net/sched: Extend qdisc control block with tc control block
[platform/kernel/linux-rpi.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153
154 #include "net-sysfs.h"
155
156 #define MAX_GRO_SKBS 8
157
158 /* This should be increased if a protocol with a bigger head is added. */
159 #define GRO_MAX_HEAD (MAX_HEADER + 128)
160
161 static DEFINE_SPINLOCK(ptype_lock);
162 static DEFINE_SPINLOCK(offload_lock);
163 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164 struct list_head ptype_all __read_mostly;       /* Taps */
165 static struct list_head offload_base __read_mostly;
166
167 static int netif_rx_internal(struct sk_buff *skb);
168 static int call_netdevice_notifiers_info(unsigned long val,
169                                          struct netdev_notifier_info *info);
170 static int call_netdevice_notifiers_extack(unsigned long val,
171                                            struct net_device *dev,
172                                            struct netlink_ext_ack *extack);
173 static struct napi_struct *napi_by_id(unsigned int napi_id);
174
175 /*
176  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177  * semaphore.
178  *
179  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
180  *
181  * Writers must hold the rtnl semaphore while they loop through the
182  * dev_base_head list, and hold dev_base_lock for writing when they do the
183  * actual updates.  This allows pure readers to access the list even
184  * while a writer is preparing to update it.
185  *
186  * To put it another way, dev_base_lock is held for writing only to
187  * protect against pure readers; the rtnl semaphore provides the
188  * protection against other writers.
189  *
190  * See, for example usages, register_netdevice() and
191  * unregister_netdevice(), which must be called with the rtnl
192  * semaphore held.
193  */
194 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
196
197 static DEFINE_MUTEX(ifalias_mutex);
198
199 /* protects napi_hash addition/deletion and napi_gen_id */
200 static DEFINE_SPINLOCK(napi_hash_lock);
201
202 static unsigned int napi_gen_id = NR_CPUS;
203 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
204
205 static DECLARE_RWSEM(devnet_rename_sem);
206
207 static inline void dev_base_seq_inc(struct net *net)
208 {
209         while (++net->dev_base_seq == 0)
210                 ;
211 }
212
213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214 {
215         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
216
217         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218 }
219
220 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221 {
222         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223 }
224
225 static inline void rps_lock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228         spin_lock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 static inline void rps_unlock(struct softnet_data *sd)
233 {
234 #ifdef CONFIG_RPS
235         spin_unlock(&sd->input_pkt_queue.lock);
236 #endif
237 }
238
239 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240                                                        const char *name)
241 {
242         struct netdev_name_node *name_node;
243
244         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245         if (!name_node)
246                 return NULL;
247         INIT_HLIST_NODE(&name_node->hlist);
248         name_node->dev = dev;
249         name_node->name = name;
250         return name_node;
251 }
252
253 static struct netdev_name_node *
254 netdev_name_node_head_alloc(struct net_device *dev)
255 {
256         struct netdev_name_node *name_node;
257
258         name_node = netdev_name_node_alloc(dev, dev->name);
259         if (!name_node)
260                 return NULL;
261         INIT_LIST_HEAD(&name_node->list);
262         return name_node;
263 }
264
265 static void netdev_name_node_free(struct netdev_name_node *name_node)
266 {
267         kfree(name_node);
268 }
269
270 static void netdev_name_node_add(struct net *net,
271                                  struct netdev_name_node *name_node)
272 {
273         hlist_add_head_rcu(&name_node->hlist,
274                            dev_name_hash(net, name_node->name));
275 }
276
277 static void netdev_name_node_del(struct netdev_name_node *name_node)
278 {
279         hlist_del_rcu(&name_node->hlist);
280 }
281
282 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283                                                         const char *name)
284 {
285         struct hlist_head *head = dev_name_hash(net, name);
286         struct netdev_name_node *name_node;
287
288         hlist_for_each_entry(name_node, head, hlist)
289                 if (!strcmp(name_node->name, name))
290                         return name_node;
291         return NULL;
292 }
293
294 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295                                                             const char *name)
296 {
297         struct hlist_head *head = dev_name_hash(net, name);
298         struct netdev_name_node *name_node;
299
300         hlist_for_each_entry_rcu(name_node, head, hlist)
301                 if (!strcmp(name_node->name, name))
302                         return name_node;
303         return NULL;
304 }
305
306 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
307 {
308         struct netdev_name_node *name_node;
309         struct net *net = dev_net(dev);
310
311         name_node = netdev_name_node_lookup(net, name);
312         if (name_node)
313                 return -EEXIST;
314         name_node = netdev_name_node_alloc(dev, name);
315         if (!name_node)
316                 return -ENOMEM;
317         netdev_name_node_add(net, name_node);
318         /* The node that holds dev->name acts as a head of per-device list. */
319         list_add_tail(&name_node->list, &dev->name_node->list);
320
321         return 0;
322 }
323 EXPORT_SYMBOL(netdev_name_node_alt_create);
324
325 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
326 {
327         list_del(&name_node->list);
328         netdev_name_node_del(name_node);
329         kfree(name_node->name);
330         netdev_name_node_free(name_node);
331 }
332
333 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
334 {
335         struct netdev_name_node *name_node;
336         struct net *net = dev_net(dev);
337
338         name_node = netdev_name_node_lookup(net, name);
339         if (!name_node)
340                 return -ENOENT;
341         /* lookup might have found our primary name or a name belonging
342          * to another device.
343          */
344         if (name_node == dev->name_node || name_node->dev != dev)
345                 return -EINVAL;
346
347         __netdev_name_node_alt_destroy(name_node);
348
349         return 0;
350 }
351 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
352
353 static void netdev_name_node_alt_flush(struct net_device *dev)
354 {
355         struct netdev_name_node *name_node, *tmp;
356
357         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
358                 __netdev_name_node_alt_destroy(name_node);
359 }
360
361 /* Device list insertion */
362 static void list_netdevice(struct net_device *dev)
363 {
364         struct net *net = dev_net(dev);
365
366         ASSERT_RTNL();
367
368         write_lock_bh(&dev_base_lock);
369         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
370         netdev_name_node_add(net, dev->name_node);
371         hlist_add_head_rcu(&dev->index_hlist,
372                            dev_index_hash(net, dev->ifindex));
373         write_unlock_bh(&dev_base_lock);
374
375         dev_base_seq_inc(net);
376 }
377
378 /* Device list removal
379  * caller must respect a RCU grace period before freeing/reusing dev
380  */
381 static void unlist_netdevice(struct net_device *dev)
382 {
383         ASSERT_RTNL();
384
385         /* Unlink dev from the device chain */
386         write_lock_bh(&dev_base_lock);
387         list_del_rcu(&dev->dev_list);
388         netdev_name_node_del(dev->name_node);
389         hlist_del_rcu(&dev->index_hlist);
390         write_unlock_bh(&dev_base_lock);
391
392         dev_base_seq_inc(dev_net(dev));
393 }
394
395 /*
396  *      Our notifier list
397  */
398
399 static RAW_NOTIFIER_HEAD(netdev_chain);
400
401 /*
402  *      Device drivers call our routines to queue packets here. We empty the
403  *      queue in the local softnet handler.
404  */
405
406 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
407 EXPORT_PER_CPU_SYMBOL(softnet_data);
408
409 #ifdef CONFIG_LOCKDEP
410 /*
411  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
412  * according to dev->type
413  */
414 static const unsigned short netdev_lock_type[] = {
415          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
416          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
417          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
418          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
419          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
420          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
421          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
422          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
423          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
424          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
425          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
426          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
427          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
428          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
429          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
430
431 static const char *const netdev_lock_name[] = {
432         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
433         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
434         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
435         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
436         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
437         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
438         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
439         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
440         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
441         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
442         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
443         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
444         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
445         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
446         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
447
448 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
449 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
450
451 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
452 {
453         int i;
454
455         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
456                 if (netdev_lock_type[i] == dev_type)
457                         return i;
458         /* the last key is used by default */
459         return ARRAY_SIZE(netdev_lock_type) - 1;
460 }
461
462 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
463                                                  unsigned short dev_type)
464 {
465         int i;
466
467         i = netdev_lock_pos(dev_type);
468         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
469                                    netdev_lock_name[i]);
470 }
471
472 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
473 {
474         int i;
475
476         i = netdev_lock_pos(dev->type);
477         lockdep_set_class_and_name(&dev->addr_list_lock,
478                                    &netdev_addr_lock_key[i],
479                                    netdev_lock_name[i]);
480 }
481 #else
482 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
483                                                  unsigned short dev_type)
484 {
485 }
486
487 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
488 {
489 }
490 #endif
491
492 /*******************************************************************************
493  *
494  *              Protocol management and registration routines
495  *
496  *******************************************************************************/
497
498
499 /*
500  *      Add a protocol ID to the list. Now that the input handler is
501  *      smarter we can dispense with all the messy stuff that used to be
502  *      here.
503  *
504  *      BEWARE!!! Protocol handlers, mangling input packets,
505  *      MUST BE last in hash buckets and checking protocol handlers
506  *      MUST start from promiscuous ptype_all chain in net_bh.
507  *      It is true now, do not change it.
508  *      Explanation follows: if protocol handler, mangling packet, will
509  *      be the first on list, it is not able to sense, that packet
510  *      is cloned and should be copied-on-write, so that it will
511  *      change it and subsequent readers will get broken packet.
512  *                                                      --ANK (980803)
513  */
514
515 static inline struct list_head *ptype_head(const struct packet_type *pt)
516 {
517         if (pt->type == htons(ETH_P_ALL))
518                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
519         else
520                 return pt->dev ? &pt->dev->ptype_specific :
521                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
522 }
523
524 /**
525  *      dev_add_pack - add packet handler
526  *      @pt: packet type declaration
527  *
528  *      Add a protocol handler to the networking stack. The passed &packet_type
529  *      is linked into kernel lists and may not be freed until it has been
530  *      removed from the kernel lists.
531  *
532  *      This call does not sleep therefore it can not
533  *      guarantee all CPU's that are in middle of receiving packets
534  *      will see the new packet type (until the next received packet).
535  */
536
537 void dev_add_pack(struct packet_type *pt)
538 {
539         struct list_head *head = ptype_head(pt);
540
541         spin_lock(&ptype_lock);
542         list_add_rcu(&pt->list, head);
543         spin_unlock(&ptype_lock);
544 }
545 EXPORT_SYMBOL(dev_add_pack);
546
547 /**
548  *      __dev_remove_pack        - remove packet handler
549  *      @pt: packet type declaration
550  *
551  *      Remove a protocol handler that was previously added to the kernel
552  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
553  *      from the kernel lists and can be freed or reused once this function
554  *      returns.
555  *
556  *      The packet type might still be in use by receivers
557  *      and must not be freed until after all the CPU's have gone
558  *      through a quiescent state.
559  */
560 void __dev_remove_pack(struct packet_type *pt)
561 {
562         struct list_head *head = ptype_head(pt);
563         struct packet_type *pt1;
564
565         spin_lock(&ptype_lock);
566
567         list_for_each_entry(pt1, head, list) {
568                 if (pt == pt1) {
569                         list_del_rcu(&pt->list);
570                         goto out;
571                 }
572         }
573
574         pr_warn("dev_remove_pack: %p not found\n", pt);
575 out:
576         spin_unlock(&ptype_lock);
577 }
578 EXPORT_SYMBOL(__dev_remove_pack);
579
580 /**
581  *      dev_remove_pack  - remove packet handler
582  *      @pt: packet type declaration
583  *
584  *      Remove a protocol handler that was previously added to the kernel
585  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
586  *      from the kernel lists and can be freed or reused once this function
587  *      returns.
588  *
589  *      This call sleeps to guarantee that no CPU is looking at the packet
590  *      type after return.
591  */
592 void dev_remove_pack(struct packet_type *pt)
593 {
594         __dev_remove_pack(pt);
595
596         synchronize_net();
597 }
598 EXPORT_SYMBOL(dev_remove_pack);
599
600
601 /**
602  *      dev_add_offload - register offload handlers
603  *      @po: protocol offload declaration
604  *
605  *      Add protocol offload handlers to the networking stack. The passed
606  *      &proto_offload is linked into kernel lists and may not be freed until
607  *      it has been removed from the kernel lists.
608  *
609  *      This call does not sleep therefore it can not
610  *      guarantee all CPU's that are in middle of receiving packets
611  *      will see the new offload handlers (until the next received packet).
612  */
613 void dev_add_offload(struct packet_offload *po)
614 {
615         struct packet_offload *elem;
616
617         spin_lock(&offload_lock);
618         list_for_each_entry(elem, &offload_base, list) {
619                 if (po->priority < elem->priority)
620                         break;
621         }
622         list_add_rcu(&po->list, elem->list.prev);
623         spin_unlock(&offload_lock);
624 }
625 EXPORT_SYMBOL(dev_add_offload);
626
627 /**
628  *      __dev_remove_offload     - remove offload handler
629  *      @po: packet offload declaration
630  *
631  *      Remove a protocol offload handler that was previously added to the
632  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
633  *      is removed from the kernel lists and can be freed or reused once this
634  *      function returns.
635  *
636  *      The packet type might still be in use by receivers
637  *      and must not be freed until after all the CPU's have gone
638  *      through a quiescent state.
639  */
640 static void __dev_remove_offload(struct packet_offload *po)
641 {
642         struct list_head *head = &offload_base;
643         struct packet_offload *po1;
644
645         spin_lock(&offload_lock);
646
647         list_for_each_entry(po1, head, list) {
648                 if (po == po1) {
649                         list_del_rcu(&po->list);
650                         goto out;
651                 }
652         }
653
654         pr_warn("dev_remove_offload: %p not found\n", po);
655 out:
656         spin_unlock(&offload_lock);
657 }
658
659 /**
660  *      dev_remove_offload       - remove packet offload handler
661  *      @po: packet offload declaration
662  *
663  *      Remove a packet offload handler that was previously added to the kernel
664  *      offload handlers by dev_add_offload(). The passed &offload_type is
665  *      removed from the kernel lists and can be freed or reused once this
666  *      function returns.
667  *
668  *      This call sleeps to guarantee that no CPU is looking at the packet
669  *      type after return.
670  */
671 void dev_remove_offload(struct packet_offload *po)
672 {
673         __dev_remove_offload(po);
674
675         synchronize_net();
676 }
677 EXPORT_SYMBOL(dev_remove_offload);
678
679 /*******************************************************************************
680  *
681  *                          Device Interface Subroutines
682  *
683  *******************************************************************************/
684
685 /**
686  *      dev_get_iflink  - get 'iflink' value of a interface
687  *      @dev: targeted interface
688  *
689  *      Indicates the ifindex the interface is linked to.
690  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
691  */
692
693 int dev_get_iflink(const struct net_device *dev)
694 {
695         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
696                 return dev->netdev_ops->ndo_get_iflink(dev);
697
698         return dev->ifindex;
699 }
700 EXPORT_SYMBOL(dev_get_iflink);
701
702 /**
703  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
704  *      @dev: targeted interface
705  *      @skb: The packet.
706  *
707  *      For better visibility of tunnel traffic OVS needs to retrieve
708  *      egress tunnel information for a packet. Following API allows
709  *      user to get this info.
710  */
711 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
712 {
713         struct ip_tunnel_info *info;
714
715         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
716                 return -EINVAL;
717
718         info = skb_tunnel_info_unclone(skb);
719         if (!info)
720                 return -ENOMEM;
721         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
722                 return -EINVAL;
723
724         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
725 }
726 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
727
728 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
729 {
730         int k = stack->num_paths++;
731
732         if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
733                 return NULL;
734
735         return &stack->path[k];
736 }
737
738 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
739                           struct net_device_path_stack *stack)
740 {
741         const struct net_device *last_dev;
742         struct net_device_path_ctx ctx = {
743                 .dev    = dev,
744                 .daddr  = daddr,
745         };
746         struct net_device_path *path;
747         int ret = 0;
748
749         stack->num_paths = 0;
750         while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
751                 last_dev = ctx.dev;
752                 path = dev_fwd_path(stack);
753                 if (!path)
754                         return -1;
755
756                 memset(path, 0, sizeof(struct net_device_path));
757                 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
758                 if (ret < 0)
759                         return -1;
760
761                 if (WARN_ON_ONCE(last_dev == ctx.dev))
762                         return -1;
763         }
764         path = dev_fwd_path(stack);
765         if (!path)
766                 return -1;
767         path->type = DEV_PATH_ETHERNET;
768         path->dev = ctx.dev;
769
770         return ret;
771 }
772 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
773
774 /**
775  *      __dev_get_by_name       - find a device by its name
776  *      @net: the applicable net namespace
777  *      @name: name to find
778  *
779  *      Find an interface by name. Must be called under RTNL semaphore
780  *      or @dev_base_lock. If the name is found a pointer to the device
781  *      is returned. If the name is not found then %NULL is returned. The
782  *      reference counters are not incremented so the caller must be
783  *      careful with locks.
784  */
785
786 struct net_device *__dev_get_by_name(struct net *net, const char *name)
787 {
788         struct netdev_name_node *node_name;
789
790         node_name = netdev_name_node_lookup(net, name);
791         return node_name ? node_name->dev : NULL;
792 }
793 EXPORT_SYMBOL(__dev_get_by_name);
794
795 /**
796  * dev_get_by_name_rcu  - find a device by its name
797  * @net: the applicable net namespace
798  * @name: name to find
799  *
800  * Find an interface by name.
801  * If the name is found a pointer to the device is returned.
802  * If the name is not found then %NULL is returned.
803  * The reference counters are not incremented so the caller must be
804  * careful with locks. The caller must hold RCU lock.
805  */
806
807 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
808 {
809         struct netdev_name_node *node_name;
810
811         node_name = netdev_name_node_lookup_rcu(net, name);
812         return node_name ? node_name->dev : NULL;
813 }
814 EXPORT_SYMBOL(dev_get_by_name_rcu);
815
816 /**
817  *      dev_get_by_name         - find a device by its name
818  *      @net: the applicable net namespace
819  *      @name: name to find
820  *
821  *      Find an interface by name. This can be called from any
822  *      context and does its own locking. The returned handle has
823  *      the usage count incremented and the caller must use dev_put() to
824  *      release it when it is no longer needed. %NULL is returned if no
825  *      matching device is found.
826  */
827
828 struct net_device *dev_get_by_name(struct net *net, const char *name)
829 {
830         struct net_device *dev;
831
832         rcu_read_lock();
833         dev = dev_get_by_name_rcu(net, name);
834         dev_hold(dev);
835         rcu_read_unlock();
836         return dev;
837 }
838 EXPORT_SYMBOL(dev_get_by_name);
839
840 /**
841  *      __dev_get_by_index - find a device by its ifindex
842  *      @net: the applicable net namespace
843  *      @ifindex: index of device
844  *
845  *      Search for an interface by index. Returns %NULL if the device
846  *      is not found or a pointer to the device. The device has not
847  *      had its reference counter increased so the caller must be careful
848  *      about locking. The caller must hold either the RTNL semaphore
849  *      or @dev_base_lock.
850  */
851
852 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
853 {
854         struct net_device *dev;
855         struct hlist_head *head = dev_index_hash(net, ifindex);
856
857         hlist_for_each_entry(dev, head, index_hlist)
858                 if (dev->ifindex == ifindex)
859                         return dev;
860
861         return NULL;
862 }
863 EXPORT_SYMBOL(__dev_get_by_index);
864
865 /**
866  *      dev_get_by_index_rcu - find a device by its ifindex
867  *      @net: the applicable net namespace
868  *      @ifindex: index of device
869  *
870  *      Search for an interface by index. Returns %NULL if the device
871  *      is not found or a pointer to the device. The device has not
872  *      had its reference counter increased so the caller must be careful
873  *      about locking. The caller must hold RCU lock.
874  */
875
876 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
877 {
878         struct net_device *dev;
879         struct hlist_head *head = dev_index_hash(net, ifindex);
880
881         hlist_for_each_entry_rcu(dev, head, index_hlist)
882                 if (dev->ifindex == ifindex)
883                         return dev;
884
885         return NULL;
886 }
887 EXPORT_SYMBOL(dev_get_by_index_rcu);
888
889
890 /**
891  *      dev_get_by_index - find a device by its ifindex
892  *      @net: the applicable net namespace
893  *      @ifindex: index of device
894  *
895  *      Search for an interface by index. Returns NULL if the device
896  *      is not found or a pointer to the device. The device returned has
897  *      had a reference added and the pointer is safe until the user calls
898  *      dev_put to indicate they have finished with it.
899  */
900
901 struct net_device *dev_get_by_index(struct net *net, int ifindex)
902 {
903         struct net_device *dev;
904
905         rcu_read_lock();
906         dev = dev_get_by_index_rcu(net, ifindex);
907         dev_hold(dev);
908         rcu_read_unlock();
909         return dev;
910 }
911 EXPORT_SYMBOL(dev_get_by_index);
912
913 /**
914  *      dev_get_by_napi_id - find a device by napi_id
915  *      @napi_id: ID of the NAPI struct
916  *
917  *      Search for an interface by NAPI ID. Returns %NULL if the device
918  *      is not found or a pointer to the device. The device has not had
919  *      its reference counter increased so the caller must be careful
920  *      about locking. The caller must hold RCU lock.
921  */
922
923 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
924 {
925         struct napi_struct *napi;
926
927         WARN_ON_ONCE(!rcu_read_lock_held());
928
929         if (napi_id < MIN_NAPI_ID)
930                 return NULL;
931
932         napi = napi_by_id(napi_id);
933
934         return napi ? napi->dev : NULL;
935 }
936 EXPORT_SYMBOL(dev_get_by_napi_id);
937
938 /**
939  *      netdev_get_name - get a netdevice name, knowing its ifindex.
940  *      @net: network namespace
941  *      @name: a pointer to the buffer where the name will be stored.
942  *      @ifindex: the ifindex of the interface to get the name from.
943  */
944 int netdev_get_name(struct net *net, char *name, int ifindex)
945 {
946         struct net_device *dev;
947         int ret;
948
949         down_read(&devnet_rename_sem);
950         rcu_read_lock();
951
952         dev = dev_get_by_index_rcu(net, ifindex);
953         if (!dev) {
954                 ret = -ENODEV;
955                 goto out;
956         }
957
958         strcpy(name, dev->name);
959
960         ret = 0;
961 out:
962         rcu_read_unlock();
963         up_read(&devnet_rename_sem);
964         return ret;
965 }
966
967 /**
968  *      dev_getbyhwaddr_rcu - find a device by its hardware address
969  *      @net: the applicable net namespace
970  *      @type: media type of device
971  *      @ha: hardware address
972  *
973  *      Search for an interface by MAC address. Returns NULL if the device
974  *      is not found or a pointer to the device.
975  *      The caller must hold RCU or RTNL.
976  *      The returned device has not had its ref count increased
977  *      and the caller must therefore be careful about locking
978  *
979  */
980
981 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
982                                        const char *ha)
983 {
984         struct net_device *dev;
985
986         for_each_netdev_rcu(net, dev)
987                 if (dev->type == type &&
988                     !memcmp(dev->dev_addr, ha, dev->addr_len))
989                         return dev;
990
991         return NULL;
992 }
993 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
994
995 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
996 {
997         struct net_device *dev, *ret = NULL;
998
999         rcu_read_lock();
1000         for_each_netdev_rcu(net, dev)
1001                 if (dev->type == type) {
1002                         dev_hold(dev);
1003                         ret = dev;
1004                         break;
1005                 }
1006         rcu_read_unlock();
1007         return ret;
1008 }
1009 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1010
1011 /**
1012  *      __dev_get_by_flags - find any device with given flags
1013  *      @net: the applicable net namespace
1014  *      @if_flags: IFF_* values
1015  *      @mask: bitmask of bits in if_flags to check
1016  *
1017  *      Search for any interface with the given flags. Returns NULL if a device
1018  *      is not found or a pointer to the device. Must be called inside
1019  *      rtnl_lock(), and result refcount is unchanged.
1020  */
1021
1022 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1023                                       unsigned short mask)
1024 {
1025         struct net_device *dev, *ret;
1026
1027         ASSERT_RTNL();
1028
1029         ret = NULL;
1030         for_each_netdev(net, dev) {
1031                 if (((dev->flags ^ if_flags) & mask) == 0) {
1032                         ret = dev;
1033                         break;
1034                 }
1035         }
1036         return ret;
1037 }
1038 EXPORT_SYMBOL(__dev_get_by_flags);
1039
1040 /**
1041  *      dev_valid_name - check if name is okay for network device
1042  *      @name: name string
1043  *
1044  *      Network device names need to be valid file names to
1045  *      allow sysfs to work.  We also disallow any kind of
1046  *      whitespace.
1047  */
1048 bool dev_valid_name(const char *name)
1049 {
1050         if (*name == '\0')
1051                 return false;
1052         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1053                 return false;
1054         if (!strcmp(name, ".") || !strcmp(name, ".."))
1055                 return false;
1056
1057         while (*name) {
1058                 if (*name == '/' || *name == ':' || isspace(*name))
1059                         return false;
1060                 name++;
1061         }
1062         return true;
1063 }
1064 EXPORT_SYMBOL(dev_valid_name);
1065
1066 /**
1067  *      __dev_alloc_name - allocate a name for a device
1068  *      @net: network namespace to allocate the device name in
1069  *      @name: name format string
1070  *      @buf:  scratch buffer and result name string
1071  *
1072  *      Passed a format string - eg "lt%d" it will try and find a suitable
1073  *      id. It scans list of devices to build up a free map, then chooses
1074  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1075  *      while allocating the name and adding the device in order to avoid
1076  *      duplicates.
1077  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1078  *      Returns the number of the unit assigned or a negative errno code.
1079  */
1080
1081 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1082 {
1083         int i = 0;
1084         const char *p;
1085         const int max_netdevices = 8*PAGE_SIZE;
1086         unsigned long *inuse;
1087         struct net_device *d;
1088
1089         if (!dev_valid_name(name))
1090                 return -EINVAL;
1091
1092         p = strchr(name, '%');
1093         if (p) {
1094                 /*
1095                  * Verify the string as this thing may have come from
1096                  * the user.  There must be either one "%d" and no other "%"
1097                  * characters.
1098                  */
1099                 if (p[1] != 'd' || strchr(p + 2, '%'))
1100                         return -EINVAL;
1101
1102                 /* Use one page as a bit array of possible slots */
1103                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1104                 if (!inuse)
1105                         return -ENOMEM;
1106
1107                 for_each_netdev(net, d) {
1108                         struct netdev_name_node *name_node;
1109                         list_for_each_entry(name_node, &d->name_node->list, list) {
1110                                 if (!sscanf(name_node->name, name, &i))
1111                                         continue;
1112                                 if (i < 0 || i >= max_netdevices)
1113                                         continue;
1114
1115                                 /*  avoid cases where sscanf is not exact inverse of printf */
1116                                 snprintf(buf, IFNAMSIZ, name, i);
1117                                 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1118                                         set_bit(i, inuse);
1119                         }
1120                         if (!sscanf(d->name, name, &i))
1121                                 continue;
1122                         if (i < 0 || i >= max_netdevices)
1123                                 continue;
1124
1125                         /*  avoid cases where sscanf is not exact inverse of printf */
1126                         snprintf(buf, IFNAMSIZ, name, i);
1127                         if (!strncmp(buf, d->name, IFNAMSIZ))
1128                                 set_bit(i, inuse);
1129                 }
1130
1131                 i = find_first_zero_bit(inuse, max_netdevices);
1132                 free_page((unsigned long) inuse);
1133         }
1134
1135         snprintf(buf, IFNAMSIZ, name, i);
1136         if (!__dev_get_by_name(net, buf))
1137                 return i;
1138
1139         /* It is possible to run out of possible slots
1140          * when the name is long and there isn't enough space left
1141          * for the digits, or if all bits are used.
1142          */
1143         return -ENFILE;
1144 }
1145
1146 static int dev_alloc_name_ns(struct net *net,
1147                              struct net_device *dev,
1148                              const char *name)
1149 {
1150         char buf[IFNAMSIZ];
1151         int ret;
1152
1153         BUG_ON(!net);
1154         ret = __dev_alloc_name(net, name, buf);
1155         if (ret >= 0)
1156                 strlcpy(dev->name, buf, IFNAMSIZ);
1157         return ret;
1158 }
1159
1160 /**
1161  *      dev_alloc_name - allocate a name for a device
1162  *      @dev: device
1163  *      @name: name format string
1164  *
1165  *      Passed a format string - eg "lt%d" it will try and find a suitable
1166  *      id. It scans list of devices to build up a free map, then chooses
1167  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1168  *      while allocating the name and adding the device in order to avoid
1169  *      duplicates.
1170  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1171  *      Returns the number of the unit assigned or a negative errno code.
1172  */
1173
1174 int dev_alloc_name(struct net_device *dev, const char *name)
1175 {
1176         return dev_alloc_name_ns(dev_net(dev), dev, name);
1177 }
1178 EXPORT_SYMBOL(dev_alloc_name);
1179
1180 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1181                               const char *name)
1182 {
1183         BUG_ON(!net);
1184
1185         if (!dev_valid_name(name))
1186                 return -EINVAL;
1187
1188         if (strchr(name, '%'))
1189                 return dev_alloc_name_ns(net, dev, name);
1190         else if (__dev_get_by_name(net, name))
1191                 return -EEXIST;
1192         else if (dev->name != name)
1193                 strlcpy(dev->name, name, IFNAMSIZ);
1194
1195         return 0;
1196 }
1197
1198 /**
1199  *      dev_change_name - change name of a device
1200  *      @dev: device
1201  *      @newname: name (or format string) must be at least IFNAMSIZ
1202  *
1203  *      Change name of a device, can pass format strings "eth%d".
1204  *      for wildcarding.
1205  */
1206 int dev_change_name(struct net_device *dev, const char *newname)
1207 {
1208         unsigned char old_assign_type;
1209         char oldname[IFNAMSIZ];
1210         int err = 0;
1211         int ret;
1212         struct net *net;
1213
1214         ASSERT_RTNL();
1215         BUG_ON(!dev_net(dev));
1216
1217         net = dev_net(dev);
1218
1219         /* Some auto-enslaved devices e.g. failover slaves are
1220          * special, as userspace might rename the device after
1221          * the interface had been brought up and running since
1222          * the point kernel initiated auto-enslavement. Allow
1223          * live name change even when these slave devices are
1224          * up and running.
1225          *
1226          * Typically, users of these auto-enslaving devices
1227          * don't actually care about slave name change, as
1228          * they are supposed to operate on master interface
1229          * directly.
1230          */
1231         if (dev->flags & IFF_UP &&
1232             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1233                 return -EBUSY;
1234
1235         down_write(&devnet_rename_sem);
1236
1237         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1238                 up_write(&devnet_rename_sem);
1239                 return 0;
1240         }
1241
1242         memcpy(oldname, dev->name, IFNAMSIZ);
1243
1244         err = dev_get_valid_name(net, dev, newname);
1245         if (err < 0) {
1246                 up_write(&devnet_rename_sem);
1247                 return err;
1248         }
1249
1250         if (oldname[0] && !strchr(oldname, '%'))
1251                 netdev_info(dev, "renamed from %s\n", oldname);
1252
1253         old_assign_type = dev->name_assign_type;
1254         dev->name_assign_type = NET_NAME_RENAMED;
1255
1256 rollback:
1257         ret = device_rename(&dev->dev, dev->name);
1258         if (ret) {
1259                 memcpy(dev->name, oldname, IFNAMSIZ);
1260                 dev->name_assign_type = old_assign_type;
1261                 up_write(&devnet_rename_sem);
1262                 return ret;
1263         }
1264
1265         up_write(&devnet_rename_sem);
1266
1267         netdev_adjacent_rename_links(dev, oldname);
1268
1269         write_lock_bh(&dev_base_lock);
1270         netdev_name_node_del(dev->name_node);
1271         write_unlock_bh(&dev_base_lock);
1272
1273         synchronize_rcu();
1274
1275         write_lock_bh(&dev_base_lock);
1276         netdev_name_node_add(net, dev->name_node);
1277         write_unlock_bh(&dev_base_lock);
1278
1279         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1280         ret = notifier_to_errno(ret);
1281
1282         if (ret) {
1283                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1284                 if (err >= 0) {
1285                         err = ret;
1286                         down_write(&devnet_rename_sem);
1287                         memcpy(dev->name, oldname, IFNAMSIZ);
1288                         memcpy(oldname, newname, IFNAMSIZ);
1289                         dev->name_assign_type = old_assign_type;
1290                         old_assign_type = NET_NAME_RENAMED;
1291                         goto rollback;
1292                 } else {
1293                         pr_err("%s: name change rollback failed: %d\n",
1294                                dev->name, ret);
1295                 }
1296         }
1297
1298         return err;
1299 }
1300
1301 /**
1302  *      dev_set_alias - change ifalias of a device
1303  *      @dev: device
1304  *      @alias: name up to IFALIASZ
1305  *      @len: limit of bytes to copy from info
1306  *
1307  *      Set ifalias for a device,
1308  */
1309 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1310 {
1311         struct dev_ifalias *new_alias = NULL;
1312
1313         if (len >= IFALIASZ)
1314                 return -EINVAL;
1315
1316         if (len) {
1317                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1318                 if (!new_alias)
1319                         return -ENOMEM;
1320
1321                 memcpy(new_alias->ifalias, alias, len);
1322                 new_alias->ifalias[len] = 0;
1323         }
1324
1325         mutex_lock(&ifalias_mutex);
1326         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1327                                         mutex_is_locked(&ifalias_mutex));
1328         mutex_unlock(&ifalias_mutex);
1329
1330         if (new_alias)
1331                 kfree_rcu(new_alias, rcuhead);
1332
1333         return len;
1334 }
1335 EXPORT_SYMBOL(dev_set_alias);
1336
1337 /**
1338  *      dev_get_alias - get ifalias of a device
1339  *      @dev: device
1340  *      @name: buffer to store name of ifalias
1341  *      @len: size of buffer
1342  *
1343  *      get ifalias for a device.  Caller must make sure dev cannot go
1344  *      away,  e.g. rcu read lock or own a reference count to device.
1345  */
1346 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1347 {
1348         const struct dev_ifalias *alias;
1349         int ret = 0;
1350
1351         rcu_read_lock();
1352         alias = rcu_dereference(dev->ifalias);
1353         if (alias)
1354                 ret = snprintf(name, len, "%s", alias->ifalias);
1355         rcu_read_unlock();
1356
1357         return ret;
1358 }
1359
1360 /**
1361  *      netdev_features_change - device changes features
1362  *      @dev: device to cause notification
1363  *
1364  *      Called to indicate a device has changed features.
1365  */
1366 void netdev_features_change(struct net_device *dev)
1367 {
1368         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1369 }
1370 EXPORT_SYMBOL(netdev_features_change);
1371
1372 /**
1373  *      netdev_state_change - device changes state
1374  *      @dev: device to cause notification
1375  *
1376  *      Called to indicate a device has changed state. This function calls
1377  *      the notifier chains for netdev_chain and sends a NEWLINK message
1378  *      to the routing socket.
1379  */
1380 void netdev_state_change(struct net_device *dev)
1381 {
1382         if (dev->flags & IFF_UP) {
1383                 struct netdev_notifier_change_info change_info = {
1384                         .info.dev = dev,
1385                 };
1386
1387                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1388                                               &change_info.info);
1389                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1390         }
1391 }
1392 EXPORT_SYMBOL(netdev_state_change);
1393
1394 /**
1395  * __netdev_notify_peers - notify network peers about existence of @dev,
1396  * to be called when rtnl lock is already held.
1397  * @dev: network device
1398  *
1399  * Generate traffic such that interested network peers are aware of
1400  * @dev, such as by generating a gratuitous ARP. This may be used when
1401  * a device wants to inform the rest of the network about some sort of
1402  * reconfiguration such as a failover event or virtual machine
1403  * migration.
1404  */
1405 void __netdev_notify_peers(struct net_device *dev)
1406 {
1407         ASSERT_RTNL();
1408         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1409         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1410 }
1411 EXPORT_SYMBOL(__netdev_notify_peers);
1412
1413 /**
1414  * netdev_notify_peers - notify network peers about existence of @dev
1415  * @dev: network device
1416  *
1417  * Generate traffic such that interested network peers are aware of
1418  * @dev, such as by generating a gratuitous ARP. This may be used when
1419  * a device wants to inform the rest of the network about some sort of
1420  * reconfiguration such as a failover event or virtual machine
1421  * migration.
1422  */
1423 void netdev_notify_peers(struct net_device *dev)
1424 {
1425         rtnl_lock();
1426         __netdev_notify_peers(dev);
1427         rtnl_unlock();
1428 }
1429 EXPORT_SYMBOL(netdev_notify_peers);
1430
1431 static int napi_threaded_poll(void *data);
1432
1433 static int napi_kthread_create(struct napi_struct *n)
1434 {
1435         int err = 0;
1436
1437         /* Create and wake up the kthread once to put it in
1438          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1439          * warning and work with loadavg.
1440          */
1441         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1442                                 n->dev->name, n->napi_id);
1443         if (IS_ERR(n->thread)) {
1444                 err = PTR_ERR(n->thread);
1445                 pr_err("kthread_run failed with err %d\n", err);
1446                 n->thread = NULL;
1447         }
1448
1449         return err;
1450 }
1451
1452 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1453 {
1454         const struct net_device_ops *ops = dev->netdev_ops;
1455         int ret;
1456
1457         ASSERT_RTNL();
1458
1459         if (!netif_device_present(dev)) {
1460                 /* may be detached because parent is runtime-suspended */
1461                 if (dev->dev.parent)
1462                         pm_runtime_resume(dev->dev.parent);
1463                 if (!netif_device_present(dev))
1464                         return -ENODEV;
1465         }
1466
1467         /* Block netpoll from trying to do any rx path servicing.
1468          * If we don't do this there is a chance ndo_poll_controller
1469          * or ndo_poll may be running while we open the device
1470          */
1471         netpoll_poll_disable(dev);
1472
1473         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1474         ret = notifier_to_errno(ret);
1475         if (ret)
1476                 return ret;
1477
1478         set_bit(__LINK_STATE_START, &dev->state);
1479
1480         if (ops->ndo_validate_addr)
1481                 ret = ops->ndo_validate_addr(dev);
1482
1483         if (!ret && ops->ndo_open)
1484                 ret = ops->ndo_open(dev);
1485
1486         netpoll_poll_enable(dev);
1487
1488         if (ret)
1489                 clear_bit(__LINK_STATE_START, &dev->state);
1490         else {
1491                 dev->flags |= IFF_UP;
1492                 dev_set_rx_mode(dev);
1493                 dev_activate(dev);
1494                 add_device_randomness(dev->dev_addr, dev->addr_len);
1495         }
1496
1497         return ret;
1498 }
1499
1500 /**
1501  *      dev_open        - prepare an interface for use.
1502  *      @dev: device to open
1503  *      @extack: netlink extended ack
1504  *
1505  *      Takes a device from down to up state. The device's private open
1506  *      function is invoked and then the multicast lists are loaded. Finally
1507  *      the device is moved into the up state and a %NETDEV_UP message is
1508  *      sent to the netdev notifier chain.
1509  *
1510  *      Calling this function on an active interface is a nop. On a failure
1511  *      a negative errno code is returned.
1512  */
1513 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1514 {
1515         int ret;
1516
1517         if (dev->flags & IFF_UP)
1518                 return 0;
1519
1520         ret = __dev_open(dev, extack);
1521         if (ret < 0)
1522                 return ret;
1523
1524         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1525         call_netdevice_notifiers(NETDEV_UP, dev);
1526
1527         return ret;
1528 }
1529 EXPORT_SYMBOL(dev_open);
1530
1531 static void __dev_close_many(struct list_head *head)
1532 {
1533         struct net_device *dev;
1534
1535         ASSERT_RTNL();
1536         might_sleep();
1537
1538         list_for_each_entry(dev, head, close_list) {
1539                 /* Temporarily disable netpoll until the interface is down */
1540                 netpoll_poll_disable(dev);
1541
1542                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1543
1544                 clear_bit(__LINK_STATE_START, &dev->state);
1545
1546                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1547                  * can be even on different cpu. So just clear netif_running().
1548                  *
1549                  * dev->stop() will invoke napi_disable() on all of it's
1550                  * napi_struct instances on this device.
1551                  */
1552                 smp_mb__after_atomic(); /* Commit netif_running(). */
1553         }
1554
1555         dev_deactivate_many(head);
1556
1557         list_for_each_entry(dev, head, close_list) {
1558                 const struct net_device_ops *ops = dev->netdev_ops;
1559
1560                 /*
1561                  *      Call the device specific close. This cannot fail.
1562                  *      Only if device is UP
1563                  *
1564                  *      We allow it to be called even after a DETACH hot-plug
1565                  *      event.
1566                  */
1567                 if (ops->ndo_stop)
1568                         ops->ndo_stop(dev);
1569
1570                 dev->flags &= ~IFF_UP;
1571                 netpoll_poll_enable(dev);
1572         }
1573 }
1574
1575 static void __dev_close(struct net_device *dev)
1576 {
1577         LIST_HEAD(single);
1578
1579         list_add(&dev->close_list, &single);
1580         __dev_close_many(&single);
1581         list_del(&single);
1582 }
1583
1584 void dev_close_many(struct list_head *head, bool unlink)
1585 {
1586         struct net_device *dev, *tmp;
1587
1588         /* Remove the devices that don't need to be closed */
1589         list_for_each_entry_safe(dev, tmp, head, close_list)
1590                 if (!(dev->flags & IFF_UP))
1591                         list_del_init(&dev->close_list);
1592
1593         __dev_close_many(head);
1594
1595         list_for_each_entry_safe(dev, tmp, head, close_list) {
1596                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1597                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1598                 if (unlink)
1599                         list_del_init(&dev->close_list);
1600         }
1601 }
1602 EXPORT_SYMBOL(dev_close_many);
1603
1604 /**
1605  *      dev_close - shutdown an interface.
1606  *      @dev: device to shutdown
1607  *
1608  *      This function moves an active device into down state. A
1609  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1610  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1611  *      chain.
