcu_read_lock();
3064         if (!netif_xmit_stopped(txq)) {
3065                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3066
3067                 __netif_schedule(q);
3068         }
3069         rcu_read_unlock();
3070 }
3071 EXPORT_SYMBOL(netif_schedule_queue);
3072
3073 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3074 {
3075         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3076                 struct Qdisc *q;
3077
3078                 rcu_read_lock();
3079                 q = rcu_dereference(dev_queue->qdisc);
3080                 __netif_schedule(q);
3081                 rcu_read_unlock();
3082         }
3083 }
3084 EXPORT_SYMBOL(netif_tx_wake_queue);
3085
3086 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3087 {
3088         unsigned long flags;
3089
3090         if (unlikely(!skb))
3091                 return;
3092
3093         if (likely(refcount_read(&skb->users) == 1)) {
3094                 smp_rmb();
3095                 refcount_set(&skb->users, 0);
3096         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3097                 return;
3098         }
3099         get_kfree_skb_cb(skb)->reason = reason;
3100         local_irq_save(flags);
3101         skb->next = __this_cpu_read(softnet_data.completion_queue);
3102         __this_cpu_write(softnet_data.completion_queue, skb);
3103         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3104         local_irq_restore(flags);
3105 }
3106 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3107
3108 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3109 {
3110         if (in_hardirq() || irqs_disabled())
3111                 __dev_kfree_skb_irq(skb, reason);
3112         else
3113                 dev_kfree_skb(skb);
3114 }
3115 EXPORT_SYMBOL(__dev_kfree_skb_any);
3116
3117
3118 /**
3119  * netif_device_detach - mark device as removed
3120  * @dev: network device
3121  *
3122  * Mark device as removed from system and therefore no longer available.
3123  */
3124 void netif_device_detach(struct net_device *dev)
3125 {
3126         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3127             netif_running(dev)) {
3128                 netif_tx_stop_all_queues(dev);
3129         }
3130 }
3131 EXPORT_SYMBOL(netif_device_detach);
3132
3133 /**
3134  * netif_device_attach - mark device as attached
3135  * @dev: network device
3136  *
3137  * Mark device as attached from system and restart if needed.
3138  */
3139 void netif_device_attach(struct net_device *dev)
3140 {
3141         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3142             netif_running(dev)) {
3143                 netif_tx_wake_all_queues(dev);
3144                 __netdev_watchdog_up(dev);
3145         }
3146 }
3147 EXPORT_SYMBOL(netif_device_attach);
3148
3149 /*
3150  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3151  * to be used as a distribution range.
3152  */
3153 static u16 skb_tx_hash(const struct net_device *dev,
3154                        const struct net_device *sb_dev,
3155                        struct sk_buff *skb)
3156 {
3157         u32 hash;
3158         u16 qoffset = 0;
3159         u16 qcount = dev->real_num_tx_queues;
3160
3161         if (dev->num_tc) {
3162                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3163
3164                 qoffset = sb_dev->tc_to_txq[tc].offset;
3165                 qcount = sb_dev->tc_to_txq[tc].count;
3166         }
3167
3168         if (skb_rx_queue_recorded(skb)) {
3169                 hash = skb_get_rx_queue(skb);
3170                 if (hash >= qoffset)
3171                         hash -= qoffset;
3172                 while (unlikely(hash >= qcount))
3173                         hash -= qcount;
3174                 return hash + qoffset;
3175         }
3176
3177         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3178 }
3179
3180 static void skb_warn_bad_offload(const struct sk_buff *skb)
3181 {
3182         static const netdev_features_t null_features;
3183         struct net_device *dev = skb->dev;
3184         const char *name = "";
3185
3186         if (!net_ratelimit())
3187                 return;
3188
3189         if (dev) {
3190                 if (dev->dev.parent)
3191                         name = dev_driver_string(dev->dev.parent);
3192                 else
3193                         name = netdev_name(dev);
3194         }
3195         skb_dump(KERN_WARNING, skb, false);
3196         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3197              name, dev ? &dev->features : &null_features,
3198              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3199 }
3200
3201 /*
3202  * Invalidate hardware checksum when packet is to be mangled, and
3203  * complete checksum manually on outgoing path.
3204  */
3205 int skb_checksum_help(struct sk_buff *skb)
3206 {
3207         __wsum csum;
3208         int ret = 0, offset;
3209
3210         if (skb->ip_summed == CHECKSUM_COMPLETE)
3211                 goto out_set_summed;
3212
3213         if (unlikely(skb_is_gso(skb))) {
3214                 skb_warn_bad_offload(skb);
3215                 return -EINVAL;
3216         }
3217
3218         /* Before computing a checksum, we should make sure no frag could
3219          * be modified by an external entity : checksum could be wrong.
3220          */
3221         if (skb_has_shared_frag(skb)) {
3222                 ret = __skb_linearize(skb);
3223                 if (ret)
3224                         goto out;
3225         }
3226
3227         offset = skb_checksum_start_offset(skb);
3228         BUG_ON(offset >= skb_headlen(skb));
3229         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3230
3231         offset += skb->csum_offset;
3232         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3233
3234         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3235         if (ret)
3236                 goto out;
3237
3238         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3239 out_set_summed:
3240         skb->ip_summed = CHECKSUM_NONE;
3241 out:
3242         return ret;
3243 }
3244 EXPORT_SYMBOL(skb_checksum_help);
3245
3246 int skb_crc32c_csum_help(struct sk_buff *skb)
3247 {
3248         __le32 crc32c_csum;
3249         int ret = 0, offset, start;
3250
3251         if (skb->ip_summed != CHECKSUM_PARTIAL)
3252                 goto out;
3253
3254         if (unlikely(skb_is_gso(skb)))
3255                 goto out;
3256
3257         /* Before computing a checksum, we should make sure no frag could
3258          * be modified by an external entity : checksum could be wrong.
3259          */
3260         if (unlikely(skb_has_shared_frag(skb))) {
3261                 ret = __skb_linearize(skb);
3262                 if (ret)
3263                         goto out;
3264         }
3265         start = skb_checksum_start_offset(skb);
3266         offset = start + offsetof(struct sctphdr, checksum);
3267         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3268                 ret = -EINVAL;
3269                 goto out;
3270         }
3271
3272         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3273         if (ret)
3274                 goto out;
3275
3276         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3277                                                   skb->len - start, ~(__u32)0,
3278                                                   crc32c_csum_stub));
3279         *(__le32 *)(skb->data + offset) = crc32c_csum;
3280         skb->ip_summed = CHECKSUM_NONE;
3281         skb->csum_not_inet = 0;
3282 out:
3283         return ret;
3284 }
3285
3286 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3287 {
3288         __be16 type = skb->protocol;
3289
3290         /* Tunnel gso handlers can set protocol to ethernet. */
3291         if (type == htons(ETH_P_TEB)) {
3292                 struct ethhdr *eth;
3293
3294                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3295                         return 0;
3296
3297                 eth = (struct ethhdr *)skb->data;
3298                 type = eth->h_proto;
3299         }
3300
3301         return __vlan_get_protocol(skb, type, depth);
3302 }
3303
3304 /**
3305  *      skb_mac_gso_segment - mac layer segmentation handler.
3306  *      @skb: buffer to segment
3307  *      @features: features for the output path (see dev->features)
3308  */
3309 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3310                                     netdev_features_t features)
3311 {
3312         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3313         struct packet_offload *ptype;
3314         int vlan_depth = skb->mac_len;
3315         __be16 type = skb_network_protocol(skb, &vlan_depth);
3316
3317         if (unlikely(!type))
3318                 return ERR_PTR(-EINVAL);
3319
3320         __skb_pull(skb, vlan_depth);
3321
3322         rcu_read_lock();
3323         list_for_each_entry_rcu(ptype, &offload_base, list) {
3324                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3325                         segs = ptype->callbacks.gso_segment(skb, features);
3326                         break;
3327                 }
3328         }
3329         rcu_read_unlock();
3330
3331         __skb_push(skb, skb->data - skb_mac_header(skb));
3332
3333         return segs;
3334 }
3335 EXPORT_SYMBOL(skb_mac_gso_segment);
3336
3337
3338 /* openvswitch calls this on rx path, so we need a different check.
3339  */
3340 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3341 {
3342         if (tx_path)
3343                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3344                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3345
3346         return skb->ip_summed == CHECKSUM_NONE;
3347 }
3348
3349 /**
3350  *      __skb_gso_segment - Perform segmentation on skb.
3351  *      @skb: buffer to segment
3352  *      @features: features for the output path (see dev->features)
3353  *      @tx_path: whether it is called in TX path
3354  *
3355  *      This function segments the given skb and returns a list of segments.
3356  *
3357  *      It may return NULL if the skb requires no segmentation.  This is
3358  *      only possible when GSO is used for verifying header integrity.
3359  *
3360  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3361  */
3362 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3363                                   netdev_features_t features, bool tx_path)
3364 {
3365         struct sk_buff *segs;
3366
3367         if (unlikely(skb_needs_check(skb, tx_path))) {
3368                 int err;
3369
3370                 /* We're going to init ->check field in TCP or UDP header */
3371                 err = skb_cow_head(skb, 0);
3372                 if (err < 0)
3373                         return ERR_PTR(err);
3374         }
3375
3376         /* Only report GSO partial support if it will enable us to
3377          * support segmentation on this frame without needing additional
3378          * work.
3379          */
3380         if (features & NETIF_F_GSO_PARTIAL) {
3381                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3382                 struct net_device *dev = skb->dev;
3383
3384                 partial_features |= dev->features & dev->gso_partial_features;
3385                 if (!skb_gso_ok(skb, features | partial_features))
3386                         features &= ~NETIF_F_GSO_PARTIAL;
3387         }
3388
3389         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3390                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3391
3392         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3393         SKB_GSO_CB(skb)->encap_level = 0;
3394
3395         skb_reset_mac_header(skb);
3396         skb_reset_mac_len(skb);
3397
3398         segs = skb_mac_gso_segment(skb, features);
3399
3400         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3401                 skb_warn_bad_offload(skb);
3402
3403         return segs;
3404 }
3405 EXPORT_SYMBOL(__skb_gso_segment);
3406
3407 /* Take action when hardware reception checksum errors are detected. */
3408 #ifdef CONFIG_BUG
3409 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3410 {
3411         pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3412         skb_dump(KERN_ERR, skb, true);
3413         dump_stack();
3414 }
3415
3416 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3417 {
3418         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3419 }
3420 EXPORT_SYMBOL(netdev_rx_csum_fault);
3421 #endif
3422
3423 /* XXX: check that highmem exists at all on the given machine. */
3424 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3425 {
3426 #ifdef CONFIG_HIGHMEM
3427         int i;
3428
3429         if (!(dev->features & NETIF_F_HIGHDMA)) {
3430                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3431                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3432
3433                         if (PageHighMem(skb_frag_page(frag)))
3434                                 return 1;
3435                 }
3436         }
3437 #endif
3438         return 0;
3439 }
3440
3441 /* If MPLS offload request, verify we are testing hardware MPLS features
3442  * instead of standard features for the netdev.
3443  */
3444 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3445 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3446                                            netdev_features_t features,
3447                                            __be16 type)
3448 {
3449         if (eth_p_mpls(type))
3450                 features &= skb->dev->mpls_features;
3451
3452         return features;
3453 }
3454 #else
3455 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3456                                            netdev_features_t features,
3457                                            __be16 type)
3458 {
3459         return features;
3460 }
3461 #endif
3462
3463 static netdev_features_t harmonize_features(struct sk_buff *skb,
3464         netdev_features_t features)
3465 {
3466         __be16 type;
3467
3468         type = skb_network_protocol(skb, NULL);
3469         features = net_mpls_features(skb, features, type);
3470
3471         if (skb->ip_summed != CHECKSUM_NONE &&
3472             !can_checksum_protocol(features, type)) {
3473                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3474         }
3475         if (illegal_highdma(skb->dev, skb))
3476                 features &= ~NETIF_F_SG;
3477
3478         return features;
3479 }
3480
3481 netdev_features_t passthru_features_check(struct sk_buff *skb,
3482                                           struct net_device *dev,
3483                                           netdev_features_t features)
3484 {
3485         return features;
3486 }
3487 EXPORT_SYMBOL(passthru_features_check);
3488
3489 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3490                                              struct net_device *dev,
3491                                              netdev_features_t features)
3492 {
3493         return vlan_features_check(skb, features);
3494 }
3495
3496 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3497                                             struct net_device *dev,
3498                                             netdev_features_t features)
3499 {
3500         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3501
3502         if (gso_segs > dev->gso_max_segs)
3503                 return features & ~NETIF_F_GSO_MASK;
3504
3505         if (!skb_shinfo(skb)->gso_type) {
3506                 skb_warn_bad_offload(skb);
3507                 return features & ~NETIF_F_GSO_MASK;
3508         }
3509
3510         /* Support for GSO partial features requires software
3511          * intervention before we can actually process the packets
3512          * so we need to strip support for any partial features now
3513          * and we can pull them back in after we have partially
3514          * segmented the frame.
3515          */
3516         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3517                 features &= ~dev->gso_partial_features;
3518
3519         /* Make sure to clear the IPv4 ID mangling feature if the
3520          * IPv4 header has the potential to be fragmented.
3521          */
3522         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3523                 struct iphdr *iph = skb->encapsulation ?
3524                                     inner_ip_hdr(skb) : ip_hdr(skb);
3525
3526                 if (!(iph->frag_off & htons(IP_DF)))
3527                         features &= ~NETIF_F_TSO_MANGLEID;
3528         }
3529
3530         return features;
3531 }
3532
3533 netdev_features_t netif_skb_features(struct sk_buff *skb)
3534 {
3535         struct net_device *dev = skb->dev;
3536         netdev_features_t features = dev->features;
3537
3538         if (skb_is_gso(skb))
3539                 features = gso_features_check(skb, dev, features);
3540
3541         /* If encapsulation offload request, verify we are testing
3542          * hardware encapsulation features instead of standard
3543          * features for the netdev
3544          */
3545         if (skb->encapsulation)
3546                 features &= dev->hw_enc_features;
3547
3548         if (skb_vlan_tagged(skb))
3549                 features = netdev_intersect_features(features,
3550                                                      dev->vlan_features |
3551                                                      NETIF_F_HW_VLAN_CTAG_TX |
3552                                                      NETIF_F_HW_VLAN_STAG_TX);
3553
3554         if (dev->netdev_ops->ndo_features_check)
3555                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3556                                                                 features);
3557         else
3558                 features &= dflt_features_check(skb, dev, features);
3559
3560         return harmonize_features(skb, features);
3561 }
3562 EXPORT_SYMBOL(netif_skb_features);
3563
3564 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3565                     struct netdev_queue *txq, bool more)
3566 {
3567         unsigned int len;
3568         int rc;
3569
3570         if (dev_nit_active(dev))
3571                 dev_queue_xmit_nit(skb, dev);
3572
3573         len = skb->len;
3574         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3575         trace_net_dev_start_xmit(skb, dev);
3576         rc = netdev_start_xmit(skb, dev, txq, more);
3577         trace_net_dev_xmit(skb, rc, dev, len);
3578
3579         return rc;
3580 }
3581
3582 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3583                                     struct netdev_queue *txq, int *ret)
3584 {
3585         struct sk_buff *skb = first;
3586         int rc = NETDEV_TX_OK;
3587
3588         while (skb) {
3589                 struct sk_buff *next = skb->next;
3590
3591                 skb_mark_not_on_list(skb);
3592                 rc = xmit_one(skb, dev, txq, next != NULL);
3593                 if (unlikely(!dev_xmit_complete(rc))) {
3594                         skb->next = next;
3595                         goto out;
3596                 }
3597
3598                 skb = next;
3599                 if (netif_tx_queue_stopped(txq) && skb) {
3600                         rc = NETDEV_TX_BUSY;
3601                         break;
3602                 }
3603         }
3604
3605 out:
3606         *ret = rc;
3607         return skb;
3608 }
3609
3610 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3611                                           netdev_features_t features)
3612 {
3613         if (skb_vlan_tag_present(skb) &&
3614             !vlan_hw_offload_capable(features, skb->vlan_proto))
3615                 skb = __vlan_hwaccel_push_inside(skb);
3616         return skb;
3617 }
3618
3619 int skb_csum_hwoffload_help(struct sk_buff *skb,
3620                             const netdev_features_t features)
3621 {
3622         if (unlikely(skb_csum_is_sctp(skb)))
3623                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3624                         skb_crc32c_csum_help(skb);
3625
3626         if (features & NETIF_F_HW_CSUM)
3627                 return 0;
3628
3629         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3630                 switch (skb->csum_offset) {
3631                 case offsetof(struct tcphdr, check):
3632                 case offsetof(struct udphdr, check):
3633                         return 0;
3634                 }
3635         }
3636
3637         return skb_checksum_help(skb);
3638 }
3639 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3640
3641 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3642 {
3643         netdev_features_t features;
3644
3645         features = netif_skb_features(skb);
3646         skb = validate_xmit_vlan(skb, features);
3647         if (unlikely(!skb))
3648                 goto out_null;
3649
3650         skb = sk_validate_xmit_skb(skb, dev);
3651         if (unlikely(!skb))
3652                 goto out_null;
3653
3654         if (netif_needs_gso(skb, features)) {
3655                 struct sk_buff *segs;
3656
3657                 segs = skb_gso_segment(skb, features);
3658                 if (IS_ERR(segs)) {
3659                         goto out_kfree_skb;
3660                 } else if (segs) {
3661                         consume_skb(skb);
3662                         skb = segs;
3663                 }
3664         } else {
3665                 if (skb_needs_linearize(skb, features) &&
3666                     __skb_linearize(skb))
3667                         goto out_kfree_skb;
3668
3669                 /* If packet is not checksummed and device does not
3670                  * support checksumming for this protocol, complete
3671                  * checksumming here.
3672                  */
3673                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3674                         if (skb->encapsulation)
3675                                 skb_set_inner_transport_header(skb,
3676                                                                skb_checksum_start_offset(skb));
3677                         else
3678                                 skb_set_transport_header(skb,
3679                                                          skb_checksum_start_offset(skb));
3680                         if (skb_csum_hwoffload_help(skb, features))
3681                                 goto out_kfree_skb;
3682                 }
3683         }
3684
3685         skb = validate_xmit_xfrm(skb, features, again);
3686
3687         return skb;
3688
3689 out_kfree_skb:
3690         kfree_skb(skb);
3691 out_null:
3692         atomic_long_inc(&dev->tx_dropped);
3693         return NULL;
3694 }
3695
3696 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3697 {
3698         struct sk_buff *next, *head = NULL, *tail;
3699
3700         for (; skb != NULL; skb = next) {
3701                 next = skb->next;
3702                 skb_mark_not_on_list(skb);
3703
3704                 /* in case skb wont be segmented, point to itself */
3705                 skb->prev = skb;
3706
3707                 skb = validate_xmit_skb(skb, dev, again);
3708                 if (!skb)
3709                         continue;
3710
3711                 if (!head)
3712                         head = skb;
3713                 else
3714                         tail->next = skb;
3715                 /* If skb was segmented, skb->prev points to
3716                  * the last segment. If not, it still contains skb.
3717                  */
3718                 tail = skb->prev;
3719         }
3720         return head;
3721 }
3722 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3723
3724 static void qdisc_pkt_len_init(struct sk_buff *skb)
3725 {
3726         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3727
3728         qdisc_skb_cb(skb)->pkt_len = skb->len;
3729
3730         /* To get more precise estimation of bytes sent on wire,
3731          * we add to pkt_len the headers size of all segments
3732          */
3733         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3734                 unsigned int hdr_len;
3735                 u16 gso_segs = shinfo->gso_segs;
3736
3737                 /* mac layer + network layer */
3738                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3739
3740                 /* + transport layer */
3741                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3742                         const struct tcphdr *th;
3743                         struct tcphdr _tcphdr;
3744
3745                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3746                                                 sizeof(_tcphdr), &_tcphdr);
3747                         if (likely(th))
3748                                 hdr_len += __tcp_hdrlen(th);
3749                 } else {
3750                         struct udphdr _udphdr;
3751
3752                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3753                                                sizeof(_udphdr), &_udphdr))
3754                                 hdr_len += sizeof(struct udphdr);
3755                 }
3756
3757                 if (shinfo->gso_type & SKB_GSO_DODGY)
3758                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3759                                                 shinfo->gso_size);
3760
3761                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3762         }
3763 }
3764
3765 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3766                              struct sk_buff **to_free,
3767                              struct netdev_queue *txq)
3768 {
3769         int rc;
3770
3771         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3772         if (rc == NET_XMIT_SUCCESS)
3773                 trace_qdisc_enqueue(q, txq, skb);
3774         return rc;
3775 }
3776
3777 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3778                                  struct net_device *dev,
3779                                  struct netdev_queue *txq)
3780 {
3781         spinlock_t *root_lock = qdisc_lock(q);
3782         struct sk_buff *to_free = NULL;
3783         bool contended;
3784         int rc;
3785
3786         qdisc_calculate_pkt_len(skb, q);
3787
3788         if (q->flags & TCQ_F_NOLOCK) {
3789                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3790                     qdisc_run_begin(q)) {
3791                         /* Retest nolock_qdisc_is_empty() within the protection
3792                          * of q->seqlock to protect from racing with requeuing.
3793                          */
3794                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3795                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3796                                 __qdisc_run(q);
3797                                 qdisc_run_end(q);
3798
3799                                 goto no_lock_out;
3800                         }
3801
3802                         qdisc_bstats_cpu_update(q, skb);
3803                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3804                             !nolock_qdisc_is_empty(q))
3805                                 __qdisc_run(q);
3806
3807                         qdisc_run_end(q);
3808                         return NET_XMIT_SUCCESS;
3809                 }
3810
3811                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3812                 qdisc_run(q);
3813
3814 no_lock_out:
3815                 if (unlikely(to_free))
3816                         kfree_skb_list(to_free);
3817                 return rc;
3818         }
3819
3820         /*
3821          * Heuristic to force contended enqueues to serialize on a
3822          * separate lock before trying to get qdisc main lock.
3823          * This permits qdisc->running owner to get the lock more
3824          * often and dequeue packets faster.
3825          */
3826         contended = qdisc_is_running(q);
3827         if (unlikely(contended))
3828                 spin_lock(&q->busylock);
3829
3830         spin_lock(root_lock);
3831         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3832                 __qdisc_drop(skb, &to_free);
3833                 rc = NET_XMIT_DROP;
3834         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3835                    qdisc_run_begin(q)) {
3836                 /*
3837                  * This is a work-conserving queue; there are no old skbs
3838                  * waiting to be sent out; and the qdisc is not running -
3839                  * xmit the skb directly.
3840                  */
3841
3842                 qdisc_bstats_update(q, skb);
3843
3844                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3845                         if (unlikely(contended)) {
3846                                 spin_unlock(&q->busylock);
3847                                 contended = false;
3848                         }
3849                         __qdisc_run(q);
3850                 }
3851
3852                 qdisc_run_end(q);
3853                 rc = NET_XMIT_SUCCESS;
3854         } else {
3855                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3856                 if (qdisc_run_begin(q)) {
3857                         if (unlikely(contended)) {
3858                                 spin_unlock(&q->busylock);
3859                                 contended = false;
3860                         }
3861                         __qdisc_run(q);
3862                         qdisc_run_end(q);
3863                 }
3864         }
3865         spin_unlock(root_lock);
3866         if (unlikely(to_free))
3867                 kfree_skb_list(to_free);
3868         if (unlikely(contended))
3869                 spin_unlock(&q->busylock);
3870         return rc;
3871 }
3872
3873 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3874 static void skb_update_prio(struct sk_buff *skb)
3875 {
3876         const struct netprio_map *map;
3877         const struct sock *sk;
3878         unsigned int prioidx;
3879
3880         if (skb->priority)
3881                 return;
3882         map = rcu_dereference_bh(skb->dev->priomap);
3883         if (!map)
3884                 return;
3885         sk = skb_to_full_sk(skb);
3886         if (!sk)
3887                 return;
3888
3889         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3890
3891         if (prioidx < map->priomap_len)
3892                 skb->priority = map->priomap[prioidx];
3893 }
3894 #else
3895 #define skb_update_prio(skb)
3896 #endif
3897
3898 /**
3899  *      dev_loopback_xmit - loop back @skb
3900  *      @net: network namespace this loopback is happening in
3901  *      @sk:  sk needed to be a netfilter okfn
3902  *      @skb: buffer to transmit
3903  */
3904 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3905 {
3906         skb_reset_mac_header(skb);
3907         __skb_pull(skb, skb_network_offset(skb));
3908         skb->pkt_type = PACKET_LOOPBACK;
3909         skb->ip_summed = CHECKSUM_UNNECESSARY;
3910         WARN_ON(!skb_dst(skb));
3911         skb_dst_force(skb);
3912         netif_rx_ni(skb);
3913         return 0;
3914 }
3915 EXPORT_SYMBOL(dev_loopback_xmit);
3916
3917 #ifdef CONFIG_NET_EGRESS
3918 static struct sk_buff *
3919 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3920 {
3921         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3922         struct tcf_result cl_res;
3923
3924         if (!miniq)
3925                 return skb;
3926
3927         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3928         qdisc_skb_cb(skb)->mru = 0;
3929         qdisc_skb_cb(skb)->post_ct = false;
3930         mini_qdisc_bstats_cpu_update(miniq, skb);
3931
3932         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3933         case TC_ACT_OK:
3934         case TC_ACT_RECLASSIFY:
3935                 skb->tc_index = TC_H_MIN(cl_res.classid);
3936                 break;
3937         case TC_ACT_SHOT:
3938                 mini_qdisc_qstats_cpu_drop(miniq);
3939                 *ret = NET_XMIT_DROP;
3940                 kfree_skb(skb);
3941                 return NULL;
3942         case TC_ACT_STOLEN:
3943         case TC_ACT_QUEUED:
3944         case TC_ACT_TRAP:
3945                 *ret = NET_XMIT_SUCCESS;
3946                 consume_skb(skb);
3947                 return NULL;
3948         case TC_ACT_REDIRECT:
3949                 /* No need to push/pop skb's mac_header here on egress! */
3950                 skb_do_redirect(skb);
3951                 *ret = NET_XMIT_SUCCESS;
3952                 return NULL;
3953         default:
3954                 break;
3955         }
3956
3957         return skb;
3958 }
3959 #endif /* CONFIG_NET_EGRESS */
3960
3961 #ifdef CONFIG_XPS
3962 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3963                                struct xps_dev_maps *dev_maps, unsigned int tci)
3964 {
3965         int tc = netdev_get_prio_tc_map(dev, skb->priority);
3966         struct xps_map *map;
3967         int queue_index = -1;
3968
3969         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3970                 return queue_index;
3971
3972         tci *= dev_maps->num_tc;
3973         tci += tc;
3974
3975         map = rcu_dereference(dev_maps->attr_map[tci]);
3976         if (map) {
3977                 if (map->len == 1)
3978                         queue_index = map->queues[0];
3979                 else
3980                         queue_index = map->queues[reciprocal_scale(
3981                                                 skb_get_hash(skb), map->len)];
3982                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3983                         queue_index = -1;
3984         }
3985         return queue_index;
3986 }
3987 #endif
3988
3989 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3990                          struct sk_buff *skb)
3991 {
3992 #ifdef CONFIG_XPS
3993         struct xps_dev_maps *dev_maps;
3994         struct sock *sk = skb->sk;
3995         int queue_index = -1;
3996
3997         if (!static_key_false(&xps_needed))
3998                 return -1;
3999
4000         rcu_read_lock();
4001         if (!static_key_false(&xps_rxqs_needed))
4002                 goto get_cpus_map;
4003
4004         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4005         if (dev_maps) {
4006                 int tci = sk_rx_queue_get(sk);
4007
4008                 if (tci >= 0)
4009                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4010                                                           tci);
4011         }
4012
4013 get_cpus_map:
4014         if (queue_index < 0) {
4015                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4016                 if (dev_maps) {
4017                         unsigned int tci = skb->sender_cpu - 1;
4018
4019                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4020                                                           tci);
4021                 }
4022         }
4023         rcu_read_unlock();
4024
4025         return queue_index;
4026 #else
4027         return -1;
4028 #endif
4029 }
4030
4031 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4032                      struct net_device *sb_dev)
4033 {
4034         return 0;
4035 }
4036 EXPORT_SYMBOL(dev_pick_tx_zero);
4037
4038 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4039                        struct net_device *sb_dev)
4040 {
4041         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4042 }
4043 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4044
4045 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4046                      struct net_device *sb_dev)
4047 {
4048         struct sock *sk = skb->sk;
4049         int queue_index = sk_tx_queue_get(sk);
4050
4051         sb_dev = sb_dev ? : dev;
4052
4053         if (queue_index < 0 || skb->ooo_okay ||
4054             queue_index >= dev->real_num_tx_queues) {
4055                 int new_index = get_xps_queue(dev, sb_dev, skb);
4056
4057                 if (new_index < 0)
4058                         new_index = skb_tx_hash(dev, sb_dev, skb);
4059
4060                 if (queue_index != new_index && sk &&
4061                     sk_fullsock(sk) &&
4062                     rcu_access_pointer(sk->sk_dst_cache))
4063                         sk_tx_queue_set(sk, new_index);
4064
4065                 queue_index = new_index;
4066         }
4067
4068         return queue_index;
4069 }
4070 EXPORT_SYMBOL(netdev_pick_tx);
4071
4072 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4073                                          struct sk_buff *skb,
4074                                          struct net_device *sb_dev)
4075 {
4076         int queue_index = 0;
4077
4078 #ifdef CONFIG_XPS
4079         u32 sender_cpu = skb->sender_cpu - 1;
4080
4081         if (sender_cpu >= (u32)NR_CPUS)
4082                 skb->sender_cpu = raw_smp_processor_id() + 1;
4083 #endif
4084
4085         if (dev->real_num_tx_queues != 1) {
4086                 const struct net_device_ops *ops = dev->netdev_ops;
4087
4088                 if (ops->ndo_select_queue)
4089                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4090                 else
4091                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4092
4093                 queue_index = netdev_cap_txqueue(dev, queue_index);
4094         }
4095
4096         skb_set_queue_mapping(skb, queue_index);
4097         return netdev_get_tx_queue(dev, queue_index);
4098 }
4099
4100 /**
4101  *      __dev_queue_xmit - transmit a buffer
4102  *      @skb: buffer to transmit
4103  *      @sb_dev: suboordinate device used for L2 forwarding offload
4104  *
4105  *      Queue a buffer for transmission to a network device. The caller must
4106  *      have set the device and priority and built the buffer before calling
4107  *      this function. The function can be called from an interrupt.
4108  *
4109  *      A negative errno code is returned on a failure. A success does not
4110  *      guarantee the frame will be transmitted as it may be dropped due
4111  *      to congestion or traffic shaping.
4112  *
4113  * -----------------------------------------------------------------------------------
4114  *      I notice this method can also return errors from the queue disciplines,
4115  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4116  *      be positive.
4117  *
4118  *      Regardless of the return value, the skb is consumed, so it is currently
4119  *      difficult to retry a send to this method.  (You can bump the ref count
4120  *      before sending to hold a reference for retry if you are careful.)
4121  *
4122  *      When calling this method, interrupts MUST be enabled.  This is because
4123  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4124  *          --BLG
4125  */
4126 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4127 {
4128         struct net_device *dev = skb->dev;
4129         struct netdev_queue *txq;
4130         struct Qdisc *q;
4131         int rc = -ENOMEM;
4132         bool again = false;
4133
4134         skb_reset_mac_header(skb);
4135
4136         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4137                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4138
4139         /* Disable soft irqs for various locks below. Also
4140          * stops preemption for RCU.
4141          */
4142         rcu_read_lock_bh();
4143
4144         skb_update_prio(skb);
4145
4146         qdisc_pkt_len_init(skb);
4147 #ifdef CONFIG_NET_CLS_ACT
4148         skb->tc_at_ingress = 0;
4149 # ifdef CONFIG_NET_EGRESS
4150         if (static_branch_unlikely(&egress_needed_key)) {
4151                 skb = sch_handle_egress(skb, &rc, dev);
4152                 if (!skb)
4153                         goto out;
4154         }
4155 # endif
4156 #endif
4157         /* If device/qdisc don't need skb->dst, release it right now while
4158          * its hot in this cpu cache.
4159          */
4160         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4161                 skb_dst_drop(skb);
4162         else
4163                 skb_dst_force(skb);
4164
4165         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4166         q = rcu_dereference_bh(txq->qdisc);
4167
4168         trace_net_dev_queue(skb);
4169         if (q->enqueue) {
4170                 rc = __dev_xmit_skb(skb, q, dev, txq);
4171                 goto out;
4172         }
4173
4174         /* The device has no queue. Common case for software devices:
4175          * loopback, all the sorts of tunnels...
4176
4177          * Really, it is unlikely that netif_tx_lock protection is necessary
4178          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4179          * counters.)
4180          * However, it is possible, that they rely on protection
4181          * made by us here.
4182
4183          * Check this and shot the lock. It is not prone from deadlocks.
4184          *Either shot noqueue qdisc, it is even simpler 8)
4185          */
4186         if (dev->flags & IFF_UP) {
4187                 int cpu = smp_processor_id(); /* ok because BHs are off */
4188
4189                 if (txq->xmit_lock_owner != cpu) {
4190                         if (dev_xmit_recursion())
4191                                 goto recursion_alert;
4192
4193                         skb = validate_xmit_skb(skb, dev, &again);
4194                         if (!skb)
4195                                 goto out;
4196
4197                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4198                         HARD_TX_LOCK(dev, txq, cpu);
4199
4200                         if (!netif_xmit_stopped(txq)) {
4201                                 dev_xmit_recursion_inc();
4202                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4203                                 dev_xmit_recursion_dec();
4204                                 if (dev_xmit_complete(rc)) {
4205                                         HARD_TX_UNLOCK(dev, txq);
4206                                         goto out;
4207                                 }
4208                         }
4209                         HARD_TX_UNLOCK(dev, txq);
4210                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4211                                              dev->name);
4212                 } else {
4213                         /* Recursion is detected! It is possible,
4214                          * unfortunately
4215                          */
4216 recursion_alert:
4217                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4218                                              dev->name);
4219                 }
4220         }
4221
4222         rc = -ENETDOWN;
4223         rcu_read_unlock_bh();
4224
4225         atomic_long_inc(&dev->tx_dropped);
4226         kfree_skb_list(skb);
4227         return rc;
4228 out:
4229         rcu_read_unlock_bh();
4230         return rc;
4231 }
4232
4233 int dev_queue_xmit(struct sk_buff *skb)
4234 {
4235         return __dev_queue_xmit(skb, NULL);
4236 }
4237 EXPORT_SYMBOL(dev_queue_xmit);
4238
4239 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4240 {
4241         return __dev_queue_xmit(skb, sb_dev);
4242 }
4243 EXPORT_SYMBOL(dev_queue_xmit_accel);
4244
4245 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4246 {
4247         struct net_device *dev = skb->dev;
4248         struct sk_buff *orig_skb = skb;
4249         struct netdev_queue *txq;
4250         int ret = NETDEV_TX_BUSY;
4251         bool again = false;
4252
4253         if (unlikely(!netif_running(dev) ||
4254                      !netif_carrier_ok(dev)))
4255                 goto drop;
4256
4257         skb = validate_xmit_skb_list(skb, dev, &again);
4258         if (skb != orig_skb)
4259                 goto drop;
4260
4261         skb_set_queue_mapping(skb, queue_id);
4262         txq = skb_get_tx_queue(dev, skb);
4263         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4264
4265         local_bh_disable();
4266
4267         dev_xmit_recursion_inc();
4268         HARD_TX_LOCK(dev, txq, smp_processor_id());
4269         if (!netif_xmit_frozen_or_drv_stopped(txq))
4270                 ret = netdev_start_xmit(skb, dev, txq, false);
4271         HARD_TX_UNLOCK(dev, txq);
4272         dev_xmit_recursion_dec();
4273
4274         local_bh_enable();
4275         return ret;
4276 drop:
4277         atomic_long_inc(&dev->tx_dropped);
4278         kfree_skb_list(skb);
4279         return NET_XMIT_DROP;
4280 }
4281 EXPORT_SYMBOL(__dev_direct_xmit);
4282
4283 /*************************************************************************
4284  *                      Receiver routines
4285  *************************************************************************/
4286
4287 int netdev_max_backlog __read_mostly = 1000;
4288 EXPORT_SYMBOL(netdev_max_backlog);
4289
4290 int netdev_tstamp_prequeue __read_mostly = 1;
4291 int netdev_budget __read_mostly = 300;
4292 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4293 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4294 int weight_p __read_mostly = 64;           /* old backlog weight */
4295 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4296 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4297 int dev_rx_weight __read_mostly = 64;
4298 int dev_tx_weight __read_mostly = 64;
4299 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4300 int gro_normal_batch __read_mostly = 8;
4301
4302 /* Called with irq disabled */
4303 static inline void ____napi_schedule(struct softnet_data *sd,
4304                                      struct napi_struct *napi)
4305 {
4306         struct task_struct *thread;
4307
4308         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4309                 /* Paired with smp_mb__before_atomic() in
4310                  * napi_enable()/dev_set_threaded().
4311                  * Use READ_ONCE() to guarantee a complete
4312                  * read on napi->thread. Only call
4313                  * wake_up_process() when it's not NULL.
4314                  */
4315                 thread = READ_ONCE(napi->thread);
4316                 if (thread) {
4317                         /* Avoid doing set_bit() if the thread is in
4318                          * INTERRUPTIBLE state, cause napi_thread_wait()
4319                          * makes sure to proceed with napi polling
4320                          * if the thread is explicitly woken from here.
4321                          */
4322                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4323                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4324                         wake_up_process(thread);
4325                         return;
4326                 }
4327         }
4328
4329         list_add_tail(&napi->poll_list, &sd->poll_list);
4330         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4331 }
4332
4333 #ifdef CONFIG_RPS
4334
4335 /* One global table that all flow-based protocols share. */
4336 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4337 EXPORT_SYMBOL(rps_sock_flow_table);
4338 u32 rps_cpu_mask __read_mostly;
4339 EXPORT_SYMBOL(rps_cpu_mask);
4340
4341 struct static_key_false rps_needed __read_mostly;
4342 EXPORT_SYMBOL(rps_needed);
4343 struct static_key_false rfs_needed __read_mostly;
4344 EXPORT_SYMBOL(rfs_needed);
4345
4346 static struct rps_dev_flow *
4347 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4348             struct rps_dev_flow *rflow, u16 next_cpu)
4349 {
4350         if (next_cpu < nr_cpu_ids) {
4351 #ifdef CONFIG_RFS_ACCEL
4352                 struct netdev_rx_queue *rxqueue;
4353                 struct rps_dev_flow_table *flow_table;
4354                 struct rps_dev_flow *old_rflow;
4355                 u32 flow_id;
4356                 u16 rxq_index;
4357                 int rc;
4358
4359                 /* Should we steer this flow to a different hardware queue? */
4360                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4361                     !(dev->features & NETIF_F_NTUPLE))
4362                         goto out;
4363                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4364                 if (rxq_index == skb_get_rx_queue(skb))
4365                         goto out;
4366
4367                 rxqueue = dev->_rx + rxq_index;
4368                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4369                 if (!flow_table)
4370                         goto out;
4371                 flow_id = skb_get_hash(skb) & flow_table->mask;
4372                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4373                                                         rxq_index, flow_id);
4374                 if (rc < 0)
4375                         goto out;
4376                 old_rflow = rflow;
4377                 rflow = &flow_table->flows[flow_id];
4378                 rflow->filter = rc;
4379                 if (old_rflow->filter == rflow->filter)
4380                         old_rflow->filter = RPS_NO_FILTER;
4381         out:
4382 #endif
4383                 rflow->last_qtail =
4384                         per_cpu(softnet_data, next_cpu).input_queue_head;
4385         }
4386
4387         rflow->cpu = next_cpu;
4388         return rflow;
4389 }
4390
4391 /*
4392  * get_rps_cpu is called from netif_receive_skb and returns the target
4393  * CPU from the RPS map of the receiving queue for a given skb.
4394  * rcu_read_lock must be held on entry.
4395  */
4396 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4397                        struct rps_dev_flow **rflowp)
4398 {
4399         const struct rps_sock_flow_table *sock_flow_table;
4400         struct netdev_rx_queue *rxqueue = dev->_rx;
4401         struct rps_dev_flow_table *flow_table;
4402         struct rps_map *map;
4403         int cpu = -1;
4404         u32 tcpu;
4405         u32 hash;
4406
4407         if (skb_rx_queue_recorded(skb)) {
4408                 u16 index = skb_get_rx_queue(skb);
4409
4410                 if (unlikely(index >= dev->real_num_rx_queues)) {
4411                         WARN_ONCE(dev->real_num_rx_queues > 1,
4412                                   "%s received packet on queue %u, but number "
4413                                   "of RX queues is %u\n",
4414                                   dev->name, index, dev->real_num_rx_queues);
4415                         goto done;
4416                 }
4417                 rxqueue += index;
4418         }
4419
4420         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4421
4422         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4423         map = rcu_dereference(rxqueue->rps_map);
4424         if (!flow_table && !map)
4425                 goto done;
4426
4427         skb_reset_network_header(skb);
4428         hash = skb_get_hash(skb);
4429         if (!hash)
4430                 goto done;
4431
4432         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4433         if (flow_table && sock_flow_table) {
4434                 struct rps_dev_flow *rflow;
4435                 u32 next_cpu;
4436                 u32 ident;
4437
4438                 /* First check into global flow table if there is a match */
4439                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4440                 if ((ident ^ hash) & ~rps_cpu_mask)
4441                         goto try_rps;
4442
4443                 next_cpu = ident & rps_cpu_mask;
4444
4445                 /* OK, now we know there is a match,
4446                  * we can look at the local (per receive queue) flow table
4447                  */
4448                 rflow = &flow_table->flows[hash & flow_table->mask];
4449                 tcpu = rflow->cpu;
4450
4451                 /*
4452                  * If the desired CPU (where last recvmsg was done) is
4453                  * different from current CPU (one in the rx-queue flow
4454                  * table entry), switch if one of the following holds:
4455                  *   - Current CPU is unset (>= nr_cpu_ids).
4456                  *   - Current CPU is offline.
4457                  *   - The current CPU's queue tail has advanced beyond the
4458                  *     last packet that was enqueued using this table entry.
4459                  *     This guarantees that all previous packets for the flow
4460                  *     have been dequeued, thus preserving in order delivery.
4461                  */
4462                 if (unlikely(tcpu != next_cpu) &&
4463                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4464                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4465                       rflow->last_qtail)) >= 0)) {
4466                         tcpu = next_cpu;
4467                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4468                 }
4469
4470                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4471                         *rflowp = rflow;
4472                         cpu = tcpu;
4473                         goto done;
4474                 }
4475         }
4476
4477 try_rps:
4478
4479         if (map) {
4480                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4481                 if (cpu_online(tcpu)) {
4482                         cpu = tcpu;
4483                         goto done;
4484                 }
4485         }
4486
4487 done:
4488         return cpu;
4489 }
4490
4491 #ifdef CONFIG_RFS_ACCEL
4492
4493 /**
4494  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4495  * @dev: Device on which the filter was set
4496  * @rxq_index: RX queue index
4497  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4498  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4499  *
4500  * Drivers that implement ndo_rx_flow_steer() should periodically call
4501  * this function for each installed filter and remove the filters for
4502  * which it returns %true.
4503  */
4504 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4505                          u32 flow_id, u16 filter_id)
4506 {
4507         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4508         struct rps_dev_flow_table *flow_table;
4509         struct rps_dev_flow *rflow;
4510         bool expire = true;
4511         unsigned int cpu;
4512
4513         rcu_read_lock();
4514         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4515         if (flow_table && flow_id <= flow_table->mask) {
4516                 rflow = &flow_table->flows[flow_id];
4517                 cpu = READ_ONCE(rflow->cpu);
4518                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4519                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4520                            rflow->last_qtail) <
4521                      (int)(10 * flow_table->mask)))
4522                         expire = false;
4523         }
4524         rcu_read_unlock();
4525         return expire;
4526 }
4527 EXPORT_SYMBOL(rps_may_expire_flow);
4528
4529 #endif /* CONFIG_RFS_ACCEL */
4530
4531 /* Called from hardirq (IPI) context */
4532 static void rps_trigger_softirq(void *data)
4533 {
4534         struct softnet_data *sd = data;
4535
4536         ____napi_schedule(sd, &sd->backlog);
4537         sd->received_rps++;
4538 }
4539
4540 #endif /* CONFIG_RPS */
4541
4542 /*
4543  * Check if this softnet_data structure is another cpu one
4544  * If yes, queue it to our IPI list and return 1
4545  * If no, return 0
4546  */
4547 static int rps_ipi_queued(struct softnet_data *sd)
4548 {
4549 #ifdef CONFIG_RPS
4550         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4551
4552         if (sd != mysd) {
4553                 sd->rps_ipi_next = mysd->rps_ipi_list;
4554                 mysd->rps_ipi_list = sd;
4555
4556                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4557                 return 1;
4558         }
4559 #endif /* CONFIG_RPS */
4560         return 0;
4561 }
4562
4563 #ifdef CONFIG_NET_FLOW_LIMIT
4564 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4565 #endif
4566
4567 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4568 {
4569 #ifdef CONFIG_NET_FLOW_LIMIT
4570         struct sd_flow_limit *fl;
4571         struct softnet_data *sd;
4572         unsigned int old_flow, new_flow;
4573
4574         if (qlen < (netdev_max_backlog >> 1))
4575                 return false;
4576
4577         sd = this_cpu_ptr(&softnet_data);
4578
4579         rcu_read_lock();
4580         fl = rcu_dereference(sd->flow_limit);
4581         if (fl) {
4582                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4583                 old_flow = fl->history[fl->history_head];
4584                 fl->history[fl->history_head] = new_flow;
4585
4586                 fl->history_head++;
4587                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4588
4589                 if (likely(fl->buckets[old_flow]))
4590                         fl->buckets[old_flow]--;
4591
4592                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4593                         fl->count++;
4594                         rcu_read_unlock();
4595                         return true;
4596                 }
4597         }
4598         rcu_read_unlock();
4599 #endif
4600         return false;
4601 }
4602
4603 /*
4604  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4605  * queue (may be a remote CPU queue).
4606  */
4607 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4608                               unsigned int *qtail)
4609 {
4610         struct softnet_data *sd;
4611         unsigned long flags;
4612         unsigned int qlen;
4613
4614         sd = &per_cpu(softnet_data, cpu);
4615
4616         local_irq_save(flags);
4617
4618         rps_lock(sd);
4619         if (!netif_running(skb->dev))
4620                 goto drop;
4621         qlen = skb_queue_len(&sd->input_pkt_queue);
4622         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4623                 if (qlen) {
4624 enqueue:
4625                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4626                         input_queue_tail_incr_save(sd, qtail);
4627                         rps_unlock(sd);
4628                         local_irq_restore(flags);
4629                         return NET_RX_SUCCESS;
4630                 }
4631
4632                 /* Schedule NAPI for backlog device
4633                  * We can use non atomic operation since we own the queue lock
4634                  */
4635                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4636                         if (!rps_ipi_queued(sd))
4637                                 ____napi_schedule(sd, &sd->backlog);
4638                 }
4639                 goto enqueue;
4640         }
4641
4642 drop:
4643         sd->dropped++;
4644         rps_unlock(sd);
4645
4646         local_irq_restore(flags);
4647
4648         atomic_long_inc(&skb->dev->rx_dropped);
4649         kfree_skb(skb);
4650         return NET_RX_DROP;
4651 }
4652
4653 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4654 {
4655         struct net_device *dev = skb->dev;
4656         struct netdev_rx_queue *rxqueue;
4657
4658         rxqueue = dev->_rx;
4659
4660         if (skb_rx_queue_recorded(skb)) {
4661                 u16 index = skb_get_rx_queue(skb);
4662
4663                 if (unlikely(index >= dev->real_num_rx_queues)) {
4664                         WARN_ONCE(dev->real_num_rx_queues > 1,
4665                                   "%s received packet on queue %u, but number "
4666                                   "of RX queues is %u\n",
4667                                   dev->name, index, dev->real_num_rx_queues);
4668
4669                         return rxqueue; /* Return first rxqueue */
4670                 }
4671                 rxqueue += index;
4672         }
4673         return rxqueue;
4674 }
4675
4676 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4677                              struct bpf_prog *xdp_prog)
4678 {
4679         void *orig_data, *orig_data_end, *hard_start;
4680         struct netdev_rx_queue *rxqueue;
4681         bool orig_bcast, orig_host;
4682         u32 mac_len, frame_sz;
4683         __be16 orig_eth_type;
4684         struct ethhdr *eth;
4685         u32 metalen, act;
4686         int off;
4687
4688         /* The XDP program wants to see the packet starting at the MAC
4689          * header.
4690          */
4691         mac_len = skb->data - skb_mac_header(skb);
4692         hard_start = skb->data - skb_headroom(skb);
4693
4694         /* SKB "head" area always have tailroom for skb_shared_info */
4695         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4696         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4697
4698         rxqueue = netif_get_rxqueue(skb);
4699         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4700         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4701                          skb_headlen(skb) + mac_len, true);
4702
4703         orig_data_end = xdp->data_end;
4704         orig_data = xdp->data;
4705         eth = (struct ethhdr *)xdp->data;
4706         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4707         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4708         orig_eth_type = eth->h_proto;
4709
4710         act = bpf_prog_run_xdp(xdp_prog, xdp);
4711
4712         /* check if bpf_xdp_adjust_head was used */
4713         off = xdp->data - orig_data;
4714         if (off) {
4715                 if (off > 0)
4716                         __skb_pull(skb, off);
4717                 else if (off < 0)
4718                         __skb_push(skb, -off);
4719
4720                 skb->mac_header += off;
4721                 skb_reset_network_header(skb);
4722         }
4723
4724         /* check if bpf_xdp_adjust_tail was used */
4725         off = xdp->data_end - orig_data_end;
4726         if (off != 0) {
4727                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4728                 skb->len += off; /* positive on grow, negative on shrink */
4729         }
4730
4731         /* check if XDP changed eth hdr such SKB needs update */
4732         eth = (struct ethhdr *)xdp->data;
4733         if ((orig_eth_type != eth->h_proto) ||
4734             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4735                                                   skb->dev->dev_addr)) ||
4736             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4737                 __skb_push(skb, ETH_HLEN);
4738                 skb->pkt_type = PACKET_HOST;
4739                 skb->protocol = eth_type_trans(skb, skb->dev);
4740         }
4741
4742         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4743          * before calling us again on redirect path. We do not call do_redirect
4744          * as we leave that up to the caller.
4745          *
4746          * Caller is responsible for managing lifetime of skb (i.e. calling
4747          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4748          */
4749         switch (act) {
4750         case XDP_REDIRECT:
4751         case XDP_TX:
4752                 __skb_push(skb, mac_len);
4753                 break;
4754         case XDP_PASS:
4755                 metalen = xdp->data - xdp->data_meta;
4756                 if (metalen)
4757                         skb_metadata_set(skb, metalen);
4758                 break;
4759         }
4760
4761         return act;
4762 }
4763
4764 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4765                                      struct xdp_buff *xdp,
4766                                      struct bpf_prog *xdp_prog)
4767 {
4768         u32 act = XDP_DROP;
4769
4770         /* Reinjected packets coming from act_mirred or similar should
4771          * not get XDP generic processing.
4772          */
4773         if (skb_is_redirected(skb))
4774                 return XDP_PASS;
4775
4776         /* XDP packets must be linear and must have sufficient headroom
4777          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4778          * native XDP provides, thus we need to do it here as well.
4779          */
4780         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4781             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4782                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4783                 int troom = skb->tail + skb->data_len - skb->end;
4784
4785                 /* In case we have to go down the path and also linearize,
4786                  * then lets do the pskb_expand_head() work just once here.
4787                  */
4788                 if (pskb_expand_head(skb,
4789                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4790                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4791                         goto do_drop;
4792                 if (skb_linearize(skb))
4793                         goto do_drop;
4794         }
4795
4796         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4797         switch (act) {
4798         case XDP_REDIRECT:
4799         case XDP_TX:
4800         case XDP_PASS:
4801                 break;
4802         default:
4803                 bpf_warn_invalid_xdp_action(act);
4804                 fallthrough;
4805         case XDP_ABORTED:
4806                 trace_xdp_exception(skb->dev, xdp_prog, act);
4807                 fallthrough;
4808         case XDP_DROP:
4809         do_drop:
4810                 kfree_skb(skb);
4811                 break;
4812         }
4813
4814         return act;
4815 }
4816
4817 /* When doing generic XDP we have to bypass the qdisc layer and the
4818  * network taps in order to match in-driver-XDP behavior.
4819  */
4820 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4821 {
4822         struct net_device *dev = skb->dev;
4823         struct netdev_queue *txq;
4824         bool free_skb = true;
4825         int cpu, rc;
4826
4827         txq = netdev_core_pick_tx(dev, skb, NULL);
4828         cpu = smp_processor_id();
4829         HARD_TX_LOCK(dev, txq, cpu);
4830         if (!netif_xmit_stopped(txq)) {
4831                 rc = netdev_start_xmit(skb, dev, txq, 0);
4832                 if (dev_xmit_complete(rc))
4833                         free_skb = false;
4834         }
4835         HARD_TX_UNLOCK(dev, txq);
4836         if (free_skb) {
4837                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4838                 kfree_skb(skb);
4839         }
4840 }
4841
4842 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4843
4844 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4845 {
4846         if (xdp_prog) {
4847                 struct xdp_buff xdp;
4848                 u32 act;
4849                 int err;
4850
4851                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4852                 if (act != XDP_PASS) {
4853                         switch (act) {
4854                         case XDP_REDIRECT:
4855                                 err = xdp_do_generic_redirect(skb->dev, skb,
4856                                                               &xdp, xdp_prog);
4857                                 if (err)
4858                                         goto out_redir;
4859                                 break;
4860                         case XDP_TX:
4861                                 generic_xdp_tx(skb, xdp_prog);
4862                                 break;
4863                         }
4864                         return XDP_DROP;
4865                 }
4866         }
4867         return XDP_PASS;
4868 out_redir:
4869         kfree_skb(skb);
4870         return XDP_DROP;
4871 }
4872 EXPORT_SYMBOL_GPL(do_xdp_generic);
4873
4874 static int netif_rx_internal(struct sk_buff *skb)
4875 {
4876         int ret;
4877
4878         net_timestamp_check(netdev_tstamp_prequeue, skb);
4879
4880         trace_netif_rx(skb);
4881
4882 #ifdef CONFIG_RPS
4883         if (static_branch_unlikely(&rps_needed)) {
4884                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4885                 int cpu;
4886
4887                 preempt_disable();
4888                 rcu_read_lock();
4889
4890                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4891                 if (cpu < 0)
4892                         cpu = smp_processor_id();
4893
4894                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4895
4896                 rcu_read_unlock();
4897                 preempt_enable();
4898         } else
4899 #endif
4900         {
4901                 unsigned int qtail;
4902
4903                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4904                 put_cpu();
4905         }
4906         return ret;
4907 }
4908
4909 /**
4910  *      netif_rx        -       post buffer to the network code
4911  *      @skb: buffer to post
4912  *
4913  *      This function receives a packet from a device driver and queues it for
4914  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4915  *      may be dropped during processing for congestion control or by the
4916  *      protocol layers.
4917  *
4918  *      return values:
4919  *      NET_RX_SUCCESS  (no congestion)
4920  *      NET_RX_DROP     (packet was dropped)
4921  *
4922  */
4923
4924 int netif_rx(struct sk_buff *skb)
4925 {
4926         int ret;
4927
4928         trace_netif_rx_entry(skb);
4929
4930         ret = netif_rx_internal(skb);
4931         trace_netif_rx_exit(ret);
4932
4933         return ret;
4934 }
4935 EXPORT_SYMBOL(netif_rx);
4936
4937 int netif_rx_ni(struct sk_buff *skb)
4938 {
4939         int err;
4940
4941         trace_netif_rx_ni_entry(skb);
4942
4943         preempt_disable();
4944         err = netif_rx_internal(skb);
4945         if (local_softirq_pending())
4946                 do_softirq();
4947         preempt_enable();
4948         trace_netif_rx_ni_exit(err);
4949
4950         return err;
4951 }
4952 EXPORT_SYMBOL(netif_rx_ni);
4953
4954 int netif_rx_any_context(struct sk_buff *skb)
4955 {
4956         /*
4957          * If invoked from contexts which do not invoke bottom half
4958          * processing either at return from interrupt or when softrqs are
4959          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4960          * directly.
4961          */
4962         if (in_interrupt())
4963                 return netif_rx(skb);
4964         else
4965                 return netif_rx_ni(skb);
4966 }
4967 EXPORT_SYMBOL(netif_rx_any_context);
4968
4969 static __latent_entropy void net_tx_action(struct softirq_action *h)
4970 {
4971         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4972
4973         if (sd->completion_queue) {
4974                 struct sk_buff *clist;
4975
4976                 local_irq_disable();
4977                 clist = sd->completion_queue;
4978                 sd->completion_queue = NULL;
4979                 local_irq_enable();
4980
4981                 while (clist) {
4982                         struct sk_buff *skb = clist;
4983
4984                         clist = clist->next;
4985
4986                         WARN_ON(refcount_read(&skb->users));
4987                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4988                                 trace_consume_skb(skb);
4989                         else
4990                                 trace_kfree_skb(skb, net_tx_action);
4991
4992                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4993                                 __kfree_skb(skb);
4994                         else
4995                                 __kfree_skb_defer(skb);
4996                 }
4997         }
4998
4999         if (sd->output_queue) {
5000                 struct Qdisc *head;
5001
5002                 local_irq_disable();
5003                 head = sd->output_queue;
5004                 sd->output_queue = NULL;
5005                 sd->output_queue_tailp = &sd->output_queue;
5006                 local_irq_enable();
5007
5008                 rcu_read_lock();
5009
5010                 while (head) {
5011                         struct Qdisc *q = head;
5012                         spinlock_t *root_lock = NULL;
5013
5014                         head = head->next_sched;
5015
5016                         /* We need to make sure head->next_sched is read
5017                          * before clearing __QDISC_STATE_SCHED
5018                          */
5019                         smp_mb__before_atomic();
5020
5021                         if (!(q->flags & TCQ_F_NOLOCK)) {
5022                                 root_lock = qdisc_lock(q);
5023                                 spin_lock(root_lock);
5024                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5025                                                      &q->state))) {
5026                                 /* There is a synchronize_net() between
5027                                  * STATE_DEACTIVATED flag being set and
5028                                  * qdisc_reset()/some_qdisc_is_busy() in
5029                                  * dev_deactivate(), so we can safely bail out
5030                                  * early here to avoid data race between
5031                                  * qdisc_deactivate() and some_qdisc_is_busy()
5032                                  * for lockless qdisc.
5033                                  */
5034                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5035                                 continue;
5036                         }
5037
5038                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5039                         qdisc_run(q);
5040                         if (root_lock)
5041                                 spin_unlock(root_lock);
5042                 }
5043
5044                 rcu_read_unlock();
5045         }
5046
5047         xfrm_dev_backlog(sd);
5048 }
5049
5050 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5051 /* This hook is defined here for ATM LANE */
5052 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5053                              unsigned char *addr) __read_mostly;
5054 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5055 #endif
5056
5057 static inline struct sk_buff *
5058 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5059                    struct net_device *orig_dev, bool *another)
5060 {
5061 #ifdef CONFIG_NET_CLS_ACT
5062         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5063         struct tcf_result cl_res;
5064
5065         /* If there's at least one ingress present somewhere (so
5066          * we get here via enabled static key), remaining devices
5067          * that are not configured with an ingress qdisc will bail
5068          * out here.
5069          */
5070         if (!miniq)
5071                 return skb;
5072
5073         if (*pt_prev) {
5074                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5075                 *pt_prev = NULL;
5076         }
5077
5078         qdisc_skb_cb(skb)->pkt_len = skb->len;
5079         qdisc_skb_cb(skb)->mru = 0;
5080         qdisc_skb_cb(skb)->post_ct = false;
5081         skb->tc_at_ingress = 1;
5082         mini_qdisc_bstats_cpu_update(miniq, skb);
5083
5084         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5085         case TC_ACT_OK:
5086         case TC_ACT_RECLASSIFY:
5087                 skb->tc_index = TC_H_MIN(cl_res.classid);
5088                 break;
5089         case TC_ACT_SHOT:
5090                 mini_qdisc_qstats_cpu_drop(miniq);
5091                 kfree_skb(skb);
5092                 return NULL;
5093         case TC_ACT_STOLEN:
5094         case TC_ACT_QUEUED:
5095         case TC_ACT_TRAP:
5096                 consume_skb(skb);
5097                 return NULL;
5098         case TC_ACT_REDIRECT:
5099                 /* skb_mac_header check was done by cls/act_bpf, so
5100                  * we can safely push the L2 header back before
5101                  * redirecting to another netdev
5102                  */
5103                 __skb_push(skb, skb->mac_len);
5104                 if (skb_do_redirect(skb) == -EAGAIN) {
5105                         __skb_pull(skb, skb->mac_len);
5106                         *another = true;
5107                         break;
5108                 }
5109                 return NULL;
5110         case TC_ACT_CONSUMED:
5111                 return NULL;
5112         default:
5113                 break;
5114         }
5115 #endif /* CONFIG_NET_CLS_ACT */
5116         return skb;
5117 }
5118
5119 /**
5120  *      netdev_is_rx_handler_busy - check if receive handler is registered
5121  *      @dev: device to check
5122  *
5123  *      Check if a receive handler is already registered for a given device.
5124  *      Return true if there one.
5125  *
5126  *      The caller must hold the rtnl_mutex.
5127  */
5128 bool netdev_is_rx_handler_busy(struct net_device *dev)
5129 {
5130         ASSERT_RTNL();
5131         return dev && rtnl_dereference(dev->rx_handler);
5132 }
5133 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5134
5135 /**
5136  *      netdev_rx_handler_register - register receive handler
5137  *      @dev: device to register a handler for
5138  *      @rx_handler: receive handler to register
5139  *      @rx_handler_data: data pointer that is used by rx handler
5140  *
5141  *      Register a receive handler for a device. This handler will then be
5142  *      called from __netif_receive_skb. A negative errno code is returned
5143  *      on a failure.
5144  *
5145  *      The caller must hold the rtnl_mutex.
5146  *
5147  *      For a general description of rx_handler, see enum rx_handler_result.
5148  */
5149 int netdev_rx_handler_register(struct net_device *dev,
5150                                rx_handler_func_t *rx_handler,
5151                                void *rx_handler_data)
5152 {
5153         if (netdev_is_rx_handler_busy(dev))
5154                 return -EBUSY;
5155
5156         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5157                 return -EINVAL;
5158
5159         /* Note: rx_handler_data must be set before rx_handler */
5160         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5161         rcu_assign_pointer(dev->rx_handler, rx_handler);
5162
5163         return 0;
5164 }
5165 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5166
5167 /**
5168  *      netdev_rx_handler_unregister - unregister receive handler
5169  *      @dev: device to unregister a handler from
5170  *
5171  *      Unregister a receive handler from a device.