1612  */
1613 void dev_close(struct net_device *dev)
1614 {
1615         if (dev->flags & IFF_UP) {
1616                 LIST_HEAD(single);
1617
1618                 list_add(&dev->close_list, &single);
1619                 dev_close_many(&single, true);
1620                 list_del(&single);
1621         }
1622 }
1623 EXPORT_SYMBOL(dev_close);
1624
1625
1626 /**
1627  *      dev_disable_lro - disable Large Receive Offload on a device
1628  *      @dev: device
1629  *
1630  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1631  *      called under RTNL.  This is needed if received packets may be
1632  *      forwarded to another interface.
1633  */
1634 void dev_disable_lro(struct net_device *dev)
1635 {
1636         struct net_device *lower_dev;
1637         struct list_head *iter;
1638
1639         dev->wanted_features &= ~NETIF_F_LRO;
1640         netdev_update_features(dev);
1641
1642         if (unlikely(dev->features & NETIF_F_LRO))
1643                 netdev_WARN(dev, "failed to disable LRO!\n");
1644
1645         netdev_for_each_lower_dev(dev, lower_dev, iter)
1646                 dev_disable_lro(lower_dev);
1647 }
1648 EXPORT_SYMBOL(dev_disable_lro);
1649
1650 /**
1651  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1652  *      @dev: device
1653  *
1654  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1655  *      called under RTNL.  This is needed if Generic XDP is installed on
1656  *      the device.
1657  */
1658 static void dev_disable_gro_hw(struct net_device *dev)
1659 {
1660         dev->wanted_features &= ~NETIF_F_GRO_HW;
1661         netdev_update_features(dev);
1662
1663         if (unlikely(dev->features & NETIF_F_GRO_HW))
1664                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1665 }
1666
1667 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1668 {
1669 #define N(val)                                          \
1670         case NETDEV_##val:                              \
1671                 return "NETDEV_" __stringify(val);
1672         switch (cmd) {
1673         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1674         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1675         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1676         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1677         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1678         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1679         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1680         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1681         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1682         N(PRE_CHANGEADDR)
1683         }
1684 #undef N
1685         return "UNKNOWN_NETDEV_EVENT";
1686 }
1687 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1688
1689 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1690                                    struct net_device *dev)
1691 {
1692         struct netdev_notifier_info info = {
1693                 .dev = dev,
1694         };
1695
1696         return nb->notifier_call(nb, val, &info);
1697 }
1698
1699 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1700                                              struct net_device *dev)
1701 {
1702         int err;
1703
1704         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1705         err = notifier_to_errno(err);
1706         if (err)
1707                 return err;
1708
1709         if (!(dev->flags & IFF_UP))
1710                 return 0;
1711
1712         call_netdevice_notifier(nb, NETDEV_UP, dev);
1713         return 0;
1714 }
1715
1716 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1717                                                 struct net_device *dev)
1718 {
1719         if (dev->flags & IFF_UP) {
1720                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1721                                         dev);
1722                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1723         }
1724         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1725 }
1726
1727 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1728                                                  struct net *net)
1729 {
1730         struct net_device *dev;
1731         int err;
1732
1733         for_each_netdev(net, dev) {
1734                 err = call_netdevice_register_notifiers(nb, dev);
1735                 if (err)
1736                         goto rollback;
1737         }
1738         return 0;
1739
1740 rollback:
1741         for_each_netdev_continue_reverse(net, dev)
1742                 call_netdevice_unregister_notifiers(nb, dev);
1743         return err;
1744 }
1745
1746 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1747                                                     struct net *net)
1748 {
1749         struct net_device *dev;
1750
1751         for_each_netdev(net, dev)
1752                 call_netdevice_unregister_notifiers(nb, dev);
1753 }
1754
1755 static int dev_boot_phase = 1;
1756
1757 /**
1758  * register_netdevice_notifier - register a network notifier block
1759  * @nb: notifier
1760  *
1761  * Register a notifier to be called when network device events occur.
1762  * The notifier passed is linked into the kernel structures and must
1763  * not be reused until it has been unregistered. A negative errno code
1764  * is returned on a failure.
1765  *
1766  * When registered all registration and up events are replayed
1767  * to the new notifier to allow device to have a race free
1768  * view of the network device list.
1769  */
1770
1771 int register_netdevice_notifier(struct notifier_block *nb)
1772 {
1773         struct net *net;
1774         int err;
1775
1776         /* Close race with setup_net() and cleanup_net() */
1777         down_write(&pernet_ops_rwsem);
1778         rtnl_lock();
1779         err = raw_notifier_chain_register(&netdev_chain, nb);
1780         if (err)
1781                 goto unlock;
1782         if (dev_boot_phase)
1783                 goto unlock;
1784         for_each_net(net) {
1785                 err = call_netdevice_register_net_notifiers(nb, net);
1786                 if (err)
1787                         goto rollback;
1788         }
1789
1790 unlock:
1791         rtnl_unlock();
1792         up_write(&pernet_ops_rwsem);
1793         return err;
1794
1795 rollback:
1796         for_each_net_continue_reverse(net)
1797                 call_netdevice_unregister_net_notifiers(nb, net);
1798
1799         raw_notifier_chain_unregister(&netdev_chain, nb);
1800         goto unlock;
1801 }
1802 EXPORT_SYMBOL(register_netdevice_notifier);
1803
1804 /**
1805  * unregister_netdevice_notifier - unregister a network notifier block
1806  * @nb: notifier
1807  *
1808  * Unregister a notifier previously registered by
1809  * register_netdevice_notifier(). The notifier is unlinked into the
1810  * kernel structures and may then be reused. A negative errno code
1811  * is returned on a failure.
1812  *
1813  * After unregistering unregister and down device events are synthesized
1814  * for all devices on the device list to the removed notifier to remove
1815  * the need for special case cleanup code.
1816  */
1817
1818 int unregister_netdevice_notifier(struct notifier_block *nb)
1819 {
1820         struct net *net;
1821         int err;
1822
1823         /* Close race with setup_net() and cleanup_net() */
1824         down_write(&pernet_ops_rwsem);
1825         rtnl_lock();
1826         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1827         if (err)
1828                 goto unlock;
1829
1830         for_each_net(net)
1831                 call_netdevice_unregister_net_notifiers(nb, net);
1832
1833 unlock:
1834         rtnl_unlock();
1835         up_write(&pernet_ops_rwsem);
1836         return err;
1837 }
1838 EXPORT_SYMBOL(unregister_netdevice_notifier);
1839
1840 static int __register_netdevice_notifier_net(struct net *net,
1841                                              struct notifier_block *nb,
1842                                              bool ignore_call_fail)
1843 {
1844         int err;
1845
1846         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1847         if (err)
1848                 return err;
1849         if (dev_boot_phase)
1850                 return 0;
1851
1852         err = call_netdevice_register_net_notifiers(nb, net);
1853         if (err && !ignore_call_fail)
1854                 goto chain_unregister;
1855
1856         return 0;
1857
1858 chain_unregister:
1859         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1860         return err;
1861 }
1862
1863 static int __unregister_netdevice_notifier_net(struct net *net,
1864                                                struct notifier_block *nb)
1865 {
1866         int err;
1867
1868         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1869         if (err)
1870                 return err;
1871
1872         call_netdevice_unregister_net_notifiers(nb, net);
1873         return 0;
1874 }
1875
1876 /**
1877  * register_netdevice_notifier_net - register a per-netns network notifier block
1878  * @net: network namespace
1879  * @nb: notifier
1880  *
1881  * Register a notifier to be called when network device events occur.
1882  * The notifier passed is linked into the kernel structures and must
1883  * not be reused until it has been unregistered. A negative errno code
1884  * is returned on a failure.
1885  *
1886  * When registered all registration and up events are replayed
1887  * to the new notifier to allow device to have a race free
1888  * view of the network device list.
1889  */
1890
1891 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1892 {
1893         int err;
1894
1895         rtnl_lock();
1896         err = __register_netdevice_notifier_net(net, nb, false);
1897         rtnl_unlock();
1898         return err;
1899 }
1900 EXPORT_SYMBOL(register_netdevice_notifier_net);
1901
1902 /**
1903  * unregister_netdevice_notifier_net - unregister a per-netns
1904  *                                     network notifier block
1905  * @net: network namespace
1906  * @nb: notifier
1907  *
1908  * Unregister a notifier previously registered by
1909  * register_netdevice_notifier(). The notifier is unlinked into the
1910  * kernel structures and may then be reused. A negative errno code
1911  * is returned on a failure.
1912  *
1913  * After unregistering unregister and down device events are synthesized
1914  * for all devices on the device list to the removed notifier to remove
1915  * the need for special case cleanup code.
1916  */
1917
1918 int unregister_netdevice_notifier_net(struct net *net,
1919                                       struct notifier_block *nb)
1920 {
1921         int err;
1922
1923         rtnl_lock();
1924         err = __unregister_netdevice_notifier_net(net, nb);
1925         rtnl_unlock();
1926         return err;
1927 }
1928 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1929
1930 int register_netdevice_notifier_dev_net(struct net_device *dev,
1931                                         struct notifier_block *nb,
1932                                         struct netdev_net_notifier *nn)
1933 {
1934         int err;
1935
1936         rtnl_lock();
1937         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1938         if (!err) {
1939                 nn->nb = nb;
1940                 list_add(&nn->list, &dev->net_notifier_list);
1941         }
1942         rtnl_unlock();
1943         return err;
1944 }
1945 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1946
1947 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1948                                           struct notifier_block *nb,
1949                                           struct netdev_net_notifier *nn)
1950 {
1951         int err;
1952
1953         rtnl_lock();
1954         list_del(&nn->list);
1955         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1956         rtnl_unlock();
1957         return err;
1958 }
1959 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1960
1961 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1962                                              struct net *net)
1963 {
1964         struct netdev_net_notifier *nn;
1965
1966         list_for_each_entry(nn, &dev->net_notifier_list, list) {
1967                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1968                 __register_netdevice_notifier_net(net, nn->nb, true);
1969         }
1970 }
1971
1972 /**
1973  *      call_netdevice_notifiers_info - call all network notifier blocks
1974  *      @val: value passed unmodified to notifier function
1975  *      @info: notifier information data
1976  *
1977  *      Call all network notifier blocks.  Parameters and return value
1978  *      are as for raw_notifier_call_chain().
1979  */
1980
1981 static int call_netdevice_notifiers_info(unsigned long val,
1982                                          struct netdev_notifier_info *info)
1983 {
1984         struct net *net = dev_net(info->dev);
1985         int ret;
1986
1987         ASSERT_RTNL();
1988
1989         /* Run per-netns notifier block chain first, then run the global one.
1990          * Hopefully, one day, the global one is going to be removed after
1991          * all notifier block registrators get converted to be per-netns.
1992          */
1993         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1994         if (ret & NOTIFY_STOP_MASK)
1995                 return ret;
1996         return raw_notifier_call_chain(&netdev_chain, val, info);
1997 }
1998
1999 static int call_netdevice_notifiers_extack(unsigned long val,
2000                                            struct net_device *dev,
2001                                            struct netlink_ext_ack *extack)
2002 {
2003         struct netdev_notifier_info info = {
2004                 .dev = dev,
2005                 .extack = extack,
2006         };
2007
2008         return call_netdevice_notifiers_info(val, &info);
2009 }
2010
2011 /**
2012  *      call_netdevice_notifiers - call all network notifier blocks
2013  *      @val: value passed unmodified to notifier function
2014  *      @dev: net_device pointer passed unmodified to notifier function
2015  *
2016  *      Call all network notifier blocks.  Parameters and return value
2017  *      are as for raw_notifier_call_chain().
2018  */
2019
2020 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2021 {
2022         return call_netdevice_notifiers_extack(val, dev, NULL);
2023 }
2024 EXPORT_SYMBOL(call_netdevice_notifiers);
2025
2026 /**
2027  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2028  *      @val: value passed unmodified to notifier function
2029  *      @dev: net_device pointer passed unmodified to notifier function
2030  *      @arg: additional u32 argument passed to the notifier function
2031  *
2032  *      Call all network notifier blocks.  Parameters and return value
2033  *      are as for raw_notifier_call_chain().
2034  */
2035 static int call_netdevice_notifiers_mtu(unsigned long val,
2036                                         struct net_device *dev, u32 arg)
2037 {
2038         struct netdev_notifier_info_ext info = {
2039                 .info.dev = dev,
2040                 .ext.mtu = arg,
2041         };
2042
2043         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2044
2045         return call_netdevice_notifiers_info(val, &info.info);
2046 }
2047
2048 #ifdef CONFIG_NET_INGRESS
2049 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2050
2051 void net_inc_ingress_queue(void)
2052 {
2053         static_branch_inc(&ingress_needed_key);
2054 }
2055 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2056
2057 void net_dec_ingress_queue(void)
2058 {
2059         static_branch_dec(&ingress_needed_key);
2060 }
2061 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2062 #endif
2063
2064 #ifdef CONFIG_NET_EGRESS
2065 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2066
2067 void net_inc_egress_queue(void)
2068 {
2069         static_branch_inc(&egress_needed_key);
2070 }
2071 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2072
2073 void net_dec_egress_queue(void)
2074 {
2075         static_branch_dec(&egress_needed_key);
2076 }
2077 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2078 #endif
2079
2080 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2081 #ifdef CONFIG_JUMP_LABEL
2082 static atomic_t netstamp_needed_deferred;
2083 static atomic_t netstamp_wanted;
2084 static void netstamp_clear(struct work_struct *work)
2085 {
2086         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2087         int wanted;
2088
2089         wanted = atomic_add_return(deferred, &netstamp_wanted);
2090         if (wanted > 0)
2091                 static_branch_enable(&netstamp_needed_key);
2092         else
2093                 static_branch_disable(&netstamp_needed_key);
2094 }
2095 static DECLARE_WORK(netstamp_work, netstamp_clear);
2096 #endif
2097
2098 void net_enable_timestamp(void)
2099 {
2100 #ifdef CONFIG_JUMP_LABEL
2101         int wanted;
2102
2103         while (1) {
2104                 wanted = atomic_read(&netstamp_wanted);
2105                 if (wanted <= 0)
2106                         break;
2107                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2108                         return;
2109         }
2110         atomic_inc(&netstamp_needed_deferred);
2111         schedule_work(&netstamp_work);
2112 #else
2113         static_branch_inc(&netstamp_needed_key);
2114 #endif
2115 }
2116 EXPORT_SYMBOL(net_enable_timestamp);
2117
2118 void net_disable_timestamp(void)
2119 {
2120 #ifdef CONFIG_JUMP_LABEL
2121         int wanted;
2122
2123         while (1) {
2124                 wanted = atomic_read(&netstamp_wanted);
2125                 if (wanted <= 1)
2126                         break;
2127                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2128                         return;
2129         }
2130         atomic_dec(&netstamp_needed_deferred);
2131         schedule_work(&netstamp_work);
2132 #else
2133         static_branch_dec(&netstamp_needed_key);
2134 #endif
2135 }
2136 EXPORT_SYMBOL(net_disable_timestamp);
2137
2138 static inline void net_timestamp_set(struct sk_buff *skb)
2139 {
2140         skb->tstamp = 0;
2141         if (static_branch_unlikely(&netstamp_needed_key))
2142                 __net_timestamp(skb);
2143 }
2144
2145 #define net_timestamp_check(COND, SKB)                          \
2146         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2147                 if ((COND) && !(SKB)->tstamp)                   \
2148                         __net_timestamp(SKB);                   \
2149         }                                                       \
2150
2151 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2152 {
2153         return __is_skb_forwardable(dev, skb, true);
2154 }
2155 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2156
2157 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2158                               bool check_mtu)
2159 {
2160         int ret = ____dev_forward_skb(dev, skb, check_mtu);
2161
2162         if (likely(!ret)) {
2163                 skb->protocol = eth_type_trans(skb, dev);
2164                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2165         }
2166
2167         return ret;
2168 }
2169
2170 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2171 {
2172         return __dev_forward_skb2(dev, skb, true);
2173 }
2174 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2175
2176 /**
2177  * dev_forward_skb - loopback an skb to another netif
2178  *
2179  * @dev: destination network device
2180  * @skb: buffer to forward
2181  *
2182  * return values:
2183  *      NET_RX_SUCCESS  (no congestion)
2184  *      NET_RX_DROP     (packet was dropped, but freed)
2185  *
2186  * dev_forward_skb can be used for injecting an skb from the
2187  * start_xmit function of one device into the receive queue
2188  * of another device.
2189  *
2190  * The receiving device may be in another namespace, so
2191  * we have to clear all information in the skb that could
2192  * impact namespace isolation.
2193  */
2194 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2195 {
2196         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2197 }
2198 EXPORT_SYMBOL_GPL(dev_forward_skb);
2199
2200 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2201 {
2202         return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2203 }
2204
2205 static inline int deliver_skb(struct sk_buff *skb,
2206                               struct packet_type *pt_prev,
2207                               struct net_device *orig_dev)
2208 {
2209         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2210                 return -ENOMEM;
2211         refcount_inc(&skb->users);
2212         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2213 }
2214
2215 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2216                                           struct packet_type **pt,
2217                                           struct net_device *orig_dev,
2218                                           __be16 type,
2219                                           struct list_head *ptype_list)
2220 {
2221         struct packet_type *ptype, *pt_prev = *pt;
2222
2223         list_for_each_entry_rcu(ptype, ptype_list, list) {
2224                 if (ptype->type != type)
2225                         continue;
2226                 if (pt_prev)
2227                         deliver_skb(skb, pt_prev, orig_dev);
2228                 pt_prev = ptype;
2229         }
2230         *pt = pt_prev;
2231 }
2232
2233 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2234 {
2235         if (!ptype->af_packet_priv || !skb->sk)
2236                 return false;
2237
2238         if (ptype->id_match)
2239                 return ptype->id_match(ptype, skb->sk);
2240         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2241                 return true;
2242
2243         return false;
2244 }
2245
2246 /**
2247  * dev_nit_active - return true if any network interface taps are in use
2248  *
2249  * @dev: network device to check for the presence of taps
2250  */
2251 bool dev_nit_active(struct net_device *dev)
2252 {
2253         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2254 }
2255 EXPORT_SYMBOL_GPL(dev_nit_active);
2256
2257 /*
2258  *      Support routine. Sends outgoing frames to any network
2259  *      taps currently in use.
2260  */
2261
2262 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2263 {
2264         struct packet_type *ptype;
2265         struct sk_buff *skb2 = NULL;
2266         struct packet_type *pt_prev = NULL;
2267         struct list_head *ptype_list = &ptype_all;
2268
2269         rcu_read_lock();
2270 again:
2271         list_for_each_entry_rcu(ptype, ptype_list, list) {
2272                 if (ptype->ignore_outgoing)
2273                         continue;
2274
2275                 /* Never send packets back to the socket
2276                  * they originated from - MvS (miquels@drinkel.ow.org)
2277                  */
2278                 if (skb_loop_sk(ptype, skb))
2279                         continue;
2280
2281                 if (pt_prev) {
2282                         deliver_skb(skb2, pt_prev, skb->dev);
2283                         pt_prev = ptype;
2284                         continue;
2285                 }
2286
2287                 /* need to clone skb, done only once */
2288                 skb2 = skb_clone(skb, GFP_ATOMIC);
2289                 if (!skb2)
2290                         goto out_unlock;
2291
2292                 net_timestamp_set(skb2);
2293
2294                 /* skb->nh should be correctly
2295                  * set by sender, so that the second statement is
2296                  * just protection against buggy protocols.
2297                  */
2298                 skb_reset_mac_header(skb2);
2299
2300                 if (skb_network_header(skb2) < skb2->data ||
2301                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2302                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2303                                              ntohs(skb2->protocol),
2304                                              dev->name);
2305                         skb_reset_network_header(skb2);
2306                 }
2307
2308                 skb2->transport_header = skb2->network_header;
2309                 skb2->pkt_type = PACKET_OUTGOING;
2310                 pt_prev = ptype;
2311         }
2312
2313         if (ptype_list == &ptype_all) {
2314                 ptype_list = &dev->ptype_all;
2315                 goto again;
2316         }
2317 out_unlock:
2318         if (pt_prev) {
2319                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2320                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2321                 else
2322                         kfree_skb(skb2);
2323         }
2324         rcu_read_unlock();
2325 }
2326 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2327
2328 /**
2329  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2330  * @dev: Network device
2331  * @txq: number of queues available
2332  *
2333  * If real_num_tx_queues is changed the tc mappings may no longer be
2334  * valid. To resolve this verify the tc mapping remains valid and if
2335  * not NULL the mapping. With no priorities mapping to this
2336  * offset/count pair it will no longer be used. In the worst case TC0
2337  * is invalid nothing can be done so disable priority mappings. If is
2338  * expected that drivers will fix this mapping if they can before
2339  * calling netif_set_real_num_tx_queues.
2340  */
2341 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2342 {
2343         int i;
2344         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2345
2346         /* If TC0 is invalidated disable TC mapping */
2347         if (tc->offset + tc->count > txq) {
2348                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2349                 dev->num_tc = 0;
2350                 return;
2351         }
2352
2353         /* Invalidated prio to tc mappings set to TC0 */
2354         for (i = 1; i < TC_BITMASK + 1; i++) {
2355                 int q = netdev_get_prio_tc_map(dev, i);
2356
2357                 tc = &dev->tc_to_txq[q];
2358                 if (tc->offset + tc->count > txq) {
2359                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2360                                 i, q);
2361                         netdev_set_prio_tc_map(dev, i, 0);
2362                 }
2363         }
2364 }
2365
2366 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2367 {
2368         if (dev->num_tc) {
2369                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2370                 int i;
2371
2372                 /* walk through the TCs and see if it falls into any of them */
2373                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2374                         if ((txq - tc->offset) < tc->count)
2375                                 return i;
2376                 }
2377
2378                 /* didn't find it, just return -1 to indicate no match */
2379                 return -1;
2380         }
2381
2382         return 0;
2383 }
2384 EXPORT_SYMBOL(netdev_txq_to_tc);
2385
2386 #ifdef CONFIG_XPS
2387 static struct static_key xps_needed __read_mostly;
2388 static struct static_key xps_rxqs_needed __read_mostly;
2389 static DEFINE_MUTEX(xps_map_mutex);
2390 #define xmap_dereference(P)             \
2391         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2392
2393 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2394                              struct xps_dev_maps *old_maps, int tci, u16 index)
2395 {
2396         struct xps_map *map = NULL;
2397         int pos;
2398
2399         if (dev_maps)
2400                 map = xmap_dereference(dev_maps->attr_map[tci]);
2401         if (!map)
2402                 return false;
2403
2404         for (pos = map->len; pos--;) {
2405                 if (map->queues[pos] != index)
2406                         continue;
2407
2408                 if (map->len > 1) {
2409                         map->queues[pos] = map->queues[--map->len];
2410                         break;
2411                 }
2412
2413                 if (old_maps)
2414                         RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2415                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2416                 kfree_rcu(map, rcu);
2417                 return false;
2418         }
2419
2420         return true;
2421 }
2422
2423 static bool remove_xps_queue_cpu(struct net_device *dev,
2424                                  struct xps_dev_maps *dev_maps,
2425                                  int cpu, u16 offset, u16 count)
2426 {
2427         int num_tc = dev_maps->num_tc;
2428         bool active = false;
2429         int tci;
2430
2431         for (tci = cpu * num_tc; num_tc--; tci++) {
2432                 int i, j;
2433
2434                 for (i = count, j = offset; i--; j++) {
2435                         if (!remove_xps_queue(dev_maps, NULL, tci, j))
2436                                 break;
2437                 }
2438
2439                 active |= i < 0;
2440         }
2441
2442         return active;
2443 }
2444
2445 static void reset_xps_maps(struct net_device *dev,
2446                            struct xps_dev_maps *dev_maps,
2447                            enum xps_map_type type)
2448 {
2449         static_key_slow_dec_cpuslocked(&xps_needed);
2450         if (type == XPS_RXQS)
2451                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2452
2453         RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2454
2455         kfree_rcu(dev_maps, rcu);
2456 }
2457
2458 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2459                            u16 offset, u16 count)
2460 {
2461         struct xps_dev_maps *dev_maps;
2462         bool active = false;
2463         int i, j;
2464
2465         dev_maps = xmap_dereference(dev->xps_maps[type]);
2466         if (!dev_maps)
2467                 return;
2468
2469         for (j = 0; j < dev_maps->nr_ids; j++)
2470                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2471         if (!active)
2472                 reset_xps_maps(dev, dev_maps, type);
2473
2474         if (type == XPS_CPUS) {
2475                 for (i = offset + (count - 1); count--; i--)
2476                         netdev_queue_numa_node_write(
2477                                 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2478         }
2479 }
2480
2481 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2482                                    u16 count)
2483 {
2484         if (!static_key_false(&xps_needed))
2485                 return;
2486
2487         cpus_read_lock();
2488         mutex_lock(&xps_map_mutex);
2489
2490         if (static_key_false(&xps_rxqs_needed))
2491                 clean_xps_maps(dev, XPS_RXQS, offset, count);
2492
2493         clean_xps_maps(dev, XPS_CPUS, offset, count);
2494
2495         mutex_unlock(&xps_map_mutex);
2496         cpus_read_unlock();
2497 }
2498
2499 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2500 {
2501         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2502 }
2503
2504 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2505                                       u16 index, bool is_rxqs_map)
2506 {
2507         struct xps_map *new_map;
2508         int alloc_len = XPS_MIN_MAP_ALLOC;
2509         int i, pos;
2510
2511         for (pos = 0; map && pos < map->len; pos++) {
2512                 if (map->queues[pos] != index)
2513                         continue;
2514                 return map;
2515         }
2516
2517         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2518         if (map) {
2519                 if (pos < map->alloc_len)
2520                         return map;
2521
2522                 alloc_len = map->alloc_len * 2;
2523         }
2524
2525         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2526          *  map
2527          */
2528         if (is_rxqs_map)
2529                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2530         else
2531                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2532                                        cpu_to_node(attr_index));
2533         if (!new_map)
2534                 return NULL;
2535
2536         for (i = 0; i < pos; i++)
2537                 new_map->queues[i] = map->queues[i];
2538         new_map->alloc_len = alloc_len;
2539         new_map->len = pos;
2540
2541         return new_map;
2542 }
2543
2544 /* Copy xps maps at a given index */
2545 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2546                               struct xps_dev_maps *new_dev_maps, int index,
2547                               int tc, bool skip_tc)
2548 {
2549         int i, tci = index * dev_maps->num_tc;
2550         struct xps_map *map;
2551
2552         /* copy maps belonging to foreign traffic classes */
2553         for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2554                 if (i == tc && skip_tc)
2555                         continue;
2556
2557                 /* fill in the new device map from the old device map */
2558                 map = xmap_dereference(dev_maps->attr_map[tci]);
2559                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2560         }
2561 }
2562
2563 /* Must be called under cpus_read_lock */
2564 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2565                           u16 index, enum xps_map_type type)
2566 {
2567         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2568         const unsigned long *online_mask = NULL;
2569         bool active = false, copy = false;
2570         int i, j, tci, numa_node_id = -2;
2571         int maps_sz, num_tc = 1, tc = 0;
2572         struct xps_map *map, *new_map;
2573         unsigned int nr_ids;
2574
2575         if (dev->num_tc) {
2576                 /* Do not allow XPS on subordinate device directly */
2577                 num_tc = dev->num_tc;
2578                 if (num_tc < 0)
2579                         return -EINVAL;
2580
2581                 /* If queue belongs to subordinate dev use its map */
2582                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2583
2584                 tc = netdev_txq_to_tc(dev, index);
2585                 if (tc < 0)
2586                         return -EINVAL;
2587         }
2588
2589         mutex_lock(&xps_map_mutex);
2590
2591         dev_maps = xmap_dereference(dev->xps_maps[type]);
2592         if (type == XPS_RXQS) {
2593                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2594                 nr_ids = dev->num_rx_queues;
2595         } else {
2596                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2597                 if (num_possible_cpus() > 1)
2598                         online_mask = cpumask_bits(cpu_online_mask);
2599                 nr_ids = nr_cpu_ids;
2600         }
2601
2602         if (maps_sz < L1_CACHE_BYTES)
2603                 maps_sz = L1_CACHE_BYTES;
2604
2605         /* The old dev_maps could be larger or smaller than the one we're
2606          * setting up now, as dev->num_tc or nr_ids could have been updated in
2607          * between. We could try to be smart, but let's be safe instead and only
2608          * copy foreign traffic classes if the two map sizes match.
2609          */
2610         if (dev_maps &&
2611             dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2612                 copy = true;
2613
2614         /* allocate memory for queue storage */
2615         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2616              j < nr_ids;) {
2617                 if (!new_dev_maps) {
2618                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2619                         if (!new_dev_maps) {
2620                                 mutex_unlock(&xps_map_mutex);
2621                                 return -ENOMEM;
2622                         }
2623
2624                         new_dev_maps->nr_ids = nr_ids;
2625                         new_dev_maps->num_tc = num_tc;
2626                 }
2627
2628                 tci = j * num_tc + tc;
2629                 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2630
2631                 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2632                 if (!map)
2633                         goto error;
2634
2635                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2636         }
2637
2638         if (!new_dev_maps)
2639                 goto out_no_new_maps;
2640
2641         if (!dev_maps) {
2642                 /* Increment static keys at most once per type */
2643                 static_key_slow_inc_cpuslocked(&xps_needed);
2644                 if (type == XPS_RXQS)
2645                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2646         }
2647
2648         for (j = 0; j < nr_ids; j++) {
2649                 bool skip_tc = false;
2650
2651                 tci = j * num_tc + tc;
2652                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2653                     netif_attr_test_online(j, online_mask, nr_ids)) {
2654                         /* add tx-queue to CPU/rx-queue maps */
2655                         int pos = 0;
2656
2657                         skip_tc = true;
2658
2659                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2660                         while ((pos < map->len) && (map->queues[pos] != index))
2661                                 pos++;
2662
2663                         if (pos == map->len)
2664                                 map->queues[map->len++] = index;
2665 #ifdef CONFIG_NUMA
2666                         if (type == XPS_CPUS) {
2667                                 if (numa_node_id == -2)
2668                                         numa_node_id = cpu_to_node(j);
2669                                 else if (numa_node_id != cpu_to_node(j))
2670                                         numa_node_id = -1;
2671                         }
2672 #endif
2673                 }
2674
2675                 if (copy)
2676                         xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2677                                           skip_tc);
2678         }
2679
2680         rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2681
2682         /* Cleanup old maps */
2683         if (!dev_maps)
2684                 goto out_no_old_maps;
2685
2686         for (j = 0; j < dev_maps->nr_ids; j++) {
2687                 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2688                         map = xmap_dereference(dev_maps->attr_map[tci]);
2689                         if (!map)
2690                                 continue;
2691
2692                         if (copy) {
2693                                 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2694                                 if (map == new_map)
2695                                         continue;
2696                         }
2697
2698                         RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2699                         kfree_rcu(map, rcu);
2700                 }
2701         }
2702
2703         old_dev_maps = dev_maps;
2704
2705 out_no_old_maps:
2706         dev_maps = new_dev_maps;
2707         active = true;
2708
2709 out_no_new_maps:
2710         if (type == XPS_CPUS)
2711                 /* update Tx queue numa node */
2712                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2713                                              (numa_node_id >= 0) ?
2714                                              numa_node_id : NUMA_NO_NODE);
2715
2716         if (!dev_maps)
2717                 goto out_no_maps;
2718
2719         /* removes tx-queue from unused CPUs/rx-queues */
2720         for (j = 0; j < dev_maps->nr_ids; j++) {
2721                 tci = j * dev_maps->num_tc;
2722
2723                 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2724                         if (i == tc &&
2725                             netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2726                             netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2727                                 continue;
2728
2729                         active |= remove_xps_queue(dev_maps,
2730                                                    copy ? old_dev_maps : NULL,
2731                                                    tci, index);
2732                 }
2733         }
2734
2735         if (old_dev_maps)
2736                 kfree_rcu(old_dev_maps, rcu);
2737
2738         /* free map if not active */
2739         if (!active)
2740                 reset_xps_maps(dev, dev_maps, type);
2741
2742 out_no_maps:
2743         mutex_unlock(&xps_map_mutex);
2744
2745         return 0;
2746 error:
2747         /* remove any maps that we added */
2748         for (j = 0; j < nr_ids; j++) {
2749                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2750                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2751                         map = copy ?
2752                               xmap_dereference(dev_maps->attr_map[tci]) :
2753                               NULL;
2754                         if (new_map && new_map != map)
2755                                 kfree(new_map);
2756                 }
2757         }
2758
2759         mutex_unlock(&xps_map_mutex);
2760
2761         kfree(new_dev_maps);
2762         return -ENOMEM;
2763 }
2764 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2765
2766 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2767                         u16 index)
2768 {
2769         int ret;
2770
2771         cpus_read_lock();
2772         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2773         cpus_read_unlock();
2774
2775         return ret;
2776 }
2777 EXPORT_SYMBOL(netif_set_xps_queue);
2778
2779 #endif
2780 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2781 {
2782         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2783
2784         /* Unbind any subordinate channels */
2785         while (txq-- != &dev->_tx[0]) {
2786                 if (txq->sb_dev)
2787                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2788         }
2789 }
2790
2791 void netdev_reset_tc(struct net_device *dev)
2792 {
2793 #ifdef CONFIG_XPS
2794         netif_reset_xps_queues_gt(dev, 0);
2795 #endif
2796         netdev_unbind_all_sb_channels(dev);
2797
2798         /* Reset TC configuration of device */
2799         dev->num_tc = 0;
2800         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2801         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2802 }
2803 EXPORT_SYMBOL(netdev_reset_tc);
2804
2805 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2806 {
2807         if (tc >= dev->num_tc)
2808                 return -EINVAL;
2809
2810 #ifdef CONFIG_XPS
2811         netif_reset_xps_queues(dev, offset, count);
2812 #endif
2813         dev->tc_to_txq[tc].count = count;
2814         dev->tc_to_txq[tc].offset = offset;
2815         return 0;
2816 }
2817 EXPORT_SYMBOL(netdev_set_tc_queue);
2818
2819 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2820 {
2821         if (num_tc > TC_MAX_QUEUE)
2822                 return -EINVAL;
2823
2824 #ifdef CONFIG_XPS
2825         netif_reset_xps_queues_gt(dev, 0);
2826 #endif
2827         netdev_unbind_all_sb_channels(dev);
2828
2829         dev->num_tc = num_tc;
2830         return 0;
2831 }
2832 EXPORT_SYMBOL(netdev_set_num_tc);
2833
2834 void netdev_unbind_sb_channel(struct net_device *dev,
2835                               struct net_device *sb_dev)
2836 {
2837         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2838
2839 #ifdef CONFIG_XPS
2840         netif_reset_xps_queues_gt(sb_dev, 0);
2841 #endif
2842         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2843         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2844
2845         while (txq-- != &dev->_tx[0]) {
2846                 if (txq->sb_dev == sb_dev)
2847                         txq->sb_dev = NULL;
2848         }
2849 }
2850 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2851
2852 int netdev_bind_sb_channel_queue(struct net_device *dev,
2853                                  struct net_device *sb_dev,
2854                                  u8 tc, u16 count, u16 offset)
2855 {
2856         /* Make certain the sb_dev and dev are already configured */
2857         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2858                 return -EINVAL;
2859
2860         /* We cannot hand out queues we don't have */
2861         if ((offset + count) > dev->real_num_tx_queues)
2862                 return -EINVAL;
2863
2864         /* Record the mapping */
2865         sb_dev->tc_to_txq[tc].count = count;
2866         sb_dev->tc_to_txq[tc].offset = offset;
2867
2868         /* Provide a way for Tx queue to find the tc_to_txq map or
2869          * XPS map for itself.
2870          */
2871         while (count--)
2872                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2873
2874         return 0;
2875 }
2876 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2877
2878 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2879 {
2880         /* Do not use a multiqueue device to represent a subordinate channel */
2881         if (netif_is_multiqueue(dev))
2882                 return -ENODEV;
2883
2884         /* We allow channels 1 - 32767 to be used for subordinate channels.
2885          * Channel 0 is meant to be "native" mode and used only to represent
2886          * the main root device. We allow writing 0 to reset the device back
2887          * to normal mode after being used as a subordinate channel.
2888          */
2889         if (channel > S16_MAX)
2890                 return -EINVAL;
2891
2892         dev->num_tc = -channel;
2893
2894         return 0;
2895 }
2896 EXPORT_SYMBOL(netdev_set_sb_channel);
2897
2898 /*
2899  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2900  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2901  */
2902 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2903 {
2904         bool disabling;
2905         int rc;
2906
2907         disabling = txq < dev->real_num_tx_queues;
2908
2909         if (txq < 1 || txq > dev->num_tx_queues)
2910                 return -EINVAL;
2911
2912         if (dev->reg_state == NETREG_REGISTERED ||
2913             dev->reg_state == NETREG_UNREGISTERING) {
2914                 ASSERT_RTNL();
2915
2916                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2917                                                   txq);
2918                 if (rc)
2919                         return rc;
2920
2921                 if (dev->num_tc)
2922                         netif_setup_tc(dev, txq);
2923
2924                 dev_qdisc_change_real_num_tx(dev, txq);
2925
2926                 dev->real_num_tx_queues = txq;
2927
2928                 if (disabling) {
2929                         synchronize_net();
2930                         qdisc_reset_all_tx_gt(dev, txq);
2931 #ifdef CONFIG_XPS
2932                         netif_reset_xps_queues_gt(dev, txq);
2933 #endif
2934                 }
2935         } else {
2936                 dev->real_num_tx_queues = txq;
2937         }
2938
2939         return 0;
2940 }
2941 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2942
2943 #ifdef CONFIG_SYSFS
2944 /**
2945  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2946  *      @dev: Network device
2947  *      @rxq: Actual number of RX queues
2948  *
2949  *      This must be called either with the rtnl_lock held or before
2950  *      registration of the net device.  Returns 0 on success, or a
2951  *      negative error code.  If called before registration, it always
2952  *      succeeds.
2953  */
2954 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2955 {
2956         int rc;
2957
2958         if (rxq < 1 || rxq > dev->num_rx_queues)
2959                 return -EINVAL;
2960
2961         if (dev->reg_state == NETREG_REGISTERED) {
2962                 ASSERT_RTNL();
2963
2964                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2965                                                   rxq);
2966                 if (rc)
2967                         return rc;
2968         }
2969
2970         dev->real_num_rx_queues = rxq;
2971         return 0;
2972 }
2973 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2974 #endif
2975
2976 /**
2977  *      netif_set_real_num_queues - set actual number of RX and TX queues used
2978  *      @dev: Network device
2979  *      @txq: Actual number of TX queues
2980  *      @rxq: Actual number of RX queues
2981  *
2982  *      Set the real number of both TX and RX queues.
2983  *      Does nothing if the number of queues is already correct.
2984  */
2985 int netif_set_real_num_queues(struct net_device *dev,
2986                               unsigned int txq, unsigned int rxq)
2987 {
2988         unsigned int old_rxq = dev->real_num_rx_queues;
2989         int err;
2990
2991         if (txq < 1 || txq > dev->num_tx_queues ||
2992             rxq < 1 || rxq > dev->num_rx_queues)
2993                 return -EINVAL;
2994
2995         /* Start from increases, so the error path only does decreases -
2996          * decreases can't fail.
2997          */
2998         if (rxq > dev->real_num_rx_queues) {
2999                 err = netif_set_real_num_rx_queues(dev, rxq);
3000                 if (err)
3001                         return err;
3002         }
3003         if (txq > dev->real_num_tx_queues) {
3004                 err = netif_set_real_num_tx_queues(dev, txq);
3005                 if (err)
3006                         goto undo_rx;
3007         }
3008         if (rxq < dev->real_num_rx_queues)
3009                 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3010         if (txq < dev->real_num_tx_queues)
3011                 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3012
3013         return 0;
3014 undo_rx:
3015         WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3016         return err;
3017 }
3018 EXPORT_SYMBOL(netif_set_real_num_queues);
3019
3020 /**
3021  * netif_get_num_default_rss_queues - default number of RSS queues
3022  *
3023  * This routine should set an upper limit on the number of RSS queues
3024  * used by default by multiqueue devices.
3025  */
3026 int netif_get_num_default_rss_queues(void)
3027 {
3028         return is_kdump_kernel() ?
3029                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3030 }
3031 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3032
3033 static void __netif_reschedule(struct Qdisc *q)
3034 {
3035         struct softnet_data *sd;
3036         unsigned long flags;
3037
3038         local_irq_save(flags);
3039         sd = this_cpu_ptr(&softnet_data);
3040         q->next_sched = NULL;
3041         *sd->output_queue_tailp = q;
3042         sd->output_queue_tailp = &q->next_sched;
3043         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3044         local_irq_restore(flags);
3045 }
3046
3047 void __netif_schedule(struct Qdisc *q)
3048 {
3049         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3050                 __netif_reschedule(q);
3051 }
3052 EXPORT_SYMBOL(__netif_schedule);
3053
3054 struct dev_kfree_skb_cb {
3055         enum skb_free_reason reason;
3056 };
3057
3058 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3059 {
3060         return (struct dev_kfree_skb_cb *)skb->cb;
3061 }
3062
3063 void netif_schedule_queue(struct netdev_queue *txq)
3064 {
3065         rcu_read_lock();
3066         if (!netif_xmit_stopped(txq)) {
3067                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3068
3069                 __netif_schedule(q);
3070         }
3071         rcu_read_unlock();
3072 }
3073 EXPORT_SYMBOL(netif_schedule_queue);
3074
3075 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3076 {
3077         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3078                 struct Qdisc *q;
3079
3080                 rcu_read_lock();
3081                 q = rcu_dereference(dev_queue->qdisc);
3082                 __netif_schedule(q);
3083                 rcu_read_unlock();
3084         }
3085 }
3086 EXPORT_SYMBOL(netif_tx_wake_queue);
3087
3088 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3089 {
3090         unsigned long flags;
3091
3092         if (unlikely(!skb))
3093                 return;
3094
3095         if (likely(refcount_read(&skb->users) == 1)) {
3096                 smp_rmb();
3097                 refcount_set(&skb->users, 0);
3098         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3099                 return;
3100         }
3101         get_kfree_skb_cb(skb)->reason = reason;
3102         local_irq_save(flags);
3103         skb->next = __this_cpu_read(softnet_data.completion_queue);
3104         __this_cpu_write(softnet_data.completion_queue, skb);
3105         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3106         local_irq_restore(flags);
3107 }
3108 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3109
3110 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3111 {
3112         if (in_hardirq() || irqs_disabled())
3113                 __dev_kfree_skb_irq(skb, reason);
3114         else
3115                 dev_kfree_skb(skb);
3116 }
3117 EXPORT_SYMBOL(__dev_kfree_skb_any);
3118
3119
3120 /**
3121  * netif_device_detach - mark device as removed
3122  * @dev: network device
3123  *
3124  * Mark device as removed from system and therefore no longer available.