5172  *
5173  *      The caller must hold the rtnl_mutex.
5174  */
5175 void netdev_rx_handler_unregister(struct net_device *dev)
5176 {
5177
5178         ASSERT_RTNL();
5179         RCU_INIT_POINTER(dev->rx_handler, NULL);
5180         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5181          * section has a guarantee to see a non NULL rx_handler_data
5182          * as well.
5183          */
5184         synchronize_net();
5185         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5186 }
5187 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5188
5189 /*
5190  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5191  * the special handling of PFMEMALLOC skbs.
5192  */
5193 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5194 {
5195         switch (skb->protocol) {
5196         case htons(ETH_P_ARP):
5197         case htons(ETH_P_IP):
5198         case htons(ETH_P_IPV6):
5199         case htons(ETH_P_8021Q):
5200         case htons(ETH_P_8021AD):
5201                 return true;
5202         default:
5203                 return false;
5204         }
5205 }
5206
5207 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5208                              int *ret, struct net_device *orig_dev)
5209 {
5210         if (nf_hook_ingress_active(skb)) {
5211                 int ingress_retval;
5212
5213                 if (*pt_prev) {
5214                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5215                         *pt_prev = NULL;
5216                 }
5217
5218                 rcu_read_lock();
5219                 ingress_retval = nf_hook_ingress(skb);
5220                 rcu_read_unlock();
5221                 return ingress_retval;
5222         }
5223         return 0;
5224 }
5225
5226 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5227                                     struct packet_type **ppt_prev)
5228 {
5229         struct packet_type *ptype, *pt_prev;
5230         rx_handler_func_t *rx_handler;
5231         struct sk_buff *skb = *pskb;
5232         struct net_device *orig_dev;
5233         bool deliver_exact = false;
5234         int ret = NET_RX_DROP;
5235         __be16 type;
5236
5237         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5238
5239         trace_netif_receive_skb(skb);
5240
5241         orig_dev = skb->dev;
5242
5243         skb_reset_network_header(skb);
5244         if (!skb_transport_header_was_set(skb))
5245                 skb_reset_transport_header(skb);
5246         skb_reset_mac_len(skb);
5247
5248         pt_prev = NULL;
5249
5250 another_round:
5251         skb->skb_iif = skb->dev->ifindex;
5252
5253         __this_cpu_inc(softnet_data.processed);
5254
5255         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5256                 int ret2;
5257
5258                 migrate_disable();
5259                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5260                 migrate_enable();
5261
5262                 if (ret2 != XDP_PASS) {
5263                         ret = NET_RX_DROP;
5264                         goto out;
5265                 }
5266         }
5267
5268         if (eth_type_vlan(skb->protocol)) {
5269                 skb = skb_vlan_untag(skb);
5270                 if (unlikely(!skb))
5271                         goto out;
5272         }
5273
5274         if (skb_skip_tc_classify(skb))
5275                 goto skip_classify;
5276
5277         if (pfmemalloc)
5278                 goto skip_taps;
5279
5280         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5281                 if (pt_prev)
5282                         ret = deliver_skb(skb, pt_prev, orig_dev);
5283                 pt_prev = ptype;
5284         }
5285
5286         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5287                 if (pt_prev)
5288                         ret = deliver_skb(skb, pt_prev, orig_dev);
5289                 pt_prev = ptype;
5290         }
5291
5292 skip_taps:
5293 #ifdef CONFIG_NET_INGRESS
5294         if (static_branch_unlikely(&ingress_needed_key)) {
5295                 bool another = false;
5296
5297                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5298                                          &another);
5299                 if (another)
5300                         goto another_round;
5301                 if (!skb)
5302                         goto out;
5303
5304                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5305                         goto out;
5306         }
5307 #endif
5308         skb_reset_redirect(skb);
5309 skip_classify:
5310         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5311                 goto drop;
5312
5313         if (skb_vlan_tag_present(skb)) {
5314                 if (pt_prev) {
5315                         ret = deliver_skb(skb, pt_prev, orig_dev);
5316                         pt_prev = NULL;
5317                 }
5318                 if (vlan_do_receive(&skb))
5319                         goto another_round;
5320                 else if (unlikely(!skb))
5321                         goto out;
5322         }
5323
5324         rx_handler = rcu_dereference(skb->dev->rx_handler);
5325         if (rx_handler) {
5326                 if (pt_prev) {
5327                         ret = deliver_skb(skb, pt_prev, orig_dev);
5328                         pt_prev = NULL;
5329                 }
5330                 switch (rx_handler(&skb)) {
5331                 case RX_HANDLER_CONSUMED:
5332                         ret = NET_RX_SUCCESS;
5333                         goto out;
5334                 case RX_HANDLER_ANOTHER:
5335                         goto another_round;
5336                 case RX_HANDLER_EXACT:
5337                         deliver_exact = true;
5338                         break;
5339                 case RX_HANDLER_PASS:
5340                         break;
5341                 default:
5342                         BUG();
5343                 }
5344         }
5345
5346         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5347 check_vlan_id:
5348                 if (skb_vlan_tag_get_id(skb)) {
5349                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5350                          * find vlan device.
5351                          */
5352                         skb->pkt_type = PACKET_OTHERHOST;
5353                 } else if (eth_type_vlan(skb->protocol)) {
5354                         /* Outer header is 802.1P with vlan 0, inner header is
5355                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5356                          * not find vlan dev for vlan id 0.
5357                          */
5358                         __vlan_hwaccel_clear_tag(skb);
5359                         skb = skb_vlan_untag(skb);
5360                         if (unlikely(!skb))
5361                                 goto out;
5362                         if (vlan_do_receive(&skb))
5363                                 /* After stripping off 802.1P header with vlan 0
5364                                  * vlan dev is found for inner header.
5365                                  */
5366                                 goto another_round;
5367                         else if (unlikely(!skb))
5368                                 goto out;
5369                         else
5370                                 /* We have stripped outer 802.1P vlan 0 header.
5371                                  * But could not find vlan dev.
5372                                  * check again for vlan id to set OTHERHOST.
5373                                  */
5374                                 goto check_vlan_id;
5375                 }
5376                 /* Note: we might in the future use prio bits
5377                  * and set skb->priority like in vlan_do_receive()
5378                  * For the time being, just ignore Priority Code Point
5379                  */
5380                 __vlan_hwaccel_clear_tag(skb);
5381         }
5382
5383         type = skb->protocol;
5384
5385         /* deliver only exact match when indicated */
5386         if (likely(!deliver_exact)) {
5387                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5388                                        &ptype_base[ntohs(type) &
5389                                                    PTYPE_HASH_MASK]);
5390         }
5391
5392         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5393                                &orig_dev->ptype_specific);
5394
5395         if (unlikely(skb->dev != orig_dev)) {
5396                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5397                                        &skb->dev->ptype_specific);
5398         }
5399
5400         if (pt_prev) {
5401                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5402                         goto drop;
5403                 *ppt_prev = pt_prev;
5404         } else {
5405 drop:
5406                 if (!deliver_exact)
5407                         atomic_long_inc(&skb->dev->rx_dropped);
5408                 else
5409                         atomic_long_inc(&skb->dev->rx_nohandler);
5410                 kfree_skb(skb);
5411                 /* Jamal, now you will not able to escape explaining
5412                  * me how you were going to use this. :-)
5413                  */
5414                 ret = NET_RX_DROP;
5415         }
5416
5417 out:
5418         /* The invariant here is that if *ppt_prev is not NULL
5419          * then skb should also be non-NULL.
5420          *
5421          * Apparently *ppt_prev assignment above holds this invariant due to
5422          * skb dereferencing near it.
5423          */
5424         *pskb = skb;
5425         return ret;
5426 }
5427
5428 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5429 {
5430         struct net_device *orig_dev = skb->dev;
5431         struct packet_type *pt_prev = NULL;
5432         int ret;
5433
5434         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5435         if (pt_prev)
5436                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5437                                          skb->dev, pt_prev, orig_dev);
5438         return ret;
5439 }
5440
5441 /**
5442  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5443  *      @skb: buffer to process
5444  *
5445  *      More direct receive version of netif_receive_skb().  It should
5446  *      only be used by callers that have a need to skip RPS and Generic XDP.
5447  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5448  *
5449  *      This function may only be called from softirq context and interrupts
5450  *      should be enabled.
5451  *
5452  *      Return values (usually ignored):
5453  *      NET_RX_SUCCESS: no congestion
5454  *      NET_RX_DROP: packet was dropped
5455  */
5456 int netif_receive_skb_core(struct sk_buff *skb)
5457 {
5458         int ret;
5459
5460         rcu_read_lock();
5461         ret = __netif_receive_skb_one_core(skb, false);
5462         rcu_read_unlock();
5463
5464         return ret;
5465 }
5466 EXPORT_SYMBOL(netif_receive_skb_core);
5467
5468 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5469                                                   struct packet_type *pt_prev,
5470                                                   struct net_device *orig_dev)
5471 {
5472         struct sk_buff *skb, *next;
5473
5474         if (!pt_prev)
5475                 return;
5476         if (list_empty(head))
5477                 return;
5478         if (pt_prev->list_func != NULL)
5479                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5480                                    ip_list_rcv, head, pt_prev, orig_dev);
5481         else
5482                 list_for_each_entry_safe(skb, next, head, list) {
5483                         skb_list_del_init(skb);
5484                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5485                 }
5486 }
5487
5488 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5489 {
5490         /* Fast-path assumptions:
5491          * - There is no RX handler.
5492          * - Only one packet_type matches.
5493          * If either of these fails, we will end up doing some per-packet
5494          * processing in-line, then handling the 'last ptype' for the whole
5495          * sublist.  This can't cause out-of-order delivery to any single ptype,
5496          * because the 'last ptype' must be constant across the sublist, and all
5497          * other ptypes are handled per-packet.
5498          */
5499         /* Current (common) ptype of sublist */
5500         struct packet_type *pt_curr = NULL;
5501         /* Current (common) orig_dev of sublist */
5502         struct net_device *od_curr = NULL;
5503         struct list_head sublist;
5504         struct sk_buff *skb, *next;
5505
5506         INIT_LIST_HEAD(&sublist);
5507         list_for_each_entry_safe(skb, next, head, list) {
5508                 struct net_device *orig_dev = skb->dev;
5509                 struct packet_type *pt_prev = NULL;
5510
5511                 skb_list_del_init(skb);
5512                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5513                 if (!pt_prev)
5514                         continue;
5515                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5516                         /* dispatch old sublist */
5517                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5518                         /* start new sublist */
5519                         INIT_LIST_HEAD(&sublist);
5520                         pt_curr = pt_prev;
5521                         od_curr = orig_dev;
5522                 }
5523                 list_add_tail(&skb->list, &sublist);
5524         }
5525
5526         /* dispatch final sublist */
5527         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5528 }
5529
5530 static int __netif_receive_skb(struct sk_buff *skb)
5531 {
5532         int ret;
5533
5534         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5535                 unsigned int noreclaim_flag;
5536
5537                 /*
5538                  * PFMEMALLOC skbs are special, they should
5539                  * - be delivered to SOCK_MEMALLOC sockets only
5540                  * - stay away from userspace
5541                  * - have bounded memory usage
5542                  *
5543                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5544                  * context down to all allocation sites.
5545                  */
5546                 noreclaim_flag = memalloc_noreclaim_save();
5547                 ret = __netif_receive_skb_one_core(skb, true);
5548                 memalloc_noreclaim_restore(noreclaim_flag);
5549         } else
5550                 ret = __netif_receive_skb_one_core(skb, false);
5551
5552         return ret;
5553 }
5554
5555 static void __netif_receive_skb_list(struct list_head *head)
5556 {
5557         unsigned long noreclaim_flag = 0;
5558         struct sk_buff *skb, *next;
5559         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5560
5561         list_for_each_entry_safe(skb, next, head, list) {
5562                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5563                         struct list_head sublist;
5564
5565                         /* Handle the previous sublist */
5566                         list_cut_before(&sublist, head, &skb->list);
5567                         if (!list_empty(&sublist))
5568                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5569                         pfmemalloc = !pfmemalloc;
5570                         /* See comments in __netif_receive_skb */
5571                         if (pfmemalloc)
5572                                 noreclaim_flag = memalloc_noreclaim_save();
5573                         else
5574                                 memalloc_noreclaim_restore(noreclaim_flag);
5575                 }
5576         }
5577         /* Handle the remaining sublist */
5578         if (!list_empty(head))
5579                 __netif_receive_skb_list_core(head, pfmemalloc);
5580         /* Restore pflags */
5581         if (pfmemalloc)
5582                 memalloc_noreclaim_restore(noreclaim_flag);
5583 }
5584
5585 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5586 {
5587         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5588         struct bpf_prog *new = xdp->prog;
5589         int ret = 0;
5590
5591         switch (xdp->command) {
5592         case XDP_SETUP_PROG:
5593                 rcu_assign_pointer(dev->xdp_prog, new);
5594                 if (old)
5595                         bpf_prog_put(old);
5596
5597                 if (old && !new) {
5598                         static_branch_dec(&generic_xdp_needed_key);
5599                 } else if (new && !old) {
5600                         static_branch_inc(&generic_xdp_needed_key);
5601                         dev_disable_lro(dev);
5602                         dev_disable_gro_hw(dev);
5603                 }
5604                 break;
5605
5606         default:
5607                 ret = -EINVAL;
5608                 break;
5609         }
5610
5611         return ret;
5612 }
5613
5614 static int netif_receive_skb_internal(struct sk_buff *skb)
5615 {
5616         int ret;
5617
5618         net_timestamp_check(netdev_tstamp_prequeue, skb);
5619
5620         if (skb_defer_rx_timestamp(skb))
5621                 return NET_RX_SUCCESS;
5622
5623         rcu_read_lock();
5624 #ifdef CONFIG_RPS
5625         if (static_branch_unlikely(&rps_needed)) {
5626                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5627                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5628
5629                 if (cpu >= 0) {
5630                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5631                         rcu_read_unlock();
5632                         return ret;
5633                 }
5634         }
5635 #endif
5636         ret = __netif_receive_skb(skb);
5637         rcu_read_unlock();
5638         return ret;
5639 }
5640
5641 static void netif_receive_skb_list_internal(struct list_head *head)
5642 {
5643         struct sk_buff *skb, *next;
5644         struct list_head sublist;
5645
5646         INIT_LIST_HEAD(&sublist);
5647         list_for_each_entry_safe(skb, next, head, list) {
5648                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5649                 skb_list_del_init(skb);
5650                 if (!skb_defer_rx_timestamp(skb))
5651                         list_add_tail(&skb->list, &sublist);
5652         }
5653         list_splice_init(&sublist, head);
5654
5655         rcu_read_lock();
5656 #ifdef CONFIG_RPS
5657         if (static_branch_unlikely(&rps_needed)) {
5658                 list_for_each_entry_safe(skb, next, head, list) {
5659                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5660                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5661
5662                         if (cpu >= 0) {
5663                                 /* Will be handled, remove from list */
5664                                 skb_list_del_init(skb);
5665                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5666                         }
5667                 }
5668         }
5669 #endif
5670         __netif_receive_skb_list(head);
5671         rcu_read_unlock();
5672 }
5673
5674 /**
5675  *      netif_receive_skb - process receive buffer from network
5676  *      @skb: buffer to process
5677  *
5678  *      netif_receive_skb() is the main receive data processing function.
5679  *      It always succeeds. The buffer may be dropped during processing
5680  *      for congestion control or by the protocol layers.
5681  *
5682  *      This function may only be called from softirq context and interrupts
5683  *      should be enabled.
5684  *
5685  *      Return values (usually ignored):
5686  *      NET_RX_SUCCESS: no congestion
5687  *      NET_RX_DROP: packet was dropped
5688  */
5689 int netif_receive_skb(struct sk_buff *skb)
5690 {
5691         int ret;
5692
5693         trace_netif_receive_skb_entry(skb);
5694
5695         ret = netif_receive_skb_internal(skb);
5696         trace_netif_receive_skb_exit(ret);
5697
5698         return ret;
5699 }
5700 EXPORT_SYMBOL(netif_receive_skb);
5701
5702 /**
5703  *      netif_receive_skb_list - process many receive buffers from network
5704  *      @head: list of skbs to process.
5705  *
5706  *      Since return value of netif_receive_skb() is normally ignored, and
5707  *      wouldn't be meaningful for a list, this function returns void.
5708  *
5709  *      This function may only be called from softirq context and interrupts
5710  *      should be enabled.
5711  */
5712 void netif_receive_skb_list(struct list_head *head)
5713 {
5714         struct sk_buff *skb;
5715
5716         if (list_empty(head))
5717                 return;
5718         if (trace_netif_receive_skb_list_entry_enabled()) {
5719                 list_for_each_entry(skb, head, list)
5720                         trace_netif_receive_skb_list_entry(skb);
5721         }
5722         netif_receive_skb_list_internal(head);
5723         trace_netif_receive_skb_list_exit(0);
5724 }
5725 EXPORT_SYMBOL(netif_receive_skb_list);
5726
5727 static DEFINE_PER_CPU(struct work_struct, flush_works);
5728
5729 /* Network device is going away, flush any packets still pending */
5730 static void flush_backlog(struct work_struct *work)
5731 {
5732         struct sk_buff *skb, *tmp;
5733         struct softnet_data *sd;
5734
5735         local_bh_disable();
5736         sd = this_cpu_ptr(&softnet_data);
5737
5738         local_irq_disable();
5739         rps_lock(sd);
5740         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5741                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5742                         __skb_unlink(skb, &sd->input_pkt_queue);
5743                         dev_kfree_skb_irq(skb);
5744                         input_queue_head_incr(sd);
5745                 }
5746         }
5747         rps_unlock(sd);
5748         local_irq_enable();
5749
5750         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5751                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5752                         __skb_unlink(skb, &sd->process_queue);
5753                         kfree_skb(skb);
5754                         input_queue_head_incr(sd);
5755                 }
5756         }
5757         local_bh_enable();
5758 }
5759
5760 static bool flush_required(int cpu)
5761 {
5762 #if IS_ENABLED(CONFIG_RPS)
5763         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5764         bool do_flush;
5765
5766         local_irq_disable();
5767         rps_lock(sd);
5768
5769         /* as insertion into process_queue happens with the rps lock held,
5770          * process_queue access may race only with dequeue
5771          */
5772         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5773                    !skb_queue_empty_lockless(&sd->process_queue);
5774         rps_unlock(sd);
5775         local_irq_enable();
5776
5777         return do_flush;
5778 #endif
5779         /* without RPS we can't safely check input_pkt_queue: during a
5780          * concurrent remote skb_queue_splice() we can detect as empty both
5781          * input_pkt_queue and process_queue even if the latter could end-up
5782          * containing a lot of packets.
5783          */
5784         return true;
5785 }
5786
5787 static void flush_all_backlogs(void)
5788 {
5789         static cpumask_t flush_cpus;
5790         unsigned int cpu;
5791
5792         /* since we are under rtnl lock protection we can use static data
5793          * for the cpumask and avoid allocating on stack the possibly
5794          * large mask
5795          */
5796         ASSERT_RTNL();
5797
5798         cpus_read_lock();
5799
5800         cpumask_clear(&flush_cpus);
5801         for_each_online_cpu(cpu) {
5802                 if (flush_required(cpu)) {
5803                         queue_work_on(cpu, system_highpri_wq,
5804                                       per_cpu_ptr(&flush_works, cpu));
5805                         cpumask_set_cpu(cpu, &flush_cpus);
5806                 }
5807         }
5808
5809         /* we can have in flight packet[s] on the cpus we are not flushing,
5810          * synchronize_net() in unregister_netdevice_many() will take care of
5811          * them
5812          */
5813         for_each_cpu(cpu, &flush_cpus)
5814                 flush_work(per_cpu_ptr(&flush_works, cpu));
5815
5816         cpus_read_unlock();
5817 }
5818
5819 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5820 static void gro_normal_list(struct napi_struct *napi)
5821 {
5822         if (!napi->rx_count)
5823                 return;
5824         netif_receive_skb_list_internal(&napi->rx_list);
5825         INIT_LIST_HEAD(&napi->rx_list);
5826         napi->rx_count = 0;
5827 }
5828
5829 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5830  * pass the whole batch up to the stack.
5831  */
5832 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5833 {
5834         list_add_tail(&skb->list, &napi->rx_list);
5835         napi->rx_count += segs;
5836         if (napi->rx_count >= gro_normal_batch)
5837                 gro_normal_list(napi);
5838 }
5839
5840 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5841 {
5842         struct packet_offload *ptype;
5843         __be16 type = skb->protocol;
5844         struct list_head *head = &offload_base;
5845         int err = -ENOENT;
5846
5847         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5848
5849         if (NAPI_GRO_CB(skb)->count == 1) {
5850                 skb_shinfo(skb)->gso_size = 0;
5851                 goto out;
5852         }
5853
5854         rcu_read_lock();
5855         list_for_each_entry_rcu(ptype, head, list) {
5856                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5857                         continue;
5858
5859                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5860                                          ipv6_gro_complete, inet_gro_complete,
5861                                          skb, 0);
5862                 break;
5863         }
5864         rcu_read_unlock();
5865
5866         if (err) {
5867                 WARN_ON(&ptype->list == head);
5868                 kfree_skb(skb);
5869                 return NET_RX_SUCCESS;
5870         }
5871
5872 out:
5873         gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5874         return NET_RX_SUCCESS;
5875 }
5876
5877 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5878                                    bool flush_old)
5879 {
5880         struct list_head *head = &napi->gro_hash[index].list;
5881         struct sk_buff *skb, *p;
5882
5883         list_for_each_entry_safe_reverse(skb, p, head, list) {
5884                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5885                         return;
5886                 skb_list_del_init(skb);
5887                 napi_gro_complete(napi, skb);
5888                 napi->gro_hash[index].count--;
5889         }
5890
5891         if (!napi->gro_hash[index].count)
5892                 __clear_bit(index, &napi->gro_bitmask);
5893 }
5894
5895 /* napi->gro_hash[].list contains packets ordered by age.
5896  * youngest packets at the head of it.
5897  * Complete skbs in reverse order to reduce latencies.
5898  */
5899 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5900 {
5901         unsigned long bitmask = napi->gro_bitmask;
5902         unsigned int i, base = ~0U;
5903
5904         while ((i = ffs(bitmask)) != 0) {
5905                 bitmask >>= i;
5906                 base += i;
5907                 __napi_gro_flush_chain(napi, base, flush_old);
5908         }
5909 }
5910 EXPORT_SYMBOL(napi_gro_flush);
5911
5912 static void gro_list_prepare(const struct list_head *head,
5913                              const struct sk_buff *skb)
5914 {
5915         unsigned int maclen = skb->dev->hard_header_len;
5916         u32 hash = skb_get_hash_raw(skb);
5917         struct sk_buff *p;
5918
5919         list_for_each_entry(p, head, list) {
5920                 unsigned long diffs;
5921
5922                 NAPI_GRO_CB(p)->flush = 0;
5923
5924                 if (hash != skb_get_hash_raw(p)) {
5925                         NAPI_GRO_CB(p)->same_flow = 0;
5926                         continue;
5927                 }
5928
5929                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5930                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5931                 if (skb_vlan_tag_present(p))
5932                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5933                 diffs |= skb_metadata_differs(p, skb);
5934                 if (maclen == ETH_HLEN)
5935                         diffs |= compare_ether_header(skb_mac_header(p),
5936                                                       skb_mac_header(skb));
5937                 else if (!diffs)
5938                         diffs = memcmp(skb_mac_header(p),
5939                                        skb_mac_header(skb),
5940                                        maclen);
5941
5942                 /* in most common scenarions 'slow_gro' is 0
5943                  * otherwise we are already on some slower paths
5944                  * either skip all the infrequent tests altogether or
5945                  * avoid trying too hard to skip each of them individually
5946                  */
5947                 if (!diffs && unlikely(skb->slow_gro | p->slow_gro)) {
5948 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5949                         struct tc_skb_ext *skb_ext;
5950                         struct tc_skb_ext *p_ext;
5951 #endif
5952
5953                         diffs |= p->sk != skb->sk;
5954                         diffs |= skb_metadata_dst_cmp(p, skb);
5955                         diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5956
5957 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5958                         skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5959                         p_ext = skb_ext_find(p, TC_SKB_EXT);
5960
5961                         diffs |= (!!p_ext) ^ (!!skb_ext);
5962                         if (!diffs && unlikely(skb_ext))
5963                                 diffs |= p_ext->chain ^ skb_ext->chain;
5964 #endif
5965                 }
5966
5967                 NAPI_GRO_CB(p)->same_flow = !diffs;
5968         }
5969 }
5970
5971 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5972 {
5973         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5974         const skb_frag_t *frag0 = &pinfo->frags[0];
5975
5976         NAPI_GRO_CB(skb)->data_offset = 0;
5977         NAPI_GRO_CB(skb)->frag0 = NULL;
5978         NAPI_GRO_CB(skb)->frag0_len = 0;
5979
5980         if (!skb_headlen(skb) && pinfo->nr_frags &&
5981             !PageHighMem(skb_frag_page(frag0)) &&
5982             (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
5983                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5984                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5985                                                     skb_frag_size(frag0),
5986                                                     skb->end - skb->tail);
5987         }
5988 }
5989
5990 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5991 {
5992         struct skb_shared_info *pinfo = skb_shinfo(skb);
5993
5994         BUG_ON(skb->end - skb->tail < grow);
5995
5996         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5997
5998         skb->data_len -= grow;
5999         skb->tail += grow;
6000
6001         skb_frag_off_add(&pinfo->frags[0], grow);
6002         skb_frag_size_sub(&pinfo->frags[0], grow);
6003
6004         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6005                 skb_frag_unref(skb, 0);
6006                 memmove(pinfo->frags, pinfo->frags + 1,
6007                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6008         }
6009 }
6010
6011 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6012 {
6013         struct sk_buff *oldest;
6014
6015         oldest = list_last_entry(head, struct sk_buff, list);
6016
6017         /* We are called with head length >= MAX_GRO_SKBS, so this is
6018          * impossible.
6019          */
6020         if (WARN_ON_ONCE(!oldest))
6021                 return;
6022
6023         /* Do not adjust napi->gro_hash[].count, caller is adding a new
6024          * SKB to the chain.
6025          */
6026         skb_list_del_init(oldest);
6027         napi_gro_complete(napi, oldest);
6028 }
6029
6030 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6031 {
6032         u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6033         struct gro_list *gro_list = &napi->gro_hash[bucket];
6034         struct list_head *head = &offload_base;
6035         struct packet_offload *ptype;
6036         __be16 type = skb->protocol;
6037         struct sk_buff *pp = NULL;
6038         enum gro_result ret;
6039         int same_flow;
6040         int grow;
6041
6042         if (netif_elide_gro(skb->dev))
6043                 goto normal;
6044
6045         gro_list_prepare(&gro_list->list, skb);
6046
6047         rcu_read_lock();
6048         list_for_each_entry_rcu(ptype, head, list) {
6049                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6050                         continue;
6051
6052                 skb_set_network_header(skb, skb_gro_offset(skb));
6053                 skb_reset_mac_len(skb);
6054                 NAPI_GRO_CB(skb)->same_flow = 0;
6055                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6056                 NAPI_GRO_CB(skb)->free = 0;
6057                 NAPI_GRO_CB(skb)->encap_mark = 0;
6058                 NAPI_GRO_CB(skb)->recursion_counter = 0;
6059                 NAPI_GRO_CB(skb)->is_fou = 0;
6060                 NAPI_GRO_CB(skb)->is_atomic = 1;
6061                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6062
6063                 /* Setup for GRO checksum validation */
6064                 switch (skb->ip_summed) {
6065                 case CHECKSUM_COMPLETE:
6066                         NAPI_GRO_CB(skb)->csum = skb->csum;
6067                         NAPI_GRO_CB(skb)->csum_valid = 1;
6068                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6069                         break;
6070                 case CHECKSUM_UNNECESSARY:
6071                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6072                         NAPI_GRO_CB(skb)->csum_valid = 0;
6073                         break;
6074                 default:
6075                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6076                         NAPI_GRO_CB(skb)->csum_valid = 0;
6077                 }
6078
6079                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6080                                         ipv6_gro_receive, inet_gro_receive,
6081                                         &gro_list->list, skb);
6082                 break;
6083         }
6084         rcu_read_unlock();
6085
6086         if (&ptype->list == head)
6087                 goto normal;
6088
6089         if (PTR_ERR(pp) == -EINPROGRESS) {
6090                 ret = GRO_CONSUMED;
6091                 goto ok;
6092         }
6093
6094         same_flow = NAPI_GRO_CB(skb)->same_flow;
6095         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6096
6097         if (pp) {
6098                 skb_list_del_init(pp);
6099                 napi_gro_complete(napi, pp);
6100                 gro_list->count--;
6101         }
6102
6103         if (same_flow)
6104                 goto ok;
6105
6106         if (NAPI_GRO_CB(skb)->flush)
6107                 goto normal;
6108
6109         if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6110                 gro_flush_oldest(napi, &gro_list->list);
6111         else
6112                 gro_list->count++;
6113
6114         NAPI_GRO_CB(skb)->count = 1;
6115         NAPI_GRO_CB(skb)->age = jiffies;
6116         NAPI_GRO_CB(skb)->last = skb;
6117         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6118         list_add(&skb->list, &gro_list->list);
6119         ret = GRO_HELD;
6120
6121 pull:
6122         grow = skb_gro_offset(skb) - skb_headlen(skb);
6123         if (grow > 0)
6124                 gro_pull_from_frag0(skb, grow);
6125 ok:
6126         if (gro_list->count) {
6127                 if (!test_bit(bucket, &napi->gro_bitmask))
6128                         __set_bit(bucket, &napi->gro_bitmask);
6129         } else if (test_bit(bucket, &napi->gro_bitmask)) {
6130                 __clear_bit(bucket, &napi->gro_bitmask);
6131         }
6132
6133         return ret;
6134
6135 normal:
6136         ret = GRO_NORMAL;
6137         goto pull;
6138 }
6139
6140 struct packet_offload *gro_find_receive_by_type(__be16 type)
6141 {
6142         struct list_head *offload_head = &offload_base;
6143         struct packet_offload *ptype;
6144
6145         list_for_each_entry_rcu(ptype, offload_head, list) {
6146                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6147                         continue;
6148                 return ptype;
6149         }
6150         return NULL;
6151 }
6152 EXPORT_SYMBOL(gro_find_receive_by_type);
6153
6154 struct packet_offload *gro_find_complete_by_type(__be16 type)
6155 {
6156         struct list_head *offload_head = &offload_base;
6157         struct packet_offload *ptype;
6158
6159         list_for_each_entry_rcu(ptype, offload_head, list) {
6160                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6161                         continue;
6162                 return ptype;
6163         }
6164         return NULL;
6165 }
6166 EXPORT_SYMBOL(gro_find_complete_by_type);
6167
6168 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6169                                     struct sk_buff *skb,
6170                                     gro_result_t ret)
6171 {
6172         switch (ret) {
6173         case GRO_NORMAL:
6174                 gro_normal_one(napi, skb, 1);
6175                 break;
6176
6177         case GRO_MERGED_FREE:
6178                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6179                         napi_skb_free_stolen_head(skb);
6180                 else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6181                         __kfree_skb(skb);
6182                 else
6183                         __kfree_skb_defer(skb);
6184                 break;
6185
6186         case GRO_HELD:
6187         case GRO_MERGED:
6188         case GRO_CONSUMED:
6189                 break;
6190         }
6191
6192         return ret;
6193 }
6194
6195 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6196 {
6197         gro_result_t ret;
6198
6199         skb_mark_napi_id(skb, napi);
6200         trace_napi_gro_receive_entry(skb);
6201
6202         skb_gro_reset_offset(skb, 0);
6203
6204         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6205         trace_napi_gro_receive_exit(ret);
6206
6207         return ret;
6208 }
6209 EXPORT_SYMBOL(napi_gro_receive);
6210
6211 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6212 {
6213         if (unlikely(skb->pfmemalloc)) {
6214                 consume_skb(skb);
6215                 return;
6216         }
6217         __skb_pull(skb, skb_headlen(skb));
6218         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6219         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6220         __vlan_hwaccel_clear_tag(skb);
6221         skb->dev = napi->dev;
6222         skb->skb_iif = 0;
6223
6224         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6225         skb->pkt_type = PACKET_HOST;
6226
6227         skb->encapsulation = 0;
6228         skb_shinfo(skb)->gso_type = 0;
6229         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6230         if (unlikely(skb->slow_gro)) {
6231                 skb_orphan(skb);
6232                 skb_ext_reset(skb);
6233                 nf_reset_ct(skb);
6234                 skb->slow_gro = 0;
6235         }
6236
6237         napi->skb = skb;
6238 }
6239
6240 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6241 {
6242         struct sk_buff *skb = napi->skb;
6243
6244         if (!skb) {
6245                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6246                 if (skb) {
6247                         napi->skb = skb;
6248                         skb_mark_napi_id(skb, napi);
6249                 }
6250         }
6251         return skb;
6252 }
6253 EXPORT_SYMBOL(napi_get_frags);
6254
6255 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6256                                       struct sk_buff *skb,
6257                                       gro_result_t ret)
6258 {
6259         switch (ret) {
6260         case GRO_NORMAL:
6261         case GRO_HELD:
6262                 __skb_push(skb, ETH_HLEN);
6263                 skb->protocol = eth_type_trans(skb, skb->dev);
6264                 if (ret == GRO_NORMAL)
6265                         gro_normal_one(napi, skb, 1);
6266                 break;
6267
6268         case GRO_MERGED_FREE:
6269                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6270                         napi_skb_free_stolen_head(skb);
6271                 else
6272                         napi_reuse_skb(napi, skb);
6273                 break;
6274
6275         case GRO_MERGED:
6276         case GRO_CONSUMED:
6277                 break;
6278         }
6279
6280         return ret;
6281 }
6282
6283 /* Upper GRO stack assumes network header starts at gro_offset=0
6284  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6285  * We copy ethernet header into skb->data to have a common layout.