3125  */
3126 void netif_device_detach(struct net_device *dev)
3127 {
3128         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3129             netif_running(dev)) {
3130                 netif_tx_stop_all_queues(dev);
3131         }
3132 }
3133 EXPORT_SYMBOL(netif_device_detach);
3134
3135 /**
3136  * netif_device_attach - mark device as attached
3137  * @dev: network device
3138  *
3139  * Mark device as attached from system and restart if needed.
3140  */
3141 void netif_device_attach(struct net_device *dev)
3142 {
3143         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3144             netif_running(dev)) {
3145                 netif_tx_wake_all_queues(dev);
3146                 __netdev_watchdog_up(dev);
3147         }
3148 }
3149 EXPORT_SYMBOL(netif_device_attach);
3150
3151 /*
3152  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3153  * to be used as a distribution range.
3154  */
3155 static u16 skb_tx_hash(const struct net_device *dev,
3156                        const struct net_device *sb_dev,
3157                        struct sk_buff *skb)
3158 {
3159         u32 hash;
3160         u16 qoffset = 0;
3161         u16 qcount = dev->real_num_tx_queues;
3162
3163         if (dev->num_tc) {
3164                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3165
3166                 qoffset = sb_dev->tc_to_txq[tc].offset;
3167                 qcount = sb_dev->tc_to_txq[tc].count;
3168                 if (unlikely(!qcount)) {
3169                         net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3170                                              sb_dev->name, qoffset, tc);
3171                         qoffset = 0;
3172                         qcount = dev->real_num_tx_queues;
3173                 }
3174         }
3175
3176         if (skb_rx_queue_recorded(skb)) {
3177                 hash = skb_get_rx_queue(skb);
3178                 if (hash >= qoffset)
3179                         hash -= qoffset;
3180                 while (unlikely(hash >= qcount))
3181                         hash -= qcount;
3182                 return hash + qoffset;
3183         }
3184
3185         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3186 }
3187
3188 static void skb_warn_bad_offload(const struct sk_buff *skb)
3189 {
3190         static const netdev_features_t null_features;
3191         struct net_device *dev = skb->dev;
3192         const char *name = "";
3193
3194         if (!net_ratelimit())
3195                 return;
3196
3197         if (dev) {
3198                 if (dev->dev.parent)
3199                         name = dev_driver_string(dev->dev.parent);
3200                 else
3201                         name = netdev_name(dev);
3202         }
3203         skb_dump(KERN_WARNING, skb, false);
3204         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3205              name, dev ? &dev->features : &null_features,
3206              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3207 }
3208
3209 /*
3210  * Invalidate hardware checksum when packet is to be mangled, and
3211  * complete checksum manually on outgoing path.
3212  */
3213 int skb_checksum_help(struct sk_buff *skb)
3214 {
3215         __wsum csum;
3216         int ret = 0, offset;
3217
3218         if (skb->ip_summed == CHECKSUM_COMPLETE)
3219                 goto out_set_summed;
3220
3221         if (unlikely(skb_is_gso(skb))) {
3222                 skb_warn_bad_offload(skb);
3223                 return -EINVAL;
3224         }
3225
3226         /* Before computing a checksum, we should make sure no frag could
3227          * be modified by an external entity : checksum could be wrong.
3228          */
3229         if (skb_has_shared_frag(skb)) {
3230                 ret = __skb_linearize(skb);
3231                 if (ret)
3232                         goto out;
3233         }
3234
3235         offset = skb_checksum_start_offset(skb);
3236         BUG_ON(offset >= skb_headlen(skb));
3237         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3238
3239         offset += skb->csum_offset;
3240         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3241
3242         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3243         if (ret)
3244                 goto out;
3245
3246         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3247 out_set_summed:
3248         skb->ip_summed = CHECKSUM_NONE;
3249 out:
3250         return ret;
3251 }
3252 EXPORT_SYMBOL(skb_checksum_help);
3253
3254 int skb_crc32c_csum_help(struct sk_buff *skb)
3255 {
3256         __le32 crc32c_csum;
3257         int ret = 0, offset, start;
3258
3259         if (skb->ip_summed != CHECKSUM_PARTIAL)
3260                 goto out;
3261
3262         if (unlikely(skb_is_gso(skb)))
3263                 goto out;
3264
3265         /* Before computing a checksum, we should make sure no frag could
3266          * be modified by an external entity : checksum could be wrong.
3267          */
3268         if (unlikely(skb_has_shared_frag(skb))) {
3269                 ret = __skb_linearize(skb);
3270                 if (ret)
3271                         goto out;
3272         }
3273         start = skb_checksum_start_offset(skb);
3274         offset = start + offsetof(struct sctphdr, checksum);
3275         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3276                 ret = -EINVAL;
3277                 goto out;
3278         }
3279
3280         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3281         if (ret)
3282                 goto out;
3283
3284         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3285                                                   skb->len - start, ~(__u32)0,
3286                                                   crc32c_csum_stub));
3287         *(__le32 *)(skb->data + offset) = crc32c_csum;
3288         skb->ip_summed = CHECKSUM_NONE;
3289         skb->csum_not_inet = 0;
3290 out:
3291         return ret;
3292 }
3293
3294 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3295 {
3296         __be16 type = skb->protocol;
3297
3298         /* Tunnel gso handlers can set protocol to ethernet. */
3299         if (type == htons(ETH_P_TEB)) {
3300                 struct ethhdr *eth;
3301
3302                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3303                         return 0;
3304
3305                 eth = (struct ethhdr *)skb->data;
3306                 type = eth->h_proto;
3307         }
3308
3309         return __vlan_get_protocol(skb, type, depth);
3310 }
3311
3312 /**
3313  *      skb_mac_gso_segment - mac layer segmentation handler.
3314  *      @skb: buffer to segment
3315  *      @features: features for the output path (see dev->features)
3316  */
3317 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3318                                     netdev_features_t features)
3319 {
3320         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3321         struct packet_offload *ptype;
3322         int vlan_depth = skb->mac_len;
3323         __be16 type = skb_network_protocol(skb, &vlan_depth);
3324
3325         if (unlikely(!type))
3326                 return ERR_PTR(-EINVAL);
3327
3328         __skb_pull(skb, vlan_depth);
3329
3330         rcu_read_lock();
3331         list_for_each_entry_rcu(ptype, &offload_base, list) {
3332                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3333                         segs = ptype->callbacks.gso_segment(skb, features);
3334                         break;
3335                 }
3336         }
3337         rcu_read_unlock();
3338
3339         __skb_push(skb, skb->data - skb_mac_header(skb));
3340
3341         return segs;
3342 }
3343 EXPORT_SYMBOL(skb_mac_gso_segment);
3344
3345
3346 /* openvswitch calls this on rx path, so we need a different check.
3347  */
3348 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3349 {
3350         if (tx_path)
3351                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3352                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3353
3354         return skb->ip_summed == CHECKSUM_NONE;
3355 }
3356
3357 /**
3358  *      __skb_gso_segment - Perform segmentation on skb.
3359  *      @skb: buffer to segment
3360  *      @features: features for the output path (see dev->features)
3361  *      @tx_path: whether it is called in TX path
3362  *
3363  *      This function segments the given skb and returns a list of segments.
3364  *
3365  *      It may return NULL if the skb requires no segmentation.  This is
3366  *      only possible when GSO is used for verifying header integrity.
3367  *
3368  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3369  */
3370 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3371                                   netdev_features_t features, bool tx_path)
3372 {
3373         struct sk_buff *segs;
3374
3375         if (unlikely(skb_needs_check(skb, tx_path))) {
3376                 int err;
3377
3378                 /* We're going to init ->check field in TCP or UDP header */
3379                 err = skb_cow_head(skb, 0);
3380                 if (err < 0)
3381                         return ERR_PTR(err);
3382         }
3383
3384         /* Only report GSO partial support if it will enable us to
3385          * support segmentation on this frame without needing additional
3386          * work.
3387          */
3388         if (features & NETIF_F_GSO_PARTIAL) {
3389                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3390                 struct net_device *dev = skb->dev;
3391
3392                 partial_features |= dev->features & dev->gso_partial_features;
3393                 if (!skb_gso_ok(skb, features | partial_features))
3394                         features &= ~NETIF_F_GSO_PARTIAL;
3395         }
3396
3397         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3398                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3399
3400         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3401         SKB_GSO_CB(skb)->encap_level = 0;
3402
3403         skb_reset_mac_header(skb);
3404         skb_reset_mac_len(skb);
3405
3406         segs = skb_mac_gso_segment(skb, features);
3407
3408         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3409                 skb_warn_bad_offload(skb);
3410
3411         return segs;
3412 }
3413 EXPORT_SYMBOL(__skb_gso_segment);
3414
3415 /* Take action when hardware reception checksum errors are detected. */
3416 #ifdef CONFIG_BUG
3417 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3418 {
3419         pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3420         skb_dump(KERN_ERR, skb, true);
3421         dump_stack();
3422 }
3423
3424 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3425 {
3426         DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3427 }
3428 EXPORT_SYMBOL(netdev_rx_csum_fault);
3429 #endif
3430
3431 /* XXX: check that highmem exists at all on the given machine. */
3432 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3433 {
3434 #ifdef CONFIG_HIGHMEM
3435         int i;
3436
3437         if (!(dev->features & NETIF_F_HIGHDMA)) {
3438                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3439                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3440
3441                         if (PageHighMem(skb_frag_page(frag)))
3442                                 return 1;
3443                 }
3444         }
3445 #endif
3446         return 0;
3447 }
3448
3449 /* If MPLS offload request, verify we are testing hardware MPLS features
3450  * instead of standard features for the netdev.
3451  */
3452 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3453 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3454                                            netdev_features_t features,
3455                                            __be16 type)
3456 {
3457         if (eth_p_mpls(type))
3458                 features &= skb->dev->mpls_features;
3459
3460         return features;
3461 }
3462 #else
3463 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3464                                            netdev_features_t features,
3465                                            __be16 type)
3466 {
3467         return features;
3468 }
3469 #endif
3470
3471 static netdev_features_t harmonize_features(struct sk_buff *skb,
3472         netdev_features_t features)
3473 {
3474         __be16 type;
3475
3476         type = skb_network_protocol(skb, NULL);
3477         features = net_mpls_features(skb, features, type);
3478
3479         if (skb->ip_summed != CHECKSUM_NONE &&
3480             !can_checksum_protocol(features, type)) {
3481                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3482         }
3483         if (illegal_highdma(skb->dev, skb))
3484                 features &= ~NETIF_F_SG;
3485
3486         return features;
3487 }
3488
3489 netdev_features_t passthru_features_check(struct sk_buff *skb,
3490                                           struct net_device *dev,
3491                                           netdev_features_t features)
3492 {
3493         return features;
3494 }
3495 EXPORT_SYMBOL(passthru_features_check);
3496
3497 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3498                                              struct net_device *dev,
3499                                              netdev_features_t features)
3500 {
3501         return vlan_features_check(skb, features);
3502 }
3503
3504 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3505                                             struct net_device *dev,
3506                                             netdev_features_t features)
3507 {
3508         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3509
3510         if (gso_segs > dev->gso_max_segs)
3511                 return features & ~NETIF_F_GSO_MASK;
3512
3513         if (!skb_shinfo(skb)->gso_type) {
3514                 skb_warn_bad_offload(skb);
3515                 return features & ~NETIF_F_GSO_MASK;
3516         }
3517
3518         /* Support for GSO partial features requires software
3519          * intervention before we can actually process the packets
3520          * so we need to strip support for any partial features now
3521          * and we can pull them back in after we have partially
3522          * segmented the frame.
3523          */
3524         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3525                 features &= ~dev->gso_partial_features;
3526
3527         /* Make sure to clear the IPv4 ID mangling feature if the
3528          * IPv4 header has the potential to be fragmented.
3529          */
3530         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3531                 struct iphdr *iph = skb->encapsulation ?
3532                                     inner_ip_hdr(skb) : ip_hdr(skb);
3533
3534                 if (!(iph->frag_off & htons(IP_DF)))
3535                         features &= ~NETIF_F_TSO_MANGLEID;
3536         }
3537
3538         return features;
3539 }
3540
3541 netdev_features_t netif_skb_features(struct sk_buff *skb)
3542 {
3543         struct net_device *dev = skb->dev;
3544         netdev_features_t features = dev->features;
3545
3546         if (skb_is_gso(skb))
3547                 features = gso_features_check(skb, dev, features);
3548
3549         /* If encapsulation offload request, verify we are testing
3550          * hardware encapsulation features instead of standard
3551          * features for the netdev
3552          */
3553         if (skb->encapsulation)
3554                 features &= dev->hw_enc_features;
3555
3556         if (skb_vlan_tagged(skb))
3557                 features = netdev_intersect_features(features,
3558                                                      dev->vlan_features |
3559                                                      NETIF_F_HW_VLAN_CTAG_TX |
3560                                                      NETIF_F_HW_VLAN_STAG_TX);
3561
3562         if (dev->netdev_ops->ndo_features_check)
3563                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3564                                                                 features);
3565         else
3566                 features &= dflt_features_check(skb, dev, features);
3567
3568         return harmonize_features(skb, features);
3569 }
3570 EXPORT_SYMBOL(netif_skb_features);
3571
3572 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3573                     struct netdev_queue *txq, bool more)
3574 {
3575         unsigned int len;
3576         int rc;
3577
3578         if (dev_nit_active(dev))
3579                 dev_queue_xmit_nit(skb, dev);
3580
3581         len = skb->len;
3582         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3583         trace_net_dev_start_xmit(skb, dev);
3584         rc = netdev_start_xmit(skb, dev, txq, more);
3585         trace_net_dev_xmit(skb, rc, dev, len);
3586
3587         return rc;
3588 }
3589
3590 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3591                                     struct netdev_queue *txq, int *ret)
3592 {
3593         struct sk_buff *skb = first;
3594         int rc = NETDEV_TX_OK;
3595
3596         while (skb) {
3597                 struct sk_buff *next = skb->next;
3598
3599                 skb_mark_not_on_list(skb);
3600                 rc = xmit_one(skb, dev, txq, next != NULL);
3601                 if (unlikely(!dev_xmit_complete(rc))) {
3602                         skb->next = next;
3603                         goto out;
3604                 }
3605
3606                 skb = next;
3607                 if (netif_tx_queue_stopped(txq) && skb) {
3608                         rc = NETDEV_TX_BUSY;
3609                         break;
3610                 }
3611         }
3612
3613 out:
3614         *ret = rc;
3615         return skb;
3616 }
3617
3618 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3619                                           netdev_features_t features)
3620 {
3621         if (skb_vlan_tag_present(skb) &&
3622             !vlan_hw_offload_capable(features, skb->vlan_proto))
3623                 skb = __vlan_hwaccel_push_inside(skb);
3624         return skb;
3625 }
3626
3627 int skb_csum_hwoffload_help(struct sk_buff *skb,
3628                             const netdev_features_t features)
3629 {
3630         if (unlikely(skb_csum_is_sctp(skb)))
3631                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3632                         skb_crc32c_csum_help(skb);
3633
3634         if (features & NETIF_F_HW_CSUM)
3635                 return 0;
3636
3637         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3638                 switch (skb->csum_offset) {
3639                 case offsetof(struct tcphdr, check):
3640                 case offsetof(struct udphdr, check):
3641                         return 0;
3642                 }
3643         }
3644
3645         return skb_checksum_help(skb);
3646 }
3647 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3648
3649 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3650 {
3651         netdev_features_t features;
3652
3653         features = netif_skb_features(skb);
3654         skb = validate_xmit_vlan(skb, features);
3655         if (unlikely(!skb))
3656                 goto out_null;
3657
3658         skb = sk_validate_xmit_skb(skb, dev);
3659         if (unlikely(!skb))
3660                 goto out_null;
3661
3662         if (netif_needs_gso(skb, features)) {
3663                 struct sk_buff *segs;
3664
3665                 segs = skb_gso_segment(skb, features);
3666                 if (IS_ERR(segs)) {
3667                         goto out_kfree_skb;
3668                 } else if (segs) {
3669                         consume_skb(skb);
3670                         skb = segs;
3671                 }
3672         } else {
3673                 if (skb_needs_linearize(skb, features) &&
3674                     __skb_linearize(skb))
3675                         goto out_kfree_skb;
3676
3677                 /* If packet is not checksummed and device does not
3678                  * support checksumming for this protocol, complete
3679                  * checksumming here.
3680                  */
3681                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3682                         if (skb->encapsulation)
3683                                 skb_set_inner_transport_header(skb,
3684                                                                skb_checksum_start_offset(skb));
3685                         else
3686                                 skb_set_transport_header(skb,
3687                                                          skb_checksum_start_offset(skb));
3688                         if (skb_csum_hwoffload_help(skb, features))
3689                                 goto out_kfree_skb;
3690                 }
3691         }
3692
3693         skb = validate_xmit_xfrm(skb, features, again);
3694
3695         return skb;
3696
3697 out_kfree_skb:
3698         kfree_skb(skb);
3699 out_null:
3700         atomic_long_inc(&dev->tx_dropped);
3701         return NULL;
3702 }
3703
3704 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3705 {
3706         struct sk_buff *next, *head = NULL, *tail;
3707
3708         for (; skb != NULL; skb = next) {
3709                 next = skb->next;
3710                 skb_mark_not_on_list(skb);
3711
3712                 /* in case skb wont be segmented, point to itself */
3713                 skb->prev = skb;
3714
3715                 skb = validate_xmit_skb(skb, dev, again);
3716                 if (!skb)
3717                         continue;
3718
3719                 if (!head)
3720                         head = skb;
3721                 else
3722                         tail->next = skb;
3723                 /* If skb was segmented, skb->prev points to
3724                  * the last segment. If not, it still contains skb.
3725                  */
3726                 tail = skb->prev;
3727         }
3728         return head;
3729 }
3730 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3731
3732 static void qdisc_pkt_len_init(struct sk_buff *skb)
3733 {
3734         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3735
3736         qdisc_skb_cb(skb)->pkt_len = skb->len;
3737
3738         /* To get more precise estimation of bytes sent on wire,
3739          * we add to pkt_len the headers size of all segments
3740          */
3741         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3742                 unsigned int hdr_len;
3743                 u16 gso_segs = shinfo->gso_segs;
3744
3745                 /* mac layer + network layer */
3746                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3747
3748                 /* + transport layer */
3749                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3750                         const struct tcphdr *th;
3751                         struct tcphdr _tcphdr;
3752
3753                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3754                                                 sizeof(_tcphdr), &_tcphdr);
3755                         if (likely(th))
3756                                 hdr_len += __tcp_hdrlen(th);
3757                 } else {
3758                         struct udphdr _udphdr;
3759
3760                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3761                                                sizeof(_udphdr), &_udphdr))
3762                                 hdr_len += sizeof(struct udphdr);
3763                 }
3764
3765                 if (shinfo->gso_type & SKB_GSO_DODGY)
3766                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3767                                                 shinfo->gso_size);
3768
3769                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3770         }
3771 }
3772
3773 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3774                              struct sk_buff **to_free,
3775                              struct netdev_queue *txq)
3776 {
3777         int rc;
3778
3779         rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3780         if (rc == NET_XMIT_SUCCESS)
3781                 trace_qdisc_enqueue(q, txq, skb);
3782         return rc;
3783 }
3784
3785 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3786                                  struct net_device *dev,
3787                                  struct netdev_queue *txq)
3788 {
3789         spinlock_t *root_lock = qdisc_lock(q);
3790         struct sk_buff *to_free = NULL;
3791         bool contended;
3792         int rc;
3793
3794         qdisc_calculate_pkt_len(skb, q);
3795
3796         if (q->flags & TCQ_F_NOLOCK) {
3797                 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3798                     qdisc_run_begin(q)) {
3799                         /* Retest nolock_qdisc_is_empty() within the protection
3800                          * of q->seqlock to protect from racing with requeuing.
3801                          */
3802                         if (unlikely(!nolock_qdisc_is_empty(q))) {
3803                                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3804                                 __qdisc_run(q);
3805                                 qdisc_run_end(q);
3806
3807                                 goto no_lock_out;
3808                         }
3809
3810                         qdisc_bstats_cpu_update(q, skb);
3811                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3812                             !nolock_qdisc_is_empty(q))
3813                                 __qdisc_run(q);
3814
3815                         qdisc_run_end(q);
3816                         return NET_XMIT_SUCCESS;
3817                 }
3818
3819                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3820                 qdisc_run(q);
3821
3822 no_lock_out:
3823                 if (unlikely(to_free))
3824                         kfree_skb_list(to_free);
3825                 return rc;
3826         }
3827
3828         /*
3829          * Heuristic to force contended enqueues to serialize on a
3830          * separate lock before trying to get qdisc main lock.
3831          * This permits qdisc->running owner to get the lock more
3832          * often and dequeue packets faster.
3833          */
3834         contended = qdisc_is_running(q);
3835         if (unlikely(contended))
3836                 spin_lock(&q->busylock);
3837
3838         spin_lock(root_lock);
3839         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3840                 __qdisc_drop(skb, &to_free);
3841                 rc = NET_XMIT_DROP;
3842         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3843                    qdisc_run_begin(q)) {
3844                 /*
3845                  * This is a work-conserving queue; there are no old skbs
3846                  * waiting to be sent out; and the qdisc is not running -
3847                  * xmit the skb directly.
3848                  */
3849
3850                 qdisc_bstats_update(q, skb);
3851
3852                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3853                         if (unlikely(contended)) {
3854                                 spin_unlock(&q->busylock);
3855                                 contended = false;
3856                         }
3857                         __qdisc_run(q);
3858                 }
3859
3860                 qdisc_run_end(q);
3861                 rc = NET_XMIT_SUCCESS;
3862         } else {
3863                 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3864                 if (qdisc_run_begin(q)) {
3865                         if (unlikely(contended)) {
3866                                 spin_unlock(&q->busylock);
3867                                 contended = false;
3868                         }
3869                         __qdisc_run(q);
3870                         qdisc_run_end(q);
3871                 }
3872         }
3873         spin_unlock(root_lock);
3874         if (unlikely(to_free))
3875                 kfree_skb_list(to_free);
3876         if (unlikely(contended))
3877                 spin_unlock(&q->busylock);
3878         return rc;
3879 }
3880
3881 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3882 static void skb_update_prio(struct sk_buff *skb)
3883 {
3884         const struct netprio_map *map;
3885         const struct sock *sk;
3886         unsigned int prioidx;
3887
3888         if (skb->priority)
3889                 return;
3890         map = rcu_dereference_bh(skb->dev->priomap);
3891         if (!map)
3892                 return;
3893         sk = skb_to_full_sk(skb);
3894         if (!sk)
3895                 return;
3896
3897         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3898
3899         if (prioidx < map->priomap_len)
3900                 skb->priority = map->priomap[prioidx];
3901 }
3902 #else
3903 #define skb_update_prio(skb)
3904 #endif
3905
3906 /**
3907  *      dev_loopback_xmit - loop back @skb
3908  *      @net: network namespace this loopback is happening in
3909  *      @sk:  sk needed to be a netfilter okfn
3910  *      @skb: buffer to transmit
3911  */
3912 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3913 {
3914         skb_reset_mac_header(skb);
3915         __skb_pull(skb, skb_network_offset(skb));
3916         skb->pkt_type = PACKET_LOOPBACK;
3917         if (skb->ip_summed == CHECKSUM_NONE)
3918                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3919         WARN_ON(!skb_dst(skb));
3920         skb_dst_force(skb);
3921         netif_rx_ni(skb);
3922         return 0;
3923 }
3924 EXPORT_SYMBOL(dev_loopback_xmit);
3925
3926 #ifdef CONFIG_NET_EGRESS
3927 static struct sk_buff *
3928 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3929 {
3930         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3931         struct tcf_result cl_res;
3932
3933         if (!miniq)
3934                 return skb;
3935
3936         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3937         tc_skb_cb(skb)->mru = 0;
3938         tc_skb_cb(skb)->post_ct = false;
3939         mini_qdisc_bstats_cpu_update(miniq, skb);
3940
3941         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3942         case TC_ACT_OK:
3943         case TC_ACT_RECLASSIFY:
3944                 skb->tc_index = TC_H_MIN(cl_res.classid);
3945                 break;
3946         case TC_ACT_SHOT:
3947                 mini_qdisc_qstats_cpu_drop(miniq);
3948                 *ret = NET_XMIT_DROP;
3949                 kfree_skb(skb);
3950                 return NULL;
3951         case TC_ACT_STOLEN:
3952         case TC_ACT_QUEUED:
3953         case TC_ACT_TRAP:
3954                 *ret = NET_XMIT_SUCCESS;
3955                 consume_skb(skb);
3956                 return NULL;
3957         case TC_ACT_REDIRECT:
3958                 /* No need to push/pop skb's mac_header here on egress! */
3959                 skb_do_redirect(skb);
3960                 *ret = NET_XMIT_SUCCESS;
3961                 return NULL;
3962         default:
3963                 break;
3964         }
3965
3966         return skb;
3967 }
3968 #endif /* CONFIG_NET_EGRESS */
3969
3970 #ifdef CONFIG_XPS
3971 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3972                                struct xps_dev_maps *dev_maps, unsigned int tci)
3973 {
3974         int tc = netdev_get_prio_tc_map(dev, skb->priority);
3975         struct xps_map *map;
3976         int queue_index = -1;
3977
3978         if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3979                 return queue_index;
3980
3981         tci *= dev_maps->num_tc;
3982         tci += tc;
3983
3984         map = rcu_dereference(dev_maps->attr_map[tci]);
3985         if (map) {
3986                 if (map->len == 1)
3987                         queue_index = map->queues[0];
3988                 else
3989                         queue_index = map->queues[reciprocal_scale(
3990                                                 skb_get_hash(skb), map->len)];
3991                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3992                         queue_index = -1;
3993         }
3994         return queue_index;
3995 }
3996 #endif
3997
3998 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3999                          struct sk_buff *skb)
4000 {
4001 #ifdef CONFIG_XPS
4002         struct xps_dev_maps *dev_maps;
4003         struct sock *sk = skb->sk;
4004         int queue_index = -1;
4005
4006         if (!static_key_false(&xps_needed))
4007                 return -1;
4008
4009         rcu_read_lock();
4010         if (!static_key_false(&xps_rxqs_needed))
4011                 goto get_cpus_map;
4012
4013         dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4014         if (dev_maps) {
4015                 int tci = sk_rx_queue_get(sk);
4016
4017                 if (tci >= 0)
4018                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4019                                                           tci);
4020         }
4021
4022 get_cpus_map:
4023         if (queue_index < 0) {
4024                 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4025                 if (dev_maps) {
4026                         unsigned int tci = skb->sender_cpu - 1;
4027
4028                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4029                                                           tci);
4030                 }
4031         }
4032         rcu_read_unlock();
4033
4034         return queue_index;
4035 #else
4036         return -1;
4037 #endif
4038 }
4039
4040 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4041                      struct net_device *sb_dev)
4042 {
4043         return 0;
4044 }
4045 EXPORT_SYMBOL(dev_pick_tx_zero);
4046
4047 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4048                        struct net_device *sb_dev)
4049 {
4050         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4051 }
4052 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4053
4054 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4055                      struct net_device *sb_dev)
4056 {
4057         struct sock *sk = skb->sk;
4058         int queue_index = sk_tx_queue_get(sk);
4059
4060         sb_dev = sb_dev ? : dev;
4061
4062         if (queue_index < 0 || skb->ooo_okay ||
4063             queue_index >= dev->real_num_tx_queues) {
4064                 int new_index = get_xps_queue(dev, sb_dev, skb);
4065
4066                 if (new_index < 0)
4067                         new_index = skb_tx_hash(dev, sb_dev, skb);
4068
4069                 if (queue_index != new_index && sk &&
4070                     sk_fullsock(sk) &&
4071                     rcu_access_pointer(sk->sk_dst_cache))
4072                         sk_tx_queue_set(sk, new_index);
4073
4074                 queue_index = new_index;
4075         }
4076
4077         return queue_index;
4078 }
4079 EXPORT_SYMBOL(netdev_pick_tx);
4080
4081 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4082                                          struct sk_buff *skb,
4083                                          struct net_device *sb_dev)
4084 {
4085         int queue_index = 0;
4086
4087 #ifdef CONFIG_XPS
4088         u32 sender_cpu = skb->sender_cpu - 1;
4089
4090         if (sender_cpu >= (u32)NR_CPUS)
4091                 skb->sender_cpu = raw_smp_processor_id() + 1;
4092 #endif
4093
4094         if (dev->real_num_tx_queues != 1) {
4095                 const struct net_device_ops *ops = dev->netdev_ops;
4096
4097                 if (ops->ndo_select_queue)
4098                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4099                 else
4100                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4101
4102                 queue_index = netdev_cap_txqueue(dev, queue_index);
4103         }
4104
4105         skb_set_queue_mapping(skb, queue_index);
4106         return netdev_get_tx_queue(dev, queue_index);
4107 }
4108
4109 /**
4110  *      __dev_queue_xmit - transmit a buffer
4111  *      @skb: buffer to transmit
4112  *      @sb_dev: suboordinate device used for L2 forwarding offload
4113  *
4114  *      Queue a buffer for transmission to a network device. The caller must
4115  *      have set the device and priority and built the buffer before calling
4116  *      this function. The function can be called from an interrupt.
4117  *
4118  *      A negative errno code is returned on a failure. A success does not
4119  *      guarantee the frame will be transmitted as it may be dropped due
4120  *      to congestion or traffic shaping.
4121  *
4122  * -----------------------------------------------------------------------------------
4123  *      I notice this method can also return errors from the queue disciplines,
4124  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4125  *      be positive.
4126  *
4127  *      Regardless of the return value, the skb is consumed, so it is currently
4128  *      difficult to retry a send to this method.  (You can bump the ref count
4129  *      before sending to hold a reference for retry if you are careful.)
4130  *
4131  *      When calling this method, interrupts MUST be enabled.  This is because
4132  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4133  *          --BLG
4134  */
4135 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4136 {
4137         struct net_device *dev = skb->dev;
4138         struct netdev_queue *txq;
4139         struct Qdisc *q;
4140         int rc = -ENOMEM;
4141         bool again = false;
4142
4143         skb_reset_mac_header(skb);
4144
4145         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4146                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4147
4148         /* Disable soft irqs for various locks below. Also
4149          * stops preemption for RCU.
4150          */
4151         rcu_read_lock_bh();
4152
4153         skb_update_prio(skb);
4154
4155         qdisc_pkt_len_init(skb);
4156 #ifdef CONFIG_NET_CLS_ACT
4157         skb->tc_at_ingress = 0;
4158 # ifdef CONFIG_NET_EGRESS
4159         if (static_branch_unlikely(&egress_needed_key)) {
4160                 skb = sch_handle_egress(skb, &rc, dev);
4161                 if (!skb)
4162                         goto out;
4163         }
4164 # endif
4165 #endif
4166         /* If device/qdisc don't need skb->dst, release it right now while
4167          * its hot in this cpu cache.
4168          */
4169         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4170                 skb_dst_drop(skb);
4171         else
4172                 skb_dst_force(skb);
4173
4174         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4175         q = rcu_dereference_bh(txq->qdisc);
4176
4177         trace_net_dev_queue(skb);
4178         if (q->enqueue) {
4179                 rc = __dev_xmit_skb(skb, q, dev, txq);
4180                 goto out;
4181         }
4182
4183         /* The device has no queue. Common case for software devices:
4184          * loopback, all the sorts of tunnels...
4185
4186          * Really, it is unlikely that netif_tx_lock protection is necessary
4187          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4188          * counters.)
4189          * However, it is possible, that they rely on protection
4190          * made by us here.
4191
4192          * Check this and shot the lock. It is not prone from deadlocks.
4193          *Either shot noqueue qdisc, it is even simpler 8)
4194          */
4195         if (dev->flags & IFF_UP) {
4196                 int cpu = smp_processor_id(); /* ok because BHs are off */
4197
4198                 /* Other cpus might concurrently change txq->xmit_lock_owner
4199                  * to -1 or to their cpu id, but not to our id.
4200                  */
4201                 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4202                         if (dev_xmit_recursion())
4203                                 goto recursion_alert;
4204
4205                         skb = validate_xmit_skb(skb, dev, &again);
4206                         if (!skb)
4207                                 goto out;
4208
4209                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4210                         HARD_TX_LOCK(dev, txq, cpu);
4211
4212                         if (!netif_xmit_stopped(txq)) {
4213                                 dev_xmit_recursion_inc();
4214                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4215                                 dev_xmit_recursion_dec();
4216                                 if (dev_xmit_complete(rc)) {
4217                                         HARD_TX_UNLOCK(dev, txq);
4218                                         goto out;
4219                                 }
4220                         }
4221                         HARD_TX_UNLOCK(dev, txq);
4222                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4223                                              dev->name);
4224                 } else {
4225                         /* Recursion is detected! It is possible,
4226                          * unfortunately
4227                          */
4228 recursion_alert:
4229                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4230                                              dev->name);
4231                 }
4232         }
4233
4234         rc = -ENETDOWN;
4235         rcu_read_unlock_bh();
4236
4237         atomic_long_inc(&dev->tx_dropped);
4238         kfree_skb_list(skb);
4239         return rc;
4240 out:
4241         rcu_read_unlock_bh();
4242         return rc;
4243 }
4244
4245 int dev_queue_xmit(struct sk_buff *skb)
4246 {
4247         return __dev_queue_xmit(skb, NULL);
4248 }
4249 EXPORT_SYMBOL(dev_queue_xmit);
4250
4251 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4252 {
4253         return __dev_queue_xmit(skb, sb_dev);
4254 }
4255 EXPORT_SYMBOL(dev_queue_xmit_accel);
4256
4257 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4258 {
4259         struct net_device *dev = skb->dev;
4260         struct sk_buff *orig_skb = skb;
4261         struct netdev_queue *txq;
4262         int ret = NETDEV_TX_BUSY;
4263         bool again = false;
4264
4265         if (unlikely(!netif_running(dev) ||
4266                      !netif_carrier_ok(dev)))
4267                 goto drop;
4268
4269         skb = validate_xmit_skb_list(skb, dev, &again);
4270         if (skb != orig_skb)
4271                 goto drop;
4272
4273         skb_set_queue_mapping(skb, queue_id);
4274         txq = skb_get_tx_queue(dev, skb);
4275         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4276
4277         local_bh_disable();
4278
4279         dev_xmit_recursion_inc();
4280         HARD_TX_LOCK(dev, txq, smp_processor_id());
4281         if (!netif_xmit_frozen_or_drv_stopped(txq))
4282                 ret = netdev_start_xmit(skb, dev, txq, false);
4283         HARD_TX_UNLOCK(dev, txq);
4284         dev_xmit_recursion_dec();
4285
4286         local_bh_enable();
4287         return ret;
4288 drop:
4289         atomic_long_inc(&dev->tx_dropped);
4290         kfree_skb_list(skb);
4291         return NET_XMIT_DROP;
4292 }
4293 EXPORT_SYMBOL(__dev_direct_xmit);
4294
4295 /*************************************************************************
4296  *                      Receiver routines
4297  *************************************************************************/
4298
4299 int netdev_max_backlog __read_mostly = 1000;
4300 EXPORT_SYMBOL(netdev_max_backlog);
4301
4302 int netdev_tstamp_prequeue __read_mostly = 1;
4303 int netdev_budget __read_mostly = 300;
4304 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4305 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4306 int weight_p __read_mostly = 64;           /* old backlog weight */
4307 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4308 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4309 int dev_rx_weight __read_mostly = 64;
4310 int dev_tx_weight __read_mostly = 64;
4311 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4312 int gro_normal_batch __read_mostly = 8;
4313
4314 /* Called with irq disabled */
4315 static inline void ____napi_schedule(struct softnet_data *sd,
4316                                      struct napi_struct *napi)
4317 {
4318         struct task_struct *thread;
4319
4320         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4321                 /* Paired with smp_mb__before_atomic() in
4322                  * napi_enable()/dev_set_threaded().
4323                  * Use READ_ONCE() to guarantee a complete
4324                  * read on napi->thread. Only call
4325                  * wake_up_process() when it's not NULL.
4326                  */
4327                 thread = READ_ONCE(napi->thread);
4328                 if (thread) {
4329                         /* Avoid doing set_bit() if the thread is in
4330                          * INTERRUPTIBLE state, cause napi_thread_wait()
4331                          * makes sure to proceed with napi polling
4332                          * if the thread is explicitly woken from here.
4333                          */
4334                         if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4335                                 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4336                         wake_up_process(thread);
4337                         return;
4338                 }
4339         }
4340
4341         list_add_tail(&napi->poll_list, &sd->poll_list);
4342         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4343 }
4344
4345 #ifdef CONFIG_RPS
4346
4347 /* One global table that all flow-based protocols share. */
4348 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4349 EXPORT_SYMBOL(rps_sock_flow_table);
4350 u32 rps_cpu_mask __read_mostly;
4351 EXPORT_SYMBOL(rps_cpu_mask);
4352
4353 struct static_key_false rps_needed __read_mostly;
4354 EXPORT_SYMBOL(rps_needed);
4355 struct static_key_false rfs_needed __read_mostly;
4356 EXPORT_SYMBOL(rfs_needed);
4357
4358 static struct rps_dev_flow *
4359 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4360             struct rps_dev_flow *rflow, u16 next_cpu)
4361 {
4362         if (next_cpu < nr_cpu_ids) {
4363 #ifdef CONFIG_RFS_ACCEL
4364                 struct netdev_rx_queue *rxqueue;
4365                 struct rps_dev_flow_table *flow_table;
4366                 struct rps_dev_flow *old_rflow;
4367                 u32 flow_id;
4368                 u16 rxq_index;
4369                 int rc;
4370
4371                 /* Should we steer this flow to a different hardware queue? */
4372                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4373                     !(dev->features & NETIF_F_NTUPLE))
4374                         goto out;
4375                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4376                 if (rxq_index == skb_get_rx_queue(skb))
4377                         goto out;
4378
4379                 rxqueue = dev->_rx + rxq_index;
4380                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4381                 if (!flow_table)
4382                         goto out;
4383                 flow_id = skb_get_hash(skb) & flow_table->mask;
4384                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4385                                                         rxq_index, flow_id);
4386                 if (rc < 0)
4387                         goto out;
4388                 old_rflow = rflow;
4389                 rflow = &flow_table->flows[flow_id];
4390                 rflow->filter = rc;
4391                 if (old_rflow->filter == rflow->filter)
4392                         old_rflow->filter = RPS_NO_FILTER;
4393         out:
4394 #endif
4395                 rflow->last_qtail =
4396                         per_cpu(softnet_data, next_cpu).input_queue_head;
4397         }
4398
4399         rflow->cpu = next_cpu;
4400         return rflow;
4401 }
4402
4403 /*
4404  * get_rps_cpu is called from netif_receive_skb and returns the target
4405  * CPU from the RPS map of the receiving queue for a given skb.
4406  * rcu_read_lock must be held on entry.
4407  */
4408 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4409                        struct rps_dev_flow **rflowp)
4410 {
4411         const struct rps_sock_flow_table *sock_flow_table;
4412         struct netdev_rx_queue *rxqueue = dev->_rx;
4413         struct rps_dev_flow_table *flow_table;
4414         struct rps_map *map;
4415         int cpu = -1;
4416         u32 tcpu;
4417         u32 hash;
4418
4419         if (skb_rx_queue_recorded(skb)) {
4420                 u16 index = skb_get_rx_queue(skb);
4421
4422                 if (unlikely(index >= dev->real_num_rx_queues)) {
4423                         WARN_ONCE(dev->real_num_rx_queues > 1,
4424                                   "%s received packet on queue %u, but number "
4425                                   "of RX queues is %u\n",
4426                                   dev->name, index, dev->real_num_rx_queues);
4427                         goto done;
4428                 }
4429                 rxqueue += index;
4430         }
4431
4432         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4433
4434         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4435         map = rcu_dereference(rxqueue->rps_map);
4436         if (!flow_table && !map)
4437                 goto done;
4438
4439         skb_reset_network_header(skb);
4440         hash = skb_get_hash(skb);
4441         if (!hash)
4442                 goto done;
4443
4444         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4445         if (flow_table && sock_flow_table) {
4446                 struct rps_dev_flow *rflow;
4447                 u32 next_cpu;
4448                 u32 ident;
4449
4450                 /* First check into global flow table if there is a match */
4451                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4452                 if ((ident ^ hash) & ~rps_cpu_mask)
4453                         goto try_rps;
4454
4455                 next_cpu = ident & rps_cpu_mask;
4456
4457                 /* OK, now we know there is a match,
4458                  * we can look at the local (per receive queue) flow table
4459                  */
4460                 rflow = &flow_table->flows[hash & flow_table->mask];
4461                 tcpu = rflow->cpu;
4462
4463                 /*
4464                  * If the desired CPU (where last recvmsg was done) is
4465                  * different from current CPU (one in the rx-queue flow
4466                  * table entry), switch if one of the following holds:
4467                  *   - Current CPU is unset (>= nr_cpu_ids).
4468                  *   - Current CPU is offline.
4469                  *   - The current CPU's queue tail has advanced beyond the
4470                  *     last packet that was enqueued using this table entry.
4471                  *     This guarantees that all previous packets for the flow
4472                  *     have been dequeued, thus preserving in order delivery.