6286  */
6287 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6288 {
6289         struct sk_buff *skb = napi->skb;
6290         const struct ethhdr *eth;
6291         unsigned int hlen = sizeof(*eth);
6292
6293         napi->skb = NULL;
6294
6295         skb_reset_mac_header(skb);
6296         skb_gro_reset_offset(skb, hlen);
6297
6298         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6299                 eth = skb_gro_header_slow(skb, hlen, 0);
6300                 if (unlikely(!eth)) {
6301                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6302                                              __func__, napi->dev->name);
6303                         napi_reuse_skb(napi, skb);
6304                         return NULL;
6305                 }
6306         } else {
6307                 eth = (const struct ethhdr *)skb->data;
6308                 gro_pull_from_frag0(skb, hlen);
6309                 NAPI_GRO_CB(skb)->frag0 += hlen;
6310                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6311         }
6312         __skb_pull(skb, hlen);
6313
6314         /*
6315          * This works because the only protocols we care about don't require
6316          * special handling.
6317          * We'll fix it up properly in napi_frags_finish()
6318          */
6319         skb->protocol = eth->h_proto;
6320
6321         return skb;
6322 }
6323
6324 gro_result_t napi_gro_frags(struct napi_struct *napi)
6325 {
6326         gro_result_t ret;
6327         struct sk_buff *skb = napi_frags_skb(napi);
6328
6329         trace_napi_gro_frags_entry(skb);
6330
6331         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6332         trace_napi_gro_frags_exit(ret);
6333
6334         return ret;
6335 }
6336 EXPORT_SYMBOL(napi_gro_frags);
6337
6338 /* Compute the checksum from gro_offset and return the folded value
6339  * after adding in any pseudo checksum.
6340  */
6341 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6342 {
6343         __wsum wsum;
6344         __sum16 sum;
6345
6346         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6347
6348         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6349         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6350         /* See comments in __skb_checksum_complete(). */
6351         if (likely(!sum)) {
6352                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6353                     !skb->csum_complete_sw)
6354                         netdev_rx_csum_fault(skb->dev, skb);
6355         }
6356
6357         NAPI_GRO_CB(skb)->csum = wsum;
6358         NAPI_GRO_CB(skb)->csum_valid = 1;
6359
6360         return sum;
6361 }
6362 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6363
6364 static void net_rps_send_ipi(struct softnet_data *remsd)
6365 {
6366 #ifdef CONFIG_RPS
6367         while (remsd) {
6368                 struct softnet_data *next = remsd->rps_ipi_next;
6369
6370                 if (cpu_online(remsd->cpu))
6371                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6372                 remsd = next;
6373         }
6374 #endif
6375 }
6376
6377 /*
6378  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6379  * Note: called with local irq disabled, but exits with local irq enabled.
6380  */
6381 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6382 {
6383 #ifdef CONFIG_RPS
6384         struct softnet_data *remsd = sd->rps_ipi_list;
6385
6386         if (remsd) {
6387                 sd->rps_ipi_list = NULL;
6388
6389                 local_irq_enable();
6390
6391                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6392                 net_rps_send_ipi(remsd);
6393         } else
6394 #endif
6395                 local_irq_enable();
6396 }
6397
6398 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6399 {
6400 #ifdef CONFIG_RPS
6401         return sd->rps_ipi_list != NULL;
6402 #else
6403         return false;
6404 #endif
6405 }
6406
6407 static int process_backlog(struct napi_struct *napi, int quota)
6408 {
6409         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6410         bool again = true;
6411         int work = 0;
6412
6413         /* Check if we have pending ipi, its better to send them now,
6414          * not waiting net_rx_action() end.
6415          */
6416         if (sd_has_rps_ipi_waiting(sd)) {
6417                 local_irq_disable();
6418                 net_rps_action_and_irq_enable(sd);
6419         }
6420
6421         napi->weight = dev_rx_weight;
6422         while (again) {
6423                 struct sk_buff *skb;
6424
6425                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6426                         rcu_read_lock();
6427                         __netif_receive_skb(skb);
6428                         rcu_read_unlock();
6429                         input_queue_head_incr(sd);
6430                         if (++work >= quota)
6431                                 return work;
6432
6433                 }
6434
6435                 local_irq_disable();
6436                 rps_lock(sd);
6437                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6438                         /*
6439                          * Inline a custom version of __napi_complete().
6440                          * only current cpu owns and manipulates this napi,
6441                          * and NAPI_STATE_SCHED is the only possible flag set
6442                          * on backlog.
6443                          * We can use a plain write instead of clear_bit(),
6444                          * and we dont need an smp_mb() memory barrier.
6445                          */
6446                         napi->state = 0;
6447                         again = false;
6448                 } else {
6449                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6450                                                    &sd->process_queue);
6451                 }
6452                 rps_unlock(sd);
6453                 local_irq_enable();
6454         }
6455
6456         return work;
6457 }
6458
6459 /**
6460  * __napi_schedule - schedule for receive
6461  * @n: entry to schedule
6462  *
6463  * The entry's receive function will be scheduled to run.
6464  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6465  */
6466 void __napi_schedule(struct napi_struct *n)
6467 {
6468         unsigned long flags;
6469
6470         local_irq_save(flags);
6471         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6472         local_irq_restore(flags);
6473 }
6474 EXPORT_SYMBOL(__napi_schedule);
6475
6476 /**
6477  *      napi_schedule_prep - check if napi can be scheduled
6478  *      @n: napi context
6479  *
6480  * Test if NAPI routine is already running, and if not mark
6481  * it as running.  This is used as a condition variable to
6482  * insure only one NAPI poll instance runs.  We also make
6483  * sure there is no pending NAPI disable.
6484  */
6485 bool napi_schedule_prep(struct napi_struct *n)
6486 {
6487         unsigned long val, new;
6488
6489         do {
6490                 val = READ_ONCE(n->state);
6491                 if (unlikely(val & NAPIF_STATE_DISABLE))
6492                         return false;
6493                 new = val | NAPIF_STATE_SCHED;
6494
6495                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6496                  * This was suggested by Alexander Duyck, as compiler
6497                  * emits better code than :
6498                  * if (val & NAPIF_STATE_SCHED)
6499                  *     new |= NAPIF_STATE_MISSED;
6500                  */
6501                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6502                                                    NAPIF_STATE_MISSED;
6503         } while (cmpxchg(&n->state, val, new) != val);
6504
6505         return !(val & NAPIF_STATE_SCHED);
6506 }
6507 EXPORT_SYMBOL(napi_schedule_prep);
6508
6509 /**
6510  * __napi_schedule_irqoff - schedule for receive
6511  * @n: entry to schedule
6512  *
6513  * Variant of __napi_schedule() assuming hard irqs are masked.
6514  *
6515  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6516  * because the interrupt disabled assumption might not be true
6517  * due to force-threaded interrupts and spinlock substitution.
6518  */
6519 void __napi_schedule_irqoff(struct napi_struct *n)
6520 {
6521         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6522                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6523         else
6524                 __napi_schedule(n);
6525 }
6526 EXPORT_SYMBOL(__napi_schedule_irqoff);
6527
6528 bool napi_complete_done(struct napi_struct *n, int work_done)
6529 {
6530         unsigned long flags, val, new, timeout = 0;
6531         bool ret = true;
6532
6533         /*
6534          * 1) Don't let napi dequeue from the cpu poll list
6535          *    just in case its running on a different cpu.
6536          * 2) If we are busy polling, do nothing here, we have
6537          *    the guarantee we will be called later.
6538          */
6539         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6540                                  NAPIF_STATE_IN_BUSY_POLL)))
6541                 return false;
6542
6543         if (work_done) {
6544                 if (n->gro_bitmask)
6545                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6546                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6547         }
6548         if (n->defer_hard_irqs_count > 0) {
6549                 n->defer_hard_irqs_count--;
6550                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6551                 if (timeout)
6552                         ret = false;
6553         }
6554         if (n->gro_bitmask) {
6555                 /* When the NAPI instance uses a timeout and keeps postponing
6556                  * it, we need to bound somehow the time packets are kept in
6557                  * the GRO layer
6558                  */
6559                 napi_gro_flush(n, !!timeout);
6560         }
6561
6562         gro_normal_list(n);
6563
6564         if (unlikely(!list_empty(&n->poll_list))) {
6565                 /* If n->poll_list is not empty, we need to mask irqs */
6566                 local_irq_save(flags);
6567                 list_del_init(&n->poll_list);
6568                 local_irq_restore(flags);
6569         }
6570
6571         do {
6572                 val = READ_ONCE(n->state);
6573
6574                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6575
6576                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6577                               NAPIF_STATE_SCHED_THREADED |
6578                               NAPIF_STATE_PREFER_BUSY_POLL);
6579
6580                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6581                  * because we will call napi->poll() one more time.
6582                  * This C code was suggested by Alexander Duyck to help gcc.
6583                  */
6584                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6585                                                     NAPIF_STATE_SCHED;
6586         } while (cmpxchg(&n->state, val, new) != val);
6587
6588         if (unlikely(val & NAPIF_STATE_MISSED)) {
6589                 __napi_schedule(n);
6590                 return false;
6591         }
6592
6593         if (timeout)
6594                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6595                               HRTIMER_MODE_REL_PINNED);
6596         return ret;
6597 }
6598 EXPORT_SYMBOL(napi_complete_done);
6599
6600 /* must be called under rcu_read_lock(), as we dont take a reference */
6601 static struct napi_struct *napi_by_id(unsigned int napi_id)
6602 {
6603         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6604         struct napi_struct *napi;
6605
6606         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6607                 if (napi->napi_id == napi_id)
6608                         return napi;
6609
6610         return NULL;
6611 }
6612
6613 #if defined(CONFIG_NET_RX_BUSY_POLL)
6614
6615 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6616 {
6617         if (!skip_schedule) {
6618                 gro_normal_list(napi);
6619                 __napi_schedule(napi);
6620                 return;
6621         }
6622
6623         if (napi->gro_bitmask) {
6624                 /* flush too old packets
6625                  * If HZ < 1000, flush all packets.
6626                  */
6627                 napi_gro_flush(napi, HZ >= 1000);
6628         }
6629
6630         gro_normal_list(napi);
6631         clear_bit(NAPI_STATE_SCHED, &napi->state);
6632 }
6633
6634 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6635                            u16 budget)
6636 {
6637         bool skip_schedule = false;
6638         unsigned long timeout;
6639         int rc;
6640
6641         /* Busy polling means there is a high chance device driver hard irq
6642          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6643          * set in napi_schedule_prep().
6644          * Since we are about to call napi->poll() once more, we can safely
6645          * clear NAPI_STATE_MISSED.
6646          *
6647          * Note: x86 could use a single "lock and ..." instruction
6648          * to perform these two clear_bit()
6649          */
6650         clear_bit(NAPI_STATE_MISSED, &napi->state);
6651         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6652
6653         local_bh_disable();
6654
6655         if (prefer_busy_poll) {
6656                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6657                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6658                 if (napi->defer_hard_irqs_count && timeout) {
6659                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6660                         skip_schedule = true;
6661                 }
6662         }
6663
6664         /* All we really want here is to re-enable device interrupts.
6665          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6666          */
6667         rc = napi->poll(napi, budget);
6668         /* We can't gro_normal_list() here, because napi->poll() might have
6669          * rearmed the napi (napi_complete_done()) in which case it could
6670          * already be running on another CPU.
6671          */
6672         trace_napi_poll(napi, rc, budget);
6673         netpoll_poll_unlock(have_poll_lock);
6674         if (rc == budget)
6675                 __busy_poll_stop(napi, skip_schedule);
6676         local_bh_enable();
6677 }
6678
6679 void napi_busy_loop(unsigned int napi_id,
6680                     bool (*loop_end)(void *, unsigned long),
6681                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6682 {
6683         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6684         int (*napi_poll)(struct napi_struct *napi, int budget);
6685         void *have_poll_lock = NULL;
6686         struct napi_struct *napi;
6687
6688 restart:
6689         napi_poll = NULL;
6690
6691         rcu_read_lock();
6692
6693         napi = napi_by_id(napi_id);
6694         if (!napi)
6695                 goto out;
6696
6697         preempt_disable();
6698         for (;;) {
6699                 int work = 0;
6700
6701                 local_bh_disable();
6702                 if (!napi_poll) {
6703                         unsigned long val = READ_ONCE(napi->state);
6704
6705                         /* If multiple threads are competing for this napi,
6706                          * we avoid dirtying napi->state as much as we can.
6707                          */
6708                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6709                                    NAPIF_STATE_IN_BUSY_POLL)) {
6710                                 if (prefer_busy_poll)
6711                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6712                                 goto count;
6713                         }
6714                         if (cmpxchg(&napi->state, val,
6715                                     val | NAPIF_STATE_IN_BUSY_POLL |
6716                                           NAPIF_STATE_SCHED) != val) {
6717                                 if (prefer_busy_poll)
6718                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6719                                 goto count;
6720                         }
6721                         have_poll_lock = netpoll_poll_lock(napi);
6722                         napi_poll = napi->poll;
6723                 }
6724                 work = napi_poll(napi, budget);
6725                 trace_napi_poll(napi, work, budget);
6726                 gro_normal_list(napi);
6727 count:
6728                 if (work > 0)
6729                         __NET_ADD_STATS(dev_net(napi->dev),
6730                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6731                 local_bh_enable();
6732
6733                 if (!loop_end || loop_end(loop_end_arg, start_time))
6734                         break;
6735
6736                 if (unlikely(need_resched())) {
6737                         if (napi_poll)
6738                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6739                         preempt_enable();
6740                         rcu_read_unlock();
6741                         cond_resched();
6742                         if (loop_end(loop_end_arg, start_time))
6743                                 return;
6744                         goto restart;
6745                 }
6746                 cpu_relax();
6747         }
6748         if (napi_poll)
6749                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6750         preempt_enable();
6751 out:
6752         rcu_read_unlock();
6753 }
6754 EXPORT_SYMBOL(napi_busy_loop);
6755
6756 #endif /* CONFIG_NET_RX_BUSY_POLL */
6757
6758 static void napi_hash_add(struct napi_struct *napi)
6759 {
6760         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6761                 return;
6762
6763         spin_lock(&napi_hash_lock);
6764
6765         /* 0..NR_CPUS range is reserved for sender_cpu use */
6766         do {
6767                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6768                         napi_gen_id = MIN_NAPI_ID;
6769         } while (napi_by_id(napi_gen_id));
6770         napi->napi_id = napi_gen_id;
6771
6772         hlist_add_head_rcu(&napi->napi_hash_node,
6773                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6774
6775         spin_unlock(&napi_hash_lock);
6776 }
6777
6778 /* Warning : caller is responsible to make sure rcu grace period
6779  * is respected before freeing memory containing @napi
6780  */
6781 static void napi_hash_del(struct napi_struct *napi)
6782 {
6783         spin_lock(&napi_hash_lock);
6784
6785         hlist_del_init_rcu(&napi->napi_hash_node);
6786
6787         spin_unlock(&napi_hash_lock);
6788 }
6789
6790 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6791 {
6792         struct napi_struct *napi;
6793
6794         napi = container_of(timer, struct napi_struct, timer);
6795
6796         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6797          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6798          */
6799         if (!napi_disable_pending(napi) &&
6800             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6801                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6802                 __napi_schedule_irqoff(napi);
6803         }
6804
6805         return HRTIMER_NORESTART;
6806 }
6807
6808 static void init_gro_hash(struct napi_struct *napi)
6809 {
6810         int i;
6811
6812         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6813                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6814                 napi->gro_hash[i].count = 0;
6815         }
6816         napi->gro_bitmask = 0;
6817 }
6818
6819 int dev_set_threaded(struct net_device *dev, bool threaded)
6820 {
6821         struct napi_struct *napi;
6822         int err = 0;
6823
6824         if (dev->threaded == threaded)
6825                 return 0;
6826
6827         if (threaded) {
6828                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6829                         if (!napi->thread) {
6830                                 err = napi_kthread_create(napi);
6831                                 if (err) {
6832                                         threaded = false;
6833                                         break;
6834                                 }
6835                         }
6836                 }
6837         }
6838
6839         dev->threaded = threaded;
6840
6841         /* Make sure kthread is created before THREADED bit
6842          * is set.
6843          */
6844         smp_mb__before_atomic();
6845
6846         /* Setting/unsetting threaded mode on a napi might not immediately
6847          * take effect, if the current napi instance is actively being
6848          * polled. In this case, the switch between threaded mode and
6849          * softirq mode will happen in the next round of napi_schedule().
6850          * This should not cause hiccups/stalls to the live traffic.
6851          */
6852         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6853                 if (threaded)
6854                         set_bit(NAPI_STATE_THREADED, &napi->state);
6855                 else
6856                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6857         }
6858
6859         return err;
6860 }
6861 EXPORT_SYMBOL(dev_set_threaded);
6862
6863 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6864                     int (*poll)(struct napi_struct *, int), int weight)
6865 {
6866         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6867                 return;
6868
6869         INIT_LIST_HEAD(&napi->poll_list);
6870         INIT_HLIST_NODE(&napi->napi_hash_node);
6871         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6872         napi->timer.function = napi_watchdog;
6873         init_gro_hash(napi);
6874         napi->skb = NULL;
6875         INIT_LIST_HEAD(&napi->rx_list);
6876         napi->rx_count = 0;
6877         napi->poll = poll;
6878         if (weight > NAPI_POLL_WEIGHT)
6879                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6880                                 weight);
6881         napi->weight = weight;
6882         napi->dev = dev;
6883 #ifdef CONFIG_NETPOLL
6884         napi->poll_owner = -1;
6885 #endif
6886         set_bit(NAPI_STATE_SCHED, &napi->state);
6887         set_bit(NAPI_STATE_NPSVC, &napi->state);
6888         list_add_rcu(&napi->dev_list, &dev->napi_list);
6889         napi_hash_add(napi);
6890         /* Create kthread for this napi if dev->threaded is set.
6891          * Clear dev->threaded if kthread creation failed so that
6892          * threaded mode will not be enabled in napi_enable().
6893          */
6894         if (dev->threaded && napi_kthread_create(napi))
6895                 dev->threaded = 0;
6896 }
6897 EXPORT_SYMBOL(netif_napi_add);
6898
6899 void napi_disable(struct napi_struct *n)
6900 {
6901         might_sleep();
6902         set_bit(NAPI_STATE_DISABLE, &n->state);
6903
6904         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6905                 msleep(1);
6906         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6907                 msleep(1);
6908
6909         hrtimer_cancel(&n->timer);
6910
6911         clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6912         clear_bit(NAPI_STATE_DISABLE, &n->state);
6913         clear_bit(NAPI_STATE_THREADED, &n->state);
6914 }
6915 EXPORT_SYMBOL(napi_disable);
6916
6917 /**
6918  *      napi_enable - enable NAPI scheduling
6919  *      @n: NAPI context
6920  *
6921  * Resume NAPI from being scheduled on this context.
6922  * Must be paired with napi_disable.
6923  */
6924 void napi_enable(struct napi_struct *n)
6925 {
6926         unsigned long val, new;
6927
6928         do {
6929                 val = READ_ONCE(n->state);
6930                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6931
6932                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6933                 if (n->dev->threaded && n->thread)
6934                         new |= NAPIF_STATE_THREADED;
6935         } while (cmpxchg(&n->state, val, new) != val);
6936 }
6937 EXPORT_SYMBOL(napi_enable);
6938
6939 static void flush_gro_hash(struct napi_struct *napi)
6940 {
6941         int i;
6942
6943         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6944                 struct sk_buff *skb, *n;
6945
6946                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6947                         kfree_skb(skb);
6948                 napi->gro_hash[i].count = 0;
6949         }
6950 }
6951
6952 /* Must be called in process context */
6953 void __netif_napi_del(struct napi_struct *napi)
6954 {
6955         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6956                 return;
6957
6958         napi_hash_del(napi);
6959         list_del_rcu(&napi->dev_list);
6960         napi_free_frags(napi);
6961
6962         flush_gro_hash(napi);
6963         napi->gro_bitmask = 0;
6964
6965         if (napi->thread) {
6966                 kthread_stop(napi->thread);
6967                 napi->thread = NULL;
6968         }
6969 }
6970 EXPORT_SYMBOL(__netif_napi_del);
6971
6972 static int __napi_poll(struct napi_struct *n, bool *repoll)
6973 {
6974         int work, weight;
6975
6976         weight = n->weight;
6977
6978         /* This NAPI_STATE_SCHED test is for avoiding a race
6979          * with netpoll's poll_napi().  Only the entity which
6980          * obtains the lock and sees NAPI_STATE_SCHED set will
6981          * actually make the ->poll() call.  Therefore we avoid
6982          * accidentally calling ->poll() when NAPI is not scheduled.
6983          */
6984         work = 0;
6985         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6986                 work = n->poll(n, weight);
6987                 trace_napi_poll(n, work, weight);
6988         }
6989
6990         if (unlikely(work > weight))
6991                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6992                             n->poll, work, weight);
6993
6994         if (likely(work < weight))
6995                 return work;
6996
6997         /* Drivers must not modify the NAPI state if they
6998          * consume the entire weight.  In such cases this code
6999          * still "owns" the NAPI instance and therefore can
7000          * move the instance around on the list at-will.
7001          */
7002         if (unlikely(napi_disable_pending(n))) {
7003                 napi_complete(n);
7004                 return work;
7005         }
7006
7007         /* The NAPI context has more processing work, but busy-polling
7008          * is preferred. Exit early.
7009          */
7010         if (napi_prefer_busy_poll(n)) {
7011                 if (napi_complete_done(n, work)) {
7012                         /* If timeout is not set, we need to make sure
7013                          * that the NAPI is re-scheduled.
7014                          */
7015                         napi_schedule(n);
7016                 }
7017                 return work;
7018         }
7019
7020         if (n->gro_bitmask) {
7021                 /* flush too old packets
7022                  * If HZ < 1000, flush all packets.
7023                  */
7024                 napi_gro_flush(n, HZ >= 1000);
7025         }
7026
7027         gro_normal_list(n);
7028
7029         /* Some drivers may have called napi_schedule
7030          * prior to exhausting their budget.
7031          */
7032         if (unlikely(!list_empty(&n->poll_list))) {
7033                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7034                              n->dev ? n->dev->name : "backlog");
7035                 return work;
7036         }
7037
7038         *repoll = true;
7039
7040         return work;
7041 }
7042
7043 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7044 {
7045         bool do_repoll = false;
7046         void *have;
7047         int work;
7048
7049         list_del_init(&n->poll_list);
7050
7051         have = netpoll_poll_lock(n);
7052
7053         work = __napi_poll(n, &do_repoll);
7054
7055         if (do_repoll)
7056                 list_add_tail(&n->poll_list, repoll);
7057
7058         netpoll_poll_unlock(have);
7059
7060         return work;
7061 }
7062
7063 static int napi_thread_wait(struct napi_struct *napi)
7064 {
7065         bool woken = false;
7066
7067         set_current_state(TASK_INTERRUPTIBLE);
7068
7069         while (!kthread_should_stop()) {
7070                 /* Testing SCHED_THREADED bit here to make sure the current
7071                  * kthread owns this napi and could poll on this napi.
7072                  * Testing SCHED bit is not enough because SCHED bit might be
7073                  * set by some other busy poll thread or by napi_disable().
7074                  */
7075                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7076                         WARN_ON(!list_empty(&napi->poll_list));
7077                         __set_current_state(TASK_RUNNING);
7078                         return 0;
7079                 }
7080
7081                 schedule();
7082                 /* woken being true indicates this thread owns this napi. */
7083                 woken = true;
7084                 set_current_state(TASK_INTERRUPTIBLE);
7085         }
7086         __set_current_state(TASK_RUNNING);
7087
7088         return -1;
7089 }
7090
7091 static int napi_threaded_poll(void *data)
7092 {
7093         struct napi_struct *napi = data;
7094         void *have;
7095
7096         while (!napi_thread_wait(napi)) {
7097                 for (;;) {
7098                         bool repoll = false;
7099
7100                         local_bh_disable();
7101
7102                         have = netpoll_poll_lock(napi);
7103                         __napi_poll(napi, &repoll);
7104                         netpoll_poll_unlock(have);
7105
7106                         local_bh_enable();
7107
7108                         if (!repoll)
7109                                 break;
7110
7111                         cond_resched();
7112                 }
7113         }
7114         return 0;
7115 }
7116
7117 static __latent_entropy void net_rx_action(struct softirq_action *h)
7118 {
7119         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7120         unsigned long time_limit = jiffies +
7121                 usecs_to_jiffies(netdev_budget_usecs);
7122         int budget = netdev_budget;
7123         LIST_HEAD(list);
7124         LIST_HEAD(repoll);
7125
7126         local_irq_disable();
7127         list_splice_init(&sd->poll_list, &list);
7128         local_irq_enable();
7129
7130         for (;;) {
7131                 struct napi_struct *n;
7132
7133                 if (list_empty(&list)) {
7134                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7135                                 return;
7136                         break;
7137                 }
7138
7139                 n = list_first_entry(&list, struct napi_struct, poll_list);
7140                 budget -= napi_poll(n, &repoll);
7141
7142                 /* If softirq window is exhausted then punt.
7143                  * Allow this to run for 2 jiffies since which will allow
7144                  * an average latency of 1.5/HZ.
7145                  */
7146                 if (unlikely(budget <= 0 ||
7147                              time_after_eq(jiffies, time_limit))) {
7148                         sd->time_squeeze++;
7149                         break;
7150                 }
7151         }
7152
7153         local_irq_disable();
7154
7155         list_splice_tail_init(&sd->poll_list, &list);
7156         list_splice_tail(&repoll, &list);
7157         list_splice(&list, &sd->poll_list);
7158         if (!list_empty(&sd->poll_list))
7159                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7160
7161         net_rps_action_and_irq_enable(sd);
7162 }
7163
7164 struct netdev_adjacent {
7165         struct net_device *dev;
7166
7167         /* upper master flag, there can only be one master device per list */
7168         bool master;
7169
7170         /* lookup ignore flag */
7171         bool ignore;
7172
7173         /* counter for the number of times this device was added to us */
7174         u16 ref_nr;
7175
7176         /* private field for the users */
7177         void *private;
7178
7179         struct list_head list;
7180         struct rcu_head rcu;
7181 };
7182
7183 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7184                                                  struct list_head *adj_list)
7185 {
7186         struct netdev_adjacent *adj;
7187
7188         list_for_each_entry(adj, adj_list, list) {
7189                 if (adj->dev == adj_dev)
7190                         return adj;
7191         }
7192         return NULL;
7193 }
7194
7195 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7196                                     struct netdev_nested_priv *priv)
7197 {
7198         struct net_device *dev = (struct net_device *)priv->data;
7199
7200         return upper_dev == dev;
7201 }
7202
7203 /**
7204  * netdev_has_upper_dev - Check if device is linked to an upper device
7205  * @dev: device
7206  * @upper_dev: upper device to check
7207  *
7208  * Find out if a device is linked to specified upper device and return true
7209  * in case it is. Note that this checks only immediate upper device,
7210  * not through a complete stack of devices. The caller must hold the RTNL lock.
7211  */
7212 bool netdev_has_upper_dev(struct net_device *dev,
7213                           struct net_device *upper_dev)
7214 {
7215         struct netdev_nested_priv priv = {
7216                 .data = (void *)upper_dev,
7217         };
7218
7219         ASSERT_RTNL();
7220
7221         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7222                                              &priv);
7223 }
7224 EXPORT_SYMBOL(netdev_has_upper_dev);
7225
7226 /**
7227  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7228  * @dev: device
7229  * @upper_dev: upper device to check
7230  *
7231  * Find out if a device is linked to specified upper device and return true
7232  * in case it is. Note that this checks the entire upper device chain.
7233  * The caller must hold rcu lock.
7234  */
7235
7236 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7237                                   struct net_device *upper_dev)
7238 {
7239         struct netdev_nested_priv priv = {
7240                 .data = (void *)upper_dev,
7241         };
7242
7243         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7244                                                &priv);
7245 }
7246 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7247
7248 /**
7249  * netdev_has_any_upper_dev - Check if device is linked to some device
7250  * @dev: device
7251  *
7252  * Find out if a device is linked to an upper device and return true in case
7253  * it is. The caller must hold the RTNL lock.
7254  */
7255 bool netdev_has_any_upper_dev(struct net_device *dev)
7256 {
7257         ASSERT_RTNL();
7258
7259         return !list_empty(&dev->adj_list.upper);
7260 }
7261 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7262
7263 /**
7264  * netdev_master_upper_dev_get - Get master upper device
7265  * @dev: device
7266  *
7267  * Find a master upper device and return pointer to it or NULL in case
7268  * it's not there. The caller must hold the RTNL lock.
7269  */
7270 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7271 {
7272         struct netdev_adjacent *upper;
7273
7274         ASSERT_RTNL();
7275
7276         if (list_empty(&dev->adj_list.upper))
7277                 return NULL;
7278
7279         upper = list_first_entry(&dev->adj_list.upper,
7280                                  struct netdev_adjacent, list);
7281         if (likely(upper->master))
7282                 return upper->dev;
7283         return NULL;
7284 }
7285 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7286
7287 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7288 {
7289         struct netdev_adjacent *upper;
7290
7291         ASSERT_RTNL();
7292
7293         if (list_empty(&dev->adj_list.upper))
7294                 return NULL;
7295
7296         upper = list_first_entry(&dev->adj_list.upper,
7297                                  struct netdev_adjacent, list);
7298         if (likely(upper->master) && !upper->ignore)
7299                 return upper->dev;
7300         return NULL;
7301 }
7302
7303 /**
7304  * netdev_has_any_lower_dev - Check if device is linked to some device
7305  * @dev: device
7306  *
7307  * Find out if a device is linked to a lower device and return true in case
7308  * it is. The caller must hold the RTNL lock.
7309  */
7310 static bool netdev_has_any_lower_dev(struct net_device *dev)
7311 {
7312         ASSERT_RTNL();
7313
7314         return !list_empty(&dev->adj_list.lower);
7315 }
7316
7317 void *netdev_adjacent_get_private(struct list_head *adj_list)
7318 {
7319         struct netdev_adjacent *adj;
7320
7321         adj = list_entry(adj_list, struct netdev_adjacent, list);
7322
7323         return adj->private;
7324 }
7325 EXPORT_SYMBOL(netdev_adjacent_get_private);
7326
7327 /**
7328  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7329  * @dev: device
7330  * @iter: list_head ** of the current position
7331  *
7332  * Gets the next device from the dev's upper list, starting from iter
7333  * position. The caller must hold RCU read lock.
7334  */
7335 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7336                                                  struct list_head **iter)
7337 {
7338         struct netdev_adjacent *upper;
7339
7340         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7341
7342         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7343
7344         if (&upper->list == &dev->adj_list.upper)
7345                 return NULL;
7346
7347         *iter = &upper->list;
7348
7349         return upper->dev;
7350 }
7351 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7352
7353 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7354                                                   struct list_head **iter,
7355                                                   bool *ignore)
7356 {
7357         struct netdev_adjacent *upper;
7358
7359         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7360
7361         if (&upper->list == &dev->adj_list.upper)
7362                 return NULL;
7363
7364         *iter = &upper->list;
7365         *ignore = upper->ignore;
7366
7367         return upper->dev;
7368 }
7369
7370 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7371                                                     struct list_head **iter)
7372 {
7373         struct netdev_adjacent *upper;
7374
7375         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7376
7377         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7378
7379         if (&upper->list == &dev->adj_list.upper)
7380                 return NULL;
7381
7382         *iter = &upper->list;
7383
7384         return upper->dev;
7385 }
7386
7387 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7388                                        int (*fn)(struct net_device *dev,
7389                                          struct netdev_nested_priv *priv),
7390                                        struct netdev_nested_priv *priv)
7391 {
7392         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7393         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7394         int ret, cur = 0;
7395         bool ignore;
7396
7397         now = dev;
7398         iter = &dev->adj_list.upper;
7399
7400         while (1) {
7401                 if (now != dev) {
7402                         ret = fn(now, priv);
7403                         if (ret)
7404                                 return ret;
7405                 }
7406
7407                 next = NULL;
7408                 while (1) {
7409                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7410                         if (!udev)
7411                                 break;
7412                         if (ignore)
7413                                 continue;
7414
7415                         next = udev;
7416                         niter = &udev->adj_list.upper;
7417                         dev_stack[cur] = now;
7418                         iter_stack[cur++] = iter;
7419                         break;
7420                 }
7421
7422                 if (!next) {
7423                         if (!cur)
7424                                 return 0;
7425                         next = dev_stack[--cur];
7426                         niter = iter_stack[cur];
7427                 }
7428
7429                 now = next;
7430                 iter = niter;
7431         }
7432
7433         return 0;
7434 }
7435
7436 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7437                                   int (*fn)(struct net_device *dev,
7438                                             struct netdev_nested_priv *priv),
7439                                   struct netdev_nested_priv *priv)
7440 {
7441         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7442         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7443         int ret, cur = 0;
7444
7445         now = dev;
7446         iter = &dev->adj_list.upper;
7447
7448         while (1) {
7449                 if (now != dev) {
7450                         ret = fn(now, priv);
7451                         if (ret)
7452                                 return ret;
7453                 }
7454
7455                 next = NULL;
7456                 while (1) {
7457                         udev = netdev_next_upper_dev_rcu(now, &iter);
7458                         if (!udev)
7459                                 break;
7460
7461                         next = udev;
7462                         niter = &udev->adj_list.upper;
7463                         dev_stack[cur] = now;
7464                         iter_stack[cur++] = iter;
7465                         break;
7466                 }
7467
7468                 if (!next) {
7469                         if (!cur)
7470                                 return 0;
7471                         next = dev_stack[--cur];
7472                         niter = iter_stack[cur];
7473                 }
7474
7475                 now = next;
7476                 iter = niter;
7477         }
7478
7479         return 0;
7480 }
7481 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7482
7483 static bool __netdev_has_upper_dev(struct net_device *dev,
7484                                    struct net_device *upper_dev)
7485 {
7486         struct netdev_nested_priv priv = {
7487                 .flags = 0,
7488                 .data = (void *)upper_dev,
7489         };
7490
7491         ASSERT_RTNL();
7492
7493         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7494                                            &priv);
7495 }
7496
7497 /**
7498  * netdev_lower_get_next_private - Get the next ->private from the
7499  *                                 lower neighbour list
7500  * @dev: device
7501  * @iter: list_head ** of the current position
7502  *
7503  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7504  * list, starting from iter position. The caller must hold either hold the
7505  * RTNL lock or its own locking that guarantees that the neighbour lower
7506  * list will remain unchanged.
7507  */
7508 void *netdev_lower_get_next_private(struct net_device *dev,
7509                                     struct list_head **iter)
7510 {
7511         struct netdev_adjacent *lower;
7512
7513         lower = list_entry(*iter, struct netdev_adjacent, list);
7514
7515         if (&lower->list == &dev->adj_list.lower)
7516                 return NULL;
7517
7518         *iter = lower->list.next;
7519
7520         return lower->private;
7521 }
7522 EXPORT_SYMBOL(netdev_lower_get_next_private);
7523
7524 /**
7525  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7526  *                                     lower neighbour list, RCU
7527  *                                     variant
7528  * @dev: device
7529  * @iter: list_head ** of the current position
7530  *
7531  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7532  * list, starting from iter position. The caller must hold RCU read lock.
7533  */
7534 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7535                                         struct list_head **iter)
7536 {
7537         struct netdev_adjacent *lower;
7538
7539         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7540
7541         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7542
7543         if (&lower->list == &dev->adj_list.lower)
7544                 return NULL;
7545
7546         *iter = &lower->list;
7547
7548         return lower->private;
7549 }
7550 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7551
7552 /**
7553  * netdev_lower_get_next - Get the next device from the lower neighbour
7554  *                         list
7555  * @dev: device
7556  * @iter: list_head ** of the current position
7557  *
7558  * Gets the next netdev_adjacent from the dev's lower neighbour
7559  * list, starting from iter position. The caller must hold RTNL lock or
7560  * its own locking that guarantees that the neighbour lower
7561  * list will remain unchanged.
7562  */
7563 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7564 {
7565         struct netdev_adjacent *lower;
7566
7567         lower = list_entry(*iter, struct netdev_adjacent, list);
7568
7569         if (&lower->list == &dev->adj_list.lower)
7570                 return NULL;
7571
7572         *iter = lower->list.next;
7573
7574         return lower->dev;
7575 }
7576 EXPORT_SYMBOL(netdev_lower_get_next);
7577
7578 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7579                                                 struct list_head **iter)
7580 {
7581         struct netdev_adjacent *lower;
7582
7583         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7584
7585         if (&lower->list == &dev->adj_list.lower)
7586                 return NULL;
7587
7588         *iter = &lower->list;
7589
7590         return lower->dev;
7591 }
7592
7593 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7594                                                   struct list_head **iter,
7595                                                   bool *ignore)
7596 {
7597         struct netdev_adjacent *lower;
7598
7599         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7600
7601         if (&lower->list == &dev->adj_list.lower)
7602                 return NULL;
7603
7604         *iter = &lower->list;
7605         *ignore = lower->ignore;
7606
7607         return lower->dev;
7608 }
7609
7610 int netdev_walk_all_lower_dev(struct net_device *dev,
7611                               int (*fn)(struct net_device *dev,
7612                                         struct netdev_nested_priv *priv),
7613                               struct netdev_nested_priv *priv)
7614 {
7615         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7616         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7617         int ret, cur = 0;
7618
7619         now = dev;
7620         iter = &dev->adj_list.lower;
7621
7622         while (1) {
7623                 if (now != dev) {
7624                         ret = fn(now, priv);
7625                         if (ret)
7626                                 return ret;
7627                 }
7628
7629                 next = NULL;
7630                 while (1) {
7631                         ldev = netdev_next_lower_dev(now, &iter);
7632                         if (!ldev)
7633                                 break;
7634
7635                         next = ldev;
7636                         niter = &ldev->adj_list.lower;
7637                         dev_stack[cur] = now;
7638                         iter_stack[cur++] = iter;
7639                         break;
7640                 }
7641
7642                 if (!next) {
7643                         if (!cur)
7644                                 return 0;
7645                         next = dev_stack[--cur];
7646                         niter = iter_stack[cur];
7647                 }
7648
7649                 now = next;
7650                 iter = niter;
7651         }
7652
7653         return 0;
7654 }
7655 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7656
7657 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7658                                        int (*fn)(struct net_device *dev,
7659                                          struct netdev_nested_priv *priv),
7660                                        struct netdev_nested_priv *priv)
7661 {
7662         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7663         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7664         int ret, cur = 0;
7665         bool ignore;
7666
7667         now = dev;
7668         iter = &dev->adj_list.lower;
7669
7670         while (1) {
7671                 if (now != dev) {
7672                         ret = fn(now, priv);
7673                         if (ret)
7674                                 return ret;
7675                 }
7676
7677                 next = NULL;
7678                 while (1) {
7679                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7680                         if (!ldev)
7681                                 break;
7682                         if (ignore)
7683                                 continue;
7684
7685                         next = ldev;
7686                         niter = &ldev->adj_list.lower;
7687                         dev_stack[cur] = now;
7688                         iter_stack[cur++] = iter;
7689                         break;
7690                 }
7691
7692                 if (!next) {
7693                         if (!cur)
7694                                 return 0;
7695                         next = dev_stack[--cur];
7696                         niter = iter_stack[cur];
7697                 }
7698
7699                 now = next;
7700                 iter = niter;
7701         }
7702
7703         return 0;
7704 }
7705
7706 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7707                                              struct list_head **iter)
7708 {
7709         struct netdev_adjacent *lower;
7710
7711         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7712         if (&lower->list == &dev->adj_list.lower)
7713                 return NULL;
7714
7715         *iter = &lower->list;
7716
7717         return lower->dev;
7718 }
7719 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7720
7721 static u8 __netdev_upper_depth(struct net_device *dev)
7722 {
7723         struct net_device *udev;
7724         struct list_head *iter;
7725         u8 max_depth = 0;
7726         bool ignore;
7727
7728         for (iter = &dev->adj_list.upper,
7729              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7730              udev;
7731              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7732                 if (ignore)
7733                         continue;
7734                 if (max_depth < udev->upper_level)
7735                         max_depth = udev->upper_level;
7736         }
7737
7738         return max_depth;
7739 }
7740
7741 static u8 __netdev_lower_depth(struct net_device *dev)
7742 {
7743         struct net_device *ldev;
7744         struct list_head *iter;
7745         u8 max_depth = 0;
7746         bool ignore;
7747
7748         for (iter = &dev->adj_list.lower,
7749              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7750              ldev;
7751              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7752                 if (ignore)
7753                         continue;
7754                 if (max_depth < ldev->lower_level)
7755                         max_depth = ldev->lower_level;
7756         }
7757
7758         return max_depth;
7759 }
7760
7761 static int __netdev_update_upper_level(struct net_device *dev,
7762                                        struct netdev_nested_priv *__unused)
7763 {
7764         dev->upper_level = __netdev_upper_depth(dev) + 1;
7765         return 0;
7766 }
7767
7768 static int __netdev_update_lower_level(struct net_device *dev,
7769                                        struct netdev_nested_priv *priv)
7770 {
7771         dev->lower_level = __netdev_lower_depth(dev) + 1;
7772
7773 #ifdef CONFIG_LOCKDEP
7774         if (!priv)
7775                 return 0;
7776
7777         if (priv->flags & NESTED_SYNC_IMM)
7778                 dev->nested_level = dev->lower_level - 1;
7779         if (priv->flags & NESTED_SYNC_TODO)
7780                 net_unlink_todo(dev);
7781 #endif
7782         return 0;
7783 }
7784
7785 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7786                                   int (*fn)(struct net_device *dev,
7787                                             struct netdev_nested_priv *priv),
7788                                   struct netdev_nested_priv *priv)
7789 {
7790         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7791         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7792         int ret, cur = 0;
7793
7794         now = dev;
7795         iter = &dev->adj_list.lower;
7796
7797         while (1) {
7798                 if (now != dev) {
7799                         ret = fn(now, priv);
7800                         if (ret)
7801                                 return ret;
7802                 }
7803
7804                 next = NULL;
7805                 while (1) {
7806                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7807                         if (!ldev)
7808                                 break;
7809
7810                         next = ldev;
7811                         niter = &ldev->adj_list.lower;
7812                         dev_stack[cur] = now;
7813                         iter_stack[cur++] = iter;
7814                         break;
7815                 }
7816
7817                 if (!next) {
7818                         if (!cur)
7819                                 return 0;
7820                         next = dev_stack[--cur];
7821                         niter = iter_stack[cur];
7822                 }
7823
7824                 now = next;
7825                 iter = niter;
7826         }
7827
7828         return 0;
7829 }
7830 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7831
7832 /**
7833  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7834  *                                     lower neighbour list, RCU
7835  *                                     variant
7836  * @dev: device
7837  *
7838  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7839  * list. The caller must hold RCU read lock.
7840  */
7841 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7842 {
7843         struct netdev_adjacent *lower;
7844
7845         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7846                         struct netdev_adjacent, list);
7847         if (lower)
7848                 return lower->private;
7849         return NULL;
7850 }
7851 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7852
7853 /**
7854  * netdev_master_upper_dev_get_rcu - Get master upper device
7855  * @dev: device
7856  *
7857  * Find a master upper device and return pointer to it or NULL in case
7858  * it's not there. The caller must hold the RCU read lock.
7859  */
7860 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7861 {
7862         struct netdev_adjacent *upper;
7863
7864         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7865                                        struct netdev_adjacent, list);
7866         if (upper && likely(upper->master))
7867                 return upper->dev;
7868         return NULL;
7869 }
7870 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7871
7872 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7873                               struct net_device *adj_dev,
7874                               struct list_head *dev_list)
7875 {
7876         char linkname[IFNAMSIZ+7];
7877
7878         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7879                 "upper_%s" : "lower_%s", adj_dev->name);
7880         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7881                                  linkname);
7882 }
7883 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7884                                char *name,
7885                                struct list_head *dev_list)
7886 {
7887         char linkname[IFNAMSIZ+7];
7888
7889         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7890                 "upper_%s" : "lower_%s", name);
7891         sysfs_remove_link(&(dev->dev.kobj), linkname);
7892 }
7893
7894 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7895                                                  struct net_device *adj_dev,
7896                                                  struct list_head *dev_list)
7897 {
7898         return (dev_list == &dev->adj_list.upper ||
7899                 dev_list == &dev->adj_list.lower) &&
7900                 net_eq(dev_net(dev), dev_net(adj_dev));
7901 }
7902
7903 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7904                                         struct net_device *adj_dev,
7905                                         struct list_head *dev_list,
7906                                         void *private, bool master)
7907 {
7908         struct netdev_adjacent *adj;
7909         int ret;
7910
7911         adj = __netdev_find_adj(adj_dev, dev_list);
7912
7913         if (adj) {
7914                 adj->ref_nr += 1;
7915                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7916                          dev->name, adj_dev->name, adj->ref_nr);
7917
7918                 return 0;
7919         }
7920
7921         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7922         if (!adj)
7923                 return -ENOMEM;
7924
7925         adj->dev = adj_dev;
7926         adj->master = master;
7927         adj->ref_nr = 1;
7928         adj->private = private;
7929         adj->ignore = false;
7930         dev_hold(adj_dev);
7931
7932         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7933                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7934
7935         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7936                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7937                 if (ret)
7938                         goto free_adj;
7939         }
7940
7941         /* Ensure that master link is always the first item in list. */
7942         if (master) {
7943                 ret = sysfs_create_link(&(dev->dev.kobj),
7944                                         &(adj_dev->dev.kobj), "master");
7945                 if (ret)
7946                         goto remove_symlinks;
7947
7948                 list_add_rcu(&adj->list, dev_list);
7949         } else {
7950                 list_add_tail_rcu(&adj->list, dev_list);
7951         }
7952
7953         return 0;
7954
7955 remove_symlinks:
7956         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7957                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7958 free_adj:
7959         kfree(adj);
7960         dev_put(adj_dev);
7961
7962         return ret;
7963 }
7964
7965 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7966                                          struct net_device *adj_dev,
7967                                          u16 ref_nr,
7968                                          struct list_head *dev_list)
7969 {
7970         struct netdev_adjacent *adj;
7971
7972         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7973                  dev->name, adj_dev->name, ref_nr);
7974
7975         adj = __netdev_find_adj(adj_dev, dev_list);
7976
7977         if (!adj) {
7978                 pr_err("Adjacency does not exist for device %s from %s\n",
7979                        dev->name, adj_dev->name);
7980                 WARN_ON(1);
7981                 return;
7982         }
7983
7984         if (adj->ref_nr > ref_nr) {
7985                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7986                          dev->name, adj_dev->name, ref_nr,
7987                          adj->ref_nr - ref_nr);
7988                 adj->ref_nr -= ref_nr;
7989                 return;
7990         }
7991
7992         if (adj->master)
7993                 sysfs_remove_link(&(dev->dev.kobj), "master");
7994
7995         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7996                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7997
7998         list_del_rcu(&adj->list);
7999         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8000                  adj_dev->name, dev->name, adj_dev->name);
8001         dev_put(adj_dev);
8002         kfree_rcu(adj, rcu);
8003 }
8004
8005 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8006                                             struct net_device *upper_dev,
8007                                             struct list_head *up_list,
8008                                             struct list_head *down_list,
8009                                             void *private, bool master)
8010 {
8011         int ret;
8012
8013         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8014                                            private, master);
8015         if (ret)
8016                 return ret;
8017
8018         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8019                                            private, false);
8020         if (ret) {
8021                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8022                 return ret;
8023         }
8024
8025         return 0;
8026 }
8027
8028 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8029                                                struct net_device *upper_dev,
8030                                                u16 ref_nr,
8031                                                struct list_head *up_list,
8032                                                struct list_head *down_list)
8033 {
8034         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8035         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8036 }
8037
8038 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8039                                                 struct net_device *upper_dev,
8040                                                 void *private, bool master)
8041 {
8042         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8043                                                 &dev->adj_list.upper,
8044                                                 &upper_dev->adj_list.lower,
8045                                                 private, master);
8046 }
8047
8048 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8049                                                    struct net_device *upper_dev)
8050 {
8051         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8052                                            &dev->adj_list.upper,
8053                                            &upper_dev->adj_list.lower);
8054 }
8055
8056 static int __netdev_upper_dev_link(struct net_device *dev,
8057                                    struct net_device *upper_dev, bool master,
8058                                    void *upper_priv, void *upper_info,
8059                                    struct netdev_nested_priv *priv,
8060                                    struct netlink_ext_ack *extack)
8061 {
8062         struct netdev_notifier_changeupper_info changeupper_info = {
8063                 .info = {
8064                         .dev = dev,
8065                         .extack = extack,
8066                 },
8067                 .upper_dev = upper_dev,
8068                 .master = master,
8069                 .linking = true,
8070                 .upper_info = upper_info,
8071         };
8072         struct net_device *master_dev;
8073         int ret = 0;
8074
8075         ASSERT_RTNL();
8076
8077         if (dev == upper_dev)
8078                 return -EBUSY;
8079
8080         /* To prevent loops, check if dev is not upper device to upper_dev. */
8081         if (__netdev_has_upper_dev(upper_dev, dev))
8082                 return -EBUSY;
8083
8084         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8085                 return -EMLINK;
8086
8087         if (!master) {
8088                 if (__netdev_has_upper_dev(dev, upper_dev))
8089                         return -EEXIST;
8090         } else {
8091                 master_dev = __netdev_master_upper_dev_get(dev);
8092                 if (master_dev)
8093                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
8094         }
8095
8096         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8097                                             &changeupper_info.info);
8098         ret = notifier_to_errno(ret);
8099         if (ret)
8100                 return ret;
8101
8102         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8103                                                    master);
8104         if (ret)
8105                 return ret;
8106
8107         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8108                                             &changeupper_info.info);
8109         ret = notifier_to_errno(ret);
8110         if (ret)
8111                 goto rollback;
8112
8113         __netdev_update_upper_level(dev, NULL);
8114         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8115
8116         __netdev_update_lower_level(upper_dev, priv);
8117         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8118                                     priv);
8119
8120         return 0;
8121
8122 rollback:
8123         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8124
8125         return ret;
8126 }
8127
8128 /**
8129  * netdev_upper_dev_link - Add a link to the upper device
8130  * @dev: device
8131  * @upper_dev: new upper device
8132  * @extack: netlink extended ack
8133  *
8134  * Adds a link to device which is upper to this one. The caller must hold
8135  * the RTNL lock. On a failure a negative errno code is returned.
8136  * On success the reference counts are adjusted and the function
8137  * returns zero.
8138  */
8139 int netdev_upper_dev_link(struct net_device *dev,
8140                           struct net_device *upper_dev,
8141                           struct netlink_ext_ack *extack)
8142 {
8143         struct netdev_nested_priv priv = {
8144                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8145                 .data = NULL,
8146         };
8147
8148         return __netdev_upper_dev_link(dev, upper_dev, false,
8149                                        NULL, NULL, &priv, extack);
8150 }
8151 EXPORT_SYMBOL(netdev_upper_dev_link);
8152
8153 /**
8154  * netdev_master_upper_dev_link - Add a master link to the upper device
8155  * @dev: device
8156  * @upper_dev: new upper device
8157  * @upper_priv: upper device private
8158  * @upper_info: upper info to be passed down via notifier
8159  * @extack: netlink extended ack
8160  *
8161  * Adds a link to device which is upper to this one. In this case, only
8162  * one master upper device can be linked, although other non-master devices
8163  * might be linked as well. The caller must hold the RTNL lock.
8164  * On a failure a negative errno code is returned. On success the reference
8165  * counts are adjusted and the function returns zero.
8166  */
8167 int netdev_master_upper_dev_link(struct net_device *dev,
8168                                  struct net_device *upper_dev,
8169                                  void *upper_priv, void *upper_info,
8170                                  struct netlink_ext_ack *extack)
8171 {
8172         struct netdev_nested_priv priv = {
8173                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8174                 .data = NULL,
8175         };
8176
8177         return __netdev_upper_dev_link(dev, upper_dev, true,
8178                                        upper_priv, upper_info, &priv, extack);
8179 }
8180 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8181
8182 static void __netdev_upper_dev_unlink(struct net_device *dev,
8183                                       struct net_device *upper_dev,
8184                                       struct netdev_nested_priv *priv)
8185 {
8186         struct netdev_notifier_changeupper_info changeupper_info = {
8187                 .info = {
8188                         .dev = dev,
8189                 },
8190                 .upper_dev = upper_dev,
8191                 .linking = false,
8192         };
8193
8194         ASSERT_RTNL();
8195
8196         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8197
8198         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8199                                       &changeupper_info.info);
8200
8201         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8202
8203         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8204                                       &changeupper_info.info);
8205
8206         __netdev_update_upper_level(dev, NULL);
8207         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8208
8209         __netdev_update_lower_level(upper_dev, priv);
8210         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8211                                     priv);
8212 }
8213
8214 /**
8215  * netdev_upper_dev_unlink - Removes a link to upper device
8216  * @dev: device
8217  * @upper_dev: new upper device
8218  *
8219  * Removes a link to device which is upper to this one. The caller must hold
8220  * the RTNL lock.
8221  */
8222 void netdev_upper_dev_unlink(struct net_device *dev,
8223                              struct net_device *upper_dev)
8224 {
8225         struct netdev_nested_priv priv = {
8226                 .flags = NESTED_SYNC_TODO,
8227                 .data = NULL,
8228         };
8229
8230         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8231 }
8232 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8233
8234 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8235                                       struct net_device *lower_dev,
8236                                       bool val)
8237 {
8238         struct netdev_adjacent *adj;
8239
8240         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8241         if (adj)
8242                 adj->ignore = val;
8243
8244         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8245         if (adj)
8246                 adj->ignore = val;
8247 }
8248
8249 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8250                                         struct net_device *lower_dev)
8251 {
8252         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8253 }
8254
8255 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8256                                        struct net_device *lower_dev)
8257 {
8258         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8259 }
8260
8261 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8262                                    struct net_device *new_dev,
8263                                    struct net_device *dev,
8264                                    struct netlink_ext_ack *extack)
8265 {
8266         struct netdev_nested_priv priv = {
8267                 .flags = 0,
8268                 .data = NULL,
8269         };
8270         int err;
8271
8272         if (!new_dev)
8273                 return 0;
8274
8275         if (old_dev && new_dev != old_dev)
8276                 netdev_adjacent_dev_disable(dev, old_dev);
8277         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8278                                       extack);
8279         if (err) {
8280                 if (old_dev && new_dev != old_dev)
8281                         netdev_adjacent_dev_enable(dev, old_dev);
8282                 return err;
8283         }
8284
8285         return 0;
8286 }
8287 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8288
8289 void netdev_adjacent_change_commit(struct net_device *old_dev,
8290                                    struct net_device *new_dev,
8291                                    struct net_device *dev)
8292 {
8293         struct netdev_nested_priv priv = {
8294                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8295                 .data = NULL,
8296         };
8297
8298         if (!new_dev || !old_dev)
8299                 return;
8300
8301         if (new_dev == old_dev)
8302                 return;
8303
8304         netdev_adjacent_dev_enable(dev, old_dev);
8305         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8306 }
8307 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8308
8309 void netdev_adjacent_change_abort(struct net_device *old_dev,
8310                                   struct net_device *new_dev,
8311                                   struct net_device *dev)
8312 {
8313         struct netdev_nested_priv priv = {
8314                 .flags = 0,
8315                 .data = NULL,
8316         };
8317
8318         if (!new_dev)
8319                 return;
8320
8321         if (old_dev && new_dev != old_dev)
8322                 netdev_adjacent_dev_enable(dev, old_dev);
8323
8324         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8325 }
8326 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8327
8328 /**
8329  * netdev_bonding_info_change - Dispatch event about slave change
8330  * @dev: device
8331  * @bonding_info: info to dispatch
8332  *
8333  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8334  * The caller must hold the RTNL lock.
8335  */
8336 void netdev_bonding_info_change(struct net_device *dev,
8337                                 struct netdev_bonding_info *bonding_info)
8338 {
8339         struct netdev_notifier_bonding_info info = {
8340                 .info.dev = dev,
8341         };
8342
8343         memcpy(&info.bonding_info, bonding_info,
8344                sizeof(struct netdev_bonding_info));
8345         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8346                                       &info.info);
8347 }
8348 EXPORT_SYMBOL(netdev_bonding_info_change);
8349
8350 /**
8351  * netdev_get_xmit_slave - Get the xmit slave of master device
8352  * @dev: device
8353  * @skb: The packet
8354  * @all_slaves: assume all the slaves are active
8355  *
8356  * The reference counters are not incremented so the caller must be
8357  * careful with locks. The caller must hold RCU lock.
8358  * %NULL is returned if no slave is found.
8359  */
8360
8361 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8362                                          struct sk_buff *skb,
8363                                          bool all_slaves)
8364 {
8365         const struct net_device_ops *ops = dev->netdev_ops;
8366
8367         if (!ops->ndo_get_xmit_slave)
8368                 return NULL;
8369         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8370 }
8371 EXPORT_SYMBOL(netdev_get_xmit_slave);
8372
8373 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8374                                                   struct sock *sk)
8375 {
8376         const struct net_device_ops *ops = dev->netdev_ops;
8377
8378         if (!ops->ndo_sk_get_lower_dev)
8379                 return NULL;
8380         return ops->ndo_sk_get_lower_dev(dev, sk);
8381 }
8382
8383 /**
8384  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8385  * @dev: device
8386  * @sk: the socket
8387  *
8388  * %NULL is returned if no lower device is found.
8389  */
8390
8391 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8392                                             struct sock *sk)
8393 {
8394         struct net_device *lower;
8395
8396         lower = netdev_sk_get_lower_dev(dev, sk);
8397         while (lower) {
8398                 dev = lower;
8399                 lower = netdev_sk_get_lower_dev(dev, sk);
8400         }
8401
8402         return dev;
8403 }
8404 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8405
8406 static void netdev_adjacent_add_links(struct net_device *dev)
8407 {
8408         struct netdev_adjacent *iter;
8409
8410         struct net *net = dev_net(dev);
8411
8412         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8413                 if (!net_eq(net, dev_net(iter->dev)))
8414                         continue;
8415                 netdev_adjacent_sysfs_add(iter->dev, dev,
8416                                           &iter->dev->adj_list.lower);
8417                 netdev_adjacent_sysfs_add(dev, iter->dev,
8418                                           &dev->adj_list.upper);
8419         }
8420
8421         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8422                 if (!net_eq(net, dev_net(iter->dev)))
8423                         continue;
8424                 netdev_adjacent_sysfs_add(iter->dev, dev,
8425                                           &iter->dev->adj_list.upper);
8426                 netdev_adjacent_sysfs_add(dev, iter->dev,
8427                                           &dev->adj_list.lower);
8428         }
8429 }
8430
8431 static void netdev_adjacent_del_links(struct net_device *dev)
8432 {
8433         struct netdev_adjacent *iter;
8434
8435         struct net *net = dev_net(dev);
8436
8437         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8438                 if (!net_eq(net, dev_net(iter->dev)))
8439                         continue;
8440                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8441                                           &iter->dev->adj_list.lower);
8442                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8443                                           &dev->adj_list.upper);
8444         }
8445
8446         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8447                 if (!net_eq(net, dev_net(iter->dev)))
8448                         continue;
8449                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8450                                           &iter->dev->adj_list.upper);
8451                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8452                                           &dev->adj_list.lower);
8453         }
8454 }
8455
8456 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8457 {
8458         struct netdev_adjacent *iter;
8459
8460         struct net *net = dev_net(dev);
8461
8462         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8463                 if (!net_eq(net, dev_net(iter->dev)))
8464                         continue;
8465                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8466                                           &iter->dev->adj_list.lower);
8467                 netdev_adjacent_sysfs_add(iter->dev, dev,
8468                                           &iter->dev->adj_list.lower);
8469         }
8470
8471         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8472                 if (!net_eq(net, dev_net(iter->dev)))
8473                         continue;
8474                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8475                                           &iter->dev->adj_list.upper);
8476                 netdev_adjacent_sysfs_add(iter->dev, dev,
8477                                           &iter->dev->adj_list.upper);
8478         }
8479 }
8480
8481 void *netdev_lower_dev_get_private(struct net_device *dev,
8482                                    struct net_device *lower_dev)
8483 {
8484         struct netdev_adjacent *lower;
8485
8486         if (!lower_dev)
8487                 return NULL;
8488         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8489         if (!lower)
8490                 return NULL;
8491
8492         return lower->private;
8493 }
8494 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8495
8496
8497 /**
8498  * netdev_lower_state_changed - Dispatch event about lower device state change
8499  * @lower_dev: device
8500  * @lower_state_info: state to dispatch
8501  *
8502  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8503  * The caller must hold the RTNL lock.