4473                  */
4474                 if (unlikely(tcpu != next_cpu) &&
4475                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4476                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4477                       rflow->last_qtail)) >= 0)) {
4478                         tcpu = next_cpu;
4479                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4480                 }
4481
4482                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4483                         *rflowp = rflow;
4484                         cpu = tcpu;
4485                         goto done;
4486                 }
4487         }
4488
4489 try_rps:
4490
4491         if (map) {
4492                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4493                 if (cpu_online(tcpu)) {
4494                         cpu = tcpu;
4495                         goto done;
4496                 }
4497         }
4498
4499 done:
4500         return cpu;
4501 }
4502
4503 #ifdef CONFIG_RFS_ACCEL
4504
4505 /**
4506  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4507  * @dev: Device on which the filter was set
4508  * @rxq_index: RX queue index
4509  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4510  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4511  *
4512  * Drivers that implement ndo_rx_flow_steer() should periodically call
4513  * this function for each installed filter and remove the filters for
4514  * which it returns %true.
4515  */
4516 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4517                          u32 flow_id, u16 filter_id)
4518 {
4519         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4520         struct rps_dev_flow_table *flow_table;
4521         struct rps_dev_flow *rflow;
4522         bool expire = true;
4523         unsigned int cpu;
4524
4525         rcu_read_lock();
4526         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4527         if (flow_table && flow_id <= flow_table->mask) {
4528                 rflow = &flow_table->flows[flow_id];
4529                 cpu = READ_ONCE(rflow->cpu);
4530                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4531                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4532                            rflow->last_qtail) <
4533                      (int)(10 * flow_table->mask)))
4534                         expire = false;
4535         }
4536         rcu_read_unlock();
4537         return expire;
4538 }
4539 EXPORT_SYMBOL(rps_may_expire_flow);
4540
4541 #endif /* CONFIG_RFS_ACCEL */
4542
4543 /* Called from hardirq (IPI) context */
4544 static void rps_trigger_softirq(void *data)
4545 {
4546         struct softnet_data *sd = data;
4547
4548         ____napi_schedule(sd, &sd->backlog);
4549         sd->received_rps++;
4550 }
4551
4552 #endif /* CONFIG_RPS */
4553
4554 /*
4555  * Check if this softnet_data structure is another cpu one
4556  * If yes, queue it to our IPI list and return 1
4557  * If no, return 0
4558  */
4559 static int rps_ipi_queued(struct softnet_data *sd)
4560 {
4561 #ifdef CONFIG_RPS
4562         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4563
4564         if (sd != mysd) {
4565                 sd->rps_ipi_next = mysd->rps_ipi_list;
4566                 mysd->rps_ipi_list = sd;
4567
4568                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4569                 return 1;
4570         }
4571 #endif /* CONFIG_RPS */
4572         return 0;
4573 }
4574
4575 #ifdef CONFIG_NET_FLOW_LIMIT
4576 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4577 #endif
4578
4579 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4580 {
4581 #ifdef CONFIG_NET_FLOW_LIMIT
4582         struct sd_flow_limit *fl;
4583         struct softnet_data *sd;
4584         unsigned int old_flow, new_flow;
4585
4586         if (qlen < (netdev_max_backlog >> 1))
4587                 return false;
4588
4589         sd = this_cpu_ptr(&softnet_data);
4590
4591         rcu_read_lock();
4592         fl = rcu_dereference(sd->flow_limit);
4593         if (fl) {
4594                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4595                 old_flow = fl->history[fl->history_head];
4596                 fl->history[fl->history_head] = new_flow;
4597
4598                 fl->history_head++;
4599                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4600
4601                 if (likely(fl->buckets[old_flow]))
4602                         fl->buckets[old_flow]--;
4603
4604                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4605                         fl->count++;
4606                         rcu_read_unlock();
4607                         return true;
4608                 }
4609         }
4610         rcu_read_unlock();
4611 #endif
4612         return false;
4613 }
4614
4615 /*
4616  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4617  * queue (may be a remote CPU queue).
4618  */
4619 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4620                               unsigned int *qtail)
4621 {
4622         struct softnet_data *sd;
4623         unsigned long flags;
4624         unsigned int qlen;
4625
4626         sd = &per_cpu(softnet_data, cpu);
4627
4628         local_irq_save(flags);
4629
4630         rps_lock(sd);
4631         if (!netif_running(skb->dev))
4632                 goto drop;
4633         qlen = skb_queue_len(&sd->input_pkt_queue);
4634         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4635                 if (qlen) {
4636 enqueue:
4637                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4638                         input_queue_tail_incr_save(sd, qtail);
4639                         rps_unlock(sd);
4640                         local_irq_restore(flags);
4641                         return NET_RX_SUCCESS;
4642                 }
4643
4644                 /* Schedule NAPI for backlog device
4645                  * We can use non atomic operation since we own the queue lock
4646                  */
4647                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4648                         if (!rps_ipi_queued(sd))
4649                                 ____napi_schedule(sd, &sd->backlog);
4650                 }
4651                 goto enqueue;
4652         }
4653
4654 drop:
4655         sd->dropped++;
4656         rps_unlock(sd);
4657
4658         local_irq_restore(flags);
4659
4660         atomic_long_inc(&skb->dev->rx_dropped);
4661         kfree_skb(skb);
4662         return NET_RX_DROP;
4663 }
4664
4665 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4666 {
4667         struct net_device *dev = skb->dev;
4668         struct netdev_rx_queue *rxqueue;
4669
4670         rxqueue = dev->_rx;
4671
4672         if (skb_rx_queue_recorded(skb)) {
4673                 u16 index = skb_get_rx_queue(skb);
4674
4675                 if (unlikely(index >= dev->real_num_rx_queues)) {
4676                         WARN_ONCE(dev->real_num_rx_queues > 1,
4677                                   "%s received packet on queue %u, but number "
4678                                   "of RX queues is %u\n",
4679                                   dev->name, index, dev->real_num_rx_queues);
4680
4681                         return rxqueue; /* Return first rxqueue */
4682                 }
4683                 rxqueue += index;
4684         }
4685         return rxqueue;
4686 }
4687
4688 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4689                              struct bpf_prog *xdp_prog)
4690 {
4691         void *orig_data, *orig_data_end, *hard_start;
4692         struct netdev_rx_queue *rxqueue;
4693         bool orig_bcast, orig_host;
4694         u32 mac_len, frame_sz;
4695         __be16 orig_eth_type;
4696         struct ethhdr *eth;
4697         u32 metalen, act;
4698         int off;
4699
4700         /* The XDP program wants to see the packet starting at the MAC
4701          * header.
4702          */
4703         mac_len = skb->data - skb_mac_header(skb);
4704         hard_start = skb->data - skb_headroom(skb);
4705
4706         /* SKB "head" area always have tailroom for skb_shared_info */
4707         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4708         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4709
4710         rxqueue = netif_get_rxqueue(skb);
4711         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4712         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4713                          skb_headlen(skb) + mac_len, true);
4714
4715         orig_data_end = xdp->data_end;
4716         orig_data = xdp->data;
4717         eth = (struct ethhdr *)xdp->data;
4718         orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4719         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4720         orig_eth_type = eth->h_proto;
4721
4722         act = bpf_prog_run_xdp(xdp_prog, xdp);
4723
4724         /* check if bpf_xdp_adjust_head was used */
4725         off = xdp->data - orig_data;
4726         if (off) {
4727                 if (off > 0)
4728                         __skb_pull(skb, off);
4729                 else if (off < 0)
4730                         __skb_push(skb, -off);
4731
4732                 skb->mac_header += off;
4733                 skb_reset_network_header(skb);
4734         }
4735
4736         /* check if bpf_xdp_adjust_tail was used */
4737         off = xdp->data_end - orig_data_end;
4738         if (off != 0) {
4739                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4740                 skb->len += off; /* positive on grow, negative on shrink */
4741         }
4742
4743         /* check if XDP changed eth hdr such SKB needs update */
4744         eth = (struct ethhdr *)xdp->data;
4745         if ((orig_eth_type != eth->h_proto) ||
4746             (orig_host != ether_addr_equal_64bits(eth->h_dest,
4747                                                   skb->dev->dev_addr)) ||
4748             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4749                 __skb_push(skb, ETH_HLEN);
4750                 skb->pkt_type = PACKET_HOST;
4751                 skb->protocol = eth_type_trans(skb, skb->dev);
4752         }
4753
4754         /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4755          * before calling us again on redirect path. We do not call do_redirect
4756          * as we leave that up to the caller.
4757          *
4758          * Caller is responsible for managing lifetime of skb (i.e. calling
4759          * kfree_skb in response to actions it cannot handle/XDP_DROP).
4760          */
4761         switch (act) {
4762         case XDP_REDIRECT:
4763         case XDP_TX:
4764                 __skb_push(skb, mac_len);
4765                 break;
4766         case XDP_PASS:
4767                 metalen = xdp->data - xdp->data_meta;
4768                 if (metalen)
4769                         skb_metadata_set(skb, metalen);
4770                 break;
4771         }
4772
4773         return act;
4774 }
4775
4776 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4777                                      struct xdp_buff *xdp,
4778                                      struct bpf_prog *xdp_prog)
4779 {
4780         u32 act = XDP_DROP;
4781
4782         /* Reinjected packets coming from act_mirred or similar should
4783          * not get XDP generic processing.
4784          */
4785         if (skb_is_redirected(skb))
4786                 return XDP_PASS;
4787
4788         /* XDP packets must be linear and must have sufficient headroom
4789          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4790          * native XDP provides, thus we need to do it here as well.
4791          */
4792         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4793             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4794                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4795                 int troom = skb->tail + skb->data_len - skb->end;
4796
4797                 /* In case we have to go down the path and also linearize,
4798                  * then lets do the pskb_expand_head() work just once here.
4799                  */
4800                 if (pskb_expand_head(skb,
4801                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4802                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4803                         goto do_drop;
4804                 if (skb_linearize(skb))
4805                         goto do_drop;
4806         }
4807
4808         act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4809         switch (act) {
4810         case XDP_REDIRECT:
4811         case XDP_TX:
4812         case XDP_PASS:
4813                 break;
4814         default:
4815                 bpf_warn_invalid_xdp_action(act);
4816                 fallthrough;
4817         case XDP_ABORTED:
4818                 trace_xdp_exception(skb->dev, xdp_prog, act);
4819                 fallthrough;
4820         case XDP_DROP:
4821         do_drop:
4822                 kfree_skb(skb);
4823                 break;
4824         }
4825
4826         return act;
4827 }
4828
4829 /* When doing generic XDP we have to bypass the qdisc layer and the
4830  * network taps in order to match in-driver-XDP behavior.
4831  */
4832 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4833 {
4834         struct net_device *dev = skb->dev;
4835         struct netdev_queue *txq;
4836         bool free_skb = true;
4837         int cpu, rc;
4838
4839         txq = netdev_core_pick_tx(dev, skb, NULL);
4840         cpu = smp_processor_id();
4841         HARD_TX_LOCK(dev, txq, cpu);
4842         if (!netif_xmit_stopped(txq)) {
4843                 rc = netdev_start_xmit(skb, dev, txq, 0);
4844                 if (dev_xmit_complete(rc))
4845                         free_skb = false;
4846         }
4847         HARD_TX_UNLOCK(dev, txq);
4848         if (free_skb) {
4849                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4850                 kfree_skb(skb);
4851         }
4852 }
4853
4854 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4855
4856 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4857 {
4858         if (xdp_prog) {
4859                 struct xdp_buff xdp;
4860                 u32 act;
4861                 int err;
4862
4863                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4864                 if (act != XDP_PASS) {
4865                         switch (act) {
4866                         case XDP_REDIRECT:
4867                                 err = xdp_do_generic_redirect(skb->dev, skb,
4868                                                               &xdp, xdp_prog);
4869                                 if (err)
4870                                         goto out_redir;
4871                                 break;
4872                         case XDP_TX:
4873                                 generic_xdp_tx(skb, xdp_prog);
4874                                 break;
4875                         }
4876                         return XDP_DROP;
4877                 }
4878         }
4879         return XDP_PASS;
4880 out_redir:
4881         kfree_skb(skb);
4882         return XDP_DROP;
4883 }
4884 EXPORT_SYMBOL_GPL(do_xdp_generic);
4885
4886 static int netif_rx_internal(struct sk_buff *skb)
4887 {
4888         int ret;
4889
4890         net_timestamp_check(netdev_tstamp_prequeue, skb);
4891
4892         trace_netif_rx(skb);
4893
4894 #ifdef CONFIG_RPS
4895         if (static_branch_unlikely(&rps_needed)) {
4896                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4897                 int cpu;
4898
4899                 preempt_disable();
4900                 rcu_read_lock();
4901
4902                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4903                 if (cpu < 0)
4904                         cpu = smp_processor_id();
4905
4906                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4907
4908                 rcu_read_unlock();
4909                 preempt_enable();
4910         } else
4911 #endif
4912         {
4913                 unsigned int qtail;
4914
4915                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4916                 put_cpu();
4917         }
4918         return ret;
4919 }
4920
4921 /**
4922  *      netif_rx        -       post buffer to the network code
4923  *      @skb: buffer to post
4924  *
4925  *      This function receives a packet from a device driver and queues it for
4926  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4927  *      may be dropped during processing for congestion control or by the
4928  *      protocol layers.
4929  *
4930  *      return values:
4931  *      NET_RX_SUCCESS  (no congestion)
4932  *      NET_RX_DROP     (packet was dropped)
4933  *
4934  */
4935
4936 int netif_rx(struct sk_buff *skb)
4937 {
4938         int ret;
4939
4940         trace_netif_rx_entry(skb);
4941
4942         ret = netif_rx_internal(skb);
4943         trace_netif_rx_exit(ret);
4944
4945         return ret;
4946 }
4947 EXPORT_SYMBOL(netif_rx);
4948
4949 int netif_rx_ni(struct sk_buff *skb)
4950 {
4951         int err;
4952
4953         trace_netif_rx_ni_entry(skb);
4954
4955         preempt_disable();
4956         err = netif_rx_internal(skb);
4957         if (local_softirq_pending())
4958                 do_softirq();
4959         preempt_enable();
4960         trace_netif_rx_ni_exit(err);
4961
4962         return err;
4963 }
4964 EXPORT_SYMBOL(netif_rx_ni);
4965
4966 int netif_rx_any_context(struct sk_buff *skb)
4967 {
4968         /*
4969          * If invoked from contexts which do not invoke bottom half
4970          * processing either at return from interrupt or when softrqs are
4971          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4972          * directly.
4973          */
4974         if (in_interrupt())
4975                 return netif_rx(skb);
4976         else
4977                 return netif_rx_ni(skb);
4978 }
4979 EXPORT_SYMBOL(netif_rx_any_context);
4980
4981 static __latent_entropy void net_tx_action(struct softirq_action *h)
4982 {
4983         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4984
4985         if (sd->completion_queue) {
4986                 struct sk_buff *clist;
4987
4988                 local_irq_disable();
4989                 clist = sd->completion_queue;
4990                 sd->completion_queue = NULL;
4991                 local_irq_enable();
4992
4993                 while (clist) {
4994                         struct sk_buff *skb = clist;
4995
4996                         clist = clist->next;
4997
4998                         WARN_ON(refcount_read(&skb->users));
4999                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5000                                 trace_consume_skb(skb);
5001                         else
5002                                 trace_kfree_skb(skb, net_tx_action);
5003
5004                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5005                                 __kfree_skb(skb);
5006                         else
5007                                 __kfree_skb_defer(skb);
5008                 }
5009         }
5010
5011         if (sd->output_queue) {
5012                 struct Qdisc *head;
5013
5014                 local_irq_disable();
5015                 head = sd->output_queue;
5016                 sd->output_queue = NULL;
5017                 sd->output_queue_tailp = &sd->output_queue;
5018                 local_irq_enable();
5019
5020                 rcu_read_lock();
5021
5022                 while (head) {
5023                         struct Qdisc *q = head;
5024                         spinlock_t *root_lock = NULL;
5025
5026                         head = head->next_sched;
5027
5028                         /* We need to make sure head->next_sched is read
5029                          * before clearing __QDISC_STATE_SCHED
5030                          */
5031                         smp_mb__before_atomic();
5032
5033                         if (!(q->flags & TCQ_F_NOLOCK)) {
5034                                 root_lock = qdisc_lock(q);
5035                                 spin_lock(root_lock);
5036                         } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5037                                                      &q->state))) {
5038                                 /* There is a synchronize_net() between
5039                                  * STATE_DEACTIVATED flag being set and
5040                                  * qdisc_reset()/some_qdisc_is_busy() in
5041                                  * dev_deactivate(), so we can safely bail out
5042                                  * early here to avoid data race between
5043                                  * qdisc_deactivate() and some_qdisc_is_busy()
5044                                  * for lockless qdisc.
5045                                  */
5046                                 clear_bit(__QDISC_STATE_SCHED, &q->state);
5047                                 continue;
5048                         }
5049
5050                         clear_bit(__QDISC_STATE_SCHED, &q->state);
5051                         qdisc_run(q);
5052                         if (root_lock)
5053                                 spin_unlock(root_lock);
5054                 }
5055
5056                 rcu_read_unlock();
5057         }
5058
5059         xfrm_dev_backlog(sd);
5060 }
5061
5062 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5063 /* This hook is defined here for ATM LANE */
5064 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5065                              unsigned char *addr) __read_mostly;
5066 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5067 #endif
5068
5069 static inline struct sk_buff *
5070 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5071                    struct net_device *orig_dev, bool *another)
5072 {
5073 #ifdef CONFIG_NET_CLS_ACT
5074         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5075         struct tcf_result cl_res;
5076
5077         /* If there's at least one ingress present somewhere (so
5078          * we get here via enabled static key), remaining devices
5079          * that are not configured with an ingress qdisc will bail
5080          * out here.
5081          */
5082         if (!miniq)
5083                 return skb;
5084
5085         if (*pt_prev) {
5086                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5087                 *pt_prev = NULL;
5088         }
5089
5090         qdisc_skb_cb(skb)->pkt_len = skb->len;
5091         tc_skb_cb(skb)->mru = 0;
5092         tc_skb_cb(skb)->post_ct = false;
5093         skb->tc_at_ingress = 1;
5094         mini_qdisc_bstats_cpu_update(miniq, skb);
5095
5096         switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5097         case TC_ACT_OK:
5098         case TC_ACT_RECLASSIFY:
5099                 skb->tc_index = TC_H_MIN(cl_res.classid);
5100                 break;
5101         case TC_ACT_SHOT:
5102                 mini_qdisc_qstats_cpu_drop(miniq);
5103                 kfree_skb(skb);
5104                 return NULL;
5105         case TC_ACT_STOLEN:
5106         case TC_ACT_QUEUED:
5107         case TC_ACT_TRAP:
5108                 consume_skb(skb);
5109                 return NULL;
5110         case TC_ACT_REDIRECT:
5111                 /* skb_mac_header check was done by cls/act_bpf, so
5112                  * we can safely push the L2 header back before
5113                  * redirecting to another netdev
5114                  */
5115                 __skb_push(skb, skb->mac_len);
5116                 if (skb_do_redirect(skb) == -EAGAIN) {
5117                         __skb_pull(skb, skb->mac_len);
5118                         *another = true;
5119                         break;
5120                 }
5121                 return NULL;
5122         case TC_ACT_CONSUMED:
5123                 return NULL;
5124         default:
5125                 break;
5126         }
5127 #endif /* CONFIG_NET_CLS_ACT */
5128         return skb;
5129 }
5130
5131 /**
5132  *      netdev_is_rx_handler_busy - check if receive handler is registered
5133  *      @dev: device to check
5134  *
5135  *      Check if a receive handler is already registered for a given device.
5136  *      Return true if there one.
5137  *
5138  *      The caller must hold the rtnl_mutex.
5139  */
5140 bool netdev_is_rx_handler_busy(struct net_device *dev)
5141 {
5142         ASSERT_RTNL();
5143         return dev && rtnl_dereference(dev->rx_handler);
5144 }
5145 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5146
5147 /**
5148  *      netdev_rx_handler_register - register receive handler
5149  *      @dev: device to register a handler for
5150  *      @rx_handler: receive handler to register
5151  *      @rx_handler_data: data pointer that is used by rx handler
5152  *
5153  *      Register a receive handler for a device. This handler will then be
5154  *      called from __netif_receive_skb. A negative errno code is returned
5155  *      on a failure.
5156  *
5157  *      The caller must hold the rtnl_mutex.
5158  *
5159  *      For a general description of rx_handler, see enum rx_handler_result.
5160  */
5161 int netdev_rx_handler_register(struct net_device *dev,
5162                                rx_handler_func_t *rx_handler,
5163                                void *rx_handler_data)
5164 {
5165         if (netdev_is_rx_handler_busy(dev))
5166                 return -EBUSY;
5167
5168         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5169                 return -EINVAL;
5170
5171         /* Note: rx_handler_data must be set before rx_handler */
5172         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5173         rcu_assign_pointer(dev->rx_handler, rx_handler);
5174
5175         return 0;
5176 }
5177 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5178
5179 /**
5180  *      netdev_rx_handler_unregister - unregister receive handler
5181  *      @dev: device to unregister a handler from
5182  *
5183  *      Unregister a receive handler from a device.
5184  *
5185  *      The caller must hold the rtnl_mutex.
5186  */
5187 void netdev_rx_handler_unregister(struct net_device *dev)
5188 {
5189
5190         ASSERT_RTNL();
5191         RCU_INIT_POINTER(dev->rx_handler, NULL);
5192         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5193          * section has a guarantee to see a non NULL rx_handler_data
5194          * as well.
5195          */
5196         synchronize_net();
5197         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5198 }
5199 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5200
5201 /*
5202  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5203  * the special handling of PFMEMALLOC skbs.
5204  */
5205 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5206 {
5207         switch (skb->protocol) {
5208         case htons(ETH_P_ARP):
5209         case htons(ETH_P_IP):
5210         case htons(ETH_P_IPV6):
5211         case htons(ETH_P_8021Q):
5212         case htons(ETH_P_8021AD):
5213                 return true;
5214         default:
5215                 return false;
5216         }
5217 }
5218
5219 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5220                              int *ret, struct net_device *orig_dev)
5221 {
5222         if (nf_hook_ingress_active(skb)) {
5223                 int ingress_retval;
5224
5225                 if (*pt_prev) {
5226                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5227                         *pt_prev = NULL;
5228                 }
5229
5230                 rcu_read_lock();
5231                 ingress_retval = nf_hook_ingress(skb);
5232                 rcu_read_unlock();
5233                 return ingress_retval;
5234         }
5235         return 0;
5236 }
5237
5238 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5239                                     struct packet_type **ppt_prev)
5240 {
5241         struct packet_type *ptype, *pt_prev;
5242         rx_handler_func_t *rx_handler;
5243         struct sk_buff *skb = *pskb;
5244         struct net_device *orig_dev;
5245         bool deliver_exact = false;
5246         int ret = NET_RX_DROP;
5247         __be16 type;
5248
5249         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5250
5251         trace_netif_receive_skb(skb);
5252
5253         orig_dev = skb->dev;
5254
5255         skb_reset_network_header(skb);
5256         if (!skb_transport_header_was_set(skb))
5257                 skb_reset_transport_header(skb);
5258         skb_reset_mac_len(skb);
5259
5260         pt_prev = NULL;
5261
5262 another_round:
5263         skb->skb_iif = skb->dev->ifindex;
5264
5265         __this_cpu_inc(softnet_data.processed);
5266
5267         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5268                 int ret2;
5269
5270                 migrate_disable();
5271                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5272                 migrate_enable();
5273
5274                 if (ret2 != XDP_PASS) {
5275                         ret = NET_RX_DROP;
5276                         goto out;
5277                 }
5278         }
5279
5280         if (eth_type_vlan(skb->protocol)) {
5281                 skb = skb_vlan_untag(skb);
5282                 if (unlikely(!skb))
5283                         goto out;
5284         }
5285
5286         if (skb_skip_tc_classify(skb))
5287                 goto skip_classify;
5288
5289         if (pfmemalloc)
5290                 goto skip_taps;
5291
5292         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5293                 if (pt_prev)
5294                         ret = deliver_skb(skb, pt_prev, orig_dev);
5295                 pt_prev = ptype;
5296         }
5297
5298         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5299                 if (pt_prev)
5300                         ret = deliver_skb(skb, pt_prev, orig_dev);
5301                 pt_prev = ptype;
5302         }
5303
5304 skip_taps:
5305 #ifdef CONFIG_NET_INGRESS
5306         if (static_branch_unlikely(&ingress_needed_key)) {
5307                 bool another = false;
5308
5309                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5310                                          &another);
5311                 if (another)
5312                         goto another_round;
5313                 if (!skb)
5314                         goto out;
5315
5316                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5317                         goto out;
5318         }
5319 #endif
5320         skb_reset_redirect(skb);
5321 skip_classify:
5322         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5323                 goto drop;
5324
5325         if (skb_vlan_tag_present(skb)) {
5326                 if (pt_prev) {
5327                         ret = deliver_skb(skb, pt_prev, orig_dev);
5328                         pt_prev = NULL;
5329                 }
5330                 if (vlan_do_receive(&skb))
5331                         goto another_round;
5332                 else if (unlikely(!skb))
5333                         goto out;
5334         }
5335
5336         rx_handler = rcu_dereference(skb->dev->rx_handler);
5337         if (rx_handler) {
5338                 if (pt_prev) {
5339                         ret = deliver_skb(skb, pt_prev, orig_dev);
5340                         pt_prev = NULL;
5341                 }
5342                 switch (rx_handler(&skb)) {
5343                 case RX_HANDLER_CONSUMED:
5344                         ret = NET_RX_SUCCESS;
5345                         goto out;
5346                 case RX_HANDLER_ANOTHER:
5347                         goto another_round;
5348                 case RX_HANDLER_EXACT:
5349                         deliver_exact = true;
5350                         break;
5351                 case RX_HANDLER_PASS:
5352                         break;
5353                 default:
5354                         BUG();
5355                 }
5356         }
5357
5358         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5359 check_vlan_id:
5360                 if (skb_vlan_tag_get_id(skb)) {
5361                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5362                          * find vlan device.
5363                          */
5364                         skb->pkt_type = PACKET_OTHERHOST;
5365                 } else if (eth_type_vlan(skb->protocol)) {
5366                         /* Outer header is 802.1P with vlan 0, inner header is
5367                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5368                          * not find vlan dev for vlan id 0.
5369                          */
5370                         __vlan_hwaccel_clear_tag(skb);
5371                         skb = skb_vlan_untag(skb);
5372                         if (unlikely(!skb))
5373                                 goto out;
5374                         if (vlan_do_receive(&skb))
5375                                 /* After stripping off 802.1P header with vlan 0
5376                                  * vlan dev is found for inner header.
5377                                  */
5378                                 goto another_round;
5379                         else if (unlikely(!skb))
5380                                 goto out;
5381                         else
5382                                 /* We have stripped outer 802.1P vlan 0 header.
5383                                  * But could not find vlan dev.
5384                                  * check again for vlan id to set OTHERHOST.
5385                                  */
5386                                 goto check_vlan_id;
5387                 }
5388                 /* Note: we might in the future use prio bits
5389                  * and set skb->priority like in vlan_do_receive()
5390                  * For the time being, just ignore Priority Code Point
5391                  */
5392                 __vlan_hwaccel_clear_tag(skb);
5393         }
5394
5395         type = skb->protocol;
5396
5397         /* deliver only exact match when indicated */
5398         if (likely(!deliver_exact)) {
5399                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5400                                        &ptype_base[ntohs(type) &
5401                                                    PTYPE_HASH_MASK]);
5402         }
5403
5404         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5405                                &orig_dev->ptype_specific);
5406
5407         if (unlikely(skb->dev != orig_dev)) {
5408                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5409                                        &skb->dev->ptype_specific);
5410         }
5411
5412         if (pt_prev) {
5413                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5414                         goto drop;
5415                 *ppt_prev = pt_prev;
5416         } else {
5417 drop:
5418                 if (!deliver_exact)
5419                         atomic_long_inc(&skb->dev->rx_dropped);
5420                 else
5421                         atomic_long_inc(&skb->dev->rx_nohandler);
5422                 kfree_skb(skb);
5423                 /* Jamal, now you will not able to escape explaining
5424                  * me how you were going to use this. :-)
5425                  */
5426                 ret = NET_RX_DROP;
5427         }
5428
5429 out:
5430         /* The invariant here is that if *ppt_prev is not NULL
5431          * then skb should also be non-NULL.
5432          *
5433          * Apparently *ppt_prev assignment above holds this invariant due to
5434          * skb dereferencing near it.
5435          */
5436         *pskb = skb;
5437         return ret;
5438 }
5439
5440 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5441 {
5442         struct net_device *orig_dev = skb->dev;
5443         struct packet_type *pt_prev = NULL;
5444         int ret;
5445
5446         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5447         if (pt_prev)
5448                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5449                                          skb->dev, pt_prev, orig_dev);
5450         return ret;
5451 }
5452
5453 /**
5454  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5455  *      @skb: buffer to process
5456  *
5457  *      More direct receive version of netif_receive_skb().  It should
5458  *      only be used by callers that have a need to skip RPS and Generic XDP.
5459  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5460  *
5461  *      This function may only be called from softirq context and interrupts
5462  *      should be enabled.
5463  *
5464  *      Return values (usually ignored):
5465  *      NET_RX_SUCCESS: no congestion
5466  *      NET_RX_DROP: packet was dropped
5467  */
5468 int netif_receive_skb_core(struct sk_buff *skb)
5469 {
5470         int ret;
5471
5472         rcu_read_lock();
5473         ret = __netif_receive_skb_one_core(skb, false);
5474         rcu_read_unlock();
5475
5476         return ret;
5477 }
5478 EXPORT_SYMBOL(netif_receive_skb_core);
5479
5480 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5481                                                   struct packet_type *pt_prev,
5482                                                   struct net_device *orig_dev)
5483 {
5484         struct sk_buff *skb, *next;
5485
5486         if (!pt_prev)
5487                 return;
5488         if (list_empty(head))
5489                 return;
5490         if (pt_prev->list_func != NULL)
5491                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5492                                    ip_list_rcv, head, pt_prev, orig_dev);
5493         else
5494                 list_for_each_entry_safe(skb, next, head, list) {
5495                         skb_list_del_init(skb);
5496                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5497                 }
5498 }
5499
5500 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5501 {
5502         /* Fast-path assumptions:
5503          * - There is no RX handler.
5504          * - Only one packet_type matches.
5505          * If either of these fails, we will end up doing some per-packet
5506          * processing in-line, then handling the 'last ptype' for the whole
5507          * sublist.  This can't cause out-of-order delivery to any single ptype,
5508          * because the 'last ptype' must be constant across the sublist, and all
5509          * other ptypes are handled per-packet.
5510          */
5511         /* Current (common) ptype of sublist */
5512         struct packet_type *pt_curr = NULL;
5513         /* Current (common) orig_dev of sublist */
5514         struct net_device *od_curr = NULL;
5515         struct list_head sublist;
5516         struct sk_buff *skb, *next;
5517
5518         INIT_LIST_HEAD(&sublist);
5519         list_for_each_entry_safe(skb, next, head, list) {
5520                 struct net_device *orig_dev = skb->dev;
5521                 struct packet_type *pt_prev = NULL;
5522
5523                 skb_list_del_init(skb);
5524                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5525                 if (!pt_prev)
5526                         continue;
5527                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5528                         /* dispatch old sublist */
5529                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5530                         /* start new sublist */
5531                         INIT_LIST_HEAD(&sublist);
5532                         pt_curr = pt_prev;
5533                         od_curr = orig_dev;
5534                 }
5535                 list_add_tail(&skb->list, &sublist);
5536         }
5537
5538         /* dispatch final sublist */
5539         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5540 }
5541
5542 static int __netif_receive_skb(struct sk_buff *skb)
5543 {
5544         int ret;
5545
5546         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5547                 unsigned int noreclaim_flag;
5548
5549                 /*
5550                  * PFMEMALLOC skbs are special, they should
5551                  * - be delivered to SOCK_MEMALLOC sockets only
5552                  * - stay away from userspace
5553                  * - have bounded memory usage
5554                  *
5555                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5556                  * context down to all allocation sites.
5557                  */
5558                 noreclaim_flag = memalloc_noreclaim_save();
5559                 ret = __netif_receive_skb_one_core(skb, true);
5560                 memalloc_noreclaim_restore(noreclaim_flag);
5561         } else
5562                 ret = __netif_receive_skb_one_core(skb, false);
5563
5564         return ret;
5565 }
5566
5567 static void __netif_receive_skb_list(struct list_head *head)
5568 {
5569         unsigned long noreclaim_flag = 0;
5570         struct sk_buff *skb, *next;
5571         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5572
5573         list_for_each_entry_safe(skb, next, head, list) {
5574                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5575                         struct list_head sublist;
5576
5577                         /* Handle the previous sublist */
5578                         list_cut_before(&sublist, head, &skb->list);
5579                         if (!list_empty(&sublist))
5580                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5581                         pfmemalloc = !pfmemalloc;
5582                         /* See comments in __netif_receive_skb */
5583                         if (pfmemalloc)
5584                                 noreclaim_flag = memalloc_noreclaim_save();
5585                         else
5586                                 memalloc_noreclaim_restore(noreclaim_flag);
5587                 }
5588         }
5589         /* Handle the remaining sublist */
5590         if (!list_empty(head))
5591                 __netif_receive_skb_list_core(head, pfmemalloc);
5592         /* Restore pflags */
5593         if (pfmemalloc)
5594                 memalloc_noreclaim_restore(noreclaim_flag);
5595 }
5596
5597 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5598 {
5599         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5600         struct bpf_prog *new = xdp->prog;
5601         int ret = 0;
5602
5603         switch (xdp->command) {
5604         case XDP_SETUP_PROG:
5605                 rcu_assign_pointer(dev->xdp_prog, new);
5606                 if (old)
5607                         bpf_prog_put(old);
5608
5609                 if (old && !new) {
5610                         static_branch_dec(&generic_xdp_needed_key);
5611                 } else if (new && !old) {
5612                         static_branch_inc(&generic_xdp_needed_key);
5613                         dev_disable_lro(dev);
5614                         dev_disable_gro_hw(dev);
5615                 }
5616                 break;
5617
5618         default:
5619                 ret = -EINVAL;
5620                 break;
5621         }
5622
5623         return ret;
5624 }
5625
5626 static int netif_receive_skb_internal(struct sk_buff *skb)
5627 {
5628         int ret;
5629
5630         net_timestamp_check(netdev_tstamp_prequeue, skb);
5631
5632         if (skb_defer_rx_timestamp(skb))
5633                 return NET_RX_SUCCESS;
5634
5635         rcu_read_lock();
5636 #ifdef CONFIG_RPS
5637         if (static_branch_unlikely(&rps_needed)) {
5638                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5639                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5640
5641                 if (cpu >= 0) {
5642                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5643                         rcu_read_unlock();
5644                         return ret;
5645                 }
5646         }
5647 #endif
5648         ret = __netif_receive_skb(skb);
5649         rcu_read_unlock();
5650         return ret;
5651 }
5652
5653 static void netif_receive_skb_list_internal(struct list_head *head)
5654 {
5655         struct sk_buff *skb, *next;
5656         struct list_head sublist;
5657
5658         INIT_LIST_HEAD(&sublist);
5659         list_for_each_entry_safe(skb, next, head, list) {
5660                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5661                 skb_list_del_init(skb);
5662                 if (!skb_defer_rx_timestamp(skb))
5663                         list_add_tail(&skb->list, &sublist);
5664         }
5665         list_splice_init(&sublist, head);
5666
5667         rcu_read_lock();
5668 #ifdef CONFIG_RPS
5669         if (static_branch_unlikely(&rps_needed)) {
5670                 list_for_each_entry_safe(skb, next, head, list) {
5671                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5672                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5673
5674                         if (cpu >= 0) {
5675                                 /* Will be handled, remove from list */
5676                                 skb_list_del_init(skb);
5677                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5678                         }
5679                 }
5680         }
5681 #endif
5682         __netif_receive_skb_list(head);
5683         rcu_read_unlock();
5684 }
5685
5686 /**
5687  *      netif_receive_skb - process receive buffer from network
5688  *      @skb: buffer to process
5689  *
5690  *      netif_receive_skb() is the main receive data processing function.
5691  *      It always succeeds. The buffer may be dropped during processing
5692  *      for congestion control or by the protocol layers.
5693  *
5694  *      This function may only be called from softirq context and interrupts
5695  *      should be enabled.
5696  *
5697  *      Return values (usually ignored):
5698  *      NET_RX_SUCCESS: no congestion
5699  *      NET_RX_DROP: packet was dropped
5700  */
5701 int netif_receive_skb(struct sk_buff *skb)
5702 {
5703         int ret;
5704
5705         trace_netif_receive_skb_entry(skb);
5706
5707         ret = netif_receive_skb_internal(skb);
5708         trace_netif_receive_skb_exit(ret);
5709
5710         return ret;
5711 }
5712 EXPORT_SYMBOL(netif_receive_skb);
5713
5714 /**
5715  *      netif_receive_skb_list - process many receive buffers from network
5716  *      @head: list of skbs to process.
5717  *
5718  *      Since return value of netif_receive_skb() is normally ignored, and
5719  *      wouldn't be meaningful for a list, this function returns void.
5720  *
5721  *      This function may only be called from softirq context and interrupts
5722  *      should be enabled.
5723  */
5724 void netif_receive_skb_list(struct list_head *head)
5725 {
5726         struct sk_buff *skb;
5727
5728         if (list_empty(head))
5729                 return;
5730         if (trace_netif_receive_skb_list_entry_enabled()) {
5731                 list_for_each_entry(skb, head, list)
5732                         trace_netif_receive_skb_list_entry(skb);
5733         }
5734         netif_receive_skb_list_internal(head);
5735         trace_netif_receive_skb_list_exit(0);
5736 }
5737 EXPORT_SYMBOL(netif_receive_skb_list);
5738
5739 static DEFINE_PER_CPU(struct work_struct, flush_works);
5740
5741 /* Network device is going away, flush any packets still pending */
5742 static void flush_backlog(struct work_struct *work)
5743 {
5744         struct sk_buff *skb, *tmp;
5745         struct softnet_data *sd;
5746
5747         local_bh_disable();
5748         sd = this_cpu_ptr(&softnet_data);
5749
5750         local_irq_disable();
5751         rps_lock(sd);
5752         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5753                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5754                         __skb_unlink(skb, &sd->input_pkt_queue);
5755                         dev_kfree_skb_irq(skb);
5756                         input_queue_head_incr(sd);
5757                 }
5758         }
5759         rps_unlock(sd);
5760         local_irq_enable();
5761
5762         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5763                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5764                         __skb_unlink(skb, &sd->process_queue);
5765                         kfree_skb(skb);
5766                         input_queue_head_incr(sd);
5767                 }
5768         }
5769         local_bh_enable();
5770 }
5771
5772 static bool flush_required(int cpu)
5773 {
5774 #if IS_ENABLED(CONFIG_RPS)
5775         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5776         bool do_flush;
5777
5778         local_irq_disable();
5779         rps_lock(sd);
5780
5781         /* as insertion into process_queue happens with the rps lock held,
5782          * process_queue access may race only with dequeue
5783          */
5784         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5785                    !skb_queue_empty_lockless(&sd->process_queue);
5786         rps_unlock(sd);
5787         local_irq_enable();
5788
5789         return do_flush;
5790 #endif
5791         /* without RPS we can't safely check input_pkt_queue: during a
5792          * concurrent remote skb_queue_splice() we can detect as empty both
5793          * input_pkt_queue and process_queue even if the latter could end-up
5794          * containing a lot of packets.
5795          */
5796         return true;
5797 }
5798
5799 static void flush_all_backlogs(void)
5800 {
5801         static cpumask_t flush_cpus;
5802         unsigned int cpu;
5803
5804         /* since we are under rtnl lock protection we can use static data
5805          * for the cpumask and avoid allocating on stack the possibly
5806          * large mask
5807          */
5808         ASSERT_RTNL();
5809
5810         cpus_read_lock();
5811
5812         cpumask_clear(&flush_cpus);
5813         for_each_online_cpu(cpu) {
5814                 if (flush_required(cpu)) {
5815                         queue_work_on(cpu, system_highpri_wq,
5816                                       per_cpu_ptr(&flush_works, cpu));
5817                         cpumask_set_cpu(cpu, &flush_cpus);
5818                 }
5819         }
5820
5821         /* we can have in flight packet[s] on the cpus we are not flushing,
5822          * synchronize_net() in unregister_netdevice_many() will take care of
5823          * them
5824          */
5825         for_each_cpu(cpu, &flush_cpus)
5826                 flush_work(per_cpu_ptr(&flush_works, cpu));
5827
5828         cpus_read_unlock();
5829 }
5830
5831 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5832 static void gro_normal_list(struct napi_struct *napi)
5833 {
5834         if (!napi->rx_count)
5835                 return;
5836         netif_receive_skb_list_internal(&napi->rx_list);
5837         INIT_LIST_HEAD(&napi->rx_list);
5838         napi->rx_count = 0;
5839 }
5840
5841 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5842  * pass the whole batch up to the stack.
5843  */
5844 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5845 {
5846         list_add_tail(&skb->list, &napi->rx_list);
5847         napi->rx_count += segs;
5848         if (napi->rx_count >= gro_normal_batch)
5849                 gro_normal_list(napi);
5850 }
5851
5852 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5853 {
5854         struct packet_offload *ptype;
5855         __be16 type = skb->protocol;
5856         struct list_head *head = &offload_base;
5857         int err = -ENOENT;
5858
5859         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5860
5861         if (NAPI_GRO_CB(skb)->count == 1) {
5862                 skb_shinfo(skb)->gso_size = 0;
5863                 goto out;
5864         }
5865
5866         rcu_read_lock();
5867         list_for_each_entry_rcu(ptype, head, list) {
5868                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5869                         continue;
5870
5871                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5872                                          ipv6_gro_complete, inet_gro_complete,
5873                                          skb, 0);
5874                 break;
5875         }
5876         rcu_read_unlock();
5877
5878         if (err) {
5879                 WARN_ON(&ptype->list == head);
5880                 kfree_skb(skb);
5881                 return NET_RX_SUCCESS;
5882         }
5883
5884 out:
5885         gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5886         return NET_RX_SUCCESS;
5887 }
5888
5889 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5890                                    bool flush_old)
5891 {
5892         struct list_head *head = &napi->gro_hash[index].list;
5893         struct sk_buff *skb, *p;
5894
5895         list_for_each_entry_safe_reverse(skb, p, head, list) {
5896                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5897                         return;
5898                 skb_list_del_init(skb);
5899                 napi_gro_complete(napi, skb);
5900                 napi->gro_hash[index].count--;
5901         }
5902
5903         if (!napi->gro_hash[index].count)
5904                 __clear_bit(index, &napi->gro_bitmask);
5905 }
5906
5907 /* napi->gro_hash[].list contains packets ordered by age.