8504  */
8505 void netdev_lower_state_changed(struct net_device *lower_dev,
8506                                 void *lower_state_info)
8507 {
8508         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8509                 .info.dev = lower_dev,
8510         };
8511
8512         ASSERT_RTNL();
8513         changelowerstate_info.lower_state_info = lower_state_info;
8514         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8515                                       &changelowerstate_info.info);
8516 }
8517 EXPORT_SYMBOL(netdev_lower_state_changed);
8518
8519 static void dev_change_rx_flags(struct net_device *dev, int flags)
8520 {
8521         const struct net_device_ops *ops = dev->netdev_ops;
8522
8523         if (ops->ndo_change_rx_flags)
8524                 ops->ndo_change_rx_flags(dev, flags);
8525 }
8526
8527 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8528 {
8529         unsigned int old_flags = dev->flags;
8530         kuid_t uid;
8531         kgid_t gid;
8532
8533         ASSERT_RTNL();
8534
8535         dev->flags |= IFF_PROMISC;
8536         dev->promiscuity += inc;
8537         if (dev->promiscuity == 0) {
8538                 /*
8539                  * Avoid overflow.
8540                  * If inc causes overflow, untouch promisc and return error.
8541                  */
8542                 if (inc < 0)
8543                         dev->flags &= ~IFF_PROMISC;
8544                 else {
8545                         dev->promiscuity -= inc;
8546                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8547                                 dev->name);
8548                         return -EOVERFLOW;
8549                 }
8550         }
8551         if (dev->flags != old_flags) {
8552                 pr_info("device %s %s promiscuous mode\n",
8553                         dev->name,
8554                         dev->flags & IFF_PROMISC ? "entered" : "left");
8555                 if (audit_enabled) {
8556                         current_uid_gid(&uid, &gid);
8557                         audit_log(audit_context(), GFP_ATOMIC,
8558                                   AUDIT_ANOM_PROMISCUOUS,
8559                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8560                                   dev->name, (dev->flags & IFF_PROMISC),
8561                                   (old_flags & IFF_PROMISC),
8562                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8563                                   from_kuid(&init_user_ns, uid),
8564                                   from_kgid(&init_user_ns, gid),
8565                                   audit_get_sessionid(current));
8566                 }
8567
8568                 dev_change_rx_flags(dev, IFF_PROMISC);
8569         }
8570         if (notify)
8571                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8572         return 0;
8573 }
8574
8575 /**
8576  *      dev_set_promiscuity     - update promiscuity count on a device
8577  *      @dev: device
8578  *      @inc: modifier
8579  *
8580  *      Add or remove promiscuity from a device. While the count in the device
8581  *      remains above zero the interface remains promiscuous. Once it hits zero
8582  *      the device reverts back to normal filtering operation. A negative inc
8583  *      value is used to drop promiscuity on the device.
8584  *      Return 0 if successful or a negative errno code on error.
8585  */
8586 int dev_set_promiscuity(struct net_device *dev, int inc)
8587 {
8588         unsigned int old_flags = dev->flags;
8589         int err;
8590
8591         err = __dev_set_promiscuity(dev, inc, true);
8592         if (err < 0)
8593                 return err;
8594         if (dev->flags != old_flags)
8595                 dev_set_rx_mode(dev);
8596         return err;
8597 }
8598 EXPORT_SYMBOL(dev_set_promiscuity);
8599
8600 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8601 {
8602         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8603
8604         ASSERT_RTNL();
8605
8606         dev->flags |= IFF_ALLMULTI;
8607         dev->allmulti += inc;
8608         if (dev->allmulti == 0) {
8609                 /*
8610                  * Avoid overflow.
8611                  * If inc causes overflow, untouch allmulti and return error.
8612                  */
8613                 if (inc < 0)
8614                         dev->flags &= ~IFF_ALLMULTI;
8615                 else {
8616                         dev->allmulti -= inc;
8617                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8618                                 dev->name);
8619                         return -EOVERFLOW;
8620                 }
8621         }
8622         if (dev->flags ^ old_flags) {
8623                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8624                 dev_set_rx_mode(dev);
8625                 if (notify)
8626                         __dev_notify_flags(dev, old_flags,
8627                                            dev->gflags ^ old_gflags);
8628         }
8629         return 0;
8630 }
8631
8632 /**
8633  *      dev_set_allmulti        - update allmulti count on a device
8634  *      @dev: device
8635  *      @inc: modifier
8636  *
8637  *      Add or remove reception of all multicast frames to a device. While the
8638  *      count in the device remains above zero the interface remains listening
8639  *      to all interfaces. Once it hits zero the device reverts back to normal
8640  *      filtering operation. A negative @inc value is used to drop the counter
8641  *      when releasing a resource needing all multicasts.
8642  *      Return 0 if successful or a negative errno code on error.
8643  */
8644
8645 int dev_set_allmulti(struct net_device *dev, int inc)
8646 {
8647         return __dev_set_allmulti(dev, inc, true);
8648 }
8649 EXPORT_SYMBOL(dev_set_allmulti);
8650
8651 /*
8652  *      Upload unicast and multicast address lists to device and
8653  *      configure RX filtering. When the device doesn't support unicast
8654  *      filtering it is put in promiscuous mode while unicast addresses
8655  *      are present.
8656  */
8657 void __dev_set_rx_mode(struct net_device *dev)
8658 {
8659         const struct net_device_ops *ops = dev->netdev_ops;
8660
8661         /* dev_open will call this function so the list will stay sane. */
8662         if (!(dev->flags&IFF_UP))
8663                 return;
8664
8665         if (!netif_device_present(dev))
8666                 return;
8667
8668         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8669                 /* Unicast addresses changes may only happen under the rtnl,
8670                  * therefore calling __dev_set_promiscuity here is safe.
8671                  */
8672                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8673                         __dev_set_promiscuity(dev, 1, false);
8674                         dev->uc_promisc = true;
8675                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8676                         __dev_set_promiscuity(dev, -1, false);
8677                         dev->uc_promisc = false;
8678                 }
8679         }
8680
8681         if (ops->ndo_set_rx_mode)
8682                 ops->ndo_set_rx_mode(dev);
8683 }
8684
8685 void dev_set_rx_mode(struct net_device *dev)
8686 {
8687         netif_addr_lock_bh(dev);
8688         __dev_set_rx_mode(dev);
8689         netif_addr_unlock_bh(dev);
8690 }
8691
8692 /**
8693  *      dev_get_flags - get flags reported to userspace
8694  *      @dev: device
8695  *
8696  *      Get the combination of flag bits exported through APIs to userspace.
8697  */
8698 unsigned int dev_get_flags(const struct net_device *dev)
8699 {
8700         unsigned int flags;
8701
8702         flags = (dev->flags & ~(IFF_PROMISC |
8703                                 IFF_ALLMULTI |
8704                                 IFF_RUNNING |
8705                                 IFF_LOWER_UP |
8706                                 IFF_DORMANT)) |
8707                 (dev->gflags & (IFF_PROMISC |
8708                                 IFF_ALLMULTI));
8709
8710         if (netif_running(dev)) {
8711                 if (netif_oper_up(dev))
8712                         flags |= IFF_RUNNING;
8713                 if (netif_carrier_ok(dev))
8714                         flags |= IFF_LOWER_UP;
8715                 if (netif_dormant(dev))
8716                         flags |= IFF_DORMANT;
8717         }
8718
8719         return flags;
8720 }
8721 EXPORT_SYMBOL(dev_get_flags);
8722
8723 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8724                        struct netlink_ext_ack *extack)
8725 {
8726         unsigned int old_flags = dev->flags;
8727         int ret;
8728
8729         ASSERT_RTNL();
8730
8731         /*
8732          *      Set the flags on our device.
8733          */
8734
8735         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8736                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8737                                IFF_AUTOMEDIA)) |
8738                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8739                                     IFF_ALLMULTI));
8740
8741         /*
8742          *      Load in the correct multicast list now the flags have changed.
8743          */
8744
8745         if ((old_flags ^ flags) & IFF_MULTICAST)
8746                 dev_change_rx_flags(dev, IFF_MULTICAST);
8747
8748         dev_set_rx_mode(dev);
8749
8750         /*
8751          *      Have we downed the interface. We handle IFF_UP ourselves
8752          *      according to user attempts to set it, rather than blindly
8753          *      setting it.
8754          */
8755
8756         ret = 0;
8757         if ((old_flags ^ flags) & IFF_UP) {
8758                 if (old_flags & IFF_UP)
8759                         __dev_close(dev);
8760                 else
8761                         ret = __dev_open(dev, extack);
8762         }
8763
8764         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8765                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8766                 unsigned int old_flags = dev->flags;
8767
8768                 dev->gflags ^= IFF_PROMISC;
8769
8770                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8771                         if (dev->flags != old_flags)
8772                                 dev_set_rx_mode(dev);
8773         }
8774
8775         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8776          * is important. Some (broken) drivers set IFF_PROMISC, when
8777          * IFF_ALLMULTI is requested not asking us and not reporting.
8778          */
8779         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8780                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8781
8782                 dev->gflags ^= IFF_ALLMULTI;
8783                 __dev_set_allmulti(dev, inc, false);
8784         }
8785
8786         return ret;
8787 }
8788
8789 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8790                         unsigned int gchanges)
8791 {
8792         unsigned int changes = dev->flags ^ old_flags;
8793
8794         if (gchanges)
8795                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8796
8797         if (changes & IFF_UP) {
8798                 if (dev->flags & IFF_UP)
8799                         call_netdevice_notifiers(NETDEV_UP, dev);
8800                 else
8801                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8802         }
8803
8804         if (dev->flags & IFF_UP &&
8805             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8806                 struct netdev_notifier_change_info change_info = {
8807                         .info = {
8808                                 .dev = dev,
8809                         },
8810                         .flags_changed = changes,
8811                 };
8812
8813                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8814         }
8815 }
8816
8817 /**
8818  *      dev_change_flags - change device settings
8819  *      @dev: device
8820  *      @flags: device state flags
8821  *      @extack: netlink extended ack
8822  *
8823  *      Change settings on device based state flags. The flags are
8824  *      in the userspace exported format.
8825  */
8826 int dev_change_flags(struct net_device *dev, unsigned int flags,
8827                      struct netlink_ext_ack *extack)
8828 {
8829         int ret;
8830         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8831
8832         ret = __dev_change_flags(dev, flags, extack);
8833         if (ret < 0)
8834                 return ret;
8835
8836         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8837         __dev_notify_flags(dev, old_flags, changes);
8838         return ret;
8839 }
8840 EXPORT_SYMBOL(dev_change_flags);
8841
8842 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8843 {
8844         const struct net_device_ops *ops = dev->netdev_ops;
8845
8846         if (ops->ndo_change_mtu)
8847                 return ops->ndo_change_mtu(dev, new_mtu);
8848
8849         /* Pairs with all the lockless reads of dev->mtu in the stack */
8850         WRITE_ONCE(dev->mtu, new_mtu);
8851         return 0;
8852 }
8853 EXPORT_SYMBOL(__dev_set_mtu);
8854
8855 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8856                      struct netlink_ext_ack *extack)
8857 {
8858         /* MTU must be positive, and in range */
8859         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8860                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8861                 return -EINVAL;
8862         }
8863
8864         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8865                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8866                 return -EINVAL;
8867         }
8868         return 0;
8869 }
8870
8871 /**
8872  *      dev_set_mtu_ext - Change maximum transfer unit
8873  *      @dev: device
8874  *      @new_mtu: new transfer unit
8875  *      @extack: netlink extended ack
8876  *
8877  *      Change the maximum transfer size of the network device.
8878  */
8879 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8880                     struct netlink_ext_ack *extack)
8881 {
8882         int err, orig_mtu;
8883
8884         if (new_mtu == dev->mtu)
8885                 return 0;
8886
8887         err = dev_validate_mtu(dev, new_mtu, extack);
8888         if (err)
8889                 return err;
8890
8891         if (!netif_device_present(dev))
8892                 return -ENODEV;
8893
8894         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8895         err = notifier_to_errno(err);
8896         if (err)
8897                 return err;
8898
8899         orig_mtu = dev->mtu;
8900         err = __dev_set_mtu(dev, new_mtu);
8901
8902         if (!err) {
8903                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8904                                                    orig_mtu);
8905                 err = notifier_to_errno(err);
8906                 if (err) {
8907                         /* setting mtu back and notifying everyone again,
8908                          * so that they have a chance to revert changes.
8909                          */
8910                         __dev_set_mtu(dev, orig_mtu);
8911                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8912                                                      new_mtu);
8913                 }
8914         }
8915         return err;
8916 }
8917
8918 int dev_set_mtu(struct net_device *dev, int new_mtu)
8919 {
8920         struct netlink_ext_ack extack;
8921         int err;
8922
8923         memset(&extack, 0, sizeof(extack));
8924         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8925         if (err && extack._msg)
8926                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8927         return err;
8928 }
8929 EXPORT_SYMBOL(dev_set_mtu);
8930
8931 /**
8932  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8933  *      @dev: device
8934  *      @new_len: new tx queue length
8935  */
8936 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8937 {
8938         unsigned int orig_len = dev->tx_queue_len;
8939         int res;
8940
8941         if (new_len != (unsigned int)new_len)
8942                 return -ERANGE;
8943
8944         if (new_len != orig_len) {
8945                 dev->tx_queue_len = new_len;
8946                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8947                 res = notifier_to_errno(res);
8948                 if (res)
8949                         goto err_rollback;
8950                 res = dev_qdisc_change_tx_queue_len(dev);
8951                 if (res)
8952                         goto err_rollback;
8953         }
8954
8955         return 0;
8956
8957 err_rollback:
8958         netdev_err(dev, "refused to change device tx_queue_len\n");
8959         dev->tx_queue_len = orig_len;
8960         return res;
8961 }
8962
8963 /**
8964  *      dev_set_group - Change group this device belongs to
8965  *      @dev: device
8966  *      @new_group: group this device should belong to
8967  */
8968 void dev_set_group(struct net_device *dev, int new_group)
8969 {
8970         dev->group = new_group;
8971 }
8972 EXPORT_SYMBOL(dev_set_group);
8973
8974 /**
8975  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8976  *      @dev: device
8977  *      @addr: new address
8978  *      @extack: netlink extended ack
8979  */
8980 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8981                               struct netlink_ext_ack *extack)
8982 {
8983         struct netdev_notifier_pre_changeaddr_info info = {
8984                 .info.dev = dev,
8985                 .info.extack = extack,
8986                 .dev_addr = addr,
8987         };
8988         int rc;
8989
8990         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8991         return notifier_to_errno(rc);
8992 }
8993 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8994
8995 /**
8996  *      dev_set_mac_address - Change Media Access Control Address
8997  *      @dev: device
8998  *      @sa: new address
8999  *      @extack: netlink extended ack
9000  *
9001  *      Change the hardware (MAC) address of the device
9002  */
9003 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9004                         struct netlink_ext_ack *extack)
9005 {
9006         const struct net_device_ops *ops = dev->netdev_ops;
9007         int err;
9008
9009         if (!ops->ndo_set_mac_address)
9010                 return -EOPNOTSUPP;
9011         if (sa->sa_family != dev->type)
9012                 return -EINVAL;
9013         if (!netif_device_present(dev))
9014                 return -ENODEV;
9015         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9016         if (err)
9017                 return err;
9018         err = ops->ndo_set_mac_address(dev, sa);
9019         if (err)
9020                 return err;
9021         dev->addr_assign_type = NET_ADDR_SET;
9022         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9023         add_device_randomness(dev->dev_addr, dev->addr_len);
9024         return 0;
9025 }
9026 EXPORT_SYMBOL(dev_set_mac_address);
9027
9028 static DECLARE_RWSEM(dev_addr_sem);
9029
9030 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9031                              struct netlink_ext_ack *extack)
9032 {
9033         int ret;
9034
9035         down_write(&dev_addr_sem);
9036         ret = dev_set_mac_address(dev, sa, extack);
9037         up_write(&dev_addr_sem);
9038         return ret;
9039 }
9040 EXPORT_SYMBOL(dev_set_mac_address_user);
9041
9042 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9043 {
9044         size_t size = sizeof(sa->sa_data);
9045         struct net_device *dev;
9046         int ret = 0;
9047
9048         down_read(&dev_addr_sem);
9049         rcu_read_lock();
9050
9051         dev = dev_get_by_name_rcu(net, dev_name);
9052         if (!dev) {
9053                 ret = -ENODEV;
9054                 goto unlock;
9055         }
9056         if (!dev->addr_len)
9057                 memset(sa->sa_data, 0, size);
9058         else
9059                 memcpy(sa->sa_data, dev->dev_addr,
9060                        min_t(size_t, size, dev->addr_len));
9061         sa->sa_family = dev->type;
9062
9063 unlock:
9064         rcu_read_unlock();
9065         up_read(&dev_addr_sem);
9066         return ret;
9067 }
9068 EXPORT_SYMBOL(dev_get_mac_address);
9069
9070 /**
9071  *      dev_change_carrier - Change device carrier
9072  *      @dev: device
9073  *      @new_carrier: new value
9074  *
9075  *      Change device carrier
9076  */
9077 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9078 {
9079         const struct net_device_ops *ops = dev->netdev_ops;
9080
9081         if (!ops->ndo_change_carrier)
9082                 return -EOPNOTSUPP;
9083         if (!netif_device_present(dev))
9084                 return -ENODEV;
9085         return ops->ndo_change_carrier(dev, new_carrier);
9086 }
9087 EXPORT_SYMBOL(dev_change_carrier);
9088
9089 /**
9090  *      dev_get_phys_port_id - Get device physical port ID
9091  *      @dev: device
9092  *      @ppid: port ID
9093  *
9094  *      Get device physical port ID
9095  */
9096 int dev_get_phys_port_id(struct net_device *dev,
9097                          struct netdev_phys_item_id *ppid)
9098 {
9099         const struct net_device_ops *ops = dev->netdev_ops;
9100
9101         if (!ops->ndo_get_phys_port_id)
9102                 return -EOPNOTSUPP;
9103         return ops->ndo_get_phys_port_id(dev, ppid);
9104 }
9105 EXPORT_SYMBOL(dev_get_phys_port_id);
9106
9107 /**
9108  *      dev_get_phys_port_name - Get device physical port name
9109  *      @dev: device
9110  *      @name: port name
9111  *      @len: limit of bytes to copy to name
9112  *
9113  *      Get device physical port name
9114  */
9115 int dev_get_phys_port_name(struct net_device *dev,
9116                            char *name, size_t len)
9117 {
9118         const struct net_device_ops *ops = dev->netdev_ops;
9119         int err;
9120
9121         if (ops->ndo_get_phys_port_name) {
9122                 err = ops->ndo_get_phys_port_name(dev, name, len);
9123                 if (err != -EOPNOTSUPP)
9124                         return err;
9125         }
9126         return devlink_compat_phys_port_name_get(dev, name, len);
9127 }
9128 EXPORT_SYMBOL(dev_get_phys_port_name);
9129
9130 /**
9131  *      dev_get_port_parent_id - Get the device's port parent identifier
9132  *      @dev: network device
9133  *      @ppid: pointer to a storage for the port's parent identifier
9134  *      @recurse: allow/disallow recursion to lower devices
9135  *
9136  *      Get the devices's port parent identifier
9137  */
9138 int dev_get_port_parent_id(struct net_device *dev,
9139                            struct netdev_phys_item_id *ppid,
9140                            bool recurse)
9141 {
9142         const struct net_device_ops *ops = dev->netdev_ops;
9143         struct netdev_phys_item_id first = { };
9144         struct net_device *lower_dev;
9145         struct list_head *iter;
9146         int err;
9147
9148         if (ops->ndo_get_port_parent_id) {
9149                 err = ops->ndo_get_port_parent_id(dev, ppid);
9150                 if (err != -EOPNOTSUPP)
9151                         return err;
9152         }
9153
9154         err = devlink_compat_switch_id_get(dev, ppid);
9155         if (!err || err != -EOPNOTSUPP)
9156                 return err;
9157
9158         if (!recurse)
9159                 return -EOPNOTSUPP;
9160
9161         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9162                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9163                 if (err)
9164                         break;
9165                 if (!first.id_len)
9166                         first = *ppid;
9167                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9168                         return -EOPNOTSUPP;
9169         }
9170
9171         return err;
9172 }
9173 EXPORT_SYMBOL(dev_get_port_parent_id);
9174
9175 /**
9176  *      netdev_port_same_parent_id - Indicate if two network devices have
9177  *      the same port parent identifier
9178  *      @a: first network device
9179  *      @b: second network device
9180  */
9181 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9182 {
9183         struct netdev_phys_item_id a_id = { };
9184         struct netdev_phys_item_id b_id = { };
9185
9186         if (dev_get_port_parent_id(a, &a_id, true) ||
9187             dev_get_port_parent_id(b, &b_id, true))
9188                 return false;
9189
9190         return netdev_phys_item_id_same(&a_id, &b_id);
9191 }
9192 EXPORT_SYMBOL(netdev_port_same_parent_id);
9193
9194 /**
9195  *      dev_change_proto_down - update protocol port state information
9196  *      @dev: device
9197  *      @proto_down: new value
9198  *
9199  *      This info can be used by switch drivers to set the phys state of the
9200  *      port.
9201  */
9202 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9203 {
9204         const struct net_device_ops *ops = dev->netdev_ops;
9205
9206         if (!ops->ndo_change_proto_down)
9207                 return -EOPNOTSUPP;
9208         if (!netif_device_present(dev))
9209                 return -ENODEV;
9210         return ops->ndo_change_proto_down(dev, proto_down);
9211 }
9212 EXPORT_SYMBOL(dev_change_proto_down);
9213
9214 /**
9215  *      dev_change_proto_down_generic - generic implementation for
9216  *      ndo_change_proto_down that sets carrier according to
9217  *      proto_down.
9218  *
9219  *      @dev: device
9220  *      @proto_down: new value
9221  */
9222 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9223 {
9224         if (proto_down)
9225                 netif_carrier_off(dev);
9226         else
9227                 netif_carrier_on(dev);
9228         dev->proto_down = proto_down;
9229         return 0;
9230 }
9231 EXPORT_SYMBOL(dev_change_proto_down_generic);
9232
9233 /**
9234  *      dev_change_proto_down_reason - proto down reason
9235  *
9236  *      @dev: device
9237  *      @mask: proto down mask
9238  *      @value: proto down value
9239  */
9240 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9241                                   u32 value)
9242 {
9243         int b;
9244
9245         if (!mask) {
9246                 dev->proto_down_reason = value;
9247         } else {
9248                 for_each_set_bit(b, &mask, 32) {
9249                         if (value & (1 << b))
9250                                 dev->proto_down_reason |= BIT(b);
9251                         else
9252                                 dev->proto_down_reason &= ~BIT(b);
9253                 }
9254         }
9255 }
9256 EXPORT_SYMBOL(dev_change_proto_down_reason);
9257
9258 struct bpf_xdp_link {
9259         struct bpf_link link;
9260         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9261         int flags;
9262 };
9263
9264 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9265 {
9266         if (flags & XDP_FLAGS_HW_MODE)
9267                 return XDP_MODE_HW;
9268         if (flags & XDP_FLAGS_DRV_MODE)
9269                 return XDP_MODE_DRV;
9270         if (flags & XDP_FLAGS_SKB_MODE)
9271                 return XDP_MODE_SKB;
9272         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9273 }
9274
9275 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9276 {
9277         switch (mode) {
9278         case XDP_MODE_SKB:
9279                 return generic_xdp_install;
9280         case XDP_MODE_DRV:
9281         case XDP_MODE_HW:
9282                 return dev->netdev_ops->ndo_bpf;
9283         default:
9284                 return NULL;
9285         }
9286 }
9287
9288 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9289                                          enum bpf_xdp_mode mode)
9290 {
9291         return dev->xdp_state[mode].link;
9292 }
9293
9294 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9295                                      enum bpf_xdp_mode mode)
9296 {
9297         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9298
9299         if (link)
9300                 return link->link.prog;
9301         return dev->xdp_state[mode].prog;
9302 }
9303
9304 u8 dev_xdp_prog_count(struct net_device *dev)
9305 {
9306         u8 count = 0;
9307         int i;
9308
9309         for (i = 0; i < __MAX_XDP_MODE; i++)
9310                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9311                         count++;
9312         return count;
9313 }
9314 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9315
9316 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9317 {
9318         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9319
9320         return prog ? prog->aux->id : 0;
9321 }
9322
9323 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9324                              struct bpf_xdp_link *link)
9325 {
9326         dev->xdp_state[mode].link = link;
9327         dev->xdp_state[mode].prog = NULL;
9328 }
9329
9330 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9331                              struct bpf_prog *prog)
9332 {
9333         dev->xdp_state[mode].link = NULL;
9334         dev->xdp_state[mode].prog = prog;
9335 }
9336
9337 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9338                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9339                            u32 flags, struct bpf_prog *prog)
9340 {
9341         struct netdev_bpf xdp;
9342         int err;
9343
9344         memset(&xdp, 0, sizeof(xdp));
9345         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9346         xdp.extack = extack;
9347         xdp.flags = flags;
9348         xdp.prog = prog;
9349
9350         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9351          * "moved" into driver), so they don't increment it on their own, but
9352          * they do decrement refcnt when program is detached or replaced.
9353          * Given net_device also owns link/prog, we need to bump refcnt here
9354          * to prevent drivers from underflowing it.
9355          */
9356         if (prog)
9357                 bpf_prog_inc(prog);
9358         err = bpf_op(dev, &xdp);
9359         if (err) {
9360                 if (prog)
9361                         bpf_prog_put(prog);
9362                 return err;
9363         }
9364
9365         if (mode != XDP_MODE_HW)
9366                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9367
9368         return 0;
9369 }
9370
9371 static void dev_xdp_uninstall(struct net_device *dev)
9372 {
9373         struct bpf_xdp_link *link;
9374         struct bpf_prog *prog;
9375         enum bpf_xdp_mode mode;
9376         bpf_op_t bpf_op;
9377
9378         ASSERT_RTNL();
9379
9380         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9381                 prog = dev_xdp_prog(dev, mode);
9382                 if (!prog)
9383                         continue;
9384
9385                 bpf_op = dev_xdp_bpf_op(dev, mode);
9386                 if (!bpf_op)
9387                         continue;
9388
9389                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9390
9391                 /* auto-detach link from net device */
9392                 link = dev_xdp_link(dev, mode);
9393                 if (link)
9394                         link->dev = NULL;
9395                 else
9396                         bpf_prog_put(prog);
9397
9398                 dev_xdp_set_link(dev, mode, NULL);
9399         }
9400 }
9401
9402 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9403                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9404                           struct bpf_prog *old_prog, u32 flags)
9405 {
9406         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9407         struct bpf_prog *cur_prog;
9408         struct net_device *upper;
9409         struct list_head *iter;
9410         enum bpf_xdp_mode mode;
9411         bpf_op_t bpf_op;
9412         int err;
9413
9414         ASSERT_RTNL();
9415
9416         /* either link or prog attachment, never both */
9417         if (link && (new_prog || old_prog))
9418                 return -EINVAL;
9419         /* link supports only XDP mode flags */
9420         if (link && (flags & ~XDP_FLAGS_MODES)) {
9421                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9422                 return -EINVAL;
9423         }
9424         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9425         if (num_modes > 1) {
9426                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9427                 return -EINVAL;
9428         }
9429         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9430         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9431                 NL_SET_ERR_MSG(extack,
9432                                "More than one program loaded, unset mode is ambiguous");
9433                 return -EINVAL;
9434         }
9435         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9436         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9437                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9438                 return -EINVAL;
9439         }
9440
9441         mode = dev_xdp_mode(dev, flags);
9442         /* can't replace attached link */
9443         if (dev_xdp_link(dev, mode)) {
9444                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9445                 return -EBUSY;
9446         }
9447
9448         /* don't allow if an upper device already has a program */
9449         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9450                 if (dev_xdp_prog_count(upper) > 0) {
9451                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9452                         return -EEXIST;
9453                 }
9454         }
9455
9456         cur_prog = dev_xdp_prog(dev, mode);
9457         /* can't replace attached prog with link */
9458         if (link && cur_prog) {
9459                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9460                 return -EBUSY;
9461         }
9462         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9463                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9464                 return -EEXIST;
9465         }
9466
9467         /* put effective new program into new_prog */
9468         if (link)
9469                 new_prog = link->link.prog;
9470
9471         if (new_prog) {
9472                 bool offload = mode == XDP_MODE_HW;
9473                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9474                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9475
9476                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9477                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9478                         return -EBUSY;
9479                 }
9480                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9481                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9482                         return -EEXIST;
9483                 }
9484                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9485                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9486                         return -EINVAL;
9487                 }
9488                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9489                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9490                         return -EINVAL;
9491                 }
9492                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9493                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9494                         return -EINVAL;
9495                 }
9496         }
9497
9498         /* don't call drivers if the effective program didn't change */
9499         if (new_prog != cur_prog) {
9500                 bpf_op = dev_xdp_bpf_op(dev, mode);
9501                 if (!bpf_op) {
9502                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9503                         return -EOPNOTSUPP;
9504                 }
9505
9506                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9507                 if (err)
9508                         return err;
9509         }
9510
9511         if (link)
9512                 dev_xdp_set_link(dev, mode, link);
9513         else
9514                 dev_xdp_set_prog(dev, mode, new_prog);
9515         if (cur_prog)
9516                 bpf_prog_put(cur_prog);
9517
9518         return 0;
9519 }
9520
9521 static int dev_xdp_attach_link(struct net_device *dev,
9522                                struct netlink_ext_ack *extack,
9523                                struct bpf_xdp_link *link)
9524 {
9525         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9526 }
9527
9528 static int dev_xdp_detach_link(struct net_device *dev,
9529                                struct netlink_ext_ack *extack,
9530                                struct bpf_xdp_link *link)
9531 {
9532         enum bpf_xdp_mode mode;
9533         bpf_op_t bpf_op;
9534
9535         ASSERT_RTNL();
9536
9537         mode = dev_xdp_mode(dev, link->flags);
9538         if (dev_xdp_link(dev, mode) != link)
9539                 return -EINVAL;
9540
9541         bpf_op = dev_xdp_bpf_op(dev, mode);
9542         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9543         dev_xdp_set_link(dev, mode, NULL);
9544         return 0;
9545 }
9546
9547 static void bpf_xdp_link_release(struct bpf_link *link)
9548 {
9549         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9550
9551         rtnl_lock();
9552
9553         /* if racing with net_device's tear down, xdp_link->dev might be
9554          * already NULL, in which case link was already auto-detached
9555          */
9556         if (xdp_link->dev) {
9557                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9558                 xdp_link->dev = NULL;
9559         }
9560
9561         rtnl_unlock();
9562 }
9563
9564 static int bpf_xdp_link_detach(struct bpf_link *link)
9565 {
9566         bpf_xdp_link_release(link);
9567         return 0;
9568 }
9569
9570 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9571 {
9572         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9573
9574         kfree(xdp_link);
9575 }
9576
9577 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9578                                      struct seq_file *seq)
9579 {
9580         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9581         u32 ifindex = 0;
9582
9583         rtnl_lock();
9584         if (xdp_link->dev)
9585                 ifindex = xdp_link->dev->ifindex;
9586         rtnl_unlock();
9587
9588         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9589 }
9590
9591 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9592                                        struct bpf_link_info *info)
9593 {
9594         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9595         u32 ifindex = 0;
9596
9597         rtnl_lock();
9598         if (xdp_link->dev)
9599                 ifindex = xdp_link->dev->ifindex;
9600         rtnl_unlock();
9601
9602         info->xdp.ifindex = ifindex;
9603         return 0;
9604 }
9605
9606 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9607                                struct bpf_prog *old_prog)
9608 {
9609         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9610         enum bpf_xdp_mode mode;
9611         bpf_op_t bpf_op;
9612         int err = 0;
9613
9614         rtnl_lock();
9615
9616         /* link might have been auto-released already, so fail */
9617         if (!xdp_link->dev) {
9618                 err = -ENOLINK;
9619                 goto out_unlock;
9620         }
9621
9622         if (old_prog && link->prog != old_prog) {
9623                 err = -EPERM;
9624                 goto out_unlock;
9625         }
9626         old_prog = link->prog;
9627         if (old_prog == new_prog) {
9628                 /* no-op, don't disturb drivers */
9629                 bpf_prog_put(new_prog);
9630                 goto out_unlock;
9631         }
9632
9633         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9634         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9635         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9636                               xdp_link->flags, new_prog);
9637         if (err)
9638                 goto out_unlock;
9639
9640         old_prog = xchg(&link->prog, new_prog);
9641         bpf_prog_put(old_prog);
9642
9643 out_unlock:
9644         rtnl_unlock();
9645         return err;
9646 }
9647
9648 static const struct bpf_link_ops bpf_xdp_link_lops = {
9649         .release = bpf_xdp_link_release,
9650         .dealloc = bpf_xdp_link_dealloc,
9651         .detach = bpf_xdp_link_detach,
9652         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9653         .fill_link_info = bpf_xdp_link_fill_link_info,
9654         .update_prog = bpf_xdp_link_update,
9655 };
9656
9657 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9658 {
9659         struct net *net = current->nsproxy->net_ns;
9660         struct bpf_link_primer link_primer;
9661         struct bpf_xdp_link *link;
9662         struct net_device *dev;
9663         int err, fd;
9664
9665         rtnl_lock();
9666         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9667         if (!dev) {
9668                 rtnl_unlock();
9669                 return -EINVAL;
9670         }
9671
9672         link = kzalloc(sizeof(*link), GFP_USER);
9673         if (!link) {
9674                 err = -ENOMEM;
9675                 goto unlock;
9676         }
9677
9678         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9679         link->dev = dev;
9680         link->flags = attr->link_create.flags;
9681
9682         err = bpf_link_prime(&link->link, &link_primer);
9683         if (err) {
9684                 kfree(link);
9685                 goto unlock;
9686         }
9687
9688         err = dev_xdp_attach_link(dev, NULL, link);
9689         rtnl_unlock();
9690
9691         if (err) {
9692                 link->dev = NULL;
9693                 bpf_link_cleanup(&link_primer);
9694                 goto out_put_dev;
9695         }
9696
9697         fd = bpf_link_settle(&link_primer);
9698         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9699         dev_put(dev);
9700         return fd;
9701
9702 unlock:
9703         rtnl_unlock();
9704
9705 out_put_dev:
9706         dev_put(dev);
9707         return err;
9708 }
9709
9710 /**
9711  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9712  *      @dev: device
9713  *      @extack: netlink extended ack
9714  *      @fd: new program fd or negative value to clear
9715  *      @expected_fd: old program fd that userspace expects to replace or clear
9716  *      @flags: xdp-related flags
9717  *
9718  *      Set or clear a bpf program for a device
9719  */
9720 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9721                       int fd, int expected_fd, u32 flags)
9722 {
9723         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9724         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9725         int err;
9726
9727         ASSERT_RTNL();
9728
9729         if (fd >= 0) {
9730                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9731                                                  mode != XDP_MODE_SKB);
9732                 if (IS_ERR(new_prog))
9733                         return PTR_ERR(new_prog);
9734         }
9735
9736         if (expected_fd >= 0) {
9737                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9738                                                  mode != XDP_MODE_SKB);
9739                 if (IS_ERR(old_prog)) {
9740                         err = PTR_ERR(old_prog);
9741                         old_prog = NULL;
9742                         goto err_out;
9743                 }
9744         }
9745
9746         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9747
9748 err_out:
9749         if (err && new_prog)
9750                 bpf_prog_put(new_prog);
9751         if (old_prog)
9752                 bpf_prog_put(old_prog);
9753         return err;
9754 }
9755
9756 /**
9757  *      dev_new_index   -       allocate an ifindex
9758  *      @net: the applicable net namespace
9759  *
9760  *      Returns a suitable unique value for a new device interface
9761  *      number.  The caller must hold the rtnl semaphore or the
9762  *      dev_base_lock to be sure it remains unique.
9763  */
9764 static int dev_new_index(struct net *net)
9765 {
9766         int ifindex = net->ifindex;
9767
9768         for (;;) {
9769                 if (++ifindex <= 0)
9770                         ifindex = 1;
9771                 if (!__dev_get_by_index(net, ifindex))
9772                         return net->ifindex = ifindex;
9773         }
9774 }
9775
9776 /* Delayed registration/unregisteration */
9777 static LIST_HEAD(net_todo_list);
9778 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9779
9780 static void net_set_todo(struct net_device *dev)
9781 {
9782         list_add_tail(&dev->todo_list, &net_todo_list);
9783         dev_net(dev)->dev_unreg_count++;
9784 }
9785
9786 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9787         struct net_device *upper, netdev_features_t features)
9788 {
9789         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9790         netdev_features_t feature;
9791         int feature_bit;
9792
9793         for_each_netdev_feature(upper_disables, feature_bit) {
9794                 feature = __NETIF_F_BIT(feature_bit);
9795                 if (!(upper->wanted_features & feature)
9796                     && (features & feature)) {
9797                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9798                                    &feature, upper->name);
9799                         features &= ~feature;
9800                 }
9801         }
9802
9803         return features;
9804 }
9805
9806 static void netdev_sync_lower_features(struct net_device *upper,
9807         struct net_device *lower, netdev_features_t features)
9808 {
9809         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9810         netdev_features_t feature;
9811         int feature_bit;
9812
9813         for_each_netdev_feature(upper_disables, feature_bit) {
9814                 feature = __NETIF_F_BIT(feature_bit);
9815                 if (!(features & feature) && (lower->features & feature)) {
9816                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9817                                    &feature, lower->name);
9818                         lower->wanted_features &= ~feature;
9819                         __netdev_update_features(lower);
9820
9821                         if (unlikely(lower->features & feature))
9822                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9823                                             &feature, lower->name);
9824                         else
9825                                 netdev_features_change(lower);
9826                 }
9827         }
9828 }
9829
9830 static netdev_features_t netdev_fix_features(struct net_device *dev,
9831         netdev_features_t features)
9832 {
9833         /* Fix illegal checksum combinations */
9834         if ((features & NETIF_F_HW_CSUM) &&
9835             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9836                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9837                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9838         }
9839
9840         /* TSO requires that SG is present as well. */
9841         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9842                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9843                 features &= ~NETIF_F_ALL_TSO;
9844         }
9845
9846         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9847                                         !(features & NETIF_F_IP_CSUM)) {
9848                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9849                 features &= ~NETIF_F_TSO;
9850                 features &= ~NETIF_F_TSO_ECN;
9851         }
9852
9853         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9854                                          !(features & NETIF_F_IPV6_CSUM)) {
9855                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9856                 features &= ~NETIF_F_TSO6;
9857         }
9858
9859         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9860         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9861                 features &= ~NETIF_F_TSO_MANGLEID;
9862
9863         /* TSO ECN requires that TSO is present as well. */
9864         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9865                 features &= ~NETIF_F_TSO_ECN;
9866
9867         /* Software GSO depends on SG. */
9868         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9869                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9870                 features &= ~NETIF_F_GSO;
9871         }
9872
9873         /* GSO partial features require GSO partial be set */
9874         if ((features & dev->gso_partial_features) &&
9875             !(features & NETIF_F_GSO_PARTIAL)) {
9876                 netdev_dbg(dev,
9877                            "Dropping partially supported GSO features since no GSO partial.\n");
9878                 features &= ~dev->gso_partial_features;
9879         }
9880
9881         if (!(features & NETIF_F_RXCSUM)) {
9882                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9883                  * successfully merged by hardware must also have the
9884                  * checksum verified by hardware.  If the user does not
9885                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9886                  */
9887                 if (features & NETIF_F_GRO_HW) {
9888                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9889                         features &= ~NETIF_F_GRO_HW;
9890                 }
9891         }
9892
9893         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9894         if (features & NETIF_F_RXFCS) {
9895                 if (features & NETIF_F_LRO) {
9896                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9897                         features &= ~NETIF_F_LRO;
9898                 }
9899
9900                 if (features & NETIF_F_GRO_HW) {
9901                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9902                         features &= ~NETIF_F_GRO_HW;
9903                 }
9904         }
9905
9906         if (features & NETIF_F_HW_TLS_TX) {
9907                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9908                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9909                 bool hw_csum = features & NETIF_F_HW_CSUM;
9910
9911                 if (!ip_csum && !hw_csum) {
9912                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9913                         features &= ~NETIF_F_HW_TLS_TX;
9914                 }
9915         }
9916
9917         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9918                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9919                 features &= ~NETIF_F_HW_TLS_RX;
9920         }
9921
9922         return features;
9923 }
9924
9925 int __netdev_update_features(struct net_device *dev)
9926 {
9927         struct net_device *upper, *lower;
9928         netdev_features_t features;
9929         struct list_head *iter;
9930         int err = -1;
9931
9932         ASSERT_RTNL();
9933
9934         features = netdev_get_wanted_features(dev);
9935
9936         if (dev->netdev_ops->ndo_fix_features)
9937                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9938
9939         /* driver might be less strict about feature dependencies */
9940         features = netdev_fix_features(dev, features);
9941
9942         /* some features can't be enabled if they're off on an upper device */
9943         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9944                 features = netdev_sync_upper_features(dev, upper, features);
9945
9946         if (dev->features == features)
9947                 goto sync_lower;
9948
9949         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9950                 &dev->features, &features);
9951
9952         if (dev->netdev_ops->ndo_set_features)
9953                 err = dev->netdev_ops->ndo_set_features(dev, features);
9954         else
9955                 err = 0;
9956
9957         if (unlikely(err < 0)) {
9958                 netdev_err(dev,
9959                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9960                         err, &features, &dev->features);
9961                 /* return non-0 since some features might have changed and
9962                  * it's better to fire a spurious notification than miss it
9963                  */
9964                 return -1;
9965         }
9966
9967 sync_lower:
9968         /* some features must be disabled on lower devices when disabled
9969          * on an upper device (think: bonding master or bridge)
9970          */
9971         netdev_for_each_lower_dev(dev, lower, iter)
9972                 netdev_sync_lower_features(dev, lower, features);
9973
9974         if (!err) {
9975                 netdev_features_t diff = features ^ dev->features;
9976
9977                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9978                         /* udp_tunnel_{get,drop}_rx_info both need
9979                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9980                          * device, or they won't do anything.
9981                          * Thus we need to update dev->features
9982                          * *before* calling udp_tunnel_get_rx_info,
9983                          * but *after* calling udp_tunnel_drop_rx_info.
9984                          */
9985                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9986                                 dev->features = features;
9987                                 udp_tunnel_get_rx_info(dev);
9988                         } else {
9989                                 udp_tunnel_drop_rx_info(dev);
9990                         }
9991                 }
9992
9993                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9994                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9995                                 dev->features = features;
9996                                 err |= vlan_get_rx_ctag_filter_info(dev);
9997                         } else {
9998                                 vlan_drop_rx_ctag_filter_info(dev);
9999                         }
10000                 }
10001
10002                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10003                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10004                                 dev->features = features;
10005                                 err |= vlan_get_rx_stag_filter_info(dev);
10006                         } else {
10007                                 vlan_drop_rx_stag_filter_info(dev);
10008                         }
10009                 }
10010
10011                 dev->features = features;
10012         }
10013
10014         return err < 0 ? 0 : 1;
10015 }
10016
10017 /**
10018  *      netdev_update_features - recalculate device features
10019  *      @dev: the device to check
10020  *
10021  *      Recalculate dev->features set and send notifications if it
10022  *      has changed. Should be called after driver or hardware dependent
10023  *      conditions might have changed that influence the features.
10024  */
10025 void netdev_update_features(struct net_device *dev)
10026 {
10027         if (__netdev_update_features(dev))
10028                 netdev_features_change(dev);
10029 }
10030 EXPORT_SYMBOL(netdev_update_features);
10031
10032 /**
10033  *      netdev_change_features - recalculate device features
10034  *      @dev: the device to check
10035  *
10036  *      Recalculate dev->features set and send notifications even
10037  *      if they have not changed. Should be called instead of
10038  *      netdev_update_features() if also dev->vlan_features might
10039  *      have changed to allow the changes to be propagated to stacked
10040  *      VLAN devices.
10041  */
10042 void netdev_change_features(struct net_device *dev)
10043 {
10044         __netdev_update_features(dev);
10045         netdev_features_change(dev);
10046 }
10047 EXPORT_SYMBOL(netdev_change_features);
10048
10049 /**
10050  *      netif_stacked_transfer_operstate -      transfer operstate
10051  *      @rootdev: the root or lower level device to transfer state from
10052  *      @dev: the device to transfer operstate to
10053  *
10054  *      Transfer operational state from root to device. This is normally
10055  *      called when a stacking relationship exists between the root
10056  *      device and the device(a leaf device).
10057  */
10058 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10059                                         struct net_device *dev)
10060 {
10061         if (rootdev->operstate == IF_OPER_DORMANT)
10062                 netif_dormant_on(dev);
10063         else
10064                 netif_dormant_off(dev);
10065
10066         if (rootdev->operstate == IF_OPER_TESTING)
10067                 netif_testing_on(dev);
10068         else
10069                 netif_testing_off(dev);
10070
10071         if (netif_carrier_ok(rootdev))
10072                 netif_carrier_on(dev);
10073         else
10074                 netif_carrier_off(dev);
10075 }
10076 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10077
10078 static int netif_alloc_rx_queues(struct net_device *dev)
10079 {
10080         unsigned int i, count = dev->num_rx_queues;
10081         struct netdev_rx_queue *rx;
10082         size_t sz = count * sizeof(*rx);
10083         int err = 0;
10084
10085         BUG_ON(count < 1);
10086
10087         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10088         if (!rx)
10089                 return -ENOMEM;
10090
10091         dev->_rx = rx;
10092
10093         for (i = 0; i < count; i++) {
10094                 rx[i].dev = dev;
10095
10096                 /* XDP RX-queue setup */
10097                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10098                 if (err < 0)
10099                         goto err_rxq_info;
10100         }
10101         return 0;
10102
10103 err_rxq_info:
10104         /* Rollback successful reg's and free other resources */
10105         while (i--)
10106                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10107         kvfree(dev->_rx);
10108         dev->_rx = NULL;
10109         return err;
10110 }
10111
10112 static void netif_free_rx_queues(struct net_device *dev)
10113 {
10114         unsigned int i, count = dev->num_rx_queues;
10115
10116         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10117         if (!dev->_rx)
10118                 return;
10119
10120         for (i = 0; i < count; i++)
10121                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10122
10123         kvfree(dev->_rx);
10124 }
10125
10126 static void netdev_init_one_queue(struct net_device *dev,
10127                                   struct netdev_queue *queue, void *_unused)
10128 {
10129         /* Initialize queue lock */
10130         spin_lock_init(&queue->_xmit_lock);
10131         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10132         queue->xmit_lock_owner = -1;
10133         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10134         queue->dev = dev;
10135 #ifdef CONFIG_BQL
10136         dql_init(&queue->dql, HZ);
10137 #endif
10138 }
10139
10140 static void netif_free_tx_queues(struct net_device *dev)
10141 {
10142         kvfree(dev->_tx);
10143 }
10144
10145 static int netif_alloc_netdev_queues(struct net_device *dev)
10146 {
10147         unsigned int count = dev->num_tx_queues;
10148         struct netdev_queue *tx;
10149         size_t sz = count * sizeof(*tx);
10150
10151         if (count < 1 || count > 0xffff)
10152                 return -EINVAL;
10153
10154         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10155         if (!tx)
10156                 return -ENOMEM;
10157
10158         dev->_tx = tx;
10159
10160         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10161         spin_lock_init(&dev->tx_global_lock);
10162
10163         return 0;
10164 }
10165
10166 void netif_tx_stop_all_queues(struct net_device *dev)
10167 {
10168         unsigned int i;
10169
10170         for (i = 0; i < dev->num_tx_queues; i++) {
10171                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10172
10173                 netif_tx_stop_queue(txq);
10174         }
10175 }
10176 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10177
10178 /**
10179  *      register_netdevice      - register a network device
10180  *      @dev: device to register
10181  *
10182  *      Take a completed network device structure and add it to the kernel
10183  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10184  *      chain. 0 is returned on success. A negative errno code is returned
10185  *      on a failure to set up the device, or if the name is a duplicate.
10186  *
10187  *      Callers must hold the rtnl semaphore. You may want
10188  *      register_netdev() instead of this.
10189  *
10190  *      BUGS:
10191  *      The locking appears insufficient to guarantee two parallel registers
10192  *      will not get the same name.
10193  */
10194
10195 int register_netdevice(struct net_device *dev)
10196 {
10197         int ret;
10198         struct net *net = dev_net(dev);
10199
10200         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10201                      NETDEV_FEATURE_COUNT);
10202         BUG_ON(dev_boot_phase);
10203         ASSERT_RTNL();
10204
10205         might_sleep();
10206
10207         /* When net_device's are persistent, this will be fatal. */
10208         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10209         BUG_ON(!net);
10210
10211         ret = ethtool_check_ops(dev->ethtool_ops);
10212         if (ret)
10213                 return ret;
10214
10215         spin_lock_init(&dev->addr_list_lock);
10216         netdev_set_addr_lockdep_class(dev);
10217
10218         ret = dev_get_valid_name(net, dev, dev->name);
10219         if (ret < 0)
10220                 goto out;
10221
10222         ret = -ENOMEM;
10223         dev->name_node = netdev_name_node_head_alloc(dev);
10224         if (!dev->name_node)
10225                 goto out;
10226
10227         /* Init, if this function is available */
10228         if (dev->netdev_ops->ndo_init) {
10229                 ret = dev->netdev_ops->ndo_init(dev);
10230                 if (ret) {
10231                         if (ret > 0)
10232                                 ret = -EIO;
10233                         goto err_free_name;
10234                 }
10235         }
10236
10237         if (((dev->hw_features | dev->features) &
10238              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10239             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10240              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10241                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10242                 ret = -EINVAL;
10243                 goto err_uninit;
10244         }
10245
10246         ret = -EBUSY;
10247         if (!dev->ifindex)
10248                 dev->ifindex = dev_new_index(net);
10249         else if (__dev_get_by_index(net, dev->ifindex))
10250                 goto err_uninit;
10251
10252         /* Transfer changeable features to wanted_features and enable
10253          * software offloads (GSO and GRO).
10254          */
10255         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10256         dev->features |= NETIF_F_SOFT_FEATURES;
10257
10258         if (dev->udp_tunnel_nic_info) {
10259                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10260                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10261         }
10262
10263         dev->wanted_features = dev->features & dev->hw_features;
10264
10265         if (!(dev->flags & IFF_LOOPBACK))
10266                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10267
10268         /* If IPv4 TCP segmentation offload is supported we should also
10269          * allow the device to enable segmenting the frame with the option
10270          * of ignoring a static IP ID value.  This doesn't enable the
10271          * feature itself but allows the user to enable it later.
10272          */
10273         if (dev->hw_features & NETIF_F_TSO)
10274                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10275         if (dev->vlan_features & NETIF_F_TSO)
10276                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10277         if (dev->mpls_features & NETIF_F_TSO)
10278                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10279         if (dev->hw_enc_features & NETIF_F_TSO)
10280                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10281
10282         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10283          */
10284         dev->vlan_features |= NETIF_F_HIGHDMA;
10285
10286         /* Make NETIF_F_SG inheritable to tunnel devices.
10287          */
10288         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10289
10290         /* Make NETIF_F_SG inheritable to MPLS.
10291          */
10292         dev->mpls_features |= NETIF_F_SG;
10293
10294         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10295         ret = notifier_to_errno(ret);
10296         if (ret)
10297                 goto err_uninit;
10298
10299         ret = netdev_register_kobject(dev);
10300         if (ret) {
10301                 dev->reg_state = NETREG_UNREGISTERED;
10302                 goto err_uninit;
10303         }
10304         dev->reg_state = NETREG_REGISTERED;
10305
10306         __netdev_update_features(dev);
10307
10308         /*
10309          *      Default initial state at registry is that the
10310          *      device is present.
10311          */
10312
10313         set_bit(__LINK_STATE_PRESENT, &dev->state);
10314
10315         linkwatch_init_dev(dev);
10316
10317         dev_init_scheduler(dev);
10318         dev_hold(dev);
10319         list_netdevice(dev);
10320         add_device_randomness(dev->dev_addr, dev->addr_len);
10321
10322         /* If the device has permanent device address, driver should
10323          * set dev_addr and also addr_assign_type should be set to
10324          * NET_ADDR_PERM (default value).
10325          */
10326         if (dev->addr_assign_type == NET_ADDR_PERM)
10327                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10328
10329         /* Notify protocols, that a new device appeared. */
10330         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10331         ret = notifier_to_errno(ret);
10332         if (ret) {
10333                 /* Expect explicit free_netdev() on failure */
10334                 dev->needs_free_netdev = false;
10335                 unregister_netdevice_queue(dev, NULL);
10336                 goto out;
10337         }
10338         /*
10339          *      Prevent userspace races by waiting until the network
10340          *      device is fully setup before sending notifications.
10341          */
10342         if (!dev->rtnl_link_ops ||
10343             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10344                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10345
10346 out:
10347         return ret;
10348
10349 err_uninit:
10350         if (dev->netdev_ops->ndo_uninit)
10351                 dev->netdev_ops->ndo_uninit(dev);
10352         if (dev->priv_destructor)
10353                 dev->priv_destructor(dev);
10354 err_free_name:
10355         netdev_name_node_free(dev->name_node);
10356         goto out;
10357 }
10358 EXPORT_SYMBOL(register_netdevice);
10359
10360 /**
10361  *      init_dummy_netdev       - init a dummy network device for NAPI
10362  *      @dev: device to init
10363  *
10364  *      This takes a network device structure and initialize the minimum
10365  *      amount of fields so it can be used to schedule NAPI polls without
10366  *      registering a full blown interface. This is to be used by drivers
10367  *      that need to tie several hardware interfaces to a single NAPI
10368  *      poll scheduler due to HW limitations.
10369  */
10370 int init_dummy_netdev(struct net_device *dev)
10371 {
10372         /* Clear everything. Note we don't initialize spinlocks
10373          * are they aren't supposed to be taken by any of the
10374          * NAPI code and this dummy netdev is supposed to be
10375          * only ever used for NAPI polls
10376          */
10377         memset(dev, 0, sizeof(struct net_device));
10378
10379         /* make sure we BUG if trying to hit standard
10380          * register/unregister code path
10381          */
10382         dev->reg_state = NETREG_DUMMY;
10383
10384         /* NAPI wants this */
10385         INIT_LIST_HEAD(&dev->napi_list);
10386
10387         /* a dummy interface is started by default */
10388         set_bit(__LINK_STATE_PRESENT, &dev->state);
10389         set_bit(__LINK_STATE_START, &dev->state);
10390
10391         /* napi_busy_loop stats accounting wants this */
10392         dev_net_set(dev, &init_net);
10393
10394         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10395          * because users of this 'device' dont need to change
10396          * its refcount.
10397          */
10398
10399         return 0;
10400 }
10401 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10402
10403
10404 /**
10405  *      register_netdev - register a network device
10406  *      @dev: device to register
10407  *
10408  *      Take a completed network device structure and add it to the kernel
10409  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10410  *      chain. 0 is returned on success. A negative errno code is returned
10411  *      on a failure to set up the device, or if the name is a duplicate.
10412  *
10413  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10414  *      and expands the device name if you passed a format string to
10415  *      alloc_netdev.
10416  */
10417 int register_netdev(struct net_device *dev)
10418 {
10419         int err;
10420
10421         if (rtnl_lock_killable())
10422                 return -EINTR;
10423         err = register_netdevice(dev);
10424         rtnl_unlock();
10425         return err;
10426 }
10427 EXPORT_SYMBOL(register_netdev);
10428
10429 int netdev_refcnt_read(const struct net_device *dev)
10430 {
10431 #ifdef CONFIG_PCPU_DEV_REFCNT
10432         int i, refcnt = 0;
10433
10434         for_each_possible_cpu(i)
10435                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10436         return refcnt;
10437 #else
10438         return refcount_read(&dev->dev_refcnt);
10439 #endif
10440 }
10441 EXPORT_SYMBOL(netdev_refcnt_read);
10442
10443 int netdev_unregister_timeout_secs __read_mostly = 10;
10444
10445 #define WAIT_REFS_MIN_MSECS 1
10446 #define WAIT_REFS_MAX_MSECS 250
10447 /**
10448  * netdev_wait_allrefs - wait until all references are gone.
10449  * @dev: target net_device
10450  *
10451  * This is called when unregistering network devices.
10452  *
10453  * Any protocol or device that holds a reference should register
10454  * for netdevice notification, and cleanup and put back the
10455  * reference if they receive an UNREGISTER event.
10456  * We can get stuck here if buggy protocols don't correctly
10457  * call dev_put.
10458  */
10459 static void netdev_wait_allrefs(struct net_device *dev)
10460 {
10461         unsigned long rebroadcast_time, warning_time;
10462         int wait = 0, refcnt;
10463
10464         linkwatch_forget_dev(dev);
10465
10466         rebroadcast_time = warning_time = jiffies;
10467         refcnt = netdev_refcnt_read(dev);
10468
10469         while (refcnt != 1) {
10470                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10471                         rtnl_lock();
10472
10473                         /* Rebroadcast unregister notification */
10474                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10475
10476                         __rtnl_unlock();
10477                         rcu_barrier();
10478                         rtnl_lock();
10479
10480                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10481                                      &dev->state)) {
10482                                 /* We must not have linkwatch events
10483                                  * pending on unregister. If this
10484                                  * happens, we simply run the queue
10485                                  * unscheduled, resulting in a noop
10486                                  * for this device.
10487                                  */
10488                                 linkwatch_run_queue();
10489                         }
10490
10491                         __rtnl_unlock();
10492
10493                         rebroadcast_time = jiffies;
10494                 }
10495
10496                 if (!wait) {
10497                         rcu_barrier();
10498                         wait = WAIT_REFS_MIN_MSECS;
10499                 } else {
10500                         msleep(wait);
10501                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10502                 }
10503
10504                 refcnt = netdev_refcnt_read(dev);
10505
10506                 if (refcnt != 1 &&
10507                     time_after(jiffies, warning_time +
10508                                netdev_unregister_timeout_secs * HZ)) {
10509                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10510                                  dev->name, refcnt);
10511                         warning_time = jiffies;
10512                 }
10513         }
10514 }
10515
10516 /* The sequence is:
10517  *
10518  *      rtnl_lock();
10519  *      ...
10520  *      register_netdevice(x1);
10521  *      register_netdevice(x2);
10522  *      ...
10523  *      unregister_netdevice(y1);
10524  *      unregister_netdevice(y2);
10525  *      ...
10526  *      rtnl_unlock();
10527  *      free_netdev(y1);
10528  *      free_netdev(y2);
10529  *
10530  * We are invoked by rtnl_unlock().
10531  * This allows us to deal with problems:
10532  * 1) We can delete sysfs objects which invoke hotplug
10533  *    without deadlocking with linkwatch via keventd.
10534  * 2) Since we run with the RTNL semaphore not held, we can sleep
10535  *    safely in order to wait for the netdev refcnt to drop to zero.
10536  *
10537  * We must not return until all unregister events added during
10538  * the interval the lock was held have been completed.
10539  */
10540 void netdev_run_todo(void)
10541 {
10542         struct list_head list;
10543 #ifdef CONFIG_LOCKDEP
10544         struct list_head unlink_list;
10545
10546         list_replace_init(&net_unlink_list, &unlink_list);
10547
10548         while (!list_empty(&unlink_list)) {
10549                 struct net_device *dev = list_first_entry(&unlink_list,
10550                                                           struct net_device,
10551                                                           unlink_list);
10552                 list_del_init(&dev->unlink_list);
10553                 dev->nested_level = dev->lower_level - 1;
10554         }
10555 #endif
10556
10557         /* Snapshot list, allow later requests */
10558         list_replace_init(&net_todo_list, &list);
10559
10560         __rtnl_unlock();
10561
10562
10563         /* Wait for rcu callbacks to finish before next phase */
10564         if (!list_empty(&list))
10565                 rcu_barrier();
10566
10567         while (!list_empty(&list)) {
10568                 struct net_device *dev
10569                         = list_first_entry(&list, struct net_device, todo_list);
10570                 list_del(&dev->todo_list);
10571
10572                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10573                         pr_err("network todo '%s' but state %d\n",
10574                                dev->name, dev->reg_state);
10575                         dump_stack();
10576                         continue;
10577                 }
10578
10579                 dev->reg_state = NETREG_UNREGISTERED;
10580
10581                 netdev_wait_allrefs(dev);
10582
10583                 /* paranoia */
10584                 BUG_ON(netdev_refcnt_read(dev) != 1);
10585                 BUG_ON(!list_empty(&dev->ptype_all));
10586                 BUG_ON(!list_empty(&dev->ptype_specific));
10587                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10588                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10589 #if IS_ENABLED(CONFIG_DECNET)
10590                 WARN_ON(dev->dn_ptr);
10591 #endif
10592                 if (dev->priv_destructor)
10593                         dev->priv_destructor(dev);
10594                 if (dev->needs_free_netdev)
10595                         free_netdev(dev);
10596
10597                 /* Report a network device has been unregistered */
10598                 rtnl_lock();
10599                 dev_net(dev)->dev_unreg_count--;
10600                 __rtnl_unlock();
10601                 wake_up(&netdev_unregistering_wq);
10602
10603                 /* Free network device */
10604                 kobject_put(&dev->dev.kobj);
10605         }
10606 }
10607
10608 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10609  * all the same fields in the same order as net_device_stats, with only
10610  * the type differing, but rtnl_link_stats64 may have additional fields
10611  * at the end for newer counters.
10612  */
10613 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10614                              const struct net_device_stats *netdev_stats)
10615 {
10616 #if BITS_PER_LONG == 64
10617         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10618         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10619         /* zero out counters that only exist in rtnl_link_stats64 */
10620         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10621                sizeof(*stats64) - sizeof(*netdev_stats));
10622 #else
10623         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10624         const unsigned long *src = (const unsigned long *)netdev_stats;
10625         u64 *dst = (u64 *)stats64;
10626
10627         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10628         for (i = 0; i < n; i++)
10629                 dst[i] = src[i];
10630         /* zero out counters that only exist in rtnl_link_stats64 */
10631         memset((char *)stats64 + n * sizeof(u64), 0,
10632                sizeof(*stats64) - n * sizeof(u64));
10633 #endif
10634 }
10635 EXPORT_SYMBOL(netdev_stats_to_stats64);
10636
10637 /**
10638  *      dev_get_stats   - get network device statistics
10639  *      @dev: device to get statistics from
10640  *      @storage: place to store stats
10641  *
10642  *      Get network statistics from device. Return @storage.
10643  *      The device driver may provide its own method by setting
10644  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10645  *      otherwise the internal statistics structure is used.