5908  * youngest packets at the head of it.
5909  * Complete skbs in reverse order to reduce latencies.
5910  */
5911 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5912 {
5913         unsigned long bitmask = napi->gro_bitmask;
5914         unsigned int i, base = ~0U;
5915
5916         while ((i = ffs(bitmask)) != 0) {
5917                 bitmask >>= i;
5918                 base += i;
5919                 __napi_gro_flush_chain(napi, base, flush_old);
5920         }
5921 }
5922 EXPORT_SYMBOL(napi_gro_flush);
5923
5924 static void gro_list_prepare(const struct list_head *head,
5925                              const struct sk_buff *skb)
5926 {
5927         unsigned int maclen = skb->dev->hard_header_len;
5928         u32 hash = skb_get_hash_raw(skb);
5929         struct sk_buff *p;
5930
5931         list_for_each_entry(p, head, list) {
5932                 unsigned long diffs;
5933
5934                 NAPI_GRO_CB(p)->flush = 0;
5935
5936                 if (hash != skb_get_hash_raw(p)) {
5937                         NAPI_GRO_CB(p)->same_flow = 0;
5938                         continue;
5939                 }
5940
5941                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5942                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5943                 if (skb_vlan_tag_present(p))
5944                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5945                 diffs |= skb_metadata_differs(p, skb);
5946                 if (maclen == ETH_HLEN)
5947                         diffs |= compare_ether_header(skb_mac_header(p),
5948                                                       skb_mac_header(skb));
5949                 else if (!diffs)
5950                         diffs = memcmp(skb_mac_header(p),
5951                                        skb_mac_header(skb),
5952                                        maclen);
5953
5954                 /* in most common scenarions 'slow_gro' is 0
5955                  * otherwise we are already on some slower paths
5956                  * either skip all the infrequent tests altogether or
5957                  * avoid trying too hard to skip each of them individually
5958                  */
5959                 if (!diffs && unlikely(skb->slow_gro | p->slow_gro)) {
5960 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5961                         struct tc_skb_ext *skb_ext;
5962                         struct tc_skb_ext *p_ext;
5963 #endif
5964
5965                         diffs |= p->sk != skb->sk;
5966                         diffs |= skb_metadata_dst_cmp(p, skb);
5967                         diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5968
5969 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5970                         skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5971                         p_ext = skb_ext_find(p, TC_SKB_EXT);
5972
5973                         diffs |= (!!p_ext) ^ (!!skb_ext);
5974                         if (!diffs && unlikely(skb_ext))
5975                                 diffs |= p_ext->chain ^ skb_ext->chain;
5976 #endif
5977                 }
5978
5979                 NAPI_GRO_CB(p)->same_flow = !diffs;
5980         }
5981 }
5982
5983 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5984 {
5985         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5986         const skb_frag_t *frag0 = &pinfo->frags[0];
5987
5988         NAPI_GRO_CB(skb)->data_offset = 0;
5989         NAPI_GRO_CB(skb)->frag0 = NULL;
5990         NAPI_GRO_CB(skb)->frag0_len = 0;
5991
5992         if (!skb_headlen(skb) && pinfo->nr_frags &&
5993             !PageHighMem(skb_frag_page(frag0)) &&
5994             (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
5995                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5996                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5997                                                     skb_frag_size(frag0),
5998                                                     skb->end - skb->tail);
5999         }
6000 }
6001
6002 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6003 {
6004         struct skb_shared_info *pinfo = skb_shinfo(skb);
6005
6006         BUG_ON(skb->end - skb->tail < grow);
6007
6008         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6009
6010         skb->data_len -= grow;
6011         skb->tail += grow;
6012
6013         skb_frag_off_add(&pinfo->frags[0], grow);
6014         skb_frag_size_sub(&pinfo->frags[0], grow);
6015
6016         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6017                 skb_frag_unref(skb, 0);
6018                 memmove(pinfo->frags, pinfo->frags + 1,
6019                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6020         }
6021 }
6022
6023 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6024 {
6025         struct sk_buff *oldest;
6026
6027         oldest = list_last_entry(head, struct sk_buff, list);
6028
6029         /* We are called with head length >= MAX_GRO_SKBS, so this is
6030          * impossible.
6031          */
6032         if (WARN_ON_ONCE(!oldest))
6033                 return;
6034
6035         /* Do not adjust napi->gro_hash[].count, caller is adding a new
6036          * SKB to the chain.
6037          */
6038         skb_list_del_init(oldest);
6039         napi_gro_complete(napi, oldest);
6040 }
6041
6042 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6043 {
6044         u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6045         struct gro_list *gro_list = &napi->gro_hash[bucket];
6046         struct list_head *head = &offload_base;
6047         struct packet_offload *ptype;
6048         __be16 type = skb->protocol;
6049         struct sk_buff *pp = NULL;
6050         enum gro_result ret;
6051         int same_flow;
6052         int grow;
6053
6054         if (netif_elide_gro(skb->dev))
6055                 goto normal;
6056
6057         gro_list_prepare(&gro_list->list, skb);
6058
6059         rcu_read_lock();
6060         list_for_each_entry_rcu(ptype, head, list) {
6061                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6062                         continue;
6063
6064                 skb_set_network_header(skb, skb_gro_offset(skb));
6065                 skb_reset_mac_len(skb);
6066                 NAPI_GRO_CB(skb)->same_flow = 0;
6067                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6068                 NAPI_GRO_CB(skb)->free = 0;
6069                 NAPI_GRO_CB(skb)->encap_mark = 0;
6070                 NAPI_GRO_CB(skb)->recursion_counter = 0;
6071                 NAPI_GRO_CB(skb)->is_fou = 0;
6072                 NAPI_GRO_CB(skb)->is_atomic = 1;
6073                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6074
6075                 /* Setup for GRO checksum validation */
6076                 switch (skb->ip_summed) {
6077                 case CHECKSUM_COMPLETE:
6078                         NAPI_GRO_CB(skb)->csum = skb->csum;
6079                         NAPI_GRO_CB(skb)->csum_valid = 1;
6080                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6081                         break;
6082                 case CHECKSUM_UNNECESSARY:
6083                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6084                         NAPI_GRO_CB(skb)->csum_valid = 0;
6085                         break;
6086                 default:
6087                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6088                         NAPI_GRO_CB(skb)->csum_valid = 0;
6089                 }
6090
6091                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6092                                         ipv6_gro_receive, inet_gro_receive,
6093                                         &gro_list->list, skb);
6094                 break;
6095         }
6096         rcu_read_unlock();
6097
6098         if (&ptype->list == head)
6099                 goto normal;
6100
6101         if (PTR_ERR(pp) == -EINPROGRESS) {
6102                 ret = GRO_CONSUMED;
6103                 goto ok;
6104         }
6105
6106         same_flow = NAPI_GRO_CB(skb)->same_flow;
6107         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6108
6109         if (pp) {
6110                 skb_list_del_init(pp);
6111                 napi_gro_complete(napi, pp);
6112                 gro_list->count--;
6113         }
6114
6115         if (same_flow)
6116                 goto ok;
6117
6118         if (NAPI_GRO_CB(skb)->flush)
6119                 goto normal;
6120
6121         if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6122                 gro_flush_oldest(napi, &gro_list->list);
6123         else
6124                 gro_list->count++;
6125
6126         NAPI_GRO_CB(skb)->count = 1;
6127         NAPI_GRO_CB(skb)->age = jiffies;
6128         NAPI_GRO_CB(skb)->last = skb;
6129         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6130         list_add(&skb->list, &gro_list->list);
6131         ret = GRO_HELD;
6132
6133 pull:
6134         grow = skb_gro_offset(skb) - skb_headlen(skb);
6135         if (grow > 0)
6136                 gro_pull_from_frag0(skb, grow);
6137 ok:
6138         if (gro_list->count) {
6139                 if (!test_bit(bucket, &napi->gro_bitmask))
6140                         __set_bit(bucket, &napi->gro_bitmask);
6141         } else if (test_bit(bucket, &napi->gro_bitmask)) {
6142                 __clear_bit(bucket, &napi->gro_bitmask);
6143         }
6144
6145         return ret;
6146
6147 normal:
6148         ret = GRO_NORMAL;
6149         goto pull;
6150 }
6151
6152 struct packet_offload *gro_find_receive_by_type(__be16 type)
6153 {
6154         struct list_head *offload_head = &offload_base;
6155         struct packet_offload *ptype;
6156
6157         list_for_each_entry_rcu(ptype, offload_head, list) {
6158                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6159                         continue;
6160                 return ptype;
6161         }
6162         return NULL;
6163 }
6164 EXPORT_SYMBOL(gro_find_receive_by_type);
6165
6166 struct packet_offload *gro_find_complete_by_type(__be16 type)
6167 {
6168         struct list_head *offload_head = &offload_base;
6169         struct packet_offload *ptype;
6170
6171         list_for_each_entry_rcu(ptype, offload_head, list) {
6172                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6173                         continue;
6174                 return ptype;
6175         }
6176         return NULL;
6177 }
6178 EXPORT_SYMBOL(gro_find_complete_by_type);
6179
6180 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6181                                     struct sk_buff *skb,
6182                                     gro_result_t ret)
6183 {
6184         switch (ret) {
6185         case GRO_NORMAL:
6186                 gro_normal_one(napi, skb, 1);
6187                 break;
6188
6189         case GRO_MERGED_FREE:
6190                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6191                         napi_skb_free_stolen_head(skb);
6192                 else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6193                         __kfree_skb(skb);
6194                 else
6195                         __kfree_skb_defer(skb);
6196                 break;
6197
6198         case GRO_HELD:
6199         case GRO_MERGED:
6200         case GRO_CONSUMED:
6201                 break;
6202         }
6203
6204         return ret;
6205 }
6206
6207 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6208 {
6209         gro_result_t ret;
6210
6211         skb_mark_napi_id(skb, napi);
6212         trace_napi_gro_receive_entry(skb);
6213
6214         skb_gro_reset_offset(skb, 0);
6215
6216         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6217         trace_napi_gro_receive_exit(ret);
6218
6219         return ret;
6220 }
6221 EXPORT_SYMBOL(napi_gro_receive);
6222
6223 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6224 {
6225         if (unlikely(skb->pfmemalloc)) {
6226                 consume_skb(skb);
6227                 return;
6228         }
6229         __skb_pull(skb, skb_headlen(skb));
6230         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6231         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6232         __vlan_hwaccel_clear_tag(skb);
6233         skb->dev = napi->dev;
6234         skb->skb_iif = 0;
6235
6236         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6237         skb->pkt_type = PACKET_HOST;
6238
6239         skb->encapsulation = 0;
6240         skb_shinfo(skb)->gso_type = 0;
6241         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6242         if (unlikely(skb->slow_gro)) {
6243                 skb_orphan(skb);
6244                 skb_ext_reset(skb);
6245                 nf_reset_ct(skb);
6246                 skb->slow_gro = 0;
6247         }
6248
6249         napi->skb = skb;
6250 }
6251
6252 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6253 {
6254         struct sk_buff *skb = napi->skb;
6255
6256         if (!skb) {
6257                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6258                 if (skb) {
6259                         napi->skb = skb;
6260                         skb_mark_napi_id(skb, napi);
6261                 }
6262         }
6263         return skb;
6264 }
6265 EXPORT_SYMBOL(napi_get_frags);
6266
6267 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6268                                       struct sk_buff *skb,
6269                                       gro_result_t ret)
6270 {
6271         switch (ret) {
6272         case GRO_NORMAL:
6273         case GRO_HELD:
6274                 __skb_push(skb, ETH_HLEN);
6275                 skb->protocol = eth_type_trans(skb, skb->dev);
6276                 if (ret == GRO_NORMAL)
6277                         gro_normal_one(napi, skb, 1);
6278                 break;
6279
6280         case GRO_MERGED_FREE:
6281                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6282                         napi_skb_free_stolen_head(skb);
6283                 else
6284                         napi_reuse_skb(napi, skb);
6285                 break;
6286
6287         case GRO_MERGED:
6288         case GRO_CONSUMED:
6289                 break;
6290         }
6291
6292         return ret;
6293 }
6294
6295 /* Upper GRO stack assumes network header starts at gro_offset=0
6296  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6297  * We copy ethernet header into skb->data to have a common layout.
6298  */
6299 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6300 {
6301         struct sk_buff *skb = napi->skb;
6302         const struct ethhdr *eth;
6303         unsigned int hlen = sizeof(*eth);
6304
6305         napi->skb = NULL;
6306
6307         skb_reset_mac_header(skb);
6308         skb_gro_reset_offset(skb, hlen);
6309
6310         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6311                 eth = skb_gro_header_slow(skb, hlen, 0);
6312                 if (unlikely(!eth)) {
6313                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6314                                              __func__, napi->dev->name);
6315                         napi_reuse_skb(napi, skb);
6316                         return NULL;
6317                 }
6318         } else {
6319                 eth = (const struct ethhdr *)skb->data;
6320                 gro_pull_from_frag0(skb, hlen);
6321                 NAPI_GRO_CB(skb)->frag0 += hlen;
6322                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6323         }
6324         __skb_pull(skb, hlen);
6325
6326         /*
6327          * This works because the only protocols we care about don't require
6328          * special handling.
6329          * We'll fix it up properly in napi_frags_finish()
6330          */
6331         skb->protocol = eth->h_proto;
6332
6333         return skb;
6334 }
6335
6336 gro_result_t napi_gro_frags(struct napi_struct *napi)
6337 {
6338         gro_result_t ret;
6339         struct sk_buff *skb = napi_frags_skb(napi);
6340
6341         trace_napi_gro_frags_entry(skb);
6342
6343         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6344         trace_napi_gro_frags_exit(ret);
6345
6346         return ret;
6347 }
6348 EXPORT_SYMBOL(napi_gro_frags);
6349
6350 /* Compute the checksum from gro_offset and return the folded value
6351  * after adding in any pseudo checksum.
6352  */
6353 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6354 {
6355         __wsum wsum;
6356         __sum16 sum;
6357
6358         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6359
6360         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6361         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6362         /* See comments in __skb_checksum_complete(). */
6363         if (likely(!sum)) {
6364                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6365                     !skb->csum_complete_sw)
6366                         netdev_rx_csum_fault(skb->dev, skb);
6367         }
6368
6369         NAPI_GRO_CB(skb)->csum = wsum;
6370         NAPI_GRO_CB(skb)->csum_valid = 1;
6371
6372         return sum;
6373 }
6374 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6375
6376 static void net_rps_send_ipi(struct softnet_data *remsd)
6377 {
6378 #ifdef CONFIG_RPS
6379         while (remsd) {
6380                 struct softnet_data *next = remsd->rps_ipi_next;
6381
6382                 if (cpu_online(remsd->cpu))
6383                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6384                 remsd = next;
6385         }
6386 #endif
6387 }
6388
6389 /*
6390  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6391  * Note: called with local irq disabled, but exits with local irq enabled.
6392  */
6393 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6394 {
6395 #ifdef CONFIG_RPS
6396         struct softnet_data *remsd = sd->rps_ipi_list;
6397
6398         if (remsd) {
6399                 sd->rps_ipi_list = NULL;
6400
6401                 local_irq_enable();
6402
6403                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6404                 net_rps_send_ipi(remsd);
6405         } else
6406 #endif
6407                 local_irq_enable();
6408 }
6409
6410 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6411 {
6412 #ifdef CONFIG_RPS
6413         return sd->rps_ipi_list != NULL;
6414 #else
6415         return false;
6416 #endif
6417 }
6418
6419 static int process_backlog(struct napi_struct *napi, int quota)
6420 {
6421         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6422         bool again = true;
6423         int work = 0;
6424
6425         /* Check if we have pending ipi, its better to send them now,
6426          * not waiting net_rx_action() end.
6427          */
6428         if (sd_has_rps_ipi_waiting(sd)) {
6429                 local_irq_disable();
6430                 net_rps_action_and_irq_enable(sd);
6431         }
6432
6433         napi->weight = dev_rx_weight;
6434         while (again) {
6435                 struct sk_buff *skb;
6436
6437                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6438                         rcu_read_lock();
6439                         __netif_receive_skb(skb);
6440                         rcu_read_unlock();
6441                         input_queue_head_incr(sd);
6442                         if (++work >= quota)
6443                                 return work;
6444
6445                 }
6446
6447                 local_irq_disable();
6448                 rps_lock(sd);
6449                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6450                         /*
6451                          * Inline a custom version of __napi_complete().
6452                          * only current cpu owns and manipulates this napi,
6453                          * and NAPI_STATE_SCHED is the only possible flag set
6454                          * on backlog.
6455                          * We can use a plain write instead of clear_bit(),
6456                          * and we dont need an smp_mb() memory barrier.
6457                          */
6458                         napi->state = 0;
6459                         again = false;
6460                 } else {
6461                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6462                                                    &sd->process_queue);
6463                 }
6464                 rps_unlock(sd);
6465                 local_irq_enable();
6466         }
6467
6468         return work;
6469 }
6470
6471 /**
6472  * __napi_schedule - schedule for receive
6473  * @n: entry to schedule
6474  *
6475  * The entry's receive function will be scheduled to run.
6476  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6477  */
6478 void __napi_schedule(struct napi_struct *n)
6479 {
6480         unsigned long flags;
6481
6482         local_irq_save(flags);
6483         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6484         local_irq_restore(flags);
6485 }
6486 EXPORT_SYMBOL(__napi_schedule);
6487
6488 /**
6489  *      napi_schedule_prep - check if napi can be scheduled
6490  *      @n: napi context
6491  *
6492  * Test if NAPI routine is already running, and if not mark
6493  * it as running.  This is used as a condition variable to
6494  * insure only one NAPI poll instance runs.  We also make
6495  * sure there is no pending NAPI disable.
6496  */
6497 bool napi_schedule_prep(struct napi_struct *n)
6498 {
6499         unsigned long val, new;
6500
6501         do {
6502                 val = READ_ONCE(n->state);
6503                 if (unlikely(val & NAPIF_STATE_DISABLE))
6504                         return false;
6505                 new = val | NAPIF_STATE_SCHED;
6506
6507                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6508                  * This was suggested by Alexander Duyck, as compiler
6509                  * emits better code than :
6510                  * if (val & NAPIF_STATE_SCHED)
6511                  *     new |= NAPIF_STATE_MISSED;
6512                  */
6513                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6514                                                    NAPIF_STATE_MISSED;
6515         } while (cmpxchg(&n->state, val, new) != val);
6516
6517         return !(val & NAPIF_STATE_SCHED);
6518 }
6519 EXPORT_SYMBOL(napi_schedule_prep);
6520
6521 /**
6522  * __napi_schedule_irqoff - schedule for receive
6523  * @n: entry to schedule
6524  *
6525  * Variant of __napi_schedule() assuming hard irqs are masked.
6526  *
6527  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6528  * because the interrupt disabled assumption might not be true
6529  * due to force-threaded interrupts and spinlock substitution.
6530  */
6531 void __napi_schedule_irqoff(struct napi_struct *n)
6532 {
6533         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6534                 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6535         else
6536                 __napi_schedule(n);
6537 }
6538 EXPORT_SYMBOL(__napi_schedule_irqoff);
6539
6540 bool napi_complete_done(struct napi_struct *n, int work_done)
6541 {
6542         unsigned long flags, val, new, timeout = 0;
6543         bool ret = true;
6544
6545         /*
6546          * 1) Don't let napi dequeue from the cpu poll list
6547          *    just in case its running on a different cpu.
6548          * 2) If we are busy polling, do nothing here, we have
6549          *    the guarantee we will be called later.
6550          */
6551         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6552                                  NAPIF_STATE_IN_BUSY_POLL)))
6553                 return false;
6554
6555         if (work_done) {
6556                 if (n->gro_bitmask)
6557                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6558                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6559         }
6560         if (n->defer_hard_irqs_count > 0) {
6561                 n->defer_hard_irqs_count--;
6562                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6563                 if (timeout)
6564                         ret = false;
6565         }
6566         if (n->gro_bitmask) {
6567                 /* When the NAPI instance uses a timeout and keeps postponing
6568                  * it, we need to bound somehow the time packets are kept in
6569                  * the GRO layer
6570                  */
6571                 napi_gro_flush(n, !!timeout);
6572         }
6573
6574         gro_normal_list(n);
6575
6576         if (unlikely(!list_empty(&n->poll_list))) {
6577                 /* If n->poll_list is not empty, we need to mask irqs */
6578                 local_irq_save(flags);
6579                 list_del_init(&n->poll_list);
6580                 local_irq_restore(flags);
6581         }
6582
6583         do {
6584                 val = READ_ONCE(n->state);
6585
6586                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6587
6588                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6589                               NAPIF_STATE_SCHED_THREADED |
6590                               NAPIF_STATE_PREFER_BUSY_POLL);
6591
6592                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6593                  * because we will call napi->poll() one more time.
6594                  * This C code was suggested by Alexander Duyck to help gcc.
6595                  */
6596                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6597                                                     NAPIF_STATE_SCHED;
6598         } while (cmpxchg(&n->state, val, new) != val);
6599
6600         if (unlikely(val & NAPIF_STATE_MISSED)) {
6601                 __napi_schedule(n);
6602                 return false;
6603         }
6604
6605         if (timeout)
6606                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6607                               HRTIMER_MODE_REL_PINNED);
6608         return ret;
6609 }
6610 EXPORT_SYMBOL(napi_complete_done);
6611
6612 /* must be called under rcu_read_lock(), as we dont take a reference */
6613 static struct napi_struct *napi_by_id(unsigned int napi_id)
6614 {
6615         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6616         struct napi_struct *napi;
6617
6618         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6619                 if (napi->napi_id == napi_id)
6620                         return napi;
6621
6622         return NULL;
6623 }
6624
6625 #if defined(CONFIG_NET_RX_BUSY_POLL)
6626
6627 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6628 {
6629         if (!skip_schedule) {
6630                 gro_normal_list(napi);
6631                 __napi_schedule(napi);
6632                 return;
6633         }
6634
6635         if (napi->gro_bitmask) {
6636                 /* flush too old packets
6637                  * If HZ < 1000, flush all packets.
6638                  */
6639                 napi_gro_flush(napi, HZ >= 1000);
6640         }
6641
6642         gro_normal_list(napi);
6643         clear_bit(NAPI_STATE_SCHED, &napi->state);
6644 }
6645
6646 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6647                            u16 budget)
6648 {
6649         bool skip_schedule = false;
6650         unsigned long timeout;
6651         int rc;
6652
6653         /* Busy polling means there is a high chance device driver hard irq
6654          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6655          * set in napi_schedule_prep().
6656          * Since we are about to call napi->poll() once more, we can safely
6657          * clear NAPI_STATE_MISSED.
6658          *
6659          * Note: x86 could use a single "lock and ..." instruction
6660          * to perform these two clear_bit()
6661          */
6662         clear_bit(NAPI_STATE_MISSED, &napi->state);
6663         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6664
6665         local_bh_disable();
6666
6667         if (prefer_busy_poll) {
6668                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6669                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6670                 if (napi->defer_hard_irqs_count && timeout) {
6671                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6672                         skip_schedule = true;
6673                 }
6674         }
6675
6676         /* All we really want here is to re-enable device interrupts.
6677          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6678          */
6679         rc = napi->poll(napi, budget);
6680         /* We can't gro_normal_list() here, because napi->poll() might have
6681          * rearmed the napi (napi_complete_done()) in which case it could
6682          * already be running on another CPU.
6683          */
6684         trace_napi_poll(napi, rc, budget);
6685         netpoll_poll_unlock(have_poll_lock);
6686         if (rc == budget)
6687                 __busy_poll_stop(napi, skip_schedule);
6688         local_bh_enable();
6689 }
6690
6691 void napi_busy_loop(unsigned int napi_id,
6692                     bool (*loop_end)(void *, unsigned long),
6693                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6694 {
6695         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6696         int (*napi_poll)(struct napi_struct *napi, int budget);
6697         void *have_poll_lock = NULL;
6698         struct napi_struct *napi;
6699
6700 restart:
6701         napi_poll = NULL;
6702
6703         rcu_read_lock();
6704
6705         napi = napi_by_id(napi_id);
6706         if (!napi)
6707                 goto out;
6708
6709         preempt_disable();
6710         for (;;) {
6711                 int work = 0;
6712
6713                 local_bh_disable();
6714                 if (!napi_poll) {
6715                         unsigned long val = READ_ONCE(napi->state);
6716
6717                         /* If multiple threads are competing for this napi,
6718                          * we avoid dirtying napi->state as much as we can.
6719                          */
6720                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6721                                    NAPIF_STATE_IN_BUSY_POLL)) {
6722                                 if (prefer_busy_poll)
6723                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6724                                 goto count;
6725                         }
6726                         if (cmpxchg(&napi->state, val,
6727                                     val | NAPIF_STATE_IN_BUSY_POLL |
6728                                           NAPIF_STATE_SCHED) != val) {
6729                                 if (prefer_busy_poll)
6730                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6731                                 goto count;
6732                         }
6733                         have_poll_lock = netpoll_poll_lock(napi);
6734                         napi_poll = napi->poll;
6735                 }
6736                 work = napi_poll(napi, budget);
6737                 trace_napi_poll(napi, work, budget);
6738                 gro_normal_list(napi);
6739 count:
6740                 if (work > 0)
6741                         __NET_ADD_STATS(dev_net(napi->dev),
6742                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6743                 local_bh_enable();
6744
6745                 if (!loop_end || loop_end(loop_end_arg, start_time))
6746                         break;
6747
6748                 if (unlikely(need_resched())) {
6749                         if (napi_poll)
6750                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6751                         preempt_enable();
6752                         rcu_read_unlock();
6753                         cond_resched();
6754                         if (loop_end(loop_end_arg, start_time))
6755                                 return;
6756                         goto restart;
6757                 }
6758                 cpu_relax();
6759         }
6760         if (napi_poll)
6761                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6762         preempt_enable();
6763 out:
6764         rcu_read_unlock();
6765 }
6766 EXPORT_SYMBOL(napi_busy_loop);
6767
6768 #endif /* CONFIG_NET_RX_BUSY_POLL */
6769
6770 static void napi_hash_add(struct napi_struct *napi)
6771 {
6772         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6773                 return;
6774
6775         spin_lock(&napi_hash_lock);
6776
6777         /* 0..NR_CPUS range is reserved for sender_cpu use */
6778         do {
6779                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6780                         napi_gen_id = MIN_NAPI_ID;
6781         } while (napi_by_id(napi_gen_id));
6782         napi->napi_id = napi_gen_id;
6783
6784         hlist_add_head_rcu(&napi->napi_hash_node,
6785                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6786
6787         spin_unlock(&napi_hash_lock);
6788 }
6789
6790 /* Warning : caller is responsible to make sure rcu grace period
6791  * is respected before freeing memory containing @napi
6792  */
6793 static void napi_hash_del(struct napi_struct *napi)
6794 {
6795         spin_lock(&napi_hash_lock);
6796
6797         hlist_del_init_rcu(&napi->napi_hash_node);
6798
6799         spin_unlock(&napi_hash_lock);
6800 }
6801
6802 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6803 {
6804         struct napi_struct *napi;
6805
6806         napi = container_of(timer, struct napi_struct, timer);
6807
6808         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6809          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6810          */
6811         if (!napi_disable_pending(napi) &&
6812             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6813                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6814                 __napi_schedule_irqoff(napi);
6815         }
6816
6817         return HRTIMER_NORESTART;
6818 }
6819
6820 static void init_gro_hash(struct napi_struct *napi)
6821 {
6822         int i;
6823
6824         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6825                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6826                 napi->gro_hash[i].count = 0;
6827         }
6828         napi->gro_bitmask = 0;
6829 }
6830
6831 int dev_set_threaded(struct net_device *dev, bool threaded)
6832 {
6833         struct napi_struct *napi;
6834         int err = 0;
6835
6836         if (dev->threaded == threaded)
6837                 return 0;
6838
6839         if (threaded) {
6840                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6841                         if (!napi->thread) {
6842                                 err = napi_kthread_create(napi);
6843                                 if (err) {
6844                                         threaded = false;
6845                                         break;
6846                                 }
6847                         }
6848                 }
6849         }
6850
6851         dev->threaded = threaded;
6852
6853         /* Make sure kthread is created before THREADED bit
6854          * is set.
6855          */
6856         smp_mb__before_atomic();
6857
6858         /* Setting/unsetting threaded mode on a napi might not immediately
6859          * take effect, if the current napi instance is actively being
6860          * polled. In this case, the switch between threaded mode and
6861          * softirq mode will happen in the next round of napi_schedule().
6862          * This should not cause hiccups/stalls to the live traffic.
6863          */
6864         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6865                 if (threaded)
6866                         set_bit(NAPI_STATE_THREADED, &napi->state);
6867                 else
6868                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6869         }
6870
6871         return err;
6872 }
6873 EXPORT_SYMBOL(dev_set_threaded);
6874
6875 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6876                     int (*poll)(struct napi_struct *, int), int weight)
6877 {
6878         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6879                 return;
6880
6881         INIT_LIST_HEAD(&napi->poll_list);
6882         INIT_HLIST_NODE(&napi->napi_hash_node);
6883         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6884         napi->timer.function = napi_watchdog;
6885         init_gro_hash(napi);
6886         napi->skb = NULL;
6887         INIT_LIST_HEAD(&napi->rx_list);
6888         napi->rx_count = 0;
6889         napi->poll = poll;
6890         if (weight > NAPI_POLL_WEIGHT)
6891                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6892                                 weight);
6893         napi->weight = weight;
6894         napi->dev = dev;
6895 #ifdef CONFIG_NETPOLL
6896         napi->poll_owner = -1;
6897 #endif
6898         set_bit(NAPI_STATE_SCHED, &napi->state);
6899         set_bit(NAPI_STATE_NPSVC, &napi->state);
6900         list_add_rcu(&napi->dev_list, &dev->napi_list);
6901         napi_hash_add(napi);
6902         /* Create kthread for this napi if dev->threaded is set.
6903          * Clear dev->threaded if kthread creation failed so that
6904          * threaded mode will not be enabled in napi_enable().
6905          */
6906         if (dev->threaded && napi_kthread_create(napi))
6907                 dev->threaded = 0;
6908 }
6909 EXPORT_SYMBOL(netif_napi_add);
6910
6911 void napi_disable(struct napi_struct *n)
6912 {
6913         might_sleep();
6914         set_bit(NAPI_STATE_DISABLE, &n->state);
6915
6916         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6917                 msleep(1);
6918         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6919                 msleep(1);
6920
6921         hrtimer_cancel(&n->timer);
6922
6923         clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6924         clear_bit(NAPI_STATE_DISABLE, &n->state);
6925         clear_bit(NAPI_STATE_THREADED, &n->state);
6926 }
6927 EXPORT_SYMBOL(napi_disable);
6928
6929 /**
6930  *      napi_enable - enable NAPI scheduling
6931  *      @n: NAPI context
6932  *
6933  * Resume NAPI from being scheduled on this context.
6934  * Must be paired with napi_disable.
6935  */
6936 void napi_enable(struct napi_struct *n)
6937 {
6938         unsigned long val, new;
6939
6940         do {
6941                 val = READ_ONCE(n->state);
6942                 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6943
6944                 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6945                 if (n->dev->threaded && n->thread)
6946                         new |= NAPIF_STATE_THREADED;
6947         } while (cmpxchg(&n->state, val, new) != val);
6948 }
6949 EXPORT_SYMBOL(napi_enable);
6950
6951 static void flush_gro_hash(struct napi_struct *napi)
6952 {
6953         int i;
6954
6955         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6956                 struct sk_buff *skb, *n;
6957
6958                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6959                         kfree_skb(skb);
6960                 napi->gro_hash[i].count = 0;
6961         }
6962 }
6963
6964 /* Must be called in process context */
6965 void __netif_napi_del(struct napi_struct *napi)
6966 {
6967         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6968                 return;
6969
6970         napi_hash_del(napi);
6971         list_del_rcu(&napi->dev_list);
6972         napi_free_frags(napi);
6973
6974         flush_gro_hash(napi);
6975         napi->gro_bitmask = 0;
6976
6977         if (napi->thread) {
6978                 kthread_stop(napi->thread);
6979                 napi->thread = NULL;
6980         }
6981 }
6982 EXPORT_SYMBOL(__netif_napi_del);
6983
6984 static int __napi_poll(struct napi_struct *n, bool *repoll)
6985 {
6986         int work, weight;
6987
6988         weight = n->weight;
6989
6990         /* This NAPI_STATE_SCHED test is for avoiding a race
6991          * with netpoll's poll_napi().  Only the entity which
6992          * obtains the lock and sees NAPI_STATE_SCHED set will
6993          * actually make the ->poll() call.  Therefore we avoid
6994          * accidentally calling ->poll() when NAPI is not scheduled.
6995          */
6996         work = 0;
6997         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6998                 work = n->poll(n, weight);
6999                 trace_napi_poll(n, work, weight);
7000         }
7001
7002         if (unlikely(work > weight))
7003                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7004                             n->poll, work, weight);
7005
7006         if (likely(work < weight))
7007                 return work;
7008
7009         /* Drivers must not modify the NAPI state if they
7010          * consume the entire weight.  In such cases this code
7011          * still "owns" the NAPI instance and therefore can
7012          * move the instance around on the list at-will.
7013          */
7014         if (unlikely(napi_disable_pending(n))) {
7015                 napi_complete(n);
7016                 return work;
7017         }
7018
7019         /* The NAPI context has more processing work, but busy-polling
7020          * is preferred. Exit early.
7021          */
7022         if (napi_prefer_busy_poll(n)) {
7023                 if (napi_complete_done(n, work)) {
7024                         /* If timeout is not set, we need to make sure
7025                          * that the NAPI is re-scheduled.
7026                          */
7027                         napi_schedule(n);
7028                 }
7029                 return work;
7030         }
7031
7032         if (n->gro_bitmask) {
7033                 /* flush too old packets
7034                  * If HZ < 1000, flush all packets.
7035                  */
7036                 napi_gro_flush(n, HZ >= 1000);
7037         }
7038
7039         gro_normal_list(n);
7040
7041         /* Some drivers may have called napi_schedule
7042          * prior to exhausting their budget.
7043          */
7044         if (unlikely(!list_empty(&n->poll_list))) {
7045                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7046                              n->dev ? n->dev->name : "backlog");
7047                 return work;
7048         }
7049
7050         *repoll = true;
7051
7052         return work;
7053 }
7054
7055 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7056 {
7057         bool do_repoll = false;
7058         void *have;
7059         int work;
7060
7061         list_del_init(&n->poll_list);
7062
7063         have = netpoll_poll_lock(n);
7064
7065         work = __napi_poll(n, &do_repoll);
7066
7067         if (do_repoll)
7068                 list_add_tail(&n->poll_list, repoll);
7069
7070         netpoll_poll_unlock(have);
7071
7072         return work;
7073 }
7074
7075 static int napi_thread_wait(struct napi_struct *napi)
7076 {
7077         bool woken = false;
7078
7079         set_current_state(TASK_INTERRUPTIBLE);
7080
7081         while (!kthread_should_stop()) {
7082                 /* Testing SCHED_THREADED bit here to make sure the current
7083                  * kthread owns this napi and could poll on this napi.
7084                  * Testing SCHED bit is not enough because SCHED bit might be
7085                  * set by some other busy poll thread or by napi_disable().
7086                  */
7087                 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7088                         WARN_ON(!list_empty(&napi->poll_list));
7089                         __set_current_state(TASK_RUNNING);
7090                         return 0;
7091                 }
7092
7093                 schedule();
7094                 /* woken being true indicates this thread owns this napi. */
7095                 woken = true;
7096                 set_current_state(TASK_INTERRUPTIBLE);
7097         }
7098         __set_current_state(TASK_RUNNING);
7099
7100         return -1;
7101 }
7102
7103 static int napi_threaded_poll(void *data)
7104 {
7105         struct napi_struct *napi = data;
7106         void *have;
7107
7108         while (!napi_thread_wait(napi)) {
7109                 for (;;) {
7110                         bool repoll = false;
7111
7112                         local_bh_disable();
7113
7114                         have = netpoll_poll_lock(napi);
7115                         __napi_poll(napi, &repoll);
7116                         netpoll_poll_unlock(have);
7117
7118                         local_bh_enable();
7119
7120                         if (!repoll)
7121                                 break;
7122
7123                         cond_resched();
7124                 }
7125         }
7126         return 0;
7127 }
7128
7129 static __latent_entropy void net_rx_action(struct softirq_action *h)
7130 {
7131         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7132         unsigned long time_limit = jiffies +
7133                 usecs_to_jiffies(netdev_budget_usecs);
7134         int budget = netdev_budget;
7135         LIST_HEAD(list);
7136         LIST_HEAD(repoll);
7137
7138         local_irq_disable();
7139         list_splice_init(&sd->poll_list, &list);
7140         local_irq_enable();
7141
7142         for (;;) {
7143                 struct napi_struct *n;
7144
7145                 if (list_empty(&list)) {
7146                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7147                                 return;
7148                         break;
7149                 }
7150
7151                 n = list_first_entry(&list, struct napi_struct, poll_list);
7152                 budget -= napi_poll(n, &repoll);
7153
7154                 /* If softirq window is exhausted then punt.
7155                  * Allow this to run for 2 jiffies since which will allow
7156                  * an average latency of 1.5/HZ.
7157                  */
7158                 if (unlikely(budget <= 0 ||
7159                              time_after_eq(jiffies, time_limit))) {
7160                         sd->time_squeeze++;
7161                         break;
7162                 }
7163         }
7164
7165         local_irq_disable();
7166
7167         list_splice_tail_init(&sd->poll_list, &list);
7168         list_splice_tail(&repoll, &list);
7169         list_splice(&list, &sd->poll_list);
7170         if (!list_empty(&sd->poll_list))
7171                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7172
7173         net_rps_action_and_irq_enable(sd);
7174 }
7175
7176 struct netdev_adjacent {
7177         struct net_device *dev;
7178
7179         /* upper master flag, there can only be one master device per list */
7180         bool master;
7181
7182         /* lookup ignore flag */
7183         bool ignore;
7184
7185         /* counter for the number of times this device was added to us */
7186         u16 ref_nr;
7187
7188         /* private field for the users */
7189         void *private;
7190
7191         struct list_head list;
7192         struct rcu_head rcu;
7193 };
7194
7195 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7196                                                  struct list_head *adj_list)
7197 {
7198         struct netdev_adjacent *adj;
7199
7200         list_for_each_entry(adj, adj_list, list) {
7201                 if (adj->dev == adj_dev)
7202                         return adj;
7203         }
7204         return NULL;
7205 }
7206
7207 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7208                                     struct netdev_nested_priv *priv)
7209 {
7210         struct net_device *dev = (struct net_device *)priv->data;
7211
7212         return upper_dev == dev;
7213 }
7214
7215 /**
7216  * netdev_has_upper_dev - Check if device is linked to an upper device
7217  * @dev: device
7218  * @upper_dev: upper device to check
7219  *
7220  * Find out if a device is linked to specified upper device and return true
7221  * in case it is. Note that this checks only immediate upper device,
7222  * not through a complete stack of devices. The caller must hold the RTNL lock.
7223  */
7224 bool netdev_has_upper_dev(struct net_device *dev,
7225                           struct net_device *upper_dev)
7226 {
7227         struct netdev_nested_priv priv = {
7228                 .data = (void *)upper_dev,
7229         };
7230
7231         ASSERT_RTNL();
7232
7233         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7234                                              &priv);
7235 }
7236 EXPORT_SYMBOL(netdev_has_upper_dev);
7237
7238 /**
7239  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7240  * @dev: device
7241  * @upper_dev: upper device to check
7242  *
7243  * Find out if a device is linked to specified upper device and return true
7244  * in case it is. Note that this checks the entire upper device chain.
7245  * The caller must hold rcu lock.
7246  */
7247
7248 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7249                                   struct net_device *upper_dev)
7250 {
7251         struct netdev_nested_priv priv = {
7252                 .data = (void *)upper_dev,
7253         };
7254
7255         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7256                                                &priv);
7257 }
7258 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7259
7260 /**
7261  * netdev_has_any_upper_dev - Check if device is linked to some device
7262  * @dev: device
7263  *
7264  * Find out if a device is linked to an upper device and return true in case
7265  * it is. The caller must hold the RTNL lock.
7266  */
7267 bool netdev_has_any_upper_dev(struct net_device *dev)
7268 {
7269         ASSERT_RTNL();
7270
7271         return !list_empty(&dev->adj_list.upper);
7272 }
7273 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7274
7275 /**
7276  * netdev_master_upper_dev_get - Get master upper device
7277  * @dev: device
7278  *
7279  * Find a master upper device and return pointer to it or NULL in case
7280  * it's not there. The caller must hold the RTNL lock.
7281  */
7282 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7283 {
7284         struct netdev_adjacent *upper;
7285
7286         ASSERT_RTNL();
7287
7288         if (list_empty(&dev->adj_list.upper))
7289                 return NULL;
7290
7291         upper = list_first_entry(&dev->adj_list.upper,
7292                                  struct netdev_adjacent, list);
7293         if (likely(upper->master))
7294                 return upper->dev;
7295         return NULL;
7296 }
7297 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7298
7299 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7300 {
7301         struct netdev_adjacent *upper;
7302
7303         ASSERT_RTNL();
7304
7305         if (list_empty(&dev->adj_list.upper))
7306                 return NULL;
7307
7308         upper = list_first_entry(&dev->adj_list.upper,
7309                                  struct netdev_adjacent, list);
7310         if (likely(upper->master) && !upper->ignore)
7311                 return upper->dev;
7312         return NULL;
7313 }
7314
7315 /**
7316  * netdev_has_any_lower_dev - Check if device is linked to some device
7317  * @dev: device
7318  *
7319  * Find out if a device is linked to a lower device and return true in case
7320  * it is. The caller must hold the RTNL lock.
7321  */
7322 static bool netdev_has_any_lower_dev(struct net_device *dev)
7323 {
7324         ASSERT_RTNL();
7325
7326         return !list_empty(&dev->adj_list.lower);
7327 }
7328
7329 void *netdev_adjacent_get_private(struct list_head *adj_list)
7330 {
7331         struct netdev_adjacent *adj;
7332
7333         adj = list_entry(adj_list, struct netdev_adjacent, list);
7334
7335         return adj->private;
7336 }
7337 EXPORT_SYMBOL(netdev_adjacent_get_private);
7338
7339 /**
7340  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7341  * @dev: device
7342  * @iter: list_head ** of the current position
7343  *
7344  * Gets the next device from the dev's upper list, starting from iter
7345  * position. The caller must hold RCU read lock.
7346  */
7347 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7348                                                  struct list_head **iter)
7349 {
7350         struct netdev_adjacent *upper;
7351
7352         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7353
7354         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7355
7356         if (&upper->list == &dev->adj_list.upper)
7357                 return NULL;
7358
7359         *iter = &upper->list;
7360
7361         return upper->dev;
7362 }
7363 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7364
7365 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7366                                                   struct list_head **iter,
7367                                                   bool *ignore)
7368 {
7369         struct netdev_adjacent *upper;
7370
7371         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7372
7373         if (&upper->list == &dev->adj_list.upper)
7374                 return NULL;
7375
7376         *iter = &upper->list;
7377         *ignore = upper->ignore;
7378
7379         return upper->dev;
7380 }
7381
7382 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7383                                                     struct list_head **iter)
7384 {
7385         struct netdev_adjacent *upper;
7386
7387         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7388
7389         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7390
7391         if (&upper->list == &dev->adj_list.upper)
7392                 return NULL;
7393
7394         *iter = &upper->list;
7395
7396         return upper->dev;
7397 }
7398
7399 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7400                                        int (*fn)(struct net_device *dev,
7401                                          struct netdev_nested_priv *priv),
7402                                        struct netdev_nested_priv *priv)
7403 {
7404         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7405         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7406         int ret, cur = 0;
7407         bool ignore;
7408
7409         now = dev;
7410         iter = &dev->adj_list.upper;
7411
7412         while (1) {
7413                 if (now != dev) {
7414                         ret = fn(now, priv);
7415                         if (ret)
7416                                 return ret;
7417                 }
7418
7419                 next = NULL;
7420                 while (1) {
7421                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7422                         if (!udev)
7423                                 break;
7424                         if (ignore)
7425                                 continue;
7426
7427                         next = udev;
7428                         niter = &udev->adj_list.upper;
7429                         dev_stack[cur] = now;
7430                         iter_stack[cur++] = iter;
7431                         break;
7432                 }
7433
7434                 if (!next) {
7435                         if (!cur)
7436                                 return 0;
7437                         next = dev_stack[--cur];
7438                         niter = iter_stack[cur];
7439                 }
7440
7441                 now = next;
7442                 iter = niter;
7443         }
7444
7445         return 0;
7446 }
7447
7448 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7449                                   int (*fn)(struct net_device *dev,
7450                                             struct netdev_nested_priv *priv),
7451                                   struct netdev_nested_priv *priv)
7452 {
7453         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7454         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7455         int ret, cur = 0;
7456
7457         now = dev;
7458         iter = &dev->adj_list.upper;
7459
7460         while (1) {
7461                 if (now != dev) {
7462                         ret = fn(now, priv);
7463                         if (ret)
7464                                 return ret;
7465                 }
7466
7467                 next = NULL;
7468                 while (1) {
7469                         udev = netdev_next_upper_dev_rcu(now, &iter);
7470                         if (!udev)
7471                                 break;
7472
7473                         next = udev;
7474                         niter = &udev->adj_list.upper;
7475                         dev_stack[cur] = now;
7476                         iter_stack[cur++] = iter;
7477                         break;
7478                 }
7479
7480                 if (!next) {
7481                         if (!cur)
7482                                 return 0;
7483                         next = dev_stack[--cur];
7484                         niter = iter_stack[cur];
7485                 }
7486
7487                 now = next;
7488                 iter = niter;
7489         }
7490
7491         return 0;
7492 }
7493 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7494
7495 static bool __netdev_has_upper_dev(struct net_device *dev,
7496                                    struct net_device *upper_dev)
7497 {
7498         struct netdev_nested_priv priv = {
7499                 .flags = 0,
7500                 .data = (void *)upper_dev,
7501         };
7502
7503         ASSERT_RTNL();
7504
7505         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7506                                            &priv);
7507 }
7508
7509 /**
7510  * netdev_lower_get_next_private - Get the next ->private from the
7511  *                                 lower neighbour list
7512  * @dev: device
7513  * @iter: list_head ** of the current position
7514  *
7515  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7516  * list, starting from iter position. The caller must hold either hold the
7517  * RTNL lock or its own locking that guarantees that the neighbour lower
7518  * list will remain unchanged.
7519  */
7520 void *netdev_lower_get_next_private(struct net_device *dev,
7521                                     struct list_head **iter)
7522 {
7523         struct netdev_adjacent *lower;
7524
7525         lower = list_entry(*iter, struct netdev_adjacent, list);
7526
7527         if (&lower->list == &dev->adj_list.lower)
7528                 return NULL;
7529
7530         *iter = lower->list.next;
7531
7532         return lower->private;
7533 }
7534 EXPORT_SYMBOL(netdev_lower_get_next_private);
7535
7536 /**
7537  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7538  *                                     lower neighbour list, RCU
7539  *                                     variant
7540  * @dev: device
7541  * @iter: list_head ** of the current position
7542  *
7543  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7544  * list, starting from iter position. The caller must hold RCU read lock.
7545  */
7546 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7547                                         struct list_head **iter)
7548 {
7549         struct netdev_adjacent *lower;
7550
7551         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7552
7553         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7554
7555         if (&lower->list == &dev->adj_list.lower)
7556                 return NULL;
7557
7558         *iter = &lower->list;
7559
7560         return lower->private;
7561 }
7562 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7563
7564 /**
7565  * netdev_lower_get_next - Get the next device from the lower neighbour
7566  *                         list
7567  * @dev: device
7568  * @iter: list_head ** of the current position
7569  *
7570  * Gets the next netdev_adjacent from the dev's lower neighbour
7571  * list, starting from iter position. The caller must hold RTNL lock or
7572  * its own locking that guarantees that the neighbour lower
7573  * list will remain unchanged.
7574  */
7575 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7576 {
7577         struct netdev_adjacent *lower;
7578
7579         lower = list_entry(*iter, struct netdev_adjacent, list);
7580
7581         if (&lower->list == &dev->adj_list.lower)
7582                 return NULL;
7583
7584         *iter = lower->list.next;
7585
7586         return lower->dev;
7587 }
7588 EXPORT_SYMBOL(netdev_lower_get_next);
7589
7590 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7591                                                 struct list_head **iter)
7592 {
7593         struct netdev_adjacent *lower;
7594
7595         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7596
7597         if (&lower->list == &dev->adj_list.lower)
7598                 return NULL;
7599
7600         *iter = &lower->list;
7601
7602         return lower->dev;
7603 }
7604
7605 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7606                                                   struct list_head **iter,
7607                                                   bool *ignore)
7608 {
7609         struct netdev_adjacent *lower;
7610
7611         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7612
7613         if (&lower->list == &dev->adj_list.lower)
7614                 return NULL;
7615
7616         *iter = &lower->list;
7617         *ignore = lower->ignore;
7618
7619         return lower->dev;
7620 }
7621
7622 int netdev_walk_all_lower_dev(struct net_device *dev,
7623                               int (*fn)(struct net_device *dev,
7624                                         struct netdev_nested_priv *priv),
7625                               struct netdev_nested_priv *priv)
7626 {
7627         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7628         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7629         int ret, cur = 0;
7630
7631         now = dev;
7632         iter = &dev->adj_list.lower;
7633
7634         while (1) {
7635                 if (now != dev) {
7636                         ret = fn(now, priv);
7637                         if (ret)
7638                                 return ret;
7639                 }
7640
7641                 next = NULL;
7642                 while (1) {
7643                         ldev = netdev_next_lower_dev(now, &iter);
7644                         if (!ldev)
7645                                 break;
7646
7647                         next = ldev;
7648                         niter = &ldev->adj_list.lower;
7649                         dev_stack[cur] = now;
7650                         iter_stack[cur++] = iter;
7651                         break;
7652                 }
7653
7654                 if (!next) {
7655                         if (!cur)
7656                                 return 0;
7657                         next = dev_stack[--cur];
7658                         niter = iter_stack[cur];
7659                 }
7660
7661                 now = next;
7662                 iter = niter;
7663         }
7664
7665         return 0;
7666 }
7667 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7668
7669 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7670                                        int (*fn)(struct net_device *dev,
7671                                          struct netdev_nested_priv *priv),
7672                                        struct netdev_nested_priv *priv)
7673 {
7674         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7675         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7676         int ret, cur = 0;
7677         bool ignore;
7678
7679         now = dev;
7680         iter = &dev->adj_list.lower;
7681
7682         while (1) {
7683                 if (now != dev) {
7684                         ret = fn(now, priv);
7685                         if (ret)
7686                                 return ret;
7687                 }
7688
7689                 next = NULL;
7690                 while (1) {
7691                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7692                         if (!ldev)
7693                                 break;
7694                         if (ignore)
7695                                 continue;
7696
7697                         next = ldev;
7698                         niter = &ldev->adj_list.lower;
7699                         dev_stack[cur] = now;
7700                         iter_stack[cur++] = iter;
7701                         break;
7702                 }
7703
7704                 if (!next) {
7705                         if (!cur)
7706                                 return 0;
7707                         next = dev_stack[--cur];
7708                         niter = iter_stack[cur];
7709                 }
7710
7711                 now = next;
7712                 iter = niter;
7713         }
7714
7715         return 0;
7716 }
7717
7718 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7719                                              struct list_head **iter)
7720 {
7721         struct netdev_adjacent *lower;
7722
7723         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7724         if (&lower->list == &dev->adj_list.lower)
7725                 return NULL;
7726
7727         *iter = &lower->list;
7728
7729         return lower->dev;
7730 }
7731 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7732
7733 static u8 __netdev_upper_depth(struct net_device *dev)
7734 {
7735         struct net_device *udev;
7736         struct list_head *iter;
7737         u8 max_depth = 0;
7738         bool ignore;
7739
7740         for (iter = &dev->adj_list.upper,
7741              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7742              udev;
7743              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7744                 if (ignore)
7745                         continue;
7746                 if (max_depth < udev->upper_level)
7747                         max_depth = udev->upper_level;
7748         }
7749
7750         return max_depth;
7751 }
7752
7753 static u8 __netdev_lower_depth(struct net_device *dev)
7754 {
7755         struct net_device *ldev;
7756         struct list_head *iter;
7757         u8 max_depth = 0;
7758         bool ignore;
7759
7760         for (iter = &dev->adj_list.lower,
7761              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7762              ldev;
7763              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7764                 if (ignore)
7765                         continue;
7766                 if (max_depth < ldev->lower_level)
7767                         max_depth = ldev->lower_level;
7768         }
7769
7770         return max_depth;
7771 }
7772
7773 static int __netdev_update_upper_level(struct net_device *dev,
7774                                        struct netdev_nested_priv *__unused)
7775 {
7776         dev->upper_level = __netdev_upper_depth(dev) + 1;
7777         return 0;
7778 }
7779
7780 static int __netdev_update_lower_level(struct net_device *dev,
7781                                        struct netdev_nested_priv *priv)
7782 {
7783         dev->lower_level = __netdev_lower_depth(dev) + 1;
7784
7785 #ifdef CONFIG_LOCKDEP
7786         if (!priv)
7787                 return 0;
7788
7789         if (priv->flags & NESTED_SYNC_IMM)
7790                 dev->nested_level = dev->lower_level - 1;
7791         if (priv->flags & NESTED_SYNC_TODO)
7792                 net_unlink_todo(dev);
7793 #endif
7794         return 0;
7795 }
7796
7797 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7798                                   int (*fn)(struct net_device *dev,
7799                                             struct netdev_nested_priv *priv),
7800                                   struct netdev_nested_priv *priv)
7801 {
7802         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7803         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7804         int ret, cur = 0;
7805
7806         now = dev;
7807         iter = &dev->adj_list.lower;
7808
7809         while (1) {
7810                 if (now != dev) {
7811                         ret = fn(now, priv);
7812                         if (ret)
7813                                 return ret;
7814                 }
7815
7816                 next = NULL;
7817                 while (1) {
7818                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7819                         if (!ldev)
7820                                 break;
7821
7822                         next = ldev;
7823                         niter = &ldev->adj_list.lower;
7824                         dev_stack[cur] = now;
7825                         iter_stack[cur++] = iter;
7826                         break;
7827                 }
7828
7829                 if (!next) {
7830                         if (!cur)
7831                                 return 0;
7832                         next = dev_stack[--cur];
7833                         niter = iter_stack[cur];
7834                 }
7835
7836                 now = next;
7837                 iter = niter;
7838         }
7839
7840         return 0;
7841 }
7842 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7843
7844 /**
7845  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7846  *                                     lower neighbour list, RCU
7847  *                                     variant
7848  * @dev: device
7849  *
7850  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7851  * list. The caller must hold RCU read lock.
7852  */
7853 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7854 {
7855         struct netdev_adjacent *lower;
7856
7857         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7858                         struct netdev_adjacent, list);
7859         if (lower)
7860                 return lower->private;
7861         return NULL;
7862 }
7863 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7864
7865 /**
7866  * netdev_master_upper_dev_get_rcu - Get master upper device
7867  * @dev: device
7868  *
7869  * Find a master upper device and return pointer to it or NULL in case
7870  * it's not there. The caller must hold the RCU read lock.
7871  */
7872 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7873 {
7874         struct netdev_adjacent *upper;
7875
7876         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7877                                        struct netdev_adjacent, list);
7878         if (upper && likely(upper->master))
7879                 return upper->dev;
7880         return NULL;
7881 }
7882 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7883
7884 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7885                               struct net_device *adj_dev,
7886                               struct list_head *dev_list)
7887 {
7888         char linkname[IFNAMSIZ+7];
7889
7890         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7891                 "upper_%s" : "lower_%s", adj_dev->name);
7892         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7893                                  linkname);
7894 }
7895 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7896                                char *name,
7897                                struct list_head *dev_list)
7898 {
7899         char linkname[IFNAMSIZ+7];
7900
7901         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7902                 "upper_%s" : "lower_%s", name);
7903         sysfs_remove_link(&(dev->dev.kobj), linkname);
7904 }
7905
7906 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7907                                                  struct net_device *adj_dev,
7908                                                  struct list_head *dev_list)
7909 {
7910         return (dev_list == &dev->adj_list.upper ||
7911                 dev_list == &dev->adj_list.lower) &&
7912                 net_eq(dev_net(dev), dev_net(adj_dev));
7913 }
7914
7915 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7916                                         struct net_device *adj_dev,
7917                                         struct list_head *dev_list,
7918                                         void *private, bool master)
7919 {
7920         struct netdev_adjacent *adj;
7921         int ret;
7922
7923         adj = __netdev_find_adj(adj_dev, dev_list);
7924
7925         if (adj) {
7926                 adj->ref_nr += 1;
7927                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7928                          dev->name, adj_dev->name, adj->ref_nr);
7929
7930                 return 0;
7931         }
7932
7933         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7934         if (!adj)
7935                 return -ENOMEM;
7936
7937         adj->dev = adj_dev;
7938         adj->master = master;
7939         adj->ref_nr = 1;
7940         adj->private = private;
7941         adj->ignore = false;
7942         dev_hold(adj_dev);
7943
7944         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7945                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7946
7947         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7948                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7949                 if (ret)
7950                         goto free_adj;
7951         }
7952
7953         /* Ensure that master link is always the first item in list. */
7954         if (master) {
7955                 ret = sysfs_create_link(&(dev->dev.kobj),
7956                                         &(adj_dev->dev.kobj), "master");
7957                 if (ret)
7958                         goto remove_symlinks;
7959
7960                 list_add_rcu(&adj->list, dev_list);
7961         } else {
7962                 list_add_tail_rcu(&adj->list, dev_list);
7963         }
7964
7965         return 0;
7966
7967 remove_symlinks:
7968         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7969                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7970 free_adj:
7971         kfree(adj);
7972         dev_put(adj_dev);
7973
7974         return ret;
7975 }
7976
7977 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7978                                          struct net_device *adj_dev,
7979                                          u16 ref_nr,
7980                                          struct list_head *dev_list)
7981 {
7982         struct netdev_adjacent *adj;
7983
7984         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7985                  dev->name, adj_dev->name, ref_nr);
7986
7987         adj = __netdev_find_adj(adj_dev, dev_list);
7988
7989         if (!adj) {
7990                 pr_err("Adjacency does not exist for device %s from %s\n",
7991                        dev->name, adj_dev->name);
7992                 WARN_ON(1);
7993                 return;
7994         }
7995
7996         if (adj->ref_nr > ref_nr) {
7997                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7998                          dev->name, adj_dev->name, ref_nr,
7999                          adj->ref_nr - ref_nr);
8000                 adj->ref_nr -= ref_nr;
8001                 return;
8002         }
8003
8004         if (adj->master)
8005                 sysfs_remove_link(&(dev->dev.kobj), "master");
8006
8007         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8008                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8009
8010         list_del_rcu(&adj->list);
8011         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8012                  adj_dev->name, dev->name, adj_dev->name);
8013         dev_put(adj_dev);
8014         kfree_rcu(adj, rcu);
8015 }
8016
8017 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8018                                             struct net_device *upper_dev,
8019                                             struct list_head *up_list,
8020                                             struct list_head *down_list,
8021                                             void *private, bool master)
8022 {
8023         int ret;
8024
8025         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8026                                            private, master);
8027         if (ret)
8028                 return ret;
8029
8030         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8031                                            private, false);
8032         if (ret) {
8033                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8034                 return ret;
8035         }
8036
8037         return 0;
8038 }
8039
8040 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8041                                                struct net_device *upper_dev,
8042                                                u16 ref_nr,
8043                                                struct list_head *up_list,
8044                                                struct list_head *down_list)
8045 {
8046         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8047         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8048 }
8049
8050 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8051                                                 struct net_device *upper_dev,
8052                                                 void *private, bool master)
8053 {
8054         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8055                                                 &dev->adj_list.upper,
8056                                                 &upper_dev->adj_list.lower,
8057                                                 private, master);
8058 }
8059
8060 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8061                                                    struct net_device *upper_dev)
8062 {
8063         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8064                                            &dev->adj_list.upper,
8065                                            &upper_dev->adj_list.lower);
8066 }
8067
8068 static int __netdev_upper_dev_link(struct net_device *dev,
8069                                    struct net_device *upper_dev, bool master,
8070                                    void *upper_priv, void *upper_info,
8071                                    struct netdev_nested_priv *priv,
8072                                    struct netlink_ext_ack *extack)
8073 {
8074         struct netdev_notifier_changeupper_info changeupper_info = {
8075                 .info = {
8076                         .dev = dev,
8077                         .extack = extack,
8078                 },
8079                 .upper_dev = upper_dev,
8080                 .master = master,
8081                 .linking = true,
8082                 .upper_info = upper_info,
8083         };
8084         struct net_device *master_dev;
8085         int ret = 0;
8086
8087         ASSERT_RTNL();
8088
8089         if (dev == upper_dev)
8090                 return -EBUSY;
8091
8092         /* To prevent loops, check if dev is not upper device to upper_dev. */
8093         if (__netdev_has_upper_dev(upper_dev, dev))
8094                 return -EBUSY;
8095
8096         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8097                 return -EMLINK;
8098
8099         if (!master) {
8100                 if (__netdev_has_upper_dev(dev, upper_dev))
8101                         return -EEXIST;
8102         } else {
8103                 master_dev = __netdev_master_upper_dev_get(dev);
8104                 if (master_dev)
8105                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
8106         }
8107
8108         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8109                                             &changeupper_info.info);
8110         ret = notifier_to_errno(ret);
8111         if (ret)
8112                 return ret;
8113
8114         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8115                                                    master);
8116         if (ret)
8117                 return ret;
8118
8119         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8120                                             &changeupper_info.info);
8121         ret = notifier_to_errno(ret);
8122         if (ret)
8123                 goto rollback;
8124
8125         __netdev_update_upper_level(dev, NULL);
8126         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8127
8128         __netdev_update_lower_level(upper_dev, priv);
8129         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8130                                     priv);
8131
8132         return 0;
8133
8134 rollback:
8135         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8136
8137         return ret;
8138 }
8139
8140 /**
8141  * netdev_upper_dev_link - Add a link to the upper device
8142  * @dev: device
8143  * @upper_dev: new upper device
8144  * @extack: netlink extended ack
8145  *
8146  * Adds a link to device which is upper to this one. The caller must hold
8147  * the RTNL lock. On a failure a negative errno code is returned.
8148  * On success the reference counts are adjusted and the function
8149  * returns zero.
8150  */
8151 int netdev_upper_dev_link(struct net_device *dev,
8152                           struct net_device *upper_dev,
8153                           struct netlink_ext_ack *extack)
8154 {
8155         struct netdev_nested_priv priv = {
8156                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8157                 .data = NULL,
8158         };
8159
8160         return __netdev_upper_dev_link(dev, upper_dev, false,
8161                                        NULL, NULL, &priv, extack);
8162 }
8163 EXPORT_SYMBOL(netdev_upper_dev_link);
8164
8165 /**
8166  * netdev_master_upper_dev_link - Add a master link to the upper device
8167  * @dev: device
8168  * @upper_dev: new upper device
8169  * @upper_priv: upper device private
8170  * @upper_info: upper info to be passed down via notifier
8171  * @extack: netlink extended ack
8172  *
8173  * Adds a link to device which is upper to this one. In this case, only
8174  * one master upper device can be linked, although other non-master devices
8175  * might be linked as well. The caller must hold the RTNL lock.
8176  * On a failure a negative errno code is returned. On success the reference
8177  * counts are adjusted and the function returns zero.
8178  */
8179 int netdev_master_upper_dev_link(struct net_device *dev,
8180                                  struct net_device *upper_dev,
8181                                  void *upper_priv, void *upper_info,
8182                                  struct netlink_ext_ack *extack)
8183 {
8184         struct netdev_nested_priv priv = {
8185                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8186                 .data = NULL,
8187         };
8188
8189         return __netdev_upper_dev_link(dev, upper_dev, true,
8190                                        upper_priv, upper_info, &priv, extack);
8191 }
8192 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8193
8194 static void __netdev_upper_dev_unlink(struct net_device *dev,
8195                                       struct net_device *upper_dev,
8196                                       struct netdev_nested_priv *priv)
8197 {
8198         struct netdev_notifier_changeupper_info changeupper_info = {
8199                 .info = {
8200                         .dev = dev,
8201                 },
8202                 .upper_dev = upper_dev,
8203                 .linking = false,
8204         };
8205
8206         ASSERT_RTNL();
8207
8208         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8209
8210         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8211                                       &changeupper_info.info);
8212
8213         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8214
8215         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8216                                       &changeupper_info.info);
8217
8218         __netdev_update_upper_level(dev, NULL);
8219         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8220
8221         __netdev_update_lower_level(upper_dev, priv);
8222         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8223                                     priv);
8224 }
8225
8226 /**
8227  * netdev_upper_dev_unlink - Removes a link to upper device
8228  * @dev: device
8229  * @upper_dev: new upper device
8230  *
8231  * Removes a link to device which is upper to this one. The caller must hold
8232  * the RTNL lock.
8233  */
8234 void netdev_upper_dev_unlink(struct net_device *dev,
8235                              struct net_device *upper_dev)
8236 {
8237         struct netdev_nested_priv priv = {
8238                 .flags = NESTED_SYNC_TODO,
8239                 .data = NULL,
8240         };
8241
8242         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8243 }
8244 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8245
8246 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8247                                       struct net_device *lower_dev,
8248                                       bool val)
8249 {
8250         struct netdev_adjacent *adj;
8251
8252         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8253         if (adj)
8254                 adj->ignore = val;
8255
8256         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8257         if (adj)
8258                 adj->ignore = val;
8259 }
8260
8261 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8262                                         struct net_device *lower_dev)
8263 {
8264         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8265 }
8266
8267 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8268                                        struct net_device *lower_dev)
8269 {
8270         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8271 }
8272
8273 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8274                                    struct net_device *new_dev,
8275                                    struct net_device *dev,
8276                                    struct netlink_ext_ack *extack)
8277 {
8278         struct netdev_nested_priv priv = {
8279                 .flags = 0,
8280                 .data = NULL,
8281         };
8282         int err;
8283
8284         if (!new_dev)
8285                 return 0;
8286
8287         if (old_dev && new_dev != old_dev)
8288                 netdev_adjacent_dev_disable(dev, old_dev);
8289         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8290                                       extack);
8291         if (err) {
8292                 if (old_dev && new_dev != old_dev)
8293                         netdev_adjacent_dev_enable(dev, old_dev);
8294                 return err;
8295         }
8296
8297         return 0;
8298 }
8299 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8300
8301 void netdev_adjacent_change_commit(struct net_device *old_dev,
8302                                    struct net_device *new_dev,
8303                                    struct net_device *dev)
8304 {
8305         struct netdev_nested_priv priv = {
8306                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8307                 .data = NULL,
8308         };
8309
8310         if (!new_dev || !old_dev)
8311                 return;
8312
8313         if (new_dev == old_dev)
8314                 return;
8315
8316         netdev_adjacent_dev_enable(dev, old_dev);
8317         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8318 }
8319 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8320
8321 void netdev_adjacent_change_abort(struct net_device *old_dev,
8322                                   struct net_device *new_dev,
8323                                   struct net_device *dev)
8324 {
8325         struct netdev_nested_priv priv = {
8326                 .flags = 0,
8327                 .data = NULL,
8328         };
8329
8330         if (!new_dev)
8331                 return;
8332
8333         if (old_dev && new_dev != old_dev)
8334                 netdev_adjacent_dev_enable(dev, old_dev);
8335
8336         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8337 }
8338 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8339
8340 /**
8341  * netdev_bonding_info_change - Dispatch event about slave change
8342  * @dev: device
8343  * @bonding_info: info to dispatch
8344  *
8345  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8346  * The caller must hold the RTNL lock.
8347  */
8348 void netdev_bonding_info_change(struct net_device *dev,
8349                                 struct netdev_bonding_info *bonding_info)
8350 {
8351         struct netdev_notifier_bonding_info info = {
8352                 .info.dev = dev,
8353         };
8354
8355         memcpy(&info.bonding_info, bonding_info,
8356                sizeof(struct netdev_bonding_info));
8357         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8358                                       &info.info);
8359 }
8360 EXPORT_SYMBOL(netdev_bonding_info_change);
8361
8362 /**
8363  * netdev_get_xmit_slave - Get the xmit slave of master device
8364  * @dev: device
8365  * @skb: The packet
8366  * @all_slaves: assume all the slaves are active
8367  *
8368  * The reference counters are not incremented so the caller must be
8369  * careful with locks. The caller must hold RCU lock.
8370  * %NULL is returned if no slave is found.
8371  */
8372
8373 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8374                                          struct sk_buff *skb,
8375                                          bool all_slaves)
8376 {
8377         const struct net_device_ops *ops = dev->netdev_ops;
8378
8379         if (!ops->ndo_get_xmit_slave)
8380                 return NULL;
8381         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8382 }
8383 EXPORT_SYMBOL(netdev_get_xmit_slave);
8384
8385 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8386                                                   struct sock *sk)
8387 {
8388         const struct net_device_ops *ops = dev->netdev_ops;
8389
8390         if (!ops->ndo_sk_get_lower_dev)
8391                 return NULL;
8392         return ops->ndo_sk_get_lower_dev(dev, sk);
8393 }
8394
8395 /**
8396  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8397  * @dev: device
8398  * @sk: the socket
8399  *
8400  * %NULL is returned if no lower device is found.
8401  */
8402
8403 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8404                                             struct sock *sk)
8405 {
8406         struct net_device *lower;
8407
8408         lower = netdev_sk_get_lower_dev(dev, sk);
8409         while (lower) {
8410                 dev = lower;
8411                 lower = netdev_sk_get_lower_dev(dev, sk);
8412         }
8413
8414         return dev;
8415 }
8416 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8417
8418 static void netdev_adjacent_add_links(struct net_device *dev)
8419 {
8420         struct netdev_adjacent *iter;
8421
8422         struct net *net = dev_net(dev);
8423
8424         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8425                 if (!net_eq(net, dev_net(iter->dev)))
8426                         continue;
8427                 netdev_adjacent_sysfs_add(iter->dev, dev,
8428                                           &iter->dev->adj_list.lower);
8429                 netdev_adjacent_sysfs_add(dev, iter->dev,
8430                                           &dev->adj_list.upper);
8431         }
8432
8433         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8434                 if (!net_eq(net, dev_net(iter->dev)))
8435                         continue;
8436                 netdev_adjacent_sysfs_add(iter->dev, dev,
8437                                           &iter->dev->adj_list.upper);
8438                 netdev_adjacent_sysfs_add(dev, iter->dev,
8439                                           &dev->adj_list.lower);
8440         }
8441 }
8442
8443 static void netdev_adjacent_del_links(struct net_device *dev)
8444 {
8445         struct netdev_adjacent *iter;
8446
8447         struct net *net = dev_net(dev);
8448
8449         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8450                 if (!net_eq(net, dev_net(iter->dev)))
8451                         continue;
8452                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8453                                           &iter->dev->adj_list.lower);
8454                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8455                                           &dev->adj_list.upper);
8456         }
8457
8458         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8459                 if (!net_eq(net, dev_net(iter->dev)))
8460                         continue;
8461                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8462                                           &iter->dev->adj_list.upper);
8463                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8464                                           &dev->adj_list.lower);
8465         }
8466 }
8467
8468 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8469 {
8470         struct netdev_adjacent *iter;
8471
8472         struct net *net = dev_net(dev);
8473
8474         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8475                 if (!net_eq(net, dev_net(iter->dev)))
8476                         continue;
8477                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8478                                           &iter->dev->adj_list.lower);
8479                 netdev_adjacent_sysfs_add(iter->dev, dev,
8480                                           &iter->dev->adj_list.lower);
8481         }
8482
8483         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8484                 if (!net_eq(net, dev_net(iter->dev)))
8485                         continue;
8486                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8487                                           &iter->dev->adj_list.upper);
8488                 netdev_adjacent_sysfs_add(iter->dev, dev,
8489                                           &iter->dev->adj_list.upper);
8490         }
8491 }
8492
8493 void *netdev_lower_dev_get_private(struct net_device *dev,
8494                                    struct net_device *lower_dev)
8495 {
8496         struct netdev_adjacent *lower;
8497
8498         if (!lower_dev)
8499                 return NULL;
8500         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8501         if (!lower)
8502                 return NULL;
8503
8504         return lower->private;
8505 }
8506 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8507
8508
8509 /**
8510  * netdev_lower_state_changed - Dispatch event about lower device state change
8511  * @lower_dev: device
8512  * @lower_state_info: state to dispatch
8513  *
8514  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8515  * The caller must hold the RTNL lock.
8516  */
8517 void netdev_lower_state_changed(struct net_device *lower_dev,
8518                                 void *lower_state_info)
8519 {
8520         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8521                 .info.dev = lower_dev,
8522         };
8523
8524         ASSERT_RTNL();
8525         changelowerstate_info.lower_state_info = lower_state_info;
8526         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8527                                       &changelowerstate_info.info);
8528 }
8529 EXPORT_SYMBOL(netdev_lower_state_changed);
8530
8531 static void dev_change_rx_flags(struct net_device *dev, int flags)
8532 {
8533         const struct net_device_ops *ops = dev->netdev_ops;
8534
8535         if (ops->ndo_change_rx_flags)
8536                 ops->ndo_change_rx_flags(dev, flags);
8537 }
8538
8539 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8540 {
8541         unsigned int old_flags = dev->flags;
8542         kuid_t uid;
8543         kgid_t gid;
8544
8545         ASSERT_RTNL();
8546
8547         dev->flags |= IFF_PROMISC;
8548         dev->promiscuity += inc;
8549         if (dev->promiscuity == 0) {
8550                 /*
8551                  * Avoid overflow.
8552                  * If inc causes overflow, untouch promisc and return error.
8553                  */
8554                 if (inc < 0)
8555                         dev->flags &= ~IFF_PROMISC;
8556                 else {
8557                         dev->promiscuity -= inc;
8558                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8559                                 dev->name);
8560                         return -EOVERFLOW;
8561                 }
8562         }
8563         if (dev->flags != old_flags) {
8564                 pr_info("device %s %s promiscuous mode\n",
8565                         dev->name,
8566                         dev->flags & IFF_PROMISC ? "entered" : "left");
8567                 if (audit_enabled) {
8568                         current_uid_gid(&uid, &gid);
8569                         audit_log(audit_context(), GFP_ATOMIC,
8570                                   AUDIT_ANOM_PROMISCUOUS,
8571                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8572                                   dev->name, (dev->flags & IFF_PROMISC),
8573                                   (old_flags & IFF_PROMISC),
8574                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8575                                   from_kuid(&init_user_ns, uid),
8576                                   from_kgid(&init_user_ns, gid),
8577                                   audit_get_sessionid(current));
8578                 }
8579
8580                 dev_change_rx_flags(dev, IFF_PROMISC);
8581         }
8582         if (notify)
8583                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8584         return 0;
8585 }
8586
8587 /**
8588  *      dev_set_promiscuity     - update promiscuity count on a device
8589  *      @dev: device
8590  *      @inc: modifier
8591  *
8592  *      Add or remove promiscuity from a device. While the count in the device
8593  *      remains above zero the interface remains promiscuous. Once it hits zero
8594  *      the device reverts back to normal filtering operation. A negative inc
8595  *      value is used to drop promiscuity on the device.
8596  *      Return 0 if successful or a negative errno code on error.
8597  */
8598 int dev_set_promiscuity(struct net_device *dev, int inc)
8599 {
8600         unsigned int old_flags = dev->flags;
8601         int err;
8602
8603         err = __dev_set_promiscuity(dev, inc, true);
8604         if (err < 0)
8605                 return err;
8606         if (dev->flags != old_flags)
8607                 dev_set_rx_mode(dev);
8608         return err;
8609 }
8610 EXPORT_SYMBOL(dev_set_promiscuity);
8611
8612 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8613 {
8614         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8615
8616         ASSERT_RTNL();
8617
8618         dev->flags |= IFF_ALLMULTI;
8619         dev->allmulti += inc;
8620         if (dev->allmulti == 0) {
8621                 /*
8622                  * Avoid overflow.
8623                  * If inc causes overflow, untouch allmulti and return error.
8624                  */
8625                 if (inc < 0)
8626                         dev->flags &= ~IFF_ALLMULTI;
8627                 else {
8628                         dev->allmulti -= inc;
8629                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8630                                 dev->name);
8631                         return -EOVERFLOW;
8632                 }
8633         }
8634         if (dev->flags ^ old_flags) {
8635                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8636                 dev_set_rx_mode(dev);
8637                 if (notify)
8638                         __dev_notify_flags(dev, old_flags,
8639                                            dev->gflags ^ old_gflags);
8640         }
8641         return 0;
8642 }
8643
8644 /**
8645  *      dev_set_allmulti        - update allmulti count on a device
8646  *      @dev: device
8647  *      @inc: modifier
8648  *
8649  *      Add or remove reception of all multicast frames to a device. While the
8650  *      count in the device remains above zero the interface remains listening
8651  *      to all interfaces. Once it hits zero the device reverts back to normal
8652  *      filtering operation. A negative @inc value is used to drop the counter
8653  *      when releasing a resource needing all multicasts.
8654  *      Return 0 if successful or a negative errno code on error.
8655  */
8656
8657 int dev_set_allmulti(struct net_device *dev, int inc)
8658 {
8659         return __dev_set_allmulti(dev, inc, true);
8660 }
8661 EXPORT_SYMBOL(dev_set_allmulti);
8662
8663 /*
8664  *      Upload unicast and multicast address lists to device and
8665  *      configure RX filtering. When the device doesn't support unicast
8666  *      filtering it is put in promiscuous mode while unicast addresses
8667  *      are present.
8668  */
8669 void __dev_set_rx_mode(struct net_device *dev)
8670 {
8671         const struct net_device_ops *ops = dev->netdev_ops;
8672
8673         /* dev_open will call this function so the list will stay sane. */
8674         if (!(dev->flags&IFF_UP))
8675                 return;
8676
8677         if (!netif_device_present(dev))
8678                 return;
8679
8680         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8681                 /* Unicast addresses changes may only happen under the rtnl,
8682                  * therefore calling __dev_set_promiscuity here is safe.
8683                  */
8684                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8685                         __dev_set_promiscuity(dev, 1, false);
8686                         dev->uc_promisc = true;
8687                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8688                         __dev_set_promiscuity(dev, -1, false);
8689                         dev->uc_promisc = false;
8690                 }
8691         }
8692
8693         if (ops->ndo_set_rx_mode)
8694                 ops->ndo_set_rx_mode(dev);
8695 }
8696
8697 void dev_set_rx_mode(struct net_device *dev)
8698 {
8699         netif_addr_lock_bh(dev);
8700         __dev_set_rx_mode(dev);
8701         netif_addr_unlock_bh(dev);
8702 }
8703
8704 /**
8705  *      dev_get_flags - get flags reported to userspace
8706  *      @dev: device
8707  *
8708  *      Get the combination of flag bits exported through APIs to userspace.
8709  */
8710 unsigned int dev_get_flags(const struct net_device *dev)
8711 {
8712         unsigned int flags;
8713
8714         flags = (dev->flags & ~(IFF_PROMISC |
8715                                 IFF_ALLMULTI |
8716                                 IFF_RUNNING |
8717                                 IFF_LOWER_UP |
8718                                 IFF_DORMANT)) |
8719                 (dev->gflags & (IFF_PROMISC |
8720                                 IFF_ALLMULTI));
8721
8722         if (netif_running(dev)) {
8723                 if (netif_oper_up(dev))
8724                         flags |= IFF_RUNNING;
8725                 if (netif_carrier_ok(dev))
8726                         flags |= IFF_LOWER_UP;
8727                 if (netif_dormant(dev))
8728                         flags |= IFF_DORMANT;
8729         }
8730
8731         return flags;
8732 }
8733 EXPORT_SYMBOL(dev_get_flags);
8734
8735 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8736                        struct netlink_ext_ack *extack)
8737 {
8738         unsigned int old_flags = dev->flags;
8739         int ret;
8740
8741         ASSERT_RTNL();
8742
8743         /*
8744          *      Set the flags on our device.
8745          */
8746
8747         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8748                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8749                                IFF_AUTOMEDIA)) |
8750                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8751                                     IFF_ALLMULTI));
8752
8753         /*
8754          *      Load in the correct multicast list now the flags have changed.
8755          */
8756
8757         if ((old_flags ^ flags) & IFF_MULTICAST)
8758                 dev_change_rx_flags(dev, IFF_MULTICAST);
8759
8760         dev_set_rx_mode(dev);
8761
8762         /*
8763          *      Have we downed the interface. We handle IFF_UP ourselves
8764          *      according to user attempts to set it, rather than blindly
8765          *      setting it.
8766          */
8767
8768         ret = 0;
8769         if ((old_flags ^ flags) & IFF_UP) {
8770                 if (old_flags & IFF_UP)
8771                         __dev_close(dev);
8772                 else
8773                         ret = __dev_open(dev, extack);
8774         }
8775
8776         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8777                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8778                 unsigned int old_flags = dev->flags;
8779
8780                 dev->gflags ^= IFF_PROMISC;
8781
8782                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8783                         if (dev->flags != old_flags)
8784                                 dev_set_rx_mode(dev);
8785         }
8786
8787         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8788          * is important. Some (broken) drivers set IFF_PROMISC, when
8789          * IFF_ALLMULTI is requested not asking us and not reporting.
8790          */
8791         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8792                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8793
8794                 dev->gflags ^= IFF_ALLMULTI;
8795                 __dev_set_allmulti(dev, inc, false);
8796         }
8797
8798         return ret;
8799 }
8800
8801 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8802                         unsigned int gchanges)
8803 {
8804         unsigned int changes = dev->flags ^ old_flags;
8805
8806         if (gchanges)
8807                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8808
8809         if (changes & IFF_UP) {
8810                 if (dev->flags & IFF_UP)
8811                         call_netdevice_notifiers(NETDEV_UP, dev);
8812                 else
8813                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8814         }
8815
8816         if (dev->flags & IFF_UP &&
8817             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8818                 struct netdev_notifier_change_info change_info = {
8819                         .info = {
8820                                 .dev = dev,
8821                         },
8822                         .flags_changed = changes,
8823                 };
8824
8825                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8826         }
8827 }
8828
8829 /**
8830  *      dev_change_flags - change device settings
8831  *      @dev: device
8832  *      @flags: device state flags
8833  *      @extack: netlink extended ack
8834  *
8835  *      Change settings on device based state flags. The flags are
8836  *      in the userspace exported format.