10646  */
10647 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10648                                         struct rtnl_link_stats64 *storage)
10649 {
10650         const struct net_device_ops *ops = dev->netdev_ops;
10651
10652         if (ops->ndo_get_stats64) {
10653                 memset(storage, 0, sizeof(*storage));
10654                 ops->ndo_get_stats64(dev, storage);
10655         } else if (ops->ndo_get_stats) {
10656                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10657         } else {
10658                 netdev_stats_to_stats64(storage, &dev->stats);
10659         }
10660         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10661         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10662         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10663         return storage;
10664 }
10665 EXPORT_SYMBOL(dev_get_stats);
10666
10667 /**
10668  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10669  *      @s: place to store stats
10670  *      @netstats: per-cpu network stats to read from
10671  *
10672  *      Read per-cpu network statistics and populate the related fields in @s.
10673  */
10674 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10675                            const struct pcpu_sw_netstats __percpu *netstats)
10676 {
10677         int cpu;
10678
10679         for_each_possible_cpu(cpu) {
10680                 const struct pcpu_sw_netstats *stats;
10681                 struct pcpu_sw_netstats tmp;
10682                 unsigned int start;
10683
10684                 stats = per_cpu_ptr(netstats, cpu);
10685                 do {
10686                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10687                         tmp.rx_packets = stats->rx_packets;
10688                         tmp.rx_bytes   = stats->rx_bytes;
10689                         tmp.tx_packets = stats->tx_packets;
10690                         tmp.tx_bytes   = stats->tx_bytes;
10691                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10692
10693                 s->rx_packets += tmp.rx_packets;
10694                 s->rx_bytes   += tmp.rx_bytes;
10695                 s->tx_packets += tmp.tx_packets;
10696                 s->tx_bytes   += tmp.tx_bytes;
10697         }
10698 }
10699 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10700
10701 /**
10702  *      dev_get_tstats64 - ndo_get_stats64 implementation
10703  *      @dev: device to get statistics from
10704  *      @s: place to store stats
10705  *
10706  *      Populate @s from dev->stats and dev->tstats. Can be used as
10707  *      ndo_get_stats64() callback.
10708  */
10709 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10710 {
10711         netdev_stats_to_stats64(s, &dev->stats);
10712         dev_fetch_sw_netstats(s, dev->tstats);
10713 }
10714 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10715
10716 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10717 {
10718         struct netdev_queue *queue = dev_ingress_queue(dev);
10719
10720 #ifdef CONFIG_NET_CLS_ACT
10721         if (queue)
10722                 return queue;
10723         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10724         if (!queue)
10725                 return NULL;
10726         netdev_init_one_queue(dev, queue, NULL);
10727         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10728         queue->qdisc_sleeping = &noop_qdisc;
10729         rcu_assign_pointer(dev->ingress_queue, queue);
10730 #endif
10731         return queue;
10732 }
10733
10734 static const struct ethtool_ops default_ethtool_ops;
10735
10736 void netdev_set_default_ethtool_ops(struct net_device *dev,
10737                                     const struct ethtool_ops *ops)
10738 {
10739         if (dev->ethtool_ops == &default_ethtool_ops)
10740                 dev->ethtool_ops = ops;
10741 }
10742 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10743
10744 void netdev_freemem(struct net_device *dev)
10745 {
10746         char *addr = (char *)dev - dev->padded;
10747
10748         kvfree(addr);
10749 }
10750
10751 /**
10752  * alloc_netdev_mqs - allocate network device
10753  * @sizeof_priv: size of private data to allocate space for
10754  * @name: device name format string
10755  * @name_assign_type: origin of device name
10756  * @setup: callback to initialize device
10757  * @txqs: the number of TX subqueues to allocate
10758  * @rxqs: the number of RX subqueues to allocate
10759  *
10760  * Allocates a struct net_device with private data area for driver use
10761  * and performs basic initialization.  Also allocates subqueue structs
10762  * for each queue on the device.
10763  */
10764 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10765                 unsigned char name_assign_type,
10766                 void (*setup)(struct net_device *),
10767                 unsigned int txqs, unsigned int rxqs)
10768 {
10769         struct net_device *dev;
10770         unsigned int alloc_size;
10771         struct net_device *p;
10772
10773         BUG_ON(strlen(name) >= sizeof(dev->name));
10774
10775         if (txqs < 1) {
10776                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10777                 return NULL;
10778         }
10779
10780         if (rxqs < 1) {
10781                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10782                 return NULL;
10783         }
10784
10785         alloc_size = sizeof(struct net_device);
10786         if (sizeof_priv) {
10787                 /* ensure 32-byte alignment of private area */
10788                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10789                 alloc_size += sizeof_priv;
10790         }
10791         /* ensure 32-byte alignment of whole construct */
10792         alloc_size += NETDEV_ALIGN - 1;
10793
10794         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10795         if (!p)
10796                 return NULL;
10797
10798         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10799         dev->padded = (char *)dev - (char *)p;
10800
10801 #ifdef CONFIG_PCPU_DEV_REFCNT
10802         dev->pcpu_refcnt = alloc_percpu(int);
10803         if (!dev->pcpu_refcnt)
10804                 goto free_dev;
10805         dev_hold(dev);
10806 #else
10807         refcount_set(&dev->dev_refcnt, 1);
10808 #endif
10809
10810         if (dev_addr_init(dev))
10811                 goto free_pcpu;
10812
10813         dev_mc_init(dev);
10814         dev_uc_init(dev);
10815
10816         dev_net_set(dev, &init_net);
10817
10818         dev->gso_max_size = GSO_MAX_SIZE;
10819         dev->gso_max_segs = GSO_MAX_SEGS;
10820         dev->upper_level = 1;
10821         dev->lower_level = 1;
10822 #ifdef CONFIG_LOCKDEP
10823         dev->nested_level = 0;
10824         INIT_LIST_HEAD(&dev->unlink_list);
10825 #endif
10826
10827         INIT_LIST_HEAD(&dev->napi_list);
10828         INIT_LIST_HEAD(&dev->unreg_list);
10829         INIT_LIST_HEAD(&dev->close_list);
10830         INIT_LIST_HEAD(&dev->link_watch_list);
10831         INIT_LIST_HEAD(&dev->adj_list.upper);
10832         INIT_LIST_HEAD(&dev->adj_list.lower);
10833         INIT_LIST_HEAD(&dev->ptype_all);
10834         INIT_LIST_HEAD(&dev->ptype_specific);
10835         INIT_LIST_HEAD(&dev->net_notifier_list);
10836 #ifdef CONFIG_NET_SCHED
10837         hash_init(dev->qdisc_hash);
10838 #endif
10839         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10840         setup(dev);
10841
10842         if (!dev->tx_queue_len) {
10843                 dev->priv_flags |= IFF_NO_QUEUE;
10844                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10845         }
10846
10847         dev->num_tx_queues = txqs;
10848         dev->real_num_tx_queues = txqs;
10849         if (netif_alloc_netdev_queues(dev))
10850                 goto free_all;
10851
10852         dev->num_rx_queues = rxqs;
10853         dev->real_num_rx_queues = rxqs;
10854         if (netif_alloc_rx_queues(dev))
10855                 goto free_all;
10856
10857         strcpy(dev->name, name);
10858         dev->name_assign_type = name_assign_type;
10859         dev->group = INIT_NETDEV_GROUP;
10860         if (!dev->ethtool_ops)
10861                 dev->ethtool_ops = &default_ethtool_ops;
10862
10863         nf_hook_ingress_init(dev);
10864
10865         return dev;
10866
10867 free_all:
10868         free_netdev(dev);
10869         return NULL;
10870
10871 free_pcpu:
10872 #ifdef CONFIG_PCPU_DEV_REFCNT
10873         free_percpu(dev->pcpu_refcnt);
10874 free_dev:
10875 #endif
10876         netdev_freemem(dev);
10877         return NULL;
10878 }
10879 EXPORT_SYMBOL(alloc_netdev_mqs);
10880
10881 /**
10882  * free_netdev - free network device
10883  * @dev: device
10884  *
10885  * This function does the last stage of destroying an allocated device
10886  * interface. The reference to the device object is released. If this
10887  * is the last reference then it will be freed.Must be called in process
10888  * context.
10889  */
10890 void free_netdev(struct net_device *dev)
10891 {
10892         struct napi_struct *p, *n;
10893
10894         might_sleep();
10895
10896         /* When called immediately after register_netdevice() failed the unwind
10897          * handling may still be dismantling the device. Handle that case by
10898          * deferring the free.
10899          */
10900         if (dev->reg_state == NETREG_UNREGISTERING) {
10901                 ASSERT_RTNL();
10902                 dev->needs_free_netdev = true;
10903                 return;
10904         }
10905
10906         netif_free_tx_queues(dev);
10907         netif_free_rx_queues(dev);
10908
10909         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10910
10911         /* Flush device addresses */
10912         dev_addr_flush(dev);
10913
10914         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10915                 netif_napi_del(p);
10916
10917 #ifdef CONFIG_PCPU_DEV_REFCNT
10918         free_percpu(dev->pcpu_refcnt);
10919         dev->pcpu_refcnt = NULL;
10920 #endif
10921         free_percpu(dev->xdp_bulkq);
10922         dev->xdp_bulkq = NULL;
10923
10924         /*  Compatibility with error handling in drivers */
10925         if (dev->reg_state == NETREG_UNINITIALIZED) {
10926                 netdev_freemem(dev);
10927                 return;
10928         }
10929
10930         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10931         dev->reg_state = NETREG_RELEASED;
10932
10933         /* will free via device release */
10934         put_device(&dev->dev);
10935 }
10936 EXPORT_SYMBOL(free_netdev);
10937
10938 /**
10939  *      synchronize_net -  Synchronize with packet receive processing
10940  *
10941  *      Wait for packets currently being received to be done.
10942  *      Does not block later packets from starting.
10943  */
10944 void synchronize_net(void)
10945 {
10946         might_sleep();
10947         if (rtnl_is_locked())
10948                 synchronize_rcu_expedited();
10949         else
10950                 synchronize_rcu();
10951 }
10952 EXPORT_SYMBOL(synchronize_net);
10953
10954 /**
10955  *      unregister_netdevice_queue - remove device from the kernel
10956  *      @dev: device
10957  *      @head: list
10958  *
10959  *      This function shuts down a device interface and removes it
10960  *      from the kernel tables.
10961  *      If head not NULL, device is queued to be unregistered later.
10962  *
10963  *      Callers must hold the rtnl semaphore.  You may want
10964  *      unregister_netdev() instead of this.
10965  */
10966
10967 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10968 {
10969         ASSERT_RTNL();
10970
10971         if (head) {
10972                 list_move_tail(&dev->unreg_list, head);
10973         } else {
10974                 LIST_HEAD(single);
10975
10976                 list_add(&dev->unreg_list, &single);
10977                 unregister_netdevice_many(&single);
10978         }
10979 }
10980 EXPORT_SYMBOL(unregister_netdevice_queue);
10981
10982 /**
10983  *      unregister_netdevice_many - unregister many devices
10984  *      @head: list of devices
10985  *
10986  *  Note: As most callers use a stack allocated list_head,
10987  *  we force a list_del() to make sure stack wont be corrupted later.
10988  */
10989 void unregister_netdevice_many(struct list_head *head)
10990 {
10991         struct net_device *dev, *tmp;
10992         LIST_HEAD(close_head);
10993
10994         BUG_ON(dev_boot_phase);
10995         ASSERT_RTNL();
10996
10997         if (list_empty(head))
10998                 return;
10999
11000         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11001                 /* Some devices call without registering
11002                  * for initialization unwind. Remove those
11003                  * devices and proceed with the remaining.
11004                  */
11005                 if (dev->reg_state == NETREG_UNINITIALIZED) {
11006                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11007                                  dev->name, dev);
11008
11009                         WARN_ON(1);
11010                         list_del(&dev->unreg_list);
11011                         continue;
11012                 }
11013                 dev->dismantle = true;
11014                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11015         }
11016
11017         /* If device is running, close it first. */
11018         list_for_each_entry(dev, head, unreg_list)
11019                 list_add_tail(&dev->close_list, &close_head);
11020         dev_close_many(&close_head, true);
11021
11022         list_for_each_entry(dev, head, unreg_list) {
11023                 /* And unlink it from device chain. */
11024                 unlist_netdevice(dev);
11025
11026                 dev->reg_state = NETREG_UNREGISTERING;
11027         }
11028         flush_all_backlogs();
11029
11030         synchronize_net();
11031
11032         list_for_each_entry(dev, head, unreg_list) {
11033                 struct sk_buff *skb = NULL;
11034
11035                 /* Shutdown queueing discipline. */
11036                 dev_shutdown(dev);
11037
11038                 dev_xdp_uninstall(dev);
11039
11040                 /* Notify protocols, that we are about to destroy
11041                  * this device. They should clean all the things.
11042                  */
11043                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11044
11045                 if (!dev->rtnl_link_ops ||
11046                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11047                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11048                                                      GFP_KERNEL, NULL, 0);
11049
11050                 /*
11051                  *      Flush the unicast and multicast chains
11052                  */
11053                 dev_uc_flush(dev);
11054                 dev_mc_flush(dev);
11055
11056                 netdev_name_node_alt_flush(dev);
11057                 netdev_name_node_free(dev->name_node);
11058
11059                 if (dev->netdev_ops->ndo_uninit)
11060                         dev->netdev_ops->ndo_uninit(dev);
11061
11062                 if (skb)
11063                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11064
11065                 /* Notifier chain MUST detach us all upper devices. */
11066                 WARN_ON(netdev_has_any_upper_dev(dev));
11067                 WARN_ON(netdev_has_any_lower_dev(dev));
11068
11069                 /* Remove entries from kobject tree */
11070                 netdev_unregister_kobject(dev);
11071 #ifdef CONFIG_XPS
11072                 /* Remove XPS queueing entries */
11073                 netif_reset_xps_queues_gt(dev, 0);
11074 #endif
11075         }
11076
11077         synchronize_net();
11078
11079         list_for_each_entry(dev, head, unreg_list) {
11080                 dev_put(dev);
11081                 net_set_todo(dev);
11082         }
11083
11084         list_del(head);
11085 }
11086 EXPORT_SYMBOL(unregister_netdevice_many);
11087
11088 /**
11089  *      unregister_netdev - remove device from the kernel
11090  *      @dev: device
11091  *
11092  *      This function shuts down a device interface and removes it
11093  *      from the kernel tables.
11094  *
11095  *      This is just a wrapper for unregister_netdevice that takes
11096  *      the rtnl semaphore.  In general you want to use this and not
11097  *      unregister_netdevice.
11098  */
11099 void unregister_netdev(struct net_device *dev)
11100 {
11101         rtnl_lock();
11102         unregister_netdevice(dev);
11103         rtnl_unlock();
11104 }
11105 EXPORT_SYMBOL(unregister_netdev);
11106
11107 /**
11108  *      __dev_change_net_namespace - move device to different nethost namespace
11109  *      @dev: device
11110  *      @net: network namespace
11111  *      @pat: If not NULL name pattern to try if the current device name
11112  *            is already taken in the destination network namespace.
11113  *      @new_ifindex: If not zero, specifies device index in the target
11114  *                    namespace.
11115  *
11116  *      This function shuts down a device interface and moves it
11117  *      to a new network namespace. On success 0 is returned, on
11118  *      a failure a netagive errno code is returned.
11119  *
11120  *      Callers must hold the rtnl semaphore.
11121  */
11122
11123 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11124                                const char *pat, int new_ifindex)
11125 {
11126         struct net *net_old = dev_net(dev);
11127         int err, new_nsid;
11128
11129         ASSERT_RTNL();
11130
11131         /* Don't allow namespace local devices to be moved. */
11132         err = -EINVAL;
11133         if (dev->features & NETIF_F_NETNS_LOCAL)
11134                 goto out;
11135
11136         /* Ensure the device has been registrered */
11137         if (dev->reg_state != NETREG_REGISTERED)
11138                 goto out;
11139
11140         /* Get out if there is nothing todo */
11141         err = 0;
11142         if (net_eq(net_old, net))
11143                 goto out;
11144
11145         /* Pick the destination device name, and ensure
11146          * we can use it in the destination network namespace.
11147          */
11148         err = -EEXIST;
11149         if (__dev_get_by_name(net, dev->name)) {
11150                 /* We get here if we can't use the current device name */
11151                 if (!pat)
11152                         goto out;
11153                 err = dev_get_valid_name(net, dev, pat);
11154                 if (err < 0)
11155                         goto out;
11156         }
11157
11158         /* Check that new_ifindex isn't used yet. */
11159         err = -EBUSY;
11160         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11161                 goto out;
11162
11163         /*
11164          * And now a mini version of register_netdevice unregister_netdevice.
11165          */
11166
11167         /* If device is running close it first. */
11168         dev_close(dev);
11169
11170         /* And unlink it from device chain */
11171         unlist_netdevice(dev);
11172
11173         synchronize_net();
11174
11175         /* Shutdown queueing discipline. */
11176         dev_shutdown(dev);
11177
11178         /* Notify protocols, that we are about to destroy
11179          * this device. They should clean all the things.
11180          *
11181          * Note that dev->reg_state stays at NETREG_REGISTERED.
11182          * This is wanted because this way 8021q and macvlan know
11183          * the device is just moving and can keep their slaves up.
11184          */
11185         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11186         rcu_barrier();
11187
11188         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11189         /* If there is an ifindex conflict assign a new one */
11190         if (!new_ifindex) {
11191                 if (__dev_get_by_index(net, dev->ifindex))
11192                         new_ifindex = dev_new_index(net);
11193                 else
11194                         new_ifindex = dev->ifindex;
11195         }
11196
11197         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11198                             new_ifindex);
11199
11200         /*
11201          *      Flush the unicast and multicast chains
11202          */
11203         dev_uc_flush(dev);
11204         dev_mc_flush(dev);
11205
11206         /* Send a netdev-removed uevent to the old namespace */
11207         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11208         netdev_adjacent_del_links(dev);
11209
11210         /* Move per-net netdevice notifiers that are following the netdevice */
11211         move_netdevice_notifiers_dev_net(dev, net);
11212
11213         /* Actually switch the network namespace */
11214         dev_net_set(dev, net);
11215         dev->ifindex = new_ifindex;
11216
11217         /* Send a netdev-add uevent to the new namespace */
11218         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11219         netdev_adjacent_add_links(dev);
11220
11221         /* Fixup kobjects */
11222         err = device_rename(&dev->dev, dev->name);
11223         WARN_ON(err);
11224
11225         /* Adapt owner in case owning user namespace of target network
11226          * namespace is different from the original one.
11227          */
11228         err = netdev_change_owner(dev, net_old, net);
11229         WARN_ON(err);
11230
11231         /* Add the device back in the hashes */
11232         list_netdevice(dev);
11233
11234         /* Notify protocols, that a new device appeared. */
11235         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11236
11237         /*
11238          *      Prevent userspace races by waiting until the network
11239          *      device is fully setup before sending notifications.
11240          */
11241         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11242
11243         synchronize_net();
11244         err = 0;
11245 out:
11246         return err;
11247 }
11248 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11249
11250 static int dev_cpu_dead(unsigned int oldcpu)
11251 {
11252         struct sk_buff **list_skb;
11253         struct sk_buff *skb;
11254         unsigned int cpu;
11255         struct softnet_data *sd, *oldsd, *remsd = NULL;
11256
11257         local_irq_disable();
11258         cpu = smp_processor_id();
11259         sd = &per_cpu(softnet_data, cpu);
11260         oldsd = &per_cpu(softnet_data, oldcpu);
11261
11262         /* Find end of our completion_queue. */
11263         list_skb = &sd->completion_queue;
11264         while (*list_skb)
11265                 list_skb = &(*list_skb)->next;
11266         /* Append completion queue from offline CPU. */
11267         *list_skb = oldsd->completion_queue;
11268         oldsd->completion_queue = NULL;
11269
11270         /* Append output queue from offline CPU. */
11271         if (oldsd->output_queue) {
11272                 *sd->output_queue_tailp = oldsd->output_queue;
11273                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11274                 oldsd->output_queue = NULL;
11275                 oldsd->output_queue_tailp = &oldsd->output_queue;
11276         }
11277         /* Append NAPI poll list from offline CPU, with one exception :
11278          * process_backlog() must be called by cpu owning percpu backlog.
11279          * We properly handle process_queue & input_pkt_queue later.
11280          */
11281         while (!list_empty(&oldsd->poll_list)) {
11282                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11283                                                             struct napi_struct,
11284                                                             poll_list);
11285
11286                 list_del_init(&napi->poll_list);
11287                 if (napi->poll == process_backlog)
11288                         napi->state = 0;
11289                 else
11290                         ____napi_schedule(sd, napi);
11291         }
11292
11293         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11294         local_irq_enable();
11295
11296 #ifdef CONFIG_RPS
11297         remsd = oldsd->rps_ipi_list;
11298         oldsd->rps_ipi_list = NULL;
11299 #endif
11300         /* send out pending IPI's on offline CPU */
11301         net_rps_send_ipi(remsd);
11302
11303         /* Process offline CPU's input_pkt_queue */
11304         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11305                 netif_rx_ni(skb);
11306                 input_queue_head_incr(oldsd);
11307         }
11308         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11309                 netif_rx_ni(skb);
11310                 input_queue_head_incr(oldsd);
11311         }
11312
11313         return 0;
11314 }
11315
11316 /**
11317  *      netdev_increment_features - increment feature set by one
11318  *      @all: current feature set
11319  *      @one: new feature set
11320  *      @mask: mask feature set
11321  *
11322  *      Computes a new feature set after adding a device with feature set
11323  *      @one to the master device with current feature set @all.  Will not
11324  *      enable anything that is off in @mask. Returns the new feature set.
11325  */
11326 netdev_features_t netdev_increment_features(netdev_features_t all,
11327         netdev_features_t one, netdev_features_t mask)
11328 {
11329         if (mask & NETIF_F_HW_CSUM)
11330                 mask |= NETIF_F_CSUM_MASK;
11331         mask |= NETIF_F_VLAN_CHALLENGED;
11332
11333         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11334         all &= one | ~NETIF_F_ALL_FOR_ALL;
11335
11336         /* If one device supports hw checksumming, set for all. */
11337         if (all & NETIF_F_HW_CSUM)
11338                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11339
11340         return all;
11341 }
11342 EXPORT_SYMBOL(netdev_increment_features);
11343
11344 static struct hlist_head * __net_init netdev_create_hash(void)
11345 {
11346         int i;
11347         struct hlist_head *hash;
11348
11349         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11350         if (hash != NULL)
11351                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11352                         INIT_HLIST_HEAD(&hash[i]);
11353
11354         return hash;
11355 }
11356
11357 /* Initialize per network namespace state */
11358 static int __net_init netdev_init(struct net *net)
11359 {
11360         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11361                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11362
11363         if (net != &init_net)
11364                 INIT_LIST_HEAD(&net->dev_base_head);
11365
11366         net->dev_name_head = netdev_create_hash();
11367         if (net->dev_name_head == NULL)
11368                 goto err_name;
11369
11370         net->dev_index_head = netdev_create_hash();
11371         if (net->dev_index_head == NULL)
11372                 goto err_idx;
11373
11374         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11375
11376         return 0;
11377
11378 err_idx:
11379         kfree(net->dev_name_head);
11380 err_name:
11381         return -ENOMEM;
11382 }
11383
11384 /**
11385  *      netdev_drivername - network driver for the device
11386  *      @dev: network device
11387  *
11388  *      Determine network driver for device.
11389  */
11390 const char *netdev_drivername(const struct net_device *dev)
11391 {
11392         const struct device_driver *driver;
11393         const struct device *parent;
11394         const char *empty = "";
11395
11396         parent = dev->dev.parent;
11397         if (!parent)
11398                 return empty;
11399
11400         driver = parent->driver;
11401         if (driver && driver->name)
11402                 return driver->name;
11403         return empty;
11404 }
11405
11406 static void __netdev_printk(const char *level, const struct net_device *dev,
11407                             struct va_format *vaf)
11408 {
11409         if (dev && dev->dev.parent) {
11410                 dev_printk_emit(level[1] - '0',
11411                                 dev->dev.parent,
11412                                 "%s %s %s%s: %pV",
11413                                 dev_driver_string(dev->dev.parent),
11414                                 dev_name(dev->dev.parent),
11415                                 netdev_name(dev), netdev_reg_state(dev),
11416                                 vaf);
11417         } else if (dev) {
11418                 printk("%s%s%s: %pV",
11419                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11420         } else {
11421                 printk("%s(NULL net_device): %pV", level, vaf);
11422         }
11423 }
11424
11425 void netdev_printk(const char *level, const struct net_device *dev,
11426                    const char *format, ...)
11427 {
11428         struct va_format vaf;
11429         va_list args;
11430
11431         va_start(args, format);
11432
11433         vaf.fmt = format;
11434         vaf.va = &args;
11435
11436         __netdev_printk(level, dev, &vaf);
11437
11438         va_end(args);
11439 }
11440 EXPORT_SYMBOL(netdev_printk);
11441
11442 #define define_netdev_printk_level(func, level)                 \
11443 void func(const struct net_device *dev, const char *fmt, ...)   \
11444 {                                                               \
11445         struct va_format vaf;                                   \
11446         va_list args;                                           \
11447                                                                 \
11448         va_start(args, fmt);                                    \
11449                                                                 \
11450         vaf.fmt = fmt;                                          \
11451         vaf.va = &args;                                         \
11452                                                                 \
11453         __netdev_printk(level, dev, &vaf);                      \
11454                                                                 \
11455         va_end(args);                                           \
11456 }                                                               \
11457 EXPORT_SYMBOL(func);
11458
11459 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11460 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11461 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11462 define_netdev_printk_level(netdev_err, KERN_ERR);
11463 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11464 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11465 define_netdev_printk_level(netdev_info, KERN_INFO);
11466
11467 static void __net_exit netdev_exit(struct net *net)
11468 {
11469         kfree(net->dev_name_head);
11470         kfree(net->dev_index_head);
11471         if (net != &init_net)
11472                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11473 }
11474
11475 static struct pernet_operations __net_initdata netdev_net_ops = {
11476         .init = netdev_init,
11477         .exit = netdev_exit,
11478 };
11479
11480 static void __net_exit default_device_exit(struct net *net)
11481 {
11482         struct net_device *dev, *aux;
11483         /*
11484          * Push all migratable network devices back to the
11485          * initial network namespace
11486          */
11487         rtnl_lock();
11488         for_each_netdev_safe(net, dev, aux) {
11489                 int err;
11490                 char fb_name[IFNAMSIZ];
11491
11492                 /* Ignore unmoveable devices (i.e. loopback) */
11493                 if (dev->features & NETIF_F_NETNS_LOCAL)
11494                         continue;
11495
11496                 /* Leave virtual devices for the generic cleanup */
11497                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11498                         continue;
11499
11500                 /* Push remaining network devices to init_net */
11501                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11502                 if (__dev_get_by_name(&init_net, fb_name))
11503                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11504                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11505                 if (err) {
11506                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11507                                  __func__, dev->name, err);
11508                         BUG();
11509                 }
11510         }
11511         rtnl_unlock();
11512 }
11513
11514 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11515 {
11516         /* Return with the rtnl_lock held when there are no network
11517          * devices unregistering in any network namespace in net_list.
11518          */
11519         struct net *net;
11520         bool unregistering;
11521         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11522
11523         add_wait_queue(&netdev_unregistering_wq, &wait);
11524         for (;;) {
11525                 unregistering = false;
11526                 rtnl_lock();
11527                 list_for_each_entry(net, net_list, exit_list) {
11528                         if (net->dev_unreg_count > 0) {
11529                                 unregistering = true;
11530                                 break;
11531                         }
11532                 }
11533                 if (!unregistering)
11534                         break;
11535                 __rtnl_unlock();
11536
11537                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11538         }
11539         remove_wait_queue(&netdev_unregistering_wq, &wait);
11540 }
11541
11542 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11543 {
11544         /* At exit all network devices most be removed from a network
11545          * namespace.  Do this in the reverse order of registration.
11546          * Do this across as many network namespaces as possible to
11547          * improve batching efficiency.
11548          */
11549         struct net_device *dev;
11550         struct net *net;
11551         LIST_HEAD(dev_kill_list);
11552
11553         /* To prevent network device cleanup code from dereferencing
11554          * loopback devices or network devices that have been freed
11555          * wait here for all pending unregistrations to complete,
11556          * before unregistring the loopback device and allowing the
11557          * network namespace be freed.
11558          *
11559          * The netdev todo list containing all network devices
11560          * unregistrations that happen in default_device_exit_batch
11561          * will run in the rtnl_unlock() at the end of
11562          * default_device_exit_batch.
11563          */
11564         rtnl_lock_unregistering(net_list);
11565         list_for_each_entry(net, net_list, exit_list) {
11566                 for_each_netdev_reverse(net, dev) {
11567                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11568                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11569                         else
11570                                 unregister_netdevice_queue(dev, &dev_kill_list);
11571                 }
11572         }
11573         unregister_netdevice_many(&dev_kill_list);
11574         rtnl_unlock();
11575 }
11576
11577 static struct pernet_operations __net_initdata default_device_ops = {
11578         .exit = default_device_exit,
11579         .exit_batch = default_device_exit_batch,
11580 };
11581
11582 /*
11583  *      Initialize the DEV module. At boot time this walks the device list and
11584  *      unhooks any devices that fail to initialise (normally hardware not
11585  *      present) and leaves us with a valid list of present and active devices.
11586  *
11587  */
11588
11589 /*
11590  *       This is called single threaded during boot, so no need
11591  *       to take the rtnl semaphore.
11592  */
11593 static int __init net_dev_init(void)
11594 {
11595         int i, rc = -ENOMEM;
11596
11597         BUG_ON(!dev_boot_phase);
11598
11599         if (dev_proc_init())
11600                 goto out;
11601
11602         if (netdev_kobject_init())
11603                 goto out;
11604
11605         INIT_LIST_HEAD(&ptype_all);
11606         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11607                 INIT_LIST_HEAD(&ptype_base[i]);
11608
11609         INIT_LIST_HEAD(&offload_base);
11610
11611         if (register_pernet_subsys(&netdev_net_ops))
11612                 goto out;
11613
11614         /*
11615          *      Initialise the packet receive queues.
11616          */
11617
11618         for_each_possible_cpu(i) {
11619                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11620                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11621
11622                 INIT_WORK(flush, flush_backlog);
11623
11624                 skb_queue_head_init(&sd->input_pkt_queue);
11625                 skb_queue_head_init(&sd->process_queue);
11626 #ifdef CONFIG_XFRM_OFFLOAD
11627                 skb_queue_head_init(&sd->xfrm_backlog);
11628 #endif
11629                 INIT_LIST_HEAD(&sd->poll_list);
11630                 sd->output_queue_tailp = &sd->output_queue;
11631 #ifdef CONFIG_RPS
11632                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11633                 sd->cpu = i;
11634 #endif
11635
11636                 init_gro_hash(&sd->backlog);
11637                 sd->backlog.poll = process_backlog;
11638                 sd->backlog.weight = weight_p;
11639         }
11640
11641         dev_boot_phase = 0;
11642
11643         /* The loopback device is special if any other network devices
11644          * is present in a network namespace the loopback device must
11645          * be present. Since we now dynamically allocate and free the
11646          * loopback device ensure this invariant is maintained by
11647          * keeping the loopback device as the first device on the
11648          * list of network devices.  Ensuring the loopback devices
11649          * is the first device that appears and the last network device
11650          * that disappears.
11651          */
11652         if (register_pernet_device(&loopback_net_ops))
11653                 goto out;
11654
11655         if (register_pernet_device(&default_device_ops))
11656                 goto out;
11657
11658         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11659         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11660
11661         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11662                                        NULL, dev_cpu_dead);
11663         WARN_ON(rc < 0);
11664         rc = 0;
11665 out:
11666         return rc;
11667 }
11668
11669 subsys_initcall(net_dev_init);