8837  */
8838 int dev_change_flags(struct net_device *dev, unsigned int flags,
8839                      struct netlink_ext_ack *extack)
8840 {
8841         int ret;
8842         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8843
8844         ret = __dev_change_flags(dev, flags, extack);
8845         if (ret < 0)
8846                 return ret;
8847
8848         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8849         __dev_notify_flags(dev, old_flags, changes);
8850         return ret;
8851 }
8852 EXPORT_SYMBOL(dev_change_flags);
8853
8854 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8855 {
8856         const struct net_device_ops *ops = dev->netdev_ops;
8857
8858         if (ops->ndo_change_mtu)
8859                 return ops->ndo_change_mtu(dev, new_mtu);
8860
8861         /* Pairs with all the lockless reads of dev->mtu in the stack */
8862         WRITE_ONCE(dev->mtu, new_mtu);
8863         return 0;
8864 }
8865 EXPORT_SYMBOL(__dev_set_mtu);
8866
8867 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8868                      struct netlink_ext_ack *extack)
8869 {
8870         /* MTU must be positive, and in range */
8871         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8872                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8873                 return -EINVAL;
8874         }
8875
8876         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8877                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8878                 return -EINVAL;
8879         }
8880         return 0;
8881 }
8882
8883 /**
8884  *      dev_set_mtu_ext - Change maximum transfer unit
8885  *      @dev: device
8886  *      @new_mtu: new transfer unit
8887  *      @extack: netlink extended ack
8888  *
8889  *      Change the maximum transfer size of the network device.
8890  */
8891 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8892                     struct netlink_ext_ack *extack)
8893 {
8894         int err, orig_mtu;
8895
8896         if (new_mtu == dev->mtu)
8897                 return 0;
8898
8899         err = dev_validate_mtu(dev, new_mtu, extack);
8900         if (err)
8901                 return err;
8902
8903         if (!netif_device_present(dev))
8904                 return -ENODEV;
8905
8906         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8907         err = notifier_to_errno(err);
8908         if (err)
8909                 return err;
8910
8911         orig_mtu = dev->mtu;
8912         err = __dev_set_mtu(dev, new_mtu);
8913
8914         if (!err) {
8915                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8916                                                    orig_mtu);
8917                 err = notifier_to_errno(err);
8918                 if (err) {
8919                         /* setting mtu back and notifying everyone again,
8920                          * so that they have a chance to revert changes.
8921                          */
8922                         __dev_set_mtu(dev, orig_mtu);
8923                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8924                                                      new_mtu);
8925                 }
8926         }
8927         return err;
8928 }
8929
8930 int dev_set_mtu(struct net_device *dev, int new_mtu)
8931 {
8932         struct netlink_ext_ack extack;
8933         int err;
8934
8935         memset(&extack, 0, sizeof(extack));
8936         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8937         if (err && extack._msg)
8938                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8939         return err;
8940 }
8941 EXPORT_SYMBOL(dev_set_mtu);
8942
8943 /**
8944  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8945  *      @dev: device
8946  *      @new_len: new tx queue length
8947  */
8948 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8949 {
8950         unsigned int orig_len = dev->tx_queue_len;
8951         int res;
8952
8953         if (new_len != (unsigned int)new_len)
8954                 return -ERANGE;
8955
8956         if (new_len != orig_len) {
8957                 dev->tx_queue_len = new_len;
8958                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8959                 res = notifier_to_errno(res);
8960                 if (res)
8961                         goto err_rollback;
8962                 res = dev_qdisc_change_tx_queue_len(dev);
8963                 if (res)
8964                         goto err_rollback;
8965         }
8966
8967         return 0;
8968
8969 err_rollback:
8970         netdev_err(dev, "refused to change device tx_queue_len\n");
8971         dev->tx_queue_len = orig_len;
8972         return res;
8973 }
8974
8975 /**
8976  *      dev_set_group - Change group this device belongs to
8977  *      @dev: device
8978  *      @new_group: group this device should belong to
8979  */
8980 void dev_set_group(struct net_device *dev, int new_group)
8981 {
8982         dev->group = new_group;
8983 }
8984 EXPORT_SYMBOL(dev_set_group);
8985
8986 /**
8987  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8988  *      @dev: device
8989  *      @addr: new address
8990  *      @extack: netlink extended ack
8991  */
8992 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8993                               struct netlink_ext_ack *extack)
8994 {
8995         struct netdev_notifier_pre_changeaddr_info info = {
8996                 .info.dev = dev,
8997                 .info.extack = extack,
8998                 .dev_addr = addr,
8999         };
9000         int rc;
9001
9002         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9003         return notifier_to_errno(rc);
9004 }
9005 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9006
9007 /**
9008  *      dev_set_mac_address - Change Media Access Control Address
9009  *      @dev: device
9010  *      @sa: new address
9011  *      @extack: netlink extended ack
9012  *
9013  *      Change the hardware (MAC) address of the device
9014  */
9015 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9016                         struct netlink_ext_ack *extack)
9017 {
9018         const struct net_device_ops *ops = dev->netdev_ops;
9019         int err;
9020
9021         if (!ops->ndo_set_mac_address)
9022                 return -EOPNOTSUPP;
9023         if (sa->sa_family != dev->type)
9024                 return -EINVAL;
9025         if (!netif_device_present(dev))
9026                 return -ENODEV;
9027         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9028         if (err)
9029                 return err;
9030         err = ops->ndo_set_mac_address(dev, sa);
9031         if (err)
9032                 return err;
9033         dev->addr_assign_type = NET_ADDR_SET;
9034         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9035         add_device_randomness(dev->dev_addr, dev->addr_len);
9036         return 0;
9037 }
9038 EXPORT_SYMBOL(dev_set_mac_address);
9039
9040 static DECLARE_RWSEM(dev_addr_sem);
9041
9042 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9043                              struct netlink_ext_ack *extack)
9044 {
9045         int ret;
9046
9047         down_write(&dev_addr_sem);
9048         ret = dev_set_mac_address(dev, sa, extack);
9049         up_write(&dev_addr_sem);
9050         return ret;
9051 }
9052 EXPORT_SYMBOL(dev_set_mac_address_user);
9053
9054 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9055 {
9056         size_t size = sizeof(sa->sa_data);
9057         struct net_device *dev;
9058         int ret = 0;
9059
9060         down_read(&dev_addr_sem);
9061         rcu_read_lock();
9062
9063         dev = dev_get_by_name_rcu(net, dev_name);
9064         if (!dev) {
9065                 ret = -ENODEV;
9066                 goto unlock;
9067         }
9068         if (!dev->addr_len)
9069                 memset(sa->sa_data, 0, size);
9070         else
9071                 memcpy(sa->sa_data, dev->dev_addr,
9072                        min_t(size_t, size, dev->addr_len));
9073         sa->sa_family = dev->type;
9074
9075 unlock:
9076         rcu_read_unlock();
9077         up_read(&dev_addr_sem);
9078         return ret;
9079 }
9080 EXPORT_SYMBOL(dev_get_mac_address);
9081
9082 /**
9083  *      dev_change_carrier - Change device carrier
9084  *      @dev: device
9085  *      @new_carrier: new value
9086  *
9087  *      Change device carrier
9088  */
9089 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9090 {
9091         const struct net_device_ops *ops = dev->netdev_ops;
9092
9093         if (!ops->ndo_change_carrier)
9094                 return -EOPNOTSUPP;
9095         if (!netif_device_present(dev))
9096                 return -ENODEV;
9097         return ops->ndo_change_carrier(dev, new_carrier);
9098 }
9099 EXPORT_SYMBOL(dev_change_carrier);
9100
9101 /**
9102  *      dev_get_phys_port_id - Get device physical port ID
9103  *      @dev: device
9104  *      @ppid: port ID
9105  *
9106  *      Get device physical port ID
9107  */
9108 int dev_get_phys_port_id(struct net_device *dev,
9109                          struct netdev_phys_item_id *ppid)
9110 {
9111         const struct net_device_ops *ops = dev->netdev_ops;
9112
9113         if (!ops->ndo_get_phys_port_id)
9114                 return -EOPNOTSUPP;
9115         return ops->ndo_get_phys_port_id(dev, ppid);
9116 }
9117 EXPORT_SYMBOL(dev_get_phys_port_id);
9118
9119 /**
9120  *      dev_get_phys_port_name - Get device physical port name
9121  *      @dev: device
9122  *      @name: port name
9123  *      @len: limit of bytes to copy to name
9124  *
9125  *      Get device physical port name
9126  */
9127 int dev_get_phys_port_name(struct net_device *dev,
9128                            char *name, size_t len)
9129 {
9130         const struct net_device_ops *ops = dev->netdev_ops;
9131         int err;
9132
9133         if (ops->ndo_get_phys_port_name) {
9134                 err = ops->ndo_get_phys_port_name(dev, name, len);
9135                 if (err != -EOPNOTSUPP)
9136                         return err;
9137         }
9138         return devlink_compat_phys_port_name_get(dev, name, len);
9139 }
9140 EXPORT_SYMBOL(dev_get_phys_port_name);
9141
9142 /**
9143  *      dev_get_port_parent_id - Get the device's port parent identifier
9144  *      @dev: network device
9145  *      @ppid: pointer to a storage for the port's parent identifier
9146  *      @recurse: allow/disallow recursion to lower devices
9147  *
9148  *      Get the devices's port parent identifier
9149  */
9150 int dev_get_port_parent_id(struct net_device *dev,
9151                            struct netdev_phys_item_id *ppid,
9152                            bool recurse)
9153 {
9154         const struct net_device_ops *ops = dev->netdev_ops;
9155         struct netdev_phys_item_id first = { };
9156         struct net_device *lower_dev;
9157         struct list_head *iter;
9158         int err;
9159
9160         if (ops->ndo_get_port_parent_id) {
9161                 err = ops->ndo_get_port_parent_id(dev, ppid);
9162                 if (err != -EOPNOTSUPP)
9163                         return err;
9164         }
9165
9166         err = devlink_compat_switch_id_get(dev, ppid);
9167         if (!err || err != -EOPNOTSUPP)
9168                 return err;
9169
9170         if (!recurse)
9171                 return -EOPNOTSUPP;
9172
9173         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9174                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9175                 if (err)
9176                         break;
9177                 if (!first.id_len)
9178                         first = *ppid;
9179                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9180                         return -EOPNOTSUPP;
9181         }
9182
9183         return err;
9184 }
9185 EXPORT_SYMBOL(dev_get_port_parent_id);
9186
9187 /**
9188  *      netdev_port_same_parent_id - Indicate if two network devices have
9189  *      the same port parent identifier
9190  *      @a: first network device
9191  *      @b: second network device
9192  */
9193 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9194 {
9195         struct netdev_phys_item_id a_id = { };
9196         struct netdev_phys_item_id b_id = { };
9197
9198         if (dev_get_port_parent_id(a, &a_id, true) ||
9199             dev_get_port_parent_id(b, &b_id, true))
9200                 return false;
9201
9202         return netdev_phys_item_id_same(&a_id, &b_id);
9203 }
9204 EXPORT_SYMBOL(netdev_port_same_parent_id);
9205
9206 /**
9207  *      dev_change_proto_down - update protocol port state information
9208  *      @dev: device
9209  *      @proto_down: new value
9210  *
9211  *      This info can be used by switch drivers to set the phys state of the
9212  *      port.
9213  */
9214 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9215 {
9216         const struct net_device_ops *ops = dev->netdev_ops;
9217
9218         if (!ops->ndo_change_proto_down)
9219                 return -EOPNOTSUPP;
9220         if (!netif_device_present(dev))
9221                 return -ENODEV;
9222         return ops->ndo_change_proto_down(dev, proto_down);
9223 }
9224 EXPORT_SYMBOL(dev_change_proto_down);
9225
9226 /**
9227  *      dev_change_proto_down_generic - generic implementation for
9228  *      ndo_change_proto_down that sets carrier according to
9229  *      proto_down.
9230  *
9231  *      @dev: device
9232  *      @proto_down: new value
9233  */
9234 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9235 {
9236         if (proto_down)
9237                 netif_carrier_off(dev);
9238         else
9239                 netif_carrier_on(dev);
9240         dev->proto_down = proto_down;
9241         return 0;
9242 }
9243 EXPORT_SYMBOL(dev_change_proto_down_generic);
9244
9245 /**
9246  *      dev_change_proto_down_reason - proto down reason
9247  *
9248  *      @dev: device
9249  *      @mask: proto down mask
9250  *      @value: proto down value
9251  */
9252 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9253                                   u32 value)
9254 {
9255         int b;
9256
9257         if (!mask) {
9258                 dev->proto_down_reason = value;
9259         } else {
9260                 for_each_set_bit(b, &mask, 32) {
9261                         if (value & (1 << b))
9262                                 dev->proto_down_reason |= BIT(b);
9263                         else
9264                                 dev->proto_down_reason &= ~BIT(b);
9265                 }
9266         }
9267 }
9268 EXPORT_SYMBOL(dev_change_proto_down_reason);
9269
9270 struct bpf_xdp_link {
9271         struct bpf_link link;
9272         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9273         int flags;
9274 };
9275
9276 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9277 {
9278         if (flags & XDP_FLAGS_HW_MODE)
9279                 return XDP_MODE_HW;
9280         if (flags & XDP_FLAGS_DRV_MODE)
9281                 return XDP_MODE_DRV;
9282         if (flags & XDP_FLAGS_SKB_MODE)
9283                 return XDP_MODE_SKB;
9284         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9285 }
9286
9287 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9288 {
9289         switch (mode) {
9290         case XDP_MODE_SKB:
9291                 return generic_xdp_install;
9292         case XDP_MODE_DRV:
9293         case XDP_MODE_HW:
9294                 return dev->netdev_ops->ndo_bpf;
9295         default:
9296                 return NULL;
9297         }
9298 }
9299
9300 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9301                                          enum bpf_xdp_mode mode)
9302 {
9303         return dev->xdp_state[mode].link;
9304 }
9305
9306 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9307                                      enum bpf_xdp_mode mode)
9308 {
9309         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9310
9311         if (link)
9312                 return link->link.prog;
9313         return dev->xdp_state[mode].prog;
9314 }
9315
9316 u8 dev_xdp_prog_count(struct net_device *dev)
9317 {
9318         u8 count = 0;
9319         int i;
9320
9321         for (i = 0; i < __MAX_XDP_MODE; i++)
9322                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9323                         count++;
9324         return count;
9325 }
9326 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9327
9328 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9329 {
9330         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9331
9332         return prog ? prog->aux->id : 0;
9333 }
9334
9335 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9336                              struct bpf_xdp_link *link)
9337 {
9338         dev->xdp_state[mode].link = link;
9339         dev->xdp_state[mode].prog = NULL;
9340 }
9341
9342 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9343                              struct bpf_prog *prog)
9344 {
9345         dev->xdp_state[mode].link = NULL;
9346         dev->xdp_state[mode].prog = prog;
9347 }
9348
9349 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9350                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9351                            u32 flags, struct bpf_prog *prog)
9352 {
9353         struct netdev_bpf xdp;
9354         int err;
9355
9356         memset(&xdp, 0, sizeof(xdp));
9357         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9358         xdp.extack = extack;
9359         xdp.flags = flags;
9360         xdp.prog = prog;
9361
9362         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9363          * "moved" into driver), so they don't increment it on their own, but
9364          * they do decrement refcnt when program is detached or replaced.
9365          * Given net_device also owns link/prog, we need to bump refcnt here
9366          * to prevent drivers from underflowing it.
9367          */
9368         if (prog)
9369                 bpf_prog_inc(prog);
9370         err = bpf_op(dev, &xdp);
9371         if (err) {
9372                 if (prog)
9373                         bpf_prog_put(prog);
9374                 return err;
9375         }
9376
9377         if (mode != XDP_MODE_HW)
9378                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9379
9380         return 0;
9381 }
9382
9383 static void dev_xdp_uninstall(struct net_device *dev)
9384 {
9385         struct bpf_xdp_link *link;
9386         struct bpf_prog *prog;
9387         enum bpf_xdp_mode mode;
9388         bpf_op_t bpf_op;
9389
9390         ASSERT_RTNL();
9391
9392         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9393                 prog = dev_xdp_prog(dev, mode);
9394                 if (!prog)
9395                         continue;
9396
9397                 bpf_op = dev_xdp_bpf_op(dev, mode);
9398                 if (!bpf_op)
9399                         continue;
9400
9401                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9402
9403                 /* auto-detach link from net device */
9404                 link = dev_xdp_link(dev, mode);
9405                 if (link)
9406                         link->dev = NULL;
9407                 else
9408                         bpf_prog_put(prog);
9409
9410                 dev_xdp_set_link(dev, mode, NULL);
9411         }
9412 }
9413
9414 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9415                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9416                           struct bpf_prog *old_prog, u32 flags)
9417 {
9418         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9419         struct bpf_prog *cur_prog;
9420         struct net_device *upper;
9421         struct list_head *iter;
9422         enum bpf_xdp_mode mode;
9423         bpf_op_t bpf_op;
9424         int err;
9425
9426         ASSERT_RTNL();
9427
9428         /* either link or prog attachment, never both */
9429         if (link && (new_prog || old_prog))
9430                 return -EINVAL;
9431         /* link supports only XDP mode flags */
9432         if (link && (flags & ~XDP_FLAGS_MODES)) {
9433                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9434                 return -EINVAL;
9435         }
9436         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9437         if (num_modes > 1) {
9438                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9439                 return -EINVAL;
9440         }
9441         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9442         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9443                 NL_SET_ERR_MSG(extack,
9444                                "More than one program loaded, unset mode is ambiguous");
9445                 return -EINVAL;
9446         }
9447         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9448         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9449                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9450                 return -EINVAL;
9451         }
9452
9453         mode = dev_xdp_mode(dev, flags);
9454         /* can't replace attached link */
9455         if (dev_xdp_link(dev, mode)) {
9456                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9457                 return -EBUSY;
9458         }
9459
9460         /* don't allow if an upper device already has a program */
9461         netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9462                 if (dev_xdp_prog_count(upper) > 0) {
9463                         NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9464                         return -EEXIST;
9465                 }
9466         }
9467
9468         cur_prog = dev_xdp_prog(dev, mode);
9469         /* can't replace attached prog with link */
9470         if (link && cur_prog) {
9471                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9472                 return -EBUSY;
9473         }
9474         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9475                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9476                 return -EEXIST;
9477         }
9478
9479         /* put effective new program into new_prog */
9480         if (link)
9481                 new_prog = link->link.prog;
9482
9483         if (new_prog) {
9484                 bool offload = mode == XDP_MODE_HW;
9485                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9486                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9487
9488                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9489                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9490                         return -EBUSY;
9491                 }
9492                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9493                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9494                         return -EEXIST;
9495                 }
9496                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9497                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9498                         return -EINVAL;
9499                 }
9500                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9501                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9502                         return -EINVAL;
9503                 }
9504                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9505                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9506                         return -EINVAL;
9507                 }
9508         }
9509
9510         /* don't call drivers if the effective program didn't change */
9511         if (new_prog != cur_prog) {
9512                 bpf_op = dev_xdp_bpf_op(dev, mode);
9513                 if (!bpf_op) {
9514                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9515                         return -EOPNOTSUPP;
9516                 }
9517
9518                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9519                 if (err)
9520                         return err;
9521         }
9522
9523         if (link)
9524                 dev_xdp_set_link(dev, mode, link);
9525         else
9526                 dev_xdp_set_prog(dev, mode, new_prog);
9527         if (cur_prog)
9528                 bpf_prog_put(cur_prog);
9529
9530         return 0;
9531 }
9532
9533 static int dev_xdp_attach_link(struct net_device *dev,
9534                                struct netlink_ext_ack *extack,
9535                                struct bpf_xdp_link *link)
9536 {
9537         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9538 }
9539
9540 static int dev_xdp_detach_link(struct net_device *dev,
9541                                struct netlink_ext_ack *extack,
9542                                struct bpf_xdp_link *link)
9543 {
9544         enum bpf_xdp_mode mode;
9545         bpf_op_t bpf_op;
9546
9547         ASSERT_RTNL();
9548
9549         mode = dev_xdp_mode(dev, link->flags);
9550         if (dev_xdp_link(dev, mode) != link)
9551                 return -EINVAL;
9552
9553         bpf_op = dev_xdp_bpf_op(dev, mode);
9554         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9555         dev_xdp_set_link(dev, mode, NULL);
9556         return 0;
9557 }
9558
9559 static void bpf_xdp_link_release(struct bpf_link *link)
9560 {
9561         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9562
9563         rtnl_lock();
9564
9565         /* if racing with net_device's tear down, xdp_link->dev might be
9566          * already NULL, in which case link was already auto-detached
9567          */
9568         if (xdp_link->dev) {
9569                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9570                 xdp_link->dev = NULL;
9571         }
9572
9573         rtnl_unlock();
9574 }
9575
9576 static int bpf_xdp_link_detach(struct bpf_link *link)
9577 {
9578         bpf_xdp_link_release(link);
9579         return 0;
9580 }
9581
9582 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9583 {
9584         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9585
9586         kfree(xdp_link);
9587 }
9588
9589 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9590                                      struct seq_file *seq)
9591 {
9592         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9593         u32 ifindex = 0;
9594
9595         rtnl_lock();
9596         if (xdp_link->dev)
9597                 ifindex = xdp_link->dev->ifindex;
9598         rtnl_unlock();
9599
9600         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9601 }
9602
9603 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9604                                        struct bpf_link_info *info)
9605 {
9606         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9607         u32 ifindex = 0;
9608
9609         rtnl_lock();
9610         if (xdp_link->dev)
9611                 ifindex = xdp_link->dev->ifindex;
9612         rtnl_unlock();
9613
9614         info->xdp.ifindex = ifindex;
9615         return 0;
9616 }
9617
9618 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9619                                struct bpf_prog *old_prog)
9620 {
9621         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9622         enum bpf_xdp_mode mode;
9623         bpf_op_t bpf_op;
9624         int err = 0;
9625
9626         rtnl_lock();
9627
9628         /* link might have been auto-released already, so fail */
9629         if (!xdp_link->dev) {
9630                 err = -ENOLINK;
9631                 goto out_unlock;
9632         }
9633
9634         if (old_prog && link->prog != old_prog) {
9635                 err = -EPERM;
9636                 goto out_unlock;
9637         }
9638         old_prog = link->prog;
9639         if (old_prog == new_prog) {
9640                 /* no-op, don't disturb drivers */
9641                 bpf_prog_put(new_prog);
9642                 goto out_unlock;
9643         }
9644
9645         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9646         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9647         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9648                               xdp_link->flags, new_prog);
9649         if (err)
9650                 goto out_unlock;
9651
9652         old_prog = xchg(&link->prog, new_prog);
9653         bpf_prog_put(old_prog);
9654
9655 out_unlock:
9656         rtnl_unlock();
9657         return err;
9658 }
9659
9660 static const struct bpf_link_ops bpf_xdp_link_lops = {
9661         .release = bpf_xdp_link_release,
9662         .dealloc = bpf_xdp_link_dealloc,
9663         .detach = bpf_xdp_link_detach,
9664         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9665         .fill_link_info = bpf_xdp_link_fill_link_info,
9666         .update_prog = bpf_xdp_link_update,
9667 };
9668
9669 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9670 {
9671         struct net *net = current->nsproxy->net_ns;
9672         struct bpf_link_primer link_primer;
9673         struct bpf_xdp_link *link;
9674         struct net_device *dev;
9675         int err, fd;
9676
9677         rtnl_lock();
9678         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9679         if (!dev) {
9680                 rtnl_unlock();
9681                 return -EINVAL;
9682         }
9683
9684         link = kzalloc(sizeof(*link), GFP_USER);
9685         if (!link) {
9686                 err = -ENOMEM;
9687                 goto unlock;
9688         }
9689
9690         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9691         link->dev = dev;
9692         link->flags = attr->link_create.flags;
9693
9694         err = bpf_link_prime(&link->link, &link_primer);
9695         if (err) {
9696                 kfree(link);
9697                 goto unlock;
9698         }
9699
9700         err = dev_xdp_attach_link(dev, NULL, link);
9701         rtnl_unlock();
9702
9703         if (err) {
9704                 link->dev = NULL;
9705                 bpf_link_cleanup(&link_primer);
9706                 goto out_put_dev;
9707         }
9708
9709         fd = bpf_link_settle(&link_primer);
9710         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9711         dev_put(dev);
9712         return fd;
9713
9714 unlock:
9715         rtnl_unlock();
9716
9717 out_put_dev:
9718         dev_put(dev);
9719         return err;
9720 }
9721
9722 /**
9723  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9724  *      @dev: device
9725  *      @extack: netlink extended ack
9726  *      @fd: new program fd or negative value to clear
9727  *      @expected_fd: old program fd that userspace expects to replace or clear
9728  *      @flags: xdp-related flags
9729  *
9730  *      Set or clear a bpf program for a device
9731  */
9732 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9733                       int fd, int expected_fd, u32 flags)
9734 {
9735         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9736         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9737         int err;
9738
9739         ASSERT_RTNL();
9740
9741         if (fd >= 0) {
9742                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9743                                                  mode != XDP_MODE_SKB);
9744                 if (IS_ERR(new_prog))
9745                         return PTR_ERR(new_prog);
9746         }
9747
9748         if (expected_fd >= 0) {
9749                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9750                                                  mode != XDP_MODE_SKB);
9751                 if (IS_ERR(old_prog)) {
9752                         err = PTR_ERR(old_prog);
9753                         old_prog = NULL;
9754                         goto err_out;
9755                 }
9756         }
9757
9758         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9759
9760 err_out:
9761         if (err && new_prog)
9762                 bpf_prog_put(new_prog);
9763         if (old_prog)
9764                 bpf_prog_put(old_prog);
9765         return err;
9766 }
9767
9768 /**
9769  *      dev_new_index   -       allocate an ifindex
9770  *      @net: the applicable net namespace
9771  *
9772  *      Returns a suitable unique value for a new device interface
9773  *      number.  The caller must hold the rtnl semaphore or the
9774  *      dev_base_lock to be sure it remains unique.
9775  */
9776 static int dev_new_index(struct net *net)
9777 {
9778         int ifindex = net->ifindex;
9779
9780         for (;;) {
9781                 if (++ifindex <= 0)
9782                         ifindex = 1;
9783                 if (!__dev_get_by_index(net, ifindex))
9784                         return net->ifindex = ifindex;
9785         }
9786 }
9787
9788 /* Delayed registration/unregisteration */
9789 static LIST_HEAD(net_todo_list);
9790 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9791
9792 static void net_set_todo(struct net_device *dev)
9793 {
9794         list_add_tail(&dev->todo_list, &net_todo_list);
9795         dev_net(dev)->dev_unreg_count++;
9796 }
9797
9798 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9799         struct net_device *upper, netdev_features_t features)
9800 {
9801         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9802         netdev_features_t feature;
9803         int feature_bit;
9804
9805         for_each_netdev_feature(upper_disables, feature_bit) {
9806                 feature = __NETIF_F_BIT(feature_bit);
9807                 if (!(upper->wanted_features & feature)
9808                     && (features & feature)) {
9809                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9810                                    &feature, upper->name);
9811                         features &= ~feature;
9812                 }
9813         }
9814
9815         return features;
9816 }
9817
9818 static void netdev_sync_lower_features(struct net_device *upper,
9819         struct net_device *lower, netdev_features_t features)
9820 {
9821         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9822         netdev_features_t feature;
9823         int feature_bit;
9824
9825         for_each_netdev_feature(upper_disables, feature_bit) {
9826                 feature = __NETIF_F_BIT(feature_bit);
9827                 if (!(features & feature) && (lower->features & feature)) {
9828                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9829                                    &feature, lower->name);
9830                         lower->wanted_features &= ~feature;
9831                         __netdev_update_features(lower);
9832
9833                         if (unlikely(lower->features & feature))
9834                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9835                                             &feature, lower->name);
9836                         else
9837                                 netdev_features_change(lower);
9838                 }
9839         }
9840 }
9841
9842 static netdev_features_t netdev_fix_features(struct net_device *dev,
9843         netdev_features_t features)
9844 {
9845         /* Fix illegal checksum combinations */
9846         if ((features & NETIF_F_HW_CSUM) &&
9847             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9848                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9849                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9850         }
9851
9852         /* TSO requires that SG is present as well. */
9853         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9854                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9855                 features &= ~NETIF_F_ALL_TSO;
9856         }
9857
9858         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9859                                         !(features & NETIF_F_IP_CSUM)) {
9860                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9861                 features &= ~NETIF_F_TSO;
9862                 features &= ~NETIF_F_TSO_ECN;
9863         }
9864
9865         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9866                                          !(features & NETIF_F_IPV6_CSUM)) {
9867                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9868                 features &= ~NETIF_F_TSO6;
9869         }
9870
9871         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9872         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9873                 features &= ~NETIF_F_TSO_MANGLEID;
9874
9875         /* TSO ECN requires that TSO is present as well. */
9876         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9877                 features &= ~NETIF_F_TSO_ECN;
9878
9879         /* Software GSO depends on SG. */
9880         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9881                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9882                 features &= ~NETIF_F_GSO;
9883         }
9884
9885         /* GSO partial features require GSO partial be set */
9886         if ((features & dev->gso_partial_features) &&
9887             !(features & NETIF_F_GSO_PARTIAL)) {
9888                 netdev_dbg(dev,
9889                            "Dropping partially supported GSO features since no GSO partial.\n");
9890                 features &= ~dev->gso_partial_features;
9891         }
9892
9893         if (!(features & NETIF_F_RXCSUM)) {
9894                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9895                  * successfully merged by hardware must also have the
9896                  * checksum verified by hardware.  If the user does not
9897                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9898                  */
9899                 if (features & NETIF_F_GRO_HW) {
9900                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9901                         features &= ~NETIF_F_GRO_HW;
9902                 }
9903         }
9904
9905         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9906         if (features & NETIF_F_RXFCS) {
9907                 if (features & NETIF_F_LRO) {
9908                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9909                         features &= ~NETIF_F_LRO;
9910                 }
9911
9912                 if (features & NETIF_F_GRO_HW) {
9913                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9914                         features &= ~NETIF_F_GRO_HW;
9915                 }
9916         }
9917
9918         if (features & NETIF_F_HW_TLS_TX) {
9919                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9920                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9921                 bool hw_csum = features & NETIF_F_HW_CSUM;
9922
9923                 if (!ip_csum && !hw_csum) {
9924                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9925                         features &= ~NETIF_F_HW_TLS_TX;
9926                 }
9927         }
9928
9929         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9930                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9931                 features &= ~NETIF_F_HW_TLS_RX;
9932         }
9933
9934         return features;
9935 }
9936
9937 int __netdev_update_features(struct net_device *dev)
9938 {
9939         struct net_device *upper, *lower;
9940         netdev_features_t features;
9941         struct list_head *iter;
9942         int err = -1;
9943
9944         ASSERT_RTNL();
9945
9946         features = netdev_get_wanted_features(dev);
9947
9948         if (dev->netdev_ops->ndo_fix_features)
9949                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9950
9951         /* driver might be less strict about feature dependencies */
9952         features = netdev_fix_features(dev, features);
9953
9954         /* some features can't be enabled if they're off on an upper device */
9955         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9956                 features = netdev_sync_upper_features(dev, upper, features);
9957
9958         if (dev->features == features)
9959                 goto sync_lower;
9960
9961         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9962                 &dev->features, &features);
9963
9964         if (dev->netdev_ops->ndo_set_features)
9965                 err = dev->netdev_ops->ndo_set_features(dev, features);
9966         else
9967                 err = 0;
9968
9969         if (unlikely(err < 0)) {
9970                 netdev_err(dev,
9971                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9972                         err, &features, &dev->features);
9973                 /* return non-0 since some features might have changed and
9974                  * it's better to fire a spurious notification than miss it
9975                  */
9976                 return -1;
9977         }
9978
9979 sync_lower:
9980         /* some features must be disabled on lower devices when disabled
9981          * on an upper device (think: bonding master or bridge)
9982          */
9983         netdev_for_each_lower_dev(dev, lower, iter)
9984                 netdev_sync_lower_features(dev, lower, features);
9985
9986         if (!err) {
9987                 netdev_features_t diff = features ^ dev->features;
9988
9989                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9990                         /* udp_tunnel_{get,drop}_rx_info both need
9991                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9992                          * device, or they won't do anything.
9993                          * Thus we need to update dev->features
9994                          * *before* calling udp_tunnel_get_rx_info,
9995                          * but *after* calling udp_tunnel_drop_rx_info.
9996                          */
9997                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9998                                 dev->features = features;
9999                                 udp_tunnel_get_rx_info(dev);
10000                         } else {
10001                                 udp_tunnel_drop_rx_info(dev);
10002                         }
10003                 }
10004
10005                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10006                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10007                                 dev->features = features;
10008                                 err |= vlan_get_rx_ctag_filter_info(dev);
10009                         } else {
10010                                 vlan_drop_rx_ctag_filter_info(dev);
10011                         }
10012                 }
10013
10014                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10015                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10016                                 dev->features = features;
10017                                 err |= vlan_get_rx_stag_filter_info(dev);
10018                         } else {
10019                                 vlan_drop_rx_stag_filter_info(dev);
10020                         }
10021                 }
10022
10023                 dev->features = features;
10024         }
10025
10026         return err < 0 ? 0 : 1;
10027 }
10028
10029 /**
10030  *      netdev_update_features - recalculate device features
10031  *      @dev: the device to check
10032  *
10033  *      Recalculate dev->features set and send notifications if it
10034  *      has changed. Should be called after driver or hardware dependent
10035  *      conditions might have changed that influence the features.
10036  */
10037 void netdev_update_features(struct net_device *dev)
10038 {
10039         if (__netdev_update_features(dev))
10040                 netdev_features_change(dev);
10041 }
10042 EXPORT_SYMBOL(netdev_update_features);
10043
10044 /**
10045  *      netdev_change_features - recalculate device features
10046  *      @dev: the device to check
10047  *
10048  *      Recalculate dev->features set and send notifications even
10049  *      if they have not changed. Should be called instead of
10050  *      netdev_update_features() if also dev->vlan_features might
10051  *      have changed to allow the changes to be propagated to stacked
10052  *      VLAN devices.
10053  */
10054 void netdev_change_features(struct net_device *dev)
10055 {
10056         __netdev_update_features(dev);
10057         netdev_features_change(dev);
10058 }
10059 EXPORT_SYMBOL(netdev_change_features);
10060
10061 /**
10062  *      netif_stacked_transfer_operstate -      transfer operstate
10063  *      @rootdev: the root or lower level device to transfer state from
10064  *      @dev: the device to transfer operstate to
10065  *
10066  *      Transfer operational state from root to device. This is normally
10067  *      called when a stacking relationship exists between the root
10068  *      device and the device(a leaf device).
10069  */
10070 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10071                                         struct net_device *dev)
10072 {
10073         if (rootdev->operstate == IF_OPER_DORMANT)
10074                 netif_dormant_on(dev);
10075         else
10076                 netif_dormant_off(dev);
10077
10078         if (rootdev->operstate == IF_OPER_TESTING)
10079                 netif_testing_on(dev);
10080         else
10081                 netif_testing_off(dev);
10082
10083         if (netif_carrier_ok(rootdev))
10084                 netif_carrier_on(dev);
10085         else
10086                 netif_carrier_off(dev);
10087 }
10088 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10089
10090 static int netif_alloc_rx_queues(struct net_device *dev)
10091 {
10092         unsigned int i, count = dev->num_rx_queues;
10093         struct netdev_rx_queue *rx;
10094         size_t sz = count * sizeof(*rx);
10095         int err = 0;
10096
10097         BUG_ON(count < 1);
10098
10099         rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10100         if (!rx)
10101                 return -ENOMEM;
10102
10103         dev->_rx = rx;
10104
10105         for (i = 0; i < count; i++) {
10106                 rx[i].dev = dev;
10107
10108                 /* XDP RX-queue setup */
10109                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10110                 if (err < 0)
10111                         goto err_rxq_info;
10112         }
10113         return 0;
10114
10115 err_rxq_info:
10116         /* Rollback successful reg's and free other resources */
10117         while (i--)
10118                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10119         kvfree(dev->_rx);
10120         dev->_rx = NULL;
10121         return err;
10122 }
10123
10124 static void netif_free_rx_queues(struct net_device *dev)
10125 {
10126         unsigned int i, count = dev->num_rx_queues;
10127
10128         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10129         if (!dev->_rx)
10130                 return;
10131
10132         for (i = 0; i < count; i++)
10133                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10134
10135         kvfree(dev->_rx);
10136 }
10137
10138 static void netdev_init_one_queue(struct net_device *dev,
10139                                   struct netdev_queue *queue, void *_unused)
10140 {
10141         /* Initialize queue lock */
10142         spin_lock_init(&queue->_xmit_lock);
10143         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10144         queue->xmit_lock_owner = -1;
10145         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10146         queue->dev = dev;
10147 #ifdef CONFIG_BQL
10148         dql_init(&queue->dql, HZ);
10149 #endif
10150 }
10151
10152 static void netif_free_tx_queues(struct net_device *dev)
10153 {
10154         kvfree(dev->_tx);
10155 }
10156
10157 static int netif_alloc_netdev_queues(struct net_device *dev)
10158 {
10159         unsigned int count = dev->num_tx_queues;
10160         struct netdev_queue *tx;
10161         size_t sz = count * sizeof(*tx);
10162
10163         if (count < 1 || count > 0xffff)
10164                 return -EINVAL;
10165
10166         tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10167         if (!tx)
10168                 return -ENOMEM;
10169
10170         dev->_tx = tx;
10171
10172         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10173         spin_lock_init(&dev->tx_global_lock);
10174
10175         return 0;
10176 }
10177
10178 void netif_tx_stop_all_queues(struct net_device *dev)
10179 {
10180         unsigned int i;
10181
10182         for (i = 0; i < dev->num_tx_queues; i++) {
10183                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10184
10185                 netif_tx_stop_queue(txq);
10186         }
10187 }
10188 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10189
10190 /**
10191  *      register_netdevice      - register a network device
10192  *      @dev: device to register
10193  *
10194  *      Take a completed network device structure and add it to the kernel
10195  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10196  *      chain. 0 is returned on success. A negative errno code is returned
10197  *      on a failure to set up the device, or if the name is a duplicate.
10198  *
10199  *      Callers must hold the rtnl semaphore. You may want
10200  *      register_netdev() instead of this.
10201  *
10202  *      BUGS:
10203  *      The locking appears insufficient to guarantee two parallel registers
10204  *      will not get the same name.
10205  */
10206
10207 int register_netdevice(struct net_device *dev)
10208 {
10209         int ret;
10210         struct net *net = dev_net(dev);
10211
10212         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10213                      NETDEV_FEATURE_COUNT);
10214         BUG_ON(dev_boot_phase);
10215         ASSERT_RTNL();
10216
10217         might_sleep();
10218
10219         /* When net_device's are persistent, this will be fatal. */
10220         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10221         BUG_ON(!net);
10222
10223         ret = ethtool_check_ops(dev->ethtool_ops);
10224         if (ret)
10225                 return ret;
10226
10227         spin_lock_init(&dev->addr_list_lock);
10228         netdev_set_addr_lockdep_class(dev);
10229
10230         ret = dev_get_valid_name(net, dev, dev->name);
10231         if (ret < 0)
10232                 goto out;
10233
10234         ret = -ENOMEM;
10235         dev->name_node = netdev_name_node_head_alloc(dev);
10236         if (!dev->name_node)
10237                 goto out;
10238
10239         /* Init, if this function is available */
10240         if (dev->netdev_ops->ndo_init) {
10241                 ret = dev->netdev_ops->ndo_init(dev);
10242                 if (ret) {
10243                         if (ret > 0)
10244                                 ret = -EIO;
10245                         goto err_free_name;
10246                 }
10247         }
10248
10249         if (((dev->hw_features | dev->features) &
10250              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10251             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10252              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10253                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10254                 ret = -EINVAL;
10255                 goto err_uninit;
10256         }
10257
10258         ret = -EBUSY;
10259         if (!dev->ifindex)
10260                 dev->ifindex = dev_new_index(net);
10261         else if (__dev_get_by_index(net, dev->ifindex))
10262                 goto err_uninit;
10263
10264         /* Transfer changeable features to wanted_features and enable
10265          * software offloads (GSO and GRO).
10266          */
10267         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10268         dev->features |= NETIF_F_SOFT_FEATURES;
10269
10270         if (dev->udp_tunnel_nic_info) {
10271                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10272                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10273         }
10274
10275         dev->wanted_features = dev->features & dev->hw_features;
10276
10277         if (!(dev->flags & IFF_LOOPBACK))
10278                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10279
10280         /* If IPv4 TCP segmentation offload is supported we should also
10281          * allow the device to enable segmenting the frame with the option
10282          * of ignoring a static IP ID value.  This doesn't enable the
10283          * feature itself but allows the user to enable it later.
10284          */
10285         if (dev->hw_features & NETIF_F_TSO)
10286                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10287         if (dev->vlan_features & NETIF_F_TSO)
10288                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10289         if (dev->mpls_features & NETIF_F_TSO)
10290                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10291         if (dev->hw_enc_features & NETIF_F_TSO)
10292                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10293
10294         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10295          */
10296         dev->vlan_features |= NETIF_F_HIGHDMA;
10297
10298         /* Make NETIF_F_SG inheritable to tunnel devices.
10299          */
10300         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10301
10302         /* Make NETIF_F_SG inheritable to MPLS.
10303          */
10304         dev->mpls_features |= NETIF_F_SG;
10305
10306         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10307         ret = notifier_to_errno(ret);
10308         if (ret)
10309                 goto err_uninit;
10310
10311         ret = netdev_register_kobject(dev);
10312         if (ret) {
10313                 dev->reg_state = NETREG_UNREGISTERED;
10314                 goto err_uninit;
10315         }
10316         dev->reg_state = NETREG_REGISTERED;
10317
10318         __netdev_update_features(dev);
10319
10320         /*
10321          *      Default initial state at registry is that the
10322          *      device is present.
10323          */
10324
10325         set_bit(__LINK_STATE_PRESENT, &dev->state);
10326
10327         linkwatch_init_dev(dev);
10328
10329         dev_init_scheduler(dev);
10330         dev_hold(dev);
10331         list_netdevice(dev);
10332         add_device_randomness(dev->dev_addr, dev->addr_len);
10333
10334         /* If the device has permanent device address, driver should
10335          * set dev_addr and also addr_assign_type should be set to
10336          * NET_ADDR_PERM (default value).
10337          */
10338         if (dev->addr_assign_type == NET_ADDR_PERM)
10339                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10340
10341         /* Notify protocols, that a new device appeared. */
10342         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10343         ret = notifier_to_errno(ret);
10344         if (ret) {
10345                 /* Expect explicit free_netdev() on failure */
10346                 dev->needs_free_netdev = false;
10347                 unregister_netdevice_queue(dev, NULL);
10348                 goto out;
10349         }
10350         /*
10351          *      Prevent userspace races by waiting until the network
10352          *      device is fully setup before sending notifications.
10353          */
10354         if (!dev->rtnl_link_ops ||
10355             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10356                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10357
10358 out:
10359         return ret;
10360
10361 err_uninit:
10362         if (dev->netdev_ops->ndo_uninit)
10363                 dev->netdev_ops->ndo_uninit(dev);
10364         if (dev->priv_destructor)
10365                 dev->priv_destructor(dev);
10366 err_free_name:
10367         netdev_name_node_free(dev->name_node);
10368         goto out;
10369 }
10370 EXPORT_SYMBOL(register_netdevice);
10371
10372 /**
10373  *      init_dummy_netdev       - init a dummy network device for NAPI
10374  *      @dev: device to init
10375  *
10376  *      This takes a network device structure and initialize the minimum
10377  *      amount of fields so it can be used to schedule NAPI polls without
10378  *      registering a full blown interface. This is to be used by drivers
10379  *      that need to tie several hardware interfaces to a single NAPI
10380  *      poll scheduler due to HW limitations.
10381  */
10382 int init_dummy_netdev(struct net_device *dev)
10383 {
10384         /* Clear everything. Note we don't initialize spinlocks
10385          * are they aren't supposed to be taken by any of the
10386          * NAPI code and this dummy netdev is supposed to be
10387          * only ever used for NAPI polls
10388          */
10389         memset(dev, 0, sizeof(struct net_device));
10390
10391         /* make sure we BUG if trying to hit standard
10392          * register/unregister code path
10393          */
10394         dev->reg_state = NETREG_DUMMY;
10395
10396         /* NAPI wants this */
10397         INIT_LIST_HEAD(&dev->napi_list);
10398
10399         /* a dummy interface is started by default */
10400         set_bit(__LINK_STATE_PRESENT, &dev->state);
10401         set_bit(__LINK_STATE_START, &dev->state);
10402
10403         /* napi_busy_loop stats accounting wants this */
10404         dev_net_set(dev, &init_net);
10405
10406         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10407          * because users of this 'device' dont need to change
10408          * its refcount.
10409          */
10410
10411         return 0;
10412 }
10413 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10414
10415
10416 /**
10417  *      register_netdev - register a network device
10418  *      @dev: device to register
10419  *
10420  *      Take a completed network device structure and add it to the kernel
10421  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10422  *      chain. 0 is returned on success. A negative errno code is returned
10423  *      on a failure to set up the device, or if the name is a duplicate.
10424  *
10425  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10426  *      and expands the device name if you passed a format string to
10427  *      alloc_netdev.
10428  */
10429 int register_netdev(struct net_device *dev)
10430 {
10431         int err;
10432
10433         if (rtnl_lock_killable())
10434                 return -EINTR;
10435         err = register_netdevice(dev);
10436         rtnl_unlock();
10437         return err;
10438 }
10439 EXPORT_SYMBOL(register_netdev);
10440
10441 int netdev_refcnt_read(const struct net_device *dev)
10442 {
10443 #ifdef CONFIG_PCPU_DEV_REFCNT
10444         int i, refcnt = 0;
10445
10446         for_each_possible_cpu(i)
10447                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10448         return refcnt;
10449 #else
10450         return refcount_read(&dev->dev_refcnt);
10451 #endif
10452 }
10453 EXPORT_SYMBOL(netdev_refcnt_read);
10454
10455 int netdev_unregister_timeout_secs __read_mostly = 10;
10456
10457 #define WAIT_REFS_MIN_MSECS 1
10458 #define WAIT_REFS_MAX_MSECS 250
10459 /**
10460  * netdev_wait_allrefs - wait until all references are gone.
10461  * @dev: target net_device
10462  *
10463  * This is called when unregistering network devices.
10464  *
10465  * Any protocol or device that holds a reference should register
10466  * for netdevice notification, and cleanup and put back the
10467  * reference if they receive an UNREGISTER event.
10468  * We can get stuck here if buggy protocols don't correctly
10469  * call dev_put.
10470  */
10471 static void netdev_wait_allrefs(struct net_device *dev)
10472 {
10473         unsigned long rebroadcast_time, warning_time;
10474         int wait = 0, refcnt;
10475
10476         linkwatch_forget_dev(dev);
10477
10478         rebroadcast_time = warning_time = jiffies;
10479         refcnt = netdev_refcnt_read(dev);
10480
10481         while (refcnt != 1) {
10482                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10483                         rtnl_lock();
10484
10485                         /* Rebroadcast unregister notification */
10486                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10487
10488                         __rtnl_unlock();
10489                         rcu_barrier();
10490                         rtnl_lock();
10491
10492                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10493                                      &dev->state)) {
10494                                 /* We must not have linkwatch events
10495                                  * pending on unregister. If this
10496                                  * happens, we simply run the queue
10497                                  * unscheduled, resulting in a noop
10498                                  * for this device.
10499                                  */
10500                                 linkwatch_run_queue();
10501                         }
10502
10503                         __rtnl_unlock();
10504
10505                         rebroadcast_time = jiffies;
10506                 }
10507
10508                 if (!wait) {
10509                         rcu_barrier();
10510                         wait = WAIT_REFS_MIN_MSECS;
10511                 } else {
10512                         msleep(wait);
10513                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10514                 }
10515
10516                 refcnt = netdev_refcnt_read(dev);
10517
10518                 if (refcnt != 1 &&
10519                     time_after(jiffies, warning_time +
10520                                netdev_unregister_timeout_secs * HZ)) {
10521                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10522                                  dev->name, refcnt);
10523                         warning_time = jiffies;
10524                 }
10525         }
10526 }
10527
10528 /* The sequence is:
10529  *
10530  *      rtnl_lock();
10531  *      ...
10532  *      register_netdevice(x1);
10533  *      register_netdevice(x2);
10534  *      ...
10535  *      unregister_netdevice(y1);
10536  *      unregister_netdevice(y2);
10537  *      ...
10538  *      rtnl_unlock();
10539  *      free_netdev(y1);
10540  *      free_netdev(y2);
10541  *
10542  * We are invoked by rtnl_unlock().
10543  * This allows us to deal with problems:
10544  * 1) We can delete sysfs objects which invoke hotplug
10545  *    without deadlocking with linkwatch via keventd.
10546  * 2) Since we run with the RTNL semaphore not held, we can sleep
10547  *    safely in order to wait for the netdev refcnt to drop to zero.
10548  *
10549  * We must not return until all unregister events added during
10550  * the interval the lock was held have been completed.
10551  */
10552 void netdev_run_todo(void)
10553 {
10554         struct list_head list;
10555 #ifdef CONFIG_LOCKDEP
10556         struct list_head unlink_list;
10557
10558         list_replace_init(&net_unlink_list, &unlink_list);
10559
10560         while (!list_empty(&unlink_list)) {
10561                 struct net_device *dev = list_first_entry(&unlink_list,
10562                                                           struct net_device,
10563                                                           unlink_list);
10564                 list_del_init(&dev->unlink_list);
10565                 dev->nested_level = dev->lower_level - 1;
10566         }
10567 #endif
10568
10569         /* Snapshot list, allow later requests */
10570         list_replace_init(&net_todo_list, &list);
10571
10572         __rtnl_unlock();
10573
10574
10575         /* Wait for rcu callbacks to finish before next phase */
10576         if (!list_empty(&list))
10577                 rcu_barrier();
10578
10579         while (!list_empty(&list)) {
10580                 struct net_device *dev
10581                         = list_first_entry(&list, struct net_device, todo_list);
10582                 list_del(&dev->todo_list);
10583
10584                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10585                         pr_err("network todo '%s' but state %d\n",
10586                                dev->name, dev->reg_state);
10587                         dump_stack();
10588                         continue;
10589                 }
10590
10591                 dev->reg_state = NETREG_UNREGISTERED;
10592
10593                 netdev_wait_allrefs(dev);
10594
10595                 /* paranoia */
10596                 BUG_ON(netdev_refcnt_read(dev) != 1);
10597                 BUG_ON(!list_empty(&dev->ptype_all));
10598                 BUG_ON(!list_empty(&dev->ptype_specific));
10599                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10600                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10601 #if IS_ENABLED(CONFIG_DECNET)
10602                 WARN_ON(dev->dn_ptr);
10603 #endif
10604                 if (dev->priv_destructor)
10605                         dev->priv_destructor(dev);
10606                 if (dev->needs_free_netdev)
10607                         free_netdev(dev);
10608
10609                 /* Report a network device has been unregistered */
10610                 rtnl_lock();
10611                 dev_net(dev)->dev_unreg_count--;
10612                 __rtnl_unlock();
10613                 wake_up(&netdev_unregistering_wq);
10614
10615                 /* Free network device */
10616                 kobject_put(&dev->dev.kobj);
10617         }
10618 }
10619
10620 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10621  * all the same fields in the same order as net_device_stats, with only
10622  * the type differing, but rtnl_link_stats64 may have additional fields
10623  * at the end for newer counters.
10624  */
10625 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10626                              const struct net_device_stats *netdev_stats)
10627 {
10628 #if BITS_PER_LONG == 64
10629         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10630         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10631         /* zero out counters that only exist in rtnl_link_stats64 */
10632         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10633                sizeof(*stats64) - sizeof(*netdev_stats));
10634 #else
10635         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10636         const unsigned long *src = (const unsigned long *)netdev_stats;
10637         u64 *dst = (u64 *)stats64;
10638
10639         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10640         for (i = 0; i < n; i++)
10641                 dst[i] = src[i];
10642         /* zero out counters that only exist in rtnl_link_stats64 */
10643         memset((char *)stats64 + n * sizeof(u64), 0,
10644                sizeof(*stats64) - n * sizeof(u64));
10645 #endif
10646 }
10647 EXPORT_SYMBOL(netdev_stats_to_stats64);
10648
10649 /**
10650  *      dev_get_stats   - get network device statistics
10651  *      @dev: device to get statistics from
10652  *      @storage: place to store stats
10653  *
10654  *      Get network statistics from device. Return @storage.
10655  *      The device driver may provide its own method by setting
10656  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10657  *      otherwise the internal statistics structure is used.
10658  */
10659 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10660                                         struct rtnl_link_stats64 *storage)
10661 {
10662         const struct net_device_ops *ops = dev->netdev_ops;
10663
10664         if (ops->ndo_get_stats64) {
10665                 memset(storage, 0, sizeof(*storage));
10666                 ops->ndo_get_stats64(dev, storage);
10667         } else if (ops->ndo_get_stats) {
10668                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10669         } else {
10670                 netdev_stats_to_stats64(storage, &dev->stats);
10671         }
10672         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10673         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10674         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10675         return storage;
10676 }
10677 EXPORT_SYMBOL(dev_get_stats);
10678
10679 /**
10680  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10681  *      @s: place to store stats
10682  *      @netstats: per-cpu network stats to read from
10683  *
10684  *      Read per-cpu network statistics and populate the related fields in @s.
10685  */
10686 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10687                            const struct pcpu_sw_netstats __percpu *netstats)
10688 {
10689         int cpu;
10690
10691         for_each_possible_cpu(cpu) {
10692                 const struct pcpu_sw_netstats *stats;
10693                 struct pcpu_sw_netstats tmp;
10694                 unsigned int start;
10695
10696                 stats = per_cpu_ptr(netstats, cpu);
10697                 do {
10698                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10699                         tmp.rx_packets = stats->rx_packets;
10700                         tmp.rx_bytes   = stats->rx_bytes;
10701                         tmp.tx_packets = stats->tx_packets;
10702                         tmp.tx_bytes   = stats->tx_bytes;
10703                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10704
10705                 s->rx_packets += tmp.rx_packets;
10706                 s->rx_bytes   += tmp.rx_bytes;
10707                 s->tx_packets += tmp.tx_packets;
10708                 s->tx_bytes   += tmp.tx_bytes;
10709         }
10710 }
10711 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10712
10713 /**
10714  *      dev_get_tstats64 - ndo_get_stats64 implementation
10715  *      @dev: device to get statistics from
10716  *      @s: place to store stats
10717  *
10718  *      Populate @s from dev->stats and dev->tstats. Can be used as
10719  *      ndo_get_stats64() callback.
10720  */
10721 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10722 {
10723         netdev_stats_to_stats64(s, &dev->stats);
10724         dev_fetch_sw_netstats(s, dev->tstats);
10725 }
10726 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10727
10728 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10729 {
10730         struct netdev_queue *queue = dev_ingress_queue(dev);
10731
10732 #ifdef CONFIG_NET_CLS_ACT
10733         if (queue)
10734                 return queue;
10735         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10736         if (!queue)
10737                 return NULL;
10738         netdev_init_one_queue(dev, queue, NULL);
10739         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10740         queue->qdisc_sleeping = &noop_qdisc;
10741         rcu_assign_pointer(dev->ingress_queue, queue);
10742 #endif
10743         return queue;
10744 }
10745
10746 static const struct ethtool_ops default_ethtool_ops;
10747
10748 void netdev_set_default_ethtool_ops(struct net_device *dev,
10749                                     const struct ethtool_ops *ops)
10750 {
10751         if (dev->ethtool_ops == &default_ethtool_ops)
10752                 dev->ethtool_ops = ops;
10753 }
10754 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10755
10756 void netdev_freemem(struct net_device *dev)
10757 {
10758         char *addr = (char *)dev - dev->padded;
10759
10760         kvfree(addr);
10761 }
10762
10763 /**
10764  * alloc_netdev_mqs - allocate network device
10765  * @sizeof_priv: size of private data to allocate space for
10766  * @name: device name format string
10767  * @name_assign_type: origin of device name
10768  * @setup: callback to initialize device
10769  * @txqs: the number of TX subqueues to allocate
10770  * @rxqs: the number of RX subqueues to allocate
10771  *
10772  * Allocates a struct net_device with private data area for driver use
10773  * and performs basic initialization.  Also allocates subqueue structs
10774  * for each queue on the device.
10775  */
10776 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10777                 unsigned char name_assign_type,
10778                 void (*setup)(struct net_device *),
10779                 unsigned int txqs, unsigned int rxqs)
10780 {
10781         struct net_device *dev;
10782         unsigned int alloc_size;
10783         struct net_device *p;
10784
10785         BUG_ON(strlen(name) >= sizeof(dev->name));
10786
10787         if (txqs < 1) {
10788                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10789                 return NULL;
10790         }
10791
10792         if (rxqs < 1) {
10793                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10794                 return NULL;
10795         }
10796
10797         alloc_size = sizeof(struct net_device);
10798         if (sizeof_priv) {
10799                 /* ensure 32-byte alignment of private area */
10800                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10801                 alloc_size += sizeof_priv;
10802         }
10803         /* ensure 32-byte alignment of whole construct */
10804         alloc_size += NETDEV_ALIGN - 1;
10805
10806         p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10807         if (!p)
10808                 return NULL;
10809
10810         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10811         dev->padded = (char *)dev - (char *)p;
10812
10813 #ifdef CONFIG_PCPU_DEV_REFCNT
10814         dev->pcpu_refcnt = alloc_percpu(int);
10815         if (!dev->pcpu_refcnt)
10816                 goto free_dev;
10817         dev_hold(dev);
10818 #else
10819         refcount_set(&dev->dev_refcnt, 1);
10820 #endif
10821
10822         if (dev_addr_init(dev))
10823                 goto free_pcpu;
10824
10825         dev_mc_init(dev);
10826         dev_uc_init(dev);
10827
10828         dev_net_set(dev, &init_net);
10829
10830         dev->gso_max_size = GSO_MAX_SIZE;
10831         dev->gso_max_segs = GSO_MAX_SEGS;
10832         dev->upper_level = 1;
10833         dev->lower_level = 1;
10834 #ifdef CONFIG_LOCKDEP
10835         dev->nested_level = 0;
10836         INIT_LIST_HEAD(&dev->unlink_list);
10837 #endif
10838
10839         INIT_LIST_HEAD(&dev->napi_list);
10840         INIT_LIST_HEAD(&dev->unreg_list);
10841         INIT_LIST_HEAD(&dev->close_list);
10842         INIT_LIST_HEAD(&dev->link_watch_list);
10843         INIT_LIST_HEAD(&dev->adj_list.upper);
10844         INIT_LIST_HEAD(&dev->adj_list.lower);
10845         INIT_LIST_HEAD(&dev->ptype_all);
10846         INIT_LIST_HEAD(&dev->ptype_specific);
10847         INIT_LIST_HEAD(&dev->net_notifier_list);
10848 #ifdef CONFIG_NET_SCHED
10849         hash_init(dev->qdisc_hash);
10850 #endif
10851         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10852         setup(dev);
10853
10854         if (!dev->tx_queue_len) {
10855                 dev->priv_flags |= IFF_NO_QUEUE;
10856                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10857         }
10858
10859         dev->num_tx_queues = txqs;
10860         dev->real_num_tx_queues = txqs;
10861         if (netif_alloc_netdev_queues(dev))
10862                 goto free_all;
10863
10864         dev->num_rx_queues = rxqs;
10865         dev->real_num_rx_queues = rxqs;
10866         if (netif_alloc_rx_queues(dev))
10867                 goto free_all;
10868
10869         strcpy(dev->name, name);
10870         dev->name_assign_type = name_assign_type;
10871         dev->group = INIT_NETDEV_GROUP;
10872         if (!dev->ethtool_ops)
10873                 dev->ethtool_ops = &default_ethtool_ops;
10874
10875         nf_hook_ingress_init(dev);
10876
10877         return dev;
10878
10879 free_all:
10880         free_netdev(dev);
10881         return NULL;
10882
10883 free_pcpu:
10884 #ifdef CONFIG_PCPU_DEV_REFCNT
10885         free_percpu(dev->pcpu_refcnt);
10886 free_dev:
10887 #endif
10888         netdev_freemem(dev);
10889         return NULL;
10890 }
10891 EXPORT_SYMBOL(alloc_netdev_mqs);
10892
10893 /**
10894  * free_netdev - free network device
10895  * @dev: device
10896  *
10897  * This function does the last stage of destroying an allocated device
10898  * interface. The reference to the device object is released. If this
10899  * is the last reference then it will be freed.Must be called in process
10900  * context.
10901  */
10902 void free_netdev(struct net_device *dev)
10903 {
10904         struct napi_struct *p, *n;
10905
10906         might_sleep();
10907
10908         /* When called immediately after register_netdevice() failed the unwind
10909          * handling may still be dismantling the device. Handle that case by
10910          * deferring the free.
10911          */
10912         if (dev->reg_state == NETREG_UNREGISTERING) {
10913                 ASSERT_RTNL();
10914                 dev->needs_free_netdev = true;
10915                 return;
10916         }
10917
10918         netif_free_tx_queues(dev);
10919         netif_free_rx_queues(dev);
10920
10921         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10922
10923         /* Flush device addresses */
10924         dev_addr_flush(dev);
10925
10926         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10927                 netif_napi_del(p);
10928
10929 #ifdef CONFIG_PCPU_DEV_REFCNT
10930         free_percpu(dev->pcpu_refcnt);
10931         dev->pcpu_refcnt = NULL;
10932 #endif
10933         free_percpu(dev->xdp_bulkq);
10934         dev->xdp_bulkq = NULL;
10935
10936         /*  Compatibility with error handling in drivers */
10937         if (dev->reg_state == NETREG_UNINITIALIZED) {
10938                 netdev_freemem(dev);
10939                 return;
10940         }
10941
10942         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10943         dev->reg_state = NETREG_RELEASED;
10944
10945         /* will free via device release */
10946         put_device(&dev->dev);
10947 }
10948 EXPORT_SYMBOL(free_netdev);
10949
10950 /**
10951  *      synchronize_net -  Synchronize with packet receive processing
10952  *
10953  *      Wait for packets currently being received to be done.
10954  *      Does not block later packets from starting.
10955  */
10956 void synchronize_net(void)
10957 {
10958         might_sleep();
10959         if (rtnl_is_locked())
10960                 synchronize_rcu_expedited();
10961         else
10962                 synchronize_rcu();
10963 }
10964 EXPORT_SYMBOL(synchronize_net);
10965
10966 /**
10967  *      unregister_netdevice_queue - remove device from the kernel
10968  *      @dev: device
10969  *      @head: list
10970  *
10971  *      This function shuts down a device interface and removes it
10972  *      from the kernel tables.
10973  *      If head not NULL, device is queued to be unregistered later.
10974  *
10975  *      Callers must hold the rtnl semaphore.  You may want
10976  *      unregister_netdev() instead of this.
10977  */
10978
10979 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10980 {
10981         ASSERT_RTNL();
10982
10983         if (head) {
10984                 list_move_tail(&dev->unreg_list, head);
10985         } else {
10986                 LIST_HEAD(single);
10987
10988                 list_add(&dev->unreg_list, &single);
10989                 unregister_netdevice_many(&single);
10990         }
10991 }
10992 EXPORT_SYMBOL(unregister_netdevice_queue);
10993
10994 /**
10995  *      unregister_netdevice_many - unregister many devices
10996  *      @head: list of devices
10997  *
10998  *  Note: As most callers use a stack allocated list_head,
10999  *  we force a list_del() to make sure stack wont be corrupted later.
11000  */
11001 void unregister_netdevice_many(struct list_head *head)
11002 {
11003         struct net_device *dev, *tmp;
11004         LIST_HEAD(close_head);
11005
11006         BUG_ON(dev_boot_phase);
11007         ASSERT_RTNL();
11008
11009         if (list_empty(head))
11010                 return;
11011
11012         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11013                 /* Some devices call without registering
11014                  * for initialization unwind. Remove those
11015                  * devices and proceed with the remaining.
11016                  */
11017                 if (dev->reg_state == NETREG_UNINITIALIZED) {
11018                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11019                                  dev->name, dev);
11020
11021                         WARN_ON(1);
11022                         list_del(&dev->unreg_list);
11023                         continue;
11024                 }
11025                 dev->dismantle = true;
11026                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11027         }
11028
11029         /* If device is running, close it first. */
11030         list_for_each_entry(dev, head, unreg_list)
11031                 list_add_tail(&dev->close_list, &close_head);
11032         dev_close_many(&close_head, true);
11033
11034         list_for_each_entry(dev, head, unreg_list) {
11035                 /* And unlink it from device chain. */
11036                 unlist_netdevice(dev);
11037
11038                 dev->reg_state = NETREG_UNREGISTERING;
11039         }
11040         flush_all_backlogs();
11041
11042         synchronize_net();
11043
11044         list_for_each_entry(dev, head, unreg_list) {
11045                 struct sk_buff *skb = NULL;
11046
11047                 /* Shutdown queueing discipline. */
11048                 dev_shutdown(dev);
11049
11050                 dev_xdp_uninstall(dev);
11051
11052                 /* Notify protocols, that we are about to destroy
11053                  * this device. They should clean all the things.
11054                  */
11055                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11056
11057                 if (!dev->rtnl_link_ops ||
11058                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11059                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11060                                                      GFP_KERNEL, NULL, 0);
11061
11062                 /*
11063                  *      Flush the unicast and multicast chains
11064                  */
11065                 dev_uc_flush(dev);
11066                 dev_mc_flush(dev);
11067
11068                 netdev_name_node_alt_flush(dev);
11069                 netdev_name_node_free(dev->name_node);
11070
11071                 if (dev->netdev_ops->ndo_uninit)
11072                         dev->netdev_ops->ndo_uninit(dev);
11073
11074                 if (skb)
11075                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11076
11077                 /* Notifier chain MUST detach us all upper devices. */
11078                 WARN_ON(netdev_has_any_upper_dev(dev));
11079                 WARN_ON(netdev_has_any_lower_dev(dev));
11080
11081                 /* Remove entries from kobject tree */
11082                 netdev_unregister_kobject(dev);
11083 #ifdef CONFIG_XPS
11084                 /* Remove XPS queueing entries */
11085                 netif_reset_xps_queues_gt(dev, 0);
11086 #endif
11087         }
11088
11089         synchronize_net();
11090
11091         list_for_each_entry(dev, head, unreg_list) {
11092                 dev_put(dev);
11093                 net_set_todo(dev);
11094         }
11095
11096         list_del(head);
11097 }
11098 EXPORT_SYMBOL(unregister_netdevice_many);
11099
11100 /**
11101  *      unregister_netdev - remove device from the kernel
11102  *      @dev: device
11103  *
11104  *      This function shuts down a device interface and removes it
11105  *      from the kernel tables.
11106  *
11107  *      This is just a wrapper for unregister_netdevice that takes
11108  *      the rtnl semaphore.  In general you want to use this and not
11109  *      unregister_netdevice.
11110  */
11111 void unregister_netdev(struct net_device *dev)
11112 {
11113         rtnl_lock();
11114         unregister_netdevice(dev);
11115         rtnl_unlock();
11116 }
11117 EXPORT_SYMBOL(unregister_netdev);
11118
11119 /**
11120  *      __dev_change_net_namespace - move device to different nethost namespace
11121  *      @dev: device
11122  *      @net: network namespace
11123  *      @pat: If not NULL name pattern to try if the current device name
11124  *            is already taken in the destination network namespace.
11125  *      @new_ifindex: If not zero, specifies device index in the target
11126  *                    namespace.
11127  *
11128  *      This function shuts down a device interface and moves it
11129  *      to a new network namespace. On success 0 is returned, on
11130  *      a failure a netagive errno code is returned.
11131  *
11132  *      Callers must hold the rtnl semaphore.
11133  */
11134
11135 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11136                                const char *pat, int new_ifindex)
11137 {
11138         struct net *net_old = dev_net(dev);
11139         int err, new_nsid;
11140
11141         ASSERT_RTNL();
11142
11143         /* Don't allow namespace local devices to be moved. */
11144         err = -EINVAL;
11145         if (dev->features & NETIF_F_NETNS_LOCAL)
11146                 goto out;
11147
11148         /* Ensure the device has been registrered */
11149         if (dev->reg_state != NETREG_REGISTERED)
11150                 goto out;
11151
11152         /* Get out if there is nothing todo */
11153         err = 0;
11154         if (net_eq(net_old, net))
11155                 goto out;
11156
11157         /* Pick the destination device name, and ensure
11158          * we can use it in the destination network namespace.
11159          */
11160         err = -EEXIST;
11161         if (__dev_get_by_name(net, dev->name)) {
11162                 /* We get here if we can't use the current device name */
11163                 if (!pat)
11164                         goto out;
11165                 err = dev_get_valid_name(net, dev, pat);
11166                 if (err < 0)
11167                         goto out;
11168         }
11169
11170         /* Check that new_ifindex isn't used yet. */
11171         err = -EBUSY;
11172         if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11173                 goto out;
11174
11175         /*
11176          * And now a mini version of register_netdevice unregister_netdevice.
11177          */
11178
11179         /* If device is running close it first. */
11180         dev_close(dev);
11181
11182         /* And unlink it from device chain */
11183         unlist_netdevice(dev);
11184
11185         synchronize_net();
11186
11187         /* Shutdown queueing discipline. */
11188         dev_shutdown(dev);
11189
11190         /* Notify protocols, that we are about to destroy
11191          * this device. They should clean all the things.
11192          *
11193          * Note that dev->reg_state stays at NETREG_REGISTERED.
11194          * This is wanted because this way 8021q and macvlan know
11195          * the device is just moving and can keep their slaves up.
11196          */
11197         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11198         rcu_barrier();
11199
11200         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11201         /* If there is an ifindex conflict assign a new one */
11202         if (!new_ifindex) {
11203                 if (__dev_get_by_index(net, dev->ifindex))
11204                         new_ifindex = dev_new_index(net);
11205                 else
11206                         new_ifindex = dev->ifindex;
11207         }
11208
11209         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11210                             new_ifindex);
11211
11212         /*
11213          *      Flush the unicast and multicast chains
11214          */
11215         dev_uc_flush(dev);
11216         dev_mc_flush(dev);
11217
11218         /* Send a netdev-removed uevent to the old namespace */
11219         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11220         netdev_adjacent_del_links(dev);
11221
11222         /* Move per-net netdevice notifiers that are following the netdevice */
11223         move_netdevice_notifiers_dev_net(dev, net);
11224
11225         /* Actually switch the network namespace */
11226         dev_net_set(dev, net);
11227         dev->ifindex = new_ifindex;
11228
11229         /* Send a netdev-add uevent to the new namespace */
11230         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11231         netdev_adjacent_add_links(dev);
11232
11233         /* Fixup kobjects */
11234         err = device_rename(&dev->dev, dev->name);
11235         WARN_ON(err);
11236
11237         /* Adapt owner in case owning user namespace of target network
11238          * namespace is different from the original one.
11239          */
11240         err = netdev_change_owner(dev, net_old, net);
11241         WARN_ON(err);
11242
11243         /* Add the device back in the hashes */
11244         list_netdevice(dev);
11245
11246         /* Notify protocols, that a new device appeared. */
11247         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11248
11249         /*
11250          *      Prevent userspace races by waiting until the network
11251          *      device is fully setup before sending notifications.
11252          */
11253         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11254
11255         synchronize_net();
11256         err = 0;
11257 out:
11258         return err;
11259 }
11260 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11261
11262 static int dev_cpu_dead(unsigned int oldcpu)
11263 {
11264         struct sk_buff **list_skb;
11265         struct sk_buff *skb;
11266         unsigned int cpu;
11267         struct softnet_data *sd, *oldsd, *remsd = NULL;
11268
11269         local_irq_disable();
11270         cpu = smp_processor_id();
11271         sd = &per_cpu(softnet_data, cpu);
11272         oldsd = &per_cpu(softnet_data, oldcpu);
11273
11274         /* Find end of our completion_queue. */
11275         list_skb = &sd->completion_queue;
11276         while (*list_skb)
11277                 list_skb = &(*list_skb)->next;
11278         /* Append completion queue from offline CPU. */
11279         *list_skb = oldsd->completion_queue;
11280         oldsd->completion_queue = NULL;
11281
11282         /* Append output queue from offline CPU. */
11283         if (oldsd->output_queue) {
11284                 *sd->output_queue_tailp = oldsd->output_queue;
11285                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11286                 oldsd->output_queue = NULL;
11287                 oldsd->output_queue_tailp = &oldsd->output_queue;
11288         }
11289         /* Append NAPI poll list from offline CPU, with one exception :
11290          * process_backlog() must be called by cpu owning percpu backlog.
11291          * We properly handle process_queue & input_pkt_queue later.
11292          */
11293         while (!list_empty(&oldsd->poll_list)) {
11294                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11295                                                             struct napi_struct,
11296                                                             poll_list);
11297
11298                 list_del_init(&napi->poll_list);
11299                 if (napi->poll == process_backlog)
11300                         napi->state = 0;
11301                 else
11302                         ____napi_schedule(sd, napi);
11303         }
11304
11305         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11306         local_irq_enable();
11307
11308 #ifdef CONFIG_RPS
11309         remsd = oldsd->rps_ipi_list;
11310         oldsd->rps_ipi_list = NULL;
11311 #endif
11312         /* send out pending IPI's on offline CPU */
11313         net_rps_send_ipi(remsd);
11314
11315         /* Process offline CPU's input_pkt_queue */
11316         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11317                 netif_rx_ni(skb);
11318                 input_queue_head_incr(oldsd);
11319         }
11320         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11321                 netif_rx_ni(skb);
11322                 input_queue_head_incr(oldsd);
11323         }
11324
11325         return 0;
11326 }
11327
11328 /**
11329  *      netdev_increment_features - increment feature set by one
11330  *      @all: current feature set
11331  *      @one: new feature set
11332  *      @mask: mask feature set
11333  *
11334  *      Computes a new feature set after adding a device with feature set
11335  *      @one to the master device with current feature set @all.  Will not
11336  *      enable anything that is off in @mask. Returns the new feature set.
11337  */
11338 netdev_features_t netdev_increment_features(netdev_features_t all,
11339         netdev_features_t one, netdev_features_t mask)
11340 {
11341         if (mask & NETIF_F_HW_CSUM)
11342                 mask |= NETIF_F_CSUM_MASK;
11343         mask |= NETIF_F_VLAN_CHALLENGED;
11344
11345         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11346         all &= one | ~NETIF_F_ALL_FOR_ALL;
11347
11348         /* If one device supports hw checksumming, set for all. */
11349         if (all & NETIF_F_HW_CSUM)
11350                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11351
11352         return all;
11353 }
11354 EXPORT_SYMBOL(netdev_increment_features);
11355
11356 static struct hlist_head * __net_init netdev_create_hash(void)
11357 {
11358         int i;
11359         struct hlist_head *hash;
11360
11361         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11362         if (hash != NULL)
11363                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11364                         INIT_HLIST_HEAD(&hash[i]);
11365
11366         return hash;
11367 }
11368
11369 /* Initialize per network namespace state */
11370 static int __net_init netdev_init(struct net *net)
11371 {
11372         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11373                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11374
11375         if (net != &init_net)
11376                 INIT_LIST_HEAD(&net->dev_base_head);
11377
11378         net->dev_name_head = netdev_create_hash();
11379         if (net->dev_name_head == NULL)
11380                 goto err_name;
11381
11382         net->dev_index_head = netdev_create_hash();
11383         if (net->dev_index_head == NULL)
11384                 goto err_idx;
11385
11386         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11387
11388         return 0;
11389
11390 err_idx:
11391         kfree(net->dev_name_head);
11392 err_name:
11393         return -ENOMEM;
11394 }
11395
11396 /**
11397  *      netdev_drivername - network driver for the device
11398  *      @dev: network device
11399  *
11400  *      Determine network driver for device.
11401  */
11402 const char *netdev_drivername(const struct net_device *dev)
11403 {
11404         const struct device_driver *driver;
11405         const struct device *parent;
11406         const char *empty = "";
11407
11408         parent = dev->dev.parent;
11409         if (!parent)
11410                 return empty;
11411
11412         driver = parent->driver;
11413         if (driver && driver->name)
11414                 return driver->name;
11415         return empty;
11416 }
11417
11418 static void __netdev_printk(const char *level, const struct net_device *dev,
11419                             struct va_format *vaf)
11420 {
11421         if (dev && dev->dev.parent) {
11422                 dev_printk_emit(level[1] - '0',
11423                                 dev->dev.parent,
11424                                 "%s %s %s%s: %pV",
11425                                 dev_driver_string(dev->dev.parent),
11426                                 dev_name(dev->dev.parent),
11427                                 netdev_name(dev), netdev_reg_state(dev),
11428                                 vaf);
11429         } else if (dev) {
11430                 printk("%s%s%s: %pV",
11431                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11432         } else {
11433                 printk("%s(NULL net_device): %pV", level, vaf);
11434         }
11435 }
11436
11437 void netdev_printk(const char *level, const struct net_device *dev,
11438                    const char *format, ...)
11439 {
11440         struct va_format vaf;
11441         va_list args;
11442
11443         va_start(args, format);
11444
11445         vaf.fmt = format;
11446         vaf.va = &args;
11447
11448         __netdev_printk(level, dev, &vaf);
11449
11450         va_end(args);
11451 }
11452 EXPORT_SYMBOL(netdev_printk);
11453
11454 #define define_netdev_printk_level(func, level)                 \
11455 void func(const struct net_device *dev, const char *fmt, ...)   \
11456 {                                                               \
11457         struct va_format vaf;                                   \
11458         va_list args;                                           \
11459                                                                 \
11460         va_start(args, fmt);                                    \
11461                                                                 \
11462         vaf.fmt = fmt;                                          \
11463         vaf.va = &args;                                         \
11464                                                                 \
11465         __netdev_printk(level, dev, &vaf);                      \
11466                                                                 \
11467         va_end(args);                                           \
11468 }                                                               \
11469 EXPORT_SYMBOL(func);
11470
11471 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11472 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11473 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11474 define_netdev_printk_level(netdev_err, KERN_ERR);
11475 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11476 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11477 define_netdev_printk_level(netdev_info, KERN_INFO);
11478
11479 static void __net_exit netdev_exit(struct net *net)
11480 {
11481         kfree(net->dev_name_head);
11482         kfree(net->dev_index_head);
11483         if (net != &init_net)
11484                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11485 }
11486
11487 static struct pernet_operations __net_initdata netdev_net_ops = {
11488         .init = netdev_init,
11489         .exit = netdev_exit,
11490 };
11491
11492 static void __net_exit default_device_exit(struct net *net)
11493 {
11494         struct net_device *dev, *aux;
11495         /*
11496          * Push all migratable network devices back to the
11497          * initial network namespace
11498          */
11499         rtnl_lock();
11500         for_each_netdev_safe(net, dev, aux) {
11501                 int err;
11502                 char fb_name[IFNAMSIZ];
11503
11504                 /* Ignore unmoveable devices (i.e. loopback) */
11505                 if (dev->features & NETIF_F_NETNS_LOCAL)
11506                         continue;
11507
11508                 /* Leave virtual devices for the generic cleanup */
11509                 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11510                         continue;
11511
11512                 /* Push remaining network devices to init_net */
11513                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11514                 if (__dev_get_by_name(&init_net, fb_name))
11515                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11516                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11517                 if (err) {
11518                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11519                                  __func__, dev->name, err);
11520                         BUG();
11521                 }
11522         }
11523         rtnl_unlock();
11524 }
11525
11526 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11527 {
11528         /* Return with the rtnl_lock held when there are no network
11529          * devices unregistering in any network namespace in net_list.
11530          */
11531         struct net *net;
11532         bool unregistering;
11533         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11534
11535         add_wait_queue(&netdev_unregistering_wq, &wait);
11536         for (;;) {
11537                 unregistering = false;
11538                 rtnl_lock();
11539                 list_for_each_entry(net, net_list, exit_list) {
11540                         if (net->dev_unreg_count > 0) {
11541                                 unregistering = true;
11542                                 break;
11543                         }
11544                 }
11545                 if (!unregistering)
11546                         break;
11547                 __rtnl_unlock();
11548
11549                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11550         }
11551         remove_wait_queue(&netdev_unregistering_wq, &wait);
11552 }
11553
11554 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11555 {
11556         /* At exit all network devices most be removed from a network
11557          * namespace.  Do this in the reverse order of registration.
11558          * Do this across as many network namespaces as possible to
11559          * improve batching efficiency.
11560          */
11561         struct net_device *dev;
11562         struct net *net;
11563         LIST_HEAD(dev_kill_list);
11564
11565         /* To prevent network device cleanup code from dereferencing
11566          * loopback devices or network devices that have been freed
11567          * wait here for all pending unregistrations to complete,
11568          * before unregistring the loopback device and allowing the
11569          * network namespace be freed.
11570          *
11571          * The netdev todo list containing all network devices
11572          * unregistrations that happen in default_device_exit_batch
11573          * will run in the rtnl_unlock() at the end of
11574          * default_device_exit_batch.
11575          */
11576         rtnl_lock_unregistering(net_list);
11577         list_for_each_entry(net, net_list, exit_list) {
11578                 for_each_netdev_reverse(net, dev) {
11579                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11580                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11581                         else
11582                                 unregister_netdevice_queue(dev, &dev_kill_list);
11583                 }
11584         }
11585         unregister_netdevice_many(&dev_kill_list);
11586         rtnl_unlock();
11587 }
11588
11589 static struct pernet_operations __net_initdata default_device_ops = {
11590         .exit = default_device_exit,
11591         .exit_batch = default_device_exit_batch,
11592 };
11593
11594 /*
11595  *      Initialize the DEV module. At boot time this walks the device list and
11596  *      unhooks any devices that fail to initialise (normally hardware not
11597  *      present) and leaves us with a valid list of present and active devices.
11598  *
11599  */
11600
11601 /*
11602  *       This is called single threaded during boot, so no need
11603  *       to take the rtnl semaphore.
11604  */
11605 static int __init net_dev_init(void)
11606 {
11607         int i, rc = -ENOMEM;
11608
11609         BUG_ON(!dev_boot_phase);
11610
11611         if (dev_proc_init())
11612                 goto out;
11613
11614         if (netdev_kobject_init())
11615                 goto out;
11616
11617         INIT_LIST_HEAD(&ptype_all);
11618         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11619                 INIT_LIST_HEAD(&ptype_base[i]);
11620
11621         INIT_LIST_HEAD(&offload_base);
11622
11623         if (register_pernet_subsys(&netdev_net_ops))
11624                 goto out;
11625
11626         /*
11627          *      Initialise the packet receive queues.
11628          */
11629
11630         for_each_possible_cpu(i) {
11631                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11632                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11633
11634                 INIT_WORK(flush, flush_backlog);
11635
11636                 skb_queue_head_init(&sd->input_pkt_queue);
11637                 skb_queue_head_init(&sd->process_queue);
11638 #ifdef CONFIG_XFRM_OFFLOAD
11639                 skb_queue_head_init(&sd->xfrm_backlog);
11640 #endif
11641                 INIT_LIST_HEAD(&sd->poll_list);
11642                 sd->output_queue_tailp = &sd->output_queue;
11643 #ifdef CONFIG_RPS
11644                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11645                 sd->cpu = i;
11646 #endif
11647
11648                 init_gro_hash(&sd->backlog);
11649                 sd->backlog.poll = process_backlog;
11650                 sd->backlog.weight = weight_p;
11651         }
11652
11653         dev_boot_phase = 0;
11654
11655         /* The loopback device is special if any other network devices
11656          * is present in a network namespace the loopback device must
11657          * be present. Since we now dynamically allocate and free the
11658          * loopback device ensure this invariant is maintained by
11659          * keeping the loopback device as the first device on the
11660          * list of network devices.  Ensuring the loopback devices
11661          * is the first device that appears and the last network device
11662          * that disappears.
11663          */
11664         if (register_pernet_device(&loopback_net_ops))
11665                 goto out;
11666
11667         if (register_pernet_device(&default_device_ops))
11668                 goto out;
11669
11670         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11671         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11672
11673         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11674                                        NULL, dev_cpu_dead);
11675         WARN_ON(rc < 0);
11676         rc = 0;
11677 out:
11678         return rc;
11679 }
11680
11681 subsys_initcall(net_dev_init